WO2020154867A1 - 一种数据复制传输控制方法、终端设备及网络设备 - Google Patents

一种数据复制传输控制方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2020154867A1
WO2020154867A1 PCT/CN2019/073524 CN2019073524W WO2020154867A1 WO 2020154867 A1 WO2020154867 A1 WO 2020154867A1 CN 2019073524 W CN2019073524 W CN 2019073524W WO 2020154867 A1 WO2020154867 A1 WO 2020154867A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
control information
control
transmission
rlc
Prior art date
Application number
PCT/CN2019/073524
Other languages
English (en)
French (fr)
Inventor
卢前溪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/073524 priority Critical patent/WO2020154867A1/zh
Priority to CN201980054847.9A priority patent/CN112586016B/zh
Publication of WO2020154867A1 publication Critical patent/WO2020154867A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present invention relates to the field of information processing technology, and in particular to a data replication transmission control method, terminal equipment, network equipment, and computer storage media, chips, computer readable storage media, computer program products, and computer programs.
  • 5G is divided into 3 major application scenarios, eMBB (enhanced mobile broadband), mMTC (massive machine communication), uRLLC (ultra-reliable, low-latency communication).
  • eMBB enhanced mobile broadband
  • mMTC massive machine communication
  • uRLLC ultra-reliable, low-latency communication
  • TSN Time Sensitive Network
  • DC dual connection
  • CA carrier aggregation
  • embodiments of the present invention provide a data replication transmission control method, terminal equipment, network equipment, and computer storage media, chips, computer readable storage media, computer program products, and computer programs.
  • a data replication transmission control method which is applied to a terminal device, and the method includes:
  • control information is used to instruct the terminal device to control the control of data replication transmission of the RLC entity for at least one radio link;
  • control information Based on the control information, it is determined that at least part of the at least one RLC entity indicated by the control information performs data transmission.
  • a data replication transmission control method applied to a network device, and the method includes:
  • control information is used to indicate control of data replication transmission for at least one RLC entity.
  • a terminal device including:
  • the first communication unit receives control information; wherein the control information is used to instruct the terminal device to control the control of data replication transmission of the RLC entity for at least one radio link;
  • the first processing unit determines that at least part of the at least one RLC entity indicated by the control information performs data transmission.
  • a network device including:
  • the second communication unit sends control information to the terminal device; wherein the control information is used to indicate control of data replication transmission for at least one RLC entity.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each implementation manner thereof.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the second aspect or its implementations.
  • a chip is provided, which is used to implement any one of the foregoing first aspect and second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect and second aspect or each of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first and second aspects or the methods in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the above-mentioned first and second aspects or the methods in each implementation manner thereof.
  • a computer program which, when run on a computer, causes the computer to execute any one of the above-mentioned first aspect and second aspect or the method in each implementation manner thereof.
  • the terminal device can determine some of the RLC entities to perform data transmission according to the control information of the network in combination with itself, which reduces the coordination between network RLC entities and is suitable for data replication transmission.
  • the number of RLC entities is less than the configured RLC entities.
  • Figure 1-1 is a schematic diagram 1 of a communication system architecture provided by an embodiment of the present application.
  • Figure 1-2 is a schematic diagram of a copy transmission
  • Figure 1-3 is a schematic diagram of a control bit
  • FIG. 2 is a first flowchart of a method for controlling data replication and transmission according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a replication transmission architecture provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a control bit control all RLC replication transmission architecture provided by an embodiment of the present application.
  • FIG. 5 is a second flowchart of a method for controlling data replication and transmission according to an embodiment of the present application
  • FIG. 6 is a third flowchart of a method for controlling data replication and transmission according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of a terminal device provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the composition structure of a network device provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the composition structure of a communication device provided by an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 11 is a second schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application may be as shown in FIG. 1-1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network side devices in 5G networks, or network devices in the future evolution of Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridge
  • the communication system 100 further includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, and direct cable connection ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN wireless local area networks
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1-1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment of the application does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 with communication functions and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the replication transmission architecture in the embodiment of the present application may be as shown in Figure 1-2.
  • Data replication is performed at the PDCP layer, and the same PDCP PDU is mapped to different RLC Entity.
  • MAC needs to transmit the replicated data of different RLC entities (RLC entities) to different carriers.
  • RLC entities RLC entities
  • the number of corresponding RLC entities is limited to 2 in the current Rel15 standard. IIoT will further study more than 2, namely 3 and 4 cases.
  • NR R15 supports two copy data transmission modes, and for a bearer, one of the two modes is selected, and only supports up to two copies of copy data transmission.
  • the two specific copy transmission modes are as follows:
  • CA Duplication CA-based replication data transmission.
  • the protocol architecture of the CA Duplication transmission mode is shown in the following figure DRB ID1 or DRB ID 3.
  • the PDCP entity is associated with two different RLC entities, and the two associated different RLC entities are associated with the same MAC entity.
  • the PDCP PDU is copied into the same two copies.
  • the two PDCPs pass through different RLC entities, the same MAC entity, and then reach the base station (uplink) corresponding MAC entity and RLC entity through the air interface, and finally aggregate to PDCP.
  • the PDCP layer detects that the two PDCPs are the same copy version.
  • DC Duplication DC-based replication data transmission.
  • the protocol architecture of the DC Duplication transmission mode is shown in the following figure DRB ID2.
  • the copy data transmission method uses the split bearer protocol architecture.
  • the PDCP entity is associated with two different RLC entities, and the two associated different RLC entities are associated with different MAC entities, one MAC entity corresponds to MCG, and one MAC entity corresponds to SCG.
  • For uplink and downlink PDCP copies the PDCP PDU into the same two copies.
  • the two PDCPs pass through the RLC entities and MAC entities of different CGs, and then reach the corresponding MAC entity and RLC entity of the base station through the air interface, and finally converge to PDCP, PDCP
  • the layer detects that the two PDCPs are the same copy version. For example, if the two PDCP PDUs have the same SN, it will discard one of them, and then submit the other to the higher layer. (Note that copying PDCP PDUs may not be at the
  • the uplink PDCP data replication function can be configured based on DRB, that is, with DRB granularity, the replication data transmission is configured to control whether the replication data transmission is activated or deactivated.
  • corresponding information is added to the PDCP-config IE in the RRC reconfiguration message to configure the bearer-based data replication mode, and only supports a maximum of 2 leg replication data transmission modes.
  • the MAC CE dynamically activates or deactivates the data replication transmission function of a certain data radio bearer.
  • the MAC CE contains an 8-bit Bitmap. The bits in the bitmap correspond to different DRBs. The difference in the value of the bits indicates the activation or deactivation of the data copy data of the corresponding DRB, as shown in Figure 1-3.
  • the embodiment of the present invention provides a data replication transmission control method, which is applied to a terminal device, as shown in FIG. 2, including:
  • Step 201 Receive control information; where the control information is used to instruct the terminal device to control the data copy transmission of at least one Radio Link Control (RLC, Radio Link Control) entity;
  • RLC Radio Link Control
  • Step 202 Based on the control information, determine that at least part of the at least one RLC entity indicated by the control information performs data transmission.
  • the terminal device may be a device configured with multiple RLC entities for data replication transmission, and multiple of them may be understood as more than two. At least part of the RLC entities in the at least one RLC entity may be a target number of RLC entities in all RLC entities configured for data replication and transmission configured by the terminal device, and the target number is less than the total number of RLC entities.
  • the terminal device is configured with 5 RLC entities, and the 5 RLC entities belong to different network devices; based on the control information, it can be determined that 2 RLC entities of the 5 RLC entities are used for data transmission.
  • the control information may be at least one control information sent from one or more network devices.
  • the control bits in the control information sent by a network device can be for the network device or for multiple network devices, or for one bearer or multiple bearers, or for one or more RLCs under a network device
  • the entity can also target multiple RLC entities for multiple network devices.
  • control bit in the control information only controls the data replication transmission for the RLC entity of a single network device; or, the control bit in the control information also controls the data replication transmission for the RLC entity of more than one network device.
  • bearer the above control bit can be through the media access control (MAC, Media Access Control) control element (CE, Control Element) that explicitly includes the bearer identifier, or through the predefined bearer identifier to bit mapping relationship To implicitly indicate the bearer associated with the bit.
  • MAC media access control
  • CE Control Element
  • Sub-scenario 11 The control bit in the control information only controls data replication and transmission for the RLC entity of a single network device, specifically:
  • the target network device or RLC entity corresponding to the control information can be determined according to the network device that sends the control information. Further, the network device or RLC entity associated with the bit can be implicitly indicated according to the identification of the network device sending the control information and the preset mapping relationship between the network device identification and the bit. Furthermore, it is determined that only control bits for a single network device or RLC for a single network device are included in the MAC CE, that is, the control information.
  • the target network device or RLC entity corresponding to the control information is determined.
  • the RRC configuration information indicates the mapping relationship between the target network device or RLC entity and the control bits. That is, according to the RRC configuration information to obtain the predefined network device identification to bit mapping relationship to implicitly indicate the network device or RLC entity associated with the bit, and then determine at least one network device corresponding to the control bit that can be included in the MAC CE Or at least one RLC entity.
  • the target network device or RLC entity corresponding to the control information is determined according to the first information included in the control information.
  • the first information includes the identification of the target network device. It may be that the control information, that is, the MAC CE explicitly includes the identification of the network device, and the target network device or RLC entity corresponding to the control bit in the control information is determined based on the identification of the network device.
  • the target network device When the target network device includes an RLC entity, it is determined whether to use an RLC entity included in the target network device for data copy transmission based on a control bit in the control information. That is to say, when the target network device is configured with only one RLC entity, one bit is used to control whether the terminal device uses the current RLC entity for data transmission.
  • the target network device When the target network device includes at least two RLC entities, it is determined to use at least two RLC entities included in the target network device for data transmission based on a control bit contained in the control information, or it is determined to use the target
  • the target RLC entity included in the network device performs data replication and transmission. That is, when the target network device is only configured with at least two RLC entities, one bit controls multiple RLC entities to replicate and transmit, or one of the at least two RLC entities of the target network device performs data replication and transmission.
  • One bit is used to control whether the UE has two RLC entities for data transmission, or only one of the RLC entities is used for data transmission; which of the two RLC entities the one RLC entity is can be configured separately, for example, Another bit may be configured through RRC.
  • the target network device includes at least two RLC entities, based on the at least two control bits included in the control information, it is determined that at least two RLC entities included in the target network device perform data copy transmission; wherein different control bits correspond to Different RLC entities. That is, two bits are used to control two RLC entities respectively, whether to perform data transmission, and the control bits of different bits can be used to determine the corresponding RLC entity through a preset relationship, and the control bits of different control bits are used to control different RLC entity.
  • a main network device and two auxiliary contacts 1, 2 are configured, and two bearers are configured at the same time.
  • the first bearer there is an RLC entity on the main network device and the auxiliary network device 1 There are two RLC entities.
  • the main network device issues a control bit for RLC1
  • the auxiliary network device issues a control bit for RLC2 and 3 (or two control bits for each RLC entity). );
  • the auxiliary network device 1 issues a control bit for RLC4, and the auxiliary network device 2 issues a control Bits are for RLC5.
  • the terminal device needs to ensure that the terminal device only transmits data in the target number of RLC entities, for example, only transmits on one or two RLC entities, and the following processing can be performed:
  • Network devices need to coordinate with each other (including but not limited to X2 and Xn interface signaling interactions between different network devices), and this part is not described in this embodiment.
  • the terminal equipment determines the use of the RLC entity according to the latest received signaling, and performs coordinated processing according to the received signaling.
  • the specific instructions are as follows:
  • the determining, based on the control information, that at least part of the at least one RLC entity indicated by the control information performs data replication transmission includes:
  • the RLC entity indicated by the latest received control information performs data replication transmission.
  • the control information from network device 1 has been received before, and the control bit in it indicates the use of two RLC entities of network device 1, and then the control information from network device 2 is received, and the control bit in it indicates the use of network device 2.
  • Two RLC entities; the terminal device can also be configured with a preset number threshold after comprehensive consideration.
  • the target number of the selected RLC entity is less than the preset number threshold, that is to say, the target number can be two, and the terminal device is controlled according to the latter
  • the control bit in the message indicates data transmission.
  • a target number of RLC entities to perform data replication transmission may come from the same network device or different network devices;
  • the RLC entity of the unique network device is determined to perform data replication transmission.
  • control information from network device 1 has been received before, and the control bit in it indicates the use of two RLC entities of network device 1, and then the control information from network device 2 is received, and the control bit in it indicates the use of One RLC entity of network device 2, and considering the target number as two, the terminal device can only send data on two RLC entities at most, then the terminal device can: select an RLC entity of network device 1 and network device 2 Or only on the RLC entity of network device 2.
  • the terminal device may also perform data replication and transmission based on the RLC entity configured by the network. That is, the network can configure at least one default RLC entity, for example, RLC1 for the first bearer and RLC4 for the second bearer, to perform data transmission in this case.
  • the network can configure at least one default RLC entity, for example, RLC1 for the first bearer and RLC4 for the second bearer, to perform data transmission in this case.
  • the network can perform data transmission in this case by configuring at least one default RLC entity, for example, RLC1 for the first bearer and RLC4 for the second bearer.
  • the network may control the bit of a certain RLC entity, for example, for the RLC1 of the first bearer, and for the RLC4 of the second bearer, the value is fixed to allow data replication.
  • the network may not configure the bit of a certain RLC entity, for example, for the RLC1 of the first bearer, and for the RLC4 of the second bearer, the default is to allow data replication.
  • the control information includes at least one control bit; the at least one control bit is used to indicate the data replication transmission status of at least two RLC entities; wherein, the at least two RLC entities belong to the same or different network devices. That is, different from sub-scenario 11, this sub-scenario comprehensively considers the RLC entity configuration on at least one network device to determine the issuance of control bits in the network device control information.
  • the manner in which the terminal device determines the data replication transmission state based on the control bit in the control information may include:
  • the data replication transmission state corresponding to the at least two control bits is determined.
  • the data replication transmission state corresponding to the at least two control bits is determined.
  • the corresponding relationship between the control bit and the transmission state can be pre-configured by the terminal device itself, or it can be sent by the network side through signaling.
  • the specific sending can be sent through RRC signaling, or of course.
  • MAC CE or Downlink Control Information (DCI) is issued, which is not limited here.
  • the at least one network device may be configured by the network RRC, or refer to all network devices; for example, two RLC entities are configured on the main network device and the auxiliary network device, that is, a total of four RLC entities, RLC entity 1, 2 On the network device 1, the RLC entities 3 and 4 are on the network device 2, and 1, 2, or 3 bits can be configured to control the following different state transitions.
  • each network device can send the control information of at least one RLC entity managed by itself, or each network device can send the RLC entity information of all network devices corresponding to the terminal device. information.
  • sending only on the RLC entity 3 is equivalent to sending only on the RLC entity 4.
  • Table 1 of the correspondence between control bits and transmission states two bits can be used to indicate the transition between different states.
  • Table 2 of the correspondence between control bits and transmission states we can use three bits to indicate different For example, see Fig. 5 for the diagram. It can be seen from the table that the three control bits indicate the corresponding different states.
  • a main network device and an auxiliary contact are configured, and a bearer is configured at the same time.
  • the main network device sends 2 control bits for RLC1, 2, 3, and 4
  • the auxiliary network device sends 2 control bits for RLC1, 2, 3, and 4 (or three control bits, all for 3 RLC entity).
  • the terminal device performs processing based on the latest received control information, that is, the control information 1 sent by the network device 1 was received at the previous moment, and the control information in the control information 1 Bits determine the data transmission of the RLC entity of the terminal device for RLC1, 2, 3, and 4; after receiving the control information 2 from the network device 2, the update is performed, and the data transmission control is performed based on the newly received control information 2. .
  • control bits issued by the network equipment can point to a specific state through the RRC configuration.
  • the values of the different control bits of the network equipment are related or independent for the selection of the state, that is, there may be no overlapping state between each other; control of the network equipment
  • the values of all control bits in the information may or may not cover all possible states.
  • Sub-scene 11 and sub-scene 12 in this scenario 1 can be combined, and the specific description is as follows:
  • RLC entities can be implemented in sub-scenario 11; another part of RLC entities can be implemented in sub-scenario 12.
  • RLC entities are configured on the main network device and the auxiliary network device, that is, a total of four RLC entities, RLC1 and 2 are on network device 1, and RLC3,4 are on network device 2.
  • RLC1 of network device 1 and RLC3 of network device 2 use the method of sub-scenario 11, that is, use a separate control bit; network device 1 sends control bit 1 of control information to control whether to use RLC entity 1 for data transmission; network device 2. In the control information sent, control bit 2 controls whether to use RLC entity 3 for data transmission; at the same time, network devices 1 and 2 send control bit 3 (or control bits 3, 4) of control information to control the status of RLC2,4.
  • the terminal device can also be configured with a preset number threshold, and the target number of selected RLC entities is less than the preset number threshold, that is, the target number of RLC entities is used for transmission.
  • the target number of selected RLC entities is less than the preset number threshold, that is, the target number of RLC entities is used for transmission.
  • Control bit 1 Control bit 2
  • Control bit 3 RLC1 RLC2 RLC3 RLC4 1 0 0 hair hair To To 0 0 1 To hair To hair 0 1 0 To To hair hair 0 0 0 To hair To To To To To To To To To hair 0 0 0 To hair To To To To To To To To To To To To To hair 0 0 0 To hair To To To To To To To To To To To To To To To To To To hair 0 0 0 0 To hair To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To
  • network devices need to be coordinated with each other, and the following criteria need to be defined:
  • control bit from network device 1 has been received before, indicating to use two RLC entities of network device 1, and then the control bit from network device 2 is received, and the two RLC entities of network device 2 are instructed to use.
  • Data can only be sent on two RLC entities, and work according to the latter instruction.
