WO2020153176A1 - Thermal conductance distribution data generation device, thermal conductance distribution data generation method, and thermal conductance distribution data generation program - Google Patents

Thermal conductance distribution data generation device, thermal conductance distribution data generation method, and thermal conductance distribution data generation program Download PDF

Info

Publication number
WO2020153176A1
WO2020153176A1 PCT/JP2020/000897 JP2020000897W WO2020153176A1 WO 2020153176 A1 WO2020153176 A1 WO 2020153176A1 JP 2020000897 W JP2020000897 W JP 2020000897W WO 2020153176 A1 WO2020153176 A1 WO 2020153176A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution data
thermal conductance
pressure
cell
contact surface
Prior art date
Application number
PCT/JP2020/000897
Other languages
French (fr)
Japanese (ja)
Inventor
洋稔 青木
平沢 浩一
大誠 中島
Original Assignee
Koa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa株式会社 filed Critical Koa株式会社
Publication of WO2020153176A1 publication Critical patent/WO2020153176A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/18Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity

Definitions

  • the present invention relates to a thermal conductance distribution data generation device, a thermal conductance distribution data generation method, and a thermal conductance distribution data generation program.
  • Patent Document 1 JP2007-316032A (Patent Document 1) includes a holding unit that holds thermal resistance information for obtaining thermal resistance according to a contact state of a contact surface where two components are in contact with each other, and sets and sets the contact state. There is disclosed a data generation device that calculates thermal conductivity based on thermal resistance information corresponding to the contact state and generates data including the calculated thermal conductivity.
  • Patent Document 1 does not consider the deviation of the contact pressure due to the distortion (waviness) of the contact surface where the two parts contact, or the deformation of the surface shape of the parts due to the contact of the two parts.
  • data on the overall thermal resistance of the contact surface that is, the reciprocal of the thermal conductance
  • the thermal resistance of the contact surface is obtained instead of the entire thermal resistance distribution of the contact surface.
  • the present invention has been made in view of such a problem, and thermal conductance capable of generating thermal conductance distribution data of a contact surface where two parts are in contact with each other without performing temperature measurement or thermal simulation.
  • An object of the present invention is to provide a distribution data generation device, a thermal conductance distribution data generation method, and a thermal conductance distribution data generation program.
  • a thermal conductance distribution data generation device for generating thermal conductance distribution data of a contact surface where two parts are in contact with each other, wherein pressure distribution data for obtaining pressure distribution data of the contact surface.
  • Obtaining means and pressure distribution data smoothing for dividing the pressure distribution data obtained by the pressure distribution data obtaining means into a plurality of cells and smoothing the pressure in each of the divided cells to a single value.
  • a heat conductance distribution data generating device comprising: a means and a data generating means for converting the pressure in each cell smoothed by the pressure distribution data smoothing means into a heat conductance and generating the heat conductance distribution data.
  • a thermal conductance distribution data generation method for generating thermal conductance distribution data of a contact surface where two parts are in contact with each other, the step of acquiring pressure distribution data of the contact surface, The obtained pressure distribution data is divided into a plurality of cells, the step of smoothing the pressure in each divided cell to a single value, and the pressure in each smoothed cell to the thermal conductance. And a step of performing conversion to generate the thermal conductance distribution data.
  • a program for generating thermal conductance distribution data including: a process of acquiring pressure distribution data of a contact surface where two components contact each other, and the acquired pressure distribution data. Is divided into multiple cells and the pressure in each divided cell is smoothed to a single value, and the pressure in each smoothed cell is converted to thermal conductance to obtain thermal conductance distribution data.
  • a program for generating thermal conductance distribution data which executes a process for generating.
  • FIG. 1 is a block diagram showing a data analysis system according to this embodiment.
  • FIG. 2 is a schematic diagram showing a state in which two parts are in contact with each other by screwing.
  • FIG. 3 is a plan view showing an example of a pressure-sensitive sheet sandwiched between two components by screwing.
  • FIG. 4 is a diagram showing an example of the distortion/cell division number table stored in the memory.
  • FIG. 5 is a graph showing an example of a predetermined relational expression between the pressure and the thermal conductance calculated based on the actual measurement value measured in the state where the contact surface is not distorted.
  • FIG. 6A is a diagram showing an example of pressure distribution data (before smoothing) on the contact surface divided into a plurality of cells.
  • FIG. 6B is a graph showing the pressure distribution of the one-row cell surrounded by the alternate long and short dash line in FIG. 6A.
  • FIG. 7A is a diagram showing an example of pressure distribution data (after smoothing) on the contact surface divided into a plurality of cells.
  • FIG. 7B is a graph showing the pressure distribution of the one-row cell surrounded by the alternate long and short dash line in FIG. 7A.
  • FIG. 8A is a diagram showing an example of thermal conductance distribution data on the contact surface.
  • FIG. 8B is a graph showing the thermal conductance distribution of the one-row cell surrounded by the alternate long and short dash line in FIG. 8A.
  • FIG. 9 is a flowchart showing a process in which the data generation device generates the thermal conductance distribution data of the contact surface.
  • FIG. 10 is a flowchart showing a division process of the pressure distribution data of FIG.
  • FIG. 11 is a flowchart showing a process of generating the thermal conductance distribution data of FIG
  • FIG. 1 is a block diagram showing a data analysis system 100 according to this embodiment.
  • FIG. 2 is a schematic view showing a state where the two parts 7 and 8 are in contact with each other by screwing.
  • FIG. 3 is a plan view showing an example of the pressure-sensitive sheet 9 sandwiched between the two components 7 and 8 by screwing.
  • the data analysis system 100 includes a thermal conductance distribution data generation device 1, a pressure distribution data output unit 2, a strain detection unit 3, a material selection unit 4, a data analysis unit 5, and a display unit. 6 is provided.
  • the thermal conductance distribution data generation device 1 will be simply referred to as the data generation device 1.
  • the data analysis system 100 is a system that analyzes the data generated by the data generation device 1 and displays the analysis result and the like on the display unit 6.
  • the data generation device 1 is a device that generates the thermal conductance distribution data of the contact surface where the two parts 7 and 8 shown in FIG. 2 contact. The details of the data generation device 1 will be described later.
  • the pressure distribution data output unit 2 is a pressure distribution data generation unit that generates pressure distribution data on the contact surface where the two parts 7 and 8 contact each other by screwing.
  • the pressure distribution data output unit 2 uses the pressure-sensitive sheet 9 sandwiched between the two components 7 and 8 shown in FIG. Is generated and output to the data generation device 1.
  • the pressure-sensitive sheet 9 used to generate the pressure distribution data on the contact surface is made of a pressure-sensitive color-changing material that undergoes irreversible color change (darkening of color) when pressure is applied.
  • the pressure-sensitive sheet 9 is formed such that if the pressure it receives is large, the color change becomes dark, and if the pressure it is received is small, the color change becomes light.
  • the pressure-sensitive sheet 9 is formed in a square shape having a size of 20 mm ⁇ 18 mm so as to correspond to the contact surface where the two components 7 and 8 come into contact with each other. It is not limited to this, and may have a size corresponding to a contact surface different from the above size.
  • the pressure distribution data output unit 2 converts the image data reading unit 21 that reads the image data of the pressure sensitive sheet 9 and the image data of the pressure sensitive sheet 9 read by the image data reading unit 21 into the pressure distribution data of the contact surface.
  • the image/pressure data conversion unit 22 is included.
  • the image data reading unit 21 may be composed of an imaging device (camera) or a scanner.
  • the component 7 is a heat-generating component that generates heat during operation, and is, for example, a general rectangular-shaped resistor having a resistor, an electrode, and a ceramic substrate.
  • the resistor is formed with a through hole 71 penetrating along the vertical direction so as not to interfere with the resistor and the electrode.
  • the screw 10 for tightening the screw is inserted into the through hole 71.
  • the component 7 is composed of a resistor, but the component 7 is not limited to this, and may be composed of a semiconductor component that generates heat during operation.
  • the component 8 is a heat dissipation component that cools the component 7 during operation, and is, for example, a flat plate-shaped cooling plate.
  • the cooling plate is formed with a screw hole 81 corresponding to the through hole 71, into which the screw 10 can be screwed.
  • the component 7 is composed of the cooling plate, but the component 7 is not limited to this, and may be composed of, for example, a circuit board or a case.
  • the two parts 7 and 8 are tightened by screws 10 so that one side of the part 7 facing the part 8 (bottom surface/contact surface) and one surface of the part 8 facing the part 7 (top surface/contact surface) come into contact with each other. Be connected.
  • one surface (lower surface/contact surface) of the component 7 facing the component 8 is a contact surface with distortion
  • one surface (upper surface/contact surface) of the component 8 facing the component 7 is contact without distortion.
  • the pressure on the contact surface increases when the pressure is closer to the screw 10, and the discoloration of the region becomes darker. Discoloration becomes thin. That is, the pressure of the contact surface where the two parts contact each other by screwing tends to be biased toward the screw side.
  • the strain detection unit 3 is a strain detection unit that detects strain of the contact surface (specifically, strain of the lower surface of the component 7).
  • the strain detector 3 is composed of a plurality of laser displacement sensors.
  • the strain information of the contact surface detected by the strain detection unit 3 is 10.0 ⁇ m.
  • the strain detector 3 is composed of a plurality of laser displacement sensors, but is not limited to this, and may be composed of an optical sensor or the like.
  • the material selection unit 4 is an operation unit as a material selection unit that selects the same material as the material of the component 7. Further, in the present embodiment, the material selection unit 4 is composed of, for example, a touch panel type display unit 6, a mouse, a selection button, or the like, but the material selection unit 4 is not limited to these, and can select a material. There is enough. As described above, in the present embodiment, since the material of the component 7 (board) is ceramics, the user selects the ceramics, and the material selection unit 4 displays the material information indicating the ceramics as the material of the component 7. Output to the data generation device 1.
  • the data analysis unit 5 is a data analysis unit that performs various analyzes based on the thermal conductance distribution data of the contact surfaces where the two components 7 and 8 generated by the data generation device 1 contact. For example, it is conceivable to design the layout of the resistor using the thermal conductance distribution data of the contact surface.
  • the display unit 6 is a monitor as a display unit that displays the analysis result analyzed by the data analysis unit 5.
  • the display unit 60 may display not only the analysis result but also the pressure distribution data of the contact surface or the thermal conductance distribution data of the contact surface.
  • the data generation device 1, the material selection unit 4, the data analysis unit 5, and the display unit 6 are integrally configured, but the present invention is not limited to this, and for example, they may be configured separately. Good.
  • FIG. 4 is a diagram showing an example of the distortion/cell division number table stored in the memory 16.
  • FIG. 5 is a graph showing an example of a predetermined relational expression between the pressure and the thermal conductance calculated based on the actual measurement value measured in the state where the contact surface is not distorted.
  • FIG. 6A is a diagram showing an example of pressure distribution data (before smoothing) on the contact surface divided into a plurality of cells.
  • FIG. 6B is a graph showing the pressure distribution of the one-row cell surrounded by the alternate long and short dash line in FIG. 6A.
  • FIG. 7A is a diagram showing an example of pressure distribution data (after smoothing) on the contact surface divided into a plurality of cells.
  • FIG. 7B is a graph showing the pressure distribution of the one-row cell surrounded by the alternate long and short dash line in FIG. 7A.
  • FIG. 8A is a diagram showing an example of thermal conductance distribution data on the contact surface.
  • FIG. 8B is a graph showing the thermal conductance distribution of the one-row cell surrounded by the alternate long and short dash line in FIG. 8A.
  • the data generation device 1 is a device including a CPU (Central Processing Unit) as a computer.
  • the data generation device 1 includes a pressure distribution data acquisition unit 11, a pressure distribution data smoothing unit 12, a thermal conductance distribution data generation unit 13, a strain acquisition unit 14, a division number determination unit 15, a memory 16, and a relational expression determination unit 17. .
  • the pressure distribution data acquisition unit 11, the pressure distribution data smoothing unit 12, and the thermal conductance distribution data generation unit 13 are simply referred to as the acquisition unit 11, the smoothing unit 12, and the data generation unit 13, respectively.
  • the acquisition unit 11 is a pressure distribution data acquisition unit that acquires the pressure distribution data of the contact surface generated by the pressure distribution data output unit 2 via wired communication or wireless communication.
  • the strain acquisition unit 14 is a strain acquisition unit that acquires strain information of the contact surface (strain of the lower surface of the component 7) detected by the strain detection unit 3 via wired communication or wireless communication.
  • the strain information of the contact surface acquired by the strain acquisition unit 14 is 1.0 ⁇ m.
  • the division number determination unit 15 is a division number determination unit that determines the cell division number for dividing the pressure distribution data into a plurality of cells based on the strain information of the contact surface acquired by the strain acquisition unit 14. Specifically, the division number determination unit 15 refers to the distortion/cell division number table (see FIG. 4) stored in advance in the memory 16 and selects the cell division number corresponding to the acquired strain information of the contact surface. To do.
  • the number of cell divisions is set to increase as the distortion of the contact surface increases.
  • the strain information of the contact surface is 1.0 ⁇ m
  • the cell division number corresponding to the strain of the contact surface of 1.0 ⁇ m is determined to be 360 (20 ⁇ 18). As a result, it is possible to prevent the accuracy of the pressure in each of the divided cells from decreasing due to the increase in strain on the contact surface.
  • the memory 16 can be read by a computer and stores a predetermined relational expression between the pressure and the thermal conductance, which is calculated based on an actual measurement value measured in a state where there is no distortion of the contact surface as shown in FIG. 5 for each material of the component 7. It is a recording medium.
  • the memory 16 stores a distortion/cell division number table, each data generated when the processing program and the algorithm program are executed in the data generating device 1, each data displayed on the display unit 6, and the like. Further, the memory 16 may store a processing program or an algorithm program executed in the data generating device 1.
  • the relational expression determining unit 17 determines one predetermined relational expression (see FIG. 5) from the plurality of predetermined relational expressions stored in the memory 16, based on the material (ceramics) of the component 7 selected by the material selection unit 4. It is a relational expression determining means for determining (selecting). That is, the relational expression determination unit 17 determines one predetermined relational expression (see FIG. 5) from the plurality of predetermined relational expressions stored in the memory 16 based on the material information indicating the ceramics output from the material selection unit 4. It is a relational expression determining means for determining (selecting).
