WO2020153310A1 - Sheet glass production apparatus and sheet glass production method - Google Patents

Sheet glass production apparatus and sheet glass production method Download PDF

Info

Publication number
WO2020153310A1
WO2020153310A1 PCT/JP2020/001765 JP2020001765W WO2020153310A1 WO 2020153310 A1 WO2020153310 A1 WO 2020153310A1 JP 2020001765 W JP2020001765 W JP 2020001765W WO 2020153310 A1 WO2020153310 A1 WO 2020153310A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
bath
flow
glass ribbon
glass
Prior art date
Application number
PCT/JP2020/001765
Other languages
French (fr)
Japanese (ja)
Inventor
伊賀 元一
正徳 中野
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2020153310A1 publication Critical patent/WO2020153310A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath

Definitions

  • the present invention relates to a plate glass manufacturing apparatus and a plate glass manufacturing method.
  • the float method has been known as a method for manufacturing flat glass.
  • a glass ribbon is formed by supplying molten glass onto molten metal (usually molten tin) contained in a bath and transporting the molten glass from upstream to downstream on the molten metal. After that, the glass ribbon is gradually cooled and cut into a predetermined size to manufacture a plate glass.
  • molten metal usually molten tin
  • a plate glass manufacturing apparatus using such a float method usually has a bathtub and an upper member provided above the bathtub so as to cover the bathtub.
  • the upper member has a ceiling and side walls, and is installed to maintain the atmosphere of the upper portion of molten metal (hereinafter referred to as “upper space”) in a reducing atmosphere.
  • the upper member has a perfect seal with the outside world, and oxygen often intrudes into the upper space from the outside world. Then, the oxygen that has entered dissolves in the molten metal or reacts with the molten metal to cause contamination of the molten metal. Moreover, when a glass ribbon is formed on such a contaminated molten metal, defects may occur in the glass.
  • Patent Document 1 describes a technique for discharging invaded oxygen through an exhaust port provided on a side wall of an upper member.
  • Patent Document 2 describes a technique in which a means for removing generated impurities is provided on the downstream end side of the bath.
  • the invading oxygen is discharged through the exhaust port provided on the side wall of the upper member. Further, in the method described in Patent Document 2, impurities are collected at the downstream end of the bath.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a plate glass manufacturing apparatus capable of significantly suppressing quality deterioration of plate glass due to invasion of oxygen. .. It is another object of the present invention to provide a method for manufacturing a sheet glass that can significantly suppress the quality deterioration of the sheet glass due to the penetration of oxygen.
  • a plate glass manufacturing apparatus A bath containing molten metal, Flow generating means for generating a flow in the molten metal, Have The bath is arranged such that a glass ribbon is conveyed from upstream to downstream of the bath on the molten metal, A manufacturing apparatus is provided, wherein the flow generating means generates a flow of the molten metal in a direction opposite to a transport direction of the glass ribbon from the downstream side to the upstream side on both side end portions of the glass ribbon in the bath. To be done.
  • a method of manufacturing a plate glass Transporting the glass ribbon from upstream to downstream of the bath on the molten metal contained in the bath,
  • a manufacturing method in which a flow of the molten metal in a direction opposite to a transport direction of the glass ribbon is generated from the downstream side to the upstream side on both side ends of the glass ribbon in the bath. ..
  • the present invention it is possible to provide a sheet glass manufacturing apparatus capable of significantly suppressing the deterioration of sheet glass quality due to the penetration of oxygen. Further, the present invention can provide a method for producing a sheet glass that can significantly suppress the deterioration of the sheet glass quality due to the penetration of oxygen.
  • FIG. 3 is a side cross-sectional view showing a schematic configuration of a forming unit in the sheet glass manufacturing apparatus according to the embodiment of the present invention. It is a top view of the float bath part in the shaping
  • FIG. 4 is a cross-sectional view taken along line AA of the float bath section in FIG. 3. It is a sectional side view which showed the schematic structure of the shaping
  • FIG. 6 is a top view of a float bath section in the molding section shown in FIG. 5.
  • FIG. 7 is a cross-sectional view taken along line BB of the float bath section in FIG. 6. It is the figure which showed typically the flow of the manufacturing method of the plate glass by one Embodiment of this invention.
  • Fig. 1 schematically shows the configuration of a general flat glass manufacturing apparatus by the float method.
  • the manufacturing apparatus 1 includes a melting section 10, a molding section 20, and a slow cooling section 90.
  • the melting section 10 has a function of melting the glass raw material 12 to form a molten glass 16.
  • the forming unit 20 has a function of forming the molten glass 16 supplied from the melting unit 10 into a band shape to form the glass ribbon G.
  • the slow cooling unit 90 has a function of gradually cooling the glass ribbon G molded by the molding unit 20.
  • the glass raw material 12 is supplied to the melting section 10.
  • the glass raw material 12 is melted in the high temperature furnace 14 and becomes a molten glass 16.
  • the molten glass 16 is supplied to the molding unit 20.
  • the forming unit 20 includes a bath 22 for containing the molten metal 24. Therefore, the molten glass 16 supplied to the forming unit 20 is installed on the molten metal 24 and flows toward the downstream of the bath 22, that is, toward the outlet of the forming unit 20.
  • the temperature of the molten metal 24 is set so as to gradually decrease from the inlet of the forming unit 20 toward the outlet thereof. For this reason, the molten glass 16 is formed into a glass ribbon G while being formed on the molten metal 24 in a band shape while moving from the upstream side to the downstream side of the bath 22.
  • an upper member 30 is provided above the bath 22 to suppress oxygen from entering from the outside.
  • the upper member 30 has a gas inlet (not shown) capable of supplying a reducing gas.
  • a reducing gas is supplied to the upper portion of the molten metal 24, that is, the upper space 32 by the upper member 30, and the atmosphere of the upper space 32 can be maintained in the reducing atmosphere.
  • the temperature of the upper space 32 is adjusted by a heater (not shown) provided in the upper member 30.
  • the glass ribbon G is carried out from the exit of the molding unit 20 by the roller 88 and the like, and carried into the slow cooling unit 90.
  • the slow cooling unit 90 includes, for example, a slow cooling furnace 91 having a heat insulating structure, and a plurality of transport rolls 92 that are disposed in the slow cooling furnace 91 and transport the glass ribbon G in a predetermined direction.
  • the slow cooling unit 90 also includes a plurality of heaters 94 that control the ambient temperature in the slow cooling furnace 91.
  • the atmospheric temperature in the slow cooling furnace 91 is set so as to gradually decrease from the inlet of the slow cooling furnace 91 toward the outlet. Therefore, the glass ribbon G is gradually cooled while moving in the slow cooling furnace 91.
  • the glass ribbon G carried out from the outlet of the slow cooling unit 90 is cut into a predetermined size by a cutting machine to be a sheet glass.
  • plate glass is manufactured by such a method.
  • the upper member 30 of the forming unit 20 seals against the outside, and oxygen may often enter the upper space 32 from the outside. This oxygen can adversely affect the quality of the glazing produced.
  • the temperature of the molten metal 24 is designed to be high on the upstream side and low on the downstream side, and the temperature of the molten metal 24 is greatly different between the upstream side and the downstream side.
  • the oxygen that has entered the forming part 20 tends to dissolve more in the molten metal 24 on the upstream side of the bath 22, while the dissolved amount tends to decrease on the downstream side.
  • oxygen gas is regenerated on the molten metal 24 on the downstream side of the bath 22, that is, on the low temperature side, and adheres to the surface of the glass ribbon G as bubbles. I will end up.
  • the regenerated oxygen oxidizes the molten metal 24, the generated metal oxide adheres to the glass ribbon G as an impurity.
  • a flat glass manufacturing apparatus A bath containing molten metal, Flow generating means for generating a flow in the molten metal, Have The bath is arranged such that a glass ribbon is conveyed from upstream to downstream of the bath on the molten metal, A manufacturing apparatus is provided, wherein the flow generating means generates a flow of the molten metal in a direction opposite to a transport direction of the glass ribbon from the downstream side to the upstream side on both side end portions of the glass ribbon in the bath. To be done.
  • the “glass ribbon” is a concept including the state of molten glass. This is because it is difficult to clearly distinguish the molten glass and the glass ribbon in the forming part, and the position where the molten glass moving on the molten metal changes to the glass ribbon varies depending on the manufacturing equipment and manufacturing conditions. Is.
  • the flow generation means causes the molten metal on both side end portions of the glass ribbon, that is, the exposed portions of the molten metal, to flow from the downstream side to the upstream side in a direction opposite to the glass ribbon conveyance direction.
  • An onward flow of molten metal occurs. It should be noted that such a flow of the molten metal in the direction opposite to the glass ribbon transport direction will also be referred to as a “reverse flow (of the molten metal)” hereinafter.
  • the molten metal can move from the downstream low temperature region to the upstream high temperature region in a relatively short time.
  • the molten metal can relatively quickly pass through the high temperature region of the exposed portion where oxygen is more easily dissolved. Further, the chance of oxygen coming into contact with the high temperature molten metal is reduced, and the time during which oxygen is brought into contact with the high temperature molten metal can be shortened.
  • the manufacturing apparatus it is possible to significantly suppress the dissolution of oxygen in the exposed portion of the molten metal on the high temperature region side. Further, thereafter, when the molten metal moves to a low temperature region, it is possible to significantly suppress the generation of dissolved oxygen as a gas or the generation of foreign matter of an oxide by reacting with the molten metal. ..
  • a plate glass manufacturing apparatus (hereinafter, referred to as “first manufacturing apparatus”) according to an embodiment of the present invention includes a melting section, a molding section, and a slow cooling section.
  • FIG. 2 schematically shows a cross section of a molding part (hereinafter, referred to as “first molding part”) according to one embodiment in the first manufacturing apparatus.
  • FIG. 3 schematically shows a top view of the float bath part in the first molding part shown in FIG.
  • FIG. 4 schematically shows a cross section taken along line AA of the float bath portion in FIG.
  • the first molding unit 120 has an inlet 150 into which the molten glass is introduced and an outlet 152 from which the glass ribbon G is unloaded.
  • the first molding unit 120 also includes a float bath unit 121 and a ceiling 171.
  • the float bath section 121 has a bathtub 122 that contains a molten metal 124.
  • a plurality of top rolls 140 are installed on the molten metal 124 so as to penetrate the side wall of the bath 122.
  • Each top roll is composed of a shaft having a roller at its tip. The roller can be rotated on the glass ribbon G by an external motor (not shown). The top roll 140 can hold the glass ribbon G by the rotation of the roller and pull it toward the shaft side, whereby the thickness of the glass ribbon G can be adjusted.
  • the ceiling part 171 is arranged above the bathtub 122 of the float bath part 121 so as to cover the bathtub 122.
  • the ceiling portion 171 is provided with a reducing gas inlet (not shown), and a reducing gas such as hydrogen is introduced into the upper space 132 of the molten metal 124 through the inlet. Supplied. Thereby, the upper space 132 is maintained in a reducing atmosphere.
  • a reducing gas such as hydrogen
  • Heaters 176 are installed on the ceiling wall 172 at predetermined intervals to control the temperature of the upper space 132.
  • the molten glass supplied from the inlet 150 moves on the molten metal 124 along the arrow F1 from the upstream side to the downstream side of the bath 122. And the glass ribbon G is formed. Further, the formed glass ribbon G is carried out from the outlet 152.
  • the first molding unit 120 may further include a reducing device that further reduces the oxygen concentration in the upper space 132.
  • the reducing device may include, for example, a hydrogen radical generating device.
  • the float bath section 121 has a linear motor 156 as a flow generating means below the bathtub 122.
  • the linear motor 156 is shown by a broken line.
  • the linear motor 156 is arranged along the first side wall 122S1 and the second side wall 122S2 of the bathtub 122.
  • the linear motor 156 is arranged along the top view of the float bath portion 121 and along each of the first side end portion GS1 and the second side end portion GS2 of the glass ribbon G.
  • the linear motor 156 can act on the molten metal 124 in a non-contact manner, that is, the molten metal 124 can flow in a predetermined direction. Therefore, by using these linear motors 156, the flow direction F1 of the glass ribbon G in the molten metal 124 on the side of the first side end GS1 and the second side end GS2 of the glass ribbon G is A reverse flow, that is, a reverse flow F2 (see FIG. 3) can be generated.
  • the first forming part 120 it is possible to significantly suppress the dissolution of oxygen in the exposed portion of the molten metal 124 on the high temperature region side. Further, after that, when the molten metal 124 moves to a low temperature region, it is possible to significantly suppress the generation of dissolved oxygen as a gas or the reaction with the molten metal 124 to generate an oxide foreign substance. You can
  • linear motors 156 are present below the first side wall 122S1 of the bathtub 122, and the linear motors 156 are separated from each other at regular intervals or irregular intervals. Are arranged.
  • the number of linear motors 156 installed on the lower side of the first side wall 122S1 is not particularly limited.
  • the linear motor 156 installed below the first side wall 122S1 may be a single unit that is integrated from the upstream side to the downstream side of the bath 122.
  • the flow generating means may be configured by, for example, a paddle such as a water wheel and/or a rod-shaped member such as an oar used for a boat.
  • 1 or more paddles may be installed on the side of the glass ribbon G in the bathtub 122 on the side end portions GS1 and GS2, respectively. By rotating these paddles, a backward flow of the molten metal 124 from the downstream side to the upstream side of the bathtub 122 can be generated on both side end portions GS1 and GS2 of the glass ribbon G.
  • one or more rod-like members such as oars may be installed on each of the side walls 122S1 and 122S2 of the bathtub 122.
  • the molten metal 124 is scratched by the rod-shaped member with the contact portion between the rod-shaped member and the first side wall 122S1 and the second side wall 122S2 as a fulcrum, so that the molten metal 124 is attached to both side ends GS1 and GS2 of the glass ribbon G.
  • the reverse flow of can be generated.
  • a combination structure of an ascending mechanism and an inclined slope may be used as yet another flow generating means.
  • the molten metal 124 can flow down along the slope.
  • the flow generating means has any configuration as long as it can generate a backward flow of the molten metal 124 from the downstream side of the bath 122 to the upstream side on the side end portions GS1 and GS2 of the glass ribbon G. You may do it.
  • each of the glass ribbon G flow rate of the reverse flow at the side of the side end portion GS1, GS2 of may be (a direction opposite to the proviso v G) or 0.1 v G.
  • second manufacturing apparatus has a melting section, a molding section, and a slow cooling section.
  • FIG. 5 schematically shows a cross section of a molding part (hereinafter, referred to as a “second molding part”) according to an embodiment of the second manufacturing apparatus.
  • FIG. 6 schematically shows a top view of the float bath part in the second molding part shown in FIG.
  • FIG. 7 schematically shows a cross section along the line BB of the float bath portion in FIG.
  • the configuration of the second molding unit 220 in the second manufacturing apparatus is substantially the same as the configuration of the first molding unit 120 in the first manufacturing apparatus described above. Therefore, in the second molding unit 220, the same reference numerals as those of the first molding unit 120 are used with reference numerals obtained by adding 100 to the reference numerals shown in FIGS. 2 to 4.
  • the second molding part 220 has a float bath part 221 and a ceiling part 271.
  • the first molding part 120 is that the float bath part 221 has the first guide member 266 and the second guide member 268. Is different from. However, for clarity, the first guide member 266 and the second guide member 268 are not shown in FIG.
  • the second molding part 220 includes a first guide member 266 and a second guide member 268 that extend upward from the bottom of the bath 222.
  • the first guide member 266 and the second guide member 268 do not reach the upper surface of the molten metal 224.
  • the linear motor 256 is omitted for clarity, and instead, the first guide member 266 and the second guide member 268 are shown by broken lines.
  • the first guide member 266 is provided along the first and second side walls 222S1, 222S2 of the bath 222, or in a top view of the float bath portion 221, the first and second glass ribbons G. Are arranged from the downstream side to the upstream side of the bath 222 along the side end portions GS1 and GS2.
  • two second guide members 268 are arranged near the upstream end of the bath 222.
  • Each of the second guide members 268 has a substantially L-shape, and one side portion of the “L” shape in the top view of the float bath portion 221 is parallel to the transport direction of the glass ribbon G. The other side portion of the “L” is arranged so as to come to the upstream side of the bath tub 222. Further, the two second guide members 268 are installed in the bath tub 222 such that the upper apex portions of the “L-shape” face each other.
  • the first guide member 266 causes a backward flow of the molten metal 224 (see arrow F2) on both side ends GS1 and GS2 of the glass ribbon G by the linear motor 256, the backward flow is generated. It has the role of guiding more reliably from downstream to upstream.
  • the backward flow of the molten metal 224 generated by the linear motor 256 is a direction other than the main flow direction (the direction from the downstream to the upstream), for example, the top view, the side wall of the bath 222. It can also be dispersed in the direction from the 222S1, 222S2 side toward the center side. In this case, the component of the backward flow in the mainstream direction may be weakened.
  • the second guide member 268 directs the backward flow of the molten metal 224, which is guided to the upstream side of the bath 222 by the first guide member 266, as shown by an arrow F3 in FIG. And has a role of guiding the molten metal 224 toward the center of the upstream end of the bath 222.
  • the backward flow of the molten metal 224 generated by the linear motor 256 is guided to the upstream side of the bath 222 by the first guide member 266 in the region where the first guide member 266 exists.
  • the first guide member 266 does not exist, the backward flow is dispersed in each direction. Therefore, when the second guide member 268 is not present, the amount of the molten metal 224 that flows into the center of the upstream end of the bath 222 is limited.
  • the molten metal 224 is less likely to flow, and the molten metal 224 tends to be stagnant. Such "stagnation" of the molten metal 224 can cause contamination of the glass ribbon.
  • the backward flow of the molten metal 224 can reach the upstream end of the bath 222 more reliably. Further, thereafter, the molten metal 224 can be deflected and flow into the center side of the upstream end of the bath 222.
  • the first guide member 266 is formed as a single member from the downstream side to the upstream side of the bath 222.
  • the first guide member 266 may be composed of a plurality of members. Moreover, the first guide member 266 may be arranged along at least a part of the first side wall 222S1 and the second side wall 222S2.
  • the first guide member 266 may be configured by arranging a plurality of segments apart from each other or continuously.
  • the second guide member 268 may be configured by combining a plurality of members instead of a single member.
  • first guide member 266 and the second guide member 268 may be integrated.
  • the configuration of the second molding unit 220 has been described above with reference to FIGS. 5 to 7. However, the configuration of the second molding unit 220 is merely an example, and the second molding unit 220 may have another configuration.
  • the second guide member 268 may be omitted.
  • the flow generating means may have a configuration other than the linear motor 256 as described above.
  • FIG. 8 schematically shows a flow of a method for manufacturing plate glass (hereinafter, referred to as “first manufacturing method”) according to an embodiment of the present invention.
  • the first manufacturing method is (1) a step of melting a glass raw material in a high temperature furnace to form molten glass (step S110), (2) A step of supplying the molten glass onto a molten metal contained in a bath to form a glass ribbon, wherein the glass ribbon is transported from the upstream to the downstream of the bath (step S120).
  • step S110 a step of melting a glass raw material in a high temperature furnace to form molten glass
  • step S120 A step of supplying the molten glass onto a molten metal contained in a bath to form a glass ribbon, wherein the glass ribbon is transported from the upstream to the downstream of the bath.
  • step S130 a step of gradually cooling the glass ribbon
  • step S110 and step S130 are well known to those skilled in the art. Therefore, here, the step S120 will be described in detail. In addition, here, as an example, a case where the step S120 is performed by the first molding unit 120 illustrated in FIGS. 2 to 4 will be described.
  • Step S120 In step S120, first, molten glass is supplied from the inlet 150 to the first molding unit 120.
  • the molten glass is supplied onto the molten metal 124 contained in the bath 122. Further, the molten glass becomes the glass ribbon G while being conveyed from the upstream side to the downstream side of the bath 122, and then discharged from the outlet 152.
  • molding part 120 has the linear motor 156 as a flow generation means. Therefore, a backward flow of the molten metal 124 can be generated on both side ends GS1 and GS2 of the glass ribbon G of the bathtub 122.
  • the molten metal 124 can move from the low temperature region on the downstream side to the high temperature region on the upstream side in a relatively short time.
  • this can significantly suppress the dissolution of oxygen in the exposed portion of the molten metal 124 on the high temperature region side. Further, thereafter, when the molten metal 124 moves to a low temperature region, it is possible to significantly suppress the generation of the dissolved oxygen as a gas and the reaction with the molten metal 124 to generate an oxide foreign substance. You can

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

This sheet glass production apparatus has: a bath in which molten metal is housed; and a flow generation means for generating a flow of the molten metal, wherein the bath is disposed in such a manner as to allow a glass ribbon to be conveyed on the molten metal from upstream of the bath to downstream thereof, and the flow generation means generates a flow of the molten metal in a direction opposite to the conveyance direction of the glass ribbon, all the way from downstream to upstream, on both lateral edge sides of the glass ribbon in the bath.