  • a control bit from network device 1 has been received before, instructing to use two RLC entities of network device 1, and then a control bit from network device 2 is received, instructing to use one RLC entity of network device 2, considering that the UE at most only If data can be sent on two RLC entities, one RLC entity of network device 1 and one RLC entity of network device 2 are selected for sending, or only the RLC entity of network device 2 is sent.
  • a control bit has been received before indicating that it is only sent on one RLC entity of network device 1, and then a control bit from network device 1 is received, indicating that any RLC entity of network device 1 cannot be used, then:
  • the network may configure at least one default RLC entity, for example, RLC1 for the first bearer, and RLC4 for the second bearer, to perform data transmission in this case;
  • the network can control the bit of a certain RLC entity, for example, for the RLC1 of the first bearer, and for the RLC4 of the second bearer, the value is fixed to allow data replication;
  • the network may not configure the bit of a certain RLC entity, for example, for the RLC1 of the first bearer, and for the RLC4 of the second bearer, the default is to allow data replication.
  • This scenario is similar to scenario 1, and is also divided into the following situations, such as
  • the network device only controls the data replication for the RLC entity of a single network device
  • the network device also controls data replication for the RLC entity of more than one network device.
  • scenario 1 The difference between this scenario and scenario 1 is that in this scenario, the coordination processing of the network device is not required, and the terminal device is required to perform subsequent processing based on the control bit after receiving the control information.
  • the selection of control information in scenario 1 can be based on the control information received.
  • the time sequence relationship is determined, and this scenario focuses on selecting RLC entities based on channel conditions.
  • the terminal device selects the RLC entity under the network device, and finally determines which RLC entity should be used for data transmission.
  • the choice here needs to consider the following two factors:
  • Channel conditions such as RSRP, RSRQ, SINR, RSSI;
  • Absolute threshold For example, the channel condition value related to network device 1 or RLC entity one is greater than or equal to a certain threshold A, and/or the channel condition value related to network device 1 or RLC entity one is less than or equal to a certain threshold B;
  • Relative threshold For example, the channel condition value related to network device 1 or RLC entity 1 is greater than or equal to the channel condition value of network device 2 or RLC entity 2 plus/minus a certain threshold A, and/or, network device 1 or RLC entity 1
  • the magnitude of the relevant channel condition value is equal to or less than or equal to the relevant channel condition value of the network device 2 or the RLC entity 2 plus/minus a certain threshold B;
  • the channel conditions related to the network equipment or RLC entity can be considered comprehensively with the frequency/cell-related channel conditions related to the network equipment or RLC entity.
  • the terminal device receives control information from network signaling such as MAC CE, and then the terminal device independently selects the RLC entity for transmission according to the control bits in the control information.
  • the network device can configure the terminal device with the network device and the RLC entity that the terminal device can independently select through the RRC; or, through a protocol, predefine the criteria for the set of network devices and the RLC entity that the terminal device can independently select.
  • the determining, based on the control information, that at least part of the at least one RLC entity indicated by the control information performs data replication transmission includes:
  • the terminal device selects a target number of RLC entities from the RLC entities indicated by the at least two control information to perform data copy transmission according to the first criterion; Among them, the target number of RLC entities belong to the same or different network devices.
  • the first criterion is to select a target number of RLC entities based on channel quality information; at least one of the following:
  • the first criterion may also include an absolute threshold and a relative threshold.
  • control bits of the control information issued by the network are similar to sub-scenario 11, the difference is that in this sub-scenario, furthermore, if you need to ensure that the terminal device can also send in the target number of RLC entities, for example, the target number is two. Then the terminal device determines to send on one or two RLC entities.
  • the terminal equipment autonomously determines the use of the RLC entity according to the received signaling.
  • the control bit instructs to use two RLC entities of network device 1
  • receives a control bit from network device 2 which instructs to use two RLC entities of network device 2 consider
  • the target number is two, that is, data can only be sent on two RLC entities at most, the selection can be made according to the aforementioned first criterion.
  • the terminal device When the terminal device receives the network instruction not to perform data copy transmission, it performs one of the following:
  • Data transmission is performed based on the preset number of target default RLC entities
  • the terminal device selects the target number of RLC entities for data transmission.
  • the network can perform data transmission in this case by configuring a target number of default RLC entities.
  • the UE independently chooses to send on one RLC entity of network device 1 and/or network device 2; and sends on two RLC entities of network device 1 or network device 2.
  • the control bit delivered by the network is similar to that of sub-scenario 12, except that in this example, the control information includes at least one control bit; the at least one control bit is used to indicate a state set. That is, the control bits issued by the network no longer point to a specific state, but point to a state set that includes at least one state, and the terminal device further selects a specific state from the state set through independent selection.
  • the terminal device can also configure a preset number threshold, and select the target number of RLC entities to be less than the preset number threshold, that is to say, send on the target number of RLC entities, such as one or two RLC entities. happening.
  • RLC1, 2 are on network device 1, RLC3, 4 on network device 2, you can configure 1, 2, or
  • Three bits control the following different state transitions: Since the first and second RLC entities are on the same network device, they are only sent on the first RLC entity or the effect is the same when only sent on the second RLC entity, so for the fourth state It is equivalent to only sending on the first RLC entity. Similarly, for the fifth state, sending only on the third RLC entity is equivalent to sending only on the fourth RLC entity.
  • the network can issue a control bit to mark state set A and state set B, respectively, to mark the activation and deactivation of replication; in state set A, the terminal device further selects A1/2/3 ; In state set B, the UE further selects state B4/5.
  • the network can issue two control bits to mark the state set A B C D respectively.
  • the state set A further select D1/2.
  • it may be: determining a corresponding state set based on at least two control bits included in the control information; and selecting a data replication transmission state based on the state set.
  • the terminal device selects the data copy transmission state from the state set according to the second criterion.
  • the second criterion is to select the data copy transmission state from the state set based on the channel quality information.
  • the channel quality information includes at least one of the following:
  • Channel quality information of different cells channel quality information of different RLC entities, channel quality information of BWPs in different bandwidth parts.
  • the data replication transmission state can be selected.
  • the values of different control bits of the network are related to or independent of state selection, that is, they can have overlapping states or non-overlapping states, that is to say, the set of states corresponding to the values of different control bits can overlap, Partially or completely non-overlapping; the values of all control bits of the network may cover all possible state sets or not; the values of the control bits of the network may all include more than one state set, or Only part contains more than one state set, or all contains only one state set.
  • sub-scene 21 and sub-scene 22 in scenario 2 can also be combined for processing, such as
  • RLC entities can be implemented in sub-scene 21; another part of RLC entities can be implemented in sub-scene 22.
  • RLC entities are configured on the primary network device 1 and the auxiliary network device 2 respectively, that is, a total of four RLC entities, RLC 1 and 2 are on the network device 1, and RLC 3 and 4 are on the network device 2;
  • Network device 1 sends control bit 1 to control whether to use RLC1 for data transmission
  • Network device 2 sends control bit 2 to control whether to use RLC3 for data transmission
  • network devices 1 and 2 send control bit 3 (or control bit 3, 4) to control the state of RLC2, 4.
  • the terminal device transmits in the target number of RLC entities, for example, the case of transmitting on only one or two RLC entities.
  • Control bit 1 Control bit 2
  • Control bit 3 RLC1 RLC2 RLC3 RLC4 1 0 0 hair hair To To 0 0 1 To hair To hair 0 1 0 To To hair hair 0 0 0 To hair To To To To To To To To To hair 0 0 0 To hair To To To To To To To To To To To To To hair 0 0 0 To hair To To To To To To To To To To To To To To To To To To hair 0 0 0 0 To hair To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To To
  • the network devices do not need to coordinate with each other, and the terminal device autonomously determines the use of the RLC entity according to the received signaling .
  • the two RLC entities of network device 2 considering that the UE can only send data on two RLC entities at most, the UE can choose based on the above factors:
  • receiving a control bit from network device 1 instructs to use one RLC entity of network device 1
  • receiving a control bit from network device 2 instructs to use two RLC entities of network device 2
  • the UE can choose based on the above factors:
  • the network can perform data transmission in this case by configuring at least one default RLC entity.
  • the network may not configure the bit of a certain RLC entity, for example, for the RLC1 of the first bearer, and for the RLC4 of the second bearer, the default is to allow data replication;
  • the UE autonomously chooses to send on one RLC entity of network device 1 and/or network device 2; or, sends on two RLC entities of network device 1 or network device 2.
  • the terminal device can determine some of the RLC entities to perform data transmission according to the control information of the network in combination with itself. In this way, the coordination between network RLC entities can be reduced, and it is suitable for data transmission.
  • the number of RLC entities to be replicated and transmitted is less than that of the configured RLC entities.
  • the embodiment of the present invention provides a data replication transmission control method, which is applied to a network device, as shown in FIG. 6, including:
  • Step 601 Send control information to a terminal device; where the control information is used to indicate the control of data replication transmission for at least one RLC entity.
  • the terminal device may be a device configured with multiple RLC entities for data replication transmission, and multiple of them may be understood as more than two. At least part of the RLC entities in the at least one RLC entity may be a target number of RLC entities in all RLC entities configured for data replication and transmission configured by the terminal device, and the target number is less than the total number of RLC entities.
  • the terminal device is configured with 5 RLC entities, and the 5 RLC entities belong to different network devices; based on the control information, it can be determined that 2 RLC entities of the 5 RLC entities are used for data transmission.
  • the control information may be at least one control information sent from one or more network devices.
  • the control bits in the control information sent by a network device can be for the network device or for multiple network devices, or for one bearer or multiple bearers, or for one or more RLCs under a network device
  • the entity can also target multiple RLC entities for multiple network devices.
  • control bit in the control information only controls the data replication transmission for the RLC entity of a single network device; or, the control bit in the control information also controls the data replication transmission for the RLC entity of more than one network device.
  • bearer the above control bit can be through the media access control (MAC, Media Access Control) control element (CE, Control Element) that explicitly includes the bearer identifier, or through the predefined bearer identifier to bit mapping relationship To implicitly indicate the bearer associated with the bit.
  • MAC media access control
  • CE Control Element
  • Sub-scenario 11 The control bit in the control information only controls data replication and transmission for the RLC entity of a single network device, specifically:
  • the control information sent by the network device may be used to indicate the target network device or RLC entity corresponding to the control information. Further, the network device or RLC entity associated with the bit can be implicitly indicated according to the identification of the network device sending the control information and the preset mapping relationship between the network device identification and the bit. Furthermore, it is determined that only control bits for a single network device or RLC for a single network device are included in the MAC CE, that is, the control information.
  • the RRC configuration information indicates the target network device or RLC entity corresponding to the control information.
  • the RRC configuration information indicates the mapping relationship between the target network device or RLC entity and the control bits. That is, according to the RRC configuration information to obtain the predefined network device identification to bit mapping relationship to implicitly indicate the network device or RLC entity associated with the bit, and then determine at least one network device corresponding to the control bit that can be included in the MAC CE Or at least one RLC entity.
  • the first information included in the control information is used to indicate the target network device or RLC entity corresponding to the control information.
  • the first information includes the identification of the target network device. It may be that the control information, that is, the MAC CE explicitly includes the identification of the network device, and the target network device or RLC entity corresponding to the control bit in the control information is determined based on the identification of the network device.
  • the target network device When the target network device includes an RLC entity, it is determined whether to use an RLC entity included in the target network device for data copy transmission based on a control bit in the control information. That is to say, when the target network device is configured with only one RLC entity, one bit is used to control whether the terminal device uses the current RLC entity for data transmission.
  • the target network device When the target network device includes at least two RLC entities, it is determined to use at least two RLC entities contained in the target network device for data transmission based on a control bit contained in the control information, or it is determined to use the target network device
  • the included target RLC entity performs data replication and transmission. That is, when the target network device is only configured with at least two RLC entities, one bit controls multiple RLC entities to replicate and transmit, or one of the at least two RLC entities of the target network device performs data replication and transmission.
  • One bit is used to control whether the UE has two RLC entities for data transmission, or only one of the RLC entities is used for data transmission; which of the two RLC entities the one RLC entity is can be configured separately, for example, Another bit may be configured through RRC.
  • the target network device includes at least two RLC entities, based on the at least two control bits included in the control information, it is determined that at least two RLC entities included in the target network device perform data copy transmission; wherein different control bits correspond to Different RLC entities. That is, two bits are used to control two RLC entities respectively, whether to perform data transmission, and the control bits of different bits can be used to determine the corresponding RLC entity through a preset relationship, and the control bits of different control bits are used to control different RLC entity.
  • a main network device and two auxiliary contacts 1, 2 are configured, and two bearers are configured at the same time.
  • the first bearer there is an RLC entity on the main network device and the auxiliary network device 1 There are two RLC entities.
  • the main network device issues a control bit for RLC1
  • the auxiliary network device issues a control bit for RLC2 and 3 (or two control bits for each RLC entity). );
  • the auxiliary network device 1 issues a control bit for RLC4, and the auxiliary network device 2 issues a control Bits are for RLC5.
  • the terminal device needs to ensure that the terminal device only transmits data in the target number of RLC entities, for example, only transmits on one or two RLC entities, and the following processing can be performed:
  • Network devices need to coordinate with each other (including but not limited to the signaling interaction of X2 and Xn interfaces between different network devices). For example, the network device can learn in advance the target number of RLC entities to be configured by the terminal device, and then communicate with at least One other network device performs signaling interaction through the X2 or Xn interface, and finally determines the target number of RLC entities, and sends them to the terminal device through the control bits in the control information.
  • the terminal device determines the use of the RLC entity according to the newly received signaling, and performs coordination processing according to the received signaling. Refer to the first embodiment, which will not be repeated here.
  • the control information includes at least one control bit; the at least one control bit is used to indicate the data replication transmission status of at least two RLC entities; wherein, the at least two RLC entities are for different network devices. That is, different from sub-scenario 11, this sub-scenario comprehensively considers the RLC entity configuration on at least one network device to determine the issuance of control bits in the network device control information.
  • the manner in which the terminal device determines the data replication transmission state based on the control bit in the control information may be the same as in Embodiment 1, and will not be repeated.
  • Sub-scene 11 and sub-scene 12 in this scenario 1 can be used in combination, and the details are as follows:
  • RLC entities can be implemented in sub-scenario 11; another part of RLC entities can be implemented in sub-scenario 12.
  • RLC entities are configured on the main network device and the auxiliary network device, that is, a total of four RLC entities, RLC1, 2 are on network device 1, and RLC3, 4 are on network device 2.
  • RLC1 of network device 1 and RLC3 of network device 2 use the method of sub-scenario 11, that is, use a separate control bit; network device 1 sends control bit 1 of control information to control whether to use RLC entity 1 for data transmission; network device 2. In the control information sent, control bit 2 controls whether to use RLC entity 3 for data transmission; at the same time, network devices 1 and 2 send control bit 3 (or control bits 3, 4) of control information to control the status of RLC2,4.
  • This scenario is similar to scenario 1, and is also divided into the following situations, such as
  • the network device only controls the data replication for the RLC entity of a single network device
  • the network device also controls data replication for the RLC entity of more than one network device.
  • scenario 1 The difference between this scenario and scenario 1 is that, in this scenario, no coordination processing by the network device is required, and the terminal device needs to perform subsequent processing based on the control bit after receiving the control information, and the control information includes at least one control bit; the at least one Control bit, used to indicate the state set.
  • the terminal device can determine some of the RLC entities to perform data transmission according to the control information of the network in combination with itself. In this way, the coordination between network RLC entities can be reduced, and it is suitable for data transmission.
  • the number of RLC entities to be replicated and transmitted is less than that of the configured RLC entities.
  • the embodiment of the present invention provides a terminal device, as shown in FIG. 7, including:
  • the first communication unit 71 receives control information; wherein the control information is used to instruct the terminal device to control data replication and transmission of at least one radio link control (RLC, Radio Link Control) entity;
  • RLC Radio Link Control
  • the first processing unit 72 determines that at least part of the at least one RLC entity indicated by the control information performs data transmission.
  • At least part of the RLC entities in the at least one RLC entity may be a target number of RLC entities among all RLC entities configured for data replication and transmission configured by the first processing unit 72, and the target number is less than the total number of RLC entities.
  • the number of RLC entities For example, the terminal device is configured with 5 RLC entities, and the 5 RLC entities belong to different network devices; based on the control information, it can be determined that 2 RLC entities of the 5 RLC entities are used for data transmission.
  • the control information may be at least one control information sent from one or more network devices.
  • the control bits in the control information sent by a network device can be for the network device or for multiple network devices, or for one bearer or multiple bearers, or for one or more RLCs under a network device
  • the entity can also target multiple RLC entities for multiple network devices.
  • control bit in the control information only controls the data replication transmission for the RLC entity of a single network device; or, the control bit in the control information also controls the data replication transmission for the RLC entity of more than one network device.
  • bearer the above control bit can be through the media access control (MAC, Media Access Control) control element (CE, Control Element) that explicitly includes the bearer identifier, or through the predefined bearer identifier to bit mapping relationship To implicitly indicate the bearer associated with the bit.
  • MAC media access control
  • CE Control Element
  • Sub-scenario 11 The control bit in the control information only controls data replication and transmission for the RLC entity of a single network device, specifically:
  • the first processing unit 72 may determine the target network device or RLC entity corresponding to the control information according to the network device that sends the control information. Further, the network device or RLC entity associated with the bit can be implicitly indicated according to the identification of the network device sending the control information and the preset mapping relationship between the network device identification and the bit. Furthermore, it is determined that only control bits for a single network device or RLC for a single network device are included in the MAC CE, that is, the control information.
  • the first processing unit 72 determines the target network device or RLC entity corresponding to the control information according to radio resource control (RRC, Radio Resource Control) configuration information.
  • RRC radio resource control
  • the RRC configuration information indicates the mapping relationship between the target network device or RLC entity and the control bits. That is, according to the RRC configuration information to obtain the predefined network device identification to bit mapping relationship to implicitly indicate the network device or RLC entity associated with the bit, and then determine at least one network device corresponding to the control bit that can be included in the MAC CE Or at least one RLC entity.