  • the predetermined relational expression shown in Fig. 5 is suitable for semi-lux.
  • one predetermined relational expression is a relational expression showing a relation between a plurality of pressures and thermal conductances calculated based on actual measurement values measured in a state where the contact surface is not distorted.
  • the thermal conductance of the contact surface is about 2 ⁇ 3 of the pressure of the contact surface.
  • the smoothing unit 12 is a pressure distribution data smoothing unit that divides the pressure distribution data acquired by the acquisition unit 11 into a plurality of cells and smoothes the pressure in each of the divided cells to one value. is there.
  • the cell division unit 121 is a cell division unit that divides the pressure distribution data acquired by the acquisition unit 11 into a plurality of cells having the same size, based on the number of cell divisions determined by the cell division determination unit 15.
  • the cell dividing unit 121 divides the pressure distribution data into a plurality of cells, so that the accuracy of the smoothed pressure distribution data is suppressed from being lowered due to the difference in cell size.
  • the pressure distribution data before being smoothed is divided into 360 cells (see FIG. 6A).
  • each cell is more preferably 1.0 mm or less on both sides, and further preferably 0.3 mm or less. In this embodiment, as shown in FIG. 6A, each side of each cell is 1.0 mm.
  • one row of cells arranged along the horizontal direction in FIG. 6A is used as the horizontal axis and pressure is used as the vertical axis.
  • the pressure in each cell is not a single value, so the pressure in each cell cannot be digitized. Therefore, it is impossible to convert the pressure in each cell that has not been digitized into a thermal conductance by using the pressure as it is.
  • the pressure smoothing unit 122 smoothes the pressure in each divided cell to one value and smooths it. It is a pressure smoothing means for generating the pressure distribution data (see FIG. 7A). Specifically, the pressure smoothing unit 122 calculates the maximum value of the pressure in each divided cell as the pressure of the cell, and generates a set of calculated pressures as smoothed pressure distribution data. This makes it possible to easily quantify the pressure in each cell while maintaining the accuracy of the pressure in each cell to some extent.
  • one row of cells arranged along the horizontal direction of FIG. 7A is taken as the horizontal axis and pressure is taken as the vertical axis.
  • the pressure in each cell is digitized into one value. Therefore, the numerically converted pressure in each cell can be used as it is for conversion into thermal conductance.
  • the data generation unit 13 is a data generation unit that converts the pressure in each cell smoothed by the smoothing unit 12 into thermal conductance and generates thermal conductance distribution data. That is, the data generation unit 13 is a conversion unit that converts the pressure distribution data smoothed by the smoothing unit 12 into thermal conductance distribution data.
  • the data generation unit 13 converts the pressure in each cell into a thermal conductance that becomes a single value based on the predetermined relational expression (see FIG. 5) determined by the relational expression determination unit 17, and then the thermal conductance. Distribution data (see FIG. 8A) is generated and output to the data analysis unit 5.
  • thermal conductance in each cell has one value because it is converted from one value of pressure. In this way, the thermal conductance distribution data is converted from the pressure distribution data smoothed by the smoothing unit 12.
  • the predetermined relational expression between the plurality of pressures and the thermal conductance which is used for the conversion of the pressure and the thermal conductance, is calculated based on the actual measurement value measured in the state where the contact surface is not distorted. It is possible to generate more accurate thermal conductance distribution data of the contact surface as compared with the method of converting the pressure in each cell into the thermal conductance based on the theoretical relational expression.
  • FIG. 9 is a flowchart showing a processing procedure for the data generation device 1 to generate thermal conductance distribution data on the contact surface.
  • step S1 the power of the data generator 1 is turned on, and the process proceeds to step S1.
  • step S1 the acquisition unit 11 acquires the pressure distribution data (before smoothing) generated by the pressure distribution data output unit 2 by wire communication or wireless communication, and proceeds to step S2.
  • step S2 the data generation device 1 performs a pressure distribution data division process, and proceeds to step S3.
  • the details of the division processing of the pressure distribution data will be described later.
  • step S3 the pressure smoothing unit 122 smoothes the pressure in the divided cells to one value, generates smoothed pressure distribution data, and proceeds to step S4. Specifically, in step S3, the pressure smoothing unit 122 calculates the maximum value of the pressure in each of the divided cells as the pressure of the cell, and the set of the calculated pressures is the smoothed pressure distribution data. Is generated, and the process proceeds to step S4.
  • step S4 the data generation unit 13 converts the pressure in each cell smoothed by the smoothing unit 12 into thermal conductance, and generates thermal conductance distribution data. Then, the data generator 1 ends the process of generating the thermal conductance distribution data of the contact surface. The details of the generation process of the thermal conductance distribution data will be described later.
  • FIG. 10 is a flowchart showing a division process of the pressure distribution data of FIG.
  • step S21 the strain acquisition unit 14 acquires strain information of the contact surface detected by the strain detection unit 3 by wire communication or wireless communication, and proceeds to step S22.
  • step S22 the division number determination unit 15 determines the number of cell divisions into which the pressure distribution data is divided into a plurality of cells, based on the strain information of the contact surface acquired by the strain acquisition unit 14, and proceeds to step S23. Specifically, in step S22, the division number determination unit 15 selects the cell division number corresponding to the obtained strain of the contact surface based on the strain/cell division number table stored in advance in the memory 16, and Proceed to S23.
  • step S23 the cell division unit 121 divides the pressure distribution data into a plurality of cells having the same size based on the cell division number determined by the cell division determination unit 15, and returns to the main process.
  • FIG. 11 is a flowchart showing the generation process of the thermal conductance distribution data of FIG.
  • step S41 the relational expression determination unit 17 determines (selects) one predetermined relational expression from a plurality of predetermined relational expressions stored in the memory 16, based on the material of the component 7 selected by the material selection unit 4. Then, the process proceeds to step S42.
  • step S42 the data generation unit 13 converts the pressure in each cell into a thermal conductance having a single value, based on the predetermined relational expression determined by the relational expression determination unit 17, to generate heat conductance distribution data, Return to main processing.
  • the data generating device 1 executes the processing procedure from step S1 to step S4, thereby performing the thermal conductance distribution of the contact surface corresponding to the pressure distribution data of the contact surface without performing temperature measurement or thermal simulation. Data can be generated.
  • the data generation device 1 generates the thermal conductance distribution data of the contact surface where the two parts 7 and 8 contact each other.
  • This data generation device 1 divides the pressure distribution data acquired by the acquisition unit 11 that acquires the pressure distribution data of the contact surface into a plurality of cells, and divides the pressure in each divided cell into one.
  • a smoothing unit 12 that smoothes the values into values and a data generation unit 13 that converts the pressure in each cell smoothed by the smoothing unit 12 into heat conductance and generates heat conductance distribution data are provided. ..
  • the smoothing unit 12 divides the pressure distribution data of the contact surface acquired by the acquisition unit 11 into a plurality of cells, and smoothes the pressure in each of the divided cells to one value. Therefore, the pressure in each divided cell can be digitized. Further, since the data generation unit 13 converts the pressure in each cell smoothed by the smoothing unit 12 into thermal conductance and generates thermal conductance distribution data, the digitized pressure in each cell is converted into thermal conductance. And the thermal conductance distribution data of the contact surface corresponding to the pressure distribution data of the contact surface can be generated without performing temperature measurement or thermal simulation.
  • the plurality of cells have the same size.
  • the accuracy of the smoothed pressure distribution data is suppressed from decreasing due to the difference in cell size, and the heat converted from the smoothed pressure distribution data is suppressed.
  • the accuracy of the conductance distribution data can be improved.
  • each side of each cell is 1.5 mm or less.
  • the data generation device 1 uses the strain acquisition unit 14 that acquires strain information of the contact surface, and the pressure distribution data in a plurality of cells based on the strain information of the contact surface acquired by the strain acquisition unit 14. And a division number determination unit 15 for determining the number of cell divisions to be divided into. Then, the smoothing unit 12 divides the pressure distribution data into a plurality of cells based on the cell division number determined by the division number determination unit 15.
  • the division number determination unit 15 determines the cell division number for dividing the pressure distribution data into a plurality of cells based on the strain information of the contact surface acquired by the strain acquisition unit 14, the cell division number.
  • the accuracy of the pressure in each cell divided by is suppressed from being lowered by the distortion of the contact surface. Therefore, the accuracy of the thermal conductance in each cell converted from the pressure in each cell can be improved. Thereby, highly accurate thermal conductance distribution data of the contact surface can be generated.
  • the division number determination unit 15 determines the cell division number such that the larger the contact surface distortion, the larger the cell division number.
  • the division number determination unit 15 determines the cell division number such that the larger the strain on the contact surface, the larger the cell division number. Therefore, the accuracy of the pressure in each divided cell depends on the contact surface. It is possible to suppress the decrease due to the increase in strain, and improve the accuracy of the thermal conductance in each cell converted from the pressure in each cell. Thereby, highly accurate thermal conductance distribution data of the contact surface can be generated.
  • the smoothing unit 12 calculates the maximum value of the pressure in each divided cell as the pressure of the cell.
  • the smoothing unit 12 calculates the maximum value of the pressure in each divided cell as the pressure of the cell, so that the pressure in each cell is maintained while maintaining the accuracy of the pressure in each cell to some extent. It can be easily digitized.
  • the memory 16 that stores a predetermined relational expression between pressure and thermal conductance, which is calculated based on the state in which there is no distortion of the contact surface for each material, and the memory 16 that stores the data based on the material of the component 7.
  • a relational expression determining unit 17 for determining one predetermined relational expression from the plurality of predetermined relational expressions, and the data generating unit 13 includes each cell based on the predetermined relational expression determined by the relational expression determining unit 17. Converts internal pressure to thermal conductance.
  • the data generation unit 13 converts the pressure in each cell into a thermal conductance based on a predetermined relational expression between the pressure and the thermal conductance calculated based on the state where the contact surface is not distorted.
  • the thermal conductance distribution data of can be generated.
  • the predetermined relational expression used for the above conversion is determined by the relational expression determining unit 17 from a plurality of predetermined relational expressions stored in the memory 16 based on the material of the component 7, so that the predetermined relational expression suitable for the material of the component 7 is determined.
  • the relational expression can be used for the above conversion, and highly accurate thermal conductance distribution data of the contact surface can be generated.
  • the thermal conductance distribution data generation method is for generating thermal conductance distribution data of a contact surface where two components 7 and 8 contact each other, and a step of acquiring pressure distribution data of the contact surface; Dividing the pressure distribution data into multiple cells, smoothing the pressure in each divided cell to one value, and converting the pressure in each smoothed cell into thermal conductance. , Generating thermal conductance distribution data.
  • the thermal conductance distribution data generation program includes a step of acquiring pressure distribution data of a contact surface where two parts are in contact with a computer, dividing the acquired pressure distribution data into a plurality of cells, and dividing the data. Smoothing the pressure in each cell so that it becomes a single value, and converting the pressure in each smoothed cell into thermal conductance, and generating thermal conductance distribution data. It is a thing.
  • the obtained pressure distribution data of the contact surface is divided into a plurality of cells, and the pressure in each divided cell is smoothed to be one value.
  • the pressure can be digitized.
  • the smoothed pressure in each cell is converted to thermal conductance and the thermal conductance distribution data is generated, it is possible to convert the digitized pressure in each cell to thermal conductance. It is possible to generate highly accurate thermal conductance distribution data of the contact surface corresponding to the pressure distribution data of the contact surface without performing simulation.
  • the pressure distribution data output unit 2 generates the pressure distribution data of the contact surface using the pressure sensitive sheet 9, but the present invention is not limited to this.
  • a pressure sensor actual measurement
  • the pressure distribution data of the contact surface may be generated using (numerical analysis) or the like.
  • the pressure distribution data output unit 2 does not necessarily need to include the image data reading unit 21 and the image/pressure data conversion unit 22.
  • the cell division number for dividing the pressure distribution data into a plurality of cells is determined by the division number determination unit 15 based on the strain information of the contact surface detected by the strain detection unit 3.
  • the present invention is not limited to this, and may be freely set by the user without depending on the distortion information of the contact surface. In this case, it is necessary to provide a cell division number selection unit in the data analysis system 100 without providing the division number determination unit 15.
  • the division number determination unit 15 determines the cell division number based on the strain information of the contact surface, but the present invention is not limited to this.
  • the strain information of the contact surface and the contact surface The number of cell divisions may be determined based on both areas.
  • the memory 16 is built in the data generation device 1, but the memory 16 is not limited to this, and may be provided separately from the data generation device 1, for example.
  • the pressure smoothing unit 122 calculates the maximum value of the pressure in each divided cell as the pressure of the cell, but the present invention is not limited to this, and the inside of each divided cell is not limited to this. You may calculate the average value of the pressure of this as the pressure of the said cell. In this case, the accuracy of the pressure in each cell used for conversion can be improved.
  • the data analysis system 100 and the data generation device 1 each include the material selection unit 4 and the relational expression determination unit 17, but the present invention is not limited to this, and the material selection unit 4 and the relational expression determination unit 17 are not limited thereto.
  • the expression determining unit 17 may not be provided.
  • the memory 16 pre-stores only one predetermined relational expression indicating the relation between the pressure of the contact surface and the thermal conductance, and the data generation unit 13 uses the one predetermined relational expression stored in the memory 16. The pressure in each cell is converted into thermal conductance based on
  • the predetermined relational expression is calculated based on the actual measurement value measured in the state where the contact surface is not distorted.
  • the predetermined relational expression is not limited to this, and is a theoretical relational expression. Good.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