Description

板ガラスの製造装置および板ガラスの製造方法Sheet glass manufacturing apparatus and sheet glass manufacturing method
 本発明は、板ガラスの製造装置および板ガラスの製造方法に関する。 The present invention relates to a plate glass manufacturing apparatus and a plate glass manufacturing method.
 従来より、板ガラスの製造方法として、フロート法が知られている。このフロート法では、浴槽に収容された溶融金属(通常は溶融スズ)上に溶融ガラスを供給し、該溶融ガラスを溶融金属上で上流から下流に搬送させることにより、ガラスリボンが成形される。その後、ガラスリボンを徐冷し、所定の寸法で切断することにより、板ガラスが製造される。 The float method has been known as a method for manufacturing flat glass. In this float method, a glass ribbon is formed by supplying molten glass onto molten metal (usually molten tin) contained in a bath and transporting the molten glass from upstream to downstream on the molten metal. After that, the glass ribbon is gradually cooled and cut into a predetermined size to manufacture a plate glass.
 このようなフロート法による板ガラスの製造装置は、通常、浴槽と、該浴槽の上部に、該浴槽を覆うように設けられた上部部材とを有する。上部部材は、天井と側壁とを有し、溶融金属の上部(以下、「上部空間」と称する)の雰囲気を還元性雰囲気に維持するために設置される。 A plate glass manufacturing apparatus using such a float method usually has a bathtub and an upper member provided above the bathtub so as to cover the bathtub. The upper member has a ceiling and side walls, and is installed to maintain the atmosphere of the upper portion of molten metal (hereinafter referred to as “upper space”) in a reducing atmosphere.
 しかしながら、上部部材による外界とのシール性は完全とは言い難く、上部空間には、しばしば、外界から酸素が侵入する。そして、侵入した酸素は、溶融金属中に溶解したり、溶融金属と反応したりして、溶融金属を汚染する原因となる。また、そのような汚染された溶融金属上でガラスリボンが成形されると、ガラスに欠点が発生するおそれがある。 However, it is difficult to say that the upper member has a perfect seal with the outside world, and oxygen often intrudes into the upper space from the outside world. Then, the oxygen that has entered dissolves in the molten metal or reacts with the molten metal to cause contamination of the molten metal. Moreover, when a glass ribbon is formed on such a contaminated molten metal, defects may occur in the glass.
 そこで、従来より、このような酸素の侵入による影響を抑制するため、各種方策が提案されている。 Therefore, various measures have been conventionally proposed to suppress the influence of such oxygen invasion.
 例えば、特許文献1には、上部部材の側壁に設けられた排気口を介して、侵入した酸素を排出させる技術が記載されている。また、特許文献2には、浴槽の下流端側に、生成した不純物を除去する手段を設ける技術が記載されている。 For example, Patent Document 1 describes a technique for discharging invaded oxygen through an exhaust port provided on a side wall of an upper member. Further, Patent Document 2 describes a technique in which a means for removing generated impurities is provided on the downstream end side of the bath.
特開平11-302024号公報JP-A-11-302024 特開2010-189259号公報JP, 2010-189259, A
 前述のように、特許文献1に記載の方法では、上部部材の側壁に設けられた排気口により、侵入した酸素が排出される。また、特許文献2に記載の方法では、浴槽の下流端で不純物が回収される。 As described above, in the method described in Patent Document 1, the invading oxygen is discharged through the exhaust port provided on the side wall of the upper member. Further, in the method described in Patent Document 2, impurities are collected at the downstream end of the bath.
 しかしながら、このような従来の方法を採用しても、酸素の侵入による板ガラスの品質低下を十分に抑制できるとは言い難い。 However, even if such a conventional method is adopted, it is hard to say that the deterioration of the plate glass quality due to the invasion of oxygen can be sufficiently suppressed.
 本発明は、このような背景に鑑みなされたものであり、本発明では、酸素の侵入による板ガラスの品質低下を有意に抑制することが可能な、板ガラスの製造装置を提供することを目的とする。また、本発明では、酸素の侵入による板ガラスの品質低下を有意に抑制することが可能な、板ガラスの製造方法を提供することを目的とする。 The present invention has been made in view of such a background, and an object of the present invention is to provide a plate glass manufacturing apparatus capable of significantly suppressing quality deterioration of plate glass due to invasion of oxygen. .. It is another object of the present invention to provide a method for manufacturing a sheet glass that can significantly suppress the quality deterioration of the sheet glass due to the penetration of oxygen.
 本発明では、板ガラスの製造装置であって、
 溶融金属が収容された浴槽と、
 前記溶融金属に流れを発生させる流れ発生手段と、
 を有し、
 前記浴槽は、前記溶融金属上でガラスリボンが前記浴槽の上流から下流まで搬送されるように配置され、
 前記流れ発生手段は、前記浴槽における前記ガラスリボンの両側端部側に、前記下流から前記上流にわたって、前記ガラスリボンの搬送方向とは逆向きの前記溶融金属の流れを発生させる、製造装置が提供される。
In the present invention, a plate glass manufacturing apparatus,
A bath containing molten metal,
Flow generating means for generating a flow in the molten metal,
Have
The bath is arranged such that a glass ribbon is conveyed from upstream to downstream of the bath on the molten metal,
A manufacturing apparatus is provided, wherein the flow generating means generates a flow of the molten metal in a direction opposite to a transport direction of the glass ribbon from the downstream side to the upstream side on both side end portions of the glass ribbon in the bath. To be done.
 また、本発明では、板ガラスの製造方法であって、
 浴槽に収容された溶融金属上で、ガラスリボンを前記浴槽の上流から下流まで搬送させる工程
 を有し、
 前記工程において、前記浴槽における前記ガラスリボンの両側端部側に、前記下流から前記上流にわたって、前記ガラスリボンの搬送方向とは逆向きの前記溶融金属の流れが発生する、製造方法が提供される。
Further, in the present invention, a method of manufacturing a plate glass,
Transporting the glass ribbon from upstream to downstream of the bath on the molten metal contained in the bath,
In the step, a manufacturing method is provided, in which a flow of the molten metal in a direction opposite to a transport direction of the glass ribbon is generated from the downstream side to the upstream side on both side ends of the glass ribbon in the bath. ..
 本発明では、酸素の侵入による板ガラスの品質低下を有意に抑制することが可能な、板ガラスの製造装置を提供することができる。また、本発明では、酸素の侵入による板ガラスの品質低下を有意に抑制することが可能な、板ガラスの製造方法を提供することができる。 According to the present invention, it is possible to provide a sheet glass manufacturing apparatus capable of significantly suppressing the deterioration of sheet glass quality due to the penetration of oxygen. Further, the present invention can provide a method for producing a sheet glass that can significantly suppress the deterioration of the sheet glass quality due to the penetration of oxygen.
フロート法による一般的な板ガラスの製造装置の構成を概略的に示した断面図である。It is sectional drawing which showed roughly the structure of the manufacturing apparatus of the common plate glass by the float method. 本発明の一実施形態による板ガラスの製造装置における成形部の概略的な構成を示した側断面図である。FIG. 3 is a side cross-sectional view showing a schematic configuration of a forming unit in the sheet glass manufacturing apparatus according to the embodiment of the present invention. 図2に示した成形部におけるフロートバス部の上面図である。It is a top view of the float bath part in the shaping|molding part shown in FIG. 図3におけるフロートバス部のA-A線に沿った断面図である。FIG. 4 is a cross-sectional view taken along line AA of the float bath section in FIG. 3. 本発明の一実施形態による別の板ガラスの製造装置における成形部の概略的な構成を示した側断面図である。It is a sectional side view which showed the schematic structure of the shaping|molding part in the manufacturing apparatus of another plate glass by one Embodiment of this invention. 図5に示した成形部におけるフロートバス部の上面図である。FIG. 6 is a top view of a float bath section in the molding section shown in FIG. 5. 図6におけるフロートバス部のB-B線に沿った断面図である。FIG. 7 is a cross-sectional view taken along line BB of the float bath section in FIG. 6. 本発明の一実施形態による板ガラスの製造方法のフローを模式的に示した図である。It is the figure which showed typically the flow of the manufacturing method of the plate glass by one Embodiment of this invention.
 本発明の構成および特徴をより良く理解するため、まず図1を参照して、フロート法による一般的な板ガラスの製造方法について説明する。 In order to better understand the structure and features of the present invention, first, a general method for producing flat glass by the float method will be described with reference to FIG.
 図1には、フロート法による一般的な板ガラスの製造装置の構成を概略的に示す。 Fig. 1 schematically shows the configuration of a general flat glass manufacturing apparatus by the float method.
 図1に示すように、この製造装置1は、溶解部10と、成形部20と、徐冷部90とを備える。 As shown in FIG. 1, the manufacturing apparatus 1 includes a melting section 10, a molding section 20, and a slow cooling section 90.
 溶解部10は、ガラス原料12を溶解し溶融ガラス16を形成する機能を有する。成形部20は、溶解部10から供給される溶融ガラス16を帯状に成形して、ガラスリボンGを形成する機能を有する。徐冷部90は、成形部20で成形されたガラスリボンGを徐冷する機能を有する。 The melting section 10 has a function of melting the glass raw material 12 to form a molten glass 16. The forming unit 20 has a function of forming the molten glass 16 supplied from the melting unit 10 into a band shape to form the glass ribbon G. The slow cooling unit 90 has a function of gradually cooling the glass ribbon G molded by the molding unit 20.
 製造装置1を用いて板ガラスを製造する際には、まず、溶解部10にガラス原料12が供給される。ガラス原料12は、高温炉14内で溶解し、溶融ガラス16となる。この溶融ガラス16は、成形部20に供給される。 When manufacturing sheet glass using the manufacturing apparatus 1, first, the glass raw material 12 is supplied to the melting section 10. The glass raw material 12 is melted in the high temperature furnace 14 and becomes a molten glass 16. The molten glass 16 is supplied to the molding unit 20.
 成形部20は、溶融金属24を収容する浴槽22を備える。このため、成形部20に供給された溶融ガラス16は、溶融金属24上に設置され、浴槽22の下流、すなわち成形部20の出口に向かって流れる。また、溶融金属24の温度は、成形部20の入口から出口に向かって徐々に低下するように設定されている。このため、溶融ガラス16は、溶融金属24上を浴槽22の上流から下流に向かって移動中に帯状に成形され、ガラスリボンGとなる。 The forming unit 20 includes a bath 22 for containing the molten metal 24. Therefore, the molten glass 16 supplied to the forming unit 20 is installed on the molten metal 24 and flows toward the downstream of the bath 22, that is, toward the outlet of the forming unit 20. The temperature of the molten metal 24 is set so as to gradually decrease from the inlet of the forming unit 20 toward the outlet thereof. For this reason, the molten glass 16 is formed into a glass ribbon G while being formed on the molten metal 24 in a band shape while moving from the upstream side to the downstream side of the bath 22.