  • the first processing unit 72 determines the target network device or RLC entity corresponding to the control information according to the first information included in the control information.
  • the first information includes the identification of the target network device. It may be that the control information, that is, the MAC CE explicitly includes the identification of the network device, and the target network device or RLC entity corresponding to the control bit in the control information is determined based on the identification of the network device.
  • the first processing unit 72 determines whether to use an RLC entity included in the target network device for data copy transmission based on a control bit in the control information. That is to say, when the target network device is configured with only one RLC entity, one bit is used to control whether the terminal device uses the current RLC entity for data transmission.
  • the first processing unit 72 determines to use at least two RLC entities included in the target network device for data transmission based on a control bit included in the control information, or, Determine to use the target RLC entity included in the target network device to perform data replication transmission. That is, when the target network device is only configured with at least two RLC entities, one bit controls multiple RLC entities to replicate and transmit, or one of the at least two RLC entities of the target network device performs data replication and transmission.
  • One bit is used to control whether the UE has two RLC entities for data transmission, or only one of the RLC entities is used for data transmission; which of the two RLC entities the one RLC entity is can be configured separately, for example, Another bit may be configured through RRC.
  • the first processing unit 72 determines that at least two RLC entities included in the target network device perform data replication transmission based on the at least two control bits included in the control information; wherein Different control bits correspond to different RLC entities. That is, two bits are used to control two RLC entities respectively, whether to perform data transmission, and the control bits of different bits can be used to determine the corresponding RLC entity through a preset relationship, and the control bits of different control bits are used to control different RLC entity.
  • the terminal device needs to ensure that the terminal device only transmits data in the target number of RLC entities, for example, only transmits on one or two RLC entities, and the following processing can be performed:
  • the terminal equipment determines the use of the RLC entity according to the latest received signaling, and performs coordinated processing according to the received signaling.
  • the specific instructions are as follows:
  • the first processing unit 72 determines, based on the latest received control information, that the RLC entity indicated by the latest received control information performs data replication transmission. For example, the control information from network device 1 has been received before, and the control bit in it indicates the use of two RLC entities of network device 1, and then the control information from network device 2 is received, and the control bit in it indicates the use of network device 2.
  • Two RLC entities; the terminal device can also be configured with a preset number threshold after comprehensive consideration. The target number of the selected RLC entity is less than the preset number threshold, that is to say, the target number can be two, and the terminal device is controlled according to the latter
  • the control bit in the message indicates data transmission.
  • a target number of RLC entities to perform data replication transmission may come from the same network device or different network devices;
  • the RLC entity of the unique network device is determined to perform data replication transmission.
  • the control information includes at least one control bit; the at least one control bit is used to indicate the data replication transmission status of at least two RLC entities; wherein, the at least two RLC entities belong to the same or different network devices. That is, different from sub-scenario 11, this sub-scenario comprehensively considers the RLC entity configuration on at least one network device to determine the issuance of control bits in the network device control information.
  • the first processing unit 72 determines the data replication transmission state corresponding to the at least two control bits based on the at least two control bits included in the control information and the preset correspondence between the control bits and the transmission state.
  • the data replication transmission state corresponding to the at least two control bits is determined.
  • the corresponding relationship between the control bit and the transmission state can be pre-configured by the terminal device itself, or it can be sent by the network side through signaling.
  • the specific sending can be sent through RRC signaling, or of course.
  • MAC CE or Downlink Control Information (DCI) is issued, which is not limited here.
  • the at least one network device may be configured by the network RRC, or refer to all network devices; for example, two RLC entities are configured on the main network device and the auxiliary network device, that is, a total of four RLC entities, RLC entity 1, 2 On the network device 1, the RLC entities 3 and 4 are on the network device 2, and 1, 2, or 3 bits can be configured to control the following different state transitions.
  • each network device can send the control information of at least one RLC entity managed by itself, or each network device can send the RLC entity information of all network devices corresponding to the terminal device. information.
  • Sub-scene 11 and sub-scene 12 in this scenario 1 can be used in combination, and the details are as follows:
  • RLC entities can be implemented in sub-scenario 11; another part of RLC entities can be implemented in sub-scenario 12.
  • RLC entities are configured on the main network device and the auxiliary network device, that is, a total of four RLC entities, RLC1 and 2 are on network device 1, and RLC3,4 are on network device 2.
  • RLC1 of network device 1 and RLC3 of network device 2 use the method of sub-scenario 11, that is, use a separate control bit; network device 1 sends control bit 1 of control information to control whether to use RLC entity 1 for data transmission; network device 2. In the control information sent, control bit 2 controls whether to use RLC entity 3 for data transmission; at the same time, network devices 1 and 2 send control bit 3 (or control bits 3, 4) of control information to control the status of RLC2,4.
  • the terminal device can also be configured with a preset number threshold, and the target number of selected RLC entities is less than the preset number threshold, that is, the target number of RLC entities is used for transmission.
  • the target number of RLC entities is less than the preset number threshold, that is, the target number of RLC entities is used for transmission.
  • network devices need to be coordinated with each other, and the following criteria need to be defined:
  • This scenario is similar to scenario 1, and is also divided into the following situations, such as
  • the network device only controls the data replication for the RLC entity of a single network device
  • the network device also controls data replication for the RLC entity of more than one network device.
  • scenario 1 The difference between this scenario and scenario 1 is that in this scenario, the coordination processing of the network device is not required, and the terminal device is required to perform subsequent processing based on the control bit after receiving the control information.
  • the selection of control information in scenario 1 can be based on the control information received.
  • the time sequence relationship is determined, and this scenario focuses on selecting RLC entities based on channel conditions.
  • the terminal device selects the RLC entity under the network device, and finally determines which RLC entity should be used for data transmission.
  • the choice here needs to consider the following two factors:
  • Channel conditions such as RSRP, RSRQ, SINR, RSSI;
  • Absolute threshold For example, the channel condition value related to network device 1 or RLC entity one is greater than or equal to a certain threshold A, and/or the channel condition value related to network device 1 or RLC entity one is less than or equal to a certain threshold B;
  • Relative threshold For example, the channel condition value related to network device 1 or RLC entity 1 is greater than or equal to the channel condition value of network device 2 or RLC entity 2 plus/minus a certain threshold A, and/or, network device 1 or RLC entity 1
  • the magnitude of the relevant channel condition value is equal to or less than or equal to the relevant channel condition value of the network device 2 or the RLC entity 2 plus/minus a certain threshold B;
  • the channel conditions related to the network equipment or the RLC entity can be considered comprehensively with the frequency/cell-related channel conditions related to the network equipment or the RLC entity.
  • Sub-scenario 21 When the first processing unit 72 is RLC entities for different network devices, the terminal device according to the first criterion, from the RLC entities indicated by the at least two control information, Select a target number of RLC entities for data replication transmission; wherein, the target number of RLC entities belong to the same or different network devices.
  • the first criterion is to select a target number of RLC entities based on channel quality information; at least one of the following:
  • the first criterion may also include an absolute threshold and a relative threshold.
  • control bits of the control information issued by the network are similar to sub-scenario 11, the difference is that in this sub-scenario, furthermore, if you need to ensure that the terminal device can also send in the target number of RLC entities, for example, the target number is two. Then the terminal device determines to send on one or two RLC entities.
  • the terminal equipment autonomously determines the use of the RLC entity according to the received signaling.
  • the first processing unit 72 executes one of the following when receiving an instruction from the network not to perform data copy transmission:
  • Data transmission is performed based on the preset number of target default RLC entities
  • the terminal device selects the target number of RLC entities for data transmission.
  • the control bit delivered by the network is similar to that of sub-scenario 12, except that in this example, the control information includes at least one control bit; the at least one control bit is used to indicate a state set. That is, the control bits issued by the network no longer point to a specific state, but point to a state set that includes at least one state, and the terminal device further selects a specific state from the state set through independent selection.
  • the first processing unit 72 can also configure a preset number threshold, and select the target number of RLC entities to be less than the preset number threshold, that is, on the target number of RLC entities, such as one or two RLC entities When sending.
  • the first processing unit 72 determines a corresponding state set based on at least two control bits included in the control information; based on the state set, selects a data replication transmission state.
  • the terminal device selects the data copy transmission state from the state set according to the second criterion.
  • the second criterion is to select the data copy transmission state from the state set based on the channel quality information.
  • the channel quality information includes at least one of the following:
  • Channel quality information of different cells channel quality information of different RLC entities, channel quality information of BWPs in different bandwidth parts.
  • the data replication transmission state can be selected.
  • sub-scene 21 and sub-scene 22 in scenario 2 can also be combined for processing, such as
  • RLC entities can be implemented in sub-scene 21; another part of RLC entities can be implemented in sub-scene 22.
  • RLC entities are configured on the primary network device 1 and the auxiliary network device 2 respectively, that is, a total of four RLC entities, RLC 1 and 2 are on the network device 1, and RLC 3 and 4 are on the network device 2;
  • Network device 1 sends control bit 1 to control whether to use RLC1 for data transmission
  • Network device 2 sends control bit 2 to control whether to use RLC3 for data transmission
  • network devices 1 and 2 send control bit 3 (or control bit 3, 4) to control the state of RLC2, 4.
  • the network devices do not need to coordinate with each other, and the terminal device autonomously determines the use of the RLC entity according to the received signaling .
  • the terminal device can determine some of the RLC entities to perform data transmission according to the control information of the network in combination with itself. In this way, the coordination between network RLC entities can be reduced, and it is suitable for data transmission.
  • the number of RLC entities to be replicated and transmitted is less than that of the configured RLC entities.
  • the embodiment of the present invention provides a network device, as shown in FIG. 8, including:
  • the second communication unit 81 sends control information to the terminal device; wherein the control information is used to indicate the control of data replication transmission for at least one RLC entity.
  • the terminal device may be a device configured with multiple RLC entities for data replication transmission, and multiple of them may be understood as more than two. At least part of the RLC entities in the at least one RLC entity may be a target number of RLC entities in all RLC entities configured for data replication and transmission configured by the terminal device, and the target number is less than the total number of RLC entities.
  • the terminal device is configured with 5 RLC entities, and the 5 RLC entities belong to different network devices; based on the control information, it can be determined that 2 RLC entities of the 5 RLC entities are used for data transmission.
  • the control information may be at least one control information sent from one or more network devices.
  • the control bits in the control information sent by a network device can be for the network device or for multiple network devices, or for one bearer or multiple bearers, or for one or more RLCs under a network device
  • the entity can also target multiple RLC entities for multiple network devices.
  • control bit in the control information only controls the data replication transmission for the RLC entity of a single network device; or, the control bit in the control information also controls the data replication transmission for the RLC entity of more than one network device.
  • bearer the above control bit can be through the media access control (MAC, Media Access Control) control element (CE, Control Element) that explicitly includes the bearer identifier, or through the predefined bearer identifier to bit mapping relationship To implicitly indicate the bearer associated with the bit.
  • MAC media access control
  • CE Control Element
  • Sub-scenario 11 The control bit in the control information only controls data replication and transmission for the RLC entity of a single network device, specifically:
  • the second communication unit 81 indicates the target network device or RLC entity corresponding to the control information through the control information sent by the network device. Further, the network device or RLC entity associated with the bit can be implicitly indicated according to the identification of the network device sending the control information and the preset mapping relationship between the network device identification and the bit. Furthermore, it is determined that only control bits for a single network device or RLC for a single network device are included in the MAC CE, that is, the control information.
  • the RRC configuration information indicates the target network device or RLC entity corresponding to the control information.
  • the RRC configuration information indicates the mapping relationship between the target network device or RLC entity and the control bits. That is, according to the RRC configuration information to obtain the predefined network device identification to bit mapping relationship to implicitly indicate the network device or RLC entity associated with the bit, and then determine at least one network device corresponding to the control bit that can be included in the MAC CE Or at least one RLC entity.
  • the first information included in the control information is used to indicate the target network device or RLC entity corresponding to the control information.
  • the first information includes the identification of the target network device. It may be that the control information, that is, the MAC CE explicitly includes the identification of the network device, and the target network device or RLC entity corresponding to the control bit in the control information is determined based on the identification of the network device.
  • the second communication unit 81 determines whether to use an RLC entity included in the target network device for data copy transmission based on a control bit in the control information. That is to say, when the target network device is configured with only one RLC entity, one bit is used to control whether the terminal device uses the current RLC entity for data transmission.
  • the second communication unit 81 determines to use at least two RLC entities contained in the target network device for data transmission based on a control bit contained in the control information, or determines to use The target RLC entity included in the target network device performs data replication and transmission. That is, when the target network device is only configured with at least two RLC entities, one bit controls multiple RLC entities to replicate and transmit, or one of the at least two RLC entities of the target network device performs data replication and transmission.
  • One bit is used to control whether the UE has two RLC entities for data transmission, or only one of the RLC entities is used for data transmission; which of the two RLC entities the one RLC entity is can be configured separately, for example, Another bit may be configured through RRC.
  • the second communication unit 81 determines that the at least two RLC entities included in the target network device perform data replication transmission based on the at least two control bits included in the control information; wherein Different control bits correspond to different RLC entities. That is, two bits are used to control two RLC entities respectively, whether to perform data transmission, and the control bits of different bits can be used to determine the corresponding RLC entity through a preset relationship, and the control bits of different control bits are used to control different RLC entity.
  • the control information includes at least one control bit; the at least one control bit is used to indicate the data replication transmission status of at least two RLC entities; wherein, the at least two RLC entities are for different network devices. That is, different from sub-scenario 11, this sub-scenario comprehensively considers the RLC entity configuration on at least one network device to determine the issuance of control bits in the network device control information.
  • the manner in which the terminal device determines the data replication transmission state based on the control bit in the control information may be the same as in Embodiment 1, and will not be repeated.
  • Sub-scene 11 and sub-scene 12 in this scenario 1 can be used in combination, and the details are as follows:
  • RLC entities can be implemented in sub-scenario 11; another part of RLC entities can be implemented in sub-scenario 12.
  • RLC entities are configured on the main network device and the auxiliary network device, that is, a total of four RLC entities, RLC1, 2 are on network device 1, and RLC3, 4 are on network device 2.
  • RLC1 of network device 1 and RLC3 of network device 2 use the method of sub-scenario 11, that is, use a separate control bit; network device 1 sends control bit 1 of control information to control whether to use RLC entity 1 for data transmission; network device 2. In the control information sent, control bit 2 controls whether to use RLC entity 3 for data transmission; at the same time, network devices 1 and 2 send control bit 3 (or control bits 3, 4) of control information to control the status of RLC2,4.
  • This scenario is similar to scenario 1, and is also divided into the following situations, such as
  • the network device only controls the data replication for the RLC entity of a single network device
  • the network device also controls data replication for the RLC entity of more than one network device.
  • scenario 1 The difference between this scenario and scenario 1 is that, in this scenario, no coordination processing by the network device is required, and the terminal device needs to perform subsequent processing based on the control bit after receiving the control information, and the control information includes at least one control bit; the at least one Control bit, used to indicate the state set.
  • the terminal device can determine some of the RLC entities to perform data transmission according to the control information of the network in combination with itself. In this way, coordination between network RLC entities can be reduced, and it is suitable for data The number of RLC entities to be replicated and transmitted is less than that of the configured RLC entities.
  • FIG. 9 is a schematic structural diagram of a communication device 900 provided by an embodiment of the present application.
  • the communication device may be the aforementioned terminal device or network device in this embodiment.
  • the communication device 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the communication device 900 may further include a memory 920.
  • the processor 910 can call and run a computer program from the memory 920 to implement the method in the embodiment of the present application.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the communication device 900 may further include a transceiver 930, and the processor 910 may control the transceiver 930 to communicate with other devices, specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 930 may include a transmitter and a receiver.
  • the transceiver 930 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 900 may specifically be a network device of an embodiment of the present application, and the communication device 900 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 900 may specifically be a terminal device or a network device in an embodiment of the application, and the communication device 900 may implement the corresponding processes implemented by the mobile terminal/terminal device in the various methods of the embodiments of the application, for It's concise, so I won't repeat it here.
  • FIG. 10 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1000 shown in FIG. 10 includes a processor 1010, and the processor 1010 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1000 may further include a memory 1020.
  • the processor 1010 may call and run a computer program from the memory 1020 to implement the method in the embodiment of the present application.
  • the memory 1020 may be a separate device independent of the processor 1010, or it may be integrated in the processor 1010.
  • the chip 1000 may further include an input interface 1030.
  • the processor 1010 can control the input interface 1030 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1000 may further include an output interface 1040.
  • the processor 1010 can control the output interface 1040 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • chips mentioned in the embodiments of the present application may also be referred to as system-level chips, system-on-chips, system-on-chips, or system-on-chips.
  • FIG. 11 is a schematic block diagram of a communication system 1100 according to an embodiment of the present application. As shown in FIG. 11, the communication system 1100 includes a terminal device 1110 and a network device 1120.
  • the terminal device 1110 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1120 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be Read-Only Memory (ROM), Programmable Read-Only Memory (Programmable ROM, PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), and Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • it is not here. Repeat it again.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program is run on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiments of the present application.
  • the computer program runs on the computer, the computer can execute each method in the embodiments of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种数据复制传输控制方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序,所述方法包括:接收控制信息;其中,所述控制信息用于指示终端设备针对至少一个无线链路控制RLC实体的数据复制传输的控制;基于所述控制信息,确定在所述控制信息指示的至少一个RLC实体中的至少部分RLC实体进行数据传输。