This data generation device is for generating thermal conductance distribution data for a touching surface where two components touch. The data generation device comprises an acquisition unit for acquiring pressure distribution data for the touching surface, a smoothing unit for dividing the pressure distribution data acquired by the acquisition unit into a plurality of cells of the same size and carrying out smoothing such that each of the divided cells has one pressure value therein, and a data generation unit for generating thermal conductance distribution data by converting the pressures in the cells subjected to the smoothing by the smoothing unit into thermal conductances.

Description

熱コンダクタンス分布データ生成装置、熱コンダクタンス分布データ生成方法及び熱コンダクタンス分布データ生成用プログラムThermal conductance distribution data generation device, thermal conductance distribution data generation method, and thermal conductance distribution data generation program
 本発明は、熱コンダクタンス分布データ生成装置、熱コンダクタンス分布データ生成方法及び熱コンダクタンス分布データ生成用プログラムに関する。 The present invention relates to a thermal conductance distribution data generation device, a thermal conductance distribution data generation method, and a thermal conductance distribution data generation program.
 JP2007-316032A(特許文献1)には、二つの部品が接する接触面の接触状態に応じた、熱抵抗を得るための熱抵抗情報を保持する保持部を備え、接触状態を設定し、設定された接触状態に対応する熱抵抗情報に基づき、熱伝導率を算出し、算出された熱伝導率を含むデータを生成するデータ生成装置が開示されている。 JP2007-316032A (Patent Document 1) includes a holding unit that holds thermal resistance information for obtaining thermal resistance according to a contact state of a contact surface where two components are in contact with each other, and sets and sets the contact state. There is disclosed a data generation device that calculates thermal conductivity based on thermal resistance information corresponding to the contact state and generates data including the calculated thermal conductivity.
 しかしながら、特許文献1に記載のデータ生成装置では、二つの部品が接触する接触面の歪み(うねり)による接触圧力の偏り又は、二つの部品の接触による部品の表面形状の変形等を考慮せずに、接触面の全体の熱抵抗(すなわち、熱コンダクタンスの逆数)データを生成する。このため、接触面の全体の熱抵抗分布ではなく、平均値に過ぎない接触面の熱抵抗しか得られないという問題点があった。 However, the data generation device described in Patent Document 1 does not consider the deviation of the contact pressure due to the distortion (waviness) of the contact surface where the two parts contact, or the deformation of the surface shape of the parts due to the contact of the two parts. In addition, data on the overall thermal resistance of the contact surface (that is, the reciprocal of the thermal conductance) is generated. Therefore, there is a problem that only the average value of the thermal resistance of the contact surface is obtained instead of the entire thermal resistance distribution of the contact surface.
 本発明は、このような問題点に着目してなされたものであり、温度測定又は熱シミュレーションを行うことなく、二つの部品が接触する接触面の熱コンダクタンス分布データを生成することができる熱コンダクタンス分布データ生成装置、熱コンダクタンス分布データ生成方法及び熱コンダクタンス分布データ生成用プログラムを提供することを目的とする。 The present invention has been made in view of such a problem, and thermal conductance capable of generating thermal conductance distribution data of a contact surface where two parts are in contact with each other without performing temperature measurement or thermal simulation. An object of the present invention is to provide a distribution data generation device, a thermal conductance distribution data generation method, and a thermal conductance distribution data generation program.
 本発明のある一つの態様によれば、二つの部品が接触する接触面の熱コンダクタンス分布データを生成する熱コンダクタンス分布データ生成装置であって、前記接触面の圧力分布データを取得する圧力分布データ取得手段と、前記圧力分布データ取得手段により取得された前記圧力分布データを複数のセルに分割し、分割された各セル内の圧力を一つの値となるように平滑化する圧力分布データ平滑化手段と、前記圧力分布データ平滑化手段により平滑化された各セル内の圧力を熱コンダクタンスに変換し、前記熱コンダクタンス分布データを生成するデータ生成手段と、を備える、熱コンダクタンス分布データ生成装置が提供される。 According to one aspect of the invention, there is provided a thermal conductance distribution data generation device for generating thermal conductance distribution data of a contact surface where two parts are in contact with each other, wherein pressure distribution data for obtaining pressure distribution data of the contact surface. Obtaining means and pressure distribution data smoothing for dividing the pressure distribution data obtained by the pressure distribution data obtaining means into a plurality of cells and smoothing the pressure in each of the divided cells to a single value. A heat conductance distribution data generating device comprising: a means and a data generating means for converting the pressure in each cell smoothed by the pressure distribution data smoothing means into a heat conductance and generating the heat conductance distribution data. Provided.
 本発明のある他の態様によれば、二つの部品が接触する接触面の熱コンダクタンス分布データを生成する熱コンダクタンス分布データ生成方法であって、前記接触面の圧力分布データを取得するステップと、取得された前記圧力分布データを複数のセルに分割し、分割された各セル内の圧力を一つの値となるように平滑化するステップと、平滑化された各セル内の圧力を熱コンダクタンスに変換し、前記熱コンダクタンス分布データを生成するステップと、を含む、熱コンダクタンス分布データ生成方法が提供される。 According to another aspect of the present invention, there is provided a thermal conductance distribution data generation method for generating thermal conductance distribution data of a contact surface where two parts are in contact with each other, the step of acquiring pressure distribution data of the contact surface, The obtained pressure distribution data is divided into a plurality of cells, the step of smoothing the pressure in each divided cell to a single value, and the pressure in each smoothed cell to the thermal conductance. And a step of performing conversion to generate the thermal conductance distribution data.
 本発明のあるその他の態様によれば、熱コンダクタンス分布データ生成用プログラムであって、コンピュータに、二つの部品が接触する接触面の圧力分布データを取得する処理と、取得された前記圧力分布データを複数のセルに分割し、分割された各セル内の圧力を一つの値となるように平滑化する処理と、平滑化された各セル内の圧力を熱コンダクタンスに変換し、熱コンダクタンス分布データを生成する処理と、を実行させる、熱コンダクタンス分布データ生成用プログラムが提供される。 According to another aspect of the present invention, there is provided a program for generating thermal conductance distribution data, the process including: a process of acquiring pressure distribution data of a contact surface where two components contact each other, and the acquired pressure distribution data. Is divided into multiple cells and the pressure in each divided cell is smoothed to a single value, and the pressure in each smoothed cell is converted to thermal conductance to obtain thermal conductance distribution data. There is provided a program for generating thermal conductance distribution data, which executes a process for generating.
 これらによれば、温度測定又は熱シミュレーションを行うことなく、二つの部品が接触する接触面の熱コンダクタンス分布データを生成することができる。 According to these, it is possible to generate the thermal conductance distribution data of the contact surface where two parts contact without performing temperature measurement or thermal simulation.
図1は、本実施形態に係るデータ解析システムを示すブロック図である。FIG. 1 is a block diagram showing a data analysis system according to this embodiment. 図2は、二つの部品がねじ締めにより接触する状態を示す概略図である。FIG. 2 is a schematic diagram showing a state in which two parts are in contact with each other by screwing. 図3は、ねじ締めにより二つの部品間に挟み込まれた感圧シートの一例を示す平面図である。FIG. 3 is a plan view showing an example of a pressure-sensitive sheet sandwiched between two components by screwing. 図4は、メモリーに記憶された歪み・セル分割数テーブルの一例を示す図である。FIG. 4 is a diagram showing an example of the distortion/cell division number table stored in the memory. 図5は、接触面の歪みがない状態において測定した実測値を基に算出した圧力と熱コンダクタンスとの所定関係式の一例を示すグラフである。FIG. 5 is a graph showing an example of a predetermined relational expression between the pressure and the thermal conductance calculated based on the actual measurement value measured in the state where the contact surface is not distorted. 図6Aは、複数のセルに分割された接触面の圧力分布データ(平滑化前)の一例を示す図である。FIG. 6A is a diagram showing an example of pressure distribution data (before smoothing) on the contact surface divided into a plurality of cells. 図6Bは、図6Aにおいて一点鎖線で囲まれた一行セルの圧力分布を示すグラフである。FIG. 6B is a graph showing the pressure distribution of the one-row cell surrounded by the alternate long and short dash line in FIG. 6A. 図7Aは、複数のセルに分割された接触面の圧力分布データ(平滑化後)の一例を示す図である。FIG. 7A is a diagram showing an example of pressure distribution data (after smoothing) on the contact surface divided into a plurality of cells. 図7Bは、図7Aにおいて一点鎖線で囲まれた一行セルの圧力分布を示すグラフである。FIG. 7B is a graph showing the pressure distribution of the one-row cell surrounded by the alternate long and short dash line in FIG. 7A. 図8Aは、接触面の熱コンダクタンス分布データの一例を示す図である。FIG. 8A is a diagram showing an example of thermal conductance distribution data on the contact surface. 図8Bは、図8Aにおいて一点鎖線で囲まれた一行セルの熱コンダクタンス分布を示すグラフである。FIG. 8B is a graph showing the thermal conductance distribution of the one-row cell surrounded by the alternate long and short dash line in FIG. 8A. 図9は、データ生成装置が接触面の熱コンダクタンス分布データを生成する処理を示すフローチャートである。FIG. 9 is a flowchart showing a process in which the data generation device generates the thermal conductance distribution data of the contact surface. 図10は、図9の圧力分布データの分割処理を示すフローチャートである。FIG. 10 is a flowchart showing a division process of the pressure distribution data of FIG. 図11は、図9の熱コンダクタンス分布データの生成処理を示すフローチャートである。FIG. 11 is a flowchart showing a process of generating the thermal conductance distribution data of FIG.
 以下、添付図面を参照しながら本実施形態について説明する。本明細書においては、全体を通じて、同一の要素には同一の符号を付する。 The present embodiment will be described below with reference to the accompanying drawings. In this specification, the same elements are denoted by the same reference symbols throughout.
[データ解析システム]
 まず、図1から図3を参照しながら本実施形態に係るデータ解析システム100について説明する。
[Data analysis system]
First, the data analysis system 100 according to the present embodiment will be described with reference to FIGS. 1 to 3.
 図1は、本実施形態に係るデータ解析システム100を示すブロック図である。図2は、二つの部品7,8がねじ締めにより接触する状態を示す概略図である。図3は、ねじ締めにより二つの部品7,8間に挟み込まれた感圧シート9の一例を示す平面図である。 FIG. 1 is a block diagram showing a data analysis system 100 according to this embodiment. FIG. 2 is a schematic view showing a state where the two parts 7 and 8 are in contact with each other by screwing. FIG. 3 is a plan view showing an example of the pressure-sensitive sheet 9 sandwiched between the two components 7 and 8 by screwing.
 図1に示すように、本実施形態に係るデータ解析システム100は、熱コンダクタンス分布データ生成装置1、圧力分布データ出力部2、歪み検出部3、材質選択部4、データ解析部5及び表示部6を備える。以下、熱コンダクタンス分布データ生成装置1は、単にデータ生成装置1と称する。データ解析システム100は、データ生成装置1により生成されたデータを解析してその解析結果等を表示部6に表示するシステムである。 As shown in FIG. 1, the data analysis system 100 according to the present embodiment includes a thermal conductance distribution data generation device 1, a pressure distribution data output unit 2, a strain detection unit 3, a material selection unit 4, a data analysis unit 5, and a display unit. 6 is provided. Hereinafter, the thermal conductance distribution data generation device 1 will be simply referred to as the data generation device 1. The data analysis system 100 is a system that analyzes the data generated by the data generation device 1 and displays the analysis result and the like on the display unit 6.
 データ生成装置1は、図2に示す二つの部品7,8が接触する接触面の熱コンダクタンス分布データを生成する装置である。なお、データ生成装置1の詳細については後述する。 The data generation device 1 is a device that generates the thermal conductance distribution data of the contact surface where the two parts 7 and 8 shown in FIG. 2 contact. The details of the data generation device 1 will be described later.
 圧力分布データ出力部2は、二つの部品7,8がねじ締めにより接触する接触面の圧力分布データを生成する圧力分布データ生成手段である。本実施形態では、圧力分布データ出力部2は、図3に示す二つの部品7,8間に挟み込まれた感圧シート9を用いて二つの部品7,8が接触する接触面の圧力分布データを生成してデータ生成装置1に出力する。 The pressure distribution data output unit 2 is a pressure distribution data generation unit that generates pressure distribution data on the contact surface where the two parts 7 and 8 contact each other by screwing. In the present embodiment, the pressure distribution data output unit 2 uses the pressure-sensitive sheet 9 sandwiched between the two components 7 and 8 shown in FIG. Is generated and output to the data generation device 1.
 接触面の圧力分布データの生成に用いられる感圧シート9は、圧力を受けると、不可逆的な色変化を起こす(色が濃くなる)感圧変色性材料からなる。感圧シート9は、受ける圧力が大きければ、その変色が濃くなり、受ける圧力が小さければ、その変色が薄くなるように形成される。 The pressure-sensitive sheet 9 used to generate the pressure distribution data on the contact surface is made of a pressure-sensitive color-changing material that undergoes irreversible color change (darkening of color) when pressure is applied. The pressure-sensitive sheet 9 is formed such that if the pressure it receives is large, the color change becomes dark, and if the pressure it is received is small, the color change becomes light.
 なお、本実施形態では、感圧シート9は、二つの部品7,8が接触する接触面に対応するように、その寸法が20mm×18mmである正方形状のものから構成されるが、これに限定されるものではなく、上記寸法と異なる接触面に対応する寸法を有するものから構成されてもよい。 In the present embodiment, the pressure-sensitive sheet 9 is formed in a square shape having a size of 20 mm×18 mm so as to correspond to the contact surface where the two components 7 and 8 come into contact with each other. It is not limited to this, and may have a size corresponding to a contact surface different from the above size.
 圧力分布データ出力部2は、感圧シート9の画像データを読み取る画像データ読取部21と、画像データ読取部21により読み取られた感圧シート9の画像データを接触面の圧力分布データに変換する画像・圧力データ変換部22と、を有する。なお、画像データ読取部21は、撮像装置(カメラ)から構成されてもよいし、スキャナーから構成されてもよい。 The pressure distribution data output unit 2 converts the image data reading unit 21 that reads the image data of the pressure sensitive sheet 9 and the image data of the pressure sensitive sheet 9 read by the image data reading unit 21 into the pressure distribution data of the contact surface. The image/pressure data conversion unit 22 is included. The image data reading unit 21 may be composed of an imaging device (camera) or a scanner.
 部品7は、作動時において熱を発する発熱部品であり、例えば、抵抗体、電極及びセラミックス基板を有する一般的な長方体形状の抵抗器である。抵抗器には、抵抗体及び電極と干渉しないように上下方向に沿って貫通する貫通孔71が形成される。貫通孔71には、ねじ締め用のねじ10が挿通される。また、本実施形態では、部品7は、抵抗器から構成されるが、これに限定されるものではなく、作動時において熱を発する半導体部品から構成されてもよい。 The component 7 is a heat-generating component that generates heat during operation, and is, for example, a general rectangular-shaped resistor having a resistor, an electrode, and a ceramic substrate. The resistor is formed with a through hole 71 penetrating along the vertical direction so as not to interfere with the resistor and the electrode. The screw 10 for tightening the screw is inserted into the through hole 71. Further, in the present embodiment, the component 7 is composed of a resistor, but the component 7 is not limited to this, and may be composed of a semiconductor component that generates heat during operation.