 なお、成形部20において、浴槽22の上方には、外界からの酸素混入を抑制するため、上部部材30が設けられる。 In addition, in the molding unit 20, an upper member 30 is provided above the bath 22 to suppress oxygen from entering from the outside.
 上部部材30は、還元性ガスの供給が可能なガス入口(図示されていない)を有する。上部部材30により、溶融金属24の上部、すなわち上部空間32に、還元性ガスが供給され、上部空間32の雰囲気を還元性雰囲気に維持することができる。 The upper member 30 has a gas inlet (not shown) capable of supplying a reducing gas. A reducing gas is supplied to the upper portion of the molten metal 24, that is, the upper space 32 by the upper member 30, and the atmosphere of the upper space 32 can be maintained in the reducing atmosphere.
 また、上部空間32の温度は、上部部材30に設けられたヒータ(図示されていない)等で調整される。 Also, the temperature of the upper space 32 is adjusted by a heater (not shown) provided in the upper member 30.
 その後、ガラスリボンGは、ローラ88等により成形部20の出口から搬出され、徐冷部90に搬入される。 After that, the glass ribbon G is carried out from the exit of the molding unit 20 by the roller 88 and the like, and carried into the slow cooling unit 90.
 徐冷部90では、ガラスリボンGが徐冷される。このため、徐冷部90は、例えば、断熱構造の徐冷炉91と、該徐冷炉91内に配設され、ガラスリボンGを所定方向に搬送する複数の搬送ロール92とを含む。また、徐冷部90は、徐冷炉91内の雰囲気温度を制御する複数のヒータ94を備える。 In the slow cooling section 90, the glass ribbon G is gradually cooled. Therefore, the slow cooling unit 90 includes, for example, a slow cooling furnace 91 having a heat insulating structure, and a plurality of transport rolls 92 that are disposed in the slow cooling furnace 91 and transport the glass ribbon G in a predetermined direction. The slow cooling unit 90 also includes a plurality of heaters 94 that control the ambient temperature in the slow cooling furnace 91.
 徐冷炉91内の雰囲気温度は、徐冷炉91の入口から出口に向かって徐々に低下するように設定される。従って、ガラスリボンGは、徐冷炉91内を移動中に徐冷される。 The atmospheric temperature in the slow cooling furnace 91 is set so as to gradually decrease from the inlet of the slow cooling furnace 91 toward the outlet. Therefore, the glass ribbon G is gradually cooled while moving in the slow cooling furnace 91.
 その後、徐冷部90の出口から搬出されたガラスリボンGは、切断機で所定のサイズに切断され、板ガラスとなる。 After that, the glass ribbon G carried out from the outlet of the slow cooling unit 90 is cut into a predetermined size by a cutting machine to be a sheet glass.
 フロート法では、このような方法で板ガラスが製造される。 In the float method, plate glass is manufactured by such a method.
 ここで、板ガラスの製造装置1において、成形部20の上部部材30による外界とのシール性は完全とは言い難く、上部空間32には、しばしば、外界から酸素が侵入する場合がある。この酸素は、製造される板ガラスの品質に悪影響を及ぼし得る。特に、浴槽22において、溶融金属24の温度は、上流側で高く、下流側で低くなるように設計されており、溶融金属24の温度は、上流と下流で大きく異なっている。 Here, in the sheet glass manufacturing apparatus 1, it is difficult to say that the upper member 30 of the forming unit 20 seals against the outside, and oxygen may often enter the upper space 32 from the outside. This oxygen can adversely affect the quality of the glazing produced. Particularly, in the bath 22, the temperature of the molten metal 24 is designed to be high on the upstream side and low on the downstream side, and the temperature of the molten metal 24 is greatly different between the upstream side and the downstream side.
 このため、成形部20内に侵入した酸素は、浴槽22の上流側では溶融金属24中により多く溶解する一方、下流側では、溶解量が少なくなる傾向にある。 Therefore, the oxygen that has entered the forming part 20 tends to dissolve more in the molten metal 24 on the upstream side of the bath 22, while the dissolved amount tends to decrease on the downstream side.
 このような溶融金属24の領域における酸素の溶解挙動の差異により、浴槽22の下流、すなわち低温側では、酸素ガスが溶融金属24上に再発生し、ガラスリボンGの表面に気泡として付着してしまう。あるいは、再発生した酸素が溶融金属24を酸化させると、生成した金属酸化物が不純物として、ガラスリボンGに付着してしまうと言う問題がある。 Due to the difference in the dissolution behavior of oxygen in the region of the molten metal 24, oxygen gas is regenerated on the molten metal 24 on the downstream side of the bath 22, that is, on the low temperature side, and adheres to the surface of the glass ribbon G as bubbles. I will end up. Alternatively, there is a problem that when the regenerated oxygen oxidizes the molten metal 24, the generated metal oxide adheres to the glass ribbon G as an impurity.
 これに対して、本発明の一実施形態では、
 板ガラスの製造装置であって、
 溶融金属が収容された浴槽と、
 前記溶融金属に流れを発生させる流れ発生手段と、
 を有し、
 前記浴槽は、前記溶融金属上でガラスリボンが前記浴槽の上流から下流まで搬送されるように配置され、
 前記流れ発生手段は、前記浴槽における前記ガラスリボンの両側端部側に、前記下流から前記上流にわたって、前記ガラスリボンの搬送方向とは逆向きの前記溶融金属の流れを発生させる、製造装置が提供される。
On the other hand, in one embodiment of the present invention,
A flat glass manufacturing apparatus,
A bath containing molten metal,
Flow generating means for generating a flow in the molten metal,
Have
The bath is arranged such that a glass ribbon is conveyed from upstream to downstream of the bath on the molten metal,
A manufacturing apparatus is provided, wherein the flow generating means generates a flow of the molten metal in a direction opposite to a transport direction of the glass ribbon from the downstream side to the upstream side on both side end portions of the glass ribbon in the bath. To be done.
 なお、本願において、「ガラスリボン」とは、溶融ガラスの状態も含む概念である。これは、成形部において、溶融ガラスとガラスリボンを明確に区別することは難しいため、ならびに溶融金属上を移動する溶融ガラスがガラスリボンに変化する位置は、製造装置および製造条件等によって変動するためである。 Note that in the present application, the “glass ribbon” is a concept including the state of molten glass. This is because it is difficult to clearly distinguish the molten glass and the glass ribbon in the forming part, and the position where the molten glass moving on the molten metal changes to the glass ribbon varies depending on the manufacturing equipment and manufacturing conditions. Is.
 前述のような、溶融金属に外界から侵入した酸素が溶解する現象は、溶融金属の被覆部分(上面視、ガラスリボンで覆われている部分。以下同じ)に比べて、溶融金属の露出部分(上面視、ガラスリボンで覆われていない部分。以下同じ)において顕著に生じる。溶融金属の被覆部分では、ガラスリボンが酸素と溶融金属との接触を妨げるためである。 As described above, the phenomenon that oxygen invading the molten metal from the outside dissolves in the exposed portion of the molten metal as compared to the molten metal covering portion (top view, portion covered with glass ribbon; the same applies hereinafter). It occurs remarkably in the top view, the part not covered with the glass ribbon. This is because the glass ribbon prevents contact between oxygen and the molten metal in the molten metal coating portion.
 本発明の一実施形態による板ガラスの製造装置では、流れ発生手段により、ガラスリボンの両側端部側の溶融金属、すなわち溶融金属の露出部分において、下流から上流にわたって、ガラスリボンの搬送方向とは逆向きの溶融金属の流れが発生する。なお、このようなガラスリボンの搬送方向とは逆向きの溶融金属の流れを、以降、「(溶融金属の)逆方向流」とも称する。 In the sheet glass manufacturing apparatus according to one embodiment of the present invention, the flow generation means causes the molten metal on both side end portions of the glass ribbon, that is, the exposed portions of the molten metal, to flow from the downstream side to the upstream side in a direction opposite to the glass ribbon conveyance direction. An onward flow of molten metal occurs. It should be noted that such a flow of the molten metal in the direction opposite to the glass ribbon transport direction will also be referred to as a “reverse flow (of the molten metal)” hereinafter.
 このような溶融金属の逆方向流により、溶融金属の露出部分では、溶融金属は、下流の低温領域から上流の高温領域までを比較的短い時間で移動できるようになる。その結果、溶融金属は、酸素がより溶解し易い露出部分の高温領域を、比較的速やかに通過することが可能となる。また、酸素が高温の溶融金属と接触する機会が減り、酸素と高温の溶融金属とが接触する時間を短くすることができる。 With such a backward flow of molten metal, in the exposed portion of the molten metal, the molten metal can move from the downstream low temperature region to the upstream high temperature region in a relatively short time. As a result, the molten metal can relatively quickly pass through the high temperature region of the exposed portion where oxygen is more easily dissolved. Further, the chance of oxygen coming into contact with the high temperature molten metal is reduced, and the time during which oxygen is brought into contact with the high temperature molten metal can be shortened.
 従って、本発明の一実施形態による製造装置では、溶融金属の高温領域側の露出部分において、酸素の溶解を有意に抑制することができる。また、その後、溶融金属が低温領域に移動した際に、溶解した酸素がガスとして再発生したり、溶融金属と反応して酸化物の異物が発生したりすることを有意に抑制することができる。 Therefore, in the manufacturing apparatus according to the embodiment of the present invention, it is possible to significantly suppress the dissolution of oxygen in the exposed portion of the molten metal on the high temperature region side. Further, thereafter, when the molten metal moves to a low temperature region, it is possible to significantly suppress the generation of dissolved oxygen as a gas or the generation of foreign matter of an oxide by reacting with the molten metal. ..
 このような効果により、本発明の一実施形態による製造装置では、侵入した酸素の影響により、ガラスリボンの品質が低下するという問題を、有意に抑制することができる。 With such an effect, in the manufacturing apparatus according to the embodiment of the present invention, it is possible to significantly suppress the problem that the quality of the glass ribbon is deteriorated due to the influence of oxygen that has entered.
 (本発明の一実施形態による板ガラスの製造装置)
 以下、本発明の一実施形態による板ガラスの製造装置についてより具体的に説明する。
(Plate glass manufacturing apparatus according to an embodiment of the present invention)
