WO2020154863A1 - 一种直流载波的处理方法和装置 - Google Patents

一种直流载波的处理方法和装置 Download PDF

Info

Publication number
WO2020154863A1
WO2020154863A1 PCT/CN2019/073493 CN2019073493W WO2020154863A1 WO 2020154863 A1 WO2020154863 A1 WO 2020154863A1 CN 2019073493 W CN2019073493 W CN 2019073493W WO 2020154863 A1 WO2020154863 A1 WO 2020154863A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
occupied
carrier
resource
bit value
Prior art date
Application number
PCT/CN2019/073493
Other languages
English (en)
French (fr)
Inventor
黎超
张福强
李溪野
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/073493 priority Critical patent/WO2020154863A1/zh
Priority to CN201980013852.5A priority patent/CN111819810B/zh
Publication of WO2020154863A1 publication Critical patent/WO2020154863A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for processing a DC carrier.
  • BWP Band Width Part
  • the bandwidth of the signal received by the UE is different from the bandwidth of the signal transmitted by the base station, there is a potential problem: the direct current (DC) carrier of the signal transmitted by the base station is different from the direct current carrier of the signal received by the UE, and the base station does not know the UE. The position of the DC carrier of the received signal. The mismatch between the two will result in scheduling restrictions or degraded transmission performance.
  • DC direct current
  • This application provides a DC carrier processing method and device, which can solve the problem that the DC carrier of the base station transmitting signal is different from the DC carrier of the UE receiving signal, and the base station does not know the location of the DC carrier of the UE receiving signal.
  • a method for processing a DC carrier includes: a first device receives a first signal from a second device; when the first device determines whether the resource occupied by the first signal is the same as when the first device receives the first signal The set direct current DC carrier overlaps; if it is determined to be yes, the first device sets the bit value of the resource RE corresponding to the subcarrier overlapping the DC carrier in the resource occupied by the second signal to be received to 0.
  • the signal is transmitted on the new air interface NR. That is to say, when the first device receives the second signal, when there is signal transmission on the DC carrier, the signal on the DC carrier can be discarded.
  • the discarding can be understood as puncturing or zero-filling operation, so if the DC carrier is scheduled to be vulnerable When the affected data is on the resource, if the bit value of the resource RE corresponding to the subcarrier overlapping the DC carrier in the resource occupied by the second signal to be received is set to 0, the receiver of the first device can be affected by the resource. The impact is small, and the impact on the data received by the first device is reduced as much as possible, and the transmission performance is improved.
  • the zero-filling operation is performed because for the NR receiver, because the second device does not know the position of the first device's downlink receiving DC carrier, the first device's receiver discards the signal on this subcarrier, and obtains the resource RE
  • the number is reduced, so when the first device discards the signal on the RE at the receiver, it can fill in zeros for the signal on the RE overlapping the DC carrier, and then obtain the data of all the REs according to the zero filling, so that the receiver of the first device can receive The data is not affected.
  • the method further includes: the first device sends to the second device location information of the DC carrier on which the first device receives the first signal.
  • the first device sends the location information of the DC carrier receiving the first signal to the second device.
  • the method further includes: the first device determines whether to occupy the resource occupied by the second signal to be received according to the resource occupied by the first signal.
  • the bit value of the resource RE corresponding to the DC carrier is set to 0. That is to say, before determining to perform the zero-filling operation, it is necessary to further determine whether the operation needs to be performed according to the resources occupied by the first signal. In this way, once the RE of the susceptible data is scheduled on the DC carrier, it is determined that the operation is required Performing the zero-fill operation on the DC carrier can reduce the processing complexity of the first device.
  • the resources occupied by the first signal include at least one of the following: configuration parameters of the reference signal, scheduling parameters for transmission data, and signal characteristics on the resource where the DC carrier is located; wherein the resources occupied by the reference signal include DC carrier, the resources occupied by data transmission include DC carrier. These resources include vulnerable data. Once one of these resources is transmitted on the DC carrier, the DC carrier needs to be discarded to improve the performance of the first device receiver.
  • the configuration parameters include at least one of the following: the type of the reference signal, the bandwidth occupied by the reference signal, the subcarrier interval occupied by the reference signal, the density of the reference signal, the transmission period of the reference signal, the reference signal The time domain offset value, the frequency domain offset value of the reference signal, and the code domain configuration parameter of the reference signal.
  • the reference signal is some important reference signals, such as demodulation reference signal DM-RS, phase tracking reference signal PT-RS, etc.
  • the first device receives these The reference signal will be affected, and the reference signal cannot be effectively demodulated, then the position of the DC carrier can be adjusted to reduce the impact on the reception of these reference signals.
  • the scheduling parameters include at least one of the following: the type of transmission data, the bandwidth occupied by the transmission data, the number of symbols occupied by the transmission data, the subcarrier interval occupied by the transmission data, and the modulation and coding method of the transmission data MCS and the modulation order of the transmitted data.
  • the scheduling parameter is the bandwidth of the transmission data
  • the bandwidth of the transmission data is less than the preset threshold, it is determined that the position of the DC carrier needs to be adjusted. This is because when the bandwidth is less than a certain value, once a certain transmitted sub-carrier is affected by DC, the impact on the performance of the entire system takes up a greater proportion.
  • the signal characteristics include at least one of the following: received signal-to-interference and noise ratio SINR, received signal-to-noise ratio SNR, received interference and noise ratio INR, reference signal received power RSRP, reference signal received strength indicator RSSI, and Reference signal reception quality RSRQ.
  • the first device determining whether to set the bit value of the resource RE corresponding to the DC carrier in the resource occupied by the second signal to be received to 0 according to the resource occupied by the first signal includes: if the configuration parameter is determined The type of is the specified type, or if the bandwidth, or subcarrier spacing, or density, or period, or time domain offset value, or frequency domain offset value or code domain configuration parameter is less than or equal to the preset threshold, the first A device determines to set the bit value of the resource RE corresponding to the DC carrier in the resource occupied by the second signal to be received to 0.
  • the preset threshold may be 1 physical resource block PRB, that is, when the bandwidth of the reference signal is less than 1 PRB, it is determined to discard the signal to be sent on the DC carrier in the resource occupied by the signal to be received .
  • the value of the preset threshold is related to the density of PTRS. The smaller the density of PTRS, the larger the preset threshold of bandwidth, and vice versa. For example, if the density of PTRS is that there is only one RE in 4 PRBs, the preset threshold of bandwidth can be 4 or 8. When the bandwidth is less than the preset threshold, it is determined that the position of the DC carrier needs to be adjusted.
  • the first device determining whether to set the bit value of the resource RE corresponding to the DC carrier in the resource occupied by the second signal to be received to 0 according to the resource occupied by the first signal includes: if the scheduling parameter is determined The type is the specified type, or, if it is determined that the bandwidth, or the number of symbols, or the subcarrier spacing is less than or equal to the preset threshold, or, if it is determined that the MCS or the modulation order is greater than or equal to the preset threshold, the first device determines to receive The bit value of the resource RE corresponding to the DC carrier in the resources occupied by the second signal is set to 0.
  • the type of data transmitted by the first device is a specified type
  • the designated type may be relatively important information such as control information, and the control information may specifically be channel state information CSI, hybrid automatic repeat request HARQ, or multiple input multiple output MIMO related information, etc. If the resources occupied by the control information include the DC carrier, it is determined that the position of the DC carrier needs to be adjusted.
  • the first device determining whether to set the bit value of the resource RE corresponding to the DC carrier in the resources occupied by the second signal to be received to 0 according to the resources occupied by the first signal includes: if the first device Determine that the SINR, or SNR, or RSRP, or RSSI or RSRQ is less than or equal to the preset threshold, or if the first device determines that the INR is greater than or equal to the preset threshold, the first device will use the resources occupied by the second signal to be received
  • the bit value of the resource RE corresponding to the DC carrier is set to 0.
  • the preset threshold may be, for example, a lowest detectable threshold corresponding to MCS during current transmission.
  • Different MCS have different minimum detectable thresholds.
  • the INR on the resources overlapping with the DC carrier is greater than or equal to the preset threshold, it is determined that the position of the DC carrier needs to be adjusted. This is because it is similar to SINR.
  • the larger the INR the greater the interference power and the lower the SINR value. If the resources occupied by the DMRS or PTRS using OCC include DC carriers, the equivalent receiving INR value will be further increased.
  • the INR value is higher than the preset threshold, the position of the DC carrier needs to be adjusted, otherwise it will affect the normal INR Demodulation and reception.
  • the RS when the first signal is a reference signal RS, the RS includes a phase tracking reference signal PTRS or a demodulation reference signal DMRS; the resources occupied by the RS include at least one of the following: RS configuration parameters and RS occupation The signal characteristics on the resources of the DC carrier.
  • the RS configuration parameters include at least one of the following: bandwidth occupied by the RS, subcarrier interval occupied by the RS, and transmission period of the RS.
  • the signal characteristics include at least one of the following: the modulation and coding mode of the signal MCS, the number of symbols occupied by the signal, the bandwidth occupied by the signal, the subcarrier interval of the signal, and the transmission period of the signal.
  • the first device determining whether to set the bit value of the resource RE corresponding to the DC carrier in the resources occupied by the second signal to be received to 0 according to the resources occupied by the first signal includes: if it is determined that the RS is occupied If at least one of the bandwidth of the RS, the subcarrier interval occupied by the RS, and the transmission period of the RS is less than or equal to the preset threshold, the first device determines the resource RE corresponding to the DC carrier among the resources occupied by the second signal to be received The bit value is set to 0.
  • the first device determining whether to set the bit value of the resource RE corresponding to the DC carrier in the resources occupied by the second signal to be received to 0 according to the resources occupied by the first signal includes: The number of occupied symbols, the bandwidth occupied by the signal, the subcarrier interval of the signal, and the transmission period of the signal are less than or equal to the preset threshold, or if it is determined that the MCS is greater than or equal to the preset threshold, the first device determines the second to be received The bit value of the resource RE corresponding to the DC carrier among the resources occupied by the signal is set to 0.
  • the first signal and the second signal are transmitted in the new air interface NR system. That is, this application describes the processing of the DC carrier in NR.
  • a method for processing a DC carrier wave includes: a first device sends a first signal to a second device; when the first device determines whether the resource occupied by the first signal and the first device send the first signal The set direct current DC carrier overlaps; if it is determined that it is, the first device sets the bit value of the resource RE corresponding to the subcarrier overlapping the DC carrier in the resources occupied by the second signal to be transmitted to 0. Similar to the first aspect, when the transmitter of the first device transmits a signal, the processing of the DC carrier by the first device is similar to the process when the receiver of the first device receives the signal.
  • the method further includes: the first device determines whether to occupy the resource occupied by the second signal to be transmitted according to the resource occupied by the first signal The bit value of the resource RE corresponding to the DC carrier is set to 0.
  • the resources occupied by the first signal include at least one of the following: configuration parameters of the reference signal, scheduling parameters for transmission data, and signal characteristics on the resource where the DC carrier is located; wherein the resources occupied by the reference signal include DC carrier, the resources occupied by data transmission include DC carrier.
  • the configuration parameters include at least one of the following: the type of the reference signal, the bandwidth occupied by the reference signal, the subcarrier interval occupied by the reference signal, the density of the reference signal, the transmission period of the reference signal, the reference signal The time domain offset value, the frequency domain offset value of the reference signal, and the code domain configuration parameter of the reference signal.
  • the scheduling parameters include at least one of the following: the type of transmission data, the bandwidth occupied by the transmission data, the number of symbols occupied by the transmission data, the subcarrier interval occupied by the transmission data, and the modulation and coding method of the transmission data MCS and the modulation order of the transmitted data.
  • the signal characteristics include at least one of the following: received signal-to-interference and noise ratio SINR, received signal-to-noise ratio SNR, received interference and noise ratio INR, reference signal received power RSRP, reference signal received strength indicator RSSI, and Reference signal reception quality RSRQ.
  • the first device determining whether to discard the signal to be transmitted on the DC carrier in the resources occupied by the signal to be transmitted according to the resource includes: if the type is determined to be a specified type, or if the bandwidth or subcarrier spacing is determined , Or density, or period, or time domain offset value, or frequency domain offset value or code domain configuration parameter is less than or equal to the preset threshold, then the first device determines to discard the resources occupied by the signal to be transmitted on the DC carrier. The signal sent.
  • the first device determines whether to discard the signal to be transmitted on the DC carrier in the resources occupied by the signal to be transmitted according to the resources, including: if the type is determined to be a specified type, or, if the bandwidth or the number of symbols is determined or The subcarrier interval is less than or equal to the preset threshold, or if it is determined that the MCS or modulation order is greater than or equal to the preset threshold, the first device determines to discard the signal to be transmitted on the DC carrier in the resources occupied by the signal to be transmitted.
  • the first device determines whether to discard the signal to be transmitted on the DC carrier in the resources occupied by the signal to be received according to the resource includes: if the first device determines SINR, or SNR, or RSRP, or RSSI or RSRQ Is less than or equal to the preset threshold, or if the first device determines that the INR is greater than or equal to the preset threshold, the first device determines to discard the signal to be transmitted on the DC carrier in the resources occupied by the signal to be transmitted.
  • the RS when the first signal is a reference signal RS, the RS includes a phase tracking reference signal PTRS or a demodulation reference signal DMRS; the resources occupied by the RS include at least one of the following: RS configuration parameters and RS occupation The signal characteristics on the resources of the DC carrier.
  • the RS configuration parameters include at least one of the following: bandwidth occupied by the RS, subcarrier interval occupied by the RS, and transmission period of the RS.
  • the signal characteristics include at least one of the following: the modulation and coding mode of the signal MCS, the number of symbols occupied by the signal, the bandwidth occupied by the signal, the subcarrier interval of the signal, and the transmission period of the signal.
  • the first device determining whether to set the bit value of the resource RE corresponding to the DC carrier in the resources occupied by the second signal to be transmitted to 0 according to the resources occupied by the first signal includes: if it is determined that the RS is occupied If at least one of the bandwidth of the RS, the subcarrier interval occupied by the RS, and the transmission period of the RS is less than or equal to the preset threshold, the first device determines the resource RE corresponding to the DC carrier among the resources occupied by the second signal to be transmitted. The bit value is set to 0.
  • the first device determining whether to set the bit value of the resource RE corresponding to the DC carrier in the resource occupied by the second signal to be transmitted to 0 according to the resource occupied by the first signal includes: The number of occupied symbols, the bandwidth occupied by the signal, the subcarrier interval of the signal, and the transmission period of the signal are less than or equal to the preset threshold, or if it is determined that the MCS is greater than or equal to the preset threshold, the first device determines to send the second The bit value of the resource RE corresponding to the DC carrier among the resources occupied by the signal is set to 0.
  • the signal is transmitted in the new air interface NR system.
  • a device in a third aspect, is provided.
  • the device is a first device and includes: a transceiver, configured to receive a first signal from a second device; and a processor, configured to determine whether a resource occupied by the first signal is the same as that received by the first device The direct current DC carrier set when the first signal overlaps; the processor is further configured to, if it is determined that it is, set the bit value of the resource RE corresponding to the subcarrier overlapping the DC carrier in the resources occupied by the second signal to be received to 0.
  • the transceiver is further used to send the position information of the DC carrier on which the first device receives the first signal to the second device.
  • the processor is further configured to determine whether to set the bit value of the resource RE corresponding to the DC carrier in the resource occupied by the second signal to be received to 0 according to the resource occupied by the first signal.
  • the resources occupied by the first signal include at least one of the following: configuration parameters of the reference signal, scheduling parameters for transmission data, and signal characteristics on the resource where the DC carrier is located; among them, the resource occupied by the reference signal Including DC carrier, the resources occupied by data transmission include DC carrier.
  • the configuration parameters include at least one of the following: the type of the reference signal, the bandwidth occupied by the reference signal, the subcarrier interval occupied by the reference signal, the density of the reference signal, the transmission period of the reference signal, the reference signal The time domain offset value, the frequency domain offset value of the reference signal, and the code domain configuration parameter of the reference signal.
  • the scheduling parameters include at least one of the following: the type of transmission data, the bandwidth occupied by the transmission data, the number of symbols occupied by the transmission data, the subcarrier interval occupied by the transmission data, and the modulation and coding method of the transmission data MCS and the modulation order of the transmitted data.
  • the signal characteristics include at least one of the following: received signal-to-interference and noise ratio SINR, received signal-to-noise ratio SNR, received interference and noise ratio INR, reference signal received power RSRP, reference signal received strength indicator RSSI, and Reference signal reception quality RSRQ.