Description

一种数据复制传输控制方法、终端设备及网络设备 技术领域
本发明涉及信息处理技术领域,尤其涉及一种数据复制传输控制方法、终端设备、网络设备及计算机存储介质、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
在5G中根据业务需求分为3大应用场景,eMBB(增强型移动宽带)、mMTC(海量机器类通信)、uRLLC(超可靠、低时延通信)。在Release15URLLC议题中,考虑并处理的是高可靠低时延的业务。在Rel-16中,扩大了研究对象,引入了时间敏感性网络(TSN)的概念。对于数据复制传输和多连接来说,已经描述了可以优化现有的双连接(DC)和载波聚合(CA)复制(duplication)。
相比于传统的网络,对数据复制传输特性提出了一种更高的需求,这主要体现在,需要支持对于同一个承载的RLC实体个数大于二的情况。因此,如何在配置了多于两个RLC实体的情况下,如何指示通过哪个RLC实体传输复制数据是需要解决的问题。
发明内容
为解决上述技术问题,本发明实施例提供了一种数据复制传输控制方法、终端设备、网络设备及计算机存储介质、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
第一方面,提供了一种数据复制传输控制方法,应用于终端设备,所述方法包括:
接收控制信息;其中,所述控制信息用于指示终端设备针对至少一个无线链路控制RLC实体的数据复制传输的控制;
基于所述控制信息,确定在所述控制信息指示的至少一个RLC实体中的至少部分RLC实体进行数据传输。
第二方面,提供了一种数据复制传输控制方法,应用于网络设备,所述方法包括:
向终端设备发送控制信息;其中,所述控制信息用于指示针对至少一个RLC实体的数据复制传输的控制。
第三方面,提供了一种终端设备,包括:
第一通信单元,接收控制信息;其中,所述控制信息用于指示终端设备针对至少一个无线链路控制RLC实体的数据复制传输的控制;
第一处理单元,基于所述控制信息,确定在所述控制信息指示的至少一个RLC实体中的至少部分RLC实体进行数据传输。
第四方面,提供了一种网络设备,包括:
第二通信单元,向终端设备发送控制信息;其中,所述控制信息用于指示针对至少一个RLC实体的数据复制传输的控制。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面、第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面、第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面、第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面、第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面中的任一方面或其各实现方式中的方法。
通过采用上述方案,根据接收到的控制信息中的内容,确定在全部RLC实体中的至少部分RLC实体进行数据传输。如此,就能够使得终端设备在配置多个RLC实体的情况下,根据网络的控制信息结合自身来确定其中部分RLC实体进行数据传输,减少了网络RLC实体之间协调,并且适用于数据复制传输的RLC实体个数小于配置的RLC实体的情况。
附图说明
图1-1是本申请实施例提供的一种通信系统架构的示意性图一;
图1-2是一种复制传输的示意图;
图1-3是一种控制比特示意图;
图2是本申请实施例提供的一种数据复制传输控制方法流程示意图一;
图3是本申请实施例提供的一种复制传输架构示意图;
图4是本申请实施例提供的一种控制比特控制全部RLC复制传输架构示意图;
图5是本申请实施例提供的一种数据复制传输的控制方法流程示意图二;
图6是本申请实施例提供的一种数据复制传输的控制方法流程示意图三;
图7为本发明实施例提供的一种终端设备组成结构示意图;
图8是本申请实施例提供的一种网络设备组成结构示意图;
图9为本发明实施例提供的一种通信设备组成结构示意图;
图10是本申请实施例提供的一种芯片的示意性框图;
图11是本申请实施例提供的一种通信系统架构的示意性图二。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100可以如图1-1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1-1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1-1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
本申请实施例中的复制传输架构可以如图1-2所示,数据复制在PDCP层进行,相同的PDCP PDU分别映射到不同的RLC Entity。MAC需要将不同RLC实体(RLC entity)的复制数据传输到不同的 载波,此时对应的RLC实体数目在目前Rel15的标准中限定为2个,IIoT会进一步研究多于2个,即3个和4个的情况。
具体来说,在NR R15支持两种复制数据传输模式,且对一个承载而言两种模式择其一,并仅支持最多两个copy的复制数据传输。具体的两种复制传输模式见下:
CA Duplication:基于CA的复制数据传输。CA Duplication传输方式的协议架构如下图DRB ID1或者DRB ID 3所示。复制数据传输方式采用的CA(载波聚合)的协议架构。PDCP实体下面关联着两个不同的RLC实体,两个关联的不同RLC实体关联到同一个MAC实体。对于上下行来说,将PDCP PDU复制为相同的两份,两个PDCP经过不同的RLC实体,同一个MAC实体,再经过空口到达基站(上行)相应的MAC实体,RLC实体,最后再汇聚到PDCP。PDCP层检测到两个PDCP为相同的复制版本,比如通过这两个PDCP PDU具有相同的SN来判断,则丢弃其中一个,再将另外一个递交到高层(需要注意的是,复制PDCP PDU不一定同时到达PDCP层)。
DC Duplication:基于DC的复制数据传输。DC Duplication传输方式的协议架构如下图DRB ID2所示。复制数据传输方式采用的是split bearer的协议架构。PDCP实体下面关联着两个不同的RLC实体,两个关联的不同RLC实体关联到不同的MAC实体,一个MAC实体对应MCG,一个MAC实体对应SCG。对于上下行来说,PDCP将PDCP PDU复制为相同的两份,两个PDCP经过不同CG的RLC实体,MAC实体,在经过空口到达基站相应的MAC实体,RLC实体,最后再汇聚到PDCP,PDCP层检测到两个PDCP为相同的复制版本,比如通过这两个PDCP PDU具有相同的SN来判断,则丢弃其中一个,再将另外一个递交到高层(需要注意的是,复制PDCP PDU不一定同时到达PDCP层)。
对于数据复制传输而言,上行的PDCP数据复制功能是可以基于DRB来进行配置的,也就是以DRB粒度,配置复制数据传输,控制复制数据传输激活还是去激活。在现有技术中,通过在RRC重配置消息中的PDCP-config IE中增加相应的信息以配置基于承载的数据复制方式,并仅支持最多2条leg的复制数据传输方式。
通过MAC CE动态的激活(activate)或者去激活(deactivate)某一个数据无线承载的数据复制传输功能。MAC CE包含一个8bit的Bitmap,bitmap中的比特位分别对应不同的DRB,通过比特位中的值的不同来指示对应的DRB的数据复制数据的激活或者去激活,如图1-3所示。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
实施例一、
本发明实施例提供了一种数据复制传输控制方法,应用于终端设备,如图2所示,包括:
步骤201:接收控制信息;其中,所述控制信息用于指示终端设备针对至少一个无线链路控制(RLC,Radio Link Control)实体的数据复制传输的控制;
步骤202:基于所述控制信息,确定在所述控制信息指示的至少一个RLC实体中的至少部分RLC实体进行数据传输。
这里,所述终端设备可以为配置了数据复制传输的多个RLC实体的设备,其中多个可以理解为多于2个。所述至少一个RLC实体中的至少部分RLC实体,可以为终端设备所配置的全部用于数据复制传输的RLC实体中的目标数量个RLC实体,且目标数量小于所述全部的RLC实体的数量。比如,终端设备配置有5个RLC实体,5个RLC实体分别属于不同的网络设备;基于控制信息可以确定采用5个RLC实体中的2个RLC实体进行数据传输。
所述控制信息可以为一个或多个网络设备发来的至少一个控制信息。一个网络设备发来的控制信息中的控制比特,可以针对该网络设备也可以针对多个网络设备,或者还可以针对一个承载或多个承载,还可以针对一个网络设备下的一个或多个RLC实体,当然,还可以针对多个网络设备的多个RLC实体。
下面分几种场景对本实施例提供的方案进行详细说明:
场景1、
本场景中,控制信息中的控制比特只针对单一网络设备的RLC实体进行数据复制传输的控制;或者,控制信息中的控制比特针对多于一个网络设备的RLC实体也进行数据复制传输的控制。
关于上述控制比特针对哪一个承载可以通过在介质接入控制(MAC,Media Access Control)控制元素(CE,Control Element)显式包含承载的标识,或者,通过预定义承载标识到比特位的映射关系来隐式的指示比特所关联的承载。
子场景11、控制信息中的控制比特只针对单一网络设备的RLC实体进行数据复制传输的控制,具体来说:
可以根据发送控制信息的网络设备,确定所述控制信息所对应的目标网络设备或RLC实体。进一步地,可以根据发送控制信息的网络设备的标识,与预设的网络设备标识到比特位的映射关系来 隐式的指示比特所关联的网络设备或RLC实体。进而确定在MAC CE即控制信息里只包含针对单一网络设备或单一网络设备的RLC的控制比特。
或者,根据无线资源控制(RRC,Radio Resource Control)配置信息,确定所述控制信息所对应的目标网络设备或RLC实体。所述RRC配置信息指示目标网络设备或RLC实体与控制比特位之间的映射关系。即根据RRC配置信息获取预定义网络设备标识到比特位的映射关系来隐式的指示比特所关联的网络设备或RLC实体,进而确定在MAC CE里可以包含的控制比特所对应的至少一个网络设备或至少一个RLC实体。
或者,根据所述控制信息中包含的第一信息,确定所述控制信息所对应的目标网络设备或RLC实体。所述第一信息包括所述目标网络设备的标识。可以为在控制信息,即MAC CE显式包含网络设备的标识,基于网络设备的标识确定控制信息中的控制比特所对应的目标网络设备或RLC实体。
当目标网络设备包含一个RLC实体时,基于所述控制信息中的一位控制比特确定是否使用所述目标网络设备包含的一个RLC实体进行数据复制传输.。也就是说,当目标网络设备只配置了一个RLC实体,使用一个比特,来控制终端设备是否使用当前RLC实体进行数据传输。
当目标网络设备包含至少两个RLC实体时,基于所述控制信息中包含的一位控制比特,确定采用所述目标网络设备包含的至少两个RLC实体进行数据传输,或者,确定采用所述目标网络设备包含的目标RLC实体进行数据复制传输。即当目标网络设备只配置了至少两个RLC实体,一个比特位控制多个RLC实体均复制传输,或者目标网络设备的至少两个RLC实体中的一个目标RLC实体进行数据复制传输。
使用一个比特来控制UE是否两个RLC实体进行数据传输,或者,只使用其中一个RLC实体进行数据传输;所述一个RLC实体是两个RLC实体中的哪一个RLC实体可以另外配置,例如,通过另外一个比特,或者是通过RRC进行配置。
当目标网络设备包含至少两个RLC实体时,基于所述控制信息中包含的至少两位控制比特,确定所述目标网络设备包含的至少两个RLC实体进行数据复制传输;其中不同的控制比特对应不同的RLC实体。即使用两个比特分别控制两个RLC实体,是否进行数据传输,其中不同位的控制比特可以通过预设关系确定其所对应的RLC实体,则不同的控制比特位的控制比特用于控制不同的RLC实体。
比如,参见图3所示,配置了一个主网络设备和两个辅助接点1、2,同时配置了两个承载,对于第一承载,在主网络设备上有一个RLC实体,在辅助网络设备1上有两个RLC实体,相对应的,主网络设备,下发一个控制比特针对RLC1,辅助网络设备下发一个控制比特针对RLC2、3(或者下发两个控制比特,分别针对两个RLC实体);
对于第二承载,辅助网络设备1上有一个RLC实体4,辅助网络设备2上有一个RLC实体,相对应的,辅助网络设备1下发一个控制比特针对RLC4,辅助网络设备2下发一个控制比特针对RLC5。
在本子场景中,更进一步,终端设备需要保证终端设备只在目标数量个RLC实体中进行数据传输,比如仅在一个或两个RLC实体上进行发送,则可以进行以下处理:
网络设备之间需要进行相互的协调(包括但不限于不同网络设备间的X2、Xn接口的信令交互),这一部分不在本实施例中进行描述。
终端设备根据最新收到的信令确定RLC实体的使用,根据接收到的信令进行协调的处理,具体说明如下:
所述基于所述控制信息,确定在所述控制信息指示的至少一个RLC实体中的至少部分RLC实体进行数据复制传输,包括:
基于最新接收到的控制信息,确定在所述最新接收到的控制信息指示的RLC实体进行数据复制传输。例如之前已收到来自网络设备1的控制信息,其中的控制比特指示使用网络设备1的两个RLC实体,之后收到来自网络设备2的控制信息,其中的控制比特,指示使用网络设备2的两个RLC实体;再综合考虑终端设备还可以配置预设数量门限值,选取RLC实体的目标数量小于预设数量门限值,也就是说目标数量可以为两个,终端设备按照后一控制信息中的控制比特的指示进行数据传输。
或者,基于控制信息,确定目标数量个RLC实体进行数据复制传输;其中,目标数量个RLC实体可以来自同一个网络设备也可以来自不同网络设备;
或者,基于控制信息,确定唯一网络设备的RLC实体进行数据复制传输。
举例来说,之前已收到来自网络设备1的控制信息,其中的控制比特,指示使用网络设备1的两个RLC实体,之后收到来自网络设备2的控制信息,其中的控制比特,指示使用网络设备2的一个RLC实体,再综合考虑目标数量为两个,则终端设备最多只能在两个RLC实体上进行数据发送,则终端设备可以:选择网络设备1的一个RLC实体和网络设备2的一个RLC实体进行发送;或者只在网络设备2的RLC实体上进行发送。
或者,终端设备还可以基于网络配置的RLC实体进行数据复制传输。也就是网络可以通过配置至少一个默认RLC实体,例如,针对第一承载的RLC1,针对第二承载的RLC4,进行这种情况下的数据传输。
例如,前一个时刻已收到控制控制信息,其中控制比特指示只在网络设备1的一个RLC实体上进行发送,之后收到来自网络设备1的控制比特,指示不能使用网络设备1的任一RLC实体,则网 络可以通过配置至少一个默认RLC实体,例如,针对第一承载的RLC1,针对第二承载的RLC4,进行这种情况下的数据传输。
或者网络可以控制某一个RLC实体的比特(bit),例如,针对第一承载的RLC1,针对第二承载的RLC4,固定其取值为允许进行数据复制。
或者网络可以对某一个RLC实体的bit不做配置,例如,针对第一承载的RLC1,针对第二承载的RLC4,默认其为允许进行数据复制。
子场景12、
所述控制信息中包含至少一个控制比特;所述至少一个控制比特,用于指示至少两个RLC实体的数据复制传输状态;其中,所述至少两个RLC实体属于相同或不同的网络设备。也就是与子场景11不同,本子场景中综合考虑至少一个网络设备上的RLC实体配置来决定,网络设备控制信息中控制比特的下发。
终端设备基于控制信息中的控制比特确定数据复制传输状态的方式可以包括:
基于所述控制信息中包含的至少两个控制比特,以及预设的控制比特和传输状态的对应关系,确定所述至少两个控制比特所对应的数据复制传输状态。
或者,
基于所述控制信息中包含的至少两个控制比特,以及网络配置的控制比特和传输状态的对应关系,确定所述至少两个控制比特所对应的数据复制传输状态。
也就是说,控制比特和传输状态的对应关系,可以为终端设备自身预配置的,也可以是网络侧通过信令下发的,具体下发可以为通过RRC信令下发,当然还可以通过MAC CE或者下行控制信息(DCI)下发,这里不做限定。
所述至少一个网络设备可以是网络RRC配置的,或者是指所有网络设备;例如:对于主网络设备和辅助网络设备上各配置了两个RLC实体,即共四个RLC实体,RLC实体1、2在网络设备1上,RLC实体3、4在网络设备2上,可以配置1、2或3个比特控制以下不同状态转换。
关于控制信息由哪个网络设备下发,可以为每一个网络设备均发送自身管理的至少一个RLC实体的控制信息,也可以为每一个网络设备均发送终端设备所对应的全部网络设备的RLC实体的信息。
再进一步地,如图4所示,由于RLC实体1、2在同一网络设备上,只在RLC实体1上发送或者在只在RLC实体2上发送效果相同,均可以等同与该网络设备发送控制信息;对于下面的表1中第四状态等同于只在RLC实体1上发送。
类似的,对于第五状态,只在RLC实体3上发送,等同于只在RLC实体4上发送。
另外,只在RLC实体1上发送或者在只在RLC实体2上发送效果不同的情况,那么需要增加更多的表项,可以使用更多的bit来表示。
对于控制比特和传输状态的对应关系的表1,可以使用两个比特,来表示不同的状态之间的转换,对控制比特和传输状态的对应关系的表2,我们可以使用三个比特表示不同的状态,比如图可以参见图5,表中可以看出通过3个控制比特表示对应的不同状态。
在本示例中,表示的是如果需要保证终端设备只在一个或两个RLC实体上进行发送的情况。
状态 RLC1 RLC2 RLC3 RLC4
1    
2    
3    
4      
表1
状态 RLC1 RLC2 RLC3 RLC4
1    
2    
3    
4      
5      
表2
如图4所示,配置了一个主网络设备和一个辅助接点,同时配置了一个承载,在主网络设备上有2个RLC实体,在辅助网络设备1上有2个RLC实体,相对应的,主网络设备,下发2个控制比特针对RLC1、2、3、4,辅助网络设备下发2个控制比特针对RLC1、2、3、4(或者下发三个控制比特,也都针对3个RLC实体)。
需要理解的是,本子场景中,终端设备根据最新接收到的控制信息为准进行处理,也就是前一时刻接收到网络设备1发来的控制信息1,此时可以根据控制信息1中的控制比特针对RLC1、2、3、4来确定终端设备的RLC实体的数据传输;后一刻接收到网络设备2发来的控制信息2,则进行更 新,基于新收到的控制信息2进行数据传输控制。
还需要指出的是,表1、2、5可以进一步扩展到3个网络设备/6个RLC实体的情况,不再赘述。网络设备下发的控制比特可以通过RRC配置指向一个具体的状态,比如网络设备的不同控制比特的取值对于状态的选择相互相关或独立,即相互之间可以没有重合的状态;网络设备的控制信息中的所有控制比特的取值可以覆盖所有可能的状态,也可以不覆盖所有可能的状态。
本场景1中的子场景11以及子场景12可以结合,具体说明如下:
一部分RLC实体可以通过子场景11的方式实现;另一部分RLC实体可以通过子场景12的方式实现。
例如,对于主网络设备和辅助网络设备上各配置了两个RLC实体,即共四个RLC实体,RLC1、2在网络设备1上,RLC3,4在网络设备2上
对于网络设备1的RLC1和网络设备2的RLC3,使用子场景11的方式,即使用单独的控制bit;网络设备1发送控制信息的控制比特1,控制是否使用RLC实体1进行数据发送;网络设备2发送的控制信息中控制比特2,控制是否使用RLC实体3进行数据发送;同时网络设备1和2发送控制信息的控制比特3(或控制比特3,4),控制RLC2,4的状态。
同样结合的两个子场景中终端设备还可以配置预设数量门限值,选取RLC实体的目标数量小于预设数量门限值,也就是说采用目标数量个RLC实体进行发送。例如,如表1-1所示,不同的控制比特的组合表示不同的RLC实体使用情况。
控制比特1 控制比特2 控制比特3 RLC1 RLC2 RLC3 RLC4
1 0 0    
0 0 1    
0 1 0    
0 0 0      
表1-1
类似于子场景11,在这种情况下,为了确保在目标数量个RLC实体的发送,比如在一个或两个RLC实体上进行发送,需要网络设备之间需要相互协调,并且需要定义如下准则:
例如之前已收到来自网络设备1的控制比特,指示使用网络设备1的两个RLC实体,之后收到来自网络设备2的控制比特,指示使用网络设备2的两个RLC实体,考虑到UE最多只能在两个RLC实体上进行数据发送,按照后一指示进行工作。