Hereinafter, the flat glass manufacturing apparatus according to an embodiment of the present invention will be described more specifically.
 本発明の一実施形態による板ガラスの製造装置(以下、「第1の製造装置」という)は、溶解部、成形部、および徐冷部を有する。 A plate glass manufacturing apparatus (hereinafter, referred to as “first manufacturing apparatus”) according to an embodiment of the present invention includes a melting section, a molding section, and a slow cooling section.
 ただし、このうち、溶解部および徐冷部の構成については、前述の図1に示した溶解部10および徐冷部90の記載が参照できる。従って、ここでは、図2乃至図4を参照して、第1の製造装置の成形部の一構成例について説明する。 However, regarding the configurations of the melting section and the slow cooling section, the description of the melting section 10 and the slow cooling section 90 shown in FIG. 1 can be referred to. Therefore, here, an example of the configuration of the molding unit of the first manufacturing apparatus will be described with reference to FIGS. 2 to 4.
 図2には、第1の製造装置における一実施形態による成形部(以下、「第1の成形部」と称する)の断面を模式的に示す。また、図3には、図2に示した第1の成形部におけるフロートバス部の上面図を模式的に示す。さらに、図4には、図3におけるフロートバス部のA-A線に沿った断面を模式的に示す。 FIG. 2 schematically shows a cross section of a molding part (hereinafter, referred to as “first molding part”) according to one embodiment in the first manufacturing apparatus. Further, FIG. 3 schematically shows a top view of the float bath part in the first molding part shown in FIG. Further, FIG. 4 schematically shows a cross section taken along line AA of the float bath portion in FIG.
 図2に示すように、第1の成形部120は、溶融ガラスが導入される入口150と、ガラスリボンGが搬出される出口152とを有する。また、第1の成形部120は、フロートバス部121と、天井部171とを有する。 As shown in FIG. 2, the first molding unit 120 has an inlet 150 into which the molten glass is introduced and an outlet 152 from which the glass ribbon G is unloaded. The first molding unit 120 also includes a float bath unit 121 and a ceiling 171.
 フロートバス部121は、溶融金属124を収容する浴槽122を有する。溶融金属124の上には、浴槽122の側壁を貫通して、複数のトップロール140が設置されている。各トップロールは、先端にローラを有するシャフトで構成される。ローラは、外部モータ(図示されていない)により、ガラスリボンGの上で回転することができる。トップロール140は、ローラの回転により、ガラスリボンGを把持し、シャフトの側に引っ張ることができ、これによりガラスリボンGの厚さを調整できる。 The float bath section 121 has a bathtub 122 that contains a molten metal 124. A plurality of top rolls 140 are installed on the molten metal 124 so as to penetrate the side wall of the bath 122. Each top roll is composed of a shaft having a roller at its tip. The roller can be rotated on the glass ribbon G by an external motor (not shown). The top roll 140 can hold the glass ribbon G by the rotation of the roller and pull it toward the shaft side, whereby the thickness of the glass ribbon G can be adjusted.
 天井部171は、フロートバス部121の浴槽122の上部に、浴槽122を覆うように配置される。 The ceiling part 171 is arranged above the bathtub 122 of the float bath part 121 so as to cover the bathtub 122.
 天井部171は、側壁(図2には示されていない)および天井壁172と、その上部に設けられたケーシング174とを有する。 The ceiling portion 171 has a side wall (not shown in FIG. 2) and a ceiling wall 172, and a casing 174 provided above the ceiling wall 172.
 また、天井部171には、還元性ガスの導入口(図示されていない)が設けられており、この導入口を介して、溶融金属124の上部空間132に、水素のような還元性ガスが供給される。これにより、上部空間132が還元性雰囲気に維持される。 Further, the ceiling portion 171 is provided with a reducing gas inlet (not shown), and a reducing gas such as hydrogen is introduced into the upper space 132 of the molten metal 124 through the inlet. Supplied. Thereby, the upper space 132 is maintained in a reducing atmosphere.
 天井壁172には、所定の間隔でヒータ176が設置され、これにより上部空間132の温度が制御される。 Heaters 176 are installed on the ceiling wall 172 at predetermined intervals to control the temperature of the upper space 132.
 図2および図3に示すように、第1の成形部120が稼働状態の際には、入口150から供給された溶融ガラスが溶融金属124上を、矢印F1に沿って浴槽122の上流から下流に流れ、ガラスリボンGが成形される。また、成形されたガラスリボンGが出口152から搬出される。 As shown in FIGS. 2 and 3, when the first forming unit 120 is in the operating state, the molten glass supplied from the inlet 150 moves on the molten metal 124 along the arrow F1 from the upstream side to the downstream side of the bath 122. And the glass ribbon G is formed. Further, the formed glass ribbon G is carried out from the outlet 152.
 なお、図2乃至図4には、示されていないが、第1の成形部120は、さらに、上部空間132の酸素濃度をより低減させる、還元装置を備えても良い。還元装置は、例えば、水素ラジカル発生装置を有しても良い。 Although not shown in FIGS. 2 to 4, the first molding unit 120 may further include a reducing device that further reduces the oxygen concentration in the upper space 132. The reducing device may include, for example, a hydrogen radical generating device.
 ここで、フロートバス部121は、浴槽122の下側に、流れ発生手段としてのリニアモータ156を有する。図3では、リニアモータ156は破線で示されている。 Here, the float bath section 121 has a linear motor 156 as a flow generating means below the bathtub 122. In FIG. 3, the linear motor 156 is shown by a broken line.
 図3および図4に示すように、リニアモータ156は、浴槽122の第1の側壁122S1および第2の側壁122S2に沿って配置される。換言すれば、リニアモータ156は、フロートバス部121の上面視、ガラスリボンGの第1の側端部GS1、および第2の側端部GS2のそれぞれに沿うように配置される。 As shown in FIGS. 3 and 4, the linear motor 156 is arranged along the first side wall 122S1 and the second side wall 122S2 of the bathtub 122. In other words, the linear motor 156 is arranged along the top view of the float bath portion 121 and along each of the first side end portion GS1 and the second side end portion GS2 of the glass ribbon G.
 リニアモータ156は、溶融金属124に非接触で作用することができ、すなわち、溶融金属124を所定の方向に流動させることができる。従って、これらのリニアモータ156を利用することにより、ガラスリボンGの第1の側端部GS1および第2の側端部GS2の側において、溶融金属124に、ガラスリボンGの流れ方向F1とは逆向きの流れ、すなわち逆方向流F2(図3参照)を発生させることができる。 The linear motor 156 can act on the molten metal 124 in a non-contact manner, that is, the molten metal 124 can flow in a predetermined direction. Therefore, by using these linear motors 156, the flow direction F1 of the glass ribbon G in the molten metal 124 on the side of the first side end GS1 and the second side end GS2 of the glass ribbon G is A reverse flow, that is, a reverse flow F2 (see FIG. 3) can be generated.
 また、これにより、第1の成形部120では、溶融金属124の高温領域側の露出部分において、酸素の溶解を有意に抑制することができる。また、その後、溶融金属124が低温領域に移動した際に、溶解した酸素がガスとして再発生したり、溶融金属124と反応して酸化物の異物が発生したりすることを有意に抑制することができる。 Further, as a result, in the first forming part 120, it is possible to significantly suppress the dissolution of oxygen in the exposed portion of the molten metal 124 on the high temperature region side. Further, after that, when the molten metal 124 moves to a low temperature region, it is possible to significantly suppress the generation of dissolved oxygen as a gas or the reaction with the molten metal 124 to generate an oxide foreign substance. You can
 このような効果により、第1の成形部120では、侵入した酸素の影響により、ガラスリボンGの品質が低下するという問題を、有意に抑制することができる。 With such an effect, in the first molding part 120, it is possible to significantly suppress the problem that the quality of the glass ribbon G is deteriorated due to the influence of the invading oxygen.
 なお、図2乃至図4に示した例では、リニアモータ156は、浴槽122の第1の側壁122S1の下側に7個存在し、それぞれが、一定の間隔または不規則な間隔で相互に離間して配置されている。 In addition, in the example shown in FIGS. 2 to 4, seven linear motors 156 are present below the first side wall 122S1 of the bathtub 122, and the linear motors 156 are separated from each other at regular intervals or irregular intervals. Are arranged.
 ただし、これは単なる一例であって、第1の側壁122S1の下側に設置されるリニアモータ156の数は、特に限られない。例えば、第1の側壁122S1の下側に設置されるリニアモータ156は、浴槽122の上流から下流にわたって一体化された、単一のものであっても良い。 However, this is merely an example, and the number of linear motors 156 installed on the lower side of the first side wall 122S1 is not particularly limited. For example, the linear motor 156 installed below the first side wall 122S1 may be a single unit that is integrated from the upstream side to the downstream side of the bath 122.
 浴槽122の第2の側壁122S2の下側のリニアモータ156においても、同様のことが言える。 The same can be said for the linear motor 156 below the second side wall 122S2 of the bathtub 122.
 また、図2乃至図4に示した例では、ガラスリボンGの両側端部GS1、GS2側に溶融金属124の逆方向流を発生させる流れ発生手段として、リニアモータ156を採用している。 In addition, in the examples shown in FIGS. 2 to 4, the linear motor 156 is adopted as the flow generating means for generating the backward flow of the molten metal 124 on both side ends GS1 and GS2 of the glass ribbon G.
 しかしながら、これとは別に、流れ発生手段は、例えば、水車のようなパドル、および/またはボートに利用されるオール(櫂)のような棒状部材で構成されても良い。 However, apart from this, the flow generating means may be configured by, for example, a paddle such as a water wheel and/or a rod-shaped member such as an oar used for a boat.
 パドルは、例えば、浴槽122中のガラスリボンGのそれぞれの側端部GS1、GS2の側に、1または2以上設置されても良い。これらのパドルを回転させることにより、ガラスリボンGの両側端部GS1、GS2側に、浴槽122の下流から上流に向かう溶融金属124の逆方向流を発生させることができる。 1 or more paddles may be installed on the side of the glass ribbon G in the bathtub 122 on the side end portions GS1 and GS2, respectively. By rotating these paddles, a backward flow of the molten metal 124 from the downstream side to the upstream side of the bathtub 122 can be generated on both side end portions GS1 and GS2 of the glass ribbon G.
 また、オールのような棒状部材は、浴槽122のそれぞれの側壁122S1、122S2に、1または2以上設置されても良い。棒状部材と第1の側壁122S1および第2の側壁122S2との当接部を支点として棒状部材で溶融金属124を掻くことにより、ガラスリボンGの両側端部GS1、GS2の側に、溶融金属124の逆方向流を発生させることができる。 Also, one or more rod-like members such as oars may be installed on each of the side walls 122S1 and 122S2 of the bathtub 122. The molten metal 124 is scratched by the rod-shaped member with the contact portion between the rod-shaped member and the first side wall 122S1 and the second side wall 122S2 as a fulcrum, so that the molten metal 124 is attached to both side ends GS1 and GS2 of the glass ribbon G. The reverse flow of can be generated.