 部品8は、作動時の部品7を冷却する放熱部品であり、例えば、平板形状の冷却プレートである。冷却プレートには、貫通孔71に対応するようにねじ10がねじ込むことが可能なねじ穴81が形成される。また、本実施形態では、部品7は、冷却プレートから構成されるが、これに限定されるものではなく、例えば、回路基板又はケース等から構成されてもよい。 The component 8 is a heat dissipation component that cools the component 7 during operation, and is, for example, a flat plate-shaped cooling plate. The cooling plate is formed with a screw hole 81 corresponding to the through hole 71, into which the screw 10 can be screwed. Further, in the present embodiment, the component 7 is composed of the cooling plate, but the component 7 is not limited to this, and may be composed of, for example, a circuit board or a case.
 二つの部品7,8は、部品7の部品8に対向する片面(下面/接触面)と部品8の部品7に対向する片面(上面/接触面)とが接触するようにねじ10の締めにより連結される。ここで、説明の便宜上、部品7の部品8に対向する片面(下面/接触面)を歪みのある接触面とし、部品8の部品7に対向する片面(上面/接触面)を歪みのない接触面とする。図3から分かるように、感圧シート9は、ねじ10に近ければ接触面の圧力が大きくなってその領域の変色が濃くなり、ねじ10に遠ければ接触面の圧力が小さくなってその領域の変色が薄くなる。すなわち、二つの部品がねじ締めにより接触する接触面の圧力がねじ寄り側に偏ってしまう傾向がある。 The two parts 7 and 8 are tightened by screws 10 so that one side of the part 7 facing the part 8 (bottom surface/contact surface) and one surface of the part 8 facing the part 7 (top surface/contact surface) come into contact with each other. Be connected. Here, for convenience of description, one surface (lower surface/contact surface) of the component 7 facing the component 8 is a contact surface with distortion, and one surface (upper surface/contact surface) of the component 8 facing the component 7 is contact without distortion. Face. As can be seen from FIG. 3, in the pressure-sensitive sheet 9, the pressure on the contact surface increases when the pressure is closer to the screw 10, and the discoloration of the region becomes darker. Discoloration becomes thin. That is, the pressure of the contact surface where the two parts contact each other by screwing tends to be biased toward the screw side.
 歪み検出部3は、接触面の歪み(具体的には、部品7の下面の歪み)情報を検出する歪み検出手段である。歪み検出部3は、複数のレーザ変位センサからなる。本実施形態では、歪み検出部3が検出した接触面の歪み情報は、10.0μmである。また、本実施形態では、歪み検出部3は、複数のレーザ変位センサから構成されるが、これに限定されるものではなく、光センサ等から構成されてもよい。 The strain detection unit 3 is a strain detection unit that detects strain of the contact surface (specifically, strain of the lower surface of the component 7). The strain detector 3 is composed of a plurality of laser displacement sensors. In this embodiment, the strain information of the contact surface detected by the strain detection unit 3 is 10.0 μm. Further, in the present embodiment, the strain detector 3 is composed of a plurality of laser displacement sensors, but is not limited to this, and may be composed of an optical sensor or the like.
 材質選択部4は、部品7の材質と同一材質を選択する材質選択手段としての操作部である。また、本実施形態では、材質選択部4は、例えば、タッチパネル式の表示部6、マウス、或いは選択ボタン等から構成されるが、これらに限定されるものではなく、材質の選択を行えるものであれば足りる。上述のように、本実施形態では、部品7(基板)の材質は、セラミックスであるので、ユーザは、セラミックスを選択し、材質選択部4は、部品7の材質として、セラミックスを示す材質情報をデータ生成装置1に出力する。 The material selection unit 4 is an operation unit as a material selection unit that selects the same material as the material of the component 7. Further, in the present embodiment, the material selection unit 4 is composed of, for example, a touch panel type display unit 6, a mouse, a selection button, or the like, but the material selection unit 4 is not limited to these, and can select a material. There is enough. As described above, in the present embodiment, since the material of the component 7 (board) is ceramics, the user selects the ceramics, and the material selection unit 4 displays the material information indicating the ceramics as the material of the component 7. Output to the data generation device 1.
 データ解析部5は、データ生成装置1により生成された二つの部品7,8が接触する接触面の熱コンダクタンス分布データに基づき、様々な解析を行うデータ解析手段である。例えば、接触面の熱コンダクタンス分布データを用いて抵抗器のレイアウトを設計すること等が考えられる。 The data analysis unit 5 is a data analysis unit that performs various analyzes based on the thermal conductance distribution data of the contact surfaces where the two components 7 and 8 generated by the data generation device 1 contact. For example, it is conceivable to design the layout of the resistor using the thermal conductance distribution data of the contact surface.
 表示部6は、データ解析部5により解析された解析結果を表示する表示手段としてのモニタである。なお、表示部60は、解析結果のみならず、例えば、接触面の圧力分布データ又は接触面の熱コンダクタンス分布データ等を表示してもよい。 The display unit 6 is a monitor as a display unit that displays the analysis result analyzed by the data analysis unit 5. The display unit 60 may display not only the analysis result but also the pressure distribution data of the contact surface or the thermal conductance distribution data of the contact surface.
 本実施形態では、データ生成装置1、材質選択部4、データ解析部5及び表示部6は、一体に構成されるが、これに限定されるものではなく、例えば、別体に構成されてもよい。 In the present embodiment, the data generation device 1, the material selection unit 4, the data analysis unit 5, and the display unit 6 are integrally configured, but the present invention is not limited to this, and for example, they may be configured separately. Good.
[データ生成装置]
 次に、図1から図8を参照しながら本実施形態に係るデータ生成装置1について説明する。
[Data generator]
Next, the data generation device 1 according to the present embodiment will be described with reference to FIGS. 1 to 8.
 図4は、メモリー16に記憶された歪み・セル分割数テーブルの一例を示す図である。図5は、接触面の歪みがない状態において測定した実測値を基に算出した圧力と熱コンダクタンスとの所定関係式の一例を示すグラフである。図6Aは、複数のセルに分割された接触面の圧力分布データ(平滑化前)の一例を示す図である。図6Bは、図6Aにおいて一点鎖線で囲まれた一行セルの圧力分布を示すグラフである。図7Aは、複数のセルに分割された接触面の圧力分布データ(平滑化後)の一例を示す図である。図7Bは、図7Aにおいて一点鎖線で囲まれた一行セルの圧力分布を示すグラフである。図8Aは、接触面の熱コンダクタンス分布データの一例を示す図である。図8Bは、図8Aにおいて一点鎖線で囲まれた一行セルの熱コンダクタンス分布を示すグラフである。 FIG. 4 is a diagram showing an example of the distortion/cell division number table stored in the memory 16. FIG. 5 is a graph showing an example of a predetermined relational expression between the pressure and the thermal conductance calculated based on the actual measurement value measured in the state where the contact surface is not distorted. FIG. 6A is a diagram showing an example of pressure distribution data (before smoothing) on the contact surface divided into a plurality of cells. FIG. 6B is a graph showing the pressure distribution of the one-row cell surrounded by the alternate long and short dash line in FIG. 6A. FIG. 7A is a diagram showing an example of pressure distribution data (after smoothing) on the contact surface divided into a plurality of cells. FIG. 7B is a graph showing the pressure distribution of the one-row cell surrounded by the alternate long and short dash line in FIG. 7A. FIG. 8A is a diagram showing an example of thermal conductance distribution data on the contact surface. FIG. 8B is a graph showing the thermal conductance distribution of the one-row cell surrounded by the alternate long and short dash line in FIG. 8A.
 図1に示すように、データ生成装置1は、コンピュータとしてのCPU(Central Processing Unit)から構成される装置である。データ生成装置1は、圧力分布データ取得部11、圧力分布データ平滑化部12、熱コンダクタンス分布データ生成部13、歪み取得部14、分割数決定部15、メモリー16及び関係式決定部17を備える。以下、圧力分布データ取得部11、圧力分布データ平滑化部12及び熱コンダクタンス分布データ生成部13は、それぞれ、単に取得部11、平滑化部12、データ生成部13と称する。 As shown in FIG. 1, the data generation device 1 is a device including a CPU (Central Processing Unit) as a computer. The data generation device 1 includes a pressure distribution data acquisition unit 11, a pressure distribution data smoothing unit 12, a thermal conductance distribution data generation unit 13, a strain acquisition unit 14, a division number determination unit 15, a memory 16, and a relational expression determination unit 17. .. Hereinafter, the pressure distribution data acquisition unit 11, the pressure distribution data smoothing unit 12, and the thermal conductance distribution data generation unit 13 are simply referred to as the acquisition unit 11, the smoothing unit 12, and the data generation unit 13, respectively.
 取得部11は、有線通信又は無線通信を介して、圧力分布データ出力部2により生成された接触面の圧力分布データを取得する圧力分布データ取得手段である。 The acquisition unit 11 is a pressure distribution data acquisition unit that acquires the pressure distribution data of the contact surface generated by the pressure distribution data output unit 2 via wired communication or wireless communication.
 歪み取得部14は、有線通信又は無線通信を介して、歪み検出部3により検出された接触面の歪み(部品7の下面の歪み)情報を取得する歪み取得手段である。本実施形態では、歪み取得部14が取得した接触面の歪み情報は、1.0μmである。 The strain acquisition unit 14 is a strain acquisition unit that acquires strain information of the contact surface (strain of the lower surface of the component 7) detected by the strain detection unit 3 via wired communication or wireless communication. In this embodiment, the strain information of the contact surface acquired by the strain acquisition unit 14 is 1.0 μm.
 分割数決定部15は、歪み取得部14により取得された接触面の歪み情報に基づき、圧力分布データを複数のセルに分割するセル分割数を決定する分割数決定手段である。具体的には、分割数決定部15は、あらかじめメモリー16に記憶された歪み・セル分割数テーブル(図4参照)を参照し、取得された接触面の歪み情報に対応するセル分割数を選択する。 The division number determination unit 15 is a division number determination unit that determines the cell division number for dividing the pressure distribution data into a plurality of cells based on the strain information of the contact surface acquired by the strain acquisition unit 14. Specifically, the division number determination unit 15 refers to the distortion/cell division number table (see FIG. 4) stored in advance in the memory 16 and selects the cell division number corresponding to the acquired strain information of the contact surface. To do.
 図4から分かるように、セル分割数は、接触面の歪みが大きいほど、大きくなるように設定される。本実施形態では、接触面の歪み情報は、1.0μmであるため、1.0μmの接触面の歪みに対応するセル分割数は、360(20×18)に決定される。これにより、分割された各セル内の圧力の精度が接触面の歪み増大によって低下することが抑制される。 As can be seen from FIG. 4, the number of cell divisions is set to increase as the distortion of the contact surface increases. In this embodiment, since the strain information of the contact surface is 1.0 μm, the cell division number corresponding to the strain of the contact surface of 1.0 μm is determined to be 360 (20×18). As a result, it is possible to prevent the accuracy of the pressure in each of the divided cells from decreasing due to the increase in strain on the contact surface.
 メモリー16は、部品7の材質毎に、図5に示すような接触面の歪みがない状態において測定した実測値を基に算出した圧力と熱コンダクタンスとの所定関係式を記憶するコンピュータ読み取り可能な記録媒体である。メモリー16は、歪み・セル分割数テーブル、データ生成装置1において処理プログラムやアルゴリズムプログラムを実行する際に生成される各データ、及び表示部6に表示させる各データ等を記憶している。また、メモリー16は、データ生成装置1において実行される処理プログラムやアルゴリズムプログラムを記憶するものであってもよい。 The memory 16 can be read by a computer and stores a predetermined relational expression between the pressure and the thermal conductance, which is calculated based on an actual measurement value measured in a state where there is no distortion of the contact surface as shown in FIG. 5 for each material of the component 7. It is a recording medium. The memory 16 stores a distortion/cell division number table, each data generated when the processing program and the algorithm program are executed in the data generating device 1, each data displayed on the display unit 6, and the like. Further, the memory 16 may store a processing program or an algorithm program executed in the data generating device 1.
 関係式決定部17は、材質選択部4により選択された部品7の材質(セラミックス)に基づき、メモリー16に記憶された複数の所定関係式の中から一つの所定関係式(図5参照)を決定(選択)する関係式決定手段である。すなわち、関係式決定部17は、材質選択部4から出力されたセラミックスを示す材質情報に基づき、メモリー16に記憶された複数の所定関係式の中から一つの所定関係式(図5参照)を決定(選択)する関係式決定手段である。 The relational expression determining unit 17 determines one predetermined relational expression (see FIG. 5) from the plurality of predetermined relational expressions stored in the memory 16, based on the material (ceramics) of the component 7 selected by the material selection unit 4. It is a relational expression determining means for determining (selecting). That is, the relational expression determination unit 17 determines one predetermined relational expression (see FIG. 5) from the plurality of predetermined relational expressions stored in the memory 16 based on the material information indicating the ceramics output from the material selection unit 4. It is a relational expression determining means for determining (selecting).
 図5に示す所定関係式は、セミラックスに適したものである。具体的には、一つの所定関係式は、接触面の歪みがない状態において測定した実測値を基に算出した複数の圧力と熱コンダクタンスとの関係を示す関係式である。なお、所定関係式において、接触面の熱コンダクタンスは、接触面の圧力の約2/3である。 The predetermined relational expression shown in Fig. 5 is suitable for semi-lux. Specifically, one predetermined relational expression is a relational expression showing a relation between a plurality of pressures and thermal conductances calculated based on actual measurement values measured in a state where the contact surface is not distorted. In the predetermined relational expression, the thermal conductance of the contact surface is about ⅔ of the pressure of the contact surface.
 平滑化部12は、取得部11により取得された圧力分布データを複数のセルに分割し、分割された各セル内の圧力を一つの値となるように平滑化する圧力分布データ平滑化手段である。 The smoothing unit 12 is a pressure distribution data smoothing unit that divides the pressure distribution data acquired by the acquisition unit 11 into a plurality of cells and smoothes the pressure in each of the divided cells to one value. is there.
 セル分割部121は、セル分割決定部15により決定されたセル分割数に基づき、取得部11により取得された圧力分布データを、同一サイズを有する複数のセルに分割するセル分割手段である。セル分割部121は、圧力分布データを複数のセルに分割することにより、平滑化された圧力分布データの精度がセルサイズの差異によって低下することが抑制される。本実施形態では、平滑化される前の圧力分布データは、360のセルに分割されている(図6A参照)。 The cell division unit 121 is a cell division unit that divides the pressure distribution data acquired by the acquisition unit 11 into a plurality of cells having the same size, based on the number of cell divisions determined by the cell division determination unit 15. The cell dividing unit 121 divides the pressure distribution data into a plurality of cells, so that the accuracy of the smoothed pressure distribution data is suppressed from being lowered due to the difference in cell size. In this embodiment, the pressure distribution data before being smoothed is divided into 360 cells (see FIG. 6A).
 平滑化された圧力分布データの精度がセルサイズの増大によって低下することを抑制する観点から、各セルを、その両辺のいずれも1.5mm以下となるように微小化にすることが好ましい。各セルの両辺のうちのいずれか一つが1.5mmを超える場合、セルのサイズが大きすぎるので、平滑化された圧力分布データの精度が低下してしまうことを抑制しにくくなる。また、各セルは、その両辺のいずれも1.0mm以下であることがより好ましく、0.3mm以下であることが更に好ましい。なお、本実施形態では、図6Aに示すように、各セルは、その両辺のいずれも1.0mmである。 From the viewpoint of suppressing the accuracy of the smoothed pressure distribution data from decreasing due to an increase in cell size, it is preferable to make each cell smaller so that both sides are 1.5 mm or less. When either one of both sides of each cell exceeds 1.5 mm, the size of the cell is too large, and it is difficult to prevent the accuracy of the smoothed pressure distribution data from being lowered. Further, each cell is more preferably 1.0 mm or less on both sides, and further preferably 0.3 mm or less. In this embodiment, as shown in FIG. 6A, each side of each cell is 1.0 mm.
 図6Bに示すグラフでは、図6Aの横方向に沿って配列される一行セルを横軸とし、圧力を縦軸とする。図6Bに示すように、各セル内の圧力は、一つの値ではないため、各セル内の圧力を数値化にすることができない。よって、数値化されていない各セル内の圧力をそのまま用いて熱コンダクタンスに変換することができない。 In the graph shown in FIG. 6B, one row of cells arranged along the horizontal direction in FIG. 6A is used as the horizontal axis and pressure is used as the vertical axis. As shown in FIG. 6B, the pressure in each cell is not a single value, so the pressure in each cell cannot be digitized. Therefore, it is impossible to convert the pressure in each cell that has not been digitized into a thermal conductance by using the pressure as it is.
 そこで、各セル内の圧力の値を用いて熱コンダクタンスの値に変換するために、圧力平滑化部122は、分割された各セル内の圧力を一つの値となるように平滑化し、平滑化された圧力分布データを生成する圧力平滑化手段である(図7A参照)。具体的には、圧力平滑化部122は、分割された各セル内の圧力の最大値を当該セルの圧力として算出し、算出された圧力の集合を平滑化された圧力分布データとして生成する。これにより、各セル内の圧力の精度をある程度維持しつつ各セル内の圧力を簡易に数値化にすることができる。 Therefore, in order to convert the value of the pressure in each cell into the value of the thermal conductance, the pressure smoothing unit 122 smoothes the pressure in each divided cell to one value and smooths it. It is a pressure smoothing means for generating the pressure distribution data (see FIG. 7A). Specifically, the pressure smoothing unit 122 calculates the maximum value of the pressure in each divided cell as the pressure of the cell, and generates a set of calculated pressures as smoothed pressure distribution data. This makes it possible to easily quantify the pressure in each cell while maintaining the accuracy of the pressure in each cell to some extent.
 図7Bに示すグラフでは、図6Bと同様に、図7Aの横方向に沿って配列される一行セルを横軸とし、圧力を縦軸とする。図7Bに示すように、各セル内の圧力は、一つの値に数値化されている。よって、数値化されている各セル内の圧力をそのまま用いて熱コンダクタンスに変換することができる。 In the graph shown in FIG. 7B, as in FIG. 6B, one row of cells arranged along the horizontal direction of FIG. 7A is taken as the horizontal axis and pressure is taken as the vertical axis. As shown in FIG. 7B, the pressure in each cell is digitized into one value. Therefore, the numerically converted pressure in each cell can be used as it is for conversion into thermal conductance.
 データ生成部13は、平滑化部12により平滑化された各セル内の圧力を熱コンダクタンスに変換し、熱コンダクタンス分布データを生成するデータ生成手段である。すなわち、データ生成部13は、平滑化部12により平滑化された圧力分布データを熱コンダクタンス分布データに変換する変換部である。 The data generation unit 13 is a data generation unit that converts the pressure in each cell smoothed by the smoothing unit 12 into thermal conductance and generates thermal conductance distribution data. That is, the data generation unit 13 is a conversion unit that converts the pressure distribution data smoothed by the smoothing unit 12 into thermal conductance distribution data.
 具体的には、データ生成部13は、関係式決定部17により決定された所定関係式(図5参照)に基づき、各セル内の圧力を一つの値となる熱コンダクタンスに変換し、熱コンダクタンス分布データ(図8A参照)を生成してデータ解析部5に出力する。 Specifically, the data generation unit 13 converts the pressure in each cell into a thermal conductance that becomes a single value based on the predetermined relational expression (see FIG. 5) determined by the relational expression determination unit 17, and then the thermal conductance. Distribution data (see FIG. 8A) is generated and output to the data analysis unit 5.
 図8Bに示すグラフでは、図8Aの横方向に沿って配列される一行セルを横軸とし、熱コンダクタンスを縦軸とする。図8Bに示すように、各セル内の熱コンダクタンスは、一つの値となる圧力から変換されるため、一つの値となる。このように、熱コンダクタンス分布データは、平滑化部12により平滑化された圧力分布データから変換される。 In the graph shown in FIG. 8B, one row of cells arranged along the horizontal direction of FIG. 8A is used as the horizontal axis, and thermal conductance is used as the vertical axis. As shown in FIG. 8B, the thermal conductance in each cell has one value because it is converted from one value of pressure. In this way, the thermal conductance distribution data is converted from the pressure distribution data smoothed by the smoothing unit 12.
 上述のように、圧力・熱コンダクタンスの変換に用いられる、複数の圧力と熱コンダクタンスとの所定関係式は、接触面の歪みがない状態において測定した実測値を基に算出したものであるため、理論関係式に基づき各セル内の圧力を熱コンダクタンスに変換する方式に比べ、より精度の高い接触面の熱コンダクタンス分布データを生成することができる。 As described above, the predetermined relational expression between the plurality of pressures and the thermal conductance, which is used for the conversion of the pressure and the thermal conductance, is calculated based on the actual measurement value measured in the state where the contact surface is not distorted. It is possible to generate more accurate thermal conductance distribution data of the contact surface as compared with the method of converting the pressure in each cell into the thermal conductance based on the theoretical relational expression.
(熱コンダクタンス分布データ生成の処理)
 次に、図9から図11を参照しながら、データ生成装置1が接触面の熱コンダクタンス分布データを生成する処理について説明する。
(Process of generating thermal conductance distribution data)
Next, with reference to FIG. 9 to FIG. 11, a process in which the data generator 1 generates the thermal conductance distribution data of the contact surface will be described.
 図9は、データ生成装置1が接触面の熱コンダクタンス分布データを生成する処理手順を示すフローチャートである。 FIG. 9 is a flowchart showing a processing procedure for the data generation device 1 to generate thermal conductance distribution data on the contact surface.
<メイン処理>
 まず、図9を参照しながら熱コンダクタンス分布データ生成のメイン処理について説明する。
<Main processing>
First, the main process of generating thermal conductance distribution data will be described with reference to FIG.
 図9に示すように、スタートにおいて、データ生成装置1の電源をオンにして、ステップS1に進む。 As shown in FIG. 9, at the start, the power of the data generator 1 is turned on, and the process proceeds to step S1.
 ステップS1において、取得部11は、有線通信又は無線通信により、圧力分布データ出力部2により生成された圧力分布データ(平滑化前)を取得し、ステップS2に進む。 In step S1, the acquisition unit 11 acquires the pressure distribution data (before smoothing) generated by the pressure distribution data output unit 2 by wire communication or wireless communication, and proceeds to step S2.
 ステップS2において、データ生成装置1は、圧力分布データの分割処理を行い、ステップS3に進む。なお、圧力分布データの分割処理の詳細については後述する。 In step S2, the data generation device 1 performs a pressure distribution data division process, and proceeds to step S3. The details of the division processing of the pressure distribution data will be described later.
 ステップS3において、圧力平滑化部122は、分割されたセル内の圧力を一つの値となるように平滑化し、平滑化された圧力分布データを生成し、ステップS4に進む。具体的には、ステップS3において、圧力平滑化部122は、分割された各セル内の圧力の最大値を当該セルの圧力として算出し、算出された圧力の集合を平滑化された圧力分布データとして生成し、ステップS4に進む。 In step S3, the pressure smoothing unit 122 smoothes the pressure in the divided cells to one value, generates smoothed pressure distribution data, and proceeds to step S4. Specifically, in step S3, the pressure smoothing unit 122 calculates the maximum value of the pressure in each of the divided cells as the pressure of the cell, and the set of the calculated pressures is the smoothed pressure distribution data. Is generated, and the process proceeds to step S4.
 ステップS4において、データ生成部13は、平滑化部12により平滑化された各セル内の圧力を熱コンダクタンスに変換し、熱コンダクタンス分布データを生成する。その後、データ生成装置1が接触面の熱コンダクタンス分布データを生成する処理を終了させる。なお、熱コンダクタンス分布データの生成処理の詳細については後述する。 In step S4, the data generation unit 13 converts the pressure in each cell smoothed by the smoothing unit 12 into thermal conductance, and generates thermal conductance distribution data. Then, the data generator 1 ends the process of generating the thermal conductance distribution data of the contact surface. The details of the generation process of the thermal conductance distribution data will be described later.
<圧力分布データの分割処理>
 次に、図10を参照しながらメイン処理における圧力分布データの分割処理について説明する。
<Division processing of pressure distribution data>
Next, the division processing of the pressure distribution data in the main processing will be described with reference to FIG.
 図10は、図9の圧力分布データの分割処理を示すフローチャートである。 FIG. 10 is a flowchart showing a division process of the pressure distribution data of FIG.
 まず、ステップS21において、歪み取得部14は、有線通信又は無線通信により、歪み検出部3により検出された接触面の歪み情報を取得し、ステップS22に進む。 First, in step S21, the strain acquisition unit 14 acquires strain information of the contact surface detected by the strain detection unit 3 by wire communication or wireless communication, and proceeds to step S22.
 ステップS22において、分割数決定部15は、歪み取得部14により取得された接触面の歪み情報に基づき、圧力分布データを複数のセルに分割するセル分割数を決定し、ステップS23に進む。具体的には、ステップS22において、分割数決定部15は、あらかじめメモリー16に記憶された歪み・セル分割数テーブルに基づき、取得された接触面の歪みに対応するセル分割数を選択し、ステップS23に進む。 In step S22, the division number determination unit 15 determines the number of cell divisions into which the pressure distribution data is divided into a plurality of cells, based on the strain information of the contact surface acquired by the strain acquisition unit 14, and proceeds to step S23. Specifically, in step S22, the division number determination unit 15 selects the cell division number corresponding to the obtained strain of the contact surface based on the strain/cell division number table stored in advance in the memory 16, and Proceed to S23.
 ステップS23において、セル分割部121は、セル分割決定部15により決定されたセル分割数に基づき、圧力分布データを、同一サイズを有する複数のセルに分割し、メイン処理に戻る。 In step S23, the cell division unit 121 divides the pressure distribution data into a plurality of cells having the same size based on the cell division number determined by the cell division determination unit 15, and returns to the main process.
<熱コンダクタンス分布データの生成処理>
 次に、図11を参照しながらメイン処理における熱コンダクタンス分布データの生成処理について説明する。
<Process of generating thermal conductance distribution data>
Next, a process of generating thermal conductance distribution data in the main process will be described with reference to FIG.
 図11は、図9の熱コンダクタンス分布データの生成処理を示すフローチャートである。 FIG. 11 is a flowchart showing the generation process of the thermal conductance distribution data of FIG.
 まず、ステップS41において、関係式決定部17は、材質選択部4により選択された部品7の材質に基づき、メモリー16に記憶された複数の所定関係式から一つの所定関係式を決定(選択)し、ステップS42に進む。 First, in step S41, the relational expression determination unit 17 determines (selects) one predetermined relational expression from a plurality of predetermined relational expressions stored in the memory 16, based on the material of the component 7 selected by the material selection unit 4. Then, the process proceeds to step S42.
 ステップS42において、データ生成部13は、関係式決定部17により決定された所定関係式に基づき、各セル内の圧力を一つの値となる熱コンダクタンスに変換し、熱コンダクタンス分布データを生成し、メイン処理に戻る。 In step S42, the data generation unit 13 converts the pressure in each cell into a thermal conductance having a single value, based on the predetermined relational expression determined by the relational expression determination unit 17, to generate heat conductance distribution data, Return to main processing.
 このように、データ生成装置1は、ステップS1からステップS4までの処理手順を実行することにより、温度測定又は熱シミュレーションを行うことなく、接触面の圧力分布データに対応する接触面の熱コンダクタンス分布データを生成することができる。 As described above, the data generating device 1 executes the processing procedure from step S1 to step S4, thereby performing the thermal conductance distribution of the contact surface corresponding to the pressure distribution data of the contact surface without performing temperature measurement or thermal simulation. Data can be generated.
 次に、本実施形態による作用効果について説明する。 Next, the function and effect of this embodiment will be described.
 以上述べたように、本実施形態に係るデータ生成装置1は、二つの部品7,8が接触する接触面の熱コンダクタンス分布データを生成するものである。このデータ生成装置1は、接触面の圧力分布データを取得する取得部11と、取得部11により取得された圧力分布データを複数のセルに分割し、分割された各セル内の圧力を一つの値となるように平滑化する平滑化部12と、平滑化部12により平滑化された各セル内の圧力を熱コンダクタンスに変換し、熱コンダクタンス分布データを生成するデータ生成部13と、を備える。 As described above, the data generation device 1 according to the present embodiment generates the thermal conductance distribution data of the contact surface where the two parts 7 and 8 contact each other. This data generation device 1 divides the pressure distribution data acquired by the acquisition unit 11 that acquires the pressure distribution data of the contact surface into a plurality of cells, and divides the pressure in each divided cell into one. A smoothing unit 12 that smoothes the values into values and a data generation unit 13 that converts the pressure in each cell smoothed by the smoothing unit 12 into heat conductance and generates heat conductance distribution data are provided. ..
 これによれば、平滑化部12は、取得部11により取得された接触面の圧力分布データを複数のセルに分割し、分割された各セル内の圧力を一つの値となるように平滑化するので、分割された各セル内の圧力を数値化にすることができる。また、データ生成部13は、平滑化部12により平滑化された各セル内の圧力を熱コンダクタンスに変換し、熱コンダクタンス分布データを生成するので、数値化された各セル内の圧力を熱コンダクタンスに変換することができ、温度測定又は熱シミュレーションを行うことなく、接触面の圧力分布データに対応する接触面の熱コンダクタンス分布データを生成することができる。 According to this, the smoothing unit 12 divides the pressure distribution data of the contact surface acquired by the acquisition unit 11 into a plurality of cells, and smoothes the pressure in each of the divided cells to one value. Therefore, the pressure in each divided cell can be digitized. Further, since the data generation unit 13 converts the pressure in each cell smoothed by the smoothing unit 12 into thermal conductance and generates thermal conductance distribution data, the digitized pressure in each cell is converted into thermal conductance. And the thermal conductance distribution data of the contact surface corresponding to the pressure distribution data of the contact surface can be generated without performing temperature measurement or thermal simulation.
 また、本実施形態において、複数のセルは、同一サイズを有する。 Also, in the present embodiment, the plurality of cells have the same size.
 これによれば、複数のセルは、同一サイズを有するので、平滑化された圧力分布データの精度がセルサイズの差異によって低下することが抑制され、平滑化された圧力分布データから変換された熱コンダクタンス分布データの精度を高めることができる。 According to this, since the plurality of cells have the same size, the accuracy of the smoothed pressure distribution data is suppressed from decreasing due to the difference in cell size, and the heat converted from the smoothed pressure distribution data is suppressed. The accuracy of the conductance distribution data can be improved.
 また、本実施形態において、各セルは、その両辺のいずれも1.5mm以下である。 Further, in the present embodiment, each side of each cell is 1.5 mm or less.
 これによれば、各セルをその両辺のいずれも1.5mm以下となるように微小化にすることで、平滑化された圧力分布データの精度がセルサイズの増大によって低下することが抑制されるので、圧力分布データから変換された熱コンダクタンス分布データの精度をより高めることができる。 According to this, by miniaturizing each cell so that both sides are 1.5 mm or less, the accuracy of the smoothed pressure distribution data is suppressed from decreasing due to an increase in cell size. Therefore, the accuracy of the thermal conductance distribution data converted from the pressure distribution data can be further improved.
 また、本実施形態において、データ生成装置1は、接触面の歪み情報を取得する歪み取得部14と、歪み取得部14により取得された接触面の歪み情報に基づき、圧力分布データを複数のセルに分割するセル分割数を決定する分割数決定部15と、を更に備える。そして、平滑化部12は、分割数決定部15により決定されたセル分割数に基づき、圧力分布データを複数のセルに分割する。 Further, in the present embodiment, the data generation device 1 uses the strain acquisition unit 14 that acquires strain information of the contact surface, and the pressure distribution data in a plurality of cells based on the strain information of the contact surface acquired by the strain acquisition unit 14. And a division number determination unit 15 for determining the number of cell divisions to be divided into. Then, the smoothing unit 12 divides the pressure distribution data into a plurality of cells based on the cell division number determined by the division number determination unit 15.
 これによれば、分割数決定部15は、歪み取得部14により取得された接触面の歪み情報に基づき、圧力分布データを複数のセルに分割するセル分割数を決定するので、当該セル分割数により分割された各セル内の圧力の精度が接触面の歪みによって低下することが抑制される。したがって、各セル内の圧力から変換された各セル内の熱コンダクタンスの精度を高めることができる。これにより、精度の高い接触面の熱コンダクタンス分布データを生成することができる。 According to this, since the division number determination unit 15 determines the cell division number for dividing the pressure distribution data into a plurality of cells based on the strain information of the contact surface acquired by the strain acquisition unit 14, the cell division number. The accuracy of the pressure in each cell divided by is suppressed from being lowered by the distortion of the contact surface. Therefore, the accuracy of the thermal conductance in each cell converted from the pressure in each cell can be improved. Thereby, highly accurate thermal conductance distribution data of the contact surface can be generated.
 また、本実施形態において、分割数決定部15は、接触面の歪みが大きいほど、セル分割数が大きくなるようにセル分割数を決定する。 Further, in the present embodiment, the division number determination unit 15 determines the cell division number such that the larger the contact surface distortion, the larger the cell division number.
 これによれば、分割数決定部15は、接触面の歪みが大きいほど、セル分割数が大きくなるようにセル分割数を決定するので、分割された各セル内の圧力の精度が接触面の歪み増大によって低下することが抑制され、各セル内の圧力から変換された各セル内の熱コンダクタンスの精度を高めることができる。これにより、精度の高い接触面の熱コンダクタンス分布データを生成することができる。 According to this, the division number determination unit 15 determines the cell division number such that the larger the strain on the contact surface, the larger the cell division number. Therefore, the accuracy of the pressure in each divided cell depends on the contact surface. It is possible to suppress the decrease due to the increase in strain, and improve the accuracy of the thermal conductance in each cell converted from the pressure in each cell. Thereby, highly accurate thermal conductance distribution data of the contact surface can be generated.
 また、本実施形態において、平滑化部12は、分割された各セル内の圧力の最大値を当該セルの圧力として算出する。 Further, in the present embodiment, the smoothing unit 12 calculates the maximum value of the pressure in each divided cell as the pressure of the cell.
 これによれば、平滑化部12は、分割された各セル内の圧力の最大値を当該セルの圧力として算出するので、各セル内の圧力の精度をある程度維持しつつ各セル内の圧力を簡易に数値化にすることができる。 According to this, the smoothing unit 12 calculates the maximum value of the pressure in each divided cell as the pressure of the cell, so that the pressure in each cell is maintained while maintaining the accuracy of the pressure in each cell to some extent. It can be easily digitized.
 また、本実施形態において、材質毎に接触面の歪みがない状態を基に算出した、圧力と熱コンダクタンスとの所定関係式を記憶するメモリー16と、部品7の材質に基づき、メモリー16に記憶された複数の所定関係式から一つの所定関係式を決定する関係式決定部17と、を更に備え、データ生成部13は、関係式決定部17により決定された所定関係式に基づき、各セル内の圧力を熱コンダクタンスに変換する。 Further, in the present embodiment, the memory 16 that stores a predetermined relational expression between pressure and thermal conductance, which is calculated based on the state in which there is no distortion of the contact surface for each material, and the memory 16 that stores the data based on the material of the component 7. And a relational expression determining unit 17 for determining one predetermined relational expression from the plurality of predetermined relational expressions, and the data generating unit 13 includes each cell based on the predetermined relational expression determined by the relational expression determining unit 17. Converts internal pressure to thermal conductance.
 これによれば、データ生成部13は、接触面の歪みがない状態を基に算出した圧力と熱コンダクタンスとの所定関係式に基づき、各セル内の圧力を熱コンダクタンスに変換するので、接触面の熱コンダクタンス分布データを生成することができる。また、上記変換に用いられる所定関係式は、関係式決定部17により、部品7の材質に基づきメモリー16に記憶された複数の所定関係式から決定されるので、部品7の材質に適した所定関係式を上記変換に用いることができ、精度の高い接触面の熱コンダクタンス分布データを生成することができる。 According to this, the data generation unit 13 converts the pressure in each cell into a thermal conductance based on a predetermined relational expression between the pressure and the thermal conductance calculated based on the state where the contact surface is not distorted. The thermal conductance distribution data of can be generated. Further, the predetermined relational expression used for the above conversion is determined by the relational expression determining unit 17 from a plurality of predetermined relational expressions stored in the memory 16 based on the material of the component 7, so that the predetermined relational expression suitable for the material of the component 7 is determined. The relational expression can be used for the above conversion, and highly accurate thermal conductance distribution data of the contact surface can be generated.
 本実施形態に係る熱コンダクタンス分布データ生成方法は、二つの部品7,8が接触する接触面の熱コンダクタンス分布データを生成するものであって、接触面の圧力分布データを取得するステップと、取得された圧力分布データを複数のセルに分割し、分割された各セル内の圧力を一つの値となるように平滑化するステップと、平滑化された各セル内の圧力を熱コンダクタンスに変換し、熱コンダクタンス分布データを生成するステップと、を含むものである。 The thermal conductance distribution data generation method according to the present embodiment is for generating thermal conductance distribution data of a contact surface where two components 7 and 8 contact each other, and a step of acquiring pressure distribution data of the contact surface; Dividing the pressure distribution data into multiple cells, smoothing the pressure in each divided cell to one value, and converting the pressure in each smoothed cell into thermal conductance. , Generating thermal conductance distribution data.
 本実施形態に係る熱コンダクタンス分布データ生成用プログラムは、コンピュータに、二つの部品が接触する接触面の圧力分布データを取得するステップと、取得された圧力分布データを複数のセルに分割し、分割された各セル内の圧力を一つの値となるように平滑化するステップと、平滑化された各セル内の圧力を熱コンダクタンスに変換し、熱コンダクタンス分布データを生成するステップと、を実行させるものである。 The thermal conductance distribution data generation program according to the present embodiment includes a step of acquiring pressure distribution data of a contact surface where two parts are in contact with a computer, dividing the acquired pressure distribution data into a plurality of cells, and dividing the data. Smoothing the pressure in each cell so that it becomes a single value, and converting the pressure in each smoothed cell into thermal conductance, and generating thermal conductance distribution data. It is a thing.
 これらによれば、取得された接触面の圧力分布データを複数のセルに分割し、分割された各セル内の圧力を一つの値となるように平滑化するので、分割された各セル内の圧力を数値化にすることができる。また、平滑化された各セル内の圧力を熱コンダクタンスに変換し、熱コンダクタンス分布データを生成するので、数値化された各セル内の圧力を熱コンダクタンスに変換することができ、温度測定又は熱シミュレーションを行うことなく、接触面の圧力分布データに対応する、精度の高い接触面の熱コンダクタンス分布データを生成することができる。 According to these, the obtained pressure distribution data of the contact surface is divided into a plurality of cells, and the pressure in each divided cell is smoothed to be one value. The pressure can be digitized. In addition, since the smoothed pressure in each cell is converted to thermal conductance and the thermal conductance distribution data is generated, it is possible to convert the digitized pressure in each cell to thermal conductance. It is possible to generate highly accurate thermal conductance distribution data of the contact surface corresponding to the pressure distribution data of the contact surface without performing simulation.
 以上、本実施形態について説明したが、上記実施形態は、本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the present embodiment has been described above, the above embodiment merely shows a part of an application example of the present invention, and does not purport to limit the technical scope of the present invention to the specific configuration of the above embodiment. ..
(変形例)
 上記実施形態では、圧力分布データ出力部2は、感圧シート9を用いて接触面の圧力分布データを生成したが、これに限定されるものではなく、例えば、圧力センサ(実測)又は応力シミュレーション(数値解析)等を用いて接触面の圧力分布データを生成してもよい。この場合、圧力分布データ出力部2は、必ずしも画像データ読取部21及び画像・圧力データ変換部22を設ける必要がない。
(Modification)
In the above-described embodiment, the pressure distribution data output unit 2 generates the pressure distribution data of the contact surface using the pressure sensitive sheet 9, but the present invention is not limited to this. For example, a pressure sensor (actual measurement) or stress simulation. The pressure distribution data of the contact surface may be generated using (numerical analysis) or the like. In this case, the pressure distribution data output unit 2 does not necessarily need to include the image data reading unit 21 and the image/pressure data conversion unit 22.
 また、上記実施形態では、圧力分布データを複数のセルに分割するセル分割数は、歪み検出部3により検出された接触面の歪み情報に基づき、分割数決定部15により決定されたが、これに限定されるものではなく、例えば、接触面の歪み情報によらず、ユーザ自身に設定自由に構成されてもよい。この場合、分割数決定部15を設けずに、セル分割数選択部をデータ解析システム100に設ける必要がある。 Further, in the above embodiment, the cell division number for dividing the pressure distribution data into a plurality of cells is determined by the division number determination unit 15 based on the strain information of the contact surface detected by the strain detection unit 3. However, the present invention is not limited to this, and may be freely set by the user without depending on the distortion information of the contact surface. In this case, it is necessary to provide a cell division number selection unit in the data analysis system 100 without providing the division number determination unit 15.
 また、上記実施形態では、分割数決定部15は、接触面の歪み情報に基づき、セル分割数を決定したが、これに限定されるものではなく、例えば、接触面の歪み情報及び接触面の面積の両方に基づき、セル分割数を決定してもよい。 Further, in the above embodiment, the division number determination unit 15 determines the cell division number based on the strain information of the contact surface, but the present invention is not limited to this. For example, the strain information of the contact surface and the contact surface The number of cell divisions may be determined based on both areas.
 また、上記実施形態では、メモリー16は、データ生成装置1に内蔵されたが、これに限定されるものではなく、例えば、データ生成装置1とは別体に設けられてもよい。 In addition, in the above-described embodiment, the memory 16 is built in the data generation device 1, but the memory 16 is not limited to this, and may be provided separately from the data generation device 1, for example.
 また、上記実施形態では、圧力平滑化部122は、分割された各セル内の圧力の最大値を当該セルの圧力として算出したが、これに限定されるものではなく、分割された各セル内の圧力の平均値を当該セルの圧力として算出してもよい。この場合、変換に用いられる各セル内の圧力の精度を高めることができる。 Further, in the above embodiment, the pressure smoothing unit 122 calculates the maximum value of the pressure in each divided cell as the pressure of the cell, but the present invention is not limited to this, and the inside of each divided cell is not limited to this. You may calculate the average value of the pressure of this as the pressure of the said cell. In this case, the accuracy of the pressure in each cell used for conversion can be improved.
 また、上記実施形態では、データ解析システム100及びデータ生成装置1は、それぞれ、材質選択部4及び関係式決定部17を備えたが、これに限定されるものではなく、材質選択部4及び関係式決定部17を備えなくてもよい。この場合、メモリー16には、接触面の圧力と熱コンダクタンスとの関係を示す一つの所定関係式のみがあらかじめ記憶されており、データ生成部13は、メモリー16に記憶された1つの所定関係式に基づき、各セル内の圧力を熱コンダクタンスに変換する。 Further, in the above-described embodiment, the data analysis system 100 and the data generation device 1 each include the material selection unit 4 and the relational expression determination unit 17, but the present invention is not limited to this, and the material selection unit 4 and the relational expression determination unit 17 are not limited thereto. The expression determining unit 17 may not be provided. In this case, the memory 16 pre-stores only one predetermined relational expression indicating the relation between the pressure of the contact surface and the thermal conductance, and the data generation unit 13 uses the one predetermined relational expression stored in the memory 16. The pressure in each cell is converted into thermal conductance based on
 また、上記実施形態では、所定関係式は、接触面の歪みがない状態において測定した実測値を基に算出したものであったが、これに限定されるものではなく、理論関係式であってもよい。 Further, in the above-described embodiment, the predetermined relational expression is calculated based on the actual measurement value measured in the state where the contact surface is not distorted. However, the predetermined relational expression is not limited to this, and is a theoretical relational expression. Good.
 本願は2019年1月22日に日本国特許庁に出願された特願2019-008653に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 The present application claims priority based on Japanese Patent Application No. 2019-008653 filed with the Japan Patent Office on January 22, 2019, the entire contents of which are incorporated herein by reference.

Claims (11)

  1.  二つの部品が接触する接触面の熱コンダクタンス分布データを生成する熱コンダクタンス分布データ生成装置であって、
     前記接触面の圧力分布データを取得する圧力分布データ取得手段と、
     前記圧力分布データ取得手段により取得された前記圧力分布データを複数のセルに分割し、分割された各セル内の圧力を一つの値となるように平滑化する圧力分布データ平滑化手段と、
     前記圧力分布データ平滑化手段により平滑化された各セル内の圧力を熱コンダクタンスに変換し、前記熱コンダクタンス分布データを生成するデータ生成手段と、
    を備える、
    熱コンダクタンス分布データ生成装置。
    A thermal conductance distribution data generation device for generating thermal conductance distribution data of a contact surface where two parts are in contact,
    Pressure distribution data acquisition means for acquiring pressure distribution data of the contact surface,
    A pressure distribution data smoothing unit that divides the pressure distribution data acquired by the pressure distribution data acquisition unit into a plurality of cells, and smoothes the pressure in each of the divided cells to one value.
    Data generating means for converting the pressure in each cell smoothed by the pressure distribution data smoothing means into thermal conductance, and generating the thermal conductance distribution data,
    With
    Thermal conductance distribution data generator.
  2.  請求項1に記載の熱コンダクタンス分布データ生成装置であって、
     複数の前記セルは、同一サイズを有する、
    熱コンダクタンス分布データ生成装置。
    The thermal conductance distribution data generation device according to claim 1,
    The plurality of cells have the same size,
    Thermal conductance distribution data generator.
  3.  請求項2に記載の熱コンダクタンス分布データ生成装置であって、
     各セルは、その両辺のいずれも1.5mm以下である、
    熱コンダクタンス分布データ生成装置。
    The thermal conductance distribution data generating device according to claim 2,
    Both sides of each cell are 1.5 mm or less,
    Thermal conductance distribution data generator.
  4.  請求項1から3のいずれか1項に記載の熱コンダクタンス分布データ生成装置であって、
     前記接触面の歪み情報を取得する歪み取得手段と、
     前記歪み取得手段により取得された前記接触面の歪み情報に基づき、前記圧力分布データを複数のセルに分割するセル分割数を決定する分割数決定手段と、
    を更に備え、
     前記圧力分布データ平滑化手段は、前記分割数決定手段により決定されたセル分割数に基づき、前記圧力分布データを複数のセルに分割する、
    熱コンダクタンス分布データ生成装置。
    The thermal conductance distribution data generation device according to any one of claims 1 to 3,
    Strain acquisition means for acquiring strain information of the contact surface,
    Based on the strain information of the contact surface acquired by the strain acquisition means, a division number determination means for determining the cell division number for dividing the pressure distribution data into a plurality of cells,
    Further equipped with,
    The pressure distribution data smoothing unit divides the pressure distribution data into a plurality of cells based on the cell division number determined by the division number determining unit.
    Thermal conductance distribution data generator.
  5.  請求項4に記載の熱コンダクタンス分布データ生成装置であって、
     前記分割数決定手段は、前記接触面の歪みが大きいほど、前記セル分割数が大きくなるように前記セル分割数を決定する、
    熱コンダクタンス分布データ生成装置。
    The thermal conductance distribution data generating device according to claim 4,
    The division number determining means determines the cell division number such that the larger the distortion of the contact surface, the larger the cell division number.
    Thermal conductance distribution data generator.
  6.  請求項1から5のいずれか1項に記載の熱コンダクタンス分布データ生成装置であって、
     前記圧力分布データ平滑化手段は、分割された各セル内の圧力の最大値を当該セルの圧力として算出する、
    熱コンダクタンス分布データ生成装置。
    The thermal conductance distribution data generation device according to any one of claims 1 to 5,
    The pressure distribution data smoothing means calculates the maximum value of the pressure in each divided cell as the pressure of the cell,
    Thermal conductance distribution data generator.
  7.  請求項1から5のいずれか1項に記載の熱コンダクタンス分布データ生成装置であって、
     前記圧力分布データ平滑化手段は、分割された各セル内の圧力の平均値を当該セルの圧力として算出する、
    熱コンダクタンス分布データ生成装置。
    The thermal conductance distribution data generation device according to any one of claims 1 to 5,
    The pressure distribution data smoothing means calculates an average value of the pressures in the respective divided cells as the pressure of the cell,
    Thermal conductance distribution data generator.
  8.  請求項1から7のいずれか1項に記載の熱コンダクタンス分布データ生成装置であって、
     接触面の歪みがない状態を基に算出した圧力と熱コンダクタンスとの所定関係式を記憶するメモリーを更に備え、
     前記データ生成手段は、前記メモリーに記憶された前記所定関係式に基づき、各セル内の圧力を熱コンダクタンスに変換する、
    熱コンダクタンス分布データ生成装置。
    The thermal conductance distribution data generating device according to any one of claims 1 to 7,
    A memory for storing a predetermined relational expression between the pressure and the thermal conductance calculated based on the state where the contact surface is not strained,
    The data generating means converts the pressure in each cell into a thermal conductance based on the predetermined relational expression stored in the memory,
    Thermal conductance distribution data generator.
  9.  請求項1から7のいずれか1項に記載の熱コンダクタンス分布データ生成装置であって、
     前記部品の材質に応じた、材質毎に接触面の歪みがない状態を基に算出した圧力と熱コンダクタンスとの所定関係式を記憶するメモリーと、
     前記部品の材質に基づき、前記メモリーに記憶された複数の所定関係式から一つの所定関係式を決定する関係式決定手段と、を更に備え、
     前記データ生成手段は、前記関係式決定手段により決定された前記所定関係式に基づき、各セル内の圧力を熱コンダクタンスに変換する、
    熱コンダクタンス分布データ生成装置。
    The thermal conductance distribution data generating device according to any one of claims 1 to 7,
    A memory that stores a predetermined relational expression between the pressure and the thermal conductance calculated based on the state in which there is no distortion of the contact surface according to the material of the component,
    A relational expression determining means for determining one predetermined relational expression from a plurality of predetermined relational expressions stored in the memory based on the material of the part,
    The data generating means converts the pressure in each cell into a thermal conductance based on the predetermined relational expression determined by the relational expression determining means.
    Thermal conductance distribution data generator.
  10.  二つの部品が接触する接触面の熱コンダクタンス分布データを生成する熱コンダクタンス分布データ生成方法であって、
     前記接触面の圧力分布データを取得するステップと、
     取得された前記圧力分布データを複数のセルに分割し、分割された各セル内の圧力を一つの値となるように平滑化するステップと、
     平滑化された各セル内の圧力を熱コンダクタンスに変換し、前記熱コンダクタンス分布データを生成するステップと、
    を含む、
    熱コンダクタンス分布データ生成方法。
    A thermal conductance distribution data generation method for generating thermal conductance distribution data of a contact surface where two parts are in contact with each other,
    Acquiring pressure distribution data of the contact surface,
    Dividing the obtained pressure distribution data into a plurality of cells, and smoothing the pressure in each divided cell to one value,
    Converting the pressure in each smoothed cell into a thermal conductance, and generating the thermal conductance distribution data,
    including,
    Method for generating thermal conductance distribution data.
  11.  熱コンダクタンス分布データ生成用プログラムであって、
     コンピュータに、
     二つの部品が接触する接触面の圧力分布データを取得するステップと、
     取得された前記圧力分布データを複数のセルに分割し、分割された各セル内の圧力を一つの値となるように平滑化するステップと、
     平滑化された各セル内の圧力を熱コンダクタンスに変換し、熱コンダクタンス分布データを生成するステップと、
    を実行させる、
    熱コンダクタンス分布データ生成用プログラム。
    A program for generating thermal conductance distribution data,
    On the computer,
    Acquiring pressure distribution data on the contact surface where the two parts contact,
    Dividing the obtained pressure distribution data into a plurality of cells, and smoothing the pressure in each divided cell to one value,
    Converting the pressure in each smoothed cell into a thermal conductance and generating thermal conductance distribution data,
    Run
    Program for generating thermal conductance distribution data.
PCT/JP2020/000897 2019-01-22 2020-01-14 Thermal conductance distribution data generation device, thermal conductance distribution data generation method, and thermal conductance distribution data generation program WO2020153176A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019008653A JP7181103B2 (en) 2019-01-22 2019-01-22 Thermal conductance distribution data generation device, thermal conductance distribution data generation method, and program for generating thermal conductance distribution data
JP2019-008653 2019-01-22

Publications (1)

Publication Number Publication Date
WO2020153176A1 true WO2020153176A1 (en) 2020-07-30

Family

ID=71736221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000897 WO2020153176A1 (en) 2019-01-22 2020-01-14 Thermal conductance distribution data generation device, thermal conductance distribution data generation method, and thermal conductance distribution data generation program

Country Status (2)

Country Link
JP (1) JP7181103B2 (en)
WO (1) WO2020153176A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060222043A1 (en) * 2005-04-04 2006-10-05 Cahill David G Apparatus and method for measuring thermal conductivity
JP2008082901A (en) * 2006-09-27 2008-04-10 Sharp Corp Thermal analysis method, thermal analysis device, and thermal analysis program
JP2013003069A (en) * 2011-06-21 2013-01-07 Mitsubishi Chemicals Corp Method and device for evaluating thermal conductivity of thermally conductive composition, computer-readable recording medium, and program causing computer to execute the same
JP2016011950A (en) * 2014-06-03 2016-01-21 株式会社デンソー Thermal flow distribution measuring device
JP2018189626A (en) * 2017-04-28 2018-11-29 信越化学工業株式会社 Method for obtaining equivalent thermal conductivity of thermally conductive material, method for modeling thermally conductive material in simulation, and method for simulation of thermal analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060222043A1 (en) * 2005-04-04 2006-10-05 Cahill David G Apparatus and method for measuring thermal conductivity
JP2008082901A (en) * 2006-09-27 2008-04-10 Sharp Corp Thermal analysis method, thermal analysis device, and thermal analysis program
JP2013003069A (en) * 2011-06-21 2013-01-07 Mitsubishi Chemicals Corp Method and device for evaluating thermal conductivity of thermally conductive composition, computer-readable recording medium, and program causing computer to execute the same
JP2016011950A (en) * 2014-06-03 2016-01-21 株式会社デンソー Thermal flow distribution measuring device
JP2018189626A (en) * 2017-04-28 2018-11-29 信越化学工業株式会社 Method for obtaining equivalent thermal conductivity of thermally conductive material, method for modeling thermally conductive material in simulation, and method for simulation of thermal analysis

Also Published As

Publication number Publication date
JP2020118512A (en) 2020-08-06
JP7181103B2 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
US10262179B2 (en) Input member with capacitive sensor
JPWO2021235364A5 (en)
US11215509B2 (en) Method for determining a temperature without contact, and infrared measuring system
JP2006053024A (en) Temperature correction processing device
CN102077066A (en) Device and method for detecting infrared radiation through resistive bolometer matrix
CN107110716B (en) Sensor sheet
TW201344186A (en) Thermal imaging device, thermal imaging method and thermal imaging control system
JP2010055213A5 (en)
JP4610955B2 (en) Method and apparatus for measuring thermal influence due to plastic deformation
CN111323133B (en) Temperature compensation method and device for temperature sensor, electronic equipment and storage medium
WO2020153176A1 (en) Thermal conductance distribution data generation device, thermal conductance distribution data generation method, and thermal conductance distribution data generation program
JP2018017600A (en) Heat source detector, heat source detection method, and heat source detection program
US20190310174A1 (en) Fatigue limit stress specification system, fatigue limit stress specification device, and fatigue limit stress specification method
JP2011038838A (en) Thermal device and method for measuring infrared output
US10156512B2 (en) System and method for measuring thermal reliability of multi-chip modules
Andonova et al. Estimation the amount of heat generated by LEDs under different operating conditions
JP5179243B2 (en) Short position detector
JP2008157852A (en) Noncontact temperature measuring device, sample base, and noncontact temperature measurement method
JP7122670B2 (en) Fatigue limit stress identification system, fatigue limit stress identification device, and fatigue limit stress identification method
JP5970892B2 (en) Strain measuring apparatus, method, and program
CN112665734B (en) Temperature measurement method and device based on reference calibration
JP7414059B2 (en) Residual DC measuring device, residual DC measuring method and residual DC measuring program
KR102458670B1 (en) Method for obtaining thermal data using virtual thermal sensor system
JP2005010050A (en) Temperature measurement method by infrared camera image
CN114858324B (en) Method and system for detecting residual stress of silicon carbide crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20745078

Country of ref document: EP

Kind code of ref document: A1