例如之前已收到来自网络设备1的控制比特,指示使用网络设备1的两个RLC实体,之后收到来自网络设备2的控制比特,指示使用网络设备2的一个RLC实体,考虑到UE最多只能在两个RLC实体上进行数据发送,则选择网络设备1的一个RLC实体和网络设备2的一个RLC实体进行发送,或者只在网络设备2的RLC实体上进行发送。
例如之前已收到控制比特指示只在网络设备1的一个RLC实体上进行发送,之后收到来自网络设备1的控制比特,指示不能使用网络设备1的任一RLC实体,则:
网络可以通过配置至少一个默认RLC实体,例如,针对第一承载的RLC1,针对第二承载的RLC4,进行这种情况下的数据传输;
或者网络,可以控制某一个RLC实体的bit,例如,针对第一承载的RLC1,针对第二承载的RLC4,固定其取值为允许进行数据复制;
或者网络,可以对某一个RLC实体的bit不做配置,例如,针对第一承载的RLC1,针对第二承载的RLC4,默认其为允许进行数据复制。
场景2、数据复制由网络信令和终端设备自主选择控制。
本场景与场景1类似,同样分为以下几种情况,比如
网络设备只针对单一网络设备的RLC实体进行数据复制的控制;
网络设备针对多于一个网络设备的RLC实体也进行数据复制的控制。
类似的,上述网络设备发送的控制信息中的控制比特针对哪一个承载、哪一个RLC实体可以如场景1一样来确定,本场景不再进行赘述。
本场景与场景1不同在于,本场景中不需要网络设备的协调处理,需要终端设备在接收到控制信息之后基于控制比特进行后续处理,场景1中进行控制信息的选择可以根据接收到控制信息的时间先后关系来确定,本场景则着重基于根据信道条件来选择RLC实体。
也就是说,终端设备选择网络设备下的RLC实体,最终确定应该通过哪个RLC实体进行数据传输。这里的选择需要考虑以下两个方面的因素:
信道状况:例如RSRP,RSRQ,SINR,RSSI;
绝对门限:例如网络设备1或RLC实体一相关的信道状况数值大于或大于等于某个门限A,和/或,网络设备1或RLC实体一相关的信道状况数值小于或小于等于某个门限B;
相对门限:例如网络设备1或RLC实体一相关的信道状况数值大于或大于等于网络设备2或RLC实体二相关信道状况数值加/减某个门限A,和/或,网络设备1或RLC实体一相关的信道状况数值大小于或小于等于网络设备2或RLC实体二相关信道状况数值加/减某个门限B;
这里网络设备或RLC实体相关的信道状况,可以综合网络设备或RLC实体相关的频点/小区相 关的信道状况综合考虑。
结合图5对场景2的处理进行说明,也就是本场景中终端设备接收网络信令比如MAC CE发来的控制信息,进而终端设备根据控制信息中的控制比特自主选择RLC实体进行传输。网络设备可以通过RRC为终端设备配置所述终端设备可以自主选择的网络设备和RLC实体;或者,通过协议预先定义终端设备可以自主选择的网络设备和RLC实体集合的准则。
子场景21、
所述基于所述控制信息,确定在所述控制信息指示的至少一个RLC实体中的至少部分RLC实体进行数据复制传输,包括:
当至少两个控制信息为针对不同的网络设备的RLC实体时,终端设备根据第一准则,从所述至少两个控制信息所指示的RLC实体中,选取目标数量个RLC实体进行数据复制传输;其中,目标数量个RLC实体属于相同或不同的网络设备。
所述第一准则为基于信道质量信息选取目标数量个RLC实体;以下至少之一:
不同小区的信道质量信息、不同RLC实体的信道质量信息、不同带宽部分BWP的信道质量信息。另外,所述第一准则中还可以包括绝对门限和相对门限。
网络下发的控制信息的控制比特类似于子场景11,所不同的是在本子场景中,更进一步,如果需要保证终端设备还可以在目标数量个RLC实体发送,比如,目标数量为两个,则终端设备确定在一个或两个RLC实体RLC实体上进行发送。
网络设备之间不需要进行相互的协调。终端设备自主根据收到的信令确定RLC实体的使用。
例如,收到来自网络设备1的控制信息,其中的控制比特指示使用网络设备1的两个RLC实体,并且收到来自网络设备2的控制比特,指示使用网络设备2的两个RLC实体,考虑到目标数量为两个,也就是最多只能在两个RLC实体上进行数据发送,则可以根据前述第一准则进行选择。
可以在网络设备1和/或网络设备2的一个RLC实体上进行发送;
还可以分别在网络设备1或网络设备2的两个RLC实体上进行发送。
再例如,收到来自网络设备1的控制信息,其中的控制比特指示使用网络设备1的一个RLC实体,并且收到来自网络设备2的控制信息,其中的控制比特指示使用网络设备2的两个RLC实体,考虑到目标数量为两个,则终端设备最多只能在两个RLC实体上进行数据发送,终端设备可以根据第一准则进行处理。
可以在网络设备1和/或网络设备2的一个RLC实体上进行发送;
还可以在网络设备2的两个RLC实体上进行发送。
终端设备当接收到网络指示不进行数据复制传输时,执行以下之一:
基于预配置的目标数量个默认的RLC实体,进行数据传输;
基于预配置的目标RLC实体,进行数据传输;
终端设备选择在目标数量个RLC实体进行数据传输。
比如,收到网络的指示,不能在任一网络设备上进行发送,则
网络可以通过配置目标数量个默认RLC实体,进行这种情况下的数据传输。
或者UE自主选择在网络设备1和/或网络设备2的一个RLC实体上进行发送;在网络设备1或网络设备2的两个RLC实体上进行发送。
子场景22、
网络下发的控制比特类似于子场景12类似,所不同的是在本示例中,所述控制信息中包含至少一个控制比特;所述至少一个控制比特,用于指示状态集合。即网络下发的控制比特不再指向一个具体的状态,而是指向一个状态集合,所述状态集合包括了至少一个状态,终端设备通过自主选择进一步在状态集合中对具体状态进行选择。
更进一步,终端设备还可以配置预设数量门限值,选取RLC实体的目标数量小于预设数量门限值,也就是说在目标数量个RLC实体,比如一个或两个RLC实体上进行发送的情况。
例如:对于主网络设备和辅助网络设备上各配置了两个RLC实体,即共四个RLC实体,RLC1、2在网络设备1上,RLC3,4在网络设备2上,可以配置1、2或3个比特控制以下不同状态转换:由于第一和第二RLC实体在同一网络设备上,只在第一RLC实体上发送或者在只在第二RLC实体上发送效果相同,所以对于,第四状态等同于只在第一RLC实体上发送。类似的,对于第五状态,只在第三RLC实体上发送,等同于只在第四RLC实体上发送。
状态 RLC1 RLC2 RLC3 RLC4
A1    
A2    
A3    
B4      
B5      
表3
在上表3中,网络可以下发一个控制比特,分别标志状态集合A和状态集合B,分别标识复制 的激活和去激活;在状态集合A中,终端设备进一步对于A1/2/3进行选择;在状态集合B中,UE进一步对于状态B4/5进行选择。
状态 RLC1 RLC2 RLC3 RLC4
A1    
B1    
C1    
D1      
D2      
表4
在上表4中,网络可以下发2个控制比特,分别标志状态集合A B C D,在状态集合A中,进一步对于D1/2进行选择。具体可以为:基于所述控制信息中包含的至少两个控制比特,确定对应的状态集合;基于所述状态集合,选取数据复制传输状态。终端设备根据第二准则,从所述状态集合中,选取数据复制传输状态。所述第二准则为基于信道质量信息从状态集合中选取数据复制传输状态。
所述信道质量信息包括以下至少之一:
不同小区的信道质量信息、不同RLC实体的信道质量信息、不同带宽部分BWP的信道质量信息。
也就是说,基于状态集合中包含的各个RLC实体对应的信道质量情况,确定处于哪个数据复制传输状态中的目标数量个RLC实体的质量满足要求,则可以选择该数据复制传输状态。
网络的不同控制比特取值对于状态的选择相互相关或独立,即相互之间可以有重合的状态或者没有重合的状态,也就是说不同的控制比特的取值所对应的状态集合,可以重合、部分重合或者完全不重合;网络的所有控制比特的取值可以覆盖所有可能的状态集合,也可以不覆盖所有可能的状态集合;网络的控制比特取值可以全部都包括多于一个状态集合,或者只有部分包含多于一个状态集合,或者全部都只包括一个状态集合。
还需要指出的是,场景2中的子场景21以及子场景22也可以结合进行处理,比如
一部分RLC实体可以通过子场景21的方式实现;另一部分RLC实体可以通过子场景22的方式实现。
例如,对于主网络设备1和辅助网络设备2上各配置了两个RLC实体,即共四个RLC实体,RLC1、2在网络设备1上,RLC3,4在网络设备2上;
对于网络设备1的RLC1和网络设备2的RLC3,使用场景21的方式,使用单独的控制bit;
网络设备1发送控制比特1,控制是否使用RLC1进行数据发送;
网络设备2发送控制比特2,控制是否使用RLC3进行数据发送;
同时网络设备1和2发送控制比特3(或控制比特3,4),控制RLC2,4的状态.
例如,如下表5、6所示,不同的控制比特的组合表示不同的RLC实体使用情况。
在本示例中,更进一步,需要保证终端设备在目标数量个RLC实体中发送,比如只在一个或两个RLC实体上进行发送的情况。
控制比特1 控制比特2 控制比特3 RLC1 RLC2 RLC3 RLC4
1 0 0    
0 0 1    
0 1 0    
0 0 0      
表5
Figure PCTCN2019073524-appb-000001
表6
类似于子场景21,在这种情况下,为了确保终端设备在目标数量个RLC实体中发送,网络设备之间不需要进行相互的协调,终端设备自主根据收到的信令确定RLC实体的使用。
例如收到来自网络设备1的控制信息,根据控制信息中的控制比特指示使用网络设备1的两个RLC实体,并且收到来自网络设备2的控制信息,根据控制信息中的控制比特,指示使用网络设备2的两个RLC实体,考虑到UE最多只能在两个RLC实体上进行数据发送,则UE按照可以基于上述因素选择:
在网络设备1和/或网络设备2的一个RLC实体上进行发送;
或者,在网络设备1或网络设备2的两个RLC实体上进行发送。
例如收到来自网络设备1的控制比特,指示使用网络设备1的一个RLC实体,并且收到来自网络设备2的控制比特,指示使用网络设备2的两个RLC实体,考虑到UE最多只能在两个RLC实体上进行数据发送,则UE按照可以基于上述因素选择:
在网络设备1和/或网络设备2的一个RLC实体上进行发送;
或者,在网络设备1或网络设备2的两个RLC实体上进行发送。
例如收到网络的指示,不能在任一网络设备上进行发送,则
网络可以通过配置至少一个默认RLC实体,进行这种情况下的数据传输。
或者网络,可以对某一个RLC实体的bit不做配置,例如,针对第一承载的RLC1,针对第二承载的RLC4,默认其为允许进行数据复制;
或者UE自主选择在网络设备1和/或网络设备2的一个RLC实体上进行发送;或者,在网络设备1或网络设备2的两个RLC实体上进行发送。
可见,通过采用上述方案,就能够根据接收到的控制信息中的内容,确定在全部RLC实体中的至少部分RLC实体进行数据传输。如此,就能够使得终端设备在配置多个RLC实体的情况下,根据网络的控制信息结合自身来确定其中部分RLC实体进行数据传输,如此,就能够减少网络RLC实体之间协调,并且适用于数据复制传输的RLC实体个数小于配置的RLC实体的情况。
实施例二、
本发明实施例提供了一种数据复制传输控制方法,应用于网络设备,如图6所示,包括:
步骤601:向终端设备发送控制信息;其中,所述控制信息用于指示针对至少一个RLC实体的数据复制传输的控制。
这里,所述终端设备可以为配置了数据复制传输的多个RLC实体的设备,其中多个可以理解为多于2个。所述至少一个RLC实体中的至少部分RLC实体,可以为终端设备所配置的全部用于数据复制传输的RLC实体中的目标数量个RLC实体,且目标数量小于所述全部的RLC实体的数量。比如,终端设备配置有5个RLC实体,5个RLC实体分别属于不同的网络设备;基于控制信息可以确定采用5个RLC实体中的2个RLC实体进行数据传输。
所述控制信息可以为一个或多个网络设备发来的至少一个控制信息。一个网络设备发来的控制信息中的控制比特,可以针对该网络设备也可以针对多个网络设备,或者还可以针对一个承载或多个承载,还可以针对一个网络设备下的一个或多个RLC实体,当然,还可以针对多个网络设备的多个RLC实体。
下面分几种场景对本实施例提供的方案进行详细说明:
场景1、
本场景中,控制信息中的控制比特只针对单一网络设备的RLC实体进行数据复制传输的控制;或者,控制信息中的控制比特针对多于一个网络设备的RLC实体也进行数据复制传输的控制。
关于上述控制比特针对哪一个承载可以通过在介质接入控制(MAC,Media Access Control)控制元素(CE,Control Element)显式包含承载的标识,或者,通过预定义承载标识到比特位的映射关系来隐式的指示比特所关联的承载。
子场景11、控制信息中的控制比特只针对单一网络设备的RLC实体进行数据复制传输的控制,具体来说:
可以通过所述网络设备发送的控制信息,指示所述控制信息所对应的目标网络设备或RLC实体。进一步地,可以根据发送控制信息的网络设备的标识,与预设的网络设备标识到比特位的映射关系来隐式的指示比特所关联的网络设备或RLC实体。进而确定在MAC CE即控制信息里只包含针对单一网络设备或单一网络设备的RLC的控制比特。
或者,通过RRC配置信息,指示所述控制信息所对应的目标网络设备或RLC实体。所述RRC配置信息指示目标网络设备或RLC实体与控制比特位之间的映射关系。即根据RRC配置信息获取预定义网络设备标识到比特位的映射关系来隐式的指示比特所关联的网络设备或RLC实体,进而确定在MAC CE里可以包含的控制比特所对应的至少一个网络设备或至少一个RLC实体。
或者,通过所述控制信息中包含的第一信息,指示所述控制信息所对应的目标网络设备或RLC实体。所述第一信息包括所述目标网络设备的标识。可以为在控制信息,即MAC CE显式包含网络设备的标识,基于网络设备的标识确定控制信息中的控制比特所对应的目标网络设备或RLC实体。
当目标网络设备包含一个RLC实体时,基于所述控制信息中的一位控制比特确定是否使用所述目标网络设备包含的一个RLC实体进行数据复制传输.。也就是说,当目标网络设备只配置了一个RLC实体,使用一个比特,来控制终端设备是否使用当前RLC实体进行数据传输。
当目标网络设备包含至少两个RLC实体时,基于所述控制信息中包含的一位控制比特,确定采用目标网络设备包含的至少两个RLC实体进行数据传输,或者,确定采用所述目标网络设备包含的目标RLC实体进行数据复制传输。即当目标网络设备只配置了至少两个RLC实体,一个比特位控制多个RLC实体均复制传输,或者目标网络设备的至少两个RLC实体中的一个目标RLC实体进行数据复制传输。
使用一个比特来控制UE是否两个RLC实体进行数据传输,或者,只使用其中一个RLC实体进行数据传输;所述一个RLC实体是两个RLC实体中的哪一个RLC实体可以另外配置,例如,通过另外一个比特,或者是通过RRC进行配置。
当目标网络设备包含至少两个RLC实体时,基于所述控制信息中包含的至少两位控制比特,确定所述目标网络设备包含的至少两个RLC实体进行数据复制传输;其中不同的控制比特对应不同的RLC实体。即使用两个比特分别控制两个RLC实体,是否进行数据传输,其中不同位的控制比特可以通过预设关系确定其所对应的RLC实体,则不同的控制比特位的控制比特用于控制不同的RLC实体。
比如,参见图3所示,配置了一个主网络设备和两个辅助接点1、2,同时配置了两个承载,对于第一承载,在主网络设备上有一个RLC实体,在辅助网络设备1上有两个RLC实体,相对应的,主网络设备,下发一个控制比特针对RLC1,辅助网络设备下发一个控制比特针对RLC2、3(或者下发两个控制比特,分别针对两个RLC实体);
对于第二承载,辅助网络设备1上有一个RLC实体4,辅助网络设备2上有一个RLC实体,相对应的,辅助网络设备1下发一个控制比特针对RLC4,辅助网络设备2下发一个控制比特针对RLC5。
在本子场景中,更进一步,终端设备需要保证终端设备只在目标数量个RLC实体中进行数据传输,比如仅在一个或两个RLC实体上进行发送,则可以进行以下处理:
网络设备之间需要进行相互的协调(包括但不限于不同网络设备间的X2、Xn接口的信令交互),比如,网络设备可以预先获知终端设备所要配置的RLC实体的目标数量,然后与至少一个其他网络设备通过X2或Xn接口进行信令交互,最终确定目标数量个RLC实体,并通过控制信息中的控制比特发送至终端设备。
终端设备根据最新收到的信令确定RLC实体的使用,根据接收到的信令进行协调的处理,可以参见实施例一,这里不再赘述。
子场景12、
所述控制信息中包含至少一个控制比特;所述至少一个控制比特,用于指示至少两个RLC实体的数据复制传输状态;其中,所述至少两个RLC实体针对不同的网络设备。也就是与子场景11不同,本子场景中综合考虑至少一个网络设备上的RLC实体配置来决定,网络设备控制信息中控制比特的下发。
终端设备基于控制信息中的控制比特确定数据复制传输状态的方式可以与实施例一相同,不再赘述。
本场景1中的子场景11以及子场景12可以结合使用,具体说明如下:
一部分RLC实体可以通过子场景11的方式实现;另一部分RLC实体可以通过子场景12的方式实现。
例如,对于主网络设备和辅助网络设备上各配置了两个RLC实体,即共四个RLC实体,RLC1、2在网络设备1上,RLC3,4在网络设备2上。
对于网络设备1的RLC1和网络设备2的RLC3,使用子场景11的方式,即使用单独的控制bit;网络设备1发送控制信息的控制比特1,控制是否使用RLC实体1进行数据发送;网络设备2发送的控制信息中控制比特2,控制是否使用RLC实体3进行数据发送;同时网络设备1和2发送控制信息的控制比特3(或控制比特3,4),控制RLC2,4的状态。
场景2、数据复制由网络信令和终端设备自主选择控制。
本场景与场景1类似,同样分为以下几种情况,比如
网络设备只针对单一网络设备的RLC实体进行数据复制的控制;
网络设备针对多于一个网络设备的RLC实体也进行数据复制的控制。
类似的,上述网络设备发送的控制信息中的控制比特针对哪一个承载、哪一个RLC实体可以如场景1一样来确定,本场景不再进行赘述。
本场景与场景1不同在于,本场景中不需要网络设备的协调处理,需要终端设备在接收到控制信息之后基于控制比特进行后续处理,所述控制信息中包含至少一个控制比特;所述至少一个控制比特,用于指示状态集合。
可见,通过采用上述方案,就能够根据接收到的控制信息中的内容,确定在全部RLC实体中的至少部分RLC实体进行数据传输。如此,就能够使得终端设备在配置多个RLC实体的情况下,根据网络的控制信息结合自身来确定其中部分RLC实体进行数据传输,如此,就能够减少网络RLC实体之间协调,并且适用于数据复制传输的RLC实体个数小于配置的RLC实体的情况。
实施例三、
本发明实施例提供了一种终端设备,如图7所示,包括:
第一通信单元71,接收控制信息;其中,所述控制信息用于指示终端设备针对至少一个无线链路控制(RLC,Radio Link Control)实体的数据复制传输的控制;
第一处理单元72,基于所述控制信息,确定在所述控制信息指示的至少一个RLC实体中的至少部分RLC实体进行数据传输。
这里,所述至少一个RLC实体中的至少部分RLC实体,可以为第一处理单元72所配置的全部用于数据复制传输的RLC实体中的目标数量个RLC实体,且目标数量小于所述全部的RLC实体的数量。比如,终端设备配置有5个RLC实体,5个RLC实体分别属于不同的网络设备;基于控制信息可以确定采用5个RLC实体中的2个RLC实体进行数据传输。
所述控制信息可以为一个或多个网络设备发来的至少一个控制信息。一个网络设备发来的控制信息中的控制比特,可以针对该网络设备也可以针对多个网络设备,或者还可以针对一个承载或多个承载,还可以针对一个网络设备下的一个或多个RLC实体,当然,还可以针对多个网络设备的多个RLC实体。
下面分几种场景对本实施例提供的方案进行详细说明:
场景1、
本场景中,控制信息中的控制比特只针对单一网络设备的RLC实体进行数据复制传输的控制;或者,控制信息中的控制比特针对多于一个网络设备的RLC实体也进行数据复制传输的控制。
关于上述控制比特针对哪一个承载可以通过在介质接入控制(MAC,Media Access Control)控制元素(CE,Control Element)显式包含承载的标识,或者,通过预定义承载标识到比特位的映射关系来隐式的指示比特所关联的承载。
子场景11、控制信息中的控制比特只针对单一网络设备的RLC实体进行数据复制传输的控制,具体来说:
第一处理单元72可以根据发送控制信息的网络设备,确定所述控制信息所对应的目标网络设备或RLC实体。进一步地,可以根据发送控制信息的网络设备的标识,与预设的网络设备标识到比特位的映射关系来隐式的指示比特所关联的网络设备或RLC实体。进而确定在MAC CE即控制信息里只包含针对单一网络设备或单一网络设备的RLC的控制比特。
或者,第一处理单元72根据无线资源控制(RRC,Radio Resource Control)配置信息,确定所述控制信息所对应的目标网络设备或RLC实体。所述RRC配置信息指示目标网络设备或RLC实体与控制比特位之间的映射关系。即根据RRC配置信息获取预定义网络设备标识到比特位的映射关系来隐式的指示比特所关联的网络设备或RLC实体,进而确定在MAC CE里可以包含的控制比特所对应的至少一个网络设备或至少一个RLC实体。
或者,第一处理单元72根据所述控制信息中包含的第一信息,确定所述控制信息所对应的目标网络设备或RLC实体。所述第一信息包括所述目标网络设备的标识。可以为在控制信息,即MAC CE显式包含网络设备的标识,基于网络设备的标识确定控制信息中的控制比特所对应的目标网络设备或RLC实体。
第一处理单元72当目标网络设备包含一个RLC实体时,基于所述控制信息中的一位控制比特确定是否使用所述目标网络设备包含的一个RLC实体进行数据复制传输.。也就是说,当目标网络设备只配置了一个RLC实体,使用一个比特,来控制终端设备是否使用当前RLC实体进行数据传输。
第一处理单元72当目标网络设备包含至少两个RLC实体时,基于所述控制信息中包含的一位控制比特,确定采用所述目标网络设备包含的至少两个RLC实体进行数据传输,或者,确定采用所述目标网络设备包含的目标RLC实体进行数据复制传输。即当目标网络设备只配置了至少两个RLC实体,一个比特位控制多个RLC实体均复制传输,或者目标网络设备的至少两个RLC实体中的一个目标RLC实体进行数据复制传输。
使用一个比特来控制UE是否两个RLC实体进行数据传输,或者,只使用其中一个RLC实体进行数据传输;所述一个RLC实体是两个RLC实体中的哪一个RLC实体可以另外配置,例如,通过另外一个比特,或者是通过RRC进行配置。
第一处理单元72当目标网络设备包含至少两个RLC实体时,基于所述控制信息中包含的至少两位控制比特,确定所述目标网络设备包含的至少两个RLC实体进行数据复制传输;其中不同的控制比特对应不同的RLC实体。即使用两个比特分别控制两个RLC实体,是否进行数据传输,其中不同位的控制比特可以通过预设关系确定其所对应的RLC实体,则不同的控制比特位的控制比特用于控制不同的RLC实体。
在本子场景中,更进一步,终端设备需要保证终端设备只在目标数量个RLC实体中进行数据传输,比如仅在一个或两个RLC实体上进行发送,则可以进行以下处理:
终端设备根据最新收到的信令确定RLC实体的使用,根据接收到的信令进行协调的处理,具体说明如下:
所述第一处理单元72基于最新接收到的控制信息,确定在所述最新接收到的控制信息指示的RLC实体进行数据复制传输。例如之前已收到来自网络设备1的控制信息,其中的控制比特指示使用网络设备1的两个RLC实体,之后收到来自网络设备2的控制信息,其中的控制比特,指示使用网络设备2的两个RLC实体;再综合考虑终端设备还可以配置预设数量门限值,选取RLC实体的目标数量小于预设数量门限值,也就是说目标数量可以为两个,终端设备按照后一控制信息中的控制比特的指示进行数据传输。
或者,基于控制信息,确定目标数量个RLC实体进行数据复制传输;其中,目标数量个RLC实体可以来自同一个网络设备也可以来自不同网络设备;
或者,基于控制信息,确定唯一网络设备的RLC实体进行数据复制传输。
子场景12、
所述控制信息中包含至少一个控制比特;所述至少一个控制比特,用于指示至少两个RLC实体的数据复制传输状态;其中,所述至少两个RLC实体属于相同或不同的网络设备。也就是与子场景11不同,本子场景中综合考虑至少一个网络设备上的RLC实体配置来决定,网络设备控制信息中控制比特的下发。
第一处理单元72基于所述控制信息中包含的至少两个控制比特,以及预设的控制比特和传输状态的对应关系,确定所述至少两个控制比特所对应的数据复制传输状态。
或者,
基于所述控制信息中包含的至少两个控制比特,以及网络配置的控制比特和传输状态的对应关系,确定所述至少两个控制比特所对应的数据复制传输状态。
也就是说,控制比特和传输状态的对应关系,可以为终端设备自身预配置的,也可以是网络侧通过信令下发的,具体下发可以为通过RRC信令下发,当然还可以通过MAC CE或者下行控制信息(DCI)下发,这里不做限定。
所述至少一个网络设备可以是网络RRC配置的,或者是指所有网络设备;例如:对于主网络设备和辅助网络设备上各配置了两个RLC实体,即共四个RLC实体,RLC实体1、2在网络设备1上,RLC实体3、4在网络设备2上,可以配置1、2或3个比特控制以下不同状态转换。
关于控制信息由哪个网络设备下发,可以为每一个网络设备均发送自身管理的至少一个RLC实体的控制信息,也可以为每一个网络设备均发送终端设备所对应的全部网络设备的RLC实体的信息。
本场景1中的子场景11以及子场景12可以结合使用,具体说明如下:
一部分RLC实体可以通过子场景11的方式实现;另一部分RLC实体可以通过子场景12的方式实现。
例如,对于主网络设备和辅助网络设备上各配置了两个RLC实体,即共四个RLC实体,RLC1、2在网络设备1上,RLC3,4在网络设备2上
对于网络设备1的RLC1和网络设备2的RLC3,使用子场景11的方式,即使用单独的控制bit;网络设备1发送控制信息的控制比特1,控制是否使用RLC实体1进行数据发送;网络设备2发送的控制信息中控制比特2,控制是否使用RLC实体3进行数据发送;同时网络设备1和2发送控制信息的控制比特3(或控制比特3,4),控制RLC2,4的状态。
同样结合的两个子场景中终端设备还可以配置预设数量门限值,选取RLC实体的目标数量小于预设数量门限值,也就是说采用目标数量个RLC实体进行发送。类似于子场景11,在这种情况下,为了确保在目标数量个RLC实体的发送,比如在一个或两个RLC实体上进行发送,需要网络设备之间需要相互协调,并且需要定义如下准则:
场景2、数据复制由网络信令和终端设备自主选择控制。
本场景与场景1类似,同样分为以下几种情况,比如
网络设备只针对单一网络设备的RLC实体进行数据复制的控制;
网络设备针对多于一个网络设备的RLC实体也进行数据复制的控制。
类似的,上述网络设备发送的控制信息中的控制比特针对哪一个承载、哪一个RLC实体可以如场景1一样来确定,本场景不再进行赘述。
本场景与场景1不同在于,本场景中不需要网络设备的协调处理,需要终端设备在接收到控制信息之后基于控制比特进行后续处理,场景1中进行控制信息的选择可以根据接收到控制信息的时间先后关系来确定,本场景则着重基于根据信道条件来选择RLC实体。
也就是说,终端设备选择网络设备下的RLC实体,最终确定应该通过哪个RLC实体进行数据传输。这里的选择需要考虑以下两个方面的因素:
信道状况:例如RSRP,RSRQ,SINR,RSSI;
绝对门限:例如网络设备1或RLC实体一相关的信道状况数值大于或大于等于某个门限A,和/或,网络设备1或RLC实体一相关的信道状况数值小于或小于等于某个门限B;
相对门限:例如网络设备1或RLC实体一相关的信道状况数值大于或大于等于网络设备2或RLC实体二相关信道状况数值加/减某个门限A,和/或,网络设备1或RLC实体一相关的信道状况数值大小于或小于等于网络设备2或RLC实体二相关信道状况数值加/减某个门限B;
这里网络设备或RLC实体相关的信道状况,可以综合网络设备或RLC实体相关的频点/小区相关的信道状况综合考虑。
子场景21、所述第一处理单元72当至少两个控制信息为针对不同的网络设备的RLC实体时,终端设备根据第一准则,从所述至少两个控制信息所指示的RLC实体中,选取目标数量个RLC实体进行数据复制传输;其中,目标数量个RLC实体属于相同或不同的网络设备。
所述第一准则为基于信道质量信息选取目标数量个RLC实体;以下至少之一:
不同小区的信道质量信息、不同RLC实体的信道质量信息、不同带宽部分BWP的信道质量信息。另外,所述第一准则中还可以包括绝对门限和相对门限。
网络下发的控制信息的控制比特类似于子场景11,所不同的是在本子场景中,更进一步,如果 需要保证终端设备还可以在目标数量个RLC实体发送,比如,目标数量为两个,则终端设备确定在一个或两个RLC实体RLC实体上进行发送。
网络设备之间不需要进行相互的协调。终端设备自主根据收到的信令确定RLC实体的使用。
第一处理单元72当接收到网络指示不进行数据复制传输时,执行以下之一:
基于预配置的目标数量个默认的RLC实体,进行数据传输;
基于预配置的目标RLC实体,进行数据传输;
终端设备选择在目标数量个RLC实体进行数据传输。
子场景22、
网络下发的控制比特类似于子场景12类似,所不同的是在本示例中,所述控制信息中包含至少一个控制比特;所述至少一个控制比特,用于指示状态集合。即网络下发的控制比特不再指向一个具体的状态,而是指向一个状态集合,所述状态集合包括了至少一个状态,终端设备通过自主选择进一步在状态集合中对具体状态进行选择。
更进一步,第一处理单元72还可以配置预设数量门限值,选取RLC实体的目标数量小于预设数量门限值,也就是说在目标数量个RLC实体,比如一个或两个RLC实体上进行发送的情况。
第一处理单元72基于所述控制信息中包含的至少两个控制比特,确定对应的状态集合;基于所述状态集合,选取数据复制传输状态。终端设备根据第二准则,从所述状态集合中,选取数据复制传输状态。所述第二准则为基于信道质量信息从状态集合中选取数据复制传输状态。
所述信道质量信息包括以下至少之一:
不同小区的信道质量信息、不同RLC实体的信道质量信息、不同带宽部分BWP的信道质量信息。
也就是说,基于状态集合中包含的各个RLC实体对应的信道质量情况,确定处于哪个数据复制传输状态中的目标数量个RLC实体的质量满足要求,则可以选择该数据复制传输状态。
还需要指出的是,场景2中的子场景21以及子场景22也可以结合进行处理,比如
一部分RLC实体可以通过子场景21的方式实现;另一部分RLC实体可以通过子场景22的方式实现。
例如,对于主网络设备1和辅助网络设备2上各配置了两个RLC实体,即共四个RLC实体,RLC1、2在网络设备1上,RLC3,4在网络设备2上;
对于网络设备1的RLC1和网络设备2的RLC3,使用场景21的方式,使用单独的控制bit;
网络设备1发送控制比特1,控制是否使用RLC1进行数据发送;
网络设备2发送控制比特2,控制是否使用RLC3进行数据发送;
同时网络设备1和2发送控制比特3(或控制比特3,4),控制RLC2,4的状态.
类似于子场景21,在这种情况下,为了确保终端设备在目标数量个RLC实体中发送,网络设备之间不需要进行相互的协调,终端设备自主根据收到的信令确定RLC实体的使用。
需要理解的是,本实施例中各个单元的处理功能与实施例一种描述的方法中的流程处理相同,只是不再进行赘述。
可见,通过采用上述方案,就能够根据接收到的控制信息中的内容,确定在全部RLC实体中的至少部分RLC实体进行数据传输。如此,就能够使得终端设备在配置多个RLC实体的情况下,根据网络的控制信息结合自身来确定其中部分RLC实体进行数据传输,如此,就能够减少网络RLC实体之间协调,并且适用于数据复制传输的RLC实体个数小于配置的RLC实体的情况。
实施例四、
本发明实施例提供了一种网络设备,如图8所示,包括:
第二通信单元81,向终端设备发送控制信息;其中,所述控制信息用于指示针对至少一个RLC实体的数据复制传输的控制。
这里,所述终端设备可以为配置了数据复制传输的多个RLC实体的设备,其中多个可以理解为多于2个。所述至少一个RLC实体中的至少部分RLC实体,可以为终端设备所配置的全部用于数据复制传输的RLC实体中的目标数量个RLC实体,且目标数量小于所述全部的RLC实体的数量。比如,终端设备配置有5个RLC实体,5个RLC实体分别属于不同的网络设备;基于控制信息可以确定采用5个RLC实体中的2个RLC实体进行数据传输。
所述控制信息可以为一个或多个网络设备发来的至少一个控制信息。一个网络设备发来的控制信息中的控制比特,可以针对该网络设备也可以针对多个网络设备,或者还可以针对一个承载或多个承载,还可以针对一个网络设备下的一个或多个RLC实体,当然,还可以针对多个网络设备的多个RLC实体。
下面分几种场景对本实施例提供的方案进行详细说明:
场景1、
本场景中,控制信息中的控制比特只针对单一网络设备的RLC实体进行数据复制传输的控制;或者,控制信息中的控制比特针对多于一个网络设备的RLC实体也进行数据复制传输的控制。
关于上述控制比特针对哪一个承载可以通过在介质接入控制(MAC,Media Access Control)控制元素(CE,Control Element)显式包含承载的标识,或者,通过预定义承载标识到比特位的映射 关系来隐式的指示比特所关联的承载。
子场景11、控制信息中的控制比特只针对单一网络设备的RLC实体进行数据复制传输的控制,具体来说:
第二通信单元81通过所述网络设备发送的控制信息,指示所述控制信息所对应的目标网络设备或RLC实体。进一步地,可以根据发送控制信息的网络设备的标识,与预设的网络设备标识到比特位的映射关系来隐式的指示比特所关联的网络设备或RLC实体。进而确定在MAC CE即控制信息里只包含针对单一网络设备或单一网络设备的RLC的控制比特。
或者,通过RRC配置信息,指示所述控制信息所对应的目标网络设备或RLC实体。所述RRC配置信息指示目标网络设备或RLC实体与控制比特位之间的映射关系。即根据RRC配置信息获取预定义网络设备标识到比特位的映射关系来隐式的指示比特所关联的网络设备或RLC实体,进而确定在MAC CE里可以包含的控制比特所对应的至少一个网络设备或至少一个RLC实体。
或者,通过所述控制信息中包含的第一信息,指示所述控制信息所对应的目标网络设备或RLC实体。所述第一信息包括所述目标网络设备的标识。可以为在控制信息,即MAC CE显式包含网络设备的标识,基于网络设备的标识确定控制信息中的控制比特所对应的目标网络设备或RLC实体。
当目标网络设备包含一个RLC实体时,第二通信单元81基于所述控制信息中的一位控制比特确定是否使用所述目标网络设备包含的一个RLC实体进行数据复制传输.。也就是说,当目标网络设备只配置了一个RLC实体,使用一个比特,来控制终端设备是否使用当前RLC实体进行数据传输。
当目标网络设备包含至少两个RLC实体时,第二通信单元81基于所述控制信息中包含的一位控制比特,确定采用目标网络设备包含的至少两个RLC实体进行数据传输,或者,确定采用所述目标网络设备包含的目标RLC实体进行数据复制传输。即当目标网络设备只配置了至少两个RLC实体,一个比特位控制多个RLC实体均复制传输,或者目标网络设备的至少两个RLC实体中的一个目标RLC实体进行数据复制传输。
使用一个比特来控制UE是否两个RLC实体进行数据传输,或者,只使用其中一个RLC实体进行数据传输;所述一个RLC实体是两个RLC实体中的哪一个RLC实体可以另外配置,例如,通过另外一个比特,或者是通过RRC进行配置。
当目标网络设备包含至少两个RLC实体时,第二通信单元81基于所述控制信息中包含的至少两位控制比特,确定所述目标网络设备包含的至少两个RLC实体进行数据复制传输;其中不同的控制比特对应不同的RLC实体。即使用两个比特分别控制两个RLC实体,是否进行数据传输,其中不同位的控制比特可以通过预设关系确定其所对应的RLC实体,则不同的控制比特位的控制比特用于控制不同的RLC实体。
子场景12、
所述控制信息中包含至少一个控制比特;所述至少一个控制比特,用于指示至少两个RLC实体的数据复制传输状态;其中,所述至少两个RLC实体针对不同的网络设备。也就是与子场景11不同,本子场景中综合考虑至少一个网络设备上的RLC实体配置来决定,网络设备控制信息中控制比特的下发。
终端设备基于控制信息中的控制比特确定数据复制传输状态的方式可以与实施例一相同,不再赘述。
本场景1中的子场景11以及子场景12可以结合使用,具体说明如下:
一部分RLC实体可以通过子场景11的方式实现;另一部分RLC实体可以通过子场景12的方式实现。
例如,对于主网络设备和辅助网络设备上各配置了两个RLC实体,即共四个RLC实体,RLC1、2在网络设备1上,RLC3,4在网络设备2上。
对于网络设备1的RLC1和网络设备2的RLC3,使用子场景11的方式,即使用单独的控制bit;网络设备1发送控制信息的控制比特1,控制是否使用RLC实体1进行数据发送;网络设备2发送的控制信息中控制比特2,控制是否使用RLC实体3进行数据发送;同时网络设备1和2发送控制信息的控制比特3(或控制比特3,4),控制RLC2,4的状态。
场景2、数据复制由网络信令和终端设备自主选择控制。
本场景与场景1类似,同样分为以下几种情况,比如
网络设备只针对单一网络设备的RLC实体进行数据复制的控制;
网络设备针对多于一个网络设备的RLC实体也进行数据复制的控制。
类似的,上述网络设备发送的控制信息中的控制比特针对哪一个承载、哪一个RLC实体可以如场景1一样来确定,本场景不再进行赘述。
本场景与场景1不同在于,本场景中不需要网络设备的协调处理,需要终端设备在接收到控制信息之后基于控制比特进行后续处理,所述控制信息中包含至少一个控制比特;所述至少一个控制比特,用于指示状态集合。
可见,通过采用上述方案,就能够根据接收到的控制信息中的内容,确定在全部RLC实体中的至少部分RLC实体进行数据传输。如此,就能够使得终端设备在配置多个RLC实体的情况下,根据网络的控制信息结合自身来确定其中部分RLC实体进行数据传输,如此,就能够减少网络RLC 实体之间协调,并且适用于数据复制传输的RLC实体个数小于配置的RLC实体的情况。
图9是本申请实施例提供的一种通信设备900示意性结构图,通信设备可以为本实施例前述的终端设备或者网络设备。图9所示的通信设备900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图9所示,通信设备900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,如图9所示,通信设备900还可以包括收发器930,处理器910可以控制该收发器930与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器930可以包括发射机和接收机。收发器930还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备900具体可为本申请实施例的网络设备,并且该通信设备900可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备900具体可为本申请实施例的终端设备、或者网络设备,并且该通信设备900可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图10是本申请实施例的芯片的示意性结构图。图10所示的芯片1000包括处理器1010,处理器1010可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图10所示,芯片1000还可以包括存储器1020。其中,处理器1010可以从存储器1020中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1020可以是独立于处理器1010的一个单独的器件,也可以集成在处理器1010中。
可选地,该芯片1000还可以包括输入接口1030。其中,处理器1010可以控制该输入接口1030与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1000还可以包括输出接口1040。其中,处理器1010可以控制该输出接口1040与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图11是本申请实施例提供的一种通信系统1100的示意性框图。如图11所示,该通信系统1100包括终端设备1110和网络设备1120。
其中,该终端设备1110可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1120可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (81)

  1. 一种数据复制传输控制方法,应用于终端设备,所述方法包括:
    接收控制信息;其中,所述控制信息用于指示终端设备针对至少一个无线链路控制RLC实体的数据复制传输的控制;
    基于所述控制信息,确定在所述控制信息指示的至少一个RLC实体中的至少部分RLC实体进行数据传输。
  2. 根据权利要求1所述的方法,其中,所述接收控制信息之后,所述方法还包括:
    根据发送控制信息的网络设备,确定所述控制信息所对应的目标网络设备或RLC实体。
  3. 根据权利要求1所述的方法,其中,所述接收控制信息之后,所述方法还包括:
    根据无线资源控制RRC配置信息,确定所述控制信息所对应的目标网络设备或RLC实体。
  4. 根据权利要求1所述的方法,其中,所述接收控制信息之后,所述方法还包括:
    根据所述控制信息中包含的第一信息,确定所述控制信息所对应的目标网络设备或RLC实体。
  5. 根据权利要求4所述的方法,其中,所述第一信息包括所述目标网络设备的标识。
  6. 根据权利要求3所述的方法,其中,所述方法还包括:
    通过所述RRC配置信息获取指示目标网络设备或RLC实体与控制比特位之间的映射关系。
  7. 根据权利要求2-6任一项所述的方法,其中,所述方法还包括:
    当目标网络设备包含一个RLC实体时,基于所述控制信息中的一位控制比特确定是否使用所述目标网络设备包含的一个RLC实体进行数据复制传输。
  8. 根据权利要求2-6任一项所述的方法,其中,所述方法还包括:
    当目标网络设备包含至少两个RLC实体时,基于所述控制信息中包含的一位控制比特,确定所述目标网络设备包含的至少两个RLC实体进行数据传输,或者,确定采用所述目标网络设备包含的目标RLC实体进行数据复制传输。
  9. 根据权利要求2-6任一项所述的方法,其中,所述方法还包括:
    当目标网络设备包含至少两个RLC实体时,基于所述控制信息中包含的至少两位控制比特,确定所述目标网络设备包含的至少两个RLC实体进行数据复制传输;其中不同的控制比特对应不同的RLC实体。
  10. 根据权利要求2-9任一项所述的方法,其中,所述基于所述控制信息,确定在所述控制信息指示的至少一个RLC实体中的至少部分RLC实体进行数据复制传输,包括:
    基于最新接收到的控制信息,确定在所述最新接收到的控制信息指示的RLC实体进行数据复制传输。
  11. 根据权利要求2-9任一项所述的方法,其中,所述基于所述控制信息,确定在所述控制信息指示的至少一个RLC实体中的至少部分RLC实体进行数据复制传输,包括:
    基于控制信息,确定目标数量个RLC实体进行数据复制传输。
  12. 根据权利要求2-9任一项所述的方法,其中,所述基于所述控制信息,确定在所述控制信息指示的至少一个RLC实体中的至少部分RLC实体进行数据复制传输,包括:
    基于控制信息,确定目标网络设备的RLC实体进行数据复制传输。
  13. 根据权利要求1-9任一项所述的方法,其中,所述方法还包括:
    基于网络配置的RLC实体进行数据复制传输。
  14. 根据权利要求1-13任一项所述的方法,其中,所述控制信息中包含至少一个控制比特;所述至少一个控制比特,用于指示至少两个RLC实体的数据复制传输状态;其中,所述至少两个RLC实体属于相同或不同的网络设备。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    基于所述控制信息中包含的至少两个控制比特,以及预设的控制比特和传输状态的对应关系,确定所述至少两个控制比特所对应的数据复制传输状态。
  16. 根据权利要求14所述的方法,其中,所述方法还包括:
    基于所述控制信息中包含的至少两个控制比特,以及网络配置的控制比特和传输状态的对应关系,确定所述至少两个控制比特所对应的数据复制传输状态。
  17. 根据权利要求1-9任一项所述的方法,其中,所述确定在所述控制信息指示的至少一个RLC 实体中的至少部分RLC实体进行数据复制传输,包括:
    根据第一准则,从所述控制信息所指示的RLC实体中,选取目标数量个RLC实体进行数据复制传输。
  18. 根据权利要求17所述的方法,其中,所述第一准则为基于信道质量信息选取目标数量个RLC实体。
  19. 根据权利要求18所述的方法,其中,所述信道质量信息包括以下至少之一:
    不同小区的信道质量信息、不同RLC实体的信道质量信息、不同带宽部分BWP的信道质量信息。
  20. 根据权利要求17-19所述的方法,其中,所述方法还包括:
    当接收到网络指示不进行数据复制传输时,执行以下之一:
    基于预配置的目标数量个默认的RLC实体,进行数据传输;
    基于预配置的目标RLC实体,进行数据传输;
    终端设备选择在目标数量个RLC实体进行数据传输。
  21. 根据权利要求17-20所述的方法,其中,所述控制信息中包含至少一个控制比特;所述至少一个控制比特,用于指示状态集合。
  22. 根据权利要求21所述的方法,其中,所述方法还包括:
    基于所述控制信息中包含的至少两个控制比特,确定对应的状态集合;
    基于所述状态集合,选取数据复制传输状态。
  23. 根据权利要求22所述的方法,其中,所述选取数据复制传输状态,包括:
    根据第二准则,从所述状态集合中,选取数据复制传输状态。
  24. 根据权利要求23所述的方法,其中,所述第二准则为基于信道质量信息从状态集合中选取数据复制传输状态。
  25. 根据权利要求24所述的方法,其中,所述信道质量信息包括以下至少之一:
    不同小区的信道质量信息、不同RLC实体的信道质量信息、不同带宽部分BWP的信道质量信息。
  26. 根据权利要求25所述的方法,其中,所述方法还包括:
    当接收到网络指示不进行数据复制传输时,执行以下之一:
    基于预配置的目标数量个默认的RLC实体,进行数据传输;
    基于预配置的目标RLC实体,进行数据传输;
    终端设备选择在目标数量个RLC实体进行数据传输。
  27. 一种数据复制传输控制方法,应用于网络设备,所述方法包括:
    向终端设备发送控制信息;其中,所述控制信息用于指示针对至少一个RLC实体的数据复制传输的控制。
  28. 根据权利要求27所述的方法,其中,所述方法还包括:
    通过RRC配置信息,指示所述控制信息所对应的目标网络设备或RLC实体。
  29. 根据权利要求27所述的方法,其中,所述向终端设备发送控制信息,包括:
    通过所述控制信息中包含的第一信息,指示所述控制信息所对应的目标网络设备或RLC实体。
  30. 根据权利要求29所述的方法,其中,所述第一信息包括所述目标网络设备的标识。
  31. 根据权利要求28所述的方法,其中,所述方法还包括:
    通过所述RRC配置信息指示目标网络设备或RLC实体与控制比特位之间的映射关系。
  32. 根据权利要求27-31任一项所述的方法,其中,所述向终端设备发送控制信息,包括:
    当网络设备包含一个RLC实体时,基于所述控制信息中的一位控制比特指示是否使用所述网络设备包含的一个RLC实体进行数据复制传输。
  33. 根据权利要求27-31任一项所述的方法,其中,所述向终端设备发送控制信息,包括:
    当网络设备包含至少两个RLC实体时,基于所述控制信息中包含的一位控制比特,指示所述网络设备包含的至少两个RLC实体进行数据传输,或者,指示采用所述网络设备包含的目标RLC实体进行数据复制传输.
  34. 根据权利要求27-31任一项所述的方法,其中,所述方法还包括:
    当网络设备包含至少两个RLC实体时,基于所述控制信息中包含的至少两位控制比特,指示所述网络设备包含的至少两个RLC实体进行数据复制传输;其中不同的控制比特对应不同的RLC实体。
  35. 根据权利要求27-34任一项所述的方法,其中,所述方法还包括:
    与至少一个其他网络设备协商,确定针对所述终端设备的控制信息。
  36. 根据权利要求26-35任一项所述的方法,其中,所述控制信息中包含至少两个控制比特;所述至少两个控制比特,用于指示至少两个RLC实体的数据复制传输状态;其中,所述至少两个RLC实体针对不同的网络设备。
  37. 根据权利要求26-36所述的方法,其中,所述控制信息中包含至少两个控制比特;所述至少两个控制比特,用于指示状态集合。
  38. 一种终端设备,包括:
    第一通信单元,接收控制信息;其中,所述控制信息用于指示终端设备针对至少一个无线链路控制RLC实体的数据复制传输的控制;
    第一处理单元,基于所述控制信息,确定在所述控制信息指示的至少一个RLC实体中的至少部分RLC实体进行数据传输。
  39. 根据权利要求38所述的终端设备,其中,所述第一处理单元,根据发送控制信息的网络设备,确定所述控制信息所对应的目标网络设备或RLC实体。
  40. 根据权利要求38所述的终端设备,其中,所述第一处理单元,根据无线资源控制RRC配置信息,确定所述控制信息所对应的目标网络设备或RLC实体。
  41. 根据权利要求38所述的终端设备,其中,所述第一处理单元,根据所述控制信息中包含的第一信息,确定所述控制信息所对应的目标网络设备或RLC实体。
  42. 根据权利要求41所述的终端设备,其中,所述第一信息包括所述目标网络设备的标识。
  43. 根据权利要求40所述的终端设备,其中,所述第一处理单元,通过所述RRC配置信息获取指示目标网络设备或RLC实体与控制比特位之间的映射关系。
  44. 根据权利要求39-43任一项所述的终端设备,其中,所述第一处理单元,当目标网络设备包含一个RLC实体时,基于所述控制信息中的一位控制比特确定是否使用所述目标网络设备包含的一个RLC实体进行数据复制传输。
  45. 根据权利要求39-43任一项所述的终端设备,其中,所述第一处理单元,当目标网络设备包含至少两个RLC实体时,基于所述控制信息中包含的一位控制比特,确定所述目标网络设备包含的至少两个RLC实体进行数据传输,或者,确定采用所述目标网络设备包含的目标RLC实体进行数据复制传输。
  46. 根据权利要求39-43任一项所述的终端设备,其中,所述第一处理单元,当目标网络设备包含至少两个RLC实体时,基于所述控制信息中包含的至少两位控制比特,确定所述目标网络设备包含的至少两个RLC实体进行数据复制传输;其中不同的控制比特对应不同的RLC实体。
  47. 根据权利要求39-46任一项所述的终端设备,其中,所述第一处理单元,基于最新接收到的控制信息,确定在所述最新接收到的控制信息指示的RLC实体进行数据复制传输。
  48. 根据权利要求39-46任一项所述的终端设备,其中,所述第一处理单元,基于控制信息,确定目标数量个RLC实体进行数据复制传输。
  49. 根据权利要求39-46任一项所述的终端设备,其中,所述第一处理单元,基于控制信息,确定目标网络设备的RLC实体进行数据复制传输。
  50. 根据权利要求38-46任一项所述的终端设备,其中,所述第一处理单元,基于网络配置的RLC实体进行数据复制传输。
  51. 根据权利要求38-50任一项所述的终端设备,其中,所述控制信息中包含至少一个控制比特;所述至少一个控制比特,用于指示至少两个RLC实体的数据复制传输状态;其中,所述至少两个RLC实体属于相同或不同的网络设备。
  52. 根据权利要求51所述的终端设备,其中,所述第一处理单元,基于所述控制信息中包含的至少两个控制比特,以及预设的控制比特和传输状态的对应关系,确定所述至少两个控制比特所对应的数据复制传输状态。
  53. 根据权利要求51所述的终端设备,其中,所述第一处理单元,基于所述控制信息中包含的至少两个控制比特,以及网络配置的控制比特和传输状态的对应关系,确定所述至少两个控制比特所对应的数据复制传输状态。
  54. 根据权利要求38-46任一项所述的终端设备,其中,所述第一处理单元,根据第一准则,从所述控制信息所指示的RLC实体中,选取目标数量个RLC实体进行数据复制传输。
  55. 根据权利要求54所述的终端设备,其中,所述第一准则为基于信道质量信息选取目标数量 个RLC实体。
  56. 根据权利要求55所述的终端设备,其中,所述信道质量信息包括以下至少之一:
    不同小区的信道质量信息、不同RLC实体的信道质量信息、不同带宽部分BWP的信道质量信息。
  57. 根据权利要求54-56任一项所述的终端设备,其中,所述第一处理单元,当接收到网络指示不进行数据复制传输时,执行以下之一:
    基于预配置的目标数量个默认的RLC实体,进行数据传输;
    基于预配置的目标RLC实体,进行数据传输;
    选择在目标数量个RLC实体进行数据传输。
  58. 根据权利要求54-57任一项所述的终端设备,其中,所述控制信息中包含至少一个控制比特;所述至少一个控制比特,用于指示状态集合。
  59. 根据权利要求58所述的终端设备,其中,所述第一处理单元,
    基于所述控制信息中包含的至少两个控制比特,确定对应的状态集合;
    基于所述状态集合,选取数据复制传输状态。
  60. 根据权利要求59所述的终端设备,其中,所述第一处理单元,根据第二准则,从所述状态集合中,选取数据复制传输状态。
  61. 根据权利要求60所述的终端设备,其中,所述第二准则为基于信道质量信息从状态集合中选取数据复制传输状态。
  62. 根据权利要求61所述的方法,其中,所述信道质量信息包括以下至少之一:
    不同小区的信道质量信息、不同RLC实体的信道质量信息、不同带宽部分BWP的信道质量信息。
  63. 根据权利要求62所述的终端设备,其中,所述第一处理单元,当接收到网络指示不进行数据复制传输时,执行以下之一:
    基于预配置的目标数量个默认的RLC实体,进行数据传输;
    基于预配置的目标RLC实体,进行数据传输;
    终端设备选择在目标数量个RLC实体进行数据传输。
  64. 一种网络设备,包括:
    第二通信单元,向终端设备发送控制信息;其中,所述控制信息用于指示针对至少一个RLC实体的数据复制传输的控制。
  65. 根据权利要求64所述的网络设备,其中,所述第二通信单元,通过RRC配置信息,指示所述控制信息所对应的目标网络设备或RLC实体。
  66. 根据权利要求64所述的网络设备,其中,所述第二通信单元,通过所述控制信息中包含的第一信息,指示所述控制信息所对应的目标网络设备或RLC实体。
  67. 根据权利要求66所述的网络设备,其中,所述第一信息包括所述目标网络设备的标识。
  68. 根据权利要求65所述的网络设备,其中,所述第二通信单元,通过所述RRC配置信息指示目标网络设备或RLC实体与控制比特位之间的映射关系。
  69. 根据权利要求64-67任一项所述的网络设备,其中,所述第二通信单元,当网络设备包含一个RLC实体时,基于所述控制信息中的一位控制比特指示是否使用所述网络设备包含的一个RLC实体进行数据复制传输。
  70. 根据权利要求64-68任一项所述的网络设备,其中,所述第二通信单元,当网络设备包含至少两个RLC实体时,基于所述控制信息中包含的一位控制比特,指示所述网络设备包含的至少两个RLC实体进行数据传输,或者,指示采用所述网络设备包含的目标RLC实体进行数据复制传输.
  71. 根据权利要求64-68任一项所述的网络设备,其中,所述第二通信单元,当网络设备包含至少两个RLC实体时,基于所述控制信息中包含的至少两位控制比特,指示所述网络设备包含的至少两个RLC实体进行数据复制传输;其中不同的控制比特对应不同的RLC实体。
  72. 根据权利要求64-71任一项所述的网络设备,其中,所述第二通信单元,与至少一个其他网络设备协商,确定针对所述终端设备的控制信息。
  73. 根据权利要求64-71任一项所述的网络设备,其中,所述控制信息中包含至少两个控制比特;所述至少两个控制比特,用于指示至少两个RLC实体的数据复制传输状态;其中,所述至少两个RLC实体针对不同的网络设备。
  74. 根据权利要求64-71所述的网络设备,其中,所述控制信息中包含至少两个控制比特;所 述至少两个控制比特,用于指示状态集合。
  75. 一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-26任一项所述方法的步骤。
  76. 一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求27-37任一项所述方法的步骤。
  77. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-26中任一项所述的方法。
  78. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求27-37中任一项所述的方法。
  79. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-37任一项所述方法的步骤。
  80. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1-37中任一项所述的方法。
  81. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-37中任一项所述的方法。
PCT/CN2019/073524 2019-01-28 2019-01-28 一种数据复制传输控制方法、终端设备及网络设备 WO2020154867A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/073524 WO2020154867A1 (zh) 2019-01-28 2019-01-28 一种数据复制传输控制方法、终端设备及网络设备
CN201980054847.9A CN112586016B (zh) 2019-01-28 2019-01-28 一种数据复制传输控制方法、终端设备及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/073524 WO2020154867A1 (zh) 2019-01-28 2019-01-28 一种数据复制传输控制方法、终端设备及网络设备

Publications (1)

Publication Number Publication Date
WO2020154867A1 true WO2020154867A1 (zh) 2020-08-06

Family

ID=71840643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073524 WO2020154867A1 (zh) 2019-01-28 2019-01-28 一种数据复制传输控制方法、终端设备及网络设备

Country Status (2)

Country Link
CN (1) CN112586016B (zh)
WO (1) WO2020154867A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632809A (zh) * 2017-03-24 2018-10-09 维沃移动通信有限公司 一种针对重复数据发送的激活方法及设备
WO2018200565A1 (en) * 2017-04-24 2018-11-01 Motorola Mobility Llc Duplicating pdcp pdus for a radio bearer
CN108737045A (zh) * 2017-04-19 2018-11-02 华为技术有限公司 重复传输的方法及装置
WO2018221926A1 (en) * 2017-06-02 2018-12-06 Lg Electronics Inc. Apparatus and method for performing packet duplication
CN109151891A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 一种通信处理方法和通信装置
CN109245870A (zh) * 2017-06-16 2019-01-18 华为技术有限公司 处理无线链路失败方法、终端设备和基站

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405231B2 (en) * 2017-04-24 2019-09-03 Motorola Mobility Llc Switching between packet duplication operating modes
CN108809594B (zh) * 2017-05-05 2021-01-29 华为技术有限公司 传输数据的方法、终端设备和网络设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632809A (zh) * 2017-03-24 2018-10-09 维沃移动通信有限公司 一种针对重复数据发送的激活方法及设备
CN108737045A (zh) * 2017-04-19 2018-11-02 华为技术有限公司 重复传输的方法及装置
WO2018200565A1 (en) * 2017-04-24 2018-11-01 Motorola Mobility Llc Duplicating pdcp pdus for a radio bearer
WO2018221926A1 (en) * 2017-06-02 2018-12-06 Lg Electronics Inc. Apparatus and method for performing packet duplication
CN109151891A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 一种通信处理方法和通信装置
CN109245870A (zh) * 2017-06-16 2019-01-18 华为技术有限公司 处理无线链路失败方法、终端设备和基站

Also Published As

Publication number Publication date
CN112586016B (zh) 2023-06-09
CN112586016A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2020248261A1 (zh) 一种测量间隔的确定方法及装置、终端
WO2019242712A1 (zh) 一种能力交互方法及相关设备
CN114222331B (zh) 一种传输数据的方法和终端设备
WO2021164017A1 (zh) QoS控制方法、装置及可读存储介质
WO2021046778A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020147053A1 (zh) 数据传输的方法和通信设备
US11805563B2 (en) Wireless communication method and base station
WO2020147054A1 (zh) 一种数据复制传输的指示方法、终端设备及网络设备
WO2021026717A1 (zh) 一种资源协调方法及装置、终端设备
WO2021003733A1 (zh) 一种资源共享方法及装置、终端、网络设备
WO2020010619A1 (zh) 数据传输方法、终端设备和网络设备
WO2020000174A1 (zh) 一种核心网选择方法及装置、终端设备、网络设备
US20210250810A1 (en) Data replication transmission configuration method, apparatus, chip, and computer program
WO2020154867A1 (zh) 一种数据复制传输控制方法、终端设备及网络设备
WO2021016790A1 (zh) 无线通信的方法、终端设备和网络设备
WO2020029292A1 (zh) 一种信息指示方法及装置、终端
WO2020082327A1 (zh) 一种切换过程中的信令交互方法及装置、网络设备
WO2020061943A1 (zh) 一种数据传输方法、终端设备及网络设备
WO2021102968A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023202341A1 (zh) 一种信息处理方法、装置及可读存储介质
WO2022021371A1 (zh) 一种会话建立方法、电子设备及存储介质
WO2020082326A1 (zh) 一种数据转发方法及装置、网络设备
WO2020147055A1 (zh) 一种数据复制传输的处理方法、终端设备及网络设备
WO2020147052A1 (zh) 一种数据复制传输的控制方法、终端设备及网络设备
WO2020155123A1 (zh) 一种资源池配置方法、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912460

Country of ref document: EP

Kind code of ref document: A1