 あるいは、さらに別の流れ発生手段として、上昇機構と傾斜スロープの組み合わせ構造を利用しても良い。 Alternatively, a combination structure of an ascending mechanism and an inclined slope may be used as yet another flow generating means.
 この構造では、上昇機構により溶融金属124を所定の高さまで上昇させた後、該溶融金属124を傾斜に沿って流下させることができる。 In this structure, after the molten metal 124 is lifted to a predetermined height by the lifting mechanism, the molten metal 124 can flow down along the slope.
 従って、そのような構造を、浴槽122の下流端近傍の、ガラスリボンGの両側端部GS1、GS2の側に設置することにより、ガラスリボンGの両側端部GS1、GS2の側に、溶融金属124の逆方向流を発生させることができる。 Therefore, by installing such a structure on both sides GS1 and GS2 of the glass ribbon G in the vicinity of the downstream end of the bath 122, the molten metal on the sides GS1 and GS2 of the glass ribbon G can be provided. A reverse flow of 124 can be generated.
 この他にも、流れ発生手段として様々な構成が適用できる。流れ発生手段は、ガラスリボンGのそれぞれの側端部GS1、GS2の側に、浴槽122の下流から上流に向かって、溶融金属124の逆方向流を発生させることができる限り、いかなる構成を有しても良い。 In addition to this, various configurations can be applied as flow generation means. The flow generating means has any configuration as long as it can generate a backward flow of the molten metal 124 from the downstream side of the bath 122 to the upstream side on the side end portions GS1 and GS2 of the glass ribbon G. You may do it.
 なお、流れ発生手段によって生じる溶融金属124の逆方向流の流速は、場所によっても変化する。このため、逆方向流の流速を正確に定めることは難しい。ただし、一例を挙げれば、第1の成形部120におけるガラスリボンGの平均搬送速度をvとしたとき、浴槽122の上流端と下流端の間のほぼ中間の領域において、ガラスリボンGのそれぞれの側端部GS1、GS2の側における逆方向流の流速は、0.1v以上(ただしvとは逆方向)であっても良い。 The flow velocity of the backward flow of the molten metal 124 generated by the flow generating means also changes depending on the place. Therefore, it is difficult to accurately determine the reverse flow velocity. However, one example, when the average conveyance speed of the glass ribbon G in the first mold portion 120 and v G, approximately in the middle region between the upstream and downstream ends of the tub 122, each of the glass ribbon G flow rate of the reverse flow at the side of the side end portion GS1, GS2 of may be (a direction opposite to the proviso v G) or 0.1 v G.
 (本発明の一実施形態による別の板ガラスの製造装置)
 次に、本発明の一実施形態による別の板ガラスの製造装置について説明する。
(Another plate glass manufacturing apparatus according to an embodiment of the present invention)
Next, another plate glass manufacturing apparatus according to an embodiment of the present invention will be described.
 本発明の一実施形態による別の板ガラスの製造装置(以下、「第2の製造装置」という)は、溶解部、成形部、および徐冷部を有する。 Another plate glass manufacturing apparatus according to an embodiment of the present invention (hereinafter, referred to as “second manufacturing apparatus”) has a melting section, a molding section, and a slow cooling section.
 ただし、このうち、溶解部および徐冷部の構成については、前述の図1に示した溶解部10および徐冷部90の記載が参照できる。従って、ここでは、図5乃至図7を参照して、第2の製造装置の成形部の一構成例について説明する。 However, regarding the configurations of the melting section and the slow cooling section, the description of the melting section 10 and the slow cooling section 90 shown in FIG. 1 can be referred to. Therefore, here, an example of the configuration of the molding unit of the second manufacturing apparatus will be described with reference to FIGS.
 図5には、第2の製造装置における一実施形態による成形部(以下、「第2の成形部」と称する)の断面を模式的に示す。また、図6には、図5に示した第2の成形部におけるフロートバス部の上面図を模式的に示す。さらに、図7には、図6におけるフロートバス部のB-B線に沿った断面を模式的に示す。 FIG. 5 schematically shows a cross section of a molding part (hereinafter, referred to as a “second molding part”) according to an embodiment of the second manufacturing apparatus. Further, FIG. 6 schematically shows a top view of the float bath part in the second molding part shown in FIG. Further, FIG. 7 schematically shows a cross section along the line BB of the float bath portion in FIG.
 図5乃至図7に示すように、第2の製造装置における第2の成形部220の構成は、前述の第1の製造装置における第1の成形部120の構成とほぼ同様である。従って、第2の成形部220において、第1の成形部120と同様の部材には、図2乃至図4に示した参照符号に100を加えた参照符号を使用する。例えば、第2の成形部220は、フロートバス部221および天井部271を有する。 As shown in FIGS. 5 to 7, the configuration of the second molding unit 220 in the second manufacturing apparatus is substantially the same as the configuration of the first molding unit 120 in the first manufacturing apparatus described above. Therefore, in the second molding unit 220, the same reference numerals as those of the first molding unit 120 are used with reference numerals obtained by adding 100 to the reference numerals shown in FIGS. 2 to 4. For example, the second molding part 220 has a float bath part 221 and a ceiling part 271.
 ここで、図6および図7に示すように、第2の成形部220は、フロートバス部221が第1のガイド部材266および第2のガイド部材268を有する点が、第1の成形部120とは異なっている。ただし、明確化のため、第1のガイド部材266および第2のガイド部材268は、図5には示されていない。 Here, as shown in FIGS. 6 and 7, in the second molding part 220, the first molding part 120 is that the float bath part 221 has the first guide member 266 and the second guide member 268. Is different from. However, for clarity, the first guide member 266 and the second guide member 268 are not shown in FIG.
 すなわち、第2の成形部220は、浴槽の222の底部から上方に向かって延在する第1のガイド部材266および第2のガイド部材268を備える。ただし、第1のガイド部材266および第2のガイド部材268は、溶融金属224の上面までは到達していない。 That is, the second molding part 220 includes a first guide member 266 and a second guide member 268 that extend upward from the bottom of the bath 222. However, the first guide member 266 and the second guide member 268 do not reach the upper surface of the molten metal 224.
 なお、図6において、リニアモータ256は、明確化のため省略されており、代わりに第1のガイド部材266および第2のガイド部材268が破線で示されている。 Note that, in FIG. 6, the linear motor 256 is omitted for clarity, and instead, the first guide member 266 and the second guide member 268 are shown by broken lines.
 図6に示すように、第1のガイド部材266は、浴槽222の第1および第2の側壁222S1、222S2に沿って、あるいはフロートバス部221の上面視、ガラスリボンGの第1および第2の側端部GS1、GS2に沿って、浴槽222の下流から上流にわたって配置されている。 As shown in FIG. 6, the first guide member 266 is provided along the first and second side walls 222S1, 222S2 of the bath 222, or in a top view of the float bath portion 221, the first and second glass ribbons G. Are arranged from the downstream side to the upstream side of the bath 222 along the side end portions GS1 and GS2.
 また、第2のガイド部材268は、浴槽222の上流端近傍に2つ配置されている。それぞれの第2のガイド部材268は、略L字型の形状を有し、フロートバス部221の上面視、「L字」の一つの辺部分が、ガラスリボンGの搬送方向と平行となり、「L字」の別の辺部分が浴槽222の上流側にくるように配置されている。また、2つの第2のガイド部材268は、「L字」の上頂点部分が相互に対面するようにして、浴槽222内に設置されている。 Also, two second guide members 268 are arranged near the upstream end of the bath 222. Each of the second guide members 268 has a substantially L-shape, and one side portion of the “L” shape in the top view of the float bath portion 221 is parallel to the transport direction of the glass ribbon G. The other side portion of the “L” is arranged so as to come to the upstream side of the bath tub 222. Further, the two second guide members 268 are installed in the bath tub 222 such that the upper apex portions of the “L-shape” face each other.
 第1のガイド部材266は、リニアモータ256によって、ガラスリボンGの両側端部GS1、GS2の側に溶融金属224の逆方向流(矢印F2参照)が生じた際に、該逆方向流を、より確実に下流から上流に誘導する役割を有する。 When the first guide member 266 causes a backward flow of the molten metal 224 (see arrow F2) on both side ends GS1 and GS2 of the glass ribbon G by the linear motor 256, the backward flow is generated. It has the role of guiding more reliably from downstream to upstream.
 すなわち、第1のガイド部材266が存在しない場合、リニアモータ256により生じた溶融金属224の逆方向流は、主流方向(下流から上流の方向)以外の方向、例えば、上面視、浴槽222の側壁222S1、222S2側から中央側に向かう方向にも分散され得る。この場合、逆方向流の主流方向の成分が弱まる可能性がある。 That is, when the first guide member 266 does not exist, the backward flow of the molten metal 224 generated by the linear motor 256 is a direction other than the main flow direction (the direction from the downstream to the upstream), for example, the top view, the side wall of the bath 222. It can also be dispersed in the direction from the 222S1, 222S2 side toward the center side. In this case, the component of the backward flow in the mainstream direction may be weakened.
 これに対して、第1のガイド部材266を設けた場合、第1のガイド部材266が溶融金属224の流れを調整するガイドとなるため、リニアモータ156により生じた溶融金属224の逆方向流が、主流方向以外の方向に分散することを有意に抑制することができる。従って、逆方向流をより確実に、主流方向に誘導することができる。 On the other hand, when the first guide member 266 is provided, the first guide member 266 serves as a guide for adjusting the flow of the molten metal 224, so that the backward flow of the molten metal 224 generated by the linear motor 156 is generated. Dispersion in a direction other than the mainstream direction can be significantly suppressed. Therefore, the reverse flow can be guided to the main flow direction more reliably.
 また、第2のガイド部材268は、図6において矢印F3に示すように、第1のガイド部材266によって浴槽222の上流側に誘導される溶融金属224の逆方向流を、浴槽222の上流端で内向きに偏向させ、溶融金属224を浴槽222の上流端の中央側に誘導する役割を有する。 Further, the second guide member 268 directs the backward flow of the molten metal 224, which is guided to the upstream side of the bath 222 by the first guide member 266, as shown by an arrow F3 in FIG. And has a role of guiding the molten metal 224 toward the center of the upstream end of the bath 222.