  • the processor is used: if the type is determined to be the specified type, or if the bandwidth, or subcarrier spacing, or density, or period, or time domain offset value, or frequency domain offset value or If the code domain configuration parameter is less than or equal to the preset threshold, it is determined to discard the signal to be transmitted on the DC carrier in the resources occupied by the signal to be received.
  • the processor is used to: if the type is determined to be a specified type, or if it is determined that the bandwidth, or the number of symbols or the subcarrier spacing is less than or equal to a preset threshold, or if it is determined that the MCS or modulation order is greater than or If it is equal to the preset threshold, the first device determines to discard the signal to be transmitted on the DC carrier among the resources occupied by the signal to be received.
  • the processor is configured to: if the first device determines that SINR, or SNR, or RSRP, or RSSI or RSRQ is less than or equal to a preset threshold, or if it is determined that INR is greater than or equal to a preset threshold, then determine Discard the signal to be transmitted on the DC carrier among the resources occupied by the signal to be received.
  • the RS when the first signal is a reference signal RS, the RS includes a phase tracking reference signal PTRS or a demodulation reference signal DMRS; the resources occupied by the RS include at least one of the following: RS configuration parameters and RS occupation The signal characteristics on the resources of the DC carrier.
  • the RS configuration parameters include at least one of the following: bandwidth occupied by the RS, subcarrier interval occupied by the RS, and transmission period of the RS.
  • the signal characteristics include at least one of the following: the modulation and coding mode of the signal MCS, the number of symbols occupied by the signal, the bandwidth occupied by the signal, the subcarrier interval of the signal, and the transmission period of the signal.
  • the processor is configured to: if it is determined that at least one of the bandwidth occupied by the RS, the subcarrier interval occupied by the RS, and the transmission period of the RS is less than or equal to a preset threshold, determine that the second to be received
  • the bit value of the resource RE corresponding to the DC carrier among the resources occupied by the signal is set to 0.
  • the processor is used to: if it is determined that the number of symbols occupied by the signal, the bandwidth occupied by the signal, the subcarrier spacing of the signal, and the transmission period of the signal are less than or equal to a preset threshold, or if it is determined that the MCS is greater than or If it is equal to the preset threshold, it is determined to set the bit value of the resource RE corresponding to the DC carrier in the resource occupied by the second signal to be received to 0.
  • the first signal and the second signal are transmitted in the new air interface NR system.
  • a device in a fourth aspect, is provided.
  • the device is a first device and includes: a transceiver for sending a first signal to a second device; a processor for determining whether a resource occupied by the first signal is sent to the first device The direct current DC carrier set when the first signal overlaps; the processor is further configured to, if it is determined to be yes, set the bit value of the resource RE corresponding to the sub-carrier overlapping the DC carrier in the resources occupied by the second signal to be transmitted to 0 .
  • the processor is further configured to determine whether to set the bit value of the resource RE corresponding to the DC carrier in the resource occupied by the second signal to be transmitted to 0 according to the resource occupied by the first signal.
  • the resources occupied by the first signal include at least one of the following: configuration parameters of the reference signal, scheduling parameters for transmission data, and signal characteristics on the resource where the DC carrier is located; among them, the resource occupied by the reference signal Including DC carrier, the resources occupied by data transmission include DC carrier.
  • the configuration parameters include at least one of the following: the type of the reference signal, the bandwidth occupied by the reference signal, the subcarrier interval occupied by the reference signal, the density of the reference signal, the transmission period of the reference signal, the reference signal The time domain offset value, the frequency domain offset value of the reference signal, and the code domain configuration parameter of the reference signal.
  • the scheduling parameters include at least one of the following: the type of transmission data, the bandwidth occupied by the transmission data, the number of symbols occupied by the transmission data, the subcarrier interval occupied by the transmission data, and the modulation and coding method of the transmission data MCS and the modulation order of the transmitted data.
  • the signal characteristics include at least one of the following: received signal-to-interference and noise ratio SINR, received signal-to-noise ratio SNR, received interference and noise ratio INR, reference signal received power RSRP, reference signal received strength indicator RSSI, and Reference signal reception quality RSRQ.
  • the processor is used: if the type is determined to be the specified type, or if the bandwidth, or subcarrier spacing, or density, or period, or time domain offset value, or frequency domain offset value or If the code domain configuration parameter is less than or equal to the preset threshold, it is determined to discard the signal to be transmitted on the DC carrier in the resources occupied by the signal to be transmitted.
  • the processor is used to: if the type is determined to be a specified type, or if it is determined that the bandwidth, or the number of symbols or the subcarrier spacing is less than or equal to a preset threshold, or if it is determined that the MCS or modulation order is greater than or If it is equal to the preset threshold, it is determined to discard the signal to be transmitted on the DC carrier in the resources occupied by the signal to be transmitted.
  • the processor is used to: if it is determined that SINR, or SNR, or RSRP, or RSSI or RSRQ is less than or equal to a preset threshold, or if it is determined that INR is greater than or equal to a preset threshold, then determine to discard the pending transmission The signal to be transmitted on the DC carrier in the resources occupied by the signal.
  • the RS when the first signal is a reference signal RS, the RS includes a phase tracking reference signal PTRS or a demodulation reference signal DMRS; the resources occupied by the RS include at least one of the following: RS configuration parameters and RS occupation The signal characteristics on the resources of the DC carrier.
  • the RS configuration parameters include at least one of the following: bandwidth occupied by the RS, subcarrier interval occupied by the RS, and transmission period of the RS.
  • the signal characteristics include at least one of the following: the modulation and coding mode of the signal MCS, the number of symbols occupied by the signal, the bandwidth occupied by the signal, the subcarrier interval of the signal, and the transmission period of the signal.
  • the processor is configured to: if it is determined that at least one of the bandwidth occupied by the RS, the subcarrier interval occupied by the RS, and the transmission period of the RS is less than or equal to a preset threshold, determine the second to be sent
  • the bit value of the resource RE corresponding to the DC carrier among the resources occupied by the signal is set to 0.
  • the processor is used to: if it is determined that the number of symbols occupied by the signal, the bandwidth occupied by the signal, the subcarrier spacing of the signal, and the transmission period of the signal are less than or equal to a preset threshold, or if it is determined that the MCS is greater than or If it is equal to the preset threshold, it is determined to set the bit value of the resource RE corresponding to the DC carrier in the resource occupied by the second signal to be transmitted to 0.
  • the first signal and the second signal are transmitted in the new air interface NR system.
  • a DC processing method includes: a first device receives a first signal from a second device; the first device determines whether the resource occupied by the signal is the same as the direct current DC carrier set when the first device receives the signal Overlap; if it is determined to be yes, the first device adjusts the position of the DC carrier.
  • the first device may adjust the position of the DC carrier to the subcarrier corresponding to the non-critical information, or adjust it outside the scheduled transmission bandwidth, or adjust it outside the activated BWP configured when the first device is scheduled.
  • the conflict between the position of the DC carrier and the frequency domain resource occupied by key information when the UE receives the signal can be reduced, thereby reducing the impact on the reception performance of the UE.
  • a DC processing method includes: a first device sends a signal to a second device; the first device determines whether the resource occupied by the signal overlaps with the direct current DC carrier set when the first device sends the signal; If the determination is yes, the first device adjusts the position of the DC carrier.
  • the sixth aspect is similar to the fifth aspect.
  • adjusting the position of the DC carrier by the first device includes: adjusting the position of the DC carrier by the first device in a time window without downlink scheduling; wherein, the time window without downlink scheduling is no scheduling in a time slot
  • the time window or the time window without downlink scheduling is the time when the bandwidth part BWP is reconfigured, or the time window without downlink scheduling is the time when the bandwidth part BWP is updated.
  • the first device adjusts the position of the DC carrier, a certain amount of time is required for the DC carrier adjustment. Considering that modifying the position of the DC carrier will cause the first device to receive the signal interruption, therefore, in this application, the first device determines When adjusting the DC carrier of the received signal, the first device will determine an adjustment timing and adjust within this adjustment timing.
  • a device in a seventh aspect, is provided.
  • the device is a first device and includes: a transceiver for receiving a signal from a second device; a processor for determining whether the resource occupied by the signal is set when the first device receives a signal The direct current DC carrier overlaps; the processor is also used to adjust the position of the DC carrier if it is determined so.
  • a device is provided.
  • the device is a first device and includes: a transceiver for sending a signal to a second device; a processor for determining whether the resource occupied by the signal is set when the first device sends a signal If it is determined that it is, adjust the position of the DC carrier.
  • the present application can choose to discard the signal on the DC carrier or adjust the position of the DC carrier, thereby reducing the need for the first device. The impact of data received or sent by the device.
  • FIG. 1 is a schematic diagram of a network architecture of a cellular link provided by an embodiment of this application;
  • FIG. 2 is a schematic diagram of a network architecture of a D2D link provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of a network architecture of a backhaul link between BSs according to an embodiment of the application;
  • FIG. 5 is a schematic flowchart of a DC carrier processing method provided by an embodiment of the application.
  • FIG. 6 is a schematic flowchart of a DC carrier processing method provided by an embodiment of the application.
  • FIG. 7 is a schematic flowchart of a DC carrier processing method provided by an embodiment of the application.
  • FIG. 8 is a schematic flowchart of a DC carrier processing method provided by an embodiment of this application.
  • FIG. 9 is a schematic flowchart of a DC carrier processing method provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a UE provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a UE provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a UE provided by an embodiment of this application.
  • the DC carrier is the center of the (Orthogonal Frequency Division Multiplexing, OFDM) channel, and is an unused sub-carrier at the center of the Long Term Evolution (LTE) downlink carrier. It is used to avoid possible local crystal oscillator leakage and other reasons. Set up by interference, generally not used for data transmission.
  • OFDM Orthogonal Frequency Division Multiplexing
  • D2D Device to Device
  • Physical resource block 12 subcarriers continuously occupied in the frequency domain.
  • the time domain includes 12 or 14 symbols or fewer symbols. When the number of symbols is less than 12 or 14 symbols, it is usually called a mini-slot.
  • the embodiments of the present application may be used in the process of sending and receiving data or signals between cellular links, D2D links, or backhaul links between base stations (base stations, BS).
  • the network architecture of the cellular link can include a base station and multiple terminal devices.
  • the base station can also be replaced with other types of network equipment such as a relay station.
  • the terminal devices can be UEs.
  • Figure 1 only shows UE1 and UE2.
  • the uplink may be, for example, the link between UE1 or UE2 and the base station, and the downlink may be the link between the base station and UE1, or the link between the base station and UE2.
  • the network architecture of the D2D link may include at least two terminal devices.
  • the D2D link is the link between UE1 and UE2, and data can be transmitted through a direct link. Or signal.
  • the network architecture of the backhaul link between BSs may include at least two BSs, for example, BS1 and BS2.
  • BS1 and BS2 can be the same type of base station or different types of base stations.
  • the backhaul link is the link between the macro station and the macro station, the link between the micro station and the micro station, and the link between the macro station and the macro station. Links between micro stations, etc.
  • the technical solution of this application can be used for various network elements with transmission functions between the receiving and sending parties of communication, such as base stations, relay devices, and terminal devices.
  • the network elements mainly involved include UE, base station, and relay devices. .
  • the UE may also be a UE used for a cellular link, or a UE used for a sidelink, etc.
  • the base station may participate in uplink transmission or downlink transmission.
  • equipment that provides base station functions includes evolved NodeB (eNB), New Radio NodeB (gNB), Centralized Unit (CU), and Distributed Unit (Distributed Unit). ) And the new wireless controller, etc.
  • the UE may be a mobile terminal device or a non-mobile terminal device. This device is mainly used to receive or send business data.
  • User equipment can be distributed in the network.
  • user equipment has different names, such as: terminal, mobile station, subscriber unit, station, cell phone, personal digital assistant, wireless modem, wireless communication equipment, handheld device, laptop PC, cordless phone, wireless local loop station, etc.
  • the user equipment may communicate with one or more core networks via a radio access network (RAN) (access part of a wireless communication network), for example, exchange voice and/or data with the radio access network.
  • RAN radio access network
  • the base station schedules some key information on the DC of the UE during resource scheduling, the UE cannot obtain the key information because it does not demodulate the information carried on the DC. This will cause scheduling errors and affect UE receiver performance.
  • the radio access network Radio Access Network, RAN 1#93 meeting, the RAN1 standard agreed to use signaling to indicate to the UE the location of the DC carrier of the downlink transmission signal of the base station.
  • the RAN1 standard It is also agreed to use signaling to indicate to the UE the location of the DC carrier of the UE's uplink transmission signal, but the agreed conclusion in the standard does not solve the problem that the base station does not know the location of the DC carrier received by the UE in the downlink, so that base station scheduling errors may still occur problem. Similarly, if the UE does not report the location of the uplink DC carrier, it will also affect the performance of the base station's uplink reception detection.
  • This application aims to solve the system caused by the base station not knowing the DC carrier received by the UE downlink or the DC carrier of the uplink transmission is not reported by the UE, once the UE receives or transmits on the DC carrier, or the base station receives or transmits on the DC carrier
  • the UE when the UE receives downlink data or signals, it needs to determine whether the currently used data or signal carrier overlaps with the DC carrier. If it overlaps, the position of the DC carrier needs to be adjusted or discarded.
  • the signal on the subcarrier overlapping with the DC carrier can reduce the conflict between the DC carrier and the frequency domain position of the transmission resource of the key information, thereby reducing the performance impact of the UE as a transmitter or receiver.
  • An embodiment of the present application provides a DC carrier processing method, as shown in FIG. 4, including:
  • the first device receives the first signal from the second device.
  • the first device may be a baseband processor of a terminal device, or a system-on chip (SoC) or a terminal device
  • the second device may be a terminal device or a base station.
  • SoC system-on chip
  • the first device is a UE in a cellular link
  • the second device is a base station in a cellular link
  • both the first device and the second device are UEs in a D2D link.
  • the first device determines whether the resource occupied by the first signal overlaps with the DC carrier set when the first device receives the first signal.
  • the resources occupied by the first signal include time-frequency domain resources.
  • the frequency domain resources are the subcarriers occupied by the first signal.
  • the first device adjusts the position of the DC carrier, or the first device sets the bit value of the resource RE corresponding to the subcarrier overlapping the DC carrier among the resources occupied by the second signal to be received Is 0.
  • the first device can adjust the position of the DC carrier, that is, set other subcarriers as DC carriers, so When the first device receives the signal sent by the second device again, the frequency domain resource when receiving the signal may not include the DC carrier, so that the signal received again can be effectively demodulated and the receiving performance can be improved.
  • the first device sets the bit value of the resource RE corresponding to the sub-carrier overlapping with the DC carrier to 0, that is, only demodulates the remaining signals on the non-DC carrier. It is possible to reduce the influence of the DC carrier on the signal received by the first device without adjusting the position of the DC carrier, which reduces the complexity. This method is mostly suitable for scenarios where the first device receives a signal and is less affected by the DC carrier.
  • the following further describes the embodiments of the present application based on the two possible ways in the above-mentioned embodiments.
  • First, the first possible way is described, taking the first device as the UE and the second device as the base station as an example.
  • An embodiment of the present application provides a DC carrier processing method, as shown in FIG. 5, including:
  • the UE receives a first signal from a base station.
  • the UE can receive the signal from the antenna port and input the signal into a radio frequency (RF) circuit, and the RF circuit transmits the signal to the UE's processor for processing.
  • RF radio frequency
  • the UE determines whether the resource occupied by the signal when receiving the first signal overlaps with the DC carrier set when the UE receives the first signal, and if it is determined to be so, perform step 503.
  • Step 502 can be understood as the UE's processor determining whether the frequency domain resource when receiving the first signal overlaps with the DC carrier set when the UE receives the first signal.
  • the embodiment corresponding to FIG. 4 clarifies that if the frequency domain resources occupied by the first signal overlap with the DC carrier, the position of the DC carrier is adjusted. In order to more accurately determine whether the position of the DC carrier should be adjusted, it can be further adjusted according to the reception configured by the base station. It is judged whether the resource meets the preset condition. This is because if the attribute of the receiving resource affects the first signal transmission on the DC carrier, and the signal receiving performance of the UE is greatly affected, the position of the DC carrier must be adjusted. Step 503 is to further analyze the received resources.
  • the UE may send the location information of the DC carrier used to receive the first signal to the base station to determine whether the resource of the received signal overlaps the DC carrier, that is, the DC carrier is the receiving Carrier.
  • the UE determines whether the resource meets a preset condition, and if it is determined to be so, execute step 504.
  • Step 503 can also be understood as the UE determining whether to adjust the position of the DC carrier according to the resources occupied by the first signal.
  • the resource here refers to the receiving resource configured by the base station to the UE.
  • the receiving resource is delivered to the UE through configuration information.
  • the UE needs to analyze the receiving resource before determining whether to adjust the position of the DC carrier.
