WO2020153494A1 - Rigidity influence degree analysis method, rigidity influence degree analysis device, and program - Google Patents

Rigidity influence degree analysis method, rigidity influence degree analysis device, and program Download PDF

Info

Publication number
WO2020153494A1
WO2020153494A1 PCT/JP2020/002606 JP2020002606W WO2020153494A1 WO 2020153494 A1 WO2020153494 A1 WO 2020153494A1 JP 2020002606 W JP2020002606 W JP 2020002606W WO 2020153494 A1 WO2020153494 A1 WO 2020153494A1
Authority
WO
WIPO (PCT)
Prior art keywords
analysis
rigidity
press
execution data
influence
Prior art date
Application number
PCT/JP2020/002606
Other languages
French (fr)
Japanese (ja)
Inventor
純希 名取
田中 康治
隆司 宮城
操 小川
菅原 稔
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2020516919A priority Critical patent/JP6760546B1/en
Publication of WO2020153494A1 publication Critical patent/WO2020153494A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Definitions

  • the present invention relates to a rigidity influence analysis method, a rigidity influence analysis device, and a program.
  • Press-formed products obtained by press-forming materials such as metal plates are used in automobiles, home appliances, buildings and the like.
  • press-forming materials such as metal plates
  • high-strength thin plates are used as raw materials.
  • Patent Document 1 discloses a springback factor identification method.
  • the shape, residual stress distribution and strain distribution of the press-formed product are calculated by press-forming analysis.
  • springback analysis is performed based on the calculated shape of the press-formed product and the like (first springback analysis step).
  • the springback analysis is performed by changing the Young's modulus in the designated direction of an arbitrary region of the press-formed product (second springback analysis step).
  • second springback analysis step the amount of springback obtained in the first springback analysis step and the amount of springback obtained in the second springback analysis step are compared to determine the residual stress region of the factor of springback and the residual stress. The direction is specified.
  • the rigidity influence degree the degree of rigidity influence.
  • first analysis the force of the rigidity of an arbitrary region of the press-formed product on the deformation of the press-formed product
  • the present inventors perform a normal springback analysis (first analysis) on the press-formed product and change the Young's modulus of an arbitrary region of the press-formed product, as in the above-mentioned Patent Document 1.
  • Springback analysis second analysis was performed, and the difference between the springback amount by the first analysis and the springback amount by the second analysis was obtained. Then, an attempt was made to utilize the obtained difference in springback amount as the degree of rigidity influence.
  • the present invention provides a rigidity influence degree analysis method, a rigidity influence degree analysis device, and a program capable of appropriately analyzing the influence of the rigidity of an arbitrary region of the press formed product on the deformation of the press formed product.
  • the purpose is to
  • the present inventors have conducted various studies to solve the above problems. And the following knowledge was obtained.
  • the Young's modulus or the plate thickness of the above-mentioned area is changed as a numerical value related to the rigidity. It is conceivable that the elasticity analysis is performed. The elasticity analysis is performed assuming that the in-plane average stress and/or the sheet thickness direction deviation stress act on the press-formed product, for example.
  • the in-plane average stress is the average stress of the in-plane direction stress of the press-formed product in the plate thickness direction distribution.
  • the in-plane direction stress is a stress generated in a direction parallel to the surface of the press-formed product (direction orthogonal to the plate thickness direction).
  • the plate thickness direction deviation stress is a deviation stress of the plate thickness direction distribution of the in-plane direction stress, and is a stress distribution obtained by subtracting the average stress component from the plate thickness direction distribution of the in-plane direction stress.
  • Deformation (strain or bending) of any area of the press-formed product at the time of release is mainly due to the release of stress in the area and deformation of the area around the area. appear.
  • the stress relief should be performed with the change of the numerical value regarding the rigidity of the arbitrary region. It is preferable to avoid suppressing or promoting the deformation of the arbitrary region that is a factor.
  • the strain can be represented by the following formula (i), and the bending can be represented by the following formula (ii).
  • ⁇ /E (i)
  • M/EI (ii)
  • indicates the amount of strain
  • indicates the stress
  • E indicates the Young's modulus.
  • represents the curvature (bending amount)
  • M represents the bending moment
  • E represents the Young's modulus
  • I represents the second moment of area.
  • the plate thickness direction deviation stress (bending moment) generated in the arbitrary region is affected by t 2 and The resulting second moment of area is affected by t 3 . That is, the bending caused by the deviation stress (bending moment) in the plate thickness direction is affected by the plate thickness. Therefore, in order to perform the elastic analysis while avoiding the suppression or promotion of the bending of the arbitrary region due to the stress release as much as possible, the deviation stress in the plate thickness direction is changed according to the change amount of the plate thickness. There is a need.
  • the present invention was made based on the above findings, and has as its gist the following rigidity influence analysis method, rigidity influence analysis device, and program.
  • a stiffness effect analysis method executed by a computer comprising: Of the first analysis execution data for performing the elastic analysis including the numerical data regarding the stress and rigidity of the press-formed product which is the analysis target of the finite element analysis, the value regarding the rigidity of the arbitrary region of the press-formed product is changed.
  • the second analysis execution for executing the elasticity analysis by changing the stress in the region of the first analysis execution data in which the numerical value regarding the rigidity is changed according to the changed numerical value regarding the rigidity.
  • An editing process that generates data, A first analysis step of obtaining first change information regarding a shape change of the press-formed product based on a result of elasticity analysis using the first analysis execution data; A second analysis step of obtaining second change information regarding a shape change of the press-formed product based on a result of elasticity analysis using the second analysis execution data;
  • a stiffness impact degree analysis method comprising: determining the degree of impact of the stiffness of the arbitrary region on the deformation of the press-formed product based on the first change information and the second change information.
  • the stress in a region of the first analysis execution data in which the numerical value regarding the rigidity is changed is changed in accordance with the amount of change in the numerical value regarding the rigidity, and the second analysis execution data is changed.
  • a plurality of second analysis execution data is generated by changing a numerical value regarding the rigidity for each of a plurality of different regions of the press-formed product
  • the second analysis step the second change information regarding the shape change of the press-formed product is obtained for each of the plurality of second analysis execution data
  • the influence degree calculating step the rigidity of each of the plurality of different regions is determined based on the first change information and the second change information obtained for each of the plurality of second analysis execution data.
  • the rigidity influence degree analysis method according to any one of (1) to (6), further including a display step of displaying the influence degree of each of the plurality of different regions in a contour display based on the size thereof.
  • An editorial unit that generates analysis execution data
  • a first analysis unit that obtains first change information regarding a shape change of the press-formed product based on a result of elasticity analysis using the first analysis execution data
  • a second analysis unit that obtains second change information regarding a shape change of the press-formed product based on a result of elasticity analysis using the second analysis execution data
  • a rigidity influence degree analysis device comprising: an influence degree calculation unit that obtains the degree of influence of the rigidity of the arbitrary region on the deformation of the press-formed product based on the first change information and the second change information.
  • the editing unit changes the stress in a region of the first analysis execution data in which the numerical value related to the stiffness is changed according to the amount of change in the numerical value related to the stiffness, and generates the second analysis execution data.
  • the rigidity influence analyzer according to (9) or (10) above.
  • the editing unit calculates an in-plane average stress component of a region of the first analysis execution data in which the numerical value regarding the rigidity is changed.
  • the rigidity influence analyzer according to (10) above which generates the second analysis execution data without changing the above.
  • the editing unit generates a plurality of second analysis execution data by changing a numerical value regarding the rigidity for each of a plurality of different regions of the press-formed product,
  • the second analysis unit obtains the second change information regarding the shape change of the press-formed product for each of the plurality of second analysis execution data,
  • the degree-of-influence calculation unit calculates the rigidity of each of the plurality of different regions based on the first change information and the second change information obtained for each of the plurality of second analysis execution data.
  • the rigidity influence analyzer according to any one of (9) to (13) above, for obtaining the degree of influence on the deformation.
  • FIG. 1 is a block diagram showing a schematic configuration of a rigidity influence analysis apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a press-formed product whose rigidity influence is analyzed by the rigidity influence analyzer according to the present embodiment.
  • FIG. 3 is a view showing a cross section of the press-formed product (cross section taken along the line AA in FIG. 2B).
  • FIG. 4 is a block diagram specifically showing the configuration of a rigidity influence analysis apparatus according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing an example of a plurality of regions set in a press-formed product.
  • FIG. 6 is a diagram showing another example of division of a plurality of regions in a press-formed product.
  • FIG. 1 is a block diagram showing a schematic configuration of a rigidity influence analysis apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a press-formed product whose rigidity influence is analyzed by the
  • FIG. 7 is a flow chart showing the operation of the rigidity influence analysis method according to the embodiment of the present invention.
  • FIG. 8 is a block diagram showing an example of a computer that realizes the calculation device according to the embodiment of the present invention.
  • FIG. 9 is a contour diagram showing the analysis results of Example 1.
  • FIG. 10 is a contour diagram showing the analysis results of Comparative Example 1A.
  • FIG. 11 is a contour diagram showing the analysis results of Comparative Example 1B.
  • FIG. 12 is a contour diagram showing the analysis results of Example 2.
  • FIG. 13 is a contour diagram showing the analysis results of Comparative Example 2A.
  • FIG. 14 is a contour diagram showing the analysis results of Comparative Example 2B.
  • FIG. 15 is a contour diagram showing the analysis results of Example 3.
  • FIG. 10 is a contour diagram showing the analysis results of Comparative Example 1A.
  • FIG. 11 is a contour diagram showing the analysis results of Comparative Example 1B.
  • FIG. 12 is a contour diagram showing the analysis results of Example 2.
  • FIG. 16 is a contour diagram showing the analysis results of Comparative Example 3A.
  • FIG. 17 is a contour diagram showing the analysis result of Comparative Example 3B.
  • FIG. 18 is a contour diagram showing the analysis results of Example 4.
  • FIG. 19 is a contour diagram showing the analysis results of Comparative Example 4A.
  • FIG. 20 is a contour diagram showing the analysis results of Comparative Example 4B.
  • FIG. 21 is a contour diagram showing the analysis results of Example 5.
  • FIG. 22 is a contour diagram showing the analysis results of Comparative Example 5A.
  • FIG. 23 is a contour diagram showing the analysis results of Example 6.
  • FIG. 24 is a contour diagram showing the analysis results of Comparative Example 6A.
  • FIG. 25 is a contour diagram showing the analysis results of Comparative Example 6B.
  • FIG. 26 is a diagram showing a press-formed product in which a stiffening portion for improving rigidity is provided on the top plate portion.
  • FIG. 1 is a block diagram showing a schematic configuration of a rigidity influence analysis apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a press-formed product whose rigidity influence degree is analyzed by the rigidity influence analyzer according to the present embodiment, and (a) is a perspective view of the press-formed product, b) is a plan view of the press-formed product.
  • the press-formed product 100 shown in FIG. 2 includes a top plate portion 102, a pair of vertical wall portions 104, and a pair of flange portions 106, and has a hat-shaped cross section.
  • the shape of the press-formed product to be analyzed by the rigidity influence analysis apparatus according to the present embodiment is limited to the shape shown in FIG. Instead, the rigidity influence analysis apparatus according to the present embodiment can be applied to press-formed products of various shapes.
  • a rigidity influence analysis apparatus 10 (hereinafter, abbreviated as analysis apparatus 10) according to the present embodiment includes an editing unit 12, a first analysis unit 14, a second analysis unit 16, and an influence degree.
  • the calculator 18 is provided.
  • the first analysis execution data is input to the editing unit 12 and the first analysis unit 14.
  • the first analysis execution data is data for executing elasticity analysis by the finite element method.
  • the first analysis execution data and the second analysis execution data described later include numerical data regarding the shape (plate thickness, mesh information, etc.), stress and rigidity of the press-formed product 100 to be analyzed.
  • the first analysis execution data includes, for example, data obtained by using press molding analysis, and includes the shape (plate thickness, mesh information, etc.) of the press molded product 100 before release and residual stress distribution. It includes the data shown and property data such as the Young's modulus of the material of the press-formed product.
  • an elasto-plastic finite element analysis or a one-step finite element analysis is executed using a known press forming analysis device based on the press forming condition set by the user. Can be obtained by
  • the stress included in the first analysis execution data is not limited to the residual stress obtained by the press forming analysis, and may be the stress obtained by other various analyzes or the stress arbitrarily set by the user.
  • the editing unit 12 generates second analysis execution data from the input first analysis execution data. Specifically, the editing unit 12 relates to the rigidity of the arbitrary region 100a of the press-formed product 100 (the region inside the two straight lines indicated by the alternate long and short dash line in FIG. 2B) in the first analysis execution data. Change the numerical value (for example, Young's modulus, section modulus, plate thickness, etc.). Further, as will be described in detail later, the editing unit 12 changes the stress of the region 100a of the first analysis execution data in which the numerical value regarding the rigidity is changed, according to the numerical value regarding the rigidity changed as described above. ..
  • the editing unit 12 changes the numerical value relating to the rigidity of the region 100a in the first analysis execution data, and changes the stress of the region 100a in accordance with the changed numerical value relating to rigidity. Generate analysis execution data.
  • the editing unit 12 outputs the generated second analysis execution data to the second analysis unit 16.
  • the editing unit 12 may change the numerical value regarding the rigidity of the region 100a of the first analysis execution data to the numerical value input by the user, and the numerical value obtained by multiplying the arbitrary coefficient set by the user. You may change to. Further, in the present embodiment, “changing the stress in accordance with the numerical value related to the rigidity” means changing the stress in accordance with the type and the amount of change in the numerical value related to the rigidity. Although the details will be described later, in the present embodiment, the editing unit 12 may generate the second analysis execution data without changing the stress depending on the type of the changed numerical value regarding the rigidity.
  • the position, shape, and size of the area where the numerical value regarding rigidity is changed by the editing unit 12 are not limited to the example shown in FIG. 2B, and can be changed as appropriate.
  • the editing unit 12 may set the area in which the numerical value regarding the rigidity is changed according to the operation of the user, for example.
  • the first analysis unit 14 obtains the first change information regarding the shape change of the press-formed product 100 based on the result of the elasticity analysis using the first analysis execution data.
  • the first analysis unit 14 outputs the obtained first change information to the influence degree calculation unit 18.
  • the first analysis unit 14 performs elasticity analysis based on, for example, shape data of the press-formed product 100 before release, stress distribution data, and property data such as Young's modulus included in the first analysis execution data ( Springback analysis) is performed to calculate the shape (mesh information, etc.) of the press-formed product 100 after release.
  • the 1st analysis part 14 calculates the information which shows the change of the shape of the press-molded article 100 before and after mold release as 1st change information.
  • the first change information is a numerical value indicating the degree of shape change of the press-formed product 100 before and after the elasticity analysis by the first analysis unit 14.
  • the first change information may be, for example, a springback amount calculated by a known method.
  • the first change information may be calculated according to a certain rule, and the calculation method is not particularly limited. Hereinafter, an example of a method of calculating the first change information will be briefly described.
  • FIG. 3 is a diagram showing a cross section of the press-formed product 100 after the elasticity analysis by the first analysis unit 14 (a cross section taken along the line AA of FIG. 2B).
  • the center line in the thickness direction of the top plate portion 102 of the press-formed product 100 before elastic analysis is indicated by a two-dot chain line.
  • the width direction of the top plate portion 102 is indicated by an arrow X
  • the thickness direction of the top plate portion 102 is indicated by an arrow Y.
  • the width direction of the top plate portion 102 will be referred to as the width direction X
  • the thickness direction of the top plate portion 102 will be referred to as the thickness direction Y.
  • the first analysis unit 14 uses the first change information based on, for example, displacements of arbitrary three preset points P1, P2, and P3 of the top plate 102.
  • points P1, P2, and P3 are nodes located at the center of the top plate portion 102 in the thickness direction Y in the analysis model.
  • the point P1 is a node located at one end of the top plate 102 in the width direction X
  • the point P2 is a node located at the other end of the top plate 102 in the width direction X
  • the point P3 is , A node located at the center of the top plate portion 102 in the width direction X.
  • the displacement to one side in the thickness direction Y is defined as a positive displacement
  • the displacement to the other side in the thickness direction Y is defined as a negative displacement
  • the first analysis unit 14 has a larger absolute value of the value obtained by subtracting the displacement of the point P3 from the displacement of the point P1 and the value obtained by subtracting the displacement of the point P3 from the displacement of the point P2. Is used as the first displacement information.
  • the first analysis unit 14 causes the displacement of the point P1 (2.6 mm). It is obtained by subtracting the displacement (-4.6mm) of the point P3 from the value (7.2mm) and the displacement (2.2mm) of the point P2 from the displacement (-4.6mm) of the point P3.
  • the larger absolute value which is 7.2 mm, is set as the first change information.
  • the points P1 and P2 are displaced by 2.6 mm and 2.2 mm on one side in the thickness direction Y, and the point P3 is displaced by 4.6 mm on the other side in the thickness direction Y.
  • the method of calculating the first change information is not limited to the above example.
  • the amount of change (displacement) in coordinates of a specific point (specific node of the analysis model) before and after the analysis by the first analysis unit 14 may be used as the first change information.
  • the amount of change in the distance between two specific points before and after the analysis may be used as the first change information.
  • a reference line connecting two specific points may be defined, and an angle (twist angle) formed by the reference line before analysis execution and the reference line after analysis execution may be used as the first change information.
  • a first reference line connecting the specific first point and the specific second point and a second reference line connecting the specific first point and the specific third point are defined, and the width direction X and the thickness direction Y are defined.
  • the amount of change (angle difference) before and after the analysis of the angle (planar projection angle) formed by the first reference line and the second reference line when viewed from the direction perpendicular to the direction may be used as the first change information.
  • a first reference line passing through two of the four specific points and a second reference line passing through the other two points are defined, and viewed from a direction perpendicular to the width direction X and the thickness direction Y.
  • the amount of change (angle difference) before and after the analysis is performed on the angle formed by the first reference line and the second reference line (planar projection angle) may be used as the first change information.
  • the second analysis unit 16 obtains second change information regarding the shape change of the press-formed product 100 based on the result of the elasticity analysis using the second analysis execution data provided from the editing unit 12. Ask.
  • the second analysis unit 16 performs elasticity analysis (springback analysis) by the same method as the first analysis unit 14, and calculates the shape (mesh information, etc.) of the press-formed product 100 after release. .. Further, the second analysis unit 16 calculates, as the second change information, information indicating the degree of shape change of the press-formed product 100 before and after the mold release, in the same manner as the first analysis unit 14.
  • the second analysis unit 16 outputs the calculated second change information to the influence degree calculation unit 18.
  • the influence degree calculation unit 18 determines that the rigidity of the region 100a is the deformation of the press-formed product 100 based on the first change information input from the first analysis unit 14 and the second change information input from the second analysis unit 16.
  • the degree of influence (hereinafter, referred to as rigidity influence degree) is calculated.
  • the degree-of-impact calculation unit 18 sets, for example, a numerical value obtained by subtracting the numerical value indicated by the second change information from the numerical value indicated by the first change information as the rigidity influence degree of the region 100a. For example, when the first change information is 7.2 mm and the second change information is 3.4 mm, the influence degree calculation unit 18 sets the rigidity influence degree of the region 100a to 3.8 mm.
  • the elasticity analysis of the press-formed product 100 is performed based on the first analysis execution data, and the rigidity of the arbitrary region 100a is changed from the first analysis execution data.
  • Elastic analysis of the press-formed product 100 is performed based on the second analysis execution data obtained in this way. Then, by comparing the analysis result based on the first analysis execution data before the rigidity change and the analysis result based on the second analysis execution data after the rigidity change, the rigidity of the arbitrary region 100a is deformed in the press-formed product 100. Can be calculated.
  • the editing unit 12 changes the stress in the area 100a of the first analysis execution data according to the changed numerical value regarding the rigidity, and generates the second analysis execution data.
  • the deformation (strain) of the region 100a caused by the stress release is caused as compared with the elastic analysis using the first analysis execution data.
  • the stress of the region 100a in the second analysis execution data is set so that the suppression or promotion of (or bending) can be avoided as much as possible.
  • the editing unit 12 increases the stress of the area 100a of the first analysis execution data according to the change amount of the Young's modulus, and the second Generate analysis execution data.
  • the editing unit 12 performs the first analysis according to the change amount of the plate thickness (second moment of area).
  • the second analysis execution data is generated by increasing the deviation stress in the plate thickness direction of the area 100a of the execution data.
  • the strain amount of the region 100a is calculated by the above equation (i)
  • the strain amount calculated using the stress and Young's modulus of the second analysis execution data is the first analysis execution.
  • the stress of the second analysis execution data is set so as to be equal to the amount of strain calculated using the stress and Young's modulus of the data.
  • the bending amount of the region 100a is calculated by the above formula (ii)
  • the bending amount calculated using the stress, Young's modulus, and plate thickness (second moment of area) of the second analysis execution data is set to be equal to the bending amount calculated using the stress, Young's modulus and plate thickness (second moment of area) of the first analysis execution data, in the plate thickness direction of the second analysis execution data. ..
  • FIG. 4 is a block diagram specifically showing the configuration of the rigidity influence analysis apparatus 10 according to the embodiment of the present invention.
  • the analysis device 10 includes a display data generation unit 20 and a display data generation unit 20 in addition to the editing unit 12, the first analysis unit 14, the second analysis unit 16 and the influence degree calculation unit 18 described above.
  • the fixed condition changing unit 22 is provided.
  • the editing unit 12, the first analysis unit 14, the second analysis unit 16, the influence degree calculation unit 18, the display data generation unit 20, and the fixed condition change unit 22 will be described in order.
  • the first analysis execution data is input to the editing unit 12 as described above.
  • the editing unit 12 divides the press-formed product 100 (analysis model) into a plurality of regions based on the shape data of the press-formed product 100 included in the first analysis execution data. Specifically, for example, the editing unit 12 divides the press-formed product 100 into a plurality of regions based on a user's operation so that the press-formed product 100 is divided by a chain line in FIG.
  • the editing unit 12 changes the numerical value regarding the rigidity of the first analysis execution data for each of the plurality of regions set in the press-formed product 100 as described above.
  • the editing unit 12 changes the stress in the first analysis execution data for each of the plurality of regions according to the changed numerical value regarding the rigidity.
  • the editing unit 12 changes the numerical value related to the rigidity of the first analysis execution data for each of the plurality of regions described above, and changes the stress according to the changed numerical value related to the rigidity.
  • a plurality of second analysis execution data are generated. For example, when the editing unit 12 changes the numerical values relating to the rigidity for each of the 50 areas, 50 second analysis execution data are generated.
  • the editing unit 12 may change the Young's modulus by multiplying the Young's modulus of each area by the rigidity changing coefficient K E , or multiply the plate thickness of each area by the rigidity changing coefficient K t.
  • the plate thickness may be changed according to.
  • the editing unit 12 when changing the Young's modulus, the editing unit 12 uniformly changes the Young's modulus regardless of the direction, for example. In other words, the editing unit 12 uniformly modifies the Young's modulus in each direction by the rigidity modification coefficient K E.
  • the stiffness change coefficients K E and K t are set to positive real numbers other than 1, respectively.
  • the editing unit 12 may change only one of the Young's modulus and the plate thickness, or may change both of them. When both the Young's modulus and the plate thickness are changed, the rigidity changing coefficients K E and K t may be different from each other or may be the same.
  • the stress data of the first analysis execution data includes the in-plane average stress component and the plate thickness direction deviation stress component.
  • the in-plane average stress component is the average stress component of the in-plane stress distribution of the press-formed product 100 in the plate thickness direction.
  • the in-plane direction stress is a stress generated in a direction parallel to the surface of the press-formed product 100 (direction orthogonal to the plate thickness direction).
  • the plate thickness direction deviation stress component is a deviation stress of the plate thickness direction distribution of the in-plane direction stress, and is a stress distribution obtained by subtracting the average stress component from the plate thickness direction distribution of the in-plane direction stress.
  • the editing unit 12 changes the Young's modulus and/or the plate thickness of the above-described plurality of regions when the Young's modulus and/or the plate thickness of the first analysis execution data is changed.
  • the stress of the first analysis execution data is changed according to the change amount.
  • the editing unit 12 changes the in-plane stress of the area 100a of the first analysis execution data according to the change amount of the Young's modulus. And the deviation stress in the plate thickness direction is increased (or decreased) to generate the second analysis execution data.
  • the editing unit 12 responds to the change amount of the plate thickness (second moment of area). Then, the deviation stress in the plate thickness direction of the region 100a of the first analysis execution data is increased (or decreased) to generate the second analysis execution data.
  • the editing unit 12 may change the stress of the first analysis execution data according to the change amount of the Young's modulus and/or the plate thickness of the first analysis execution data, and based on the user operation.
  • the editing unit 12 may change the stress of the first analysis execution data. For example, when the Young's modulus of the first analysis execution data is changed by multiplying the rigidity change coefficient K E , the editing unit 12 multiplies the rigidity change coefficient K E to in-plane stress and plate thickness direction. The deviation stress may be changed. Further, for example, editing unit 12, when changing the thickness of the first analysis execution data by multiplying the stiffness changing coefficient K t is the thickness direction deviatoric stress by multiplying the stiffness changing coefficient K t You may change it.
  • the editing unit 12 does not change the in-plane average stress component of the first analysis execution data and changes the first analysis execution data.
  • the second analysis execution data is generated by changing only the deviation stress in the plate thickness direction.
  • the elastic analysis is performed in the state where both the in-plane average stress component and the plate thickness direction deviation stress component are explained, but the elastic analysis is performed by applying only the in-plane average stress component.
  • the elastic analysis may be performed by applying only the deviation stress component in the plate thickness direction.
  • the first analysis unit 14 performs elasticity analysis based on the shape data of the press-formed product 100, the stress distribution data, and the property data such as Young's modulus included in the first analysis execution data, and calculates the first change information.
  • the first analysis unit 14 outputs an analysis result (including shape data and the like) including the first change information to the influence degree calculation unit 18.
  • the second analysis unit 16 performs elasticity analysis based on the shape data of the press-formed product 100, the stress distribution data, and the property data such as Young's modulus, which are included in the second analysis execution data input from the editing unit 12. Change information is calculated.
  • the second analysis unit 16 performs elasticity analysis for each of the plurality of second analysis execution data and calculates second change information. That is, in the present embodiment, the second analysis unit 16 calculates a plurality of second change information corresponding to a plurality of regions whose numerical values regarding rigidity have been changed by the editing unit 12, and calculates the calculated plurality of second change information. It outputs to the influence degree calculation part 18.
  • the degree-of-impact calculation unit 18 obtains the degree of rigidity influence of each of the plurality of regions based on the first change information input from the first analysis unit 14 and the plurality of second change information input from the second analysis unit 16. .. Specifically, the degree-of-impact calculation unit 18 calculates the degree of rigidity influence for each region in which the numerical value regarding rigidity is changed by comparing each of the plurality of second change information with the first change information.
  • the influence degree calculating unit 18 may correct the calculated stiffness influence degree based on the amount of change in the numerical value relating to the rigidity by the editing unit 12. For example, the degree-of-impact calculation unit 18 may divide the calculated degree of rigidity influence by the rigidity change coefficient K E or K t .
  • the influence degree calculating unit 18 outputs the calculated stiffness influence degree (or the corrected stiffness influence degree) to the display data generating unit 20.
  • the display data generation unit 20 displays the rigidity influence degree of each of the plurality of areas (the plurality of areas in which the numerical value regarding the rigidity has been changed by the editing unit 12) input from the influence degree calculation unit 18 based on the size thereof. Generate display data for doing.
  • the display data generation unit 20 outputs the generated display data to, for example, a display device (not shown).
  • a display device not shown.
  • contour diagrams as shown in FIGS. 9, 12, 15, 18, 21 and 23 described later are displayed on the screen of the display device.
  • a plurality of regions of the press-formed product 100 are colored so that the color becomes darker as the degree of rigidity influence increases.
  • the fixed condition changing unit 22 outputs, to the first analysis unit 14 and the second analysis unit 16, information for changing the fixed point that serves as a reference when generating display data according to a user operation.
  • the influence degree calculating unit 18 calculates the rigidity influence degree of each region from the deformation mode of the press-formed product 100 obtained by the elasticity analysis based on the preset fixed point, and the calculated rigidity of each region. Display data is generated based on the degree of influence.
  • the first analysis unit 14 when the information for changing the fixed point is input from the fixed condition changing unit 22, the first analysis unit 14 changes the fixed point (newly set) according to the input information.
  • the first change information is generated based on the fixed point).
  • the first analysis unit 14 first calculates the data such as the shape of the press-formed product 100 before release included in the first analysis execution data and the elasticity analysis using the first analysis execution data. Positioning (moving and/or rotating) at a newly set fixed point is performed for the data such as the shape of the press-formed product 100 after releasing that has been performed. Then, the first analysis unit 14 recalculates the first change information by the same method as described above, and outputs the first change information to the influence degree calculation unit 18. In this case, the first analysis unit 14 can calculate the first change information based on different fixed points without performing new elasticity analysis (springback analysis).
  • the second analysis unit 16 changes a fixed point (a newly set fixed point) according to the input information.
  • a plurality of pieces of second change information are generated based on Specifically, for each of the plurality of second analysis execution data, the second analysis unit 16 includes data such as the shape of the press-formed product 100 before release, which is included in the second analysis execution data, and the second analysis execution data. With respect to the data such as the shape of the press-formed product 100 already calculated by the elasticity analysis using, position adjustment (movement and/or rotation) at a newly set fixed point is performed.
  • the second analysis unit 16 newly calculates the second change information for each of the plurality of second analysis execution data by the same method as described above, and outputs the second change information to the influence degree calculation unit 18.
  • the second analysis unit 16 can calculate a plurality of second change information based on different fixed points without performing a new elasticity analysis (springback analysis).
  • the degree-of-influence calculation unit 18 uses the same method as the above-described method based on the first change information newly calculated by the first analysis unit 14 and the plurality of second change information newly calculated by the second analysis unit 16.
  • the rigidity influence degree of each of the plurality of regions is calculated, and the calculated rigidity influence degree is output to the display data generation unit 20.
  • the display data generation unit 20 generates display data for contour-displaying the rigidity influence degree of each of the plurality of regions input from the influence degree calculation unit 18 based on the size thereof. In this way, the analyzer 10 according to the present embodiment can easily generate the display data for displaying the contour diagram of the stiffness influence degree based on the different fixed points without performing a new elasticity analysis. ..
  • the present embodiment it is possible to calculate the rigidity influence degree of each of a plurality of regions of the press-formed product 100.
  • the user of the analyzer 10 can easily understand which part of the press-formed product 100 should be adjusted in rigidity, and can appropriately suppress the deformation of the press-formed product 100. ..
  • the deformation of the press-formed product 100 can be appropriately suppressed by applying a stiffening measure to the region analyzed by the analysis device 10 as having a high degree of rigidity influence.
  • a stiffening measure for example, it is conceivable to change the shape of the press-formed product such as forming a step, changing the shape of the seat surface, forming a bead.
  • each region and the number of divisions when the press-formed product 100 is divided into a plurality of regions are not limited to the example of FIG. 5, and can be appropriately changed.
  • the shape of each region may be a triangle or a polygon having five or more sides.
  • the top plate portion 102 is set to one area
  • the pair of vertical wall portions 104 is set to one area
  • the pair of flange portions 106 is set to one area. Good.
  • the press-formed product 100 may be divided into a plurality of regions based on the stress distribution data included in the first analysis execution data, as indicated by the dashed line in FIG. It should be noted that the alternate long and short dash line in FIG. 6 represents the isolines shown for each constant stress value.
  • FIG. 7 is a flow chart showing the operation of the rigidity influence analysis method according to the embodiment of the present invention.
  • the rigidity influence degree analysis method according to the present embodiment is performed by operating the analysis device 10.
  • the editing unit 12 and the first analysis unit 14 acquire the first analysis execution data (step S1). Further, as described above, the editing unit 12 generates a plurality of second analysis execution data (step S2).
  • the first analysis unit 14 generates the first change information based on the result of the elasticity analysis using the first analysis execution data (step S3). Furthermore, as described above, the second analysis unit 16 generates a plurality of pieces of second change information based on the results of elasticity analysis using a plurality of second analysis execution data (step S4).
  • the influence degree calculating unit 18 calculates the degree of rigidity influence of each of the plurality of regions of the press-formed product 100 based on the first change information and the plurality of second change information (step S5). ..
  • the display data generation unit 20 generates the display data and displays the contour diagram (step S6).
  • the first analysis unit 14 and the second analysis unit 16 determine whether or not information (hereinafter, referred to as change information) for changing the fixed point is input from the fixed condition changing unit 22 (Ste S7).
  • change information information for changing the fixed point is input from the fixed condition changing unit 22.
  • the first analysis unit 14 regenerates the first change information based on the newly set fixed point as described above (step S8).
  • the second analysis unit 16 newly generates a plurality of pieces of second change information based on the newly set fixed point (step S9).
  • the impact degree calculation unit 18 determines the plurality of regions based on the first change information and the plurality of second change information that are newly generated by the first analysis unit 14 and the second analysis unit 16. The degree of rigidity influence is calculated.
  • FIG. 8 is a block diagram showing an example of a computer that realizes the calculation device according to the embodiment of the present invention.
  • the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader/writer 116, and a communication interface 117. These units are connected to each other via a bus 121 so as to be able to perform data communication with each other.
  • the computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or in place of the CPU 111.
  • the CPU 111 loads the program (code) stored in the storage device 113 into the main memory 112, and executes these in a predetermined order to edit the editing unit 12, the first analysis unit 14, the second analysis unit 16, and the degree of influence.
  • the functions of the calculation unit 18, the display data generation unit 20, and the fixed condition change unit 22 are realized.
  • the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
  • the above program is provided, for example, in a state of being stored in a computer-readable recording medium 120.
  • the above program may be distributed on the Internet connected through the communication interface 117.
  • the storage device 113 include a semiconductor storage device such as a flash memory in addition to a hard disk drive.
  • the input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and a mouse.
  • the display controller 115 is connected to the display device 119 and controls the display on the display device 119.
  • the data reader/writer 116 mediates data transmission between the CPU 111 and the recording medium 120, reads a program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120.
  • the communication interface 117 mediates data transmission between the CPU 111 and another computer.
  • the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as a flexible disk, or CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory) can be given.
  • CF Compact Flash
  • SD Secure Digital
  • magnetic recording media such as a flexible disk
  • CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory) can be given.
  • the analysis apparatus 10 may be realized by using hardware corresponding to each unit instead of the computer in which the program is installed. Further, the analysis apparatus 10 is partially realized by the program. The remaining part may be realized by hardware.
  • the rigidity influence degree of the press-formed product 100 having the shape shown in FIG. 2 was analyzed by the analysis method according to the present invention. That is, in Examples 1 to 6, the press-formed product 100 was divided into 96 regions, and elastic analysis was performed while changing the stress, Young's modulus, plate thickness, etc. of each region, and the rigidity (Young's modulus or plate thickness) of each region was analyzed. ) Has an influence on the deformation of the press-formed product 100 (rigidity influence degree).
  • Table 1 below shows the analysis conditions for the examples and comparative examples.
  • the material of the press-formed product 100 was a 980 MPa grade cold-rolled steel sheet (sheet thickness 1.2 mm).
  • 9 to 25 are contour charts showing the analysis results of Examples and Comparative Examples. Note that in the contour diagrams shown in FIGS. 9 to 25, a plurality of regions of the press-molded product are colored so that the color becomes darker as the degree of influence of the rigidity or the like on the deformation of the press-molded product 100 increases. ..
  • Example 1 Comparative Example 1A, Comparative Example 1B, Example 6, Comparative Example 6A and Comparative Example 6B, a state in which both the in-plane average stress component and the plate thickness direction deviation stress component are applied Elasticity analysis was performed.
  • Example 2 Comparative Example 2A, Comparative Example 2B, Example 5 and Comparative Example 5A
  • Example 3 Comparative Example 3A, Comparative Example In 3B, Example 4, Comparative Example 4A, and Comparative Example 4B
  • the elastic analysis was performed in the state where only the sheet-thickness direction deviatoric stress component was applied.
  • Example 1 shows that the top plate portion 102 (see FIG. 2) has concentrated areas having a large influence degree. Based on this result, as shown in FIG. 26, when the stiffening portion 108 was formed on the top plate portion 102, the deformation amount of the press-formed product 100 was significantly reduced.
  • the degree of influence of rigidity (the degree of influence of the rigidity of an arbitrary region of the press-formed product on the deformation of the press-formed product) can be appropriately analyzed. That is, according to the present invention, it has been found that it is possible to appropriately specify the rigidity-improved portion for suppressing the deformation of the press-formed product, which was difficult to specify by the conventional analysis method.
  • FIG. 26 is a diagram showing a press-molded product in which stiffening countermeasures are applied to a portion having a high rigidity influence degree based on the analysis results of Examples 1 to 6.
  • a stiffening portion 108 for improving rigidity is provided on the surface of the top plate portion 102.
  • the stiffening portion 108 is composed of a plurality of beads.
  • analysis device 12 editing unit 14 first analysis unit 16 second analysis unit 18 influence degree calculation unit 20 display data generation unit 22 fixed condition change unit 100 press-formed product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

This rigidity influence degree analysis method is provided with: an editing step for changing numerical values pertaining to the rigidity of an arbitrary area of a press-formed article in first execution data including numerical data pertaining to the stress and the rigidity of the press-formed article, changing the stress of the area in which the numerical value pertaining to the rigidity has been changed in the first execution data according to the changed numerical value pertaining to the rigidity, and then generating second analysis execution data; a first analysis step for obtaining first change information about a shape change of the press-formed article on the basis of an elasticity analysis result obtained by using the first analysis execution data; a second analysis step for obtaining a second change information about a shape change of the press-formed article on the basis of an elasticity analysis result obtained by using the second analysis execution data; and an influence degree calculation step for obtaining an influence degree of the rigidity of the arbitrary area to the deformation of the press-formed article on the basis of the first change information and the second change information.

Description

剛性影響度分析方法、剛性影響度分析装置およびプログラムRigidity influence analysis method, stiffness influence analysis device and program
 本発明は、剛性影響度分析方法、剛性影響度分析装置およびプログラムに関する。 The present invention relates to a rigidity influence analysis method, a rigidity influence analysis device, and a program.
 金属板等の素材をプレス成形することによって得られるプレス成形品は、自動車、家電、および建築物等において利用されている。近年、このようなプレス成形品に対する軽量化の要求が高まっており、高強度の薄板が素材として用いられている。 Press-formed products obtained by press-forming materials such as metal plates are used in automobiles, home appliances, buildings and the like. In recent years, there has been an increasing demand for weight reduction of such press-formed products, and high-strength thin plates are used as raw materials.
 ところで、プレス成形においては、プレス成形品を金型から取り出した後に、いわゆるスプリングバックが発生することによってプレス成形品が変形することが知られている。特に、高強度の薄板に対してプレス成形を行う場合には、離型時に発生するスプリングバック量が大きくなりやすい。 By the way, in press molding, it is known that after taking out the press molded product from the mold, the press molded product is deformed by what is called springback. In particular, when press molding is performed on a high-strength thin plate, the amount of springback generated during mold release tends to increase.
 上記のようなスプリングバックによる変形を抑制するためには、スプリングバックの発生要因を特定し、適切な対策をとる必要がある。そこで、従来、スプリングバックの発生要因を特定するための種々の方法が提案されている。例えば、特許文献1には、スプリングバック要因特定方法が開示されている。 In order to suppress the deformation due to springback as described above, it is necessary to identify the cause of springback and take appropriate measures. Therefore, conventionally, various methods have been proposed for identifying the cause of springback. For example, Patent Document 1 discloses a springback factor identification method.
 特許文献1に開示された方法では、まず、プレス成形解析によってプレス成形品の形状、残留応力分布およびひずみ分布が算出される。次に、算出したプレス成形品の形状等に基づいて、スプリングバック解析が行われる(第1スプリングバック解析工程)。また、プレス成形品の任意の領域の指定方向のヤング率を変更してスプリングバック解析が行われる(第2スプリングバック解析工程)。そして、第1スプリングバック解析工程で取得されたスプリングバック量と、第2スプリングバック解析工程で取得されたスプリングバック量とを比較して、スプリングバックの要因の残留応力の領域および該残留応力の方向が特定される。 In the method disclosed in Patent Document 1, first, the shape, residual stress distribution and strain distribution of the press-formed product are calculated by press-forming analysis. Next, springback analysis is performed based on the calculated shape of the press-formed product and the like (first springback analysis step). In addition, the springback analysis is performed by changing the Young's modulus in the designated direction of an arbitrary region of the press-formed product (second springback analysis step). Then, the amount of springback obtained in the first springback analysis step and the amount of springback obtained in the second springback analysis step are compared to determine the residual stress region of the factor of springback and the residual stress. The direction is specified.
特開2014-65056号公報JP, 2014-65056, A
 本発明者らは、プレス成形品の任意の領域の剛性が、プレス成形品の変形に与える影響(以下、剛性影響度と記載する。)を適切に分析することができれば、スプリングバックによる変形を抑制するための対策を適切にとることができるのではないかと考えた。そこで、本発明者らは、上述の特許文献1と同様に、プレス成形品について、通常のスプリングバック解析(第1解析)を行うとともに、プレス成形品の任意の領域のヤング率を変化させてスプリングバック解析(第2解析)を行い、第1解析によるスプリングバック量と第2解析によるスプリングバック量との差異を求めた。そして、求めたスプリングバック量の差異を、剛性影響度として利用することを試みた。 If the inventors can appropriately analyze the effect of the rigidity of an arbitrary region of the press-formed product on the deformation of the press-formed product (hereinafter referred to as the rigidity influence degree), the deformation due to springback will be considered. We thought that appropriate measures could be taken to suppress it. Therefore, the present inventors perform a normal springback analysis (first analysis) on the press-formed product and change the Young's modulus of an arbitrary region of the press-formed product, as in the above-mentioned Patent Document 1. Springback analysis (second analysis) was performed, and the difference between the springback amount by the first analysis and the springback amount by the second analysis was obtained. Then, an attempt was made to utilize the obtained difference in springback amount as the degree of rigidity influence.
 しかしながら、本発明者らによる研究の結果、単にヤング率を変更するだけでは、剛性影響度を適切に分析することができない場合があることが分かった。 However, as a result of the research conducted by the present inventors, it was found that there are cases where it is not possible to appropriately analyze the degree of influence of rigidity simply by changing the Young's modulus.
 そこで、本発明は、プレス成形品の任意の領域の剛性が、プレス成形品の変形に与える影響を適切に分析することができる、剛性影響度分析方法、剛性影響度分析装置およびプログラムを提供することを目的とする。 Therefore, the present invention provides a rigidity influence degree analysis method, a rigidity influence degree analysis device, and a program capable of appropriately analyzing the influence of the rigidity of an arbitrary region of the press formed product on the deformation of the press formed product. The purpose is to
 本発明者らは、上記課題を解決するために種々の研究を行ってきた。そして、以下の知見を得た。 The present inventors have conducted various studies to solve the above problems. And the following knowledge was obtained.
 プレス成形品の任意の領域の剛性がプレス成形品の変形(例えば、スプリングバック量)に与える影響を調査するためには、例えば、剛性に関する数値として上記任意の領域のヤング率または板厚を変更して弾性解析を行うことが考えられる。弾性解析は、例えば、プレス成形品に面内平均応力および/または板厚方向偏差応力が作用しているとして行われる。なお、面内平均応力とは、プレス成形品の面内方向応力の板厚方向分布の平均応力である。面内方向応力とは、プレス成形品の表面に平行な方向(板厚方向に直交する方向)に生じる応力である。また、板厚方向偏差応力とは、面内方向応力の板厚方向分布の偏差応力であり、面内方向応力の板厚方向分布から平均応力成分を減算して得られる応力分布である。 In order to investigate the influence of the rigidity of any area of the press-formed product on the deformation (for example, the amount of springback) of the press-formed product, for example, the Young's modulus or the plate thickness of the above-mentioned area is changed as a numerical value related to the rigidity. It is conceivable that the elasticity analysis is performed. The elasticity analysis is performed assuming that the in-plane average stress and/or the sheet thickness direction deviation stress act on the press-formed product, for example. The in-plane average stress is the average stress of the in-plane direction stress of the press-formed product in the plate thickness direction distribution. The in-plane direction stress is a stress generated in a direction parallel to the surface of the press-formed product (direction orthogonal to the plate thickness direction). Further, the plate thickness direction deviation stress is a deviation stress of the plate thickness direction distribution of the in-plane direction stress, and is a stress distribution obtained by subtracting the average stress component from the plate thickness direction distribution of the in-plane direction stress.
 離型時におけるプレス成形品の任意の領域の変形(ひずみまたは曲げ)は、当該任意の領域の応力が解放されること、および当該任意の領域の周囲の領域が変形することを主な要因として発生する。この点を考慮すると、任意の領域の剛性がプレス成形品の変形に与える影響を適切に評価するためには、弾性解析を行うに際して、任意の領域の剛性に関する数値の変更に伴って応力解放を要因とする当該任意の領域の変形が抑制または促進されることを避けることが好ましい。以下、より具体的に説明する。 Deformation (strain or bending) of any area of the press-formed product at the time of release is mainly due to the release of stress in the area and deformation of the area around the area. appear. Considering this point, in order to properly evaluate the effect of the rigidity of an arbitrary region on the deformation of the press-formed product, when performing the elastic analysis, the stress relief should be performed with the change of the numerical value regarding the rigidity of the arbitrary region. It is preferable to avoid suppressing or promoting the deformation of the arbitrary region that is a factor. Hereinafter, it will be described more specifically.
 プレス成形品の任意の領域の変形のうち、ひずみは、下記式(i)によって表すことができ、曲げは、下記式(ii)によって表すことができる。
 ε=σ/E ・・・(i)
 ρ=M/EI ・・・(ii)
 ただし、上記式(i)において、εはひずみ量を示し、σは応力を示し、Eはヤング率を示す。また、上記式(ii)において、ρは曲率(曲げ量)を示し、Mは曲げモーメントを示し、Eはヤング率を示し、Iは断面二次モーメントを示す。
Among the deformations of any area of the press-molded product, the strain can be represented by the following formula (i), and the bending can be represented by the following formula (ii).
ε=σ/E (i)
ρ=M/EI (ii)
However, in the above formula (i), ε indicates the amount of strain, σ indicates the stress, and E indicates the Young's modulus. Further, in the above formula (ii), ρ represents the curvature (bending amount), M represents the bending moment, E represents the Young's modulus, and I represents the second moment of area.
 上記式(i)から、プレス成形品の任意の領域に生じている応力が1/2倍されると、弾性解析を行う際に応力解放を要因とする当該任意の領域のひずみが抑制されることが分かる。一方で、上記式(i)から、任意の領域のヤング率を2倍した場合と、任意の領域に生じている応力を1/2倍した場合とでは、ひずみ量が等しくなることが分かる。すなわち、任意の領域のヤング率を増加した場合、応力解放を要因とする当該任意の領域のひずみが抑制されることになり、ヤング率がひずみに与える影響と応力がひずみに与える影響とを互いに切り離して評価することができない。この場合、任意の領域の剛性がプレス成形品の変形に与える影響を適切に評価することができないおそれがある。 From the above formula (i), when the stress generated in an arbitrary region of the press-formed product is halved, the strain in the arbitrary region due to the stress release during the elastic analysis is suppressed. I understand. On the other hand, from the above formula (i), it can be seen that the strain amount becomes equal when the Young's modulus of an arbitrary region is doubled and when the stress generated in the arbitrary region is 1/2 times. That is, when the Young's modulus of an arbitrary region is increased, the strain of the arbitrary region due to stress release is suppressed, and the effect of Young's modulus on the strain and the effect of stress on the strain are mutually different. It cannot be evaluated separately. In this case, it may not be possible to properly evaluate the influence of the rigidity of an arbitrary region on the deformation of the press-formed product.
 上記式(ii)からは、プレス成形品の任意の領域に生じている曲げモーメント(板厚方向偏差応力)が1/2倍されると、弾性解析を行う際に応力解放を要因とする当該任意の領域の曲げが抑制されることが分かる。一方で、上記式(ii)から、任意の領域のヤング率を2倍した場合と、任意の領域に生じている曲げモーメントを1/2倍した場合とでは、曲げ量が等しくなることが分かる。すなわち、任意の領域のヤング率を増加した場合、応力解放を要因とする当該任意の領域の曲げが抑制されることになり、ヤング率が曲げに与える影響と応力が曲げに与える影響とを互いに切り離して評価することができない。この場合、任意の領域の剛性がプレス成形品の変形に与える影響を適切に評価することができないおそれがある。 From the above formula (ii), when the bending moment (deviation stress in the plate thickness direction) generated in an arbitrary region of the press-formed product is halved, the stress release factor is caused when performing the elastic analysis. It can be seen that bending of any area is suppressed. On the other hand, from the above formula (ii), it can be seen that the amount of bending is equal when the Young's modulus of an arbitrary region is doubled and when the bending moment generated in the arbitrary region is 1/2 times. .. That is, when the Young's modulus of an arbitrary region is increased, the bending of the arbitrary region due to stress release is suppressed, and the influence of Young's modulus on bending and the influence of stress on bending are mutually compared. It cannot be evaluated separately. In this case, it may not be possible to properly evaluate the influence of the rigidity of an arbitrary region on the deformation of the press-formed product.
 上記式(i),(ii)から、プレス成形品の任意の領域について、応力解放を要因とする変形(ひずみまたは曲げ)が抑制または促進されることを避けつつ弾性解析を行うためには、ヤング率の変更量に応じて応力も変更する必要がある。例えば、弾性解析を実行するに際して、プレス成形品の任意の領域のヤング率を増加させる場合には、当該任意の領域の応力も増加させる必要がある。また、弾性解析を実行するに際して、プレス成形品の任意の領域のヤング率を低下させる場合には、当該任意の領域の応力も低下させる必要がある。 From the above equations (i) and (ii), in order to perform elastic analysis for any region of the press-formed product while avoiding suppression or promotion of deformation (strain or bending) due to stress release, It is necessary to change the stress according to the change amount of Young's modulus. For example, when the elasticity analysis is executed, if the Young's modulus of an arbitrary region of the press-formed product is increased, it is necessary to increase the stress of the arbitrary region. Further, when the elasticity analysis is executed, if the Young's modulus of an arbitrary region of the press-formed product is reduced, it is necessary to reduce the stress of the arbitrary region.
 プレス成形品の任意の領域の板厚をtとすると、上記式(ii)において、当該任意の領域に生じる板厚方向偏差応力(曲げモーメント)はtの影響を受け、当該任意の領域に生じる断面二次モーメントは、tの影響を受ける。すなわち、板厚方向偏差応力(曲げモーメント)によって生じる曲げは、板厚の影響を受ける。このため、応力解放を要因とする当該任意の領域の曲げが抑制または促進されることをできるだけ避けつつ弾性解析を行うためには、板厚の変更量に応じて板厚方向偏差応力を変更する必要がある。例えば、弾性解析を実行するに際して、プレス成形品の任意の領域の板厚を増加させる場合には、当該任意の領域の板厚方向偏差応力も増加させる必要がある。同様に、弾性解析を実行するに際して、プレス成形品の任意の領域の板厚を低下させる場合には、当該任意の領域の板厚方向偏差応力も低下させる必要がある。なお、上記式(i)から、面内平均応力によって生じるひずみは、板厚の影響を受けないことが分かる。したがって、剛性に関する数値としてプレス成形品の任意の領域の板厚のみを変更して弾性解析を行う場合には、当該任意の領域の面内平均応力を変更する必要はない。 Assuming that the plate thickness of an arbitrary region of the press-formed product is t, in the above formula (ii), the plate thickness direction deviation stress (bending moment) generated in the arbitrary region is affected by t 2 and The resulting second moment of area is affected by t 3 . That is, the bending caused by the deviation stress (bending moment) in the plate thickness direction is affected by the plate thickness. Therefore, in order to perform the elastic analysis while avoiding the suppression or promotion of the bending of the arbitrary region due to the stress release as much as possible, the deviation stress in the plate thickness direction is changed according to the change amount of the plate thickness. There is a need. For example, when the plate thickness of an arbitrary region of the press-formed product is increased when executing the elastic analysis, it is necessary to increase the plate thickness direction deviation stress of the arbitrary region. Similarly, when the elastic analysis is executed, if the plate thickness of an arbitrary region of the press-formed product is reduced, it is necessary to reduce the deviation stress in the plate thickness direction of the arbitrary region. From the above formula (i), it is understood that the strain caused by the in-plane average stress is not affected by the plate thickness. Therefore, when performing elastic analysis by changing only the plate thickness of an arbitrary region of the press-formed product as a numerical value relating to rigidity, it is not necessary to change the in-plane average stress of the arbitrary region.
 本発明は上記の知見に基づいてなされたものであり、下記の剛性影響度分析方法、剛性影響度分析装置およびプログラムを要旨とする。 The present invention was made based on the above findings, and has as its gist the following rigidity influence analysis method, rigidity influence analysis device, and program.
(1)コンピュータによって実行される剛性影響度分析方法であって、
 有限要素解析の解析対象となるプレス成形品の応力および剛性に関する数値データを含む弾性解析を実施するための第1解析実行データのうち、前記プレス成形品の任意の領域の前記剛性に関する数値を変更するとともに、当該変更された剛性に関する数値に応じて、前記第1解析実行データのうちの前記剛性に関する数値が変更された領域の応力を変更することによって弾性解析を実施するための第2解析実行データを生成する、編集工程と、
 前記第1解析実行データを用いた弾性解析の結果に基づいて、前記プレス成形品の形状変化に関する第1変化情報を求める、第1解析工程と、
 前記第2解析実行データを用いた弾性解析の結果に基づいて、前記プレス成形品の形状変化に関する第2変化情報を求める、第2解析工程と、
 前記第1変化情報および前記第2変化情報に基づいて、前記任意の領域の剛性が前記プレス成形品の変形に与える影響度を求める、影響度算出工程と、を備える剛性影響度分析方法。
(1) A stiffness effect analysis method executed by a computer, comprising:
Of the first analysis execution data for performing the elastic analysis including the numerical data regarding the stress and rigidity of the press-formed product which is the analysis target of the finite element analysis, the value regarding the rigidity of the arbitrary region of the press-formed product is changed. In addition, the second analysis execution for executing the elasticity analysis by changing the stress in the region of the first analysis execution data in which the numerical value regarding the rigidity is changed according to the changed numerical value regarding the rigidity. An editing process that generates data,
A first analysis step of obtaining first change information regarding a shape change of the press-formed product based on a result of elasticity analysis using the first analysis execution data;
A second analysis step of obtaining second change information regarding a shape change of the press-formed product based on a result of elasticity analysis using the second analysis execution data;
A stiffness impact degree analysis method, comprising: determining the degree of impact of the stiffness of the arbitrary region on the deformation of the press-formed product based on the first change information and the second change information.
(2)前記編集工程において変更される前記剛性に関する数値にはヤング率および板厚のうちの少なくとも一方が含まれる、上記(1)に記載の剛性影響度分析方法。 (2) The rigidity influence analysis method according to (1), wherein the numerical value regarding the rigidity changed in the editing step includes at least one of Young's modulus and plate thickness.
(3)前記編集工程では、前記剛性に関する数値の変更量に応じて、前記第1解析実行データのうちの前記剛性に関する数値が変更された領域の応力を変更して前記第2解析実行データを生成する、上記(1)または(2)に記載の剛性影響度分析方法。 (3) In the editing step, the stress in a region of the first analysis execution data in which the numerical value regarding the rigidity is changed is changed in accordance with the amount of change in the numerical value regarding the rigidity, and the second analysis execution data is changed. The rigidity impact degree analysis method according to (1) or (2) above, which is generated.
(4)前記編集工程では、前記変更された剛性に関する数値が前記板厚のみである場合には、前記第1解析実行データのうちの前記剛性に関する数値が変更された領域の面内平均応力成分を変更することなく前記第2解析実行データを生成する、上記(2)に記載の剛性影響度分析方法。 (4) In the editing step, when the numerical value regarding the changed rigidity is only the plate thickness, the in-plane average stress component of the region of the first analysis execution data in which the numerical value regarding the rigidity is changed The rigidity influence degree analysis method according to (2), wherein the second analysis execution data is generated without changing the.
(5)前記第1解析実行データの前記応力は、プレス成形解析に基づいて求められた応力である、上記(1)から(4)のいずれかに記載の剛性影響度分析方法。 (5) The rigidity influence analysis method according to any one of (1) to (4) above, wherein the stress of the first analysis execution data is a stress obtained based on press molding analysis.
(6)前記編集工程では、前記プレス成形品の複数の異なる領域ごとに前記剛性に関する数値を変更することによって、複数の前記第2解析実行データを生成し、
 前記第2解析工程では、前記複数の第2解析実行データそれぞれについて、前記プレス成形品の形状変化に関する前記第2変化情報を求め、
 前記影響度算出工程では、前記第1変化情報と、前記複数の第2解析実行データそれぞれについて求められた前記第2変化情報とに基づいて、前記複数の異なる領域それぞれの剛性が前記プレス成形品の変形に与える影響度を求める、上記(1)から(5)のいずれかに記載の剛性影響度分析方法。
(6) In the editing step, a plurality of second analysis execution data is generated by changing a numerical value regarding the rigidity for each of a plurality of different regions of the press-formed product,
In the second analysis step, the second change information regarding the shape change of the press-formed product is obtained for each of the plurality of second analysis execution data,
In the influence degree calculating step, the rigidity of each of the plurality of different regions is determined based on the first change information and the second change information obtained for each of the plurality of second analysis execution data. The method for analyzing the degree of influence of rigidity according to any one of (1) to (5) above, wherein the degree of influence on the deformation of is obtained.
(7)前記複数の異なる領域それぞれの前記影響度を、その大きさに基づいてコンター表示する表示工程をさらに備える、上記(1)から(6)のいずれかに記載の剛性影響度分析方法。 (7) The rigidity influence degree analysis method according to any one of (1) to (6), further including a display step of displaying the influence degree of each of the plurality of different regions in a contour display based on the size thereof.
(8)前記編集工程における前記剛性に関する数値の変更量に基づいて、前記影響度算出工程において求められた前記影響度を補正する補正工程をさらに備える、上記(1)から(7)のいずれかに記載の剛性影響度分析方法。 (8) One of the above (1) to (7), further comprising a correction step of correcting the degree of influence obtained in the degree of influence calculation step based on the amount of change in the numerical value relating to the rigidity in the editing step. The method for analyzing the degree of rigidity influence described in.
(9)有限要素解析の解析対象となるプレス成形品の応力および剛性に関する数値データを含む弾性解析を実施するための第1解析実行データのうち、前記プレス成形品の任意の領域の前記剛性に関する数値を変更するとともに、当該変更された剛性に関する数値に応じて、前記第1解析実行データのうちの前記剛性に関する数値が変更された領域の応力を変更することによって弾性解析を実施するための第2解析実行データを生成する、編集部と、
 前記第1解析実行データを用いた弾性解析の結果に基づいて、前記プレス成形品の形状変化に関する第1変化情報を求める、第1解析部と、
 前記第2解析実行データを用いた弾性解析の結果に基づいて、前記プレス成形品の形状変化に関する第2変化情報を求める、第2解析部と、
 前記第1変化情報および前記第2変化情報に基づいて、前記任意の領域の剛性が前記プレス成形品の変形に与える影響度を求める、影響度算出部と、を備える剛性影響度分析装置。
(9) Of the first analysis execution data for performing the elastic analysis including the numerical data on the stress and rigidity of the press-formed product which is the analysis target of the finite element analysis, regarding the rigidity of an arbitrary region of the press-formed product A number for changing the numerical value and changing the stress in the area of the first analysis execution data in which the numerical value for the rigidity is changed according to the changed numerical value for the rigidity 2. An editorial unit that generates analysis execution data,
A first analysis unit that obtains first change information regarding a shape change of the press-formed product based on a result of elasticity analysis using the first analysis execution data;
A second analysis unit that obtains second change information regarding a shape change of the press-formed product based on a result of elasticity analysis using the second analysis execution data;
A rigidity influence degree analysis device, comprising: an influence degree calculation unit that obtains the degree of influence of the rigidity of the arbitrary region on the deformation of the press-formed product based on the first change information and the second change information.
(10)前記編集部によって変更される前記剛性に関する数値にはヤング率および板厚のうちの少なくとも一方が含まれる、上記(9)に記載の剛性影響度分析装置。 (10) The rigidity influence analysis device according to (9), wherein the numerical value regarding the rigidity changed by the editing unit includes at least one of Young's modulus and plate thickness.
(11)前記編集部は、前記剛性に関する数値の変更量に応じて、前記第1解析実行データのうちの前記剛性に関する数値が変更された領域の応力を変更して前記2解析実行データを生成する、上記(9)または(10)に記載の剛性影響度分析装置。 (11) The editing unit changes the stress in a region of the first analysis execution data in which the numerical value related to the stiffness is changed according to the amount of change in the numerical value related to the stiffness, and generates the second analysis execution data. The rigidity influence analyzer according to (9) or (10) above.
(12)前記編集部は、前記変更された剛性に関する数値が前記板厚のみである場合には、前記第1解析実行データのうちの前記剛性に関する数値が変更された領域の面内平均応力成分を変更することなく前記第2解析実行データを生成する、上記(10)に記載の剛性影響度分析装置。 (12) When the numerical value regarding the changed rigidity is only the plate thickness, the editing unit calculates an in-plane average stress component of a region of the first analysis execution data in which the numerical value regarding the rigidity is changed. The rigidity influence analyzer according to (10) above, which generates the second analysis execution data without changing the above.
(13)前記第1解析実行データの前記応力は、プレス成形解析に基づいて求められた応力である、上記(9)から(12)のいずれかに記載の剛性影響度分析装置。 (13) The rigidity influence analysis device according to any one of (9) to (12), wherein the stress of the first analysis execution data is a stress obtained based on press molding analysis.
(14)前記編集部は、前記プレス成形品の複数の異なる領域ごとに前記剛性に関する数値を変更することによって、複数の前記第2解析実行データを生成し、
 前記第2解析部は、前記複数の第2解析実行データそれぞれについて、前記プレス成形品の形状変化に関する前記第2変化情報を求め、
 前記影響度算出部は、前記第1変化情報と、前記複数の第2解析実行データそれぞれについて求められた前記第2変化情報とに基づいて、前記複数の異なる領域それぞれの剛性が前記プレス成形品の変形に与える影響度を求める、上記(9)から(13)のいずれかに記載の剛性影響度分析装置。
(14) The editing unit generates a plurality of second analysis execution data by changing a numerical value regarding the rigidity for each of a plurality of different regions of the press-formed product,
The second analysis unit obtains the second change information regarding the shape change of the press-formed product for each of the plurality of second analysis execution data,
The degree-of-influence calculation unit calculates the rigidity of each of the plurality of different regions based on the first change information and the second change information obtained for each of the plurality of second analysis execution data. The rigidity influence analyzer according to any one of (9) to (13) above, for obtaining the degree of influence on the deformation.
(15)前記複数の異なる領域それぞれの前記影響度を、その大きさに基づいてコンター表示するための表示データを生成する表示データ生成部をさらに備える、上記(9)から(14)のいずれかに記載の剛性影響度分析装置。 (15) Any one of (9) to (14) above, further comprising a display data generation unit that generates display data for contour-displaying the degree of influence of each of the plurality of different areas based on the size thereof. The rigidity influence analyzer described in.
(16)前記影響度算出部は、求めた前記影響度を、前記編集部による前記剛性に関する数値の変更量に基づいて補正する、上記(9)から(15)のいずれかに記載の剛性影響度分析装置。 (16) The rigidity influence according to any one of (9) to (15), wherein the influence degree calculation unit corrects the obtained influence degree based on the amount of change in the numerical value relating to the stiffness by the editing unit. Degree analyzer.
(17)上記(1)から(8)のいずれかに記載の剛性影響度分析方法をコンピュータに実行させるプログラム。 (17) A program for causing a computer to execute the stiffness influence analysis method according to any one of (1) to (8).
 本発明によれば、プレス成形品の任意の領域の剛性が、プレス成形品の変形に与える影響を適切に分析することができる。 According to the present invention, it is possible to appropriately analyze the influence of the rigidity of an arbitrary region of the press-formed product on the deformation of the press-formed product.
図1は、本発明の一実施形態に係る剛性影響度分析装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a rigidity influence analysis apparatus according to an embodiment of the present invention. 図2は、本実施形態に係る剛性影響度分析装置による剛性影響度の分析対象となるプレス成形品の一例を示す図である。FIG. 2 is a diagram showing an example of a press-formed product whose rigidity influence is analyzed by the rigidity influence analyzer according to the present embodiment. 図3は、プレス成形品の断面(図2(b)のA-A線切断部の断面)を示す図である。FIG. 3 is a view showing a cross section of the press-formed product (cross section taken along the line AA in FIG. 2B). 図4は、本発明の一実施形態に係る剛性影響度分析装置の構成を具体的に示すブロック図である。FIG. 4 is a block diagram specifically showing the configuration of a rigidity influence analysis apparatus according to an embodiment of the present invention. 図5は、プレス成形品に設定された複数の領域の一例を示す図である。FIG. 5 is a diagram showing an example of a plurality of regions set in a press-formed product. 図6は、プレス成形品における複数の領域の他の区画例を示す図である。FIG. 6 is a diagram showing another example of division of a plurality of regions in a press-formed product. 図7は、本発明の一実施形態に係る剛性影響度分析方法の動作を示すフロー図である。FIG. 7 is a flow chart showing the operation of the rigidity influence analysis method according to the embodiment of the present invention. 図8は、本発明の一実施形態に係る算出装置を実現するコンピュータの一例を示すブロック図である。FIG. 8 is a block diagram showing an example of a computer that realizes the calculation device according to the embodiment of the present invention. 図9は、実施例1の分析結果を示すコンター図である。FIG. 9 is a contour diagram showing the analysis results of Example 1. 図10は、比較例1Aの分析結果を示すコンター図である。FIG. 10 is a contour diagram showing the analysis results of Comparative Example 1A. 図11は、比較例1Bの分析結果を示すコンター図である。FIG. 11 is a contour diagram showing the analysis results of Comparative Example 1B. 図12は、実施例2の分析結果を示すコンター図である。FIG. 12 is a contour diagram showing the analysis results of Example 2. 図13は、比較例2Aの分析結果を示すコンター図である。FIG. 13 is a contour diagram showing the analysis results of Comparative Example 2A. 図14は、比較例2Bの分析結果を示すコンター図である。FIG. 14 is a contour diagram showing the analysis results of Comparative Example 2B. 図15は、実施例3の分析結果を示すコンター図である。FIG. 15 is a contour diagram showing the analysis results of Example 3. 図16は、比較例3Aの分析結果を示すコンター図である。FIG. 16 is a contour diagram showing the analysis results of Comparative Example 3A. 図17は、比較例3Bの分析結果を示すコンター図である。FIG. 17 is a contour diagram showing the analysis result of Comparative Example 3B. 図18は、実施例4の分析結果を示すコンター図である。FIG. 18 is a contour diagram showing the analysis results of Example 4. 図19は、比較例4Aの分析結果を示すコンター図である。FIG. 19 is a contour diagram showing the analysis results of Comparative Example 4A. 図20は、比較例4Bの分析結果を示すコンター図である。FIG. 20 is a contour diagram showing the analysis results of Comparative Example 4B. 図21は、実施例5の分析結果を示すコンター図である。FIG. 21 is a contour diagram showing the analysis results of Example 5. 図22は、比較例5Aの分析結果を示すコンター図である。FIG. 22 is a contour diagram showing the analysis results of Comparative Example 5A. 図23は、実施例6の分析結果を示すコンター図である。FIG. 23 is a contour diagram showing the analysis results of Example 6. 図24は、比較例6Aの分析結果を示すコンター図である。FIG. 24 is a contour diagram showing the analysis results of Comparative Example 6A. 図25は、比較例6Bの分析結果を示すコンター図である。FIG. 25 is a contour diagram showing the analysis results of Comparative Example 6B. 図26は、天板部に剛性を向上させるための補剛部が設けられたプレス成形品を示す図である。FIG. 26 is a diagram showing a press-formed product in which a stiffening portion for improving rigidity is provided on the top plate portion.
 以下、本発明の実施の形態に係る剛性影響度分析方法、剛性影響度分析装置およびプログラムについて図面を参照しつつ説明する。 Hereinafter, a rigidity influence analysis method, a rigidity influence analysis device, and a program according to an embodiment of the present invention will be described with reference to the drawings.
(装置構成)
 まず、本発明の一実施形態に係る剛性影響度分析装置について説明する。図1は、本発明の一実施形態に係る剛性影響度分析装置の概略構成を示すブロック図である。また、図2は、本実施形態に係る剛性影響度分析装置による剛性影響度の分析対象となるプレス成形品の一例を示す図であり、(a)はプレス成形品の斜視図であり、(b)はプレス成形品の平面図である。図2に示すプレス成形品100は、天板部102、一対の縦壁部104および一対のフランジ部106を備え、ハット形の断面を有している。
(Device configuration)
First, a rigidity influence analyzer according to an embodiment of the present invention will be described. FIG. 1 is a block diagram showing a schematic configuration of a rigidity influence analysis apparatus according to an embodiment of the present invention. Further, FIG. 2 is a diagram showing an example of a press-formed product whose rigidity influence degree is analyzed by the rigidity influence analyzer according to the present embodiment, and (a) is a perspective view of the press-formed product, b) is a plan view of the press-formed product. The press-formed product 100 shown in FIG. 2 includes a top plate portion 102, a pair of vertical wall portions 104, and a pair of flange portions 106, and has a hat-shaped cross section.
 以下においては、図2に示すプレス成形品100の分析を行う場合について説明するが、本実施形態に係る剛性影響度分析装置の分析対象となるプレス成形品の形状は図2に示す形状に限定されず、本実施形態に係る剛性影響度分析装置は、種々の形状のプレス成形品に対応できる。 Hereinafter, a case of analyzing the press-formed product 100 shown in FIG. 2 will be described, but the shape of the press-formed product to be analyzed by the rigidity influence analysis apparatus according to the present embodiment is limited to the shape shown in FIG. Instead, the rigidity influence analysis apparatus according to the present embodiment can be applied to press-formed products of various shapes.
 図1に示すように、本実施形態に係る剛性影響度分析装置10(以下、分析装置10と略記する。)は、編集部12、第1解析部14、第2解析部16、および影響度算出部18を備えている。 As shown in FIG. 1, a rigidity influence analysis apparatus 10 (hereinafter, abbreviated as analysis apparatus 10) according to the present embodiment includes an editing unit 12, a first analysis unit 14, a second analysis unit 16, and an influence degree. The calculator 18 is provided.
 編集部12および第1解析部14には、第1解析実行データが入力される。第1解析実行データは、有限要素法による弾性解析を実行するためのデータである。第1解析実行データおよび後述する第2解析実行データは、解析対象となるプレス成形品100の形状(板厚、メッシュ情報等)、応力および剛性に関する数値データを含む。 The first analysis execution data is input to the editing unit 12 and the first analysis unit 14. The first analysis execution data is data for executing elasticity analysis by the finite element method. The first analysis execution data and the second analysis execution data described later include numerical data regarding the shape (plate thickness, mesh information, etc.), stress and rigidity of the press-formed product 100 to be analyzed.
 本実施形態では、第1解析実行データは、例えば、プレス成形解析を利用して得られるデータを含み、プレス成形品100の離型前の形状(板厚、メッシュ情報等)および残留応力分布を示すデータならびにプレス成形品の素材のヤング率等の性状データを含む。具体的には、第1解析実行データは、例えば、ユーザによって設定されたプレス成形の条件に基づいて、公知のプレス成形解析装置を用いて弾塑性有限要素解析またはワンステップ有限要素解析を実行することによって得ることができる。なお、第1解析実行データに含まれる応力は、プレス成形解析によって求められる残留応力に限定されず、他の種々の解析によって得られる応力またはユーザによって任意に設定された応力であってもよい。 In the present embodiment, the first analysis execution data includes, for example, data obtained by using press molding analysis, and includes the shape (plate thickness, mesh information, etc.) of the press molded product 100 before release and residual stress distribution. It includes the data shown and property data such as the Young's modulus of the material of the press-formed product. Specifically, for the first analysis execution data, for example, an elasto-plastic finite element analysis or a one-step finite element analysis is executed using a known press forming analysis device based on the press forming condition set by the user. Can be obtained by The stress included in the first analysis execution data is not limited to the residual stress obtained by the press forming analysis, and may be the stress obtained by other various analyzes or the stress arbitrarily set by the user.
 編集部12は、入力された第1解析実行データから第2解析実行データを生成する。具体的には、編集部12は、第1解析実行データのうち、プレス成形品100の任意の領域100a(図2(b)において一点鎖線で示す2本の直線の内側の領域)の剛性に関する数値(例えば、ヤング率、断面係数、または板厚等)を変更する。また、詳細は後述するが、編集部12は、上記のようにして変更された剛性に関する数値に応じて、第1解析実行データのうち当該剛性に関する数値が変更された領域100aの応力を変更する。このように、編集部12は、第1解析実行データのうち、領域100aの剛性に関する数値を変更するとともに、当該変更された剛性に関する数値に応じて領域100aの応力を変更することによって、第2解析実行データを生成する。編集部12は、生成した第2解析実行データを第2解析部16へ出力する。 The editing unit 12 generates second analysis execution data from the input first analysis execution data. Specifically, the editing unit 12 relates to the rigidity of the arbitrary region 100a of the press-formed product 100 (the region inside the two straight lines indicated by the alternate long and short dash line in FIG. 2B) in the first analysis execution data. Change the numerical value (for example, Young's modulus, section modulus, plate thickness, etc.). Further, as will be described in detail later, the editing unit 12 changes the stress of the region 100a of the first analysis execution data in which the numerical value regarding the rigidity is changed, according to the numerical value regarding the rigidity changed as described above. .. As described above, the editing unit 12 changes the numerical value relating to the rigidity of the region 100a in the first analysis execution data, and changes the stress of the region 100a in accordance with the changed numerical value relating to rigidity. Generate analysis execution data. The editing unit 12 outputs the generated second analysis execution data to the second analysis unit 16.
 なお、編集部12は、第1解析実行データの領域100aの剛性に関する数値を、ユーザによって入力された数値に変更してもよく、ユーザによって設定された任意の係数を乗算することによって得られる数値に変更してもよい。また、本実施形態において、「剛性に関する数値に応じて応力を変更する」とは、剛性に関する数値の種類および変更量に応じて応力を変更することを意味する。詳細は後述するが、本実施形態では、編集部12は、変更された剛性に関する数値の種類によっては、応力を変更することなく第2解析実行データを生成する場合がある。 The editing unit 12 may change the numerical value regarding the rigidity of the region 100a of the first analysis execution data to the numerical value input by the user, and the numerical value obtained by multiplying the arbitrary coefficient set by the user. You may change to. Further, in the present embodiment, “changing the stress in accordance with the numerical value related to the rigidity” means changing the stress in accordance with the type and the amount of change in the numerical value related to the rigidity. Although the details will be described later, in the present embodiment, the editing unit 12 may generate the second analysis execution data without changing the stress depending on the type of the changed numerical value regarding the rigidity.
 なお、編集部12によって剛性に関する数値が変更される領域の位置、形状および寸法は、図2(b)に示した例に限定されず、適宜変更できる。本実施形態では、編集部12は、例えば、ユーザの操作に従って、剛性に関する数値が変更される領域を設定してもよい。 The position, shape, and size of the area where the numerical value regarding rigidity is changed by the editing unit 12 are not limited to the example shown in FIG. 2B, and can be changed as appropriate. In the present embodiment, the editing unit 12 may set the area in which the numerical value regarding the rigidity is changed according to the operation of the user, for example.
 第1解析部14は、第1解析実行データを用いた弾性解析の結果に基づいて、プレス成形品100の形状変化に関する第1変化情報を求める。第1解析部14は、求めた第1変化情報を影響度算出部18へ出力する。本実施形態では、第1解析部14は、例えば、第1解析実行データに含まれる離型前のプレス成形品100の形状データ、応力分布データおよびヤング率等の性状データに基づいて弾性解析(スプリングバック解析)を行い、離型後のプレス成形品100の形状(メッシュ情報等)を算出する。さらに、第1解析部14は、離型前後におけるプレス成形品100の形状の変化を示す情報を第1変化情報として算出する。 The first analysis unit 14 obtains the first change information regarding the shape change of the press-formed product 100 based on the result of the elasticity analysis using the first analysis execution data. The first analysis unit 14 outputs the obtained first change information to the influence degree calculation unit 18. In the present embodiment, the first analysis unit 14 performs elasticity analysis based on, for example, shape data of the press-formed product 100 before release, stress distribution data, and property data such as Young's modulus included in the first analysis execution data ( Springback analysis) is performed to calculate the shape (mesh information, etc.) of the press-formed product 100 after release. Furthermore, the 1st analysis part 14 calculates the information which shows the change of the shape of the press-molded article 100 before and after mold release as 1st change information.
 本実施形態では、第1変化情報は、第1解析部14による弾性解析の実行の前後におけるプレス成形品100の形状変化の程度を表す数値である。第1変化情報は、例えば、公知の方法によって算出されるスプリングバック量であってもよい。第1変化情報は、一定のルールに従って算出されていればよく、算出方法は特に限定されない。以下、第1変化情報の算出方法の一例について簡単に説明する。 In the present embodiment, the first change information is a numerical value indicating the degree of shape change of the press-formed product 100 before and after the elasticity analysis by the first analysis unit 14. The first change information may be, for example, a springback amount calculated by a known method. The first change information may be calculated according to a certain rule, and the calculation method is not particularly limited. Hereinafter, an example of a method of calculating the first change information will be briefly described.
 図3は、第1解析部14による弾性解析後のプレス成形品100の断面(図2(b)のA-A線切断部の断面)を示す図である。なお、図3においては、弾性解析前のプレス成形品100の天板部102の厚み方向における中心線が二点鎖線で示されている。また、図3においては、天板部102の幅方向が矢印Xで示され、天板部102の厚み方向が矢印Yで示されている。以下においては、天板部102の幅方向を、幅方向Xと記載し、天板部102の厚み方向を、厚み方向Yと記載する。 FIG. 3 is a diagram showing a cross section of the press-formed product 100 after the elasticity analysis by the first analysis unit 14 (a cross section taken along the line AA of FIG. 2B). In addition, in FIG. 3, the center line in the thickness direction of the top plate portion 102 of the press-formed product 100 before elastic analysis is indicated by a two-dot chain line. Further, in FIG. 3, the width direction of the top plate portion 102 is indicated by an arrow X, and the thickness direction of the top plate portion 102 is indicated by an arrow Y. In the following, the width direction of the top plate portion 102 will be referred to as the width direction X, and the thickness direction of the top plate portion 102 will be referred to as the thickness direction Y.
 図3を参照して、本実施形態では、第1解析部14は、例えば、天板部102の予め設定された任意の3つのポイントP1、P2およびP3の変位に基づいて、第1変化情報を算出する。なお、図3に示す例では、ポイントP1、P2およびP3はそれぞれ、解析モデルにおいて、天板部102の厚み方向Yにおける中央に位置する節点である。また、ポイントP1は、天板部102の幅方向Xにおける一端部に位置する節点であり、ポイントP2は、天板部102の幅方向Xにおける他端部に位置する節点であり、ポイントP3は、天板部102の幅方向Xにおける中央に位置する節点である。 With reference to FIG. 3, in the present embodiment, the first analysis unit 14 uses the first change information based on, for example, displacements of arbitrary three preset points P1, P2, and P3 of the top plate 102. To calculate. In the example shown in FIG. 3, points P1, P2, and P3 are nodes located at the center of the top plate portion 102 in the thickness direction Y in the analysis model. The point P1 is a node located at one end of the top plate 102 in the width direction X, the point P2 is a node located at the other end of the top plate 102 in the width direction X, and the point P3 is , A node located at the center of the top plate portion 102 in the width direction X.
 本実施形態では、厚み方向Yにおける一方側への変位を正の変位と規定し、厚み方向Yにおける他方側への変位を負の変位と規定する。第1解析部14は、ポイントP1の変位からポイントP3の変位を減算して得られる値と、ポイントP2の変位からポイントP3の変位を減算して得られる値とのうち、絶対値が大きい方の値を、第1変位情報とする。 In the present embodiment, the displacement to one side in the thickness direction Y is defined as a positive displacement, and the displacement to the other side in the thickness direction Y is defined as a negative displacement. The first analysis unit 14 has a larger absolute value of the value obtained by subtracting the displacement of the point P3 from the displacement of the point P1 and the value obtained by subtracting the displacement of the point P3 from the displacement of the point P2. Is used as the first displacement information.
 例えば、ポイントP1およびP2の変位がそれぞれ2.6mmおよび2.2mmであり、ポイントP3の変位が-4.6mmの場合には、第1解析部14は、ポイントP1の変位(2.6mm)からポイントP3の変位(-4.6mm)を減算して得られる値(7.2mm)と、ポイントP2の変位(2.2mm)からポイントP3の変位(-4.6mm)を減算して得られる値(6.8mm)とのうち、絶対値が大きい方の値である7.2mmを、第1変化情報とする。なお、この例では、ポイントP1およびポイントP2はそれぞれ、厚み方向Yにおける一方側に2.6mmおよび2.2mm変位し、ポイントP3は、厚み方向Yにおける他方側に4.6mm変位している。 For example, when the displacements of the points P1 and P2 are 2.6 mm and 2.2 mm, respectively, and the displacement of the point P3 is -4.6 mm, the first analysis unit 14 causes the displacement of the point P1 (2.6 mm). It is obtained by subtracting the displacement (-4.6mm) of the point P3 from the value (7.2mm) and the displacement (2.2mm) of the point P2 from the displacement (-4.6mm) of the point P3. Of the values (6.8 mm) that are set, the larger absolute value, which is 7.2 mm, is set as the first change information. In this example, the points P1 and P2 are displaced by 2.6 mm and 2.2 mm on one side in the thickness direction Y, and the point P3 is displaced by 4.6 mm on the other side in the thickness direction Y.
 なお、第1変化情報の算出方法は上記の例に限定されるものではない。例えば、第1解析部14による解析の実行前後における、特定のポイント(解析モデルの特定の節点)の座標上の変化量(変位)を第1変化情報としてもよい。また、例えば、解析実行の前後における、特定の2つのポイントの距離の変化量を第1変化情報としてもよい。また、特定の2つのポイントを結ぶ基準線を規定し、解析実行前の基準線と解析実行後の基準線とがなす角(ねじれ角)を第1変化情報としてもよい。また、特定の第1ポイントと特定の第2ポイントとを結ぶ第1基準線、および上記第1ポイントと特定の第3ポイントとを結ぶ第2基準線を規定し、幅方向Xおよび厚み方向Yに垂直な方向から見て第1基準線と第2基準線とがなす角(平面投影角度)の解析実行前後における変化量(角度差)を第1変化情報としてもよい。また、特定の4つのポイントのうちの2つのポイントを通る第1基準線、および他の2つのポイントを通る第2基準線を規定し、幅方向Xおよび厚み方向Yに垂直な方向から見て第1基準線と第2基準線とがなす角(平面投影角度)の解析実行前後における変化量(角度差)を第1変化情報としてもよい。 Note that the method of calculating the first change information is not limited to the above example. For example, the amount of change (displacement) in coordinates of a specific point (specific node of the analysis model) before and after the analysis by the first analysis unit 14 may be used as the first change information. In addition, for example, the amount of change in the distance between two specific points before and after the analysis may be used as the first change information. Further, a reference line connecting two specific points may be defined, and an angle (twist angle) formed by the reference line before analysis execution and the reference line after analysis execution may be used as the first change information. A first reference line connecting the specific first point and the specific second point and a second reference line connecting the specific first point and the specific third point are defined, and the width direction X and the thickness direction Y are defined. The amount of change (angle difference) before and after the analysis of the angle (planar projection angle) formed by the first reference line and the second reference line when viewed from the direction perpendicular to the direction may be used as the first change information. Further, a first reference line passing through two of the four specific points and a second reference line passing through the other two points are defined, and viewed from a direction perpendicular to the width direction X and the thickness direction Y. The amount of change (angle difference) before and after the analysis is performed on the angle formed by the first reference line and the second reference line (planar projection angle) may be used as the first change information.
 図1を参照して、第2解析部16は、編集部12から与えられた第2解析実行データを用いた弾性解析の結果に基づいて、プレス成形品100の形状変化に関する第2変化情報を求める。本実施形態では、第2解析部16は、第1解析部14と同様の方法によって弾性解析(スプリングバック解析)を行い、離型後のプレス成形品100の形状(メッシュ情報等)を算出する。さらに、第2解析部16は、第1解析部14と同様の方法で、離型前後におけるプレス成形品100の形状変化の程度を示す情報を第2変化情報として算出する。第2解析部16は、算出した第2変化情報を影響度算出部18へ出力する。 With reference to FIG. 1, the second analysis unit 16 obtains second change information regarding the shape change of the press-formed product 100 based on the result of the elasticity analysis using the second analysis execution data provided from the editing unit 12. Ask. In the present embodiment, the second analysis unit 16 performs elasticity analysis (springback analysis) by the same method as the first analysis unit 14, and calculates the shape (mesh information, etc.) of the press-formed product 100 after release. .. Further, the second analysis unit 16 calculates, as the second change information, information indicating the degree of shape change of the press-formed product 100 before and after the mold release, in the same manner as the first analysis unit 14. The second analysis unit 16 outputs the calculated second change information to the influence degree calculation unit 18.
 影響度算出部18は、第1解析部14から入力された第1変化情報および第2解析部16から入力された第2変化情報に基づいて、領域100aの剛性がプレス成形品100の変形に与える影響度(以下、剛性影響度と記載する。)を求める。本実施形態では、影響度算出部18は、例えば、第1変化情報が示す数値から第2変化情報が示す数値を減算して得られる数値を、領域100aの剛性影響度とする。例えば、第1変化情報が7.2mmであり、第2変化情報が3.4mmであった場合には、影響度算出部18は、領域100aの剛性影響度を3.8mmとする。 The influence degree calculation unit 18 determines that the rigidity of the region 100a is the deformation of the press-formed product 100 based on the first change information input from the first analysis unit 14 and the second change information input from the second analysis unit 16. The degree of influence (hereinafter, referred to as rigidity influence degree) is calculated. In the present embodiment, the degree-of-impact calculation unit 18 sets, for example, a numerical value obtained by subtracting the numerical value indicated by the second change information from the numerical value indicated by the first change information as the rigidity influence degree of the region 100a. For example, when the first change information is 7.2 mm and the second change information is 3.4 mm, the influence degree calculation unit 18 sets the rigidity influence degree of the region 100a to 3.8 mm.
 以上のように、本実施形態に係る分析装置10によれば、第1解析実行データに基づいてプレス成形品100の弾性解析を行うとともに、第1解析実行データから任意の領域100aの剛性を変更して得られる第2解析実行データに基づいてプレス成形品100の弾性解析が行われる。そして、剛性変更前の第1解析実行データに基づく解析結果と、剛性変更後の第2解析実行データに基づく解析結果とを比較することによって、任意の領域100aの剛性がプレス成形品100の変形に与える影響度(剛性影響度)を算出することができる。 As described above, according to the analysis apparatus 10 according to the present embodiment, the elasticity analysis of the press-formed product 100 is performed based on the first analysis execution data, and the rigidity of the arbitrary region 100a is changed from the first analysis execution data. Elastic analysis of the press-formed product 100 is performed based on the second analysis execution data obtained in this way. Then, by comparing the analysis result based on the first analysis execution data before the rigidity change and the analysis result based on the second analysis execution data after the rigidity change, the rigidity of the arbitrary region 100a is deformed in the press-formed product 100. Can be calculated.
 特に、本実施形態では、編集部12は、変更した剛性に関する数値に応じて、第1解析実行データの領域100aの応力を変更して第2解析実行データを生成する。具体的には、本実施形態では、第2解析実行データを用いて弾性解析をするに際して、第1解析実行データを用いた弾性解析に比べて、応力解放を要因とする領域100aの変形(ひずみまたは曲げ)が抑制または促進されることをできるだけ避けることができるように、第2解析実行データにおける領域100aの応力が設定される。 Particularly, in the present embodiment, the editing unit 12 changes the stress in the area 100a of the first analysis execution data according to the changed numerical value regarding the rigidity, and generates the second analysis execution data. Specifically, in the present embodiment, when performing the elastic analysis using the second analysis execution data, the deformation (strain) of the region 100a caused by the stress release is caused as compared with the elastic analysis using the first analysis execution data. The stress of the region 100a in the second analysis execution data is set so that the suppression or promotion of (or bending) can be avoided as much as possible.
 例えば、編集部12は、第1解析実行データの領域100aのヤング率を高くした場合には、ヤング率の変更量に応じて第1解析実行データの領域100aの応力を高くして、第2解析実行データを生成する。また、例えば、編集部12は、第1解析実行データの領域100aの板厚(断面二次モーメント)を大きくした場合には、板厚(断面二次モーメント)の変更量に応じて第1解析実行データの領域100aの板厚方向偏差応力を高くして、第2解析実行データを生成する。 For example, when the Young's modulus of the area 100a of the first analysis execution data is increased, the editing unit 12 increases the stress of the area 100a of the first analysis execution data according to the change amount of the Young's modulus, and the second Generate analysis execution data. In addition, for example, when the plate thickness (second moment of area) of the area 100a of the first analysis execution data is increased, the editing unit 12 performs the first analysis according to the change amount of the plate thickness (second moment of area). The second analysis execution data is generated by increasing the deviation stress in the plate thickness direction of the area 100a of the execution data.
 より具体的には、例えば、上述の(i)式によって領域100aのひずみ量を算出する場合に、第2解析実行データの応力およびヤング率を用いて算出されるひずみ量が、第1解析実行データの応力およびヤング率を用いて算出されるひずみ量に等しくなるように、第2解析実行データの応力が設定される。また、例えば、上述の(ii)式によって領域100aの曲げ量を算出する場合に、第2解析実行データの応力、ヤング率、および板厚(断面二次モーメント)を用いて算出される曲げ量が、第1解析実行データの応力、ヤング率および板厚(断面二次モーメント)を用いて算出される曲げ量に等しくなるように、第2解析実行データの板厚方向偏差応力が設定される。 More specifically, for example, when the strain amount of the region 100a is calculated by the above equation (i), the strain amount calculated using the stress and Young's modulus of the second analysis execution data is the first analysis execution. The stress of the second analysis execution data is set so as to be equal to the amount of strain calculated using the stress and Young's modulus of the data. Further, for example, when the bending amount of the region 100a is calculated by the above formula (ii), the bending amount calculated using the stress, Young's modulus, and plate thickness (second moment of area) of the second analysis execution data. Is set to be equal to the bending amount calculated using the stress, Young's modulus and plate thickness (second moment of area) of the first analysis execution data, in the plate thickness direction of the second analysis execution data. ..
 上記のようにして生成された第2解析実行データに基づく弾性解析を行うことによって、プレス成形品100の変形に与える剛性の影響をより適切に分析することが可能になる。また、プレス成形品100の領域100aについて剛性に関する数値を変化させて弾性解析を行うことによって、当該領域100aの適切な剛性を容易に把握することが可能になる。これにより、分析装置10のユーザは、算出された剛性影響度に基づいて領域100aの剛性を適切に調整することによって、プレス成形品100の変形を適切に抑制することができる。 By performing elasticity analysis based on the second analysis execution data generated as described above, it becomes possible to more appropriately analyze the influence of rigidity on the deformation of the press-formed product 100. Further, by changing the numerical value regarding the rigidity of the region 100a of the press-formed product 100 and performing the elasticity analysis, it becomes possible to easily grasp the appropriate rigidity of the region 100a. As a result, the user of the analysis device 10 can appropriately suppress the deformation of the press-formed product 100 by appropriately adjusting the rigidity of the region 100a based on the calculated rigidity influence degree.
 次に、分析装置10の具体的な構成について説明する。図4は、本発明の一実施形態に係る剛性影響度分析装置10の構成を具体的に示すブロック図である。 Next, a specific configuration of the analysis device 10 will be described. FIG. 4 is a block diagram specifically showing the configuration of the rigidity influence analysis apparatus 10 according to the embodiment of the present invention.
 図4に示すように、本実施形態に係る分析装置10は、上述の編集部12、第1解析部14、第2解析部16および影響度算出部18に加えて、表示データ生成部20および固定条件変更部22を備えている。以下、編集部12、第1解析部14、第2解析部16、影響度算出部18、表示データ生成部20および固定条件変更部22について順に説明する。 As shown in FIG. 4, the analysis device 10 according to the present embodiment includes a display data generation unit 20 and a display data generation unit 20 in addition to the editing unit 12, the first analysis unit 14, the second analysis unit 16 and the influence degree calculation unit 18 described above. The fixed condition changing unit 22 is provided. Hereinafter, the editing unit 12, the first analysis unit 14, the second analysis unit 16, the influence degree calculation unit 18, the display data generation unit 20, and the fixed condition change unit 22 will be described in order.
 編集部12には、上述したように、第1解析実行データが入力される。本実施形態では、編集部12は、第1解析実行データに含まれるプレス成形品100の形状データに基づいて、プレス成形品100(解析モデル)を複数の領域に分割する。具体的には、編集部12は、例えば、ユーザの操作に基づいて、図5において一点鎖線で区画されているように、プレス成形品100を複数の領域に分割する。 The first analysis execution data is input to the editing unit 12 as described above. In the present embodiment, the editing unit 12 divides the press-formed product 100 (analysis model) into a plurality of regions based on the shape data of the press-formed product 100 included in the first analysis execution data. Specifically, for example, the editing unit 12 divides the press-formed product 100 into a plurality of regions based on a user's operation so that the press-formed product 100 is divided by a chain line in FIG.
 本実施形態では、編集部12は、プレス成形品100において上記のようにして設定した複数の領域ごとに、第1解析実行データのうちの剛性に関する数値を変更する。また、編集部12は、上記の複数の領域ごとに、変更された剛性に関する数値に応じて第1解析実行データのうちの応力を変更する。このように、編集部12は、上記の複数の領域ごとに、第1解析実行データのうちの剛性に関する数値を変更するとともに、当該変更された剛性に関する数値に応じて応力を変更することによって、複数の第2解析実行データを生成する。例えば、編集部12が50個の領域についてそれぞれ剛性に関する数値を変更した場合には、50個の第2解析実行データが生成される。 In the present embodiment, the editing unit 12 changes the numerical value regarding the rigidity of the first analysis execution data for each of the plurality of regions set in the press-formed product 100 as described above. In addition, the editing unit 12 changes the stress in the first analysis execution data for each of the plurality of regions according to the changed numerical value regarding the rigidity. In this way, the editing unit 12 changes the numerical value related to the rigidity of the first analysis execution data for each of the plurality of regions described above, and changes the stress according to the changed numerical value related to the rigidity. A plurality of second analysis execution data are generated. For example, when the editing unit 12 changes the numerical values relating to the rigidity for each of the 50 areas, 50 second analysis execution data are generated.
 なお、剛性に関する数値としては、例えば、ヤング率または断面係数の決定要因の一つである板厚が挙げられる。本実施形態では、編集部12は、各領域のヤング率に剛性変更係数Kを乗算することによってヤング率を変更してもよく、各領域の板厚に剛性変更係数Kを乗算することによって板厚を変更してもよい。なお、本実施形態では、ヤング率を変更する際には、編集部12は、例えば、方向によらず一律にヤング率を変更する。言い換えると、編集部12は、各方向のヤング率に対して一律に剛性変更係数Kを乗算して、ヤング率を変更する。 In addition, as the numerical value regarding the rigidity, for example, the plate thickness which is one of the determining factors of the Young's modulus or the section modulus can be mentioned. In the present embodiment, the editing unit 12 may change the Young's modulus by multiplying the Young's modulus of each area by the rigidity changing coefficient K E , or multiply the plate thickness of each area by the rigidity changing coefficient K t. The plate thickness may be changed according to. In the present embodiment, when changing the Young's modulus, the editing unit 12 uniformly changes the Young's modulus regardless of the direction, for example. In other words, the editing unit 12 uniformly modifies the Young's modulus in each direction by the rigidity modification coefficient K E.
 本実施形態では、例えば、剛性変更係数K,Kはそれぞれ、1を除く正の実数に設定される。なお、編集部12は、ヤング率および板厚のうち、いずれか一方のみを変更してもよく、両方を変更してもよい。ヤング率および板厚の両方が変更される場合は、剛性変更係数K,Kは互いに異なっていてもよく、等しくてもよい。 In the present embodiment, for example, the stiffness change coefficients K E and K t are set to positive real numbers other than 1, respectively. The editing unit 12 may change only one of the Young's modulus and the plate thickness, or may change both of them. When both the Young's modulus and the plate thickness are changed, the rigidity changing coefficients K E and K t may be different from each other or may be the same.
 本実施形態では、第1解析実行データの応力データには、面内平均応力成分と、板厚方向偏差応力成分とが含まれる。なお、面内平均応力成分とは、プレス成形品100の面内方向応力の板厚方向分布の平均応力成分である。面内方向応力とは、プレス成形品100の表面に平行な方向(板厚方向に直交する方向)に生じる応力である。また、板厚方向偏差応力成分とは、面内方向応力の板厚方向分布の偏差応力であり、面内方向応力の板厚方向分布から平均応力成分を減算して得られる応力分布である。 In the present embodiment, the stress data of the first analysis execution data includes the in-plane average stress component and the plate thickness direction deviation stress component. The in-plane average stress component is the average stress component of the in-plane stress distribution of the press-formed product 100 in the plate thickness direction. The in-plane direction stress is a stress generated in a direction parallel to the surface of the press-formed product 100 (direction orthogonal to the plate thickness direction). The plate thickness direction deviation stress component is a deviation stress of the plate thickness direction distribution of the in-plane direction stress, and is a stress distribution obtained by subtracting the average stress component from the plate thickness direction distribution of the in-plane direction stress.
 編集部12は、第2解析実行データを生成するに際して、上述の複数の領域について、第1解析実行データのヤング率および/または板厚を変更した場合には、ヤング率および/または板厚の変更量に応じて第1解析実行データの応力を変更する。 When generating the second analysis execution data, the editing unit 12 changes the Young's modulus and/or the plate thickness of the above-described plurality of regions when the Young's modulus and/or the plate thickness of the first analysis execution data is changed. The stress of the first analysis execution data is changed according to the change amount.
 例えば、編集部12は、第1解析実行データの領域100aのヤング率を高く(または低く)した場合には、ヤング率の変更量に応じて第1解析実行データの領域100aの面内方向応力および板厚方向偏差応力を高く(または低く)して、第2解析実行データを生成する。また、例えば、編集部12は、第1解析実行データの領域100aの板厚(断面二次モーメント)を大きく(または小さく)した場合には、板厚(断面二次モーメント)の変更量に応じて第1解析実行データの領域100aの板厚方向偏差応力を高く(または小さく)して、第2解析実行データを生成する。 For example, when the Young's modulus of the area 100a of the first analysis execution data is set high (or low), the editing unit 12 changes the in-plane stress of the area 100a of the first analysis execution data according to the change amount of the Young's modulus. And the deviation stress in the plate thickness direction is increased (or decreased) to generate the second analysis execution data. In addition, for example, when the plate thickness (second moment of area) of the region 100a of the first analysis execution data is increased (or decreased), the editing unit 12 responds to the change amount of the plate thickness (second moment of area). Then, the deviation stress in the plate thickness direction of the region 100a of the first analysis execution data is increased (or decreased) to generate the second analysis execution data.
 なお、本実施形態では、第1解析実行データのヤング率および/または板厚の変更量に応じて編集部12が第1解析実行データの応力を変更してもよく、ユーザの操作に基づいて編集部12が第1解析実行データの応力を変更してもよい。例えば、編集部12は、剛性変更係数Kを乗算することによって第1解析実行データのヤング率を変更した場合には、剛性変更係数Kを乗算することによって面内方向応力および板厚方向偏差応力を変更してもよい。また、例えば、編集部12は、剛性変更係数Kを乗算することによって第1解析実行データの板厚を変更した場合には、剛性変更係数Kを乗算することによって板厚方向偏差応力を変更してもよい。 In the present embodiment, the editing unit 12 may change the stress of the first analysis execution data according to the change amount of the Young's modulus and/or the plate thickness of the first analysis execution data, and based on the user operation. The editing unit 12 may change the stress of the first analysis execution data. For example, when the Young's modulus of the first analysis execution data is changed by multiplying the rigidity change coefficient K E , the editing unit 12 multiplies the rigidity change coefficient K E to in-plane stress and plate thickness direction. The deviation stress may be changed. Further, for example, editing unit 12, when changing the thickness of the first analysis execution data by multiplying the stiffness changing coefficient K t is the thickness direction deviatoric stress by multiplying the stiffness changing coefficient K t You may change it.
 なお、編集部12は、剛性に関する数値として第1解析実行データの板厚のみを変更した場合には、第1解析実行データの面内平均応力成分を変更することなく、第1解析実行データの板厚方向偏差応力のみを変更して第2解析実行データを生成する。 In addition, when only the plate thickness of the first analysis execution data is changed as the numerical value regarding the rigidity, the editing unit 12 does not change the in-plane average stress component of the first analysis execution data and changes the first analysis execution data. The second analysis execution data is generated by changing only the deviation stress in the plate thickness direction.
 なお、上記においては、面内平均応力成分および板厚方向偏差応力成分をともに作用させた状態で弾性解析を行う場合について説明したが、面内平均応力成分のみを作用させて弾性解析を行ってもよく、板厚方向偏差応力成分のみを作用させて弾性解析を行ってもよい。 In addition, in the above, the case where the elastic analysis is performed in the state where both the in-plane average stress component and the plate thickness direction deviation stress component are explained, but the elastic analysis is performed by applying only the in-plane average stress component. Alternatively, the elastic analysis may be performed by applying only the deviation stress component in the plate thickness direction.
 第1解析部14は、第1解析実行データに含まれるプレス成形品100の形状データ、応力分布データおよびヤング率等の性状データに基づいて弾性解析を行い、第1変化情報を算出する。第1解析部14は、第1変化情報を含む解析結果(形状データ等を含む。)を、影響度算出部18へ出力する。 The first analysis unit 14 performs elasticity analysis based on the shape data of the press-formed product 100, the stress distribution data, and the property data such as Young's modulus included in the first analysis execution data, and calculates the first change information. The first analysis unit 14 outputs an analysis result (including shape data and the like) including the first change information to the influence degree calculation unit 18.
 第2解析部16は、編集部12から入力された第2解析実行データに含まれるプレス成形品100の形状データ、応力分布データおよびヤング率等の性状データに基づいて弾性解析を行い、第2変化情報を算出する。 The second analysis unit 16 performs elasticity analysis based on the shape data of the press-formed product 100, the stress distribution data, and the property data such as Young's modulus, which are included in the second analysis execution data input from the editing unit 12. Change information is calculated.
 本実施形態では、第2解析部16は、複数の第2解析実行データごとに、弾性解析を行い、第2変化情報を算出する。すなわち、本実施形態では、第2解析部16は、編集部12によって剛性に関する数値が変更された複数の領域に対応する複数の第2変化情報を算出し、算出した複数の第2変化情報を影響度算出部18へ出力する。 In the present embodiment, the second analysis unit 16 performs elasticity analysis for each of the plurality of second analysis execution data and calculates second change information. That is, in the present embodiment, the second analysis unit 16 calculates a plurality of second change information corresponding to a plurality of regions whose numerical values regarding rigidity have been changed by the editing unit 12, and calculates the calculated plurality of second change information. It outputs to the influence degree calculation part 18.
 影響度算出部18は、第1解析部14から入力された第1変化情報および第2解析部16から入力された複数の第2変化情報に基づいて、複数の領域それぞれの剛性影響度を求める。具体的には、影響度算出部18は、複数の第2変化情報それぞれを第1変化情報と比較することによって、剛性に関する数値が変更された領域ごとに剛性影響度を算出する。なお、影響度算出部18は、算出した剛性影響度を、編集部12による剛性に関する数値の変更量に基づいて補正してもよい。例えば、影響度算出部18は、算出した剛性影響度を、剛性変更係数KまたはKで除算してもよい。影響度算出部18は、算出した剛性影響度(または補正された剛性影響度)を、表示データ生成部20へ出力する。 The degree-of-impact calculation unit 18 obtains the degree of rigidity influence of each of the plurality of regions based on the first change information input from the first analysis unit 14 and the plurality of second change information input from the second analysis unit 16. .. Specifically, the degree-of-impact calculation unit 18 calculates the degree of rigidity influence for each region in which the numerical value regarding rigidity is changed by comparing each of the plurality of second change information with the first change information. The influence degree calculating unit 18 may correct the calculated stiffness influence degree based on the amount of change in the numerical value relating to the rigidity by the editing unit 12. For example, the degree-of-impact calculation unit 18 may divide the calculated degree of rigidity influence by the rigidity change coefficient K E or K t . The influence degree calculating unit 18 outputs the calculated stiffness influence degree (or the corrected stiffness influence degree) to the display data generating unit 20.
 表示データ生成部20は、影響度算出部18から入力された複数の領域(編集部12によって剛性に関する数値が変更された複数の領域)それぞれの剛性影響度を、その大きさに基づいてコンター表示するための表示データを生成する。表示データ生成部20は、生成した表示データを、例えば図示しない表示装置へ出力する。これにより、表示装置の画面に、例えば、後述する図9、12、15、18、21および23に示すようなコンター図が表示される。なお、図9、12、15、18、21および23に示すコンター図では、剛性影響度が大きくなるほど色が濃くなるように、プレス成形品100の複数の領域に色が付されている。 The display data generation unit 20 displays the rigidity influence degree of each of the plurality of areas (the plurality of areas in which the numerical value regarding the rigidity has been changed by the editing unit 12) input from the influence degree calculation unit 18 based on the size thereof. Generate display data for doing. The display data generation unit 20 outputs the generated display data to, for example, a display device (not shown). Thereby, for example, contour diagrams as shown in FIGS. 9, 12, 15, 18, 21 and 23 described later are displayed on the screen of the display device. In the contour diagrams shown in FIGS. 9, 12, 15, 18, 21 and 23, a plurality of regions of the press-formed product 100 are colored so that the color becomes darker as the degree of rigidity influence increases.
 固定条件変更部22は、ユーザの操作に応じて、表示データを生成する際の基準となる固定点を変更させるための情報を第1解析部14および第2解析部16へ出力する。 The fixed condition changing unit 22 outputs, to the first analysis unit 14 and the second analysis unit 16, information for changing the fixed point that serves as a reference when generating display data according to a user operation.
 ここで、本実施形態では、第1解析部14による弾性解析および第2解析部16による弾性解析は、予め設定された共通の固定点に基づいて実行される。このため、通常、影響度算出部18は、予め設定された固定点に基づく弾性解析によって求められたプレス成形品100の変形態様から各領域の剛性影響度を算出し、算出した各領域の剛性影響度に基づいて表示データを生成する。 Here, in the present embodiment, the elasticity analysis by the first analysis unit 14 and the elasticity analysis by the second analysis unit 16 are executed based on a preset common fixed point. Therefore, normally, the influence degree calculating unit 18 calculates the rigidity influence degree of each region from the deformation mode of the press-formed product 100 obtained by the elasticity analysis based on the preset fixed point, and the calculated rigidity of each region. Display data is generated based on the degree of influence.
 一方で、本実施形態では、第1解析部14は、固定条件変更部22から固定点を変更させるための情報が入力されると、入力された情報に応じて、異なる固定点(新たに設定された固定点)に基づいて第1変化情報を生成する。具体的には、第1解析部14は、まず、第1解析実行データに含まれる離型前のプレス成形品100の形状等のデータ、および第1解析実行データを用いた弾性解析によって既に算出されている離型後のプレス成形品100の形状等のデータについて、新たに設定された固定点での位置合わせ(移動および/または回転)を行う。その上で、第1解析部14は、上述した方法と同様の方法で第1変化情報を改めて算出し、影響度算出部18へ出力する。この場合、第1解析部14は、新たな弾性解析(スプリングバック解析)を行うことなく、異なる固定点に基づいて第1変化情報を算出することができる。 On the other hand, in the present embodiment, when the information for changing the fixed point is input from the fixed condition changing unit 22, the first analysis unit 14 changes the fixed point (newly set) according to the input information. The first change information is generated based on the fixed point). Specifically, the first analysis unit 14 first calculates the data such as the shape of the press-formed product 100 before release included in the first analysis execution data and the elasticity analysis using the first analysis execution data. Positioning (moving and/or rotating) at a newly set fixed point is performed for the data such as the shape of the press-formed product 100 after releasing that has been performed. Then, the first analysis unit 14 recalculates the first change information by the same method as described above, and outputs the first change information to the influence degree calculation unit 18. In this case, the first analysis unit 14 can calculate the first change information based on different fixed points without performing new elasticity analysis (springback analysis).
 同様に、第2解析部16は、固定条件変更部22から固定点を変更させるための情報が入力されると、入力された情報に応じて、異なる固定点(新たに設定された固定点)に基づいて、複数の第2変化情報を生成する。具体的には、第2解析部16は、複数の第2解析実行データそれぞれについて、第2解析実行データに含まれる離型前のプレス成形品100の形状等のデータ、および第2解析実行データを用いた弾性解析によって既に算出されているプレス成形品100の形状等のデータについて、新たに設定された固定点での位置合わせ(移動および/または回転)を行う。その上で、第2解析部16は、複数の第2解析実行データそれぞれについて、上述した方法と同様の方法で第2変化情報を改めて算出し、影響度算出部18へ出力する。この場合、第2解析部16は、新たな弾性解析(スプリングバック解析)を行うことなく、異なる固定点に基づく複数の第2変化情報を算出することができる。 Similarly, when the information for changing the fixed point is input from the fixed condition changing unit 22, the second analysis unit 16 changes a fixed point (a newly set fixed point) according to the input information. A plurality of pieces of second change information are generated based on Specifically, for each of the plurality of second analysis execution data, the second analysis unit 16 includes data such as the shape of the press-formed product 100 before release, which is included in the second analysis execution data, and the second analysis execution data. With respect to the data such as the shape of the press-formed product 100 already calculated by the elasticity analysis using, position adjustment (movement and/or rotation) at a newly set fixed point is performed. Then, the second analysis unit 16 newly calculates the second change information for each of the plurality of second analysis execution data by the same method as described above, and outputs the second change information to the influence degree calculation unit 18. In this case, the second analysis unit 16 can calculate a plurality of second change information based on different fixed points without performing a new elasticity analysis (springback analysis).
 影響度算出部18は、第1解析部14によって改めて算出された第1変化情報および第2解析部16によって改めて算出された複数の第2変化情報に基づいて、上述した方法と同様の方法で、複数の領域それぞれの剛性影響度を算出し、算出した剛性影響度を表示データ生成部20へ出力する。表示データ生成部20は、影響度算出部18から入力された複数の領域それぞれの剛性影響度を、その大きさに基づいてコンター表示するための表示データを生成する。このようにして、本実施形態に係る分析装置10では、異なる固定点に基づく剛性影響度のコンター図を表示するための表示データを、新たな弾性解析を行うことなく容易に生成することができる。 The degree-of-influence calculation unit 18 uses the same method as the above-described method based on the first change information newly calculated by the first analysis unit 14 and the plurality of second change information newly calculated by the second analysis unit 16. The rigidity influence degree of each of the plurality of regions is calculated, and the calculated rigidity influence degree is output to the display data generation unit 20. The display data generation unit 20 generates display data for contour-displaying the rigidity influence degree of each of the plurality of regions input from the influence degree calculation unit 18 based on the size thereof. In this way, the analyzer 10 according to the present embodiment can easily generate the display data for displaying the contour diagram of the stiffness influence degree based on the different fixed points without performing a new elasticity analysis. ..
 以上のように、本実施形態では、プレス成形品100の複数の領域それぞれの剛性影響度を算出することができる。これにより、分析装置10のユーザは、プレス成形品100のうちのどの部分の剛性を調整すればよいのかを容易に把握することができ、プレス成形品100の変形を適切に抑制することができる。具体的には、分析装置10によって剛性影響度が大きいと分析された領域に補剛対策を施すことによって、プレス成形品100の変形を適切に抑制することができる。補剛対策としては、例えば、段差の形成、座面形状の変更、ビードの形成など、プレス成形品の形状変更が考えられる。 As described above, in the present embodiment, it is possible to calculate the rigidity influence degree of each of a plurality of regions of the press-formed product 100. Thereby, the user of the analyzer 10 can easily understand which part of the press-formed product 100 should be adjusted in rigidity, and can appropriately suppress the deformation of the press-formed product 100. .. Specifically, the deformation of the press-formed product 100 can be appropriately suppressed by applying a stiffening measure to the region analyzed by the analysis device 10 as having a high degree of rigidity influence. As a measure for stiffening, for example, it is conceivable to change the shape of the press-formed product such as forming a step, changing the shape of the seat surface, forming a bead.
(変形例)
 プレス成形品100を複数の領域に分割する際の各領域の寸法および形状ならびに分割数は図5の例に限定されず、適宜変更できる。例えば、各領域の形状は、三角形であってもよく、5角形以上の多角形であってもよい。また、例えば、図2を参照して、天板部102を一つの領域に設定し、一対の縦壁部104を一つの領域に設定し、一対のフランジ部106を一つの領域に設定してもよい。また、例えば、天板部102のみを複数の領域に分割してもよく、一対の縦壁部104のみを複数の領域に分割してもよく、一対のフランジ部106のみを複数の領域に分割してもよい。また、例えば、図6において一点鎖線で区画されているように、第1解析実行データに含まれる応力分布データに基づいてプレス成形品100を複数の領域に分割してもよい。なお、図6において一点鎖線は、一定の応力値ごとに示された等値線を示す。
(Modification)
The size and shape of each region and the number of divisions when the press-formed product 100 is divided into a plurality of regions are not limited to the example of FIG. 5, and can be appropriately changed. For example, the shape of each region may be a triangle or a polygon having five or more sides. Further, for example, referring to FIG. 2, the top plate portion 102 is set to one area, the pair of vertical wall portions 104 is set to one area, and the pair of flange portions 106 is set to one area. Good. Further, for example, only the top plate portion 102 may be divided into a plurality of regions, only the pair of vertical wall portions 104 may be divided into a plurality of regions, and only the pair of flange portions 106 may be divided into a plurality of regions. You may. Further, for example, the press-formed product 100 may be divided into a plurality of regions based on the stress distribution data included in the first analysis execution data, as indicated by the dashed line in FIG. It should be noted that the alternate long and short dash line in FIG. 6 represents the isolines shown for each constant stress value.
(装置動作)
 次に、本実施形態に係る分析装置10の動作について説明する。図7は、本発明の一実施形態に係る剛性影響度分析方法の動作を示すフロー図である。なお、本実施形態に係る剛性影響度分析方法は、分析装置10を動作させることによって実施される。
(Device operation)
Next, the operation of the analysis device 10 according to the present embodiment will be described. FIG. 7 is a flow chart showing the operation of the rigidity influence analysis method according to the embodiment of the present invention. The rigidity influence degree analysis method according to the present embodiment is performed by operating the analysis device 10.
 図7に示すように、本実施形態では、上述したように、編集部12および第1解析部14が、第1解析実行データを取得する(ステップS1)。また、上述したように、編集部12が、複数の第2解析実行データを生成する(ステップS2)。 As shown in FIG. 7, in the present embodiment, as described above, the editing unit 12 and the first analysis unit 14 acquire the first analysis execution data (step S1). Further, as described above, the editing unit 12 generates a plurality of second analysis execution data (step S2).
 また、上述したように、第1解析部14が、第1解析実行データを用いた弾性解析の結果に基づいて、第1変化情報を生成する(ステップS3)。さらに、上述したように、第2解析部16が、複数の第2解析実行データを用いた弾性解析の結果に基づいて、複数の第2変化情報を生成する(ステップS4)。 Further, as described above, the first analysis unit 14 generates the first change information based on the result of the elasticity analysis using the first analysis execution data (step S3). Furthermore, as described above, the second analysis unit 16 generates a plurality of pieces of second change information based on the results of elasticity analysis using a plurality of second analysis execution data (step S4).
 次に、上述したように、影響度算出部18が、第1変化情報および複数の第2変化情報に基づいて、プレス成形品100の複数の領域それぞれの剛性影響度を算出する(ステップS5)。次に、上述したように、表示データ生成部20が表示データを生成し、コンター図を表示させる(ステップS6)。 Next, as described above, the influence degree calculating unit 18 calculates the degree of rigidity influence of each of the plurality of regions of the press-formed product 100 based on the first change information and the plurality of second change information (step S5). .. Next, as described above, the display data generation unit 20 generates the display data and displays the contour diagram (step S6).
 次に、第1解析部14および第2解析部16は、固定条件変更部22から固定点を変更させるための情報(以下、変更情報と記載する。)が入力されたか否かを判別する(ステップS7)。第1解析部14および第2解析部16に変更情報が入力されていない場合、分析装置10は処理を終了する。 Next, the first analysis unit 14 and the second analysis unit 16 determine whether or not information (hereinafter, referred to as change information) for changing the fixed point is input from the fixed condition changing unit 22 ( Step S7). When the change information is not input to the first analysis unit 14 and the second analysis unit 16, the analysis device 10 ends the process.
 ステップS7において変更情報が入力されている場合、第1解析部14は、上述したように、新たに設定された固定点に基づいて第1変化情報を改めて生成する(ステップS8)。また、第2解析部16は、上述したように、新たに設定された固定点に基づいて複数の第2変化情報を改めて生成する(ステップS9)。その後、ステップS5の処理に戻り、影響度算出部18は、第1解析部14および第2解析部16によって改めて生成された第1変化情報および複数の第2変化情報に基づいて、複数の領域それぞれの剛性影響度を算出する。 When the change information is input in step S7, the first analysis unit 14 regenerates the first change information based on the newly set fixed point as described above (step S8). In addition, as described above, the second analysis unit 16 newly generates a plurality of pieces of second change information based on the newly set fixed point (step S9). After that, returning to the process of step S5, the impact degree calculation unit 18 determines the plurality of regions based on the first change information and the plurality of second change information that are newly generated by the first analysis unit 14 and the second analysis unit 16. The degree of rigidity influence is calculated.
[物理構成]
 図8は、本発明の一実施形態に係る算出装置を実現するコンピュータの一例を示すブロック図である。
[Physical configuration]
FIG. 8 is a block diagram showing an example of a computer that realizes the calculation device according to the embodiment of the present invention.
 図8に示すように、コンピュータ110は、CPU111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。なお、コンピュータ110は、CPU111に加えて、又はCPU111に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-Programmable Gate Array)を備えていてもよい。 As shown in FIG. 8, the computer 110 includes a CPU 111, a main memory 112, a storage device 113, an input interface 114, a display controller 115, a data reader/writer 116, and a communication interface 117. These units are connected to each other via a bus 121 so as to be able to perform data communication with each other. The computer 110 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 111 or in place of the CPU 111.
 CPU111は、記憶装置113に格納されたプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、編集部12、第1解析部14、第2解析部16、影響度算出部18、表示データ生成部20および固定条件変更部22の機能を実現する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、上記のプログラムは、例えば、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、上記のプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであってもよい。 The CPU 111 loads the program (code) stored in the storage device 113 into the main memory 112, and executes these in a predetermined order to edit the editing unit 12, the first analysis unit 14, the second analysis unit 16, and the degree of influence. The functions of the calculation unit 18, the display data generation unit 20, and the fixed condition change unit 22 are realized. The main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory). Further, the above program is provided, for example, in a state of being stored in a computer-readable recording medium 120. The above program may be distributed on the Internet connected through the communication interface 117.
 また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボードおよびマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。 Further, specific examples of the storage device 113 include a semiconductor storage device such as a flash memory in addition to a hard disk drive. The input interface 114 mediates data transmission between the CPU 111 and an input device 118 such as a keyboard and a mouse. The display controller 115 is connected to the display device 119 and controls the display on the display device 119.
 データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、およびコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。 The data reader/writer 116 mediates data transmission between the CPU 111 and the recording medium 120, reads a program from the recording medium 120, and writes the processing result in the computer 110 to the recording medium 120. The communication interface 117 mediates data transmission between the CPU 111 and another computer.
 また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))およびSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記録媒体が挙げられる。 Specific examples of the recording medium 120 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as a flexible disk, or CD- An optical recording medium such as a ROM (Compact Disk Read Only Memory) can be given.
 なお、本実施形態に係る分析装置10は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによって実現されてもよい、また、分析装置10は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。 The analysis apparatus 10 according to the present embodiment may be realized by using hardware corresponding to each unit instead of the computer in which the program is installed. Further, the analysis apparatus 10 is partially realized by the program. The remaining part may be realized by hardware.
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically by way of examples, but the present invention is not limited to these examples.
 実施例1~6では、本発明に係る分析方法によって、図2に示す形状を有するプレス成形品100について、剛性影響度を分析した。すなわち、実施例1~6では、プレス成形品100を96領域に分割し、各領域の応力、ヤング率または板厚等を変更しつつ弾性解析を行い、各領域の剛性(ヤング率または板厚)がプレス成形品100の変形に与える影響度(剛性影響度)を分析した。比較例1A~6A、1B~4B、および6Bについても、プレス成形品100を96領域に分割し、各領域の応力値等を変更しつつ弾性解析を行い、各領域の応力等がプレス成形品100の変形に与える影響度を分析した。 In Examples 1 to 6, the rigidity influence degree of the press-formed product 100 having the shape shown in FIG. 2 was analyzed by the analysis method according to the present invention. That is, in Examples 1 to 6, the press-formed product 100 was divided into 96 regions, and elastic analysis was performed while changing the stress, Young's modulus, plate thickness, etc. of each region, and the rigidity (Young's modulus or plate thickness) of each region was analyzed. ) Has an influence on the deformation of the press-formed product 100 (rigidity influence degree). Also in Comparative Examples 1A to 6A, 1B to 4B, and 6B, the press-formed product 100 was divided into 96 regions, and the elastic analysis was performed while changing the stress value and the like in each region, and the stress and the like in each region The degree of influence on 100 deformation was analyzed.
 下記の表1に、実施例および比較例の解析条件を示す。なお、プレス成形品100の素材は、980MPa級の冷延鋼板(板厚1.2mm)とした。また、図9~図25は、実施例および比較例の分析結果を示すコンター図である。なお、図9~図25に示すコンター図では、プレス成形品100の変形に与える剛性等の影響度が大きくなるほど色が濃くなるように、プレス成形品の複数の領域に色が付されている。 Table 1 below shows the analysis conditions for the examples and comparative examples. The material of the press-formed product 100 was a 980 MPa grade cold-rolled steel sheet (sheet thickness 1.2 mm). 9 to 25 are contour charts showing the analysis results of Examples and Comparative Examples. Note that in the contour diagrams shown in FIGS. 9 to 25, a plurality of regions of the press-molded product are colored so that the color becomes darker as the degree of influence of the rigidity or the like on the deformation of the press-molded product 100 increases. ..
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1、比較例1A、比較例1B、実施例6、比較例6Aおよび比較例6Bでは、面内平均応力成分および板厚方向偏差応力成分をともに作用させた状態で弾性解析を行った。一方、実施例2、比較例2A,比較例2B、実施例5および比較例5Aでは、面内平均応力成分のみを作用させた状態で弾性解析を行い、実施例3、比較例3A、比較例3B、実施例4、比較例4A、比較例4Bでは、板厚方向偏差応力成分のみを作用させた状態で弾性解析を行った。 As shown in Table 1, in Example 1, Comparative Example 1A, Comparative Example 1B, Example 6, Comparative Example 6A and Comparative Example 6B, a state in which both the in-plane average stress component and the plate thickness direction deviation stress component are applied Elasticity analysis was performed. On the other hand, in Example 2, Comparative Example 2A, Comparative Example 2B, Example 5 and Comparative Example 5A, elastic analysis was performed in a state where only the in-plane average stress component was applied, and Example 3, Comparative Example 3A, Comparative Example In 3B, Example 4, Comparative Example 4A, and Comparative Example 4B, the elastic analysis was performed in the state where only the sheet-thickness direction deviatoric stress component was applied.
 図9に示すように、実施例1の分析結果では、天板部102(図2参照)に、影響度が大きい領域が集中して存在していることが分かる。この結果に基づいて、図26に示したように、天板部102に補剛部108を形成したところ、プレス成形品100の変形量が大幅に低下した。 As shown in FIG. 9, the analysis result of Example 1 shows that the top plate portion 102 (see FIG. 2) has concentrated areas having a large influence degree. Based on this result, as shown in FIG. 26, when the stiffening portion 108 was formed on the top plate portion 102, the deformation amount of the press-formed product 100 was significantly reduced.
 一方、図9~図11を参照して、実施例1の分析結果、比較例1Aの分析結果、および比較例1Bの分析結果を比較すると、影響度が大きくなる領域は一致しなかった。また、実施例1のコンター図と比較例1Aのコンター図との比較から、ヤング率の変更量に応じて応力を変更した実施例1では、プレス成形品100の変形に与える応力の影響と剛性の影響を切り分けて、各領域の剛性がプレス成形品100の変形に与える影響を適切に評価できていると考えられる。一方、比較例1Aのコンター図と比較例1Bのコンター図との比較から、ヤング率のみを変更して応力を変更しなかった比較例1Bでは、プレス成形品100の変形に与える応力の影響と剛性の影響とを切り分けることができなかったと考えられる。詳細な説明は省略するが、実施例2~実施例6においても実施例1と同様に、プレス成形品100の変形に与える応力の影響と剛性の影響を切り分けて、各領域の剛性がプレス成形品100の変形に与える影響を適切に評価できていると考えられる。 On the other hand, referring to FIGS. 9 to 11, when the analysis results of Example 1, the analysis results of Comparative Example 1A, and the analysis results of Comparative Example 1B were compared, the areas in which the degree of influence was large did not match. Further, from the comparison between the contour diagram of Example 1 and the contour diagram of Comparative Example 1A, in Example 1 in which the stress was changed according to the change amount of Young's modulus, the influence of the stress on the deformation of the press-formed product 100 and the rigidity It is considered that the influence of the rigidity of each region on the deformation of the press-formed product 100 can be appropriately evaluated by separating the influence of the above. On the other hand, from the comparison between the contour diagram of Comparative Example 1A and the contour diagram of Comparative Example 1B, in Comparative Example 1B in which only the Young's modulus was changed and the stress was not changed, the effect of stress on the deformation of the press-formed product 100 It is considered that the effect of rigidity could not be separated. Although detailed description is omitted, in Examples 2 to 6 as well, similarly to Example 1, the effect of stress and the effect of rigidity on the deformation of the press-formed product 100 are separated to determine the rigidity of each region by press-forming. It is considered that the influence on the deformation of the product 100 can be properly evaluated.
 これらの結果から、本発明によれば、剛性影響度(プレス成形品の任意の領域の剛性がプレス成形品の変形に与える影響度)を、適切に分析できることが分かった。すなわち、本発明によれば、従来の分析方法では特定が困難であった、プレス成形品の変形を抑制するための剛性向上箇所を適切に特定できることが分かった。 From these results, it was found that according to the present invention, the degree of influence of rigidity (the degree of influence of the rigidity of an arbitrary region of the press-formed product on the deformation of the press-formed product) can be appropriately analyzed. That is, according to the present invention, it has been found that it is possible to appropriately specify the rigidity-improved portion for suppressing the deformation of the press-formed product, which was difficult to specify by the conventional analysis method.
(対策例)
 図26は、実施例1~6の分析結果に基づいて剛性影響度が高い箇所に補剛対策を施したプレス成形品を示す図である。図26に示すプレス成形品100では、天板部102の表面に、剛性を向上させるための補剛部108が設けられている。補剛部108は、複数のビードによって構成されている。
(Example of measures)
FIG. 26 is a diagram showing a press-molded product in which stiffening countermeasures are applied to a portion having a high rigidity influence degree based on the analysis results of Examples 1 to 6. In the press-formed product 100 shown in FIG. 26, a stiffening portion 108 for improving rigidity is provided on the surface of the top plate portion 102. The stiffening portion 108 is composed of a plurality of beads.
 本発明によれば、プレス成形品の任意の領域の剛性影響度を適切に分析することができる。 According to the present invention, it is possible to appropriately analyze the rigidity influence degree in an arbitrary region of a press-formed product.
 10 分析装置
 12 編集部
 14 第1解析部
 16 第2解析部
 18 影響度算出部
 20 表示データ生成部
 22 固定条件変更部
 100 プレス成形品
10 analysis device 12 editing unit 14 first analysis unit 16 second analysis unit 18 influence degree calculation unit 20 display data generation unit 22 fixed condition change unit 100 press-formed product

Claims (17)

  1.  コンピュータによって実行される剛性影響度分析方法であって、
     有限要素解析の解析対象となるプレス成形品の応力および剛性に関する数値データを含む弾性解析を実施するための第1解析実行データのうち、前記プレス成形品の任意の領域の前記剛性に関する数値を変更するとともに、当該変更された剛性に関する数値に応じて、前記第1解析実行データのうちの前記剛性に関する数値が変更された領域の応力を変更することによって弾性解析を実施するための第2解析実行データを生成する、編集工程と、
     前記第1解析実行データを用いた弾性解析の結果に基づいて、前記プレス成形品の形状変化に関する第1変化情報を求める、第1解析工程と、
     前記第2解析実行データを用いた弾性解析の結果に基づいて、前記プレス成形品の形状変化に関する第2変化情報を求める、第2解析工程と、
     前記第1変化情報および前記第2変化情報に基づいて、前記任意の領域の剛性が前記プレス成形品の変形に与える影響度を求める、影響度算出工程と、を備える剛性影響度分析方法。
    A stiffness analysis method executed by a computer, comprising:
    Of the first analysis execution data for performing the elastic analysis including the numerical data regarding the stress and rigidity of the press-formed product which is the analysis target of the finite element analysis, the value regarding the rigidity of the arbitrary region of the press-formed product is changed. In addition, the second analysis execution for executing the elasticity analysis by changing the stress in the region of the first analysis execution data in which the numerical value regarding the rigidity is changed according to the changed numerical value regarding the rigidity. An editing process that generates data,
    A first analysis step of obtaining first change information regarding a shape change of the press-formed product based on a result of elasticity analysis using the first analysis execution data;
    A second analysis step of obtaining second change information regarding a shape change of the press-formed product based on a result of elasticity analysis using the second analysis execution data;
    A stiffness impact degree analysis method, comprising: determining the degree of impact of the stiffness of the arbitrary region on the deformation of the press-formed product based on the first change information and the second change information.
  2.  前記編集工程において変更される前記剛性に関する数値にはヤング率および板厚のうちの少なくとも一方が含まれる、請求項1に記載の剛性影響度分析方法。 The rigidity influence analysis method according to claim 1, wherein at least one of Young's modulus and plate thickness is included in the numerical value regarding the rigidity changed in the editing step.
  3.  前記編集工程では、前記剛性に関する数値の変更量に応じて、前記第1解析実行データのうちの前記剛性に関する数値が変更された領域の応力を変更して前記第2解析実行データを生成する、請求項1または2に記載の剛性影響度分析方法。 In the editing step, the stress of a region of the first analysis execution data in which the numerical value regarding the rigidity is changed is changed according to the amount of change in the numerical value regarding the rigidity, and the second analysis execution data is generated. The rigidity influence analysis method according to claim 1.
  4.  前記編集工程では、前記変更された剛性に関する数値が前記板厚のみである場合には、前記第1解析実行データのうちの前記剛性に関する数値が変更された領域の面内平均応力成分を変更することなく前記第2解析実行データを生成する、請求項2に記載の剛性影響度分析方法。 In the editing step, when the numerical value regarding the changed rigidity is only the plate thickness, the in-plane average stress component of the region of the first analysis execution data in which the numerical value regarding the rigidity is changed is changed. The rigidity impact degree analysis method according to claim 2, wherein the second analysis execution data is generated without being generated.
  5.  前記第1解析実行データの前記応力は、プレス成形解析に基づいて求められた応力である、請求項1から4のいずれかに記載の剛性影響度分析方法。 The rigidity influence analysis method according to any one of claims 1 to 4, wherein the stress of the first analysis execution data is a stress obtained based on a press forming analysis.
  6.  前記編集工程では、前記プレス成形品の複数の異なる領域ごとに前記剛性に関する数値を変更することによって、複数の前記第2解析実行データを生成し、
     前記第2解析工程では、前記複数の第2解析実行データそれぞれについて、前記プレス成形品の形状変化に関する前記第2変化情報を求め、
     前記影響度算出工程では、前記第1変化情報と、前記複数の第2解析実行データそれぞれについて求められた前記第2変化情報とに基づいて、前記複数の異なる領域それぞれの剛性が前記プレス成形品の変形に与える影響度を求める、請求項1から5のいずれかに記載の剛性影響度分析方法。
    In the editing step, a plurality of the second analysis execution data is generated by changing a numerical value regarding the rigidity for each of a plurality of different regions of the press-formed product,
    In the second analysis step, the second change information regarding the shape change of the press-formed product is obtained for each of the plurality of second analysis execution data,
    In the influence degree calculating step, the rigidity of each of the plurality of different regions is determined based on the first change information and the second change information obtained for each of the plurality of second analysis execution data. The rigidity impact degree analysis method according to any one of claims 1 to 5, wherein the degree of influence on the deformation of is determined.
  7.  前記複数の異なる領域それぞれの前記影響度を、その大きさに基づいてコンター表示する表示工程をさらに備える、請求項1から6のいずれかに記載の剛性影響度分析方法。 The rigidity impact degree analysis method according to any one of claims 1 to 6, further comprising a display step of contour-displaying the impact degrees of each of the plurality of different areas based on their sizes.
  8.  前記編集工程における前記剛性に関する数値の変更量に基づいて、前記影響度算出工程において求められた前記影響度を補正する補正工程をさらに備える、請求項1から7のいずれかに記載の剛性影響度分析方法。 The rigidity influence degree according to any one of claims 1 to 7, further comprising a correction step of correcting the influence degree obtained in the influence degree calculation step based on a change amount of a numerical value relating to the stiffness in the editing step. Analysis method.
  9.  有限要素解析の解析対象となるプレス成形品の応力および剛性に関する数値データを含む弾性解析を実施するための第1解析実行データのうち、前記プレス成形品の任意の領域の前記剛性に関する数値を変更するとともに、当該変更された剛性に関する数値に応じて、前記第1解析実行データのうちの前記剛性に関する数値が変更された領域の応力を変更することによって弾性解析を実施するための第2解析実行データを生成する、編集部と、
     前記第1解析実行データを用いた弾性解析の結果に基づいて、前記プレス成形品の形状変化に関する第1変化情報を求める、第1解析部と、
     前記第2解析実行データを用いた弾性解析の結果に基づいて、前記プレス成形品の形状変化に関する第2変化情報を求める、第2解析部と、
     前記第1変化情報および前記第2変化情報に基づいて、前記任意の領域の剛性が前記プレス成形品の変形に与える影響度を求める、影響度算出部と、を備える剛性影響度分析装置。
    Of the first analysis execution data for performing the elastic analysis including the numerical data regarding the stress and rigidity of the press-formed product which is the analysis target of the finite element analysis, the value regarding the rigidity of the arbitrary region of the press-formed product is changed. In addition, the second analysis execution for executing the elasticity analysis by changing the stress in the region of the first analysis execution data in which the numerical value regarding the rigidity is changed according to the changed numerical value regarding the rigidity. An editorial department that generates data,
    A first analysis unit that obtains first change information regarding a shape change of the press-formed product based on a result of elasticity analysis using the first analysis execution data;
    A second analysis unit that obtains second change information regarding a shape change of the press-formed product based on a result of elasticity analysis using the second analysis execution data;
    A rigidity influence degree analysis device, comprising: an influence degree calculation unit that obtains the degree of influence of the rigidity of the arbitrary region on the deformation of the press-formed product based on the first change information and the second change information.
  10.  前記編集部によって変更される前記剛性に関する数値にはヤング率および板厚のうちの少なくとも一方が含まれる、請求項9に記載の剛性影響度分析装置。 The rigidity influence analysis device according to claim 9, wherein the numerical value regarding the rigidity changed by the editing unit includes at least one of Young's modulus and plate thickness.
  11.  前記編集部は、前記剛性に関する数値の変更量に応じて、前記第1解析実行データのうちの前記剛性に関する数値が変更された領域の応力を変更して前記2解析実行データを生成する、請求項9または10に記載の剛性影響度分析装置。 The editing unit changes the stress in a region of the first analysis execution data in which the numerical value related to the rigidity is changed, in accordance with the amount of change in the numerical value related to the rigidity, and generates the second analysis execution data. Item 11. The rigidity influence analyzer according to Item 9 or 10.
  12.  前記編集部は、前記変更された剛性に関する数値が前記板厚のみである場合には、前記第1解析実行データのうちの前記剛性に関する数値が変更された領域の面内平均応力成分を変更することなく前記第2解析実行データを生成する、請求項10に記載の剛性影響度分析装置。 When the numerical value regarding the changed rigidity is only the plate thickness, the editing unit changes the in-plane average stress component of the region of the first analysis execution data in which the numerical value regarding the rigidity is changed. The rigidity influence analysis apparatus according to claim 10, wherein the second analysis execution data is generated without being generated.
  13.  前記第1解析実行データの前記応力は、プレス成形解析に基づいて求められた応力である、請求項9から12のいずれかに記載の剛性影響度分析装置。 The rigidity influence analysis device according to any one of claims 9 to 12, wherein the stress of the first analysis execution data is a stress obtained based on a press forming analysis.
  14.  前記編集部は、前記プレス成形品の複数の異なる領域ごとに前記剛性に関する数値を変更することによって、複数の前記第2解析実行データを生成し、
     前記第2解析部は、前記複数の第2解析実行データそれぞれについて、前記プレス成形品の形状変化に関する前記第2変化情報を求め、
     前記影響度算出部は、前記第1変化情報と、前記複数の第2解析実行データそれぞれについて求められた前記第2変化情報とに基づいて、前記複数の異なる領域それぞれの剛性が前記プレス成形品の変形に与える影響度を求める、請求項9から13のいずれかに記載の剛性影響度分析装置。
    The editing unit generates a plurality of the second analysis execution data by changing a numerical value regarding the rigidity for each of a plurality of different regions of the press-formed product,
    The second analysis unit obtains the second change information regarding the shape change of the press-formed product for each of the plurality of second analysis execution data,
    The degree-of-influence calculation unit calculates the rigidity of each of the plurality of different regions based on the first change information and the second change information obtained for each of the plurality of second analysis execution data. The rigidity influence analysis apparatus according to claim 9, wherein the degree of influence on the deformation of is determined.
  15.  前記複数の異なる領域それぞれの前記影響度を、その大きさに基づいてコンター表示するための表示データを生成する表示データ生成部をさらに備える、請求項9から14のいずれかに記載の剛性影響度分析装置。 The rigidity influence degree according to any one of claims 9 to 14, further comprising a display data generation unit that generates display data for contour-displaying the influence degree of each of the plurality of different regions based on a size thereof. Analysis equipment.
  16.  前記影響度算出部は、求めた前記影響度を、前記編集部による前記剛性に関する数値の変更量に基づいて補正する、請求項9から15のいずれかに記載の剛性影響度分析装置。 The rigidity influence analysis device according to any one of claims 9 to 15, wherein the influence degree calculation unit corrects the obtained influence degree on the basis of an amount of change in the numerical value regarding the rigidity by the editing unit.
  17.  請求項1から8のいずれかに記載の剛性影響度分析方法をコンピュータに実行させるプログラム。

     
    A program that causes a computer to execute the stiffness influence analysis method according to any one of claims 1 to 8.

PCT/JP2020/002606 2019-01-25 2020-01-24 Rigidity influence degree analysis method, rigidity influence degree analysis device, and program WO2020153494A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020516919A JP6760546B1 (en) 2019-01-25 2020-01-24 Rigidity impact analysis method, stiffness impact analyzer and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019011630 2019-01-25
JP2019-011630 2019-01-25

Publications (1)

Publication Number Publication Date
WO2020153494A1 true WO2020153494A1 (en) 2020-07-30

Family

ID=71736978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002606 WO2020153494A1 (en) 2019-01-25 2020-01-24 Rigidity influence degree analysis method, rigidity influence degree analysis device, and program

Country Status (2)

Country Link
JP (1) JP6760546B1 (en)
WO (1) WO2020153494A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501984B2 (en) 2020-09-01 2024-06-18 ダイハツ工業株式会社 How to evaluate press processing analysis software

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7541241B2 (en) 2021-02-08 2024-08-28 日本製鉄株式会社 Press forming simulation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229724A (en) * 2006-02-27 2007-09-13 Jfe Steel Kk Method of analyzing press forming
JP2008087015A (en) * 2006-09-29 2008-04-17 Nippon Steel Corp Method for specifying springback occurrence cause portion, its device and its program
JP2014065056A (en) * 2012-09-26 2014-04-17 Jfe Steel Corp Method and apparatus for specifying factor of springback in press molded article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229724A (en) * 2006-02-27 2007-09-13 Jfe Steel Kk Method of analyzing press forming
JP2008087015A (en) * 2006-09-29 2008-04-17 Nippon Steel Corp Method for specifying springback occurrence cause portion, its device and its program
JP2014065056A (en) * 2012-09-26 2014-04-17 Jfe Steel Corp Method and apparatus for specifying factor of springback in press molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501984B2 (en) 2020-09-01 2024-06-18 ダイハツ工業株式会社 How to evaluate press processing analysis software

Also Published As

Publication number Publication date
JPWO2020153494A1 (en) 2021-02-18
JP6760546B1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP4964988B2 (en) Molding simulation method, molding simulation apparatus, program, recording medium, and molding method based on simulation results
US8589132B2 (en) Method, device, program, and recording medium of analyzing cause of springback
JP4739147B2 (en) Shape defect factor identification method, apparatus and program
JP4894294B2 (en) Press forming analysis method
WO2010073756A1 (en) Springback occurrence cause analyzing method, springback occurrence cause analyzing device, springback occurrence cause analyzing program, and recording medium
WO2020153494A1 (en) Rigidity influence degree analysis method, rigidity influence degree analysis device, and program
JP4000941B2 (en) Die shape optimization support system and optimization support program in plastic working
JP5794025B2 (en) Mold design method and press molding method
JP5941320B2 (en) Mold shape simulation system, program and method
US11270047B2 (en) Metal sheet forming method, intermediate shape design method, metal sheet forming die, computer program, and recording medium
Mole et al. A 3D forming tool optimisation method considering springback and thinning compensation
US11016011B2 (en) Breaking prediction method, program, recording medium, and arithmetic processing device
CA2977041A1 (en) Computer implemented blank manufacturing method and press forming method
JP2006031594A (en) Shape determination method for press forming die, and press forming method for material to be formed
JP5737059B2 (en) Press forming simulation analysis method and apparatus
US20220219217A1 (en) Springback amount discrepancy factor portion identification method and apparatus
JP5389841B2 (en) Springback analysis method, springback analysis device, program, and storage medium
WO2014017038A1 (en) Method for optimum parting from anisotropic metal sheet
JP2010036239A (en) Method for predicting occurrence of deformation
JP5419284B2 (en) Method and apparatus for generating springback expected shape of press mold
US11731187B2 (en) Press forming method, rigidity-improvement-position specifying method, press forming system, and press-formed product
JP7280511B2 (en) Stress analysis method, stress analysis device and computer program
JP2006167766A (en) Press forming system
JP4855279B2 (en) Numerical analysis of pipe making process
JPH11223580A (en) Analytical method for strength of structure

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020516919

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20744920

Country of ref document: EP

Kind code of ref document: A1