 すなわち、リニアモータ256により生じた溶融金属224の逆方向流は、第1のガイド部材266が存在する領域では、第1のガイド部材266により、浴槽222の上流側に誘導される。しかしながら、第1のガイド部材266が存在しなくなると、逆方向流は、各方向に分散されてしまう。従って、第2のガイド部材268が存在しない場合、浴槽222の上流端の中央側に流入する溶融金属224の量は、限られる。 That is, the backward flow of the molten metal 224 generated by the linear motor 256 is guided to the upstream side of the bath 222 by the first guide member 266 in the region where the first guide member 266 exists. However, if the first guide member 266 does not exist, the backward flow is dispersed in each direction. Therefore, when the second guide member 268 is not present, the amount of the molten metal 224 that flows into the center of the upstream end of the bath 222 is limited.
 ここで、一般に、浴槽222の上流端の中央側では、溶融金属224に流れが生じ難く、溶融金属224が停滞し易い傾向にある。そのような溶融金属224の「よどみ」は、ガラスリボンを汚染させる要因となり得る。 Here, generally, at the center side of the upstream end of the bath 222, the molten metal 224 is less likely to flow, and the molten metal 224 tends to be stagnant. Such "stagnation" of the molten metal 224 can cause contamination of the glass ribbon.
 これに対して、第2のガイド部材268を設けた場合、溶融金属224の逆方向流は、より確実に、浴槽222の上流端に到達できる。また、その後、溶融金属224は、偏向して浴槽222の上流端の中央側に流入できる。 On the other hand, when the second guide member 268 is provided, the backward flow of the molten metal 224 can reach the upstream end of the bath 222 more reliably. Further, thereafter, the molten metal 224 can be deflected and flow into the center side of the upstream end of the bath 222.
 従って、このような流れを発生させることにより、浴槽222の上流端の中央側において、溶融金属224の「よどみ」を有意に抑制することができる。また、これにより、ガラスリボンGの汚染を有意に抑制することができる。 Therefore, by generating such a flow, "stagnation" of the molten metal 224 can be significantly suppressed on the center side of the upstream end of the bath 222. Moreover, by this, the contamination of the glass ribbon G can be significantly suppressed.
 なお、第2の成形部220において、第1のガイド部材266は、浴槽222の下流から上流にわたって、単一の部材として構成されている。 In the second molding part 220, the first guide member 266 is formed as a single member from the downstream side to the upstream side of the bath 222.
 しかしながら、これとは異なり、第1のガイド部材266は、複数の部材で構成されても良い。また、第1のガイド部材266は、第1の側壁222S1および第2の側壁222S2の少なくとも一部に沿って配置されていれば良い。 However, unlike this, the first guide member 266 may be composed of a plurality of members. Moreover, the first guide member 266 may be arranged along at least a part of the first side wall 222S1 and the second side wall 222S2.
 例えば、複数のセグメントを相互に離間して、または連続的に配置して、第1のガイド部材266を構成しても良い。 For example, the first guide member 266 may be configured by arranging a plurality of segments apart from each other or continuously.
 同様に、第2のガイド部材268は、単一の部材ではなく、複数の部材を組み合わせて構成されても良い。 Similarly, the second guide member 268 may be configured by combining a plurality of members instead of a single member.
 また、第1のガイド部材266および第2のガイド部材268は、一体化されても良い。 Further, the first guide member 266 and the second guide member 268 may be integrated.
 以上、図5乃至図7を参照して、第2の成形部220の構成について説明した。しかしながら、上記第2の成形部220の構成は単なる一例であって、第2の成形部220は、別の構成を有しても良い。 The configuration of the second molding unit 220 has been described above with reference to FIGS. 5 to 7. However, the configuration of the second molding unit 220 is merely an example, and the second molding unit 220 may have another configuration.
 例えば、第2のガイド部材268は、省略されても良い。また、第2の成形部220において、流れ発生手段は、前述のような、リニアモータ256以外の構成を有しても良い。 For example, the second guide member 268 may be omitted. Further, in the second molding section 220, the flow generating means may have a configuration other than the linear motor 256 as described above.
 その他にも、当業者には各種変更が可能である。 Besides, various modifications can be made by those skilled in the art.
 (本発明の一実施形態による板ガラスの製造方法)
 次に、本発明の一実施形態による板ガラスの製造方法について説明する。
(The manufacturing method of the plate glass by one Embodiment of this invention)
Next, a method for manufacturing plate glass according to an embodiment of the present invention will be described.
 図8には、本発明の一実施形態による板ガラスの製造方法(以下、「第1の製造方法」と称する)のフローを模式的に示す。 FIG. 8 schematically shows a flow of a method for manufacturing plate glass (hereinafter, referred to as “first manufacturing method”) according to an embodiment of the present invention.
 図8に示すように、第1の製造方法は、
 (1)高温炉内でガラス原料を溶解し、溶融ガラスを形成する工程(工程S110)と、
 (2)前記溶融ガラスを、浴槽に収容された溶融金属上に供給し、ガラスリボンを形成する工程であって、前記ガラスリボンは、前記浴槽の上流から下流まで搬送される工程(工程S120)と、
 (3)前記ガラスリボンを徐冷する工程(工程S130)と、
 を有する。
As shown in FIG. 8, the first manufacturing method is
(1) a step of melting a glass raw material in a high temperature furnace to form molten glass (step S110),
(2) A step of supplying the molten glass onto a molten metal contained in a bath to form a glass ribbon, wherein the glass ribbon is transported from the upstream to the downstream of the bath (step S120). When,
(3) a step of gradually cooling the glass ribbon (step S130),
Have.
 このうち、工程S110および工程S130は、当業者には良く知られている。そこでここでは、工程S120について、詳しく説明する。また、ここでは、一例として、図2乃至図4に示した第1の成形部120により、工程S120を実施する場合について説明する。 Of these, step S110 and step S130 are well known to those skilled in the art. Therefore, here, the step S120 will be described in detail. In addition, here, as an example, a case where the step S120 is performed by the first molding unit 120 illustrated in FIGS. 2 to 4 will be described.
 (工程S120)
 工程S120では、まず、入口150から、溶融ガラスが第1の成形部120に供給される。
(Step S120)
In step S120, first, molten glass is supplied from the inlet 150 to the first molding unit 120.
 溶融ガラスは、浴槽122に収容された溶融金属124上に供給される。また、溶融ガラスは、浴槽122の上流から下流向かってに搬送される間にガラスリボンGとなり、その後、出口152から排出される。 The molten glass is supplied onto the molten metal 124 contained in the bath 122. Further, the molten glass becomes the glass ribbon G while being conveyed from the upstream side to the downstream side of the bath 122, and then discharged from the outlet 152.
 ここで、第1の成形部120は、流れ発生手段として、リニアモータ156を有する。
このため、浴槽122のガラスリボンGの両側端部GS1、GS2の側に、溶融金属124の逆方向流を発生させることができる。
Here, the 1st shaping|molding part 120 has the linear motor 156 as a flow generation means.
Therefore, a backward flow of the molten metal 124 can be generated on both side ends GS1 and GS2 of the glass ribbon G of the bathtub 122.
 また、このような逆方向流によって、溶融金属124の露出部分では、溶融金属124は、下流の低温領域から上流の高温領域までを比較的短い時間で移動することが可能となる。 Further, due to such a reverse flow, in the exposed portion of the molten metal 124, the molten metal 124 can move from the low temperature region on the downstream side to the high temperature region on the upstream side in a relatively short time.
 また、これにより、溶融金属124の高温領域側の露出部分において、酸素の溶解を有意に抑制することができる。また、その後、溶融金属124が低温領域に移動した際に、溶解した酸素がガスとして再発生したり、溶融金属124と反応して酸化物の異物が発生したりすることを有意に抑制することができる。 Further, this can significantly suppress the dissolution of oxygen in the exposed portion of the molten metal 124 on the high temperature region side. Further, thereafter, when the molten metal 124 moves to a low temperature region, it is possible to significantly suppress the generation of the dissolved oxygen as a gas and the reaction with the molten metal 124 to generate an oxide foreign substance. You can
 以上の効果により、第1の製造方法では、侵入した酸素の影響により、ガラスリボンGの品質が低下するという問題を、有意に抑制することができる。 With the above effects, in the first manufacturing method, it is possible to significantly suppress the problem that the quality of the glass ribbon G is deteriorated due to the influence of oxygen that has entered.
 本願は、2019年1月21日に出願した日本国特許出願第2019-007610号に基づく優先権を主張するものであり、同日本国出願の全内容を本願に参照により援用する。 The present application claims priority based on Japanese Patent Application No. 2019-007610 filed on January 21, 2019, and the entire contents of the Japanese application are incorporated herein by reference.
 1     製造装置
 10    溶解部
 12    ガラス原料
 14    高温炉
 16    溶融ガラス
 20    成形部
 22    浴槽
 24    溶融金属
 30    上部部材
 32    上部空間
 88    ローラ
 90    徐冷部
 91    徐冷炉
 92    搬送ロール
 94    ヒータ
 120   第1の成形部
 121   フロートバス部
 122   浴槽
 122S1 第1の側壁
 122S2 第2の側壁
 124   溶融金属
 132   上部空間
 140   トップロール
 150   入口
 152   出口
 156   リニアモータ
 171   天井部
 172   天井壁
 174   ケーシング
 176   ヒータ
 220   第2の成形部
 221   フロートバス部
 222   浴槽
 222S1 第1の側壁
 222S2 第2の側壁
 224   溶融金属
 232   上部空間
 240   トップロール
 250   入口
 252   出口
 256   リニアモータ
 266   第1のガイド部材
 268   第2のガイド部材
 271   天井部
 272   天井壁
 274   ケーシング
 276   ヒータ
 G     ガラスリボン
 GS1   ガラスリボンの第1の側端部
 GS2   ガラスリボンの第2の側端部
1 Manufacturing Equipment 10 Melting Part 12 Glass Raw Material 14 High Temperature Furnace 16 Molten Glass 20 Molding Part 22 Bath 24 Molten Metal 30 Upper Member 32 Upper Space 88 Roller 90 Slow Cooling Part 91 Slow Cooling Furnace 92 Conveying Roll 94 Heater 120 First Forming Part 121 Float Bath part 122 Bathtub 122S1 First side wall 122S2 Second side wall 124 Molten metal 132 Upper space 140 Top roll 150 Inlet 152 Outlet 156 Linear motor 171 Ceiling part 172 Ceiling wall 174 Casing 176 Heater 220 Second forming part 221 Float bath part 222 Bathtub 222S1 First side wall 222S2 Second side wall 224 Molten metal 232 Upper space 240 Top roll 250 Inlet 252 Outlet 256 Linear motor 266 First guide member 268 Second guide member 271 Ceiling part 272 Ceiling wall 274 Casing 276 Heater G Glass Ribbon GS1 First Side Edge of Glass Ribbon GS2 Second Side Edge of Glass Ribbon