  • the receiving resource includes at least one of the following: configuration parameters for reference signals, scheduling parameters for transmission data, and signal characteristics on resources where DC is located; wherein, the resources occupied by the reference signal include the DC carrier, and the resources occupied by the transmission data Including the DC carrier. That is to say, if the configuration parameters, scheduling parameters or signal characteristics meet the preset conditions, it indicates that the current receiving resources will affect the receiving performance of the signal when it is transmitted on the DC carrier.
  • the configuration parameters of the reference signal may include the type of the reference signal, the bandwidth occupied by the reference signal, the subcarrier interval occupied by the reference signal, the density of the reference signal, the transmission period of the reference signal, and the The time domain offset value of the reference signal, the frequency domain offset value of the reference signal, the code domain configuration parameter of the reference signal, etc.
  • reference signals are some important reference signals, such as demodulation reference signals (DM-RS), phase-tracking reference signals (PT-RS), etc., which are occupied when transmitting these important reference signals If the resources of the DC include the DC carrier, the UE receiving these reference signals will be affected, and the reference signal cannot be effectively demodulated, then the position of the DC carrier can be adjusted to reduce the impact on the reception of these reference signals;
  • DM-RS demodulation reference signals
  • PT-RS phase-tracking reference signals
  • the UE determines that the bandwidth of the reference signal, or subcarrier spacing (SCS), or density, or period, or time domain offset value, or frequency domain offset value or code domain configuration parameter is less than or equal to a preset threshold When the configuration parameters meet the preset conditions.
  • This type of preset threshold is not a fixed one, and varies according to different parameters.
  • the preset threshold may be 1 PRB, that is, when the bandwidth of the reference signal is less than 1 PRB, it is determined that the configuration parameter meets the preset condition.
  • the value of the preset threshold is related to the density of PTRS, the smaller the density of PTRS, the larger the preset threshold of bandwidth, and vice versa.
  • the preset threshold of bandwidth can be 4 or 8.
  • the preset threshold is determined according to the size of the SCS. SCSs of different sizes are associated with different reference signal patterns, and different reference signal patterns can correspond to different preset thresholds.
  • the SCS is less than the preset threshold, in a high-speed mobile scenario, the number of DMRS symbols corresponding to the small SCS is large. If the DMRS of a certain symbol is affected, it is determined that the position of the DC carrier needs to be adjusted.
  • the preset threshold may be 4 PRBs, that is, if the frequency domain density of the reference signal is greater than 4 PRBs, it is determined that the position of the DC carrier needs to be adjusted.
  • the smaller the frequency domain density of the reference signal the sparser the reference signal in a certain frequency domain resource. Under this condition, once a part of the reference signal is affected by the DC carrier, it will have a greater impact on the estimation performance of the reference signal.
  • the preset threshold may be 20ms or 100ms, etc. That is, if the density of the reference signal is less than 4 PRBs, it is determined that the position of the DC carrier needs to be adjusted.
  • the configuration parameter is the time domain offset value of the reference signal.
  • the time domain offset value is less than the corresponding preset threshold, the position of the DC carrier needs to be adjusted.
  • the time domain offset value is greater than the preset threshold, the performance of the reference signal will be more affected. Big.
  • the configuration parameter is the frequency domain offset value of the reference signal.
  • the frequency domain offset value is less than the corresponding preset threshold, the position of the DC carrier needs to be adjusted.
  • the frequency domain offset value is greater than the preset threshold, the performance of the reference signal is greatly affected.
  • the configuration parameter is the code domain configuration parameter of the reference signal
  • the code domain configuration parameter can be the sequence length of the reference signal
  • the reference signal can be Orthogonal Cover Code (OCC).
  • OCC Orthogonal Cover Code
  • the preset threshold can be 2 or 3 etc.
  • the scheduling parameters of the transmission data may include at least one of the following: the type of the transmission data, the bandwidth occupied by the transmission data, the number of symbols occupied by the transmission data, and the subcarriers occupied by the transmission data Interval, the modulation coding scheme (Modulation coding scheme, MCS) of the transmission data, and the modulation order of the transmission data.
  • MCS Modulation coding scheme
  • the designated type can be more important information such as control information.
  • the control information can specifically be Channel State Information (CSI), Hybrid Automatic Repeat reQuest (HARQ), or Multiple-Input Multiple-Output (Multiple-Input). Multiple-Output, MIMO) related information, etc. If the resources occupied by the control information include the DC carrier, it is determined that the position of the DC carrier needs to be adjusted.
  • the preset threshold may be, for example, one or more resource block groups. For example, there are two resource block groups, and each resource block group has a size predefined by the protocol, for example, the size is 4, 8, or 16.
  • the preset threshold may be a fixed large number of PRBs, such as 4 PRBs. That is, when the bandwidth of the transmission data is less than the preset threshold, it is determined that the position of the DC carrier needs to be adjusted. This is because when the bandwidth is less than a certain value, once a certain transmitted sub-carrier is affected by DC, the impact on the performance of the entire system takes up a greater proportion.
  • the preset threshold may be 1, 2, or 3 symbols, for example. That is, when the number of symbols occupied by the transmission data is less than the preset threshold, it is determined that the position of the DC carrier needs to be adjusted. This is because when the number of symbols is less than a certain value, once a certain transmitted symbol is affected by DC, the impact on the performance of the entire system accounts for a greater proportion.
  • the preset threshold may be, for example, 60 kHz. That is, when the interval of the subcarriers for transmitting data is less than the preset threshold, it is determined that the position of the DC carrier needs to be adjusted.
  • the sub-carrier spacing is larger, it is usually used in high-speed mobile scenes or high-frequency scenes. At this time, the DC sub-carrier will have a greater impact on data or reference signals.
  • the preset threshold may be, for example, a code rate above 0.75, or a configuration value corresponding to the spectral efficiency of the MCS above 3 or 4.
  • the MCS of the transmitted data is greater than the preset threshold, it is determined that the position of the DC carrier needs to be adjusted. This is because when the MCS value is large, for example, when the higher code rate value corresponding to 64 quadrature amplitude modulation (Quadrature Amplitude M-odulation, QAM) or 256QAM high-order modulation is higher, the signal to interference plus noise ratio (Signal to Interference plus Noise Ratio (SINR) has higher requirements.
  • the effective received SINR will be reduced, which will have a greater impact on the decoding performance. Therefore, when the MCS is greater than the preset threshold, the position of the DC carrier needs to be adjusted .
  • the preset threshold may be, for example, 64QAM or 1024QAM.
  • the modulation order is greater than or equal to the preset threshold, it is determined that the position of the DC carrier needs to be adjusted. This is because the higher the modulation stage, the lower the tolerance for differences. Once an error occurs due to DC, the higher the risk of error.
  • the signal characteristics on the resources overlapping with the DC carrier include at least one of the following:
  • SINR received signal-to-noise ratio
  • SNR Signal-to-noise ratio
  • INR received dry noise ratio
  • RSRP reference signal received power
  • RSSI Reference Signal Strength Indication
  • RSSI Reference Signal Strength Indication
  • RSSI Reference Signal Receiving Quality
  • the preset threshold corresponding to the above parameters is related to the received signal quality of the UE (it can be characterized by any of the above parameters SINR, SNR, INR, RSRP, RSSI, and RSRQ), and is not fixed Changeless.
  • SINR Signal to Noise Ratio
  • the position of the DC needs to be adjusted according to the parameter of the signal quality obtained by the UE as the receiving side. This is because when the signal quality is good, the receiver is hardly affected by other interference or noise. At this time, if there is only the influence of DC, the receiver can also resist. Conversely, when the signal quality is poor, the receiver is in the critical state of whether it can successfully detect the reception. At this time, once it is further affected by DC, the possibility of errors in the receiver is very high.
  • the criteria for good and bad signal quality are determined according to the preset thresholds of the corresponding signal quality characteristic parameters.
  • the preset threshold may be, for example, a lowest detectable threshold corresponding to MCS during current transmission. Different MCS have different minimum detectable thresholds.
  • SINR on the resources overlapping with the DC carrier is less than or equal to the preset threshold, it is determined that the position of the DC carrier needs to be adjusted. This is because when the SINR is low, it indicates that the current received signal quality is poor. If the important reference signal resources such as DMRS or PTRS of the OCC include the DC carrier, it will further reduce the equivalent received SINR value.
  • the SINR value is When it is lower than a certain threshold, the position of the DC carrier needs to be adjusted, otherwise it will affect the normal signal demodulation and reception.
  • the preset threshold may be, for example, a lowest detectable threshold corresponding to the MCS during the current transmission. Different MCS have different minimum detectable thresholds. When the SNR on the resource overlapping with the DC carrier is less than or equal to the preset threshold, it is determined that the position of the DC carrier needs to be adjusted.
  • the preset threshold may be, for example, a lowest detectable threshold corresponding to MCS during current transmission. Different MCS have different minimum detectable thresholds.
  • the INR on the resources overlapping with the DC carrier is greater than or equal to the preset threshold, it is determined that the position of the DC carrier needs to be adjusted. This is because it is similar to SINR. The larger the INR, the greater the interference power and the lower the SINR value. If the resources occupied by the DMRS or PTRS using OCC include DC carriers, the equivalent receiving INR value will be further increased.
  • the INR value is higher than the preset threshold, the position of the DC carrier needs to be adjusted, otherwise it will affect the normal INR Demodulation and reception.
  • the preset threshold may be, for example, a lowest detectable threshold corresponding to MCS during current transmission. Different MCS have different minimum detectable thresholds. When the RSRP on the resource overlapping with the DC carrier is less than or equal to the preset threshold, it is determined that the position of the DC carrier needs to be adjusted.
  • the preset threshold may be, for example, a lowest detectable threshold corresponding to MCS during current transmission. Different MCS have different minimum detectable thresholds. When the RSSI on the resources overlapping with the DC carrier is less than or equal to the preset threshold, it is determined that the position of the DC carrier needs to be adjusted.
  • the preset threshold may be, for example, a lowest detectable threshold corresponding to MCS during current transmission. Different MCS have different minimum detectable thresholds. When the RSRQ on the resource overlapping with the DC carrier is less than or equal to the preset threshold, it is determined that the position of the DC carrier needs to be adjusted.
  • the UE adjusts the position of the DC carrier.
  • the UE may adjust the position of the DC carrier to the subcarrier corresponding to the non-critical information, or adjust it outside the scheduled transmission bandwidth, or adjust it outside the active BWP configured when the UE is scheduled.
  • the UE When the UE adjusts the position of the DC carrier, it needs a certain amount of time for the DC carrier adjustment. Considering that modifying the position of the DC carrier will cause the UE to receive the signal interruption, therefore, in this application, the UE determines the DC to receive the signal When the carrier is adjusted, the UE will determine an adjustment timing and adjust within this adjustment timing.
  • the UE adjusts the position of the DC carrier in a time window without downlink scheduling.
  • the adjustment timing needs to be judged by the UE itself.
  • the time window without downlink scheduling is the time when there is no scheduling in a time slot, or the time window without downlink scheduling is the time when the bandwidth part of the BWP is reconfigured, or The time window of the downlink scheduling is the time when the BWP of the bandwidth part is updated.
  • the conflict between the position of the DC carrier and the frequency domain resource occupied by key information when the UE receives the signal can be reduced, thereby reducing the impact on the reception performance of the UE.
  • the embodiment of the present application provides a processing method for a DC carrier, as shown in FIG. 6, including:
  • the UE receives a first signal from a base station.
  • the UE determines whether the resource occupied by the first signal overlaps with the DC carrier set when the UE receives the first signal, and if it is determined to be so, perform step 603.
  • step 604 is executed.
  • Step 603 can also be understood as the UE determining whether to set the bit value of the resource RE corresponding to the DC carrier in the resource occupied by the second signal to be received to 0 according to the resource occupied by the first signal.
  • steps 601 to 603 please refer to steps 501 to 503, which will not be repeated here.
  • the UE sets the bit value of the resource RE corresponding to the subcarrier overlapping the DC carrier among the resources occupied by the second signal to be received to 0.
  • the RF circuit of the UE discards the signal occupied by the signal to be received on the DC carrier, and sends the remaining signal on the non-DC carrier of the signal to be received to the processor of the UE for further processing.
  • the UE will subtract the signal on the DC carrier and does not need to adjust the DC carrier, which reduces the complexity.
  • this embodiment is applicable to a scenario where the UE receiving a signal through a DC carrier affects the UE's receiving performance less.
  • the signal quality of the current received signal is better, and the configuration value of the configuration information of the current received signal is a more robust configuration.
  • the configuration is: larger bandwidth, lower MCS or higher density of reference signal, etc.
  • the bandwidth of the base station when sending signals is 4PRB
  • the number of subcarriers used by the base station to transmit data is 50 REs
  • the MCS of the base station corresponds to Quadrature Phase Shift Keying (Quadrature Phase Shift Keyin, QPSK) modulation, 1/4 code rate
  • the base station knows the location of the UE's downlink receiving DC carrier. Because there is no signal transmitted or carried on the DC carrier, the receiver of the UE receives these signals and before decoding, the result is still It is 100 bits.
  • the UE discards the signal on this RE at the receiver, it corresponds to the corresponding puncturing operation on the receiver side: fill in the signal on the RE overlapping with the DC carrier with 0, and then press the filled 0 to start Obtain the data of 50 REs, and then obtain 100 soft bits to be decoded according to the symbols of the 50 REs, and obtain 25-bit information bits (code rate 1/4) after decoding.
  • FIG. 4, FIG. 5, and FIG. 6 illustrate a scenario where a UE receives a signal. Accordingly, the technical solution of the present application can also be applied to a scenario where a UE sends a signal.
  • the embodiment of the present application provides a method for processing a DC carrier, as shown in FIG. 7, including:
  • the first device sends a first signal to the second device.
  • the first device determines whether the resources occupied by the first signal overlap with the DC carrier set when the first device sends the first signal.
  • the first device adjusts the position of the DC carrier, or the first device sets the bit value of the resource RE corresponding to the subcarrier overlapping the DC carrier in the resources occupied by the second signal to be sent to 0.
  • steps 701 to 703 is similar to the implementation of the embodiment corresponding to FIG. 4, and will not be repeated here.
  • the embodiment of the present application provides a processing method for a DC carrier, as shown in FIG. 8, including:
  • the UE sends a first signal to a base station.
  • the UE determines whether the resource occupied by the first signal overlaps with the DC carrier set when the UE sends the first signal, and if it is determined to be so, perform step 803.
  • step 804 is executed.
  • the UE adjusts the position of the DC carrier.
  • steps 801 to 803 is similar to that of the embodiment corresponding to FIG. 5, and will not be repeated here.
  • An embodiment of the application provides a processing method for a DC carrier, as shown in FIG. 9, including:
  • the UE sends a first signal to a base station.
  • the UE determines whether the resource occupied by the first signal overlaps with the DC carrier set when the UE sends the first signal, and if it is determined to be so, perform step 903.
  • step 904 is executed.
  • the UE sets the bit value of the resource RE corresponding to the subcarrier overlapping the DC carrier among the resources occupied by the second signal to be sent to 0.
  • steps 901 to 904 is similar to the implementation manner of the embodiment corresponding to FIG. 6, and will not be repeated here.
  • the solution provided in this application can adjust the position of the DC carrier or discard the signal transmitted on the DC carrier when the RC carrier is scheduled for signal transmission, so as to reduce the UE's receiving performance impact and transmission performance impact.
  • each network element such as the first device, the second device, and the UE, includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the function modules of the first device according to the foregoing method examples.
  • each function module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 10 shows a possible schematic structural diagram of the first device involved in the above embodiment.
  • the UE 100 includes: a receiving unit 1001 , A processing unit 1002 and a sending unit 1003.
  • the receiving unit 1001 is used to support the UE to perform the process 401 in FIG. 4, the process 501 in FIG. 5, the process 601 in FIG. 6, and the processing unit 1002 is used to support the UE to perform the processes 402 and 403 in FIG. 4, and the process in FIG. Processes 502, 503, and 504, processes 602-604 in Fig. 6, processes 702 and 703 in Fig. 7, processes 802-804 in Fig. 8, processes 902-904 in Fig.
  • the sending unit 1003 is used to support the UE
  • the process 701 in FIG. 7, the process 801 in FIG. 8, and the process 901 in FIG. 9 are executed. Among them, all relevant content of the steps involved in the above method embodiments can be cited in the functional description of the corresponding functional module, and will not be repeated here.
  • FIG. 11 shows a possible schematic structural diagram of the first device involved in the foregoing embodiment.
  • the UE 110 includes: a processing module 1102 and a communication module 1103.
  • the processing module 1102 is used to control and manage the actions of the UE.
  • the processing module 1102 is used to support the UE to perform the processes 402 and 403 in FIG. 4, the processes 502, 503 and 504 in FIG. 5, and the process 602 in FIG. 6 604, processes 702 and 703 in FIG. 7, processes 802-804 in FIG. 8, processes 902-904 in FIG. 9, and/or other processes for the techniques described herein.
  • the communication module 1103 is used to support communication between the UE and other network entities, for example, communication with the functional modules or network entities shown in FIG. 1, FIG. 2 and FIG. 3.
  • the UE may also include a storage module 1101 for storing program codes and data of the UE.
  • the processing module 1102 may be a processor or a controller, such as a central processing unit (CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), and an application-specific integrated circuit (Application-Specific Integrated Circuit). Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module 1103 may be a transceiver, a transceiver circuit, or a communication interface.
  • the storage module 1101 may be a memory.
  • the processing module 1102 is a processor
  • the communication module 1103 is a transceiver
  • the storage module 1101 is a memory
  • the UE involved in the embodiment of the present application may be the UE shown in FIG. 12.
  • the UE 120 includes a processor 1202, a transceiver 1203, a memory 1201, and a bus 1204.
  • the transceiver 1203, the processor 1202, and the memory 1201 are connected to each other through a bus 1204;
  • the bus 1204 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus Wait.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used to represent in FIG. 12, but it does not mean that there is only one bus or one type of bus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种直流载波的处理方法和装置,涉及通信技术领域,能够解决基站发射信号的DC载波与UE接收信号的DC载波不同并且基站也不知道UE接收信号的DC载波的位置,两者的不匹配导致的调度的限制或传输性能的下降的问题。其方法为:第一设备从第二设备接收第一信号;第一设备确定第一信号所占用的资源是否与第一设备接收第一信号时设置的直流DC载波重叠;若确定是,则第一设备将待接收的第二信号占用的资源中与DC载波重叠的子载波对应的资源RE的比特值置为0。本申请实施例用于NR系统中信号的传输。

Description

一种直流载波的处理方法和装置 技术领域
本申请涉及通信技术领域,尤其涉及一种直流载波的处理方法和装置。
背景技术
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)正在进行的第五代(5-Generation,5G)移动通信技术的标准化过程中,定义了带宽部分(BandWidth Part,BWP)的概念。对于基站的发射机而言,可以同时对多个不同的UE发射基于BWP传输的数据。即基站发射的信号会占用一个较大的带宽,而对于用户设备(User Equipment,UE)的接收机而言,是基于配置的BWP进行通信的。因此,UE接收信号的带宽通常小于基站发射信号的带宽,从而为UE接收降低成本和功率消耗。由于UE接收信号的带宽与基站发射信号的带宽不同,这样存在一个潜在的问题,即:基站发射信号的直流(direct current,DC)载波与UE接收信号的直流载波不同,并且基站也不知道UE接收信号的DC载波的位置。两者的不匹配会导致调度的限制或传输性能的下降。
发明内容
本申请提供一种直流载波的处理方法和装置,能够解决基站发射信号的DC载波与UE接收信号的DC载波不同并且基站也不知道UE接收信号的DC载波的位置,两者的不匹配导致的调度的限制或传输性能的下降的问题。
第一方面,提供一种直流载波的处理方法,该方法包括:第一设备从第二设备接收第一信号;第一设备确定第一信号所占用的资源是否与第一设备接收第一信号时设置的直流DC载波重叠;若确定是,则第一设备将待接收的第二信号占用的资源中与DC载波重叠的子载波对应的资源RE的比特值置为0。信号在新空口NR中传输。也就是说,在第一设备接收第二信号时,DC载波上有信号传输时,可丢弃DC载波上的信号,丢弃可以理解为打孔或者填零操作,这样如果DC载波被调度在易受影响的数据的资源上时,如果将待接收的第二信号占用的资源中与DC载波重叠的子载波对应的资源RE的比特值置为0,可使得第一设备的接收机受该资源的影响较小,尽可能的减少对第一设备接收数据的影响,提升传输性能。执行填零操作,是由于对于NR的接收机,因为第二设备不知道第一设备的下行接收DC载波的位置,第一设备的接收机在丢弃这个子载波上的信号之后,得到的资源RE数减少,所以第一设备在接收机丢弃RE上的信号时可通过对于DC载波重叠的这个RE上的信号填零,然后按照填零来得到所有RE的数据,使得第一设备的接收机接收数据不受影响。
在一种可能的设计中,该方法还包括:第一设备向第二设备发送第一设备接收第一信号的DC载波的位置信息。在NR中,第一设备向第二设备发送接收第一信号的DC载波的位置信息,这样在,第一设备接收到第二设备配置的接收资源的配置信息时,如果第一设备确定DC载波的位置信息与配置信息中DC载波的位置信息重叠,那么第一设备就在与DC载波重叠的子载波上执行填零操作,可以减少第一设备或第二设 备的DC载波的位置与配置的关键传输资源的信息所占的频域位置有冲突,从而减少对第一设备的接收机的接收性能影响。
在一种可能的设计中,若第一设备确定第一信号所占用的资源与第一设备接收第一信号时设置的直流DC载波重叠,则在第一设备将待接收的第二信号占用的资源中与DC载波重叠的子载波对应的资源RE的比特值置为0之前,该方法还包括:第一设备根据第一信号所占用的资源确定是否将待接收的第二信号占用的资源中DC载波对应的资源RE的比特值置为0。也就是说,在确定执行填零操作之前,还需要根据第一信号所占用的资源进一步判断是否需要执行该操作,这样,一旦易受影响的数据的RE调度在DC载波上时,才确定需要在DC载波上执行填零操作,可以降低第一设备的处理复杂度。
在一种可能的设计中,第一信号占用的资源包括如下至少一种:参考信号的配置参数、传输数据的调度参数以及DC载波所在的资源上的信号特征;其中,参考信号占用的资源包括DC载波,传输数据占用的资源包括DC载波。这些资源中包括易受影响的数据,一旦这些资源中的一个在DC载波上传输,需要丢弃DC载波,提升第一设备接收机性能。
在一种可能的设计中,配置参数包括以下中的至少一种:参考信号的类型、参考信号占用的带宽、参考信号占用的子载波间隔、参考信号的密度、参考信号的传输周期、参考信号的时域偏移值、参考信号的频域偏移值以及参考信号的码域配置参数。举例来说,第一设备确定参考信号的类型为指定类型时,确定配置参数满足预设条件,需要丢弃DC载波上传输的信号。例如,参考信号为一些重要的参考信号,如解调参考信号DM-RS、相位追踪参考信号PT-RS等,传输这些重要参考信号时占用的资源若包括DC载波上,那么第一设备接收这些参考信号就会受到影响,参考信号不能得到有效解调,那么就可以调整DC载波的位置,以减少对这些参考信号的接收影响。
在一种可能的设计中,调度参数包括以下中的至少一种:传输数据的类型、传输数据占用的带宽、传输数据占用的符号数、传输数据占用的子载波间隔、传输数据的调制编码方式MCS以及传输数据的调制阶数。举例来说,调度参数为传输数据的带宽时,当传输数据的带宽小于预设阈值时,确定需调整DC载波的位置。这是由于带宽小于一定的值时,一旦某个传输的子载波受到DC的影响,对整个系统性能影响的占比更大。
在一种可能的设计中,信号特征包括以下中的至少一种:接收信号干扰噪声比SINR、接收信号噪声比SNR、接收干扰噪声比INR、参考信号接收功率RSRP、参考信号接收强度指示RSSI以及参考信号接收质量RSRQ。
在一种可能的设计中,第一设备根据第一信号所占用的资源确定是否将待接收的第二信号占用的资源中DC载波对应的资源RE的比特值置为0包括:若确定配置参数的类型为指定类型,或,若确定带宽、或子载波间隔、或密度、或周期、或时域偏移值、或频域偏移值或码域配置参数小于或等于预设阈值,则第一设备确定将待接收的第二信号占用的资源中DC载波对应的资源RE的比特值置为0。举例来说,配置参数为参考信号的带宽时,预设阈值可以为1物理资源块PRB,即参考信号的带宽小于1PRB时,确定丢弃待接收的信号占用的资源中DC载波上待发送的信号。这里配置参 数为参考信号的带宽时,预设阈值的取值与PTRS的密度有关,PTRS的密度越小,带宽的预设阈值越大,反之越小。例如如果PTRS的密度为4个PRB中仅有一个RE,那么带宽的预设阈值可以为4或8,当带宽小于预设阈值时,确定需调整DC载波的位置。
在一种可能的设计中,第一设备根据第一信号所占用的资源确定是否将待接收的第二信号占用的资源中DC载波对应的资源RE的比特值置为0包括:若确定调度参数的类型为指定类型,或,若确定带宽、或符号数或子载波间隔小于或等于预设阈值,或,若确定MCS或调制阶数大于或等于预设阈值,则第一设备确定将待接收的第二信号占用的资源中DC载波对应的资源RE的比特值置为0。举例来说,第一设备传输数据的类型为指定类型时,确定需调整DC载波的位置。指定类型可以为控制信息等较为重要的信息,控制信息具体可以为信道状态信息CSI、混合自动重传请求HARQ或多输入多输出MIMO的相关信息等。如果控制信息占用的资源包括DC载波,确定需调整DC载波的位置。
在一种可能的设计中,第一设备根据第一信号所占用的资源确定是否将待接收的第二信号占用的资源中DC载波对应的资源RE的比特值置为0包括:若第一设备确定SINR、或SNR、或RSRP、或RSSI或RSRQ小于或等于预设阈值,或,若第一设备确定INR大于或等于预设阈值,则第一设备将待接收的第二信号占用的资源中DC载波对应的资源RE的比特值置为0。举例来说,信号特征为INR时,预设阈值例如可以为当前传输时MCS对应的一个最低可检测的门限值。不同的MCS有不同的最低可检测的门限值。当与DC载波重叠的资源上的INR大于或等于预设阈值时,确定需调整DC载波的位置。这是由于与SINR类似,INR越大,表明干扰功率越大,SINR值越低。如果使用了OCC的DMRS或PTRS占用的资源包括DC载波时,会进一步增加等效的接收INR值,当INR值高于预设阈值时,需要调整接DC载波的位置,否则会影响INR正常的解调和接收。
在一种可能的设计中,当第一信号为参考信号RS时,RS包括相位追踪参考信号PTRS或解调参考信号DMRS;RS所占用的资源包括如下至少一种:RS的配置参数和RS占用的DC载波的资源上的信号特征。
在一种可能的设计中,RS的配置参数包括以下中的至少一种:RS占用的带宽、RS占用的子载波间隔以及RS的传输周期。
在一种可能的设计中,信号特征包括以下中的至少一种:信号的调制编码方式MCS、信号的占用的符号数、信号占用的带宽、信号的子载波间隔以及信号的传输周期。
在一种可能的设计中,第一设备根据第一信号所占用的资源确定是否将待接收的第二信号占用的资源中DC载波对应的资源RE的比特值置为0包括:若确定RS占用的带宽、RS占用的子载波间隔以及RS的传输周期中的至少一种小于或等于预设阈值,则第一设备确定将待接收的第二信号占用的资源中与DC载波对应的资源RE的比特值置为0。
在一种可能的设计中,第一设备根据第一信号所占用的资源确定是否将待接收的第二信号占用的资源中DC载波对应的资源RE的比特值置为0包括:若确定信号的 占用的符号数、信号占用的带宽、信号的子载波间隔以及信号的传输周期小于或等于预设阈值,或,若确定MCS大于或等于预设阈值,则第一设备确定将待接收的第二信号占用的资源中与DC载波对应的资源RE的比特值置为0。
在一种可能的设计中,第一信号和第二信号在新空口NR系统中传输。即本申请针对NR中DC载波的处理进行说明。
第二方面,提供一种直流载波的处理方法,该方法包括:第一设备向第二设备发送第一信号;第一设备确定第一信号所占用的资源是否与第一设备发送第一信号时设置的直流DC载波重叠;若确定是,则第一设备将待发送的第二信号占用的资源中与DC载波重叠的子载波对应的资源RE的比特值置为0。与第一方面类似,第一设备的发射机发射信号时,第一设备对DC载波的处理与第一设备接收机接收信号时的过程类似。
在一种可能的设计中,若第一设备确定第一信号所占用的资源与第一设备发送第一信号时设置的直流DC载波重叠,则在第一设备将待发送的第二信号占用的资源中与DC载波重叠的子载波对应的资源RE的比特值置为0之前,该方法还包括:第一设备根据第一信号所占用的资源确定是否将待发送的第二信号占用的资源中DC载波对应的资源RE的比特值置为0。
在一种可能的设计中,第一信号占用的资源包括如下至少一种:参考信号的配置参数、传输数据的调度参数以及DC载波所在的资源上的信号特征;其中,参考信号占用的资源包括DC载波,传输数据占用的资源包括DC载波。
在一种可能的设计中,配置参数包括以下中的至少一种:参考信号的类型、参考信号占用的带宽、参考信号占用的子载波间隔、参考信号的密度、参考信号的传输周期、参考信号的时域偏移值、参考信号的频域偏移值以及参考信号的码域配置参数。
在一种可能的设计中,调度参数包括以下中的至少一种:传输数据的类型、传输数据占用的带宽、传输数据占用的符号数、传输数据占用的子载波间隔、传输数据的调制编码方式MCS以及传输数据的调制阶数。
在一种可能的设计中,信号特征包括以下中的至少一种:接收信号干扰噪声比SINR、接收信号噪声比SNR、接收干扰噪声比INR、参考信号接收功率RSRP、参考信号接收强度指示RSSI以及参考信号接收质量RSRQ。
在一种可能的设计中,第一设备根据资源确定是否丢弃待发送的信号占用的资源中DC载波上待发送的信号包括:若确定类型为指定类型,或,若确定带宽、或子载波间隔、或密度、或周期、或时域偏移值、或频域偏移值或码域配置参数小于或等于预设阈值,则第一设备确定丢弃待发送的信号占用的资源中DC载波上待发送的信号。
在一种可能的设计中,第一设备根据资源确定是否丢弃待发送的信号占用的资源中DC载波上待发送的信号包括:若确定类型为指定类型,或,若确定带宽、或符号数或子载波间隔小于或等于预设阈值,或,若确定MCS或调制阶数大于或等于预设阈值,则第一设备确定丢弃待发送的信号占用的资源中DC载波上待发送的信号。
在一种可能的设计中,第一设备根据资源确定是否丢弃待接收的信号占用的资源中DC载波上待发送的信号包括:若第一设备确定SINR、或SNR、或RSRP、或RSSI或RSRQ小于或等于预设阈值,或,若第一设备确定INR大于或等于预设阈值,则第 一设备确定丢弃待发送的信号占用的资源中DC载波上待发送的信号。
在一种可能的设计中,当第一信号为参考信号RS时,RS包括相位追踪参考信号PTRS或解调参考信号DMRS;RS所占用的资源包括如下至少一种:RS的配置参数和RS占用的DC载波的资源上的信号特征。
在一种可能的设计中,RS的配置参数包括以下中的至少一种:RS占用的带宽、RS占用的子载波间隔以及RS的传输周期。
在一种可能的设计中,信号特征包括以下中的至少一种:信号的调制编码方式MCS、信号的占用的符号数、信号占用的带宽、信号的子载波间隔以及信号的传输周期。
在一种可能的设计中,第一设备根据第一信号所占用的资源确定是否将待发送的第二信号占用的资源中DC载波对应的资源RE的比特值置为0包括:若确定RS占用的带宽、RS占用的子载波间隔以及RS的传输周期中的至少一种小于或等于预设阈值,则第一设备确定将待发送的第二信号占用的资源中与DC载波对应的资源RE的比特值置为0。
在一种可能的设计中,第一设备根据第一信号所占用的资源确定是否将待发送的第二信号占用的资源中DC载波对应的资源RE的比特值置为0包括:若确定信号的占用的符号数、信号占用的带宽、信号的子载波间隔以及信号的传输周期小于或等于预设阈值,或,若确定MCS大于或等于预设阈值,则第一设备确定将待发送的第二信号占用的资源中与DC载波对应的资源RE的比特值置为0。
在一种可能的设计中,信号在新空口NR系统中传输。
第三方面,提供一种设备,设备为第一设备,包括:收发器,用于从第二设备接收第一信号;处理器,用于确定第一信号所占用的资源是否与第一设备接收第一信号时设置的直流DC载波重叠;处理器还用于,若确定是,将待接收的第二信号占用的资源中与DC载波重叠的子载波对应的资源RE的比特值置为0。
在一种可能的设计中,收发器还用于:向第二设备发送第一设备接收第一信号的DC载波的位置信息。
在一种可能的设计中,处理器还用于:根据第一信号所占用的资源确定是否将待接收的第二信号占用的资源中DC载波对应的资源RE的比特值置为0。
在一种可能的设计中,第一信号所占用的资源包括如下至少一种:参考信号的配置参数、传输数据的调度参数以及DC载波所在的资源上的信号特征;其中,参考信号占用的资源包括DC载波,传输数据占用的资源包括DC载波。
在一种可能的设计中,配置参数包括以下中的至少一种:参考信号的类型、参考信号占用的带宽、参考信号占用的子载波间隔、参考信号的密度、参考信号的传输周期、参考信号的时域偏移值、参考信号的频域偏移值以及参考信号的码域配置参数。
在一种可能的设计中,调度参数包括以下中的至少一种:传输数据的类型、传输数据占用的带宽、传输数据占用的符号数、传输数据占用的子载波间隔、传输数据的调制编码方式MCS以及传输数据的调制阶数。
在一种可能的设计中,信号特征包括以下中的至少一种:接收信号干扰噪声比SINR、接收信号噪声比SNR、接收干扰噪声比INR、参考信号接收功率RSRP、参考 信号接收强度指示RSSI以及参考信号接收质量RSRQ。
在一种可能的设计中,处理器用于:若确定类型为指定类型,或,若确定带宽、或子载波间隔、或密度、或周期、或时域偏移值、或频域偏移值或码域配置参数小于或等于预设阈值,则确定丢弃待接收的信号占用的资源中与DC载波上待发送的信号。
在一种可能的设计中,处理器用于:若确定类型为指定类型,或,若确定带宽、或符号数或子载波间隔小于或等于预设阈值,或,若确定MCS或调制阶数大于或等于预设阈值,则第一设备确定丢弃待接收的信号占用的资源中与DC载波上待发送的信号。
在一种可能的设计中,处理器用于:若第一设备确定SINR、或SNR、或RSRP、或RSSI或RSRQ小于或等于预设阈值,或,若确定INR大于或等于预设阈值,则确定丢弃待接收的信号占用的资源中与DC载波上待发送的信号。
在一种可能的设计中,当第一信号为参考信号RS时,RS包括相位追踪参考信号PTRS或解调参考信号DMRS;RS所占用的资源包括如下至少一种:RS的配置参数和RS占用的DC载波的资源上的信号特征。
在一种可能的设计中,RS的配置参数包括以下中的至少一种:RS占用的带宽、RS占用的子载波间隔以及RS的传输周期。
在一种可能的设计中,信号特征包括以下中的至少一种:信号的调制编码方式MCS、信号的占用的符号数、信号占用的带宽、信号的子载波间隔以及信号的传输周期。
在一种可能的设计中,处理器用于:若确定RS占用的带宽、RS占用的子载波间隔以及RS的传输周期中的至少一种小于或等于预设阈值,则确定将待接收的第二信号占用的资源中与DC载波对应的资源RE的比特值置为0。
在一种可能的设计中,处理器用于:若确定信号的占用的符号数、信号占用的带宽、信号的子载波间隔以及信号的传输周期小于或等于预设阈值,或,若确定MCS大于或等于预设阈值,则确定将待接收的第二信号占用的资源中与DC载波对应的资源RE的比特值置为0。
在一种可能的设计中,第一信号和第二信号在新空口NR系统中传输。
第四方面,提供一种设备,设备为第一设备,包括:收发器,用于向第二设备发送第一信号;处理器,用于确定第一信号所占用的资源是否与第一设备发送第一信号时设置的直流DC载波重叠;处理器,还用于若确定是,则将待发送的第二信号占用的资源中与DC载波重叠的子载波对应的资源RE的比特值置为0。
在一种可能的设计中,处理器还用于:根据第一信号所占用的资源确定是否将待发送的第二信号占用的资源中DC载波对应的资源RE的比特值置为0。
在一种可能的设计中,第一信号所占用的资源包括如下至少一种:参考信号的配置参数、传输数据的调度参数以及DC载波所在的资源上的信号特征;其中,参考信号占用的资源包括DC载波,传输数据占用的资源包括DC载波。
在一种可能的设计中,配置参数包括以下中的至少一种:参考信号的类型、参考信号占用的带宽、参考信号占用的子载波间隔、参考信号的密度、参考信号的传输周期、参考信号的时域偏移值、参考信号的频域偏移值以及参考信号的码域配置参数。
在一种可能的设计中,调度参数包括以下中的至少一种:传输数据的类型、传输数据占用的带宽、传输数据占用的符号数、传输数据占用的子载波间隔、传输数据的调制编码方式MCS以及传输数据的调制阶数。
在一种可能的设计中,信号特征包括以下中的至少一种:接收信号干扰噪声比SINR、接收信号噪声比SNR、接收干扰噪声比INR、参考信号接收功率RSRP、参考信号接收强度指示RSSI以及参考信号接收质量RSRQ。
在一种可能的设计中,处理器用于:若确定类型为指定类型,或,若确定带宽、或子载波间隔、或密度、或周期、或时域偏移值、或频域偏移值或码域配置参数小于或等于预设阈值,则确定丢弃待发送的信号占用的资源中DC载波上待发送的信号。
在一种可能的设计中,处理器用于:若确定类型为指定类型,或,若确定带宽、或符号数或子载波间隔小于或等于预设阈值,或,若确定MCS或调制阶数大于或等于预设阈值,则确定丢弃待发送的信号占用的资源中DC载波上待发送的信号。
在一种可能的设计中,处理器用于:若确定SINR、或SNR、或RSRP、或RSSI或RSRQ小于或等于预设阈值,或,若确定INR大于或等于预设阈值,则确定丢弃待发送的信号占用的资源中DC载波上待发送的信号。
在一种可能的设计中,当第一信号为参考信号RS时,RS包括相位追踪参考信号PTRS或解调参考信号DMRS;RS所占用的资源包括如下至少一种:RS的配置参数和RS占用的DC载波的资源上的信号特征。
在一种可能的设计中,RS的配置参数包括以下中的至少一种:RS占用的带宽、RS占用的子载波间隔以及RS的传输周期。
在一种可能的设计中,信号特征包括以下中的至少一种:信号的调制编码方式MCS、信号的占用的符号数、信号占用的带宽、信号的子载波间隔以及信号的传输周期。
在一种可能的设计中,处理器用于:若确定RS占用的带宽、RS占用的子载波间隔以及RS的传输周期中的至少一种小于或等于预设阈值,则确定将待发送的第二信号占用的资源中与DC载波对应的资源RE的比特值置为0。
在一种可能的设计中,处理器用于:若确定信号的占用的符号数、信号占用的带宽、信号的子载波间隔以及信号的传输周期小于或等于预设阈值,或,若确定MCS大于或等于预设阈值,则确定将待发送的第二信号占用的资源中与DC载波对应的资源RE的比特值置为0。
在一种可能的设计中,第一信号和第二信号在新空口NR系统中传输。
第五方面,提供一种DC的处理方法,该方法包括:第一设备从第二设备接收第一信号;第一设备确定信号所占用的资源是否与第一设备接收信号时设置的直流DC载波重叠;若确定是,则第一设备调整DC载波的位置。第一设备可以将DC载波的位置调整到非关键信息对应的子载波上,或者调整到被调度的传输带宽之外,或者调整到调度第一设备时配置的激活BWP之外等。这样,通过UE调整DC载波的位置接收信号,可以减少UE接收信号时DC载波的位置与关键信息所占的频域资源冲突,从而减少对UE的接收性能影响。
第六方面,提供一种DC的处理方法,该方法包括:第一设备向第二设备发送信 号;第一设备确定信号所占用的资源是否与第一设备发送信号时设置的直流DC载波重叠;若确定是,则第一设备调整DC载波的位置。第六方面与第五方面的实现类似。
在一种可能的设计中,第一设备调整DC载波的位置包括:第一设备在无下行调度的时间窗内调整DC载波的位置;其中,无下行调度的时间窗为一个时隙内无调度的时刻,或无下行调度的时间窗为带宽部分BWP重配置的时刻,或无下行调度的时间窗为带宽部分BWP更新的时刻。第一设备调整DC载波的位置时,需要有一定的DC载波调整的时间,考虑到修改DC载波的位置,会使得第一设备接收信号的中断,于是,在本申请中,第一设备判断出要进行接收信号的DC载波调整时,第一设备会确定出一个调整时机,在这个调整时机内调整。
第七方面,提供一种设备,该设备为第一设备,包括:收发器,用于从第二设备接收信号;处理器,用于确定信号所占用的资源是否与第一设备接收信号时设置的直流DC载波重叠;处理器还用于,若确定是,则调整DC载波的位置。
第八方面,提供一种设备,该设备为第一设备,包括:收发器,用于向第二设备发送信号;处理器,用于确定信号所占用的资源是否与第一设备发送信号时设置的直流DC载波重叠;若确定是,则调整DC载波的位置。
于是,本申请在第一设备确定信号所占用的资源与第一设备接收信号时设置的直流DC载波重叠时,可选择丢弃DC载波上的信号,或者调整DC载波的位置,从而减少对第一设备接收数据或发送的数据的影响。
附图说明
图1为本申请实施例提供的一种蜂窝链路的网络架构示意图;
图2为本申请实施例提供的一种D2D链路的网络架构示意图;
图3为本申请实施例提供的一种BS之间的回传链路的网络架构示意图;
图4为本申请实施例提供的一种DC载波的处理方法的流程示意图;
图5为本申请实施例提供的一种DC载波的处理方法的流程示意图;
图6为本申请实施例提供的一种DC载波的处理方法的流程示意图;
图7为本申请实施例提供的一种DC载波的处理方法的流程示意图;
图8为本申请实施例提供的一种DC载波的处理方法的流程示意图;
图9为本申请实施例提供的一种DC载波的处理方法的流程示意图;
图10为本申请实施例提供的一种UE的结构示意图;
图11为本申请实施例提供的一种UE的结构示意图;
图12为本申请实施例提供的一种UE的结构示意图。
具体实施方式
为了便于理解,示例地给出了部分与本申请相关概念的说明以供参考。如下所示:
DC载波,为(Orthogonal Frequency Division Multiplexing,OFDM)信道的中心,是长期演进(Long Term Evolution,LTE)下行载波中心位置的一个未被使用的子载波,是为了避免本地晶振可能泄露等原因导致高干扰而设置的,一般不用于传输数据。
设备到设备(Device to Device,D2D):为基于蜂窝网络的设备间通信,是指用户数据可不用经过网络中转直接在终端设备之间传输。
物理资源块(physical resource block,PRB):为频域上连续占用的12个子载波。 时域(slot)包括12个或14个符号或者更少的符号。当符号数少于12或14个符号时,通常称为迷你时隙(mini-slot)。
本申请实施例可以用于蜂窝链路、D2D链路或基站(base station,BS)之间的回传链路间发送和接收数据或信号的过程。
如图1所示,蜂窝链路的网络架构可以包括基站和多个终端设备,基站还可以替换为中继站等其它类型的网络设备,终端设备可以为UE,图1仅示出了UE1和UE2。其上行链路例如可以是UE1或UE2到基站之间的链路,下行链路可以是基站到UE1之间的链路,或基站到UE2之间的链路。
如图2所示,D2D链路的网络架构可以包括至少两个终端设备,例如包括UE1和UE2时,D2D链路即为UE1和UE2之间的链路,可通过直连链路来传输数据或信号。
如图3所示,BS之间的回传链路的网络架构可以包括至少两个BS,例如包括BS1和BS2。BS1和BS2可以是相同类型的基站,也可以是不同类型的基站,例如回传链路为宏站与宏站之间的链路,微站与微站之间的链路,以及宏站与微站之间的链路等。
本申请的技术方案可以用于通信的收、发双方之间各类具有传输功能的网元,例如基站、中继设备和终端设备等,主要涉及到的网元包括UE、基站和中继设备。UE也可以是用于蜂窝链路的UE,也可以是用于sidelink的UE等,基站可以参与上行传输或下行传输。在5G通信系统中,提供基站功能的设备包括演进的节点B(evolved NodeB,eNB)、新无线节点B(New Radio NodeB,gNB),集中单元(Centralized Unit,CU),分布式单元(Distributed Unit)和新无线控制器等。UE可以是可移动的终端设备,也可以是不可移动的终端设备。该设备主要用于接收或者发送业务数据。用户设备可分布于网络中,在不同的网络中用户设备有不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持设备,膝上型电脑,无绳电话,无线本地环路台等。该用户设备可以经无线接入网(radio access network,RAN)(无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
应用上述网络架构,基站进行资源调度时如果将一些关键信息调度到UE的DC上,由于不解调DC上承载的信息,那么UE就不能得到该关键信息,这样会发生调度错错误,影响到UE接收机的性能。虽然在无线接入网(Radio Access Network,RAN)1#93次会议上,RAN1标准同意了用信令来向UE指示基站下行发射信号的DC载波位置,在RAN1#93次会议上,RAN1标准还同意了用信令来向UE指示UE上行发射信号的DC载波位置,但是该标准中同意的结论并未解决基站不知道UE的下行接收的DC载波的位置,从而还是会发生基站调度错误的问题。类似地,如果UE不上报上行DC载波的位置,同样会对基站的上行接收的检测产生性能影响。
本申请为了解决基站在不知道UE下行接收的DC载波或者UE未上报上行发射的DC载波的情况下,一旦UE在DC载波上接收或发送,或基站在DC载波上接收或发送,造成的系统的性能下降的问题,本申请中,UE在接收到下行的数据或信号时,需要判断当前使用的接收数据或信号的载波是否与DC载波重叠,如果重叠,则需要调整DC载波的位置或者丢弃与DC载波重叠的子载波上的信号,可以减少DC载波与关键信息的传输资源的频域位置的冲突,进而减少UE作为发射机或接收机时的性能影 响。
下面对本申请实施例进行说明。
本申请实施例提供一种DC载波的处理方法,如图4所示,包括:
401、第一设备从第二设备接收第一信号。
在本申请实施例中,第一设备可以是终端设备的基带处理器、或系统级芯片(System on Chip,SoC)或终端设备,第二设备可以是终端设备,也可以是基站。
例如第一设备为蜂窝链路中的UE,第二设备为蜂窝链路中的基站,或者第一设备和第二设备均为D2D链路中的UE。
402、第一设备确定第一信号所占用的资源是否与第一设备接收第一信号时设置的DC载波重叠。
该第一信号占用的资源包括时频域资源,频域资源即为该第一信号占用的子载波,步骤402即要判断该接收该第一信号时所占用的子载波是否与DC载波重叠,如果重叠,由于第一设备不会对DC载波上的部分信号进行任何处理,那么DC载波上的部分信号就不能得到有效解调,进而不能得到DC载波上的部分信号的有效信息。
403、若确定是,则第一设备调整DC载波的位置,或者,则第一设备将待接收的第二信号占用的资源中与所述DC载波重叠的子载波对应的资源RE的比特值置为0。
如果第一设备接收该信号时所占用的子载波与DC载波重叠,那么第一种可能的方式中,第一设备可以将DC载波的位置进行调整,即设置其他的子载波为DC载波,这样,第一设备再次接收第二设备发送的信号时,接收该信号时的频域资源可以不包括DC载波,从而可以对再次接收的信号进行有效解调,提升接收性能。或者,另一种可能的方式中,第一设备将与DC载波重叠的子载波对应的资源RE的比特值置为0,即只对剩下的在非DC载波上的信号进行解调,尽可能的减少DC载波对第一设备接收信号的影响,不需要调整DC载波的位置,使得复杂度降低,这种方法多适用于第一设备接收信号时受DC载波影响较小的场景。
下面根据上述实施例中两种可能的方式对本申请实施例进行进一步阐述,首先对第一种可能的方式进行阐述,以第一设备为UE,第二设备为基站为例。
本申请实施例提供一种DC载波的处理方法,如图5所示,包括:
501、UE从基站接收第一信号。
UE可接收来自天线口的信号,将信号输入射频(radio frequency,RF)电路,RF电路在将信号传输给UE的处理器进行处理。
502、UE确定接收第一信号时该信号占用的资源是否与UE接收该第一信号时设置的DC载波重叠,若确定是,则执行步骤503。
步骤502可以理解为UE的处理器判断接收第一信号时的频域资源是否与UE接收该第一信号时设置的DC载波重叠。
图4对应的实施例阐明了,如果第一信号占用的频域资源与DC载波重叠时,就调整DC载波的位置,为了更准确确定DC载波的位置是否要调整,可以进一步根据基站配置的接收资源是否满足预设条件来判断,这是由于接收资源的属性如果影响到第一信号若在DC载波上传输,对UE的信号接收性能产生较大影响时,那么就要调整DC载波的位置。步骤503即对接收资源进行进一步分析。
本申请实施例中,UE在接收第一信号之前,UE可以向基站发送用于接收第一信号的DC载波的位置信息,以便判断接收信号的资源是否与DC载波重叠,即该DC载波为接收载波。
503、UE确定该资源是否满足预设条件,若确定是,则执行步骤504。
步骤503也可以理解为UE根据第一信号所占用的资源确定是否调整DC载波的位置。
这里的资源即基站向UE配置的接收资源,接收资源通过配置信息下发给UE,UE在确定是否调整DC载波的位置之前,需要解析该接收资源。
该接收资源包括如下至少一种:参考信号的配置参数、传输数据的调度参数以及DC所在的资源上的信号特征;其中,参考信号占用的资源包括所述DC载波,所述传输数据占用的资源包括所述DC载波。也就是说,如果该配置参数、调度参数或者信号特征满足预设条件,说明当前的接收资源会影响到信号在DC载波上传输时的接收性能。
示例性的,参考信号的配置参数可以包括参考信号的类型、所述参考信号占用的带宽、所述参考信号占用的子载波间隔、所述参考信号的密度、所述参考信号的传输周期、所述参考信号的时域偏移值、所述参考信号的频域偏移值以及所述参考信号的码域配置参数等。
基于以上举例,要确定参考信号的配置参数是否满足预设条件可以通过以下方式实现:
UE确定参考信号的类型为指定类型时,确定配置参数满足预设条件。例如,参考信号为一些重要的参考信号,如解调参考信号(Demodulation Reference Signal,DM-RS)、相位追踪参考信号(Phase-tracking reference signals,PT-RS)等,传输这些重要参考信号时占用的资源若包括DC载波上,那么UE接收这些参考信号就会受到影响,参考信号不能得到有效解调,那么就可以调整DC载波的位置,以减少对这些参考信号的接收影响;
或者,UE确定参考信号的带宽、或子载波间隔(subcarrier spacing,SCS)、或密度、或周期、或时域偏移值、或频域偏移值或码域配置参数小于或等于预设阈值时,确定配置参数满足预设条件。这类的预设阈值不是固定一种,根据参数的不同而不同。
例如,配置参数为参考信号的带宽时,预设阈值可以为1PRB,即参考信号的带宽小于1PRB时,确定配置参数满足预设条件。这里配置参数为参考信号的带宽时,预设阈值的取值与PTRS的密度有关,PTRS的密度越小,带宽的预设阈值越大,反之越小。例如如果PTRS的密度为4个PRB中仅有一个RE,那么带宽的预设阈值可以为4或8,当带宽小于预设阈值时,确定需调整DC载波的位置。
配置参数为参考信号的子载波间隔时,预设阈值根据SCS的大小确定,不同大小的SCS关联不同的参考信号的模式(pattern),不同的参考信号的pattern可以对应不同的预设阈值,当SCS小于预设阈值时,在高速移动场景下,小SCS对应的DMRS的符号数较多,此时若某个符号的DMRS受到影响,则确定需调整DC载波的位置。
配置参数为参考信号的密度时,例如预设阈值可以为4个PRB,即如果参考信号的频域密度大于4个PRB,确定需调整DC载波的位置。参考信号的频域密度越小, 说明一定频域资源中参考信号越稀疏。在这种条件下,一旦一部分参考信号受到DC载波的影响,对参考信号的估计性能影响较大。
配置参数为参考信号的周期时,例如预设阈值可以为20ms或100ms等,即如果参考信号的密度小于4个PRB,确定需调整DC载波的位置。
配置参数为参考信号的时域偏移值,时域偏移值小于对应的预设阈值时,需要调整DC载波的位置,时域偏移值大于预设阈值时,对参考信号的性能影响较大。
配置参数为参考信号的频域偏移值,频域偏移值小于对应的预设阈值时,需要调整DC载波的位置。频域偏移值大于预设阈值时,对参考信号的性能影响较大。
配置参数为参考信号的码域配置参数时,例如码域配置参数可以为参考信号的序列长度,参考信号可以为正交覆盖码(Orthogonal Cover Code,OCC),这时预设阈值可以为2或3等。
示例性的,传输数据的调度参数可以包括以下中的至少一种:所述传输数据的类型、所述传输数据占用的带宽、所述传输数据占用的符号数、所述传输数据占用的子载波间隔、所述传输数据的调制编码方式(Modulation coding scheme,MCS)以及所述传输数据的调制阶数。
基于以上举例,要确定传输数据的调度参数是否满足预设条件可以通过以下方式实现:
UE传输数据的类型为指定类型时,确定需调整DC载波的位置。指定类型可以为控制信息等较为重要的信息,控制信息具体可以为信道状态信息(Channel State Information,CSI)、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)或多输入多输出(Multiple-Input Multiple-Output,MIMO)的相关信息等。如果控制信息占用的资源包括DC载波,确定需调整DC载波的位置。
调度参数为传输数据的带宽时,预设阈值例如可以为一个或多个资源块组。例如2个资源块组,每个资源块组有协议预定义的大小,例如大小为4,8或16等。又如,预设阈值例如可以为固定大数的PRB数,如4PRB。即当传输数据的带宽小于预设阈值时,确定需调整DC载波的位置。这是由于带宽小于一定的值时,一旦某个传输的子载波受到DC的影响,对整个系统性能影响的占比更大。
调度参数为传输数据占用的符号数时,预设阈值例如可以为1、2或3个符号。即当传输数据占用的符号数小于预设阈值时,确定需调整DC载波的位置。这是由于符号数小于一定的值时,一旦某个传输的符号受到DC的影响,对整个系统性能影响的占比更大。
调度参数为传输数据的子载波间隔时,预设阈值例如可以为60kHz。即当传输数据的子载波间隔小于预设阈值时,确定需调整DC载波的位置。当子载波间隔越大,则通常用于高速移动场景或高频场景,此时DC子载波对数据或参考信号产生的影响会更大。
调度参数为传输数据的MCS时,预设阈值例如可以为码率在0.75以上,或MCS对应的频谱效率在3或4以上配置值。当传输数据的MCS大于预设阈值时,确定需调整DC载波的位置。这是由于MCS值较大时,例如对应64正交振幅调制(Quadrature Amplitude M-odulation,QAM)或256QAM的高阶调制的较高码率值时, 对接收信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)要求更高。当DMRS或PTRS这类重要的参考信号占用的资源包括DC载波时,会降低有效的接收SINR,从而对译码性能产生较大影响,因此当MCS大于预设阈值时,需要调整DC载波的位置。
调度参数为传输数据的调制阶数时,预设阈值例如可以为64QAM或1024QAM。当调制阶数大于或等于预设阈值时,确定需调整DC载波的位置,这是由于调制阶段越高,对发生差异的容忍能力越低。一旦因DC发生错误,发生错误的风险越高。
示例性的,与所述DC载波重叠的资源上的信号特征包括以下中的至少一种:
SINR、接收信号噪声比(Signal Noise Ratio,SNR)、接收干燥噪声比(Interference Noise Ratio,INR)、参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收强度指示(Received Signal Strength Indication,RSSI)以及参考信号接收质量(Reference Signal Receiving Quality,RSRQ)。
需要指出的是,上述的参数对应的预设阈值是与UE的接收信号质量(可以用以上的参数SINR、SNR、INR、RSRP、RSSI、RSRQ中的任意一种来表征)相关的,不是固定不变的。信号质量越好,相应的预设阈值就越高;反之信号质量越差,则相应的预设阈值就越低。原因是,信号质量越好,说明接收机的抵抗或容错的能力越强,因此相应参数的阈值就可以越高。
进一步可选地,还可以根据UE作为接收侧得到的信号质量的参数来确定是否需调整DC的位置。这是因为当信号质量很好时,接收机几乎未受到其他的干扰或噪声的明影响影响,此时若仅有DC的影响,接收机也能抵抗。反之,当信号质量较差时,接收机在是否能够成功检测的接收的临界状态,此时一旦进一步受到DC的影响,接收机发生错误的可能性就很大。信号质量好和坏的准则是按相应的信号质量的表征参数的预设阈值来确定的。
信号特征为SINR时,预设阈值例如可以为当前传输时MCS对应的一个最低可检测的门限值。不同的MCS有不同的最低可检测的门限值。当与DC载波重叠的资源上的SINR小于或等于预设阈值时,确定需调整DC载波的位置。这是由于SINR较低时,说明当前接收的信号质量较差,如果使用了OCC的DMRS或PTRS这类重要的参考信号的资源包括DC载波,会进一步降低等效的接收SINR值,当SINR值低于一定的阈值时,需要调整DC载波的位置,否则会影响正常的信号解调和接收。
信号特征为SNR时,预设阈值例如可以为当前传输时MCS对应的一个最低可检测的门限值。不同的MCS有不同的最低可检测的门限值。当与DC载波重叠的资源上的SNR小于或等于预设阈值时,确定需调整DC载波的位置。
信号特征为INR时,预设阈值例如可以为当前传输时MCS对应的一个最低可检测的门限值。不同的MCS有不同的最低可检测的门限值。当与DC载波重叠的资源上的INR大于或等于预设阈值时,确定需调整DC载波的位置。这是由于与SINR类似,INR越大,表明干扰功率越大,SINR值越低。如果使用了OCC的DMRS或PTRS占用的资源包括DC载波时,会进一步增加等效的接收INR值,当INR值高于预设阈值时,需要调整接DC载波的位置,否则会影响INR正常的解调和接收。
信号特征为RSRP时,预设阈值例如可以为当前传输时MCS对应的一个最低可检 测的门限值。不同的MCS有不同的最低可检测的门限值。当与DC载波重叠的资源上的RSRP小于或等于预设阈值时,确定需调整DC载波的位置。
信号特征为RSSI时,预设阈值例如可以为当前传输时MCS对应的一个最低可检测的门限值。不同的MCS有不同的最低可检测的门限值。当与DC载波重叠的资源上的RSSI小于或等于预设阈值时,确定需调整DC载波的位置。
信号特征为RSRQ时,预设阈值例如可以为当前传输时MCS对应的一个最低可检测的门限值。不同的MCS有不同的最低可检测的门限值。当与DC载波重叠的资源上的RSRQ小于或等于预设阈值时,确定需调整DC载波的位置。
504、UE调整DC载波的位置。
可选的,UE可以将DC载波的位置调整到非关键信息对应的子载波上,或者调整到被调度的传输带宽之外,或者调整到调度UE时配置的激活BWP之外等。
UE调整DC载波的位置时,需要有一定的DC载波调整的时间,考虑到修改DC载波的位置,会使得UE接收信号的中断,于是,在本申请中,UE判断出要进行接收信号的DC载波调整时,UE会确定出一个调整时机,在这个调整时机内调整。
一种可能的实现中,UE在无下行调度的时间窗内调整所述DC载波的位置。
其中,调整时机需要UE自行判断,例如所述无下行调度的时间窗为一个时隙内无调度的时刻,或所述无下行调度的时间窗为带宽部分BWP重配置的时刻,或所述无下行调度的时间窗为带宽部分BWP更新的时刻。
这样,通过UE调整DC载波的位置接收信号,可以减少UE接收信号时DC载波的位置与关键信息所占的频域资源冲突,从而减少对UE的接收性能影响。
下面对图4对应的实施例中的第二种可能的实现方式进行进一步阐述。
本申请实施例提供一种直流载波的处理方法,如图6所示,包括:
601、UE从基站接收第一信号。
602、UE确定第一信号占用的资源是否与UE接收第一信号时设置的DC载波重叠,若确定是,则执行步骤603。
603、UE确定该资源是否满足预设条件,若确定是,则执行步骤604。
步骤603也可以理解为UE根据第一信号所占用的资源确定是否将待接收的第二信号占用的资源中DC载波对应的资源RE的比特值置为0。
步骤601~603的具体实现可以参考步骤501~503,此处不再赘述。
604、UE将待接收的第二信号占用的资源中与DC载波重叠的子载波对应的资源RE的比特值置为0。
也可以说,UE的RF电路将待接收的信号占用在DC载波上的信号丢弃,并对待接收的信号剩余的在非DC载波上的信号发送给UE的处理器进一步进行处理。
也就是说,UE将扣除DC载波上的信号,不需要对DC载波进行调整,使得复杂度降低。例如本实施例适用于UE通过DC载波接收信号影响UE的接收性能较小的场景。例如,当前接收信号的信号质量较好,当前接收信号的配置信息的配置值为较鲁棒的配置。例如配置为:带宽较大,MCS较低或参考信号的密度较高等。
在LTE的下行系统中,DC载波上没有传输或承载任何的信号,本申请应用于5G的新空口(New Radio,NR)系统中时,实施例中阐述要丢弃DC载波对应的子载波 上的信号,为了说明本申请与LTE的区别,下面对LTE和本申请NR系统的DC载波进行举例说明。
假设基站发送信号时的带宽为4PRB,在扣除各种参考信号占用的资源之后,假设基站在传输数据的子载波数为50个RE,且假设基站的MCS对应正交相移键控(Quadrature Phase Shift Keyin,QPSK)调制,1/4码率,则50个RE一共可以承载2*50=100个编码后的比特。
在LTE的下行系统中,基站知道UE的下行接收DC载波的位置,因为DC载波上没有传输或承载任何的信号,所以UE的接收机在收到这些信号后,在译码前,得到的仍是100个比特。
而对于NR的接收机,因为基站不知道UE的下行接收DC载波的位置。所以,当UE接收信号时DC载波与某个数据RE重叠时,或者说UE接收的信号占用的资源中与DC载波重叠的子载波上的信号被丢弃。但是UE的接收机在丢弃这个RE上的信号之后,得到的RE数是(50-1=49)。对应的,UE从这49个RE中可以得到49*2=98比特的待译码的信息。
所以UE在接收机丢弃这个RE上的信号之后,即对应的即为接收机侧进行相应的打孔操作:对与DC载波重叠的这个RE上的信号填上0之后,然后按填的0来得到50个RE的数据,然后根据这50个RE的符号,得到待译码的100个软比特,译码后得到25比的信息比特(码率为1/4)。
图4、图5以及图6对应的实施例阐述的是UE接收信号的场景,相应的,本申请技术方案还可以适用于UE发送信号的场景。
本申请实施例提供一种直流载波的处理方法,如图7所示,包括:
701、第一设备向第二设备发送第一信号。
702、第一设备确定第一信号所占用的资源中是否与第一设备发送第一信号时设置的DC载波重叠。
703、若确定是,则第一设备调整DC载波的位置,或者,则第一设备将发送的第二信号占用的资源中与DC载波重叠的子载波对应的资源RE的比特值置为0。
步骤701~703的具体实现与图4对应的实施例的实现方式类似,此处不再赘述。
本申请实施例提供一种直流载波的处理方法,如图8所示,包括:
801、UE向基站发送第一信号。
802、UE确定第一信号占用的资源是否与UE发送第一信号时设置的DC载波重叠,若确定是,则执行步骤803。
803、UE确定该资源是否满足预设条件,若确定是,则执行步骤804。
804、UE调整DC载波的位置。
步骤801~803的具体实现与图5对应的实施例的实现方式类似,此处不再赘述。
本申请实施例提供一种直流载波的处理方法,如图9所示,包括:
901、UE向基站发送第一信号。
902、UE确定第一信号占用的资源是否与UE发送第一信号时设置的DC载波重叠,若确定是,则执行步骤903。
903、UE确定该资源是否满足预设条件,若确定是,则执行步骤904。
904、UE将待发送的第二信号占用的资源中与DC载波重叠的子载波对应的资源RE的比特值置为0。
步骤901~904的具体实现与图6对应的实施例的实现方式类似,此处不再赘述。
通过以上实施例,本申请提供的方案可以使得RC载波被调度用于传输信号时,将DC载波的位置进行调整或者丢弃DC载波上传输的信号,以减少UE的接收性能影响和发送性能影响。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如第一设备、第二设备和UE等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图10示出了上述实施例中所涉及的第一设备的一种可能的结构示意图,当第一设备为UE时,UE100包括:接收单元1001、处理单元1002和发送单元1003。接收单元1001用于支持UE执行图4中的过程401,图5中的过程501,图6中的过程601,处理单元1002用于支持UE执行图4中的过程402和403,图5中的过程502、503和504,图6中的过程602-604,图7中的过程702和703,图8中的过程802-804,图9中的过程902-904,发送单元1003用于支持UE执行图7中的过程701,图8中的过程801,图9中的过程901。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图11示出了上述实施例中所涉及的第一设备的一种可能的结构示意图。第一设备为UE时,UE110包括:处理模块1102和通信模块1103。处理模块1102用于对UE的动作进行控制管理,例如,处理模块1102用于支持UE执行图4中的过程402和403,图5中的过程502、503和504,图6中的过程602-604,图7中的过程702和703,图8中的过程802-804,图9中的过程902-904,和/或用于本文所描述的技术的其它过程。通信模块1103用于支持UE与其他网络实体的通信,例如与图1、图2和图3中示出的功能模块或网络实体之间的通信。UE还可以包括存储模块1101,用于存储UE的程序代码和数据。
其中,处理模块1102可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field  Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1103可以是收发器、收发电路或通信接口等。存储模块1101可以是存储器。
当处理模块1102为处理器,通信模块1103为收发器,存储模块1101为存储器时,本申请实施例所涉及的UE可以为图12所示的UE。
参阅图12所示,该UE120包括:处理器1202、收发器1203、存储器1201以及总线1204。其中,收发器1203、处理器1202以及存储器1201通过总线1204相互连接;总线1204可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (34)

  1. 一种直流载波的处理方法,其特征在于,所述方法包括:
    第一设备从第二设备接收第一信号;
    所述第一设备确定所述第一信号所占用的资源是否与所述第一设备接收所述第一信号时设置的直流DC载波重叠;
    若确定是,则所述第一设备将待接收的第二信号占用的资源中与所述DC载波重叠的子载波对应的资源RE的比特值置为0。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送所述第一设备接收所述第一信号的DC载波的位置信息。
  3. 根据权利要求1或2所述的方法,其特征在于,若所述第一设备确定所述第一信号所占用的资源与所述第一设备接收所述第一信号时设置的直流DC载波重叠,则在所述第一设备将待接收的第二信号占用的资源中与所述DC载波重叠的子载波对应的资源RE的比特值置为0之前,所述方法还包括:
    所述第一设备根据所述第一信号所占用的资源确定是否将所述待接收的第二信号占用的资源中所述DC载波对应的资源RE的比特值置为0。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,当所述第一信号为参考信号RS时,所述RS包括相位追踪参考信号PTRS或解调参考信号DMRS;
    所述RS所占用的所述资源包括如下至少一种:
    所述RS的配置参数和所述RS占用的所述DC载波的资源上的信号特征。
  5. 根据权利要求4所述的方法,其特征在于,所述RS的配置参数包括以下中的至少一种:
    所述RS占用的带宽、所述RS占用的子载波间隔以及所述RS的传输周期。
  6. 根据权利要求4所述的方法,其特征在于,所述信号特征包括以下中的至少一种:
    信号的调制编码方式MCS、信号的占用的符号数、信号占用的带宽、信号的子载波间隔以及信号的传输周期。
  7. 根据权利要求5所述的方法,其特征在于,所述第一设备根据所述第一信号所占用的资源确定是否将所述待接收的第二信号占用的资源中所述DC载波对应的资源RE的比特值置为0包括:
    若确定所述RS占用的带宽、所述RS占用的子载波间隔以及所述RS的传输周期中的至少一种小于或等于预设阈值,则所述第一设备确定将所述待接收的第二信号占用的资源中与所述DC载波对应的资源RE的比特值置为0。
  8. 根据权利要求6所述的方法,其特征在于,所述第一设备根据所述第一信号所占用的资源确定是否将所述待接收的第二信号占用的资源中所述DC载波对应的资源RE的比特值置为0包括:
    若确定所述信号的占用的符号数、所述信号占用的带宽、所述信号的子载波间隔以及所述信号的传输周期小于或等于预设阈值,或,若确定所述MCS大于或等于预设阈值,则所述第一设备确定将所述待接收的第二信号占用的资源中与所述DC载波对应 的资源RE的比特值置为0。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述第一信号和所述第二信号在新空口NR系统中传输。
  10. 一种直流载波的处理方法,其特征在于,所述方法包括:
    第一设备向第二设备发送第一信号;
    所述第一设备确定所述第一信号所占用的资源是否与所述第一设备发送所述第一信号时设置的直流DC载波重叠;
    若确定是,则所述第一设备将待发送的第二信号占用的资源中与所述DC载波重叠的子载波对应的资源RE的比特值置为0。
  11. 根据权利要求10所述的方法,其特征在于,若所述第一设备确定所述第一信号所占用的资源与所述第一设备发送所述第一信号时设置的直流DC载波重叠,则在所述第一设备将待发送的第二信号占用的资源中与所述DC载波重叠的子载波对应的资源RE的比特值置为0之前,所述方法还包括:
    所述第一设备根据所述第一信号所占用的资源确定是否将所述待发送的第二信号占用的资源中所述DC载波对应的资源RE的比特值置为0。
  12. 根据权利要求10或11所述的方法,其特征在于,当所述第一信号为参考信号RS时,所述RS包括相位追踪参考信号PTRS或解调参考信号DMRS;
    所述RS所占用的所述资源包括如下至少一种:
    所述RS的配置参数和所述RS占用的所述DC载波的资源上的信号特征。
  13. 根据权利要求12所述的方法,其特征在于,所述RS的配置参数包括以下中的至少一种:
    所述RS占用的带宽、所述RS占用的子载波间隔以及所述RS的传输周期。
  14. 根据权利要求12所述的方法,其特征在于,所述信号特征包括以下中的至少一种:
    信号的调制编码方式MCS、信号的占用的符号数、信号占用的带宽、信号的子载波间隔以及信号的传输周期。
  15. 根据权利要求13所述的方法,其特征在于,所述第一设备根据所述第一信号所占用的资源确定是否将所述待发送的第二信号占用的资源中所述DC载波对应的资源RE的比特值置为0包括:
    若确定所述RS占用的带宽、所述RS占用的子载波间隔以及所述RS的传输周期中的至少一种小于或等于预设阈值,则所述第一设备确定将所述待发送的第二信号占用的资源中与所述DC载波对应的资源RE的比特值置为0。
  16. 根据权利要求14所述的方法,其特征在于,所述第一设备根据所述第一信号所占用的资源确定是否将所述待发送的第二信号占用的资源中所述DC载波对应的资源RE的比特值置为0包括:
    若确定所述信号的占用的符号数、所述信号占用的带宽、所述信号的子载波间隔以及所述信号的传输周期小于或等于预设阈值,或,若确定所述MCS大于或等于预设阈值,则所述第一设备确定将所述待发送的第二信号占用的资源中与所述DC载波对应的资源RE的比特值置为0。
  17. 根据权利要求10-16任一项所述的方法,其特征在于,所述第一信号和所述第二信号在新空口NR系统中传输。
  18. 一种设备,所述设备为第一设备,其特征在于,包括:
    收发器,用于从第二设备接收第一信号;
    处理器,用于确定所述第一信号所占用的资源是否与所述第一设备接收所述第一信号时设置的直流DC载波重叠;
    所述处理器还用于,若确定是,则将待接收的第二信号占用的资源中与所述DC载波重叠的子载波对应的资源RE的比特值置为0。
  19. 根据权利要求18所述的设备,其特征在于,所述收发器用于:
    向所述第二设备发送所述第一设备接收所述第一信号的DC载波的位置信息。
  20. 根据权利要求18或19所述的设备,其特征在于,所述处理器还用于:
    根据所述第一信号所占用的资源确定是否将所述待接收的第二信号占用的资源中所述DC载波对应的资源RE的比特值置为0。
  21. 根据权利要求18-20任一项所述的设备,其特征在于,当所述第一信号为参考信号RS时,所述RS包括相位追踪参考信号PTRS或解调参考信号DMRS;
    所述RS所占用的所述资源包括如下至少一种:
    所述RS的配置参数和所述RS占用的所述DC载波的资源上的信号特征。
  22. 根据权利要求21所述的设备,其特征在于,所述RS的配置参数包括以下中的至少一种:
    所述RS占用的带宽、所述RS占用的子载波间隔以及所述RS的传输周期。
  23. 根据权利要求21所述的设备,其特征在于,所述信号特征包括以下中的至少一种:
    信号的调制编码方式MCS、信号的占用的符号数、信号占用的带宽、信号的子载波间隔以及信号的传输周期。
  24. 根据权利要求22所述的设备,其特征在于,所述处理器用于:
    若确定所述RS占用的带宽、所述RS占用的子载波间隔以及所述RS的传输周期中的至少一种小于或等于预设阈值,则确定将所述待接收的第二信号占用的资源中与所述DC载波对应的资源RE的比特值置为0。
  25. 根据权利要求23所述的设备,其特征在于,所述处理器用于:若确定所述信号的占用的符号数、所述信号占用的带宽、所述信号的子载波间隔以及所述信号的传输周期小于或等于预设阈值,或,若确定所述MCS大于或等于预设阈值,则确定将所述待接收的第二信号占用的资源中与所述DC载波对应的资源RE的比特值置为0。
  26. 根据权利要求18-25任一项所述的设备,其特征在于,所述第一信号和所述第二信号在新空口NR系统中传输。
  27. 一种设备,所述设备为第一设备,其特征在于,包括:
    收发器,用于向第二设备发送第一信号;
    处理器,用于确定所述第一信号所占用的资源是否与所述第一设备发送所述第一信号时设置的直流DC载波重叠;
    所述处理器,还用于若确定是,则将待发送的第二信号占用的资源中与所述DC载 波重叠的子载波对应的资源RE的比特值置为0。
  28. 根据权利要求27所述的设备,其特征在于,所述处理器用于:
    根据所述第一信号所占用的资源确定是否将所述待发送的第二信号占用的资源中所述DC载波对应的资源RE的比特值置为0。
  29. 根据权利要求27或28所述的设备,其特征在于,当所述第一信号为参考信号RS时,所述RS包括相位追踪参考信号PTRS或解调参考信号DMRS;
    所述RS所占用的所述资源包括如下至少一种:
    所述RS的配置参数和所述RS占用的所述DC载波的资源上的信号特征。
  30. 根据权利要求29所述的设备,其特征在于,所述RS的配置参数包括以下中的至少一种:
    所述RS占用的带宽、所述RS占用的子载波间隔以及所述RS的传输周期。
  31. 根据权利要求29所述的设备,其特征在于,所述信号特征包括以下中的至少一种:
    信号的调制编码方式MCS、信号的占用的符号数、信号占用的带宽、信号的子载波间隔以及信号的传输周期。
  32. 根据权利要求30所述的设备,其特征在于,所述处理器用于:
    若确定所述RS占用的带宽、所述RS占用的子载波间隔以及所述RS的传输周期中的至少一种小于或等于预设阈值,则确定将所述待发送的第二信号占用的资源中与所述DC载波对应的资源RE的比特值置为0。
  33. 根据权利要求31所述的设备,其特征在于,所述处理器用于:
    若确定所述信号的占用的符号数、所述信号占用的带宽、所述信号的子载波间隔以及所述信号的传输周期小于或等于预设阈值,或,若确定所述MCS大于或等于预设阈值,则确定将所述待发送的第二信号占用的资源中与所述DC载波对应的资源RE的比特值置为0。
  34. 根据权利要求27-33任一项所述的设备,其特征在于,所述第一信号和所述第二信号在新空口NR系统中传输。
PCT/CN2019/073493 2019-01-28 2019-01-28 一种直流载波的处理方法和装置 WO2020154863A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/073493 WO2020154863A1 (zh) 2019-01-28 2019-01-28 一种直流载波的处理方法和装置
CN201980013852.5A CN111819810B (zh) 2019-01-28 2019-01-28 一种直流载波的处理方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/073493 WO2020154863A1 (zh) 2019-01-28 2019-01-28 一种直流载波的处理方法和装置

Publications (1)

Publication Number Publication Date
WO2020154863A1 true WO2020154863A1 (zh) 2020-08-06

Family

ID=71839866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073493 WO2020154863A1 (zh) 2019-01-28 2019-01-28 一种直流载波的处理方法和装置

Country Status (2)

Country Link
CN (1) CN111819810B (zh)
WO (1) WO2020154863A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116325607A (zh) * 2020-10-30 2023-06-23 Oppo广东移动通信有限公司 上报直流载波位置的方法、终端设备和网络设备
CN116491181A (zh) * 2020-11-11 2023-07-25 Oppo广东移动通信有限公司 上报直流载波位置的方法、终端设备和网络设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114430312A (zh) * 2020-10-29 2022-05-03 中国移动通信有限公司研究院 一种直流分量载波的位置上报、接收方法、终端及设备
US20240178980A1 (en) * 2021-03-31 2024-05-30 Beijing Xiaomi Mobile Software Co., Ltd. Method for receiving bandwidth part combination and method for sending bandwidth part combination

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136207A1 (ja) * 2010-04-30 2011-11-03 株式会社 エヌ・ティ・ティ・ドコモ 基地局、移動局、制御信号送信方法及び制御信号受信方法
CN102438320A (zh) * 2010-09-29 2012-05-02 电信科学技术研究院 一种下行调度信息的配置方法和设备
CN104113505A (zh) * 2010-09-30 2014-10-22 中国移动通信集团公司 多载波通信系统降低干扰的方法以及终端设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9860678B2 (en) * 2015-05-22 2018-01-02 Hyukjun Oh Methods for performing machine type communication for the purpose of coverage enhancement, apparatuses and systems for performing the same
WO2018233831A1 (en) * 2017-06-22 2018-12-27 Telefonaktiebolaget Lm Ericsson (Publ) TRANSMISSION ALLOCATION CONTROL
CN108900286B (zh) * 2017-11-17 2019-04-23 华为技术有限公司 参考信号的传输方法和传输装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136207A1 (ja) * 2010-04-30 2011-11-03 株式会社 エヌ・ティ・ティ・ドコモ 基地局、移動局、制御信号送信方法及び制御信号受信方法
CN102438320A (zh) * 2010-09-29 2012-05-02 电信科学技术研究院 一种下行调度信息的配置方法和设备
CN104113505A (zh) * 2010-09-30 2014-10-22 中国移动通信集团公司 多载波通信系统降低干扰的方法以及终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "PT-RS Considerations", 3GPP DRAFT; R1-1807605, 3RD GENERATION PARTNERSHIP PROJECT (3GPP),, vol. RAN WG1, no. Busan, Korea; 20180521 - 20180525, 24 May 2018 (2018-05-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051463247 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116325607A (zh) * 2020-10-30 2023-06-23 Oppo广东移动通信有限公司 上报直流载波位置的方法、终端设备和网络设备
CN116491181A (zh) * 2020-11-11 2023-07-25 Oppo广东移动通信有限公司 上报直流载波位置的方法、终端设备和网络设备

Also Published As

Publication number Publication date
CN111819810B (zh) 2021-10-26
CN111819810A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
EP3937416B1 (en) Systems and methods to select or transmitting frequency domain patterns for phase tracking reference signals
CN106464467B (zh) 用于非正交多址和干扰消去的方法和装置
WO2020154863A1 (zh) 一种直流载波的处理方法和装置
CN112204896B (zh) 经由多个经波束成形信道的经聚集时隙的传输
JP2019004502A (ja) 低レイテンシーを有するlte(登録商標)に関するダウンリンクチャネル設計
WO2021155586A1 (en) Sounding reference signal (srs) enhancements
CN112075030A (zh) 用于使用多个波束的数据传输的空间分集
WO2020011264A1 (zh) 一种信道质量通知方法、接收方法和装置
WO2022074884A1 (ja) 端末、基地局及び通信方法
WO2021166440A1 (ja) 端末及び通信方法
CN115552817A (zh) 用于上行链路传输的传输块的可缩放大小设定
WO2020211767A1 (zh) 用于数据传输的方法和装置
WO2022036529A1 (zh) 一种相位跟踪参考信号的发送方法、接收方法及通信装置
CN116134897A (zh) 终端、基站及通信方法
CN117812740A (zh) 一种协作传输的数据调度的方法和装置
WO2014108472A1 (en) Timing for radio reconfiguration
WO2023076792A1 (en) Frequency first per layer code block mapping
US20220131595A1 (en) Adaptive advanced receivers based on packet error rate
CN115777228A (zh) 终端、基站及通信方法
WO2023274287A1 (zh) 信道状态信息传输方法以及相关通信装置
US20230327818A1 (en) Resource allocations for repetitions of non-acknowledgement feedback
WO2024171520A1 (ja) 基地局、端末及び通信方法
US20240195570A1 (en) Communication device and communication method
WO2020030112A1 (zh) 数据传输方法及装置
CN116711244A (zh) 用于高频段无线通信的调制和译码方案能力

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913877

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913877

Country of ref document: EP

Kind code of ref document: A1