Claims (7)

  1.  板ガラスの製造装置であって、
     溶融金属が収容された浴槽と、
     前記溶融金属に流れを発生させる流れ発生手段と、
     を有し、
     前記浴槽は、前記溶融金属上でガラスリボンが前記浴槽の上流から下流まで搬送されるように配置され
     前記流れ発生手段は、前記浴槽における前記ガラスリボンの両側端部側に、前記下流から前記上流にわたって、前記ガラスリボンの搬送方向とは逆向きの前記溶融金属の流れを発生させる、製造装置。
    A flat glass manufacturing apparatus,
    A bath containing molten metal,
    Flow generating means for generating a flow in the molten metal,
    Have
    The bathtub is arranged so that the glass ribbon is conveyed on the molten metal from the upstream side to the downstream side of the bathtub, and the flow generating means is located on both side ends of the glass ribbon in the bathtub, from the downstream side to the upstream side. A manufacturing apparatus for generating a flow of the molten metal in the opposite direction to the glass ribbon transport direction.
  2.  前記流れ発生手段は、リニアモータ、パドル、オール、および上昇機構と傾斜スロープの組み合わせの少なくとも一つを有する、請求項1に記載の製造装置。 The manufacturing apparatus according to claim 1, wherein the flow generating means includes at least one of a linear motor, a paddle, an oar, and a combination of a lifting mechanism and an inclined slope.
  3.  前記浴槽は、前記上流から前記下流に延在する、相互に対向する2つの側壁を有し、
     前記浴槽の底部には、各側壁の少なくとも一部に沿って、前記溶融金属の流れを誘導する第1のガイド部材が設置されている、請求項1または2に記載の製造装置。
    The bathtub has two side walls extending from the upstream side to the downstream side and facing each other,
    The manufacturing apparatus according to claim 1, wherein a first guide member that guides the flow of the molten metal is installed along at least a portion of each side wall at the bottom of the bath.
  4.  前記浴槽の前記底部の上流端近傍には、前記溶融金属の流れを誘導する第2のガイド部材が設置されている、請求項3に記載の製造装置。 The manufacturing apparatus according to claim 3, wherein a second guide member that guides the flow of the molten metal is installed near the upstream end of the bottom portion of the bath.
  5.  板ガラスの製造方法であって、
     浴槽に収容された溶融金属上で、ガラスリボンを前記浴槽の上流から下流まで搬送させる工程
     を有し、
     前記工程において、前記浴槽における前記ガラスリボンの両側端部側に、前記下流から前記上流にわたって、前記ガラスリボンの搬送方向とは逆向きの前記溶融金属の流れが発生する、製造方法。
    A method of manufacturing flat glass,
    Transporting the glass ribbon from upstream to downstream of the bath on the molten metal contained in the bath,
    In the step, in the manufacturing method, a flow of the molten metal in a direction opposite to a transport direction of the glass ribbon is generated from the downstream side to the upstream side on both side ends of the glass ribbon in the bath.
  6.  前記浴槽は、前記上流から前記下流に延在する、相互に対向する2つの側壁を有し、
     前記浴槽の底部には、各側壁の少なくとも一部に沿って、前記溶融金属の流れを誘導する第1のガイド部材が設置されている、請求項5に記載の製造方法。
    The bathtub has two side walls extending from the upstream side to the downstream side and facing each other,
    The manufacturing method according to claim 5, wherein a first guide member that guides the flow of the molten metal is installed on the bottom of the bath along at least a part of each side wall.
  7.  前記浴槽の前記底部の上流端近傍には、前記溶融金属の流れを誘導する第2のガイド部材が設置されている、請求項6に記載の製造方法。 The manufacturing method according to claim 6, wherein a second guide member that guides the flow of the molten metal is installed near the upstream end of the bottom of the bath.
PCT/JP2020/001765 2019-01-21 2020-01-20 Sheet glass production apparatus and sheet glass production method WO2020153310A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-007610 2019-01-21
JP2019007610A JP2022043377A (en) 2019-01-21 2019-01-21 Apparatus for manufacturing sheet glass and manufacturing method of sheet glass

Publications (1)

Publication Number Publication Date
WO2020153310A1 true WO2020153310A1 (en) 2020-07-30

Family

ID=71736420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001765 WO2020153310A1 (en) 2019-01-21 2020-01-20 Sheet glass production apparatus and sheet glass production method

Country Status (3)

Country Link
JP (1) JP2022043377A (en)
TW (1) TW202031604A (en)
WO (1) WO2020153310A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875238A (en) * 2020-08-18 2020-11-03 四川旭虹光电科技有限公司 Float glass tin bath

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121125A (en) * 1982-12-27 1984-07-13 Nippon Sheet Glass Co Ltd Production unit of floating plate glass
JP2007320830A (en) * 2006-06-02 2007-12-13 Nippon Sheet Glass Co Ltd Float bath

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121125A (en) * 1982-12-27 1984-07-13 Nippon Sheet Glass Co Ltd Production unit of floating plate glass
JP2007320830A (en) * 2006-06-02 2007-12-13 Nippon Sheet Glass Co Ltd Float bath

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875238A (en) * 2020-08-18 2020-11-03 四川旭虹光电科技有限公司 Float glass tin bath

Also Published As

Publication number Publication date
TW202031604A (en) 2020-09-01
JP2022043377A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
TWI501928B (en) Apparatus and method for manufacturing float glass
WO2009148141A1 (en) Apparatus and method for producing plate glass
US8769994B2 (en) Annealing apparatus and method for float glass
KR100812753B1 (en) Device supporting a ribbon of glass
KR101382826B1 (en) Method and apparatus for producing float glass
WO2020153310A1 (en) Sheet glass production apparatus and sheet glass production method
US8201419B2 (en) Apparatus for manufacturing float glass
WO2014125954A1 (en) Method for manufacturing glass plate and device for manufacturing glass plate
KR20150063947A (en) Apparatus for manufacturing float glass and method for manufacturing float glass
US3525601A (en) Apparatus for production of flat glass with float bath metal purifying means
CN106064878B (en) Float glass manufacturing device and float glass manufacturing method
JP5983406B2 (en) Float plate glass manufacturing apparatus and float plate glass manufacturing method
JP4958007B2 (en) Glass plate manufacturing method and glass plate manufacturing apparatus
US8266925B2 (en) Apparatus for manufacturing float glass
US8201420B2 (en) Apparatus for manufacturing float glass
WO2013179862A1 (en) Device for molding float glass, and method for producing float glass
KR102678868B1 (en) System for manufacturing glass plate
EP1767501A1 (en) Structure, float sheet glass manufacturing apparatus, bubble floating suppressing method, and float sheet glass manufacturing method
US3404972A (en) Method of and apparatus for the manufacture of flat glass on a molten metal bath
KR101379689B1 (en) Forming roller, method and apparatus for manufacturing glass utilizing the same
JP2000007359A (en) Apparatus for producing float sheet glass
JP2023108776A (en) Apparatus and method for manufacturing glass
CN115572045A (en) Float glass manufacturing device and float glass manufacturing method
KR20200136263A (en) Apparatus for manufacturing glass plate
KR20200136264A (en) Apparatus for manufacturing glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20745632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP