WO2020152854A1 - Vacuum heat insulation material and heat insulation box - Google Patents

Vacuum heat insulation material and heat insulation box Download PDF

Info

Publication number
WO2020152854A1
WO2020152854A1 PCT/JP2019/002496 JP2019002496W WO2020152854A1 WO 2020152854 A1 WO2020152854 A1 WO 2020152854A1 JP 2019002496 W JP2019002496 W JP 2019002496W WO 2020152854 A1 WO2020152854 A1 WO 2020152854A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
core material
vacuum heat
insulating material
core
Prior art date
Application number
PCT/JP2019/002496
Other languages
French (fr)
Japanese (ja)
Inventor
一正 藤村
貴祥 向山
夕貴 大森
浩明 高井
努 小高
福田 真一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/002496 priority Critical patent/WO2020152854A1/en
Priority to JP2020567336A priority patent/JP7154316B2/en
Publication of WO2020152854A1 publication Critical patent/WO2020152854A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Definitions

  • the present invention relates to a vacuum heat insulating material using glass fiber as a core material, and a heat insulating box equipped with the vacuum heat insulating material.
  • Vacuum insulation is known as the insulation used in insulation boxes such as refrigerators.
  • the vacuum heat insulating material includes a core material and an outer packaging material that wraps the core material, and the internal space covered with the outer packaging material is in a reduced pressure state.
  • a core material is formed of glass short fibers (see, for example, Patent Document 1).
  • Short glass fibers are formed by a centrifugal method in which molten glass is blown off by a centrifugal force with a high-speed rotating spinner to form glass into fibers.
  • the short glass fibers are formed by a flame method in which glass is made into fibers by blowing away the tip of a glass rod while melting it with a flame. Short glass fibers are also called glass wool.
  • a conventional vacuum heat insulating material one using glass chopped strand as a core material is known (for example, refer to Patent Document 2).
  • the glass chopped strand is formed by cutting the glass strand into a specified length.
  • the glass strand is a plurality of glass fibers drawn from a spinning nozzle by a continuous filament method and directly aligned and bundled.
  • a nonwoven fabric in which glass chopped strands are made into monofilaments is formed by a wet papermaking method, and a plurality of the nonwoven fabrics are laminated to form a core material. ing.
  • the heat insulating performance of the vacuum heat insulating material can be improved as compared with the case of using the core material formed of short glass fibers.
  • the through holes formed in the outer packaging material by the shot lead to a vacuum leak defect, and the heat insulating performance of the vacuum heat insulating material deteriorates. There was a problem of being lost.
  • the conventional vacuum heat insulating material using glass chopped strands as the core material does not include shots in the core material. For this reason, the conventional vacuum heat insulating material using glass chopped strands as the core material rarely causes vacuum leakage failure due to the through holes formed in the outer packaging material.
  • the conventional vacuum heat insulating material using glass chopped strands as the core material has lower rigidity than the conventional vacuum heat insulating material using the core material formed of short glass fibers. For this reason, the conventional vacuum heat insulating material using glass chopped strands as the core material is easily bent at the time of manufacture and is easily bent even after the manufacture.
  • the conventional vacuum heat insulating material using glass chopped strands as the core material has a problem that it is difficult to handle as compared with the conventional vacuum heat insulating material using the core material formed of short glass fibers.
  • the conventional vacuum heat insulating material using glass chopped strands as the core material is about 1.2 times to about 1.6 times more than the conventional vacuum heat insulating material using the core material formed of glass short fibers. The weight becomes heavy. Also in this respect, the conventional vacuum heat insulating material using glass chopped strands as the core material is more difficult to handle than the conventional vacuum heat insulating material using the core material formed of short glass fibers.
  • the low-molecular component contained in the binder is volatilized inside the vacuum heat insulating material, so that the vacuum degree inside the vacuum heat insulating material is lowered and the heat insulating performance is lowered. .. That is, when the glass fibers are bonded to each other by the binder, the heat insulating performance of the vacuum heat insulating material is improved as compared with the case of using the core material formed of short glass fibers, that is, the conventional glass chopped strand as the core material is used. The effect that the vacuum heat insulating material has is reduced.
  • the present invention has been made in view of the above-mentioned problems, and a vacuum heat insulating material that can suppress vacuum leakage failure due to a through hole formed in an outer packaging material and can be easily handled without using a binder is provided.
  • the first purpose is to obtain.
  • a second object of the present invention is to obtain a heat insulating box provided with such a vacuum heat insulating material.
  • the vacuum heat insulating material according to the present invention is a plate-shaped vacuum heat insulating material having a core material and an outer packaging material that wraps the core material, and the internal space covered with the outer packaging material is in a reduced pressure state
  • the core material includes a first core material that is a needle mat of glass chopped strands and a second core material formed of short glass fibers, and the first core material and the second core material are vacuum-insulated. At least one of the two surfaces of the core material that is laminated in the thickness direction of the material and is in contact with the outer packaging material facing the outer packaging material in the thickness direction is composed of the first core material. ing.
  • the heat insulating box according to the present invention includes an outer box, an inner box arranged inside the outer box, and a vacuum heat insulating material according to the present invention.
  • the vacuum heat insulating material according to the present invention In the vacuum heat insulating material according to the present invention, at least one of the two surfaces of the outer packaging material and the core material facing in the thickness direction of the vacuum heat insulating material and in contact with the outer packaging material is a needle mat of glass chopped strands. It is a single core material. Therefore, the vacuum heat insulating material according to the present invention can suppress the vacuum leakage failure due to the through hole formed in the outer packaging material, as compared with the conventional vacuum heat insulating material using the core material formed of short glass fibers. ..
  • the core material of the vacuum heat insulating material according to the present invention is configured by laminating the first core material, which is a needle mat of glass chopped strands, and the second core material formed of glass short fibers. Therefore, the vacuum heat insulating material according to the present invention has improved rigidity and lighter mass as compared with the conventional vacuum heat insulating material using glass chopped strands as the core material. Further, the core material of the vacuum heat insulating material according to the present invention can be manufactured without using a binder. Therefore, the vacuum heat insulating material according to the present invention is easier to handle than a conventional vacuum heat insulating material using glass chopped strands as a core material without using a binder.
  • FIG. 1 is a sectional view showing a schematic configuration of a vacuum heat insulating material according to the first embodiment of the present invention.
  • the vacuum heat insulating material 1 is a heat insulating material that realizes low thermal conductivity by maintaining a vacuum inside.
  • the vacuum heat insulating material 1 includes a core material 20 and an outer packaging material 3 that wraps the core material 20.
  • the vacuum space defined by the outer wrapping material 3 is formed by heat-sealing the opening portion by heat sealing or the like in a state where the inside of the bag-shaped outer wrapping material 3 having an opening is depressurized. To be done. That is, the internal space covered with the outer packaging material 3 is in a reduced pressure state.
  • the vacuum heat insulating material 1 is formed in a generally rectangular plate shape as a whole when observed in the thickness direction of the vacuum heat insulating material 1, in other words, when observed in the vertical direction of the paper surface of FIG.
  • the vacuum heat insulating material 1 also includes an adsorbent 4 that adsorbs at least water in the internal space covered with the outer packaging material 3. That is, in the vacuum heat insulating material 1 according to the first embodiment, the core material 20 and the adsorbent 4 are wrapped with the outer packaging material 3.
  • the core material 20 is used for the purpose of maintaining a vacuum space.
  • the core material 20 according to the first embodiment includes a first core material 21 that is a needle mat of glass chopped strand and a second core material 22 formed of glass short fibers (glasswool). I have it.
  • the core material 20 has a structure in which the first core material 21 and the second core material 22 are laminated in the thickness direction of the vacuum heat insulating material 1.
  • the glass chopped strand needle mat that is the first core material 21 is formed by stacking glass chopped strands of a specified length in a uniform thickness in a non-directional manner and then stitching them together to form a mat.
  • the glass chopped strand is formed by cutting the glass strand into a specified length.
  • the glass strand is a plurality of glass fibers drawn from a spinning nozzle by a continuous filament method and directly aligned and bundled.
  • the 1st core material 21 comprised in this way can be manufactured without containing a binder.
  • the needle mat uses glass chopped strands having a length of about 50 mm. However, this length of glass chopped strands is an example, and glass chopped strands of various lengths can form the needle mat.
  • the needle mat is formed of about 100 mm of glass chopped strands.
  • the glass chopped strand needle mat that is the first core member 21 the glass chopped strand extends substantially perpendicular to the heat insulating direction that is the thickness direction of the vacuum heat insulating material 1. Further, glass chopped strands are laminated in the heat insulating direction which is the thickness direction of the vacuum heat insulating material 1. Therefore, the vacuum heat insulating material 1 using the first core material 21 which is the needle mat of glass chopped strands has improved heat insulating performance as compared with the conventional vacuum heat insulating material using the core material formed of glass short fibers. .. Further, the first core member 21 has glass chopped strands intertwined with each other by needle punching. Therefore, when manufacturing the first core material 21, it is not necessary to use a binder such as an organic binder.
  • the first core material 21 can prevent heat transfer from the bonding portion where the glass fibers are bonded to each other by the bonding agent.
  • the first core material 21 can also prevent deterioration of the heat insulating performance of the vacuum heat insulating material 1 due to volatilization of low molecular components contained in the binder.
  • the glass short fibers forming the second core material 22 are formed by a centrifugal method in which the molten glass is spun by a high-speed rotating spinner by centrifugal force to form the glass into fibers.
  • the short glass fibers forming the second core member 22 may be formed by a flame method in which the tip of a glass rod is melted by a flame and blown away while the glass is made into fibers. Short glass fibers are also called glass wool.
  • the conventional vacuum heat insulating material that uses glass chopped strands as the core material has lower rigidity than the conventional vacuum heat insulating material that uses the core material formed of short glass fibers. For this reason, the conventional vacuum heat insulating material using glass chopped strands as the core material is easily bent at the time of manufacture and is easily bent even after the manufacture. Therefore, the conventional vacuum heat insulating material using glass chopped strands as the core material is more difficult to handle than the conventional vacuum heat insulating material using the core material formed of short glass fibers.
  • the conventional vacuum heat insulating material using glass chopped strands as the core material is about 1.2 times to about 1.6 times more than the conventional vacuum heat insulating material using the core material formed of glass short fibers. The weight becomes heavy.
  • the conventional vacuum heat insulating material using glass chopped strands as the core material is more difficult to handle than the conventional vacuum heat insulating material using the core material formed of short glass fibers.
  • the core material 20 has a configuration in which the first core material 21 and the second core material 22 are laminated in the thickness direction of the vacuum heat insulating material 1. Therefore, the vacuum heat insulating material 1 according to the first embodiment has improved rigidity and lighter mass than the conventional core material using glass chopped strands. Therefore, the vacuum heat insulating material 1 according to the first embodiment is easier to handle than the conventional core material using glass chopped strands.
  • first surface 23 one of the two surfaces of the core material 20 facing the outer packaging material 3 and the vacuum heat insulating material 1 in the thickness direction and in contact with the outer packaging material 3
  • second surface 24 the other of the two surfaces of the core material 20 that faces the outer packaging material 3 and the vacuum heat insulating material 1 in the thickness direction and is in contact with the outer packaging material 3
  • first surface 23 and the second surface 24 are defined in this way, as shown in FIG. 1, the first surface 23 of the core member 20 is composed of the first core member 21 which is a needle mat of glass chopped strands. ing. That is, in the range where the outer packaging material 3 and the first surface 23 of the core material 20 are in contact with each other, the outer packaging material 3 and the needle mat of the glass chopped strands are in contact with each other.
  • the second surface 24 of the core material 20 may be composed of the first core material 21, which is a needle mat of glass chopped strands.
  • the outer packaging material 3 and the needle mat of the glass chopped strands come into contact with each other in a range where the outer packaging material 3 and the second surface 24 of the core material 20 are in contact with each other.
  • FIG. 2 is a sectional view showing a schematic configuration of another example of the vacuum heat insulating material according to the first embodiment of the present invention.
  • the core material 20 may be composed of a first core material 21 that is a needle mat of glass chopped strands on both sides of the first surface 23 and the second surface 24. That is, in the core material 20 according to the first embodiment, at least one of the first surface 23 and the second surface 24 may be composed of the first core material 21.
  • the through holes formed in the outer packaging material by the shot lead to a vacuum leak defect, and the heat insulating performance of the vacuum heat insulating material deteriorates. There was a case that it ended up.
  • shots do not occur in the manufacturing process. Therefore, by configuring the core material 20 as in the present first embodiment, the outer packaging material 3 is shot by the shot in the range in which the outer packaging material 3 and the first core material 21, which is the needle mat of the glass chopped strand, are in contact with each other. It is possible to prevent the through hole from being formed. Therefore, the vacuum heat insulating material 1 according to the first embodiment causes a vacuum leak defect due to the through hole formed in the outer packaging material, as compared with the conventional vacuum heat insulating material using the core material formed of short glass fibers. Can be suppressed.
  • the outer packaging material 3 has a gas barrier property.
  • the outer packaging material 3 is a laminated film having a multilayer structure.
  • the outer wrapping material 3 is a polyethylene layer, an ethylene-vinyl alcohol layer vapor-deposited with aluminum, and a polyethylene terephthalate layer vapor-deposited with aluminum in this order from the inner side to the outer side which is the core material 20 side. , And a nylon layer are laminated.
  • the configuration of the outer packaging material 3 is merely an example. As long as it has gas barrier properties, various outer packaging materials used for existing vacuum heat insulating materials can be used as the outer packaging material 3.
  • the outer packaging material 3 may be provided with a layer vapor-deposited with alumina, or may be provided with a layer vapor-deposited with silica.
  • the adsorbent 4 is used for the purpose of adsorbing gas and water vapor inside the vacuum heat insulating material 1 and maintaining the degree of vacuum to suppress an increase in thermal conductivity, that is, a decrease in heat insulating performance.
  • the adsorbent 4 it is general to use calcium oxide (CaO).
  • the adsorbent 4 may be silica gel or zeolite.
  • the adsorbent 4 may be a combination of at least two of calcium oxide, silica gel and zeolite.
  • the manufacturing process of the vacuum heat insulating material 1 according to the first embodiment will be described.
  • the two outer packaging materials 3 are overlapped and the outer peripheral portions are fused together by heat sealing or the like except for a part.
  • the outer packaging material 3 has a bag shape in which a part of the outer peripheral portion is opened.
  • the first core material 21 and the second core material 22 are laminated to form the core material 20, and the core material 20 is inserted into the bag-shaped outer packaging material 3.
  • the laminated first core material 21 and second core material 22 may be covered with two outer packaging materials 3, and then the outer peripheral portions of the outer packaging material 3 may be fusion-bonded except for a part thereof.
  • an uneven shape may be formed using a press die on the heat insulating surface of the vacuum heat insulating material 1 after vacuum sealing.
  • the vacuum heat insulating material 1 according to the first embodiment was produced as Examples 1 to 9, and the density, the thermal conductivity and the bending elastic modulus of the core material were different between Comparative Example 1 and Comparative Example 2. A comparison was made. The comparison results are shown in Tables 1 and 2, and the comparison results are described below.
  • the vacuum heat insulating materials 1 according to Examples 1 to 9 as the first core material 21 of the core material 20, a needle mat of glass chopped strands having a cloth mass of 320 g/m 2 is used. The needle mat is cut so that the width of the core material 20 after the completion of the vacuum heat insulating material 1 becomes 0.5 m and the length of the core material 20 after the completion of the vacuum heat insulating material 1 becomes 2.0 m. It is used as the material 21. Further, in the vacuum heat insulating materials 1 according to Examples 1 to 9, short glass fibers having a cross mass of 1200 g/m 2 are used as the second core material 22 of the core material 20.
  • the short glass fiber is cut so that the width of the core material 20 after completion of the vacuum heat insulating material 1 becomes 0.5 m and the length of the core material 20 after completion of the vacuum heat insulating material 1 becomes 2.0 m. It is used as the core material 22.
  • the cloth mass mass (mass per unit area) is the weight per 1 m 2 of glass cloth.
  • a predetermined number of the first core material 21 and the second core material 22 are provided so that the thickness of the core material 20 after the vacuum heat insulating material 1 is completed is 50 mm.
  • the core material 20 is formed by overlapping.
  • the method of stacking the first core material 21 and the second core material 22 is not particularly limited as long as at least one of the first surface 23 and the second surface is composed of the first core material 21.
  • the vacuum heat insulating materials 1 according to Examples 1 to 9 are different in the number of the first core material 21 and the second core material 22.
  • the core material 20 of the vacuum heat insulating material 1 according to the first embodiment five first core materials 21 and nine second core materials 22 are laminated.
  • the total mass of the core material 20 is 12400 g.
  • the ratio of the mass of the first core material 21 to the mass of the whole core material 20 is 12.9 mass %.
  • the value obtained by dividing the mass of the first core material 21 by the mass of the entire core material 20 by 100 is 12.9.
  • the core material 20 of the vacuum heat insulating material 1 according to the second embodiment is formed by stacking 10 first core materials 21 and 8 second core materials 22.
  • the total mass of the core material 20 is 12,800 g.
  • the ratio of the mass of the first core material 21 to the mass of the whole core material 20 is 25.0 mass %.
  • the core material 20 of the vacuum heat insulating material 1 according to the third embodiment has 15 first core materials 21 and 7 second core materials 22 laminated.
  • the total mass of the core material 20 is 13200 g.
  • the ratio of the mass of the first core material 21 to the mass of the whole core material 20 is 36.4 mass %.
  • the core material 20 of the vacuum heat insulating material 1 according to the fourth embodiment has 20 first core materials 21 and 6 second core materials 22 laminated.
  • the total mass of the core material 20 is 13,600 g.
  • the ratio of the mass of the first core material 21 to the mass of the entire core material 20 is 47.1 mass %.
  • the core material 20 of the vacuum heat insulating material 1 according to the fifth embodiment has 25 first core materials 21 and 5 second core materials 22 laminated.
  • the total mass of the core material 20 is 14000 g.
  • the ratio of the mass of the first core material 21 to the mass of the entire core material 20 is 57.1 mass %.
  • the core material 20 of the vacuum heat insulating material 1 according to the sixth embodiment is formed by laminating 30 first core materials 21 and 4 second core materials 22.
  • the total mass of the core material 20 is 14400 g.
  • the ratio of the mass of the first core material 21 to the mass of the entire core material 20 is 66.7 mass %.
  • the core material 20 of the vacuum heat insulating material 1 according to the seventh embodiment is formed by stacking 35 first core materials 21 and three second core materials 22.
  • the total mass of the core material 20 is 14800 g.
  • the ratio of the mass of the first core material 21 to the mass of the entire core material 20 is 75.7 mass %.
  • the core material 20 of the vacuum heat insulating material 1 according to the eighth embodiment includes 40 first core materials 21 and two second core materials 22 that are stacked.
  • the total mass of the core material 20 is 15200 g.
  • the ratio of the mass of the first core material 21 to the mass of the entire core material 20 is 84.2 mass %.
  • the core material 20 of the vacuum heat insulating material 1 according to the ninth embodiment is formed by stacking 45 first core materials 21 and one second core material 22.
  • the total mass of the core material 20 is 15600 g.
  • the ratio of the mass of the first core material 21 to the mass of the entire core material 20 is 92.3% by mass.
  • the outer packaging material 3 a polyethylene layer, an ethylene-vinyl alcohol layer vapor-deposited with aluminum in this order from the inner side toward the outer side of the core material 20, A laminated film in which a polyethylene terephthalate layer vapor-deposited on aluminum and a nylon layer were laminated was used.
  • the core material 20 configured as described above is inserted into the outer packaging material 3 formed in the shape of a bag with a part opened, and heat treatment is performed at 100° C. for 2 hours to remove moisture from the outer packaging material 3 and the core material 20.
  • the adsorbent 4 composed of 50 g of calcium oxide was placed inside the outer packaging material 3 formed in a bag shape.
  • the inside of the outer wrapping material 3 was depressurized to a vacuum degree of 1 Pa, and in the depressurized state, the openings were fused by heat sealing to produce vacuum heat insulating materials 1 according to Examples 1 to 9.
  • the first core material 21 used in the vacuum heat insulating material 1 according to any of Examples 1 to 9 is formed so that the thickness of the core material after completion of the vacuum heat insulating material is 50 mm.
  • the core material is formed by stacking only these. That is, in the vacuum heat insulating material according to Comparative Example 1, the core material is formed of only glass chopped strands.
  • the other manufacturing methods of the vacuum heat insulating material according to Comparative Example 1 are the same as those of the vacuum heat insulating material 1 according to Examples 1 to 9.
  • the mass of the whole core material of the vacuum heat insulating material according to Comparative Example 1 is 16000 g. Further, in the vacuum heat insulating material according to Comparative Example 1, the mass ratio of the first core material 21 to the mass of the entire core material is 100.0 mass %.
  • the vacuum heat insulating material according to Comparative Example 2 is the second core used in the vacuum heat insulating material 1 according to Examples 1 to 9 so that the thickness of the core material after completion of the vacuum heat insulating material is 50 mm.
  • a core material is formed by stacking only the material 22. That is, in the vacuum heat insulating material according to Comparative Example 2, the core material is formed of only glass short fibers.
  • the other manufacturing method of the vacuum heat insulating material according to Comparative Example 2 is the same as that of the vacuum heat insulating material 1 according to Examples 1 to 9.
  • the mass of the whole core material of the vacuum heat insulating material according to Comparative Example 2 is 12000 g. Further, in the vacuum heat insulating material according to Comparative Example 2, the ratio of the mass of the first core material 21 to the mass of the entire core material is 0.0 mass %.
  • the thickness and thermal conductivity of the vacuum heat insulating material 1 according to each example and the vacuum heat insulating material according to each comparative example were measured by using a heat conductivity measuring device (HC-074 600, Eiko Seiki Co., Ltd.).
  • the flexural modulus of the vacuum heat insulating material 1 according to each example and the vacuum heat insulating material according to each comparative example was measured by a three-point bending test speed of 10 mm/min using a universal testing machine after measuring the thermal conductivity.
  • the density of the core material of the vacuum heat insulating material 1 according to each example and the vacuum heat insulating material according to each comparative example was calculated by dividing the mass of the whole core material by the volume of the vacuum heat insulating material.
  • the vacuum heat insulating materials 1 according to Examples 1 to 9 have bending elasticity as compared with the vacuum heat insulating material according to Comparative Example 1 in which the core material is formed of only glass chopped strands. The rate is high.
  • the vacuum heat insulating materials 1 according to Examples 1 to 9 have a lower density of the core material than the vacuum heat insulating material according to Comparative Example 1 in which the core material is formed of only glass chopped strands. That is, the vacuum heat insulating materials 1 according to Examples 1 to 9 are lighter than the vacuum heat insulating materials according to Comparative Example 1 in which the core material is formed of only glass chopped strands.
  • the vacuum heat insulating materials 1 according to Examples 1 to 9 are easier to handle than the vacuum heat insulating materials according to Comparative Example 1 in which the core material is formed of only glass chopped strands. Further, as shown in Table 1 and Table 2, the vacuum heat insulating material 1 according to Examples 1 to 9 has a higher heat insulating material than the vacuum heat insulating material according to Comparative Example 2 in which the core material is formed of only glass short fibers. Low thermal conductivity. Therefore, the vacuum heat insulating materials 1 according to Examples 1 to 9 have improved heat insulating performance as compared with the vacuum heat insulating material according to Comparative Example 2 in which the core material is formed of only glass short fibers. As described above, the vacuum heat insulating materials 1 according to Examples 1 to 9 are vacuum heat insulating materials having improved heat insulating performance and easy to handle.
  • the ratio of the mass of the first core material 21 to the mass of the entire core material 20 is preferably 75 mass% or less.
  • the density of the core material 20 of the vacuum heat insulating material 1 further decreases. Therefore, by further reducing the ratio of the mass of the first core material 21 to the mass of the core material 20 as a whole, a lighter vacuum heat insulating material 1 can be obtained, and the vacuum heat insulating material 1 becomes easier to handle. ..
  • the ratio of the mass of the first core material 21 to the mass of the whole core material 20 is preferably 25 mass% or more. That is, when the heat insulation performance of the vacuum heat insulating material 1 is further improved and the vacuum heat insulating material 1 is handled more easily, the ratio of the mass of the first core material 21 to the mass of the whole core material 20 is 25 mass %. It is above, and it is desirable that it is 75 mass% or less.
  • the mass ratio of the first core material 21 to the mass of the whole core material 20 is 36 mass %. It is above, and it is desirable that it is 67 mass% or less.
  • Example 10 the vacuum heat insulating material 1 of the first embodiment was manufactured as Example 10 and Example 11, and the occurrence rate of vacuum leakage was compared with Comparative Example 3.
  • the comparison result is shown in Table 3, and the comparison result will be described below.
  • the core material 20 of the vacuum heat insulating material 1 according to the tenth embodiment is used in the vacuum heat insulating material 1 according to the first to ninth embodiments so that the thickness of the core material 20 after the completion of the vacuum heat insulating material 1 is 50 mm. 6 sheets of the second core material 22 thus obtained are laminated, and 20 sheets of the first core material 21 used in the vacuum heat insulating material 1 according to the examples 1 to 9 are laminated on one side of the second core material 22. Formed.
  • the other manufacturing method of the vacuum heat insulating material 1 according to the tenth embodiment is the same as that of the vacuum heat insulating material 1 according to the first to ninth embodiments. That is, in the core material 20 of the vacuum heat insulating material 1 according to Example 10, the first surface 23 or the second surface 24 is composed of the first core material 21 which is a needle mat of glass chopped strands.
  • the core material 20 of the vacuum heat insulating material 1 according to the eleventh embodiment is used in the vacuum heat insulating material 1 according to the first to ninth embodiments so that the thickness of the core material 20 after the completion of the vacuum heat insulating material 1 is 50 mm. 6 sheets of the second core material 22 thus obtained are laminated, and 10 sheets of the first core material 21 used in the vacuum heat insulating material 1 according to the examples 1 to 9 are laminated on one side of the second core material 22. On the other side of the second core material 22, ten first core materials 21 used in the vacuum heat insulating material 1 according to Examples 1 to 9 were laminated.
  • both the first surface 23 and the second surface 24 are composed of the first core material 21 which is a needle mat of glass chopped strands.
  • the core material of the vacuum heat insulating material according to Comparative Example 3 was used in the vacuum heat insulating material 1 according to Examples 1 to 9 so that the thickness of the core material after completion of the vacuum heat insulating material was 50 mm.
  • the core material 22 was formed by laminating 10 sheets.
  • Other manufacturing methods of the vacuum heat insulating material according to Comparative Example 3 are the same as those of the vacuum heat insulating material 1 according to Examples 1 to 9. That is, the core material of the vacuum heat insulating material according to Comparative Example 3 was composed of only glass short fibers.
  • the vacuum heat insulating material according to Comparative Example 3 in which the core material was formed of only glass short fibers, the occurrence rate of defective vacuum leakage was 5.1%.
  • the vacuum heat insulating material 1 according to Example 10 in which the first surface 23 or the second surface 24 of the core material 20 is constituted by the first core material 21 which is the needle mat of glass chopped strands, the vacuum leakage defect occurs. The rate is reduced to 2.2%.
  • the vacuum heat insulating material 1 according to the example 11 in which both the first surface 23 and the second surface 24 of the core material 20 are composed of the first core material 21 which is the needle mat of the glass chopped strand has a poor vacuum leakage.
  • the vacuum heat insulating material 1 according to the first embodiment can suppress the occurrence of defective vacuum leakage, as compared with the vacuum heat insulating material using the core material formed of only the glass short fibers.
  • the shape of shots contained in short glass fibers which causes vacuum leakage defects, is from several tens of micrometers to several hundreds of micrometers.
  • the first core material 21 used in Examples 1 to 11 has a thickness of about 1 mm after the vacuum heat insulating material 1 is completed. Therefore, in order to suppress the vacuum leakage failure caused by the through holes being formed in the outer packaging material 3 by the shot, at least one first core material 22 is formed outside the second core material 22 formed of short glass fibers.
  • the core material 21 may be provided. In other words, in order to suppress the vacuum leakage failure caused by the through hole being formed in the outer packaging material 3 by the shot, the first core material 21 is provided outside the second core material 22 formed of short glass fibers.
  • the thickness may be at least about 1 mm.
  • the vacuum heat insulating material 1 includes the core material 20 and the outer packaging material 3 that wraps the core material 20, and the internal space covered with the outer packaging material 3 is in a depressurized state. It is a vacuum insulation material.
  • the core material 20 includes a first core material 21 which is a needle mat of glass chopped strands, and a second core material 22 formed of short glass fibers, and the first core material 21 and the second core material 22. Are laminated in the thickness direction of the vacuum heat insulating material 1.
  • the vacuum heat insulating material 1 In the vacuum heat insulating material 1 according to the first embodiment, at least one of the two surfaces of the core material 20 facing the outer packaging material 3 in the thickness direction of the vacuum heat insulating material 1 and in contact with the outer packaging material 3 is , The first core member 21.
  • the vacuum heat insulating material 1 according to the first embodiment at least one of the two surfaces of the outer packaging material 3 and the core material 20 facing the thickness direction of the vacuum heat insulating material 1 and in contact with the outer packaging material 3 is glass. It is the first core material 21 which is a needle mat of chopped strands. Therefore, the vacuum heat insulating material 1 according to the first embodiment is less likely to cause a vacuum leak defect due to the through hole formed in the outer packaging material 3 as compared with the conventional vacuum heat insulating material using the core material formed of short glass fibers. It can be suppressed.
  • the core material 20 of the vacuum heat insulating material 1 according to the first embodiment is formed by laminating the first core material 21 which is a needle mat of glass chopped strands and the second core material 22 formed of glass short fibers. It is configured. Therefore, the vacuum heat insulating material 1 according to the first embodiment has improved rigidity and lighter mass as compared with the conventional vacuum heat insulating material using glass chopped strands as the core material. Moreover, the core material 20 of the vacuum heat insulating material 1 according to the first embodiment can be manufactured without using a binder. Therefore, the vacuum heat insulating material 1 according to the first embodiment is easier to handle than a conventional vacuum heat insulating material using glass chopped strands as a core material, even without using a binder.
  • Embodiment 2 an example of a heat insulating box provided with the vacuum heat insulating material 1 according to the first embodiment will be described.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 3 is a sectional view showing a schematic configuration of a heat insulation box according to Embodiment 2 of the present invention.
  • the heat insulation box 100 is used, for example, in a refrigerator or the like that requires high heat insulation performance.
  • the heat insulation box 100 includes an outer box 120 and an inner box 110 arranged inside the outer box 120.
  • the vacuum heat insulating material 1 described in the first embodiment is arranged between the inner case 110 and the outer case 120, and the inner case 110 and the outer case 120 are thermally insulated.
  • the position where the vacuum heat insulating material 1 is arranged is not particularly limited as long as it is a position where heat can be insulated between the inner box 110 and the outer box 120.
  • the vacuum heat insulating material 1 may be arranged so as to come into contact with the surface of the inner box 110 facing the outer box 120.
  • the vacuum heat insulating material 1 may be arranged so as to come into contact with the surface of the outer box 120 facing the inner box 110.
  • a spacer or the like is provided between the inner box 110 or the outer box 120 and the vacuum heat insulating material 1 so that the inner box 110 and the outer box 120 do not come into contact with the vacuum heat insulating material 1. You may arrange
  • the vacuum heat insulating material 1 has higher heat insulating performance than the urethane foam heat insulating material 130 and the like. Therefore, the heat insulating box 100 provided with the vacuum heat insulating material 1 can obtain higher heat insulating performance than the heat insulating box using only the urethane foam heat insulating material 130. However, in the space between the inner box 110 and the outer box 120, a portion other than the vacuum heat insulating material 1 may be filled with the urethane foam heat insulating material 130.
  • the heat insulating box 100 according to the second embodiment is provided with the vacuum heat insulating material 1 which is lighter in weight than the conventional vacuum heat insulating material using glass chopped strands as the core material. Therefore, the heat insulation box 100 according to the second embodiment can be made lighter in weight than a heat insulation box using a conventional vacuum heat insulation material using glass chopped strands as a core material. Further, the heat insulating box 100 according to the second embodiment is provided with the vacuum heat insulating material 1 capable of suppressing defective vacuum leakage more than the conventional vacuum heat insulating material using the core material formed of glass short fibers. Therefore, the heat insulating box 100 according to the second embodiment is different from the heat insulating box in which the conventional vacuum heat insulating material using the core material formed of the glass short fibers is used in manufacturing the heat insulating box 100. Yield is improved.
  • the structure in which the vacuum heat insulating material 1 is used in the heat insulating box 100 of the refrigerator including the cold heat source is taken as an example, but the present invention is not limited to this.
  • the vacuum heat insulating material 1 can also be used for a heat insulating box of a heat storage box provided with a heat source.
  • the vacuum heat insulating material 1 can also be used for a heat insulating box that does not include a cold heat source and a warm heat source, such as a cooler box.
  • the vacuum heat insulating material 1 may be used not only as a heat insulating box but also as a heat insulating member for a cooling or heating device such as an air conditioner, a vehicle air conditioner, and a water heater. Further, the vacuum heat insulating material 1 may be used for a heat insulating container or the like.
  • the shape of the vacuum heat insulating material 1 is not limited to the flat plate shape described above.
  • the vacuum heat insulating material 1 may be formed in a curved surface shape that is convex upward or downward in FIG.
  • the vacuum heat insulating material 1 may be used for a heat insulating bag having a deformable outer bag and an inner bag.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)

Abstract

Provided is a vacuum heat insulation material, which is a sheet-shaped vacuum heat insulation material that comprises a core material and an outer packaging material enveloping the core material and in which an interior space covered by the outer packaging material is in a reduced-pressure state, wherein the core material comprises a first core material that is a glass chopped strand needle mat and a second core material formed from short glass fibers and is configured such that the first core material and the second core material are laminated in the thickness direction of the vacuum heat insulation material, and at least one surface of the two surfaces of the core material which face the outer packaging material in the thickness direction and contact the outer packaging material is configured from the first core material.

Description

真空断熱材及び断熱箱Vacuum insulation and insulation box
 本発明は、芯材としてガラス繊維を用いた真空断熱材、及び該真空断熱材を備えた断熱箱に関する。 The present invention relates to a vacuum heat insulating material using glass fiber as a core material, and a heat insulating box equipped with the vacuum heat insulating material.
 冷蔵庫等の断熱箱に用いられている断熱材として、真空断熱材が知られている。真空断熱材は、芯材と該芯材を包む外包材とを備え、外包材で覆われた内部空間が減圧状態となっている。従来の真空断熱材としては、ガラス短繊維(glass wool)で芯材が形成されたものが知られている(例えば、特許文献1参照)。ガラス短繊維は、溶融ガラスを高速回転スピナにより遠心力で飛ばすことによりガラスを繊維化する遠心法によって、形成される。あるいは、ガラス短繊維は、ガラス棒の先端部を火炎で溶融しながら吹き飛ばすことによりガラスを繊維化する火炎法によって、形成される。ガラス短繊維は、ガラスウールとも呼ばれる。 Vacuum insulation is known as the insulation used in insulation boxes such as refrigerators. The vacuum heat insulating material includes a core material and an outer packaging material that wraps the core material, and the internal space covered with the outer packaging material is in a reduced pressure state. As a conventional vacuum heat insulating material, there is known one in which a core material is formed of glass short fibers (see, for example, Patent Document 1). Short glass fibers are formed by a centrifugal method in which molten glass is blown off by a centrifugal force with a high-speed rotating spinner to form glass into fibers. Alternatively, the short glass fibers are formed by a flame method in which glass is made into fibers by blowing away the tip of a glass rod while melting it with a flame. Short glass fibers are also called glass wool.
 また、従来の真空断熱材としては、芯材としてガラスチョップドストランド(glass chopped strand)を用いたものが知られている(例えば、特許文献2参照)。ガラスチョップドストランドは、ガラスストランドを規定の長さに切断することにより形成される。また、ガラスストランドは、連続フィラメント法で紡糸ノズルから引き出した複数のガラス繊維を、直接引きそろえて集束したものである。具体的には、芯材としてガラスチョップドストランドを用いた従来の真空断熱材では、ガラスチョップドストランドがモノフィラメント化した不織布を湿式抄紙法によって形成し、該不織布を複数枚積層して芯材を形成している。芯材としてガラスチョップドストランドを用いることにより、ガラス短繊維で形成された芯材を用いる場合と比べ、真空断熱材の断熱性能を向上させることができる。 Also, as a conventional vacuum heat insulating material, one using glass chopped strand as a core material is known (for example, refer to Patent Document 2). The glass chopped strand is formed by cutting the glass strand into a specified length. Further, the glass strand is a plurality of glass fibers drawn from a spinning nozzle by a continuous filament method and directly aligned and bundled. Specifically, in a conventional vacuum heat insulating material using glass chopped strands as a core material, a nonwoven fabric in which glass chopped strands are made into monofilaments is formed by a wet papermaking method, and a plurality of the nonwoven fabrics are laminated to form a core material. ing. By using glass chopped strands as the core material, the heat insulating performance of the vacuum heat insulating material can be improved as compared with the case of using the core material formed of short glass fibers.
特許第3580315号公報Japanese Patent No. 3580315 特許第4713566号公報Japanese Patent No. 4713566
 ガラス短繊維を製造する際、未延伸ガラス粒子の塊であるショットが発生する。そして、ショットはガラス短繊維内に含まれる。このため、ガラス短繊維で形成された芯材を用いた従来の真空断熱材においては、ショットによって外包材に貫通孔が形成されてしまう場合があった。そして、ガラス短繊維で形成された芯材を用いた従来の真空断熱材においては、ショットによって外包材に形成された貫通孔から真空断熱材の内部に空気が侵入する場合があった。すなわち、ガラス短繊維で形成された芯材を用いた従来の真空断熱材においては、ショットによって外包材に形成された貫通孔により、真空漏れ不良に至り、真空断熱材の断熱性能が低下してしまうという課題があった。 When producing glass short fibers, shots, which are lumps of unstretched glass particles, occur. The shot is then contained within the glass short fibers. For this reason, in the conventional vacuum heat insulating material using the core material formed of short glass fibers, there is a case where a through hole is formed in the outer packaging material by the shot. In a conventional vacuum heat insulating material using a core material formed of short glass fibers, air may enter the inside of the vacuum heat insulating material through a through hole formed in the outer packaging material by a shot. That is, in the conventional vacuum heat insulating material using the core material formed of short glass fibers, the through holes formed in the outer packaging material by the shot lead to a vacuum leak defect, and the heat insulating performance of the vacuum heat insulating material deteriorates. There was a problem of being lost.
 一方、芯材としてガラスチョップドストランドを用いた従来の真空断熱材には、芯材にショットが含まれない。このため、芯材としてガラスチョップドストランドを用いた従来の真空断熱材は、外包材に形成された貫通孔によって真空漏れ不良に至ることはまれである。しかしながら、芯材としてガラスチョップドストランドを用いた従来の真空断熱材は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材と比べ、剛性が低くなる。このため、芯材としてガラスチョップドストランドを用いた従来の真空断熱材は、製造時に曲がりやすく、製造後においても曲がりやすい。したがって、芯材としてガラスチョップドストランドを用いた従来の真空断熱材は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材と比べ、取り扱いが困難であるという課題があった。また、芯材としてガラスチョップドストランドを用いた従来の真空断熱材は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材と比べ、約1.2倍から約1.6倍、質量が重くなる。この点においても、芯材としてガラスチョップドストランドを用いた従来の真空断熱材は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材と比べ、取り扱いが困難である。 On the other hand, the conventional vacuum heat insulating material using glass chopped strands as the core material does not include shots in the core material. For this reason, the conventional vacuum heat insulating material using glass chopped strands as the core material rarely causes vacuum leakage failure due to the through holes formed in the outer packaging material. However, the conventional vacuum heat insulating material using glass chopped strands as the core material has lower rigidity than the conventional vacuum heat insulating material using the core material formed of short glass fibers. For this reason, the conventional vacuum heat insulating material using glass chopped strands as the core material is easily bent at the time of manufacture and is easily bent even after the manufacture. Therefore, the conventional vacuum heat insulating material using glass chopped strands as the core material has a problem that it is difficult to handle as compared with the conventional vacuum heat insulating material using the core material formed of short glass fibers. In addition, the conventional vacuum heat insulating material using glass chopped strands as the core material is about 1.2 times to about 1.6 times more than the conventional vacuum heat insulating material using the core material formed of glass short fibers. The weight becomes heavy. Also in this respect, the conventional vacuum heat insulating material using glass chopped strands as the core material is more difficult to handle than the conventional vacuum heat insulating material using the core material formed of short glass fibers.
 なお、ガラスチョップドストランドを用いた従来の芯材に有機バインダー等の結合剤を用い、結合剤によってガラス繊維同士を結合させることにより、ガラスチョップドストランドを用いた従来の芯材の剛性を高めることは可能である。すなわち、結合剤によってガラス繊維同士を結合させると、芯材としてガラスチョップドストランドを用いた従来の真空断熱材の取り扱いが容易となる。しかしながら、結合剤によってガラス繊維同士を結合させると、ガラス繊維同士の結合部を介して、ガラス繊維間の熱移動が容易となる。このため、真空断熱材の断熱性能が低下してしまう。また、結合剤によってガラス繊維同士を結合させると、結合剤に含まれる低分子成分が真空断熱材内部で揮発することにより、真空断熱材内部の真空度が低下し、断熱性能が低下してしまう。すなわち、結合剤によってガラス繊維同士を結合させると、ガラス短繊維で形成された芯材を用いる場合と比べて真空断熱材の断熱性能が向上するという、芯材としてガラスチョップドストランドを用いた従来の真空断熱材が有する効果が低減してしまう。 In addition, using a binder such as an organic binder in the conventional core material using glass chopped strands, by binding the glass fibers by the binder, it is possible to increase the rigidity of the conventional core material using glass chopped strands It is possible. That is, when the glass fibers are bonded to each other by the binder, it becomes easy to handle the conventional vacuum heat insulating material using glass chopped strands as the core material. However, when the glass fibers are bonded to each other by the binder, heat transfer between the glass fibers becomes easy via the bonding part between the glass fibers. Therefore, the heat insulating performance of the vacuum heat insulating material is deteriorated. Further, when the glass fibers are bonded to each other by the binder, the low-molecular component contained in the binder is volatilized inside the vacuum heat insulating material, so that the vacuum degree inside the vacuum heat insulating material is lowered and the heat insulating performance is lowered. .. That is, when the glass fibers are bonded to each other by the binder, the heat insulating performance of the vacuum heat insulating material is improved as compared with the case of using the core material formed of short glass fibers, that is, the conventional glass chopped strand as the core material is used. The effect that the vacuum heat insulating material has is reduced.
 本発明は、上述の課題を背景になされたものであり、外包材に形成された貫通孔によって真空漏れ不良に至ることを抑制でき、結合剤を用いなくとも取り扱いが容易となる真空断熱材を得ることを第1の目的とする。また、本発明は、このような真空断熱材を備えた断熱箱を得ることを第2の目的とする。 The present invention has been made in view of the above-mentioned problems, and a vacuum heat insulating material that can suppress vacuum leakage failure due to a through hole formed in an outer packaging material and can be easily handled without using a binder is provided. The first purpose is to obtain. A second object of the present invention is to obtain a heat insulating box provided with such a vacuum heat insulating material.
 本発明に係る真空断熱材は、芯材と、前記芯材を包む外包材とを備え、前記外包材で覆われた内部空間が減圧状態となっている板状の真空断熱材であって、前記芯材は、ガラスチョップドストランドのニードルマットである第1芯材と、ガラス短繊維で形成された第2芯材とを備え、前記第1芯材と前記第2芯材とが当該真空断熱材の厚み方向に積層された構成であり、前記外包材と前記厚み方向に対向して該外包材と接する前記芯材の2面のうちの少なくとも1面は、前記第1芯材で構成されている。 The vacuum heat insulating material according to the present invention is a plate-shaped vacuum heat insulating material having a core material and an outer packaging material that wraps the core material, and the internal space covered with the outer packaging material is in a reduced pressure state, The core material includes a first core material that is a needle mat of glass chopped strands and a second core material formed of short glass fibers, and the first core material and the second core material are vacuum-insulated. At least one of the two surfaces of the core material that is laminated in the thickness direction of the material and is in contact with the outer packaging material facing the outer packaging material in the thickness direction is composed of the first core material. ing.
 また、本発明に係る断熱箱は、外箱と、前記外箱の内部に配置された内箱と、本発明に係る真空断熱材と、を備えている。 The heat insulating box according to the present invention includes an outer box, an inner box arranged inside the outer box, and a vacuum heat insulating material according to the present invention.
 本発明に係る真空断熱材においては、外包材と真空断熱材の厚み方向に対向して該外包材と接する芯材の2面のうちの少なくとも1面が、ガラスチョップドストランドのニードルマットである第1芯材となっている。このため、本発明に係る真空断熱材は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材に比べ、外包材に形成された貫通孔によって真空漏れ不良に至ることを抑制できる。 In the vacuum heat insulating material according to the present invention, at least one of the two surfaces of the outer packaging material and the core material facing in the thickness direction of the vacuum heat insulating material and in contact with the outer packaging material is a needle mat of glass chopped strands. It is a single core material. Therefore, the vacuum heat insulating material according to the present invention can suppress the vacuum leakage failure due to the through hole formed in the outer packaging material, as compared with the conventional vacuum heat insulating material using the core material formed of short glass fibers. ..
 また、本発明に係る真空断熱材の芯材は、ガラスチョップドストランドのニードルマットである第1芯材とガラス短繊維で形成された第2芯材とが積層されて構成されている。このため、本発明に係る真空断熱材は、芯材としてガラスチョップドストランドを用いた従来の真空断熱材と比べ、剛性が向上し、質量も軽くなる。また、本発明に係る真空断熱材の芯材は、結合剤を用いなくとも製造することができる。したがって、本発明に係る真空断熱材は、結合剤を用いなくとも、芯材としてガラスチョップドストランドを用いた従来の真空断熱材と比べ、取り扱いが容易となる。 The core material of the vacuum heat insulating material according to the present invention is configured by laminating the first core material, which is a needle mat of glass chopped strands, and the second core material formed of glass short fibers. Therefore, the vacuum heat insulating material according to the present invention has improved rigidity and lighter mass as compared with the conventional vacuum heat insulating material using glass chopped strands as the core material. Further, the core material of the vacuum heat insulating material according to the present invention can be manufactured without using a binder. Therefore, the vacuum heat insulating material according to the present invention is easier to handle than a conventional vacuum heat insulating material using glass chopped strands as a core material without using a binder.
本発明の実施の形態1に係る真空断熱材の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the vacuum heat insulating material which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る真空断熱材の別の一例の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of another example of the vacuum heat insulating material which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る断熱箱の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the heat insulation box which concerns on Embodiment 2 of this invention.
 以下、実施の形態1において、本発明に係る真空断熱材の一例について説明する。また、実施の形態2において、本発明に係る断熱箱の一例について説明する。なお、以下の各図面では、各構成部材の大きさの関係が本発明を実施した実物とは異なる場合がある。各構成部材の具体的な寸法等は、以下の説明を参酌した上で判断すべきものである。また、以下の実施の形態で用いられているガラス繊維に関する用語は、注記がされていない場合、日本工業規格JIS R3410:2006「ガラス繊維用語」の定義に従うこととする。 Hereinafter, an example of the vacuum heat insulating material according to the present invention in the first embodiment will be described. Moreover, in Embodiment 2, an example of the heat insulation box according to the present invention will be described. In each of the following drawings, the size relationship of each component may be different from that of the actual product in which the present invention is implemented. Specific dimensions and the like of each constituent member should be determined in consideration of the following description. Unless otherwise noted, the terms relating to glass fibers used in the following embodiments shall follow the definitions of Japanese Industrial Standard JIS R3410:2006 “Glass Fiber Terms”.
実施の形態1.
 図1は、本発明の実施の形態1に係る真空断熱材の概略構成を示す断面図である。真空断熱材1は、内部を真空に維持することで低い熱伝導率を実現する断熱材である。図1に示すように、この真空断熱材1は、芯材20と、この芯材20を包む外包材3とを備えている。後述のように、外包材3で規定される真空空間は、一部が開口した袋形状の外包材3の内部を減圧した状態で、開口部をヒートシール等により熱融着することにより、形成される。つまり、外包材3で覆われた内部空間が減圧状態となっている。真空断熱材1は、該真空断熱材1の厚み方向に観察した際、換言すると図1の紙面上下方向に観察した際、全体として概略長方形の板状に形成されている。なお、本実施の形態1においては、真空断熱材1は、外包材3で覆われた内部空間に、少なくとも水分を吸着する吸着剤4も備えている。つまり、本実施の形態1に係る真空断熱材1は、芯材20及び吸着剤4が、外包材3によって包まれている。
Embodiment 1.
FIG. 1 is a sectional view showing a schematic configuration of a vacuum heat insulating material according to the first embodiment of the present invention. The vacuum heat insulating material 1 is a heat insulating material that realizes low thermal conductivity by maintaining a vacuum inside. As shown in FIG. 1, the vacuum heat insulating material 1 includes a core material 20 and an outer packaging material 3 that wraps the core material 20. As described below, the vacuum space defined by the outer wrapping material 3 is formed by heat-sealing the opening portion by heat sealing or the like in a state where the inside of the bag-shaped outer wrapping material 3 having an opening is depressurized. To be done. That is, the internal space covered with the outer packaging material 3 is in a reduced pressure state. The vacuum heat insulating material 1 is formed in a generally rectangular plate shape as a whole when observed in the thickness direction of the vacuum heat insulating material 1, in other words, when observed in the vertical direction of the paper surface of FIG. In the first embodiment, the vacuum heat insulating material 1 also includes an adsorbent 4 that adsorbs at least water in the internal space covered with the outer packaging material 3. That is, in the vacuum heat insulating material 1 according to the first embodiment, the core material 20 and the adsorbent 4 are wrapped with the outer packaging material 3.
 芯材20は、真空空間を保持する目的で使用される。本実施の形態1に係る芯材20は、ガラスチョップドストランド(glass chopped strand)のニードルマットである第1芯材21と、ガラス短繊維(glass wool)で形成された第2芯材22とを備えている。そして、芯材20は、第1芯材21と第2芯材22とが真空断熱材1の厚み方向に積層された構成となっている。 The core material 20 is used for the purpose of maintaining a vacuum space. The core material 20 according to the first embodiment includes a first core material 21 that is a needle mat of glass chopped strand and a second core material 22 formed of glass short fibers (glasswool). I have it. The core material 20 has a structure in which the first core material 21 and the second core material 22 are laminated in the thickness direction of the vacuum heat insulating material 1.
 第1芯材21であるガラスチョップドストランドのニードルマットは、規定の長さのガラスチョップドストランドを無方向に均一な厚さに積み重ね、針打ちによってマット状にまとめたものである。ガラスチョップドストランドは、ガラスストランドを規定の長さに切断することにより形成される。また、ガラスストランドは、連続フィラメント法で紡糸ノズルから引き出した複数のガラス繊維を、直接引きそろえて集束したものである。このように構成されている第1芯材21は、結合剤を含まずに製造することができる。なお、日本工業規格JIS R3410:2006「ガラス繊維用語」では、ニードルマットは、長さ約50mmのガラスチョップドストランドを用いることとなっている。しかしながら、ガラスチョップドストランドのこの長さは一例であり、種々の長さのガラスチョップドストランドでニードルマットを形成することができる。本実施の形態1では、約100mmのガラスチョップドストランドで、ニードルマットを形成している。 The glass chopped strand needle mat that is the first core material 21 is formed by stacking glass chopped strands of a specified length in a uniform thickness in a non-directional manner and then stitching them together to form a mat. The glass chopped strand is formed by cutting the glass strand into a specified length. Further, the glass strand is a plurality of glass fibers drawn from a spinning nozzle by a continuous filament method and directly aligned and bundled. The 1st core material 21 comprised in this way can be manufactured without containing a binder. According to Japanese Industrial Standard JIS R3410:2006 “Glass fiber terminology”, the needle mat uses glass chopped strands having a length of about 50 mm. However, this length of glass chopped strands is an example, and glass chopped strands of various lengths can form the needle mat. In the first embodiment, the needle mat is formed of about 100 mm of glass chopped strands.
 第1芯材21であるガラスチョップドストランドのニードルマットは、真空断熱材1の厚み方向である断熱方向に対して略垂直に、ガラスチョップドストランドが延びている。また、真空断熱材1の厚み方向である断熱方向に、ガラスチョップドストランドが積層される。このため、ガラスチョップドストランドのニードルマットである第1芯材21を用いた真空断熱材1は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材に比べ、断熱性能が向上する。また、第1芯材21は、針打ちによりガラスチョップドストランド同士が絡み合っている。このため、第1芯材21を製造する際、有機バインダー等の結合剤を用いる必要がない。したがって、第1芯材21は、結合剤によってガラス繊維同士が結合した結合部を介して熱移動することを防止できる。また、第1芯材21は、結合剤に含まれる低分子成分の揮発による真空断熱材1の断熱性能の低下も防止できる。 In the glass chopped strand needle mat that is the first core member 21, the glass chopped strand extends substantially perpendicular to the heat insulating direction that is the thickness direction of the vacuum heat insulating material 1. Further, glass chopped strands are laminated in the heat insulating direction which is the thickness direction of the vacuum heat insulating material 1. Therefore, the vacuum heat insulating material 1 using the first core material 21 which is the needle mat of glass chopped strands has improved heat insulating performance as compared with the conventional vacuum heat insulating material using the core material formed of glass short fibers. .. Further, the first core member 21 has glass chopped strands intertwined with each other by needle punching. Therefore, when manufacturing the first core material 21, it is not necessary to use a binder such as an organic binder. Therefore, the first core material 21 can prevent heat transfer from the bonding portion where the glass fibers are bonded to each other by the bonding agent. In addition, the first core material 21 can also prevent deterioration of the heat insulating performance of the vacuum heat insulating material 1 due to volatilization of low molecular components contained in the binder.
 第2芯材22を構成するガラス短繊維は、溶融ガラスを高速回転スピナにより遠心力で飛ばすことによりガラスを繊維化する遠心法によって、形成される。なお、第2芯材22を構成するガラス短繊維は、ガラス棒の先端部を火炎で溶融しながら吹き飛ばすことによりガラスを繊維化する火炎法によって、形成されてもよい。ガラス短繊維は、ガラスウールとも呼ばれる。 The glass short fibers forming the second core material 22 are formed by a centrifugal method in which the molten glass is spun by a high-speed rotating spinner by centrifugal force to form the glass into fibers. The short glass fibers forming the second core member 22 may be formed by a flame method in which the tip of a glass rod is melted by a flame and blown away while the glass is made into fibers. Short glass fibers are also called glass wool.
 ところで、芯材としてガラスチョップドストランドを用いた従来の真空断熱材は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材と比べ、剛性が低くなる。このため、芯材としてガラスチョップドストランドを用いた従来の真空断熱材は、製造時に曲がりやすく、製造後においても曲がりやすい。したがって、芯材としてガラスチョップドストランドを用いた従来の真空断熱材は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材と比べ、取り扱いが困難である。また、芯材としてガラスチョップドストランドを用いた従来の真空断熱材は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材と比べ、約1.2倍から約1.6倍、質量が重くなる。この点においても、芯材としてガラスチョップドストランドを用いた従来の真空断熱材は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材と比べ、取り扱いが困難である。一方、本実施の形態1では、上述のように、芯材20は、第1芯材21と第2芯材22とが真空断熱材1の厚み方向に積層された構成となっている。このため、本実施の形態1に係る真空断熱材1は、ガラスチョップドストランドを用いた従来の芯材と比べ、剛性が向上し、質量も軽くなる。したがって、本実施の形態1に係る真空断熱材1は、ガラスチョップドストランドを用いた従来の芯材と比べ、取り扱いが容易となる。 By the way, the conventional vacuum heat insulating material that uses glass chopped strands as the core material has lower rigidity than the conventional vacuum heat insulating material that uses the core material formed of short glass fibers. For this reason, the conventional vacuum heat insulating material using glass chopped strands as the core material is easily bent at the time of manufacture and is easily bent even after the manufacture. Therefore, the conventional vacuum heat insulating material using glass chopped strands as the core material is more difficult to handle than the conventional vacuum heat insulating material using the core material formed of short glass fibers. In addition, the conventional vacuum heat insulating material using glass chopped strands as the core material is about 1.2 times to about 1.6 times more than the conventional vacuum heat insulating material using the core material formed of glass short fibers. The weight becomes heavy. Also in this respect, the conventional vacuum heat insulating material using glass chopped strands as the core material is more difficult to handle than the conventional vacuum heat insulating material using the core material formed of short glass fibers. On the other hand, in the first embodiment, as described above, the core material 20 has a configuration in which the first core material 21 and the second core material 22 are laminated in the thickness direction of the vacuum heat insulating material 1. Therefore, the vacuum heat insulating material 1 according to the first embodiment has improved rigidity and lighter mass than the conventional core material using glass chopped strands. Therefore, the vacuum heat insulating material 1 according to the first embodiment is easier to handle than the conventional core material using glass chopped strands.
 ここで、外包材3と真空断熱材1の厚み方向に対向して該外包材3と接する芯材20の2面のうちの一方を、第1面23とする。また、外包材3と真空断熱材1の厚み方向に対向して該外包材3と接する芯材20の2面のうちの他方を、第2面24とする。このように第1面23及び第2面24を定義した場合、図1に示すように、芯材20の第1面23は、ガラスチョップドストランドのニードルマットである第1芯材21で構成されている。すなわち、外包材3と芯材20の第1面23とが接触する範囲では、外包材3とガラスチョップドストランドのニードルマットとが接触することとなる。 Here, one of the two surfaces of the core material 20 facing the outer packaging material 3 and the vacuum heat insulating material 1 in the thickness direction and in contact with the outer packaging material 3 is referred to as a first surface 23. In addition, the other of the two surfaces of the core material 20 that faces the outer packaging material 3 and the vacuum heat insulating material 1 in the thickness direction and is in contact with the outer packaging material 3 is referred to as a second surface 24. When the first surface 23 and the second surface 24 are defined in this way, as shown in FIG. 1, the first surface 23 of the core member 20 is composed of the first core member 21 which is a needle mat of glass chopped strands. ing. That is, in the range where the outer packaging material 3 and the first surface 23 of the core material 20 are in contact with each other, the outer packaging material 3 and the needle mat of the glass chopped strands are in contact with each other.
 なお、芯材20の第2面24を、ガラスチョップドストランドのニードルマットである第1芯材21で構成してもよい。この場合、外包材3と芯材20の第2面24とが接触する範囲では、外包材3とガラスチョップドストランドのニードルマットとが接触することとなる。また、以下の図2のように芯材20を構成してもよい。 The second surface 24 of the core material 20 may be composed of the first core material 21, which is a needle mat of glass chopped strands. In this case, the outer packaging material 3 and the needle mat of the glass chopped strands come into contact with each other in a range where the outer packaging material 3 and the second surface 24 of the core material 20 are in contact with each other. Moreover, you may comprise the core material 20 like the following FIG.
 図2は、本発明の実施の形態1に係る真空断熱材の別の一例の概略構成を示す断面図である。
 図2に示す様に、芯材20は、第1面23及び第2面24の両面がガラスチョップドストランドのニードルマットである第1芯材21で構成されていてもよい。すなわち、本実施の形態1に係る芯材20は、第1面23及び第2面24のうちの少なくとも一面が第1芯材21で構成されていればよい。
FIG. 2 is a sectional view showing a schematic configuration of another example of the vacuum heat insulating material according to the first embodiment of the present invention.
As shown in FIG. 2, the core material 20 may be composed of a first core material 21 that is a needle mat of glass chopped strands on both sides of the first surface 23 and the second surface 24. That is, in the core material 20 according to the first embodiment, at least one of the first surface 23 and the second surface 24 may be composed of the first core material 21.
 ガラス短繊維を製造する際、未延伸ガラス粒子の塊であるショットが発生する。そして、ショットはガラス短繊維内に含まれる。このため、ガラス短繊維で形成された芯材を用いた従来の真空断熱材においては、ショットによって外包材に貫通孔が形成されてしまう場合があった。そして、ガラス短繊維で形成された芯材を用いた従来の真空断熱材においては、ショットによって外包材に形成された貫通孔から真空断熱材の内部に空気が侵入する場合があった。すなわち、ガラス短繊維で形成された芯材を用いた従来の真空断熱材においては、ショットによって外包材に形成された貫通孔により、真空漏れ不良に至り、真空断熱材の断熱性能が低下してしまうという場合があった。一方、ガラスチョップドストランドのニードルマットは、製造工程においてショットが発生しない。このため、本実施の形態1のように芯材20を構成することにより、外包材3とガラスチョップドストランドのニードルマットである第1芯材21とが接触する範囲では、ショットによって外包材3に貫通孔が形成されてしまうことを防止できる。このため、本実施の形態1に係る真空断熱材1は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材に比べ、外包材に形成された貫通孔によって真空漏れ不良に至ることを抑制できる。 When producing glass short fibers, shots, which are lumps of unstretched glass particles, occur. The shot is then contained within the glass short fibers. For this reason, in the conventional vacuum heat insulating material using the core material formed of short glass fibers, there is a case where a through hole is formed in the outer packaging material by the shot. In a conventional vacuum heat insulating material using a core material formed of short glass fibers, air may enter the inside of the vacuum heat insulating material through a through hole formed in the outer packaging material by a shot. That is, in the conventional vacuum heat insulating material using the core material formed of short glass fibers, the through holes formed in the outer packaging material by the shot lead to a vacuum leak defect, and the heat insulating performance of the vacuum heat insulating material deteriorates. There was a case that it ended up. On the other hand, in the glass chopped strand needle mat, shots do not occur in the manufacturing process. Therefore, by configuring the core material 20 as in the present first embodiment, the outer packaging material 3 is shot by the shot in the range in which the outer packaging material 3 and the first core material 21, which is the needle mat of the glass chopped strand, are in contact with each other. It is possible to prevent the through hole from being formed. Therefore, the vacuum heat insulating material 1 according to the first embodiment causes a vacuum leak defect due to the through hole formed in the outer packaging material, as compared with the conventional vacuum heat insulating material using the core material formed of short glass fibers. Can be suppressed.
 外包材3は、ガスバリア性を有するものである。外包材3は、多層構造をなすラミネートフィルムである。本実施の形態1では、外包材3は、芯材20側である内側から外側に向かって順に、ポリエチレン層、アルミ蒸着が施されたエチレン―ビニルアルコール層、アルミ蒸着が施されたポリエチレンテレフタレート層、及び、ナイロン層が積層された構成となっている。なお、外包材3の当該構成はあくまでも一例である。ガスバリア性を有するものであれば、既存の真空断熱材に使用されている種々の外包材を、外包材3として用いることができる。例えば、外包材3は、アルミナ蒸着が施された層を備えていてもよいし、シリカ蒸着が施された層を備えていてもよい。 The outer packaging material 3 has a gas barrier property. The outer packaging material 3 is a laminated film having a multilayer structure. In the first embodiment, the outer wrapping material 3 is a polyethylene layer, an ethylene-vinyl alcohol layer vapor-deposited with aluminum, and a polyethylene terephthalate layer vapor-deposited with aluminum in this order from the inner side to the outer side which is the core material 20 side. , And a nylon layer are laminated. The configuration of the outer packaging material 3 is merely an example. As long as it has gas barrier properties, various outer packaging materials used for existing vacuum heat insulating materials can be used as the outer packaging material 3. For example, the outer packaging material 3 may be provided with a layer vapor-deposited with alumina, or may be provided with a layer vapor-deposited with silica.
 吸着剤4は、真空断熱材1の内部のガス及び水蒸気を吸着し、真空度を保つことで熱伝導率の上昇つまり断熱性能の低下を抑制する目的で使用される。吸着剤4としては、酸化カルシウム(CaO)を用いることが一般的である。また、吸着剤4は、シリカゲル又はゼオライトであってもよい。また、吸着剤4は、酸化カルシウム、シリカゲル及びゼオライトのうちの少なくとも2つを組合せたものであってもよい。 The adsorbent 4 is used for the purpose of adsorbing gas and water vapor inside the vacuum heat insulating material 1 and maintaining the degree of vacuum to suppress an increase in thermal conductivity, that is, a decrease in heat insulating performance. As the adsorbent 4, it is general to use calcium oxide (CaO). Further, the adsorbent 4 may be silica gel or zeolite. Further, the adsorbent 4 may be a combination of at least two of calcium oxide, silica gel and zeolite.
 続いて、本実施の形態1に係る真空断熱材1の製造工程について説明する。
 まず、2枚の外包材3を重ね合わせ、外周部同士を、一部を除いてヒートシール等で融着する。これにより、外包材3は、外周部の一部が開口した袋形状となる。そして、第1芯材21及び第2芯材22を積層して芯材20を形成し、袋形状に形成された外包材3の内部に挿入する。なお、積層された第1芯材21及び第2芯材22を2枚の外包材3で覆い、その後、外包材3の外周部同士を一部を除いて融着してもよい。
Next, the manufacturing process of the vacuum heat insulating material 1 according to the first embodiment will be described.
First, the two outer packaging materials 3 are overlapped and the outer peripheral portions are fused together by heat sealing or the like except for a part. As a result, the outer packaging material 3 has a bag shape in which a part of the outer peripheral portion is opened. Then, the first core material 21 and the second core material 22 are laminated to form the core material 20, and the core material 20 is inserted into the bag-shaped outer packaging material 3. The laminated first core material 21 and second core material 22 may be covered with two outer packaging materials 3, and then the outer peripheral portions of the outer packaging material 3 may be fusion-bonded except for a part thereof.
 その後、袋形状に形成された外包材3の内部に芯材20が挿入された状態で、100℃で2時間程度加熱処理する。これにより、芯材20及び外包材3から水分が除去される。次に、袋形状に形成された外包材3の内部に、吸着剤4が配置される。そして、外包材3の内部を1Pa~3Pa程度の真空度に減圧し、その減圧状態で開口部をヒートシール等で融着して、外包材3の内部を減圧密封する。これにより、真空断熱材1が完成する。 After that, heat treatment is performed at 100° C. for about 2 hours in a state where the core material 20 is inserted inside the outer packaging material 3 formed in a bag shape. As a result, moisture is removed from the core material 20 and the outer packaging material 3. Next, the adsorbent 4 is placed inside the outer packaging material 3 formed in a bag shape. Then, the inside of the outer wrapping material 3 is depressurized to a vacuum degree of about 1 Pa to 3 Pa, and the opening portion is fused by heat sealing or the like in the depressurized state to hermetically seal the inside of the outer wrapping material 3 under reduced pressure. Thereby, the vacuum heat insulating material 1 is completed.
 なお、真空断熱材1が設けられる断熱箱の形状に沿わせる目的等で、減圧密封後の真空断熱材1の断熱面に、プレス型を用いて凹凸形状を形成する場合がある。この場合、第1面23及び第2面24のうちの第1芯材21で構成されている面に、凹凸形状を形成するのが好ましい。プレス型と対向する範囲にショットが存在しないので、ショットによって外包材3に貫通孔が形成されることを防止でき、真空漏れ不良に至ることを抑制できる。 Note that, for the purpose of conforming to the shape of the heat insulating box in which the vacuum heat insulating material 1 is provided, an uneven shape may be formed using a press die on the heat insulating surface of the vacuum heat insulating material 1 after vacuum sealing. In this case, it is preferable to form an uneven shape on the surface of the first surface 23 and the second surface 24 that is configured by the first core member 21. Since there are no shots in the area facing the press die, it is possible to prevent the shots from forming through-holes in the outer packaging material 3 and suppress vacuum leakage defects.
 次に、本実施の形態1の真空断熱材1を実施例1~実施例9として作製し、比較例1及び比較例2との間で、芯材の密度、熱伝導率及び曲げ弾性率の比較を行った。表1及び表2にその比較結果を示し、以下にその比較結果について説明する。 Next, the vacuum heat insulating material 1 according to the first embodiment was produced as Examples 1 to 9, and the density, the thermal conductivity and the bending elastic modulus of the core material were different between Comparative Example 1 and Comparative Example 2. A comparison was made. The comparison results are shown in Tables 1 and 2, and the comparison results are described below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~実施例9に係る真空断熱材1では、芯材20の第1芯材21として、クロス質量が320g/mのガラスチョップドストランドのニードルマットを用いている。当該ニードルマットは、真空断熱材1完成後の芯材20の幅が0.5mとなり、真空断熱材1完成後の芯材20の長さが2.0mとなるように切断され、第1芯材21として用いられている。また、実施例1~実施例9に係る真空断熱材1では、芯材20の第2芯材22として、クロス質量が1200g/mのガラス短繊維を用いている。当該ガラス短繊維は、真空断熱材1完成後の芯材20の幅が0.5mとなり、真空断熱材1完成後の芯材20の長さが2.0mとなるように切断され、第2芯材22として用いられている。なお、クロス質量(mass per unit area)とは、ガラスクロス1m当たりの重さである。 In the vacuum heat insulating materials 1 according to Examples 1 to 9, as the first core material 21 of the core material 20, a needle mat of glass chopped strands having a cloth mass of 320 g/m 2 is used. The needle mat is cut so that the width of the core material 20 after the completion of the vacuum heat insulating material 1 becomes 0.5 m and the length of the core material 20 after the completion of the vacuum heat insulating material 1 becomes 2.0 m. It is used as the material 21. Further, in the vacuum heat insulating materials 1 according to Examples 1 to 9, short glass fibers having a cross mass of 1200 g/m 2 are used as the second core material 22 of the core material 20. The short glass fiber is cut so that the width of the core material 20 after completion of the vacuum heat insulating material 1 becomes 0.5 m and the length of the core material 20 after completion of the vacuum heat insulating material 1 becomes 2.0 m. It is used as the core material 22. The cloth mass (mass per unit area) is the weight per 1 m 2 of glass cloth.
 実施例1~実施例9に係る真空断熱材1は、真空断熱材1完成後の芯材20の厚さが50mmとなるように、第1芯材21及び第2芯材22が所定枚数ずつ重ねられ、芯材20が形成されている。なお、第1芯材21及び第2芯材22の積層の仕方は、第1面23及び第2面のうちの少なくとも一方が第1芯材21で構成されていれば、特に限定されない。 In the vacuum heat insulating material 1 according to the first to ninth embodiments, a predetermined number of the first core material 21 and the second core material 22 are provided so that the thickness of the core material 20 after the vacuum heat insulating material 1 is completed is 50 mm. The core material 20 is formed by overlapping. The method of stacking the first core material 21 and the second core material 22 is not particularly limited as long as at least one of the first surface 23 and the second surface is composed of the first core material 21.
 また、実施例1~実施例9に係る真空断熱材1のそれぞれは、第1芯材21及び第2芯材22の枚数が異なっている。具体的には、実施例1に係る真空断熱材1の芯材20は、5枚の第1芯材21と9枚の第2芯材22とが積層されている。芯材20全体の質量は、12400gとなる。芯材20全体の質量に対する第1芯材21の質量の割合は、12.9質量%となっている。すなわち、第1芯材21の質量を芯材20全体の質量で割った値に100をかけた数値が、12.9となっている。また、実施例2に係る真空断熱材1の芯材20は、10枚の第1芯材21と8枚の第2芯材22とが積層されている。芯材20全体の質量は、12800gとなる。芯材20全体の質量に対する第1芯材21の質量の割合は、25.0質量%となっている。また、実施例3に係る真空断熱材1の芯材20は、15枚の第1芯材21と7枚の第2芯材22とが積層されている。芯材20全体の質量は、13200gとなる。芯材20全体の質量に対する第1芯材21の質量の割合は、36.4質量%となっている。 Also, the vacuum heat insulating materials 1 according to Examples 1 to 9 are different in the number of the first core material 21 and the second core material 22. Specifically, in the core material 20 of the vacuum heat insulating material 1 according to the first embodiment, five first core materials 21 and nine second core materials 22 are laminated. The total mass of the core material 20 is 12400 g. The ratio of the mass of the first core material 21 to the mass of the whole core material 20 is 12.9 mass %. In other words, the value obtained by dividing the mass of the first core material 21 by the mass of the entire core material 20 by 100 is 12.9. Further, the core material 20 of the vacuum heat insulating material 1 according to the second embodiment is formed by stacking 10 first core materials 21 and 8 second core materials 22. The total mass of the core material 20 is 12,800 g. The ratio of the mass of the first core material 21 to the mass of the whole core material 20 is 25.0 mass %. Further, the core material 20 of the vacuum heat insulating material 1 according to the third embodiment has 15 first core materials 21 and 7 second core materials 22 laminated. The total mass of the core material 20 is 13200 g. The ratio of the mass of the first core material 21 to the mass of the whole core material 20 is 36.4 mass %.
 また、実施例4に係る真空断熱材1の芯材20は、20枚の第1芯材21と6枚の第2芯材22とが積層されている。芯材20全体の質量は、13600gとなる。芯材20全体の質量に対する第1芯材21の質量の割合は、47.1質量%となっている。また、実施例5に係る真空断熱材1の芯材20は、25枚の第1芯材21と5枚の第2芯材22とが積層されている。芯材20全体の質量は、14000gとなる。芯材20全体の質量に対する第1芯材21の質量の割合は、57.1質量%となっている。また、実施例6に係る真空断熱材1の芯材20は、30枚の第1芯材21と4枚の第2芯材22とが積層されている。芯材20全体の質量は、14400gとなる。芯材20全体の質量に対する第1芯材21の質量の割合は、66.7質量%となっている。 Further, the core material 20 of the vacuum heat insulating material 1 according to the fourth embodiment has 20 first core materials 21 and 6 second core materials 22 laminated. The total mass of the core material 20 is 13,600 g. The ratio of the mass of the first core material 21 to the mass of the entire core material 20 is 47.1 mass %. In addition, the core material 20 of the vacuum heat insulating material 1 according to the fifth embodiment has 25 first core materials 21 and 5 second core materials 22 laminated. The total mass of the core material 20 is 14000 g. The ratio of the mass of the first core material 21 to the mass of the entire core material 20 is 57.1 mass %. Further, the core material 20 of the vacuum heat insulating material 1 according to the sixth embodiment is formed by laminating 30 first core materials 21 and 4 second core materials 22. The total mass of the core material 20 is 14400 g. The ratio of the mass of the first core material 21 to the mass of the entire core material 20 is 66.7 mass %.
 また、実施例7に係る真空断熱材1の芯材20は、35枚の第1芯材21と3枚の第2芯材22とが積層されている。芯材20全体の質量は、14800gとなる。芯材20全体の質量に対する第1芯材21の質量の割合は、75.7質量%となっている。また、実施例8に係る真空断熱材1の芯材20は、40枚の第1芯材21と2枚の第2芯材22とが積層されている。芯材20全体の質量は、15200gとなる。芯材20全体の質量に対する第1芯材21の質量の割合は、84.2質量%となっている。また、実施例9に係る真空断熱材1の芯材20は、45枚の第1芯材21と1枚の第2芯材22とが積層されている。芯材20全体の質量は、15600gとなる。芯材20全体の質量に対する第1芯材21の質量の割合は、92.3質量%となっている。 Further, the core material 20 of the vacuum heat insulating material 1 according to the seventh embodiment is formed by stacking 35 first core materials 21 and three second core materials 22. The total mass of the core material 20 is 14800 g. The ratio of the mass of the first core material 21 to the mass of the entire core material 20 is 75.7 mass %. In addition, the core material 20 of the vacuum heat insulating material 1 according to the eighth embodiment includes 40 first core materials 21 and two second core materials 22 that are stacked. The total mass of the core material 20 is 15200 g. The ratio of the mass of the first core material 21 to the mass of the entire core material 20 is 84.2 mass %. Further, the core material 20 of the vacuum heat insulating material 1 according to the ninth embodiment is formed by stacking 45 first core materials 21 and one second core material 22. The total mass of the core material 20 is 15600 g. The ratio of the mass of the first core material 21 to the mass of the entire core material 20 is 92.3% by mass.
 また、実施例1~実施例9に係る真空断熱材1では、外包材3として、芯材20側である内側から外側に向かって順にポリエチレン層、アルミ蒸着が施されたエチレン―ビニルアルコール層、アルミ蒸着が施されたポリエチレンテレフタレート層、及び、ナイロン層が積層されたラミネートフィルムを用いた。 Further, in the vacuum heat insulating materials 1 according to Examples 1 to 9, as the outer packaging material 3, a polyethylene layer, an ethylene-vinyl alcohol layer vapor-deposited with aluminum in this order from the inner side toward the outer side of the core material 20, A laminated film in which a polyethylene terephthalate layer vapor-deposited on aluminum and a nylon layer were laminated was used.
 そして、一部が開口した袋形状に形成された外包材3に上述のように構成された芯材20を挿入し、100℃で2時間加熱処理して、外包材3及び芯材20から水分を除去した。次に、袋形状に形成された外包材3の内部に、50gの酸化カルシウムで構成された吸着剤4を配置した。そして、外包材3の内部を1Paの真空度に減圧し、その減圧状態で開口部をヒートシールで融着して、実施例1~実施例9に係る真空断熱材1を作製した。 Then, the core material 20 configured as described above is inserted into the outer packaging material 3 formed in the shape of a bag with a part opened, and heat treatment is performed at 100° C. for 2 hours to remove moisture from the outer packaging material 3 and the core material 20. Was removed. Next, the adsorbent 4 composed of 50 g of calcium oxide was placed inside the outer packaging material 3 formed in a bag shape. Then, the inside of the outer wrapping material 3 was depressurized to a vacuum degree of 1 Pa, and in the depressurized state, the openings were fused by heat sealing to produce vacuum heat insulating materials 1 according to Examples 1 to 9.
 比較例1に係る真空断熱材は、真空断熱材完成後の芯材の厚さが50mmとなるように、実施例1~実施例9に係る真空断熱材1で用いられた第1芯材21のみを積層して、芯材が形成されている。すなわち、比較例1に係る真空断熱材は、ガラスチョップドストランドのみで芯材が形成されている。比較例1に係る真空断熱材のその他の作製方法は、実施例1~実施例9に係る真空断熱材1と同じである。比較例1に係る真空断熱材の芯材全体の質量は、16000gとなる。また、比較例1に係る真空断熱材は、芯材全体の質量に対する第1芯材21の質量の割合が100.0質量%となっている。 In the vacuum heat insulating material according to Comparative Example 1, the first core material 21 used in the vacuum heat insulating material 1 according to any of Examples 1 to 9 is formed so that the thickness of the core material after completion of the vacuum heat insulating material is 50 mm. The core material is formed by stacking only these. That is, in the vacuum heat insulating material according to Comparative Example 1, the core material is formed of only glass chopped strands. The other manufacturing methods of the vacuum heat insulating material according to Comparative Example 1 are the same as those of the vacuum heat insulating material 1 according to Examples 1 to 9. The mass of the whole core material of the vacuum heat insulating material according to Comparative Example 1 is 16000 g. Further, in the vacuum heat insulating material according to Comparative Example 1, the mass ratio of the first core material 21 to the mass of the entire core material is 100.0 mass %.
 また、比較例2に係る真空断熱材は、真空断熱材完成後の芯材の厚さが50mmとなるように、実施例1~実施例9に係る真空断熱材1で用いられた第2芯材22のみを積層して、芯材が形成されている。すなわち、比較例2に係る真空断熱材は、ガラス短繊維のみで芯材が形成されている。比較例2に係る真空断熱材のその他の作製方法は、実施例1~実施例9に係る真空断熱材1と同じである。比較例2に係る真空断熱材の芯材全体の質量は、12000gとなる。また、比較例2に係る真空断熱材は、芯材全体の質量に対する第1芯材21の質量の割合が0.0質量%となっている。 Further, the vacuum heat insulating material according to Comparative Example 2 is the second core used in the vacuum heat insulating material 1 according to Examples 1 to 9 so that the thickness of the core material after completion of the vacuum heat insulating material is 50 mm. A core material is formed by stacking only the material 22. That is, in the vacuum heat insulating material according to Comparative Example 2, the core material is formed of only glass short fibers. The other manufacturing method of the vacuum heat insulating material according to Comparative Example 2 is the same as that of the vacuum heat insulating material 1 according to Examples 1 to 9. The mass of the whole core material of the vacuum heat insulating material according to Comparative Example 2 is 12000 g. Further, in the vacuum heat insulating material according to Comparative Example 2, the ratio of the mass of the first core material 21 to the mass of the entire core material is 0.0 mass %.
 各実施例に係る真空断熱材1及び各比較例に係る真空断熱材の厚さ及び熱伝導率は、熱伝導率測定装置(英弘精機株式会社HC―074 600)を用いて測定した。各実施例に係る真空断熱材1及び各比較例に係る真空断熱材の曲げ弾性率は、熱伝導率測定後、万能試験機を用いて、試験速度10mm/分の三点曲げにより測定した。各実施例に係る真空断熱材1及び各比較例に係る真空断熱材の芯材の密度は、芯材全体の質量を真空断熱材の体積で除することにより算出した。 The thickness and thermal conductivity of the vacuum heat insulating material 1 according to each example and the vacuum heat insulating material according to each comparative example were measured by using a heat conductivity measuring device (HC-074 600, Eiko Seiki Co., Ltd.). The flexural modulus of the vacuum heat insulating material 1 according to each example and the vacuum heat insulating material according to each comparative example was measured by a three-point bending test speed of 10 mm/min using a universal testing machine after measuring the thermal conductivity. The density of the core material of the vacuum heat insulating material 1 according to each example and the vacuum heat insulating material according to each comparative example was calculated by dividing the mass of the whole core material by the volume of the vacuum heat insulating material.
 表1及び表2に示すように、実施例1~実施例9に係る真空断熱材1は、ガラスチョップドストランドのみで芯材が形成されている比較例1に係る真空断熱材と比べ、曲げ弾性率が大きい。また、実施例1~実施例9に係る真空断熱材1は、ガラスチョップドストランドのみで芯材が形成されている比較例1に係る真空断熱材と比べ、芯材の密度が小さい。すなわち、実施例1~実施例9に係る真空断熱材1は、ガラスチョップドストランドのみで芯材が形成されている比較例1に係る真空断熱材と比べ、軽い。したがって、実施例1~実施例9に係る真空断熱材1は、ガラスチョップドストランドのみで芯材が形成されている比較例1に係る真空断熱材と比べ、取り扱いが容易となる。また、表1及び表2に示すように、実施例1~実施例9に係る真空断熱材1は、ガラス短繊維のみで芯材が形成されている比較例2に係る真空断熱材と比べ、熱伝導率が小さい。このため、実施例1~実施例9に係る真空断熱材1は、ガラス短繊維のみで芯材が形成されている比較例2に係る真空断熱材と比べ、断熱性能が向上している。このように、実施例1~実施例9に係る真空断熱材1は、断熱性能が向上し、取り扱いも容易な真空断熱材となっている。 As shown in Tables 1 and 2, the vacuum heat insulating materials 1 according to Examples 1 to 9 have bending elasticity as compared with the vacuum heat insulating material according to Comparative Example 1 in which the core material is formed of only glass chopped strands. The rate is high. In addition, the vacuum heat insulating materials 1 according to Examples 1 to 9 have a lower density of the core material than the vacuum heat insulating material according to Comparative Example 1 in which the core material is formed of only glass chopped strands. That is, the vacuum heat insulating materials 1 according to Examples 1 to 9 are lighter than the vacuum heat insulating materials according to Comparative Example 1 in which the core material is formed of only glass chopped strands. Therefore, the vacuum heat insulating materials 1 according to Examples 1 to 9 are easier to handle than the vacuum heat insulating materials according to Comparative Example 1 in which the core material is formed of only glass chopped strands. Further, as shown in Table 1 and Table 2, the vacuum heat insulating material 1 according to Examples 1 to 9 has a higher heat insulating material than the vacuum heat insulating material according to Comparative Example 2 in which the core material is formed of only glass short fibers. Low thermal conductivity. Therefore, the vacuum heat insulating materials 1 according to Examples 1 to 9 have improved heat insulating performance as compared with the vacuum heat insulating material according to Comparative Example 2 in which the core material is formed of only glass short fibers. As described above, the vacuum heat insulating materials 1 according to Examples 1 to 9 are vacuum heat insulating materials having improved heat insulating performance and easy to handle.
 ここで、曲げ弾性率が50MPaを超えると、自重によって真空断熱材1が折れ曲がることを防止でき、真空断熱材1の取り扱いがより容易となる。このため、芯材20全体の質量に対する第1芯材21の質量の割合は、75質量%以下であることが望ましい。芯材20全体の質量に対する第1芯材21の質量の割合をさらに低下させることによって、真空断熱材1の芯材20の密度もさらに低下する。このため、芯材20全体の質量に対する第1芯材21の質量の割合をさらに低下させることによって、より軽量な真空断熱材1を得ることができ、真空断熱材1の取り扱いがさらに容易となる。翻って、芯材20全体の質量に対する第1芯材21の質量の割合を低下させていくにつれて、真空断熱材1の熱伝導率も低下していく。このため、真空断熱材1の断熱性能の向上という観点からは、芯材20全体の質量に対する第1芯材21の質量の割合は、25質量%以上であることが望ましい。すなわち、真空断熱材1の断熱性能をより向上させ、真空断熱材1の取り扱いをより容易にしようとした場合、芯材20全体の質量に対する第1芯材21の質量の割合は、25質量%以上であり75質量%以下であることが望ましい。また、真空断熱材1の断熱性能をさらに向上させ、真空断熱材1の取り扱いをさらに容易にしようとした場合、芯材20全体の質量に対する第1芯材21の質量の割合は、36質量%以上であり67質量%以下であることが望ましい。 Here, if the flexural modulus exceeds 50 MPa, the vacuum heat insulating material 1 can be prevented from bending due to its own weight, and the vacuum heat insulating material 1 can be handled more easily. Therefore, the ratio of the mass of the first core material 21 to the mass of the entire core material 20 is preferably 75 mass% or less. By further reducing the ratio of the mass of the first core material 21 to the mass of the entire core material 20, the density of the core material 20 of the vacuum heat insulating material 1 further decreases. Therefore, by further reducing the ratio of the mass of the first core material 21 to the mass of the core material 20 as a whole, a lighter vacuum heat insulating material 1 can be obtained, and the vacuum heat insulating material 1 becomes easier to handle. .. On the contrary, as the ratio of the mass of the first core material 21 to the mass of the entire core material 20 is decreased, the thermal conductivity of the vacuum heat insulating material 1 also decreases. Therefore, from the viewpoint of improving the heat insulating performance of the vacuum heat insulating material 1, the ratio of the mass of the first core material 21 to the mass of the whole core material 20 is preferably 25 mass% or more. That is, when the heat insulation performance of the vacuum heat insulating material 1 is further improved and the vacuum heat insulating material 1 is handled more easily, the ratio of the mass of the first core material 21 to the mass of the whole core material 20 is 25 mass %. It is above, and it is desirable that it is 75 mass% or less. When the heat insulation performance of the vacuum heat insulating material 1 is further improved and the vacuum heat insulating material 1 is handled more easily, the mass ratio of the first core material 21 to the mass of the whole core material 20 is 36 mass %. It is above, and it is desirable that it is 67 mass% or less.
 次に、本実施の形態1の真空断熱材1を実施例10及び実施例11として作製し、比較例3との間で、真空漏れの発生率の比較を行った。表3にその比較結果を示し、以下にその比較結果について説明する。 Next, the vacuum heat insulating material 1 of the first embodiment was manufactured as Example 10 and Example 11, and the occurrence rate of vacuum leakage was compared with Comparative Example 3. The comparison result is shown in Table 3, and the comparison result will be described below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例10に係る真空断熱材1の芯材20は、真空断熱材1完成後の芯材20の厚さが50mmとなるように、実施例1~実施例9に係る真空断熱材1で用いられた第2芯材22を6枚積層し、第2芯材22の一方の側に実施例1~実施例9に係る真空断熱材1で用いられた第1芯材21を20枚積層して形成した。実施例10に係る真空断熱材1のその他の作製方法は、実施例1~実施例9に係る真空断熱材1と同じである。すなわち、実施例10に係る真空断熱材1の芯材20は、第1面23又は第2面24がガラスチョップドストランドのニードルマットである第1芯材21で構成されている。 The core material 20 of the vacuum heat insulating material 1 according to the tenth embodiment is used in the vacuum heat insulating material 1 according to the first to ninth embodiments so that the thickness of the core material 20 after the completion of the vacuum heat insulating material 1 is 50 mm. 6 sheets of the second core material 22 thus obtained are laminated, and 20 sheets of the first core material 21 used in the vacuum heat insulating material 1 according to the examples 1 to 9 are laminated on one side of the second core material 22. Formed. The other manufacturing method of the vacuum heat insulating material 1 according to the tenth embodiment is the same as that of the vacuum heat insulating material 1 according to the first to ninth embodiments. That is, in the core material 20 of the vacuum heat insulating material 1 according to Example 10, the first surface 23 or the second surface 24 is composed of the first core material 21 which is a needle mat of glass chopped strands.
 実施例11に係る真空断熱材1の芯材20は、真空断熱材1完成後の芯材20の厚さが50mmとなるように、実施例1~実施例9に係る真空断熱材1で用いられた第2芯材22を6枚積層し、第2芯材22の一方の側に実施例1~実施例9に係る真空断熱材1で用いられた第1芯材21を10枚積層し、第2芯材22の他方の側に実施例1~実施例9に係る真空断熱材1で用いられた第1芯材21を10枚積層して形成した。実施例11に係る真空断熱材1のその他の作製方法は、実施例1~実施例9に係る真空断熱材1と同じである。すなわち、実施例11に係る真空断熱材1の芯材20は、第1面23及び第2面24の両面がガラスチョップドストランドのニードルマットである第1芯材21で構成されている。 The core material 20 of the vacuum heat insulating material 1 according to the eleventh embodiment is used in the vacuum heat insulating material 1 according to the first to ninth embodiments so that the thickness of the core material 20 after the completion of the vacuum heat insulating material 1 is 50 mm. 6 sheets of the second core material 22 thus obtained are laminated, and 10 sheets of the first core material 21 used in the vacuum heat insulating material 1 according to the examples 1 to 9 are laminated on one side of the second core material 22. On the other side of the second core material 22, ten first core materials 21 used in the vacuum heat insulating material 1 according to Examples 1 to 9 were laminated. Other manufacturing methods of the vacuum heat insulating material 1 according to the eleventh embodiment are the same as those of the vacuum heat insulating material 1 according to the first to ninth embodiments. That is, in the core material 20 of the vacuum heat insulating material 1 according to Example 11, both the first surface 23 and the second surface 24 are composed of the first core material 21 which is a needle mat of glass chopped strands.
 比較例3に係る真空断熱材の芯材は、真空断熱材完成後の芯材の厚さが50mmとなるように、実施例1~実施例9に係る真空断熱材1で用いられた第2芯材22を10枚積層して形成した。比較例3に係る真空断熱材のその他の作製方法は、実施例1~実施例9に係る真空断熱材1と同じである。すなわち、比較例3に係る真空断熱材の芯材は、ガラス短繊維のみで構成されている。 The core material of the vacuum heat insulating material according to Comparative Example 3 was used in the vacuum heat insulating material 1 according to Examples 1 to 9 so that the thickness of the core material after completion of the vacuum heat insulating material was 50 mm. The core material 22 was formed by laminating 10 sheets. Other manufacturing methods of the vacuum heat insulating material according to Comparative Example 3 are the same as those of the vacuum heat insulating material 1 according to Examples 1 to 9. That is, the core material of the vacuum heat insulating material according to Comparative Example 3 was composed of only glass short fibers.
 実施例10,11に係る真空断熱材1及び比較例3に係る真空断熱材のそれぞれを1000枚作製し、室温環境下で48時間放置した。その後に、実施例10,11に係る真空断熱材1及び比較例3に係る真空断熱材のそれぞれについて真空漏れの発生枚数を計測し、真空漏れの発生率を算出した。 1000 sheets of each of the vacuum heat insulating material 1 according to Examples 10 and 11 and the vacuum heat insulating material according to Comparative Example 3 were prepared and left to stand in a room temperature environment for 48 hours. After that, the number of occurrences of vacuum leakage was measured for each of the vacuum heat insulating material 1 according to Examples 10 and 11 and the vacuum heat insulating material according to Comparative Example 3, and the occurrence rate of vacuum leakage was calculated.
 表2に示すように、ガラス短繊維のみで芯材が形成されている比較例3に係る真空断熱材は、真空漏れ不良の発生率が5.1%であった。一方、芯材20の第1面23又は第2面24がガラスチョップドストランドのニードルマットである第1芯材21で構成されている実施例10に係る真空断熱材1は、真空漏れ不良の発生率が2.2%に低減している。また、芯材20の第1面23及び第2面24の両面がガラスチョップドストランドのニードルマットである第1芯材21で構成されている実施例11に係る真空断熱材1は、真空漏れ不良の発生率がさらに低減し、真空漏れ不良の発生率が0.2%となっている。このように、本実施の形態1に係る真空断熱材1は、ガラス短繊維のみで形成された芯材を用いた真空断熱材に比べ、真空漏れ不良に至ることを抑制できる。 As shown in Table 2, in the vacuum heat insulating material according to Comparative Example 3 in which the core material was formed of only glass short fibers, the occurrence rate of defective vacuum leakage was 5.1%. On the other hand, in the vacuum heat insulating material 1 according to Example 10 in which the first surface 23 or the second surface 24 of the core material 20 is constituted by the first core material 21 which is the needle mat of glass chopped strands, the vacuum leakage defect occurs. The rate is reduced to 2.2%. Further, the vacuum heat insulating material 1 according to the example 11 in which both the first surface 23 and the second surface 24 of the core material 20 are composed of the first core material 21 which is the needle mat of the glass chopped strand, has a poor vacuum leakage. Is further reduced, and the rate of occurrence of vacuum leakage failure is 0.2%. As described above, the vacuum heat insulating material 1 according to the first embodiment can suppress the occurrence of defective vacuum leakage, as compared with the vacuum heat insulating material using the core material formed of only the glass short fibers.
 なお、真空漏れ不良の原因となる、ガラス短繊維に含まれるショットの概形は、数十μmから数百μmである。一方、実施例1~実施例11で用いた第1芯材21は、真空断熱材1完成後の厚さが約1mmとなる。このため、ショットによって外包材3に貫通孔が形成されることによって起きる真空漏れ不良を抑制するためには、ガラス短繊維で形成された第2芯材22の外側に、少なくとも1枚の第1芯材21を設ければよい。換言すると、ショットによって外包材3に貫通孔が形成されることによって起きる真空漏れ不良を抑制するためには、ガラス短繊維で形成された第2芯材22の外側に、第1芯材21を少なくとも厚さ約1mm設ければよい。 Note that the shape of shots contained in short glass fibers, which causes vacuum leakage defects, is from several tens of micrometers to several hundreds of micrometers. On the other hand, the first core material 21 used in Examples 1 to 11 has a thickness of about 1 mm after the vacuum heat insulating material 1 is completed. Therefore, in order to suppress the vacuum leakage failure caused by the through holes being formed in the outer packaging material 3 by the shot, at least one first core material 22 is formed outside the second core material 22 formed of short glass fibers. The core material 21 may be provided. In other words, in order to suppress the vacuum leakage failure caused by the through hole being formed in the outer packaging material 3 by the shot, the first core material 21 is provided outside the second core material 22 formed of short glass fibers. The thickness may be at least about 1 mm.
 以上、本実施の形態1に係る真空断熱材1は、芯材20と、芯材20を包む外包材3とを備え、外包材3で覆われた内部空間が減圧状態となっている板状の真空断熱材である。また、芯材20は、ガラスチョップドストランドのニードルマットである第1芯材21と、ガラス短繊維で形成された第2芯材22とを備え、第1芯材21と第2芯材22とが真空断熱材1の厚み方向に積層された構成となっている。そして、本実施の形態1に係る真空断熱材1においては、外包材3と真空断熱材1の厚み方向に対向して該外包材3と接する芯材20の2面のうちの少なくとも1面は、第1芯材21で構成されている。 As described above, the vacuum heat insulating material 1 according to the first embodiment includes the core material 20 and the outer packaging material 3 that wraps the core material 20, and the internal space covered with the outer packaging material 3 is in a depressurized state. It is a vacuum insulation material. Further, the core material 20 includes a first core material 21 which is a needle mat of glass chopped strands, and a second core material 22 formed of short glass fibers, and the first core material 21 and the second core material 22. Are laminated in the thickness direction of the vacuum heat insulating material 1. In the vacuum heat insulating material 1 according to the first embodiment, at least one of the two surfaces of the core material 20 facing the outer packaging material 3 in the thickness direction of the vacuum heat insulating material 1 and in contact with the outer packaging material 3 is , The first core member 21.
 本実施の形態1に係る真空断熱材1においては、外包材3と真空断熱材1の厚み方向に対向して該外包材3と接する芯材20の2面のうちの少なくとも1面が、ガラスチョップドストランドのニードルマットである第1芯材21となっている。このため、本実施の形態1に係る真空断熱材1は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材に比べ、外包材3に形成された貫通孔によって真空漏れ不良に至ることを抑制できる。 In the vacuum heat insulating material 1 according to the first embodiment, at least one of the two surfaces of the outer packaging material 3 and the core material 20 facing the thickness direction of the vacuum heat insulating material 1 and in contact with the outer packaging material 3 is glass. It is the first core material 21 which is a needle mat of chopped strands. Therefore, the vacuum heat insulating material 1 according to the first embodiment is less likely to cause a vacuum leak defect due to the through hole formed in the outer packaging material 3 as compared with the conventional vacuum heat insulating material using the core material formed of short glass fibers. It can be suppressed.
 また、本実施の形態1に係る真空断熱材1の芯材20は、ガラスチョップドストランドのニードルマットである第1芯材21とガラス短繊維で形成された第2芯材22とが積層されて構成されている。このため、本実施の形態1に係る真空断熱材1は、芯材としてガラスチョップドストランドを用いた従来の真空断熱材と比べ、剛性が向上し、質量も軽くなる。また、本実施の形態1に係る真空断熱材1の芯材20は、結合剤を用いなくとも製造することができる。したがって、本実施の形態1に係る真空断熱材1は、結合剤を用いなくとも、芯材としてガラスチョップドストランドを用いた従来の真空断熱材と比べ、取り扱いが容易となる。 Further, the core material 20 of the vacuum heat insulating material 1 according to the first embodiment is formed by laminating the first core material 21 which is a needle mat of glass chopped strands and the second core material 22 formed of glass short fibers. It is configured. Therefore, the vacuum heat insulating material 1 according to the first embodiment has improved rigidity and lighter mass as compared with the conventional vacuum heat insulating material using glass chopped strands as the core material. Moreover, the core material 20 of the vacuum heat insulating material 1 according to the first embodiment can be manufactured without using a binder. Therefore, the vacuum heat insulating material 1 according to the first embodiment is easier to handle than a conventional vacuum heat insulating material using glass chopped strands as a core material, even without using a binder.
実施の形態2.
 本実施の形態2では、実施の形態1に係る真空断熱材1を備えた断熱箱の一例について説明する。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能及び構成については同一の符号を用いて述べることとする。
Embodiment 2.
In the second embodiment, an example of a heat insulating box provided with the vacuum heat insulating material 1 according to the first embodiment will be described. In the second embodiment, items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
 図3は、本発明の実施の形態2に係る断熱箱の概略構成を示す断面図である。断熱箱100は、例えば、高い断熱性能が求められる冷蔵庫等に用いられる。
 図3に示すように、断熱箱100は、外箱120と、該外箱120の内部に配置された内箱110とを備えている。そして、内箱110と外箱120との間には、実施の形態1において説明した真空断熱材1が配置されており、内箱110と外箱120の間で断熱を行う。
FIG. 3 is a sectional view showing a schematic configuration of a heat insulation box according to Embodiment 2 of the present invention. The heat insulation box 100 is used, for example, in a refrigerator or the like that requires high heat insulation performance.
As shown in FIG. 3, the heat insulation box 100 includes an outer box 120 and an inner box 110 arranged inside the outer box 120. Then, the vacuum heat insulating material 1 described in the first embodiment is arranged between the inner case 110 and the outer case 120, and the inner case 110 and the outer case 120 are thermally insulated.
 真空断熱材1が配置される位置は、内箱110と外箱120との間で断熱できる位置であれば、特に限定されない。例えば、内箱110における外箱120と対向する面に接するように、真空断熱材1を配置してもよい。また例えば、外箱120における内箱110と対向する面に接するように、真空断熱材1を配置してもよい。また例えば、内箱110又は外箱120と真空断熱材1との間にスペーサ等を設け、内箱110及び外箱120と真空断熱材1とが接触しないように、内箱110と外箱120との間の空間に真空断熱材を配置してもよい。 The position where the vacuum heat insulating material 1 is arranged is not particularly limited as long as it is a position where heat can be insulated between the inner box 110 and the outer box 120. For example, the vacuum heat insulating material 1 may be arranged so as to come into contact with the surface of the inner box 110 facing the outer box 120. Further, for example, the vacuum heat insulating material 1 may be arranged so as to come into contact with the surface of the outer box 120 facing the inner box 110. Further, for example, a spacer or the like is provided between the inner box 110 or the outer box 120 and the vacuum heat insulating material 1 so that the inner box 110 and the outer box 120 do not come into contact with the vacuum heat insulating material 1. You may arrange|position a vacuum heat insulating material in the space between and.
 ここで、真空断熱材1は、発泡ウレタン断熱材130等と比較して高い断熱性能を有する。このため、真空断熱材1を備えた断熱箱100は、発泡ウレタン断熱材130のみを用いた断熱箱よりも高い断熱性能を得られる。しかし、内箱110と外箱120との間の空間のうち、真空断熱材1以外の部分には発泡ウレタン断熱材130が充填されていてもよい。 Here, the vacuum heat insulating material 1 has higher heat insulating performance than the urethane foam heat insulating material 130 and the like. Therefore, the heat insulating box 100 provided with the vacuum heat insulating material 1 can obtain higher heat insulating performance than the heat insulating box using only the urethane foam heat insulating material 130. However, in the space between the inner box 110 and the outer box 120, a portion other than the vacuum heat insulating material 1 may be filled with the urethane foam heat insulating material 130.
 なお、上記の説明において、一般的な冷蔵庫等に用いられている断熱箱と同等である部分については、図示及び説明を省略している。 Note that, in the above description, illustration and description of parts that are equivalent to the heat insulation boxes used in general refrigerators are omitted.
 以上、本実施の形態2に係る断熱箱100は、芯材としてガラスチョップドストランドを用いた従来の真空断熱材よりも軽量な真空断熱材1が設けられている。このため、本実施の形態2に係る断熱箱100は、芯材としてガラスチョップドストランドを用いた従来の真空断熱材が用いられている断熱箱と比べ、軽量化することができる。また、本実施の形態2に係る断熱箱100は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材よりも真空漏れ不良を抑制できる真空断熱材1が設けられている。このため、本実施の形態2に係る断熱箱100は、ガラス短繊維で形成された芯材を用いた従来の真空断熱材が用いられている断熱箱と比べ、断熱箱100を製造する際の歩留まりが向上する。 As described above, the heat insulating box 100 according to the second embodiment is provided with the vacuum heat insulating material 1 which is lighter in weight than the conventional vacuum heat insulating material using glass chopped strands as the core material. Therefore, the heat insulation box 100 according to the second embodiment can be made lighter in weight than a heat insulation box using a conventional vacuum heat insulation material using glass chopped strands as a core material. Further, the heat insulating box 100 according to the second embodiment is provided with the vacuum heat insulating material 1 capable of suppressing defective vacuum leakage more than the conventional vacuum heat insulating material using the core material formed of glass short fibers. Therefore, the heat insulating box 100 according to the second embodiment is different from the heat insulating box in which the conventional vacuum heat insulating material using the core material formed of the glass short fibers is used in manufacturing the heat insulating box 100. Yield is improved.
 なお、本実施の形態2では、冷熱源を備える冷蔵庫の断熱箱100に真空断熱材1が用いられた構成を例に挙げたが、本発明はこれに限られない。例えば、真空断熱材1は、温熱源を備える保温庫の断熱箱に用いることもできる。また例えば、真空断熱材1は、冷熱源及び温熱源を備えない断熱箱、例えば、クーラーボックス等に用いることもできる。また、真空断熱材1は、断熱箱だけでなく、空調機、車両用空調機及び給湯機等の冷熱機器又は温熱機器の断熱部材として用いてもよい。また、断熱容器等に真空断熱材1を用いてもよい。また、真空断熱材1の形状も上記の平板形状に限定されるものではない。例えば、図1において上側又は下側に凸となるような曲面形状に、真空断熱材1を形成してもよい。また例えば、変形自在な外袋及び内袋を備えた断熱袋に真空断熱材1を用いてもよい。 In the second embodiment, the structure in which the vacuum heat insulating material 1 is used in the heat insulating box 100 of the refrigerator including the cold heat source is taken as an example, but the present invention is not limited to this. For example, the vacuum heat insulating material 1 can also be used for a heat insulating box of a heat storage box provided with a heat source. Further, for example, the vacuum heat insulating material 1 can also be used for a heat insulating box that does not include a cold heat source and a warm heat source, such as a cooler box. Further, the vacuum heat insulating material 1 may be used not only as a heat insulating box but also as a heat insulating member for a cooling or heating device such as an air conditioner, a vehicle air conditioner, and a water heater. Further, the vacuum heat insulating material 1 may be used for a heat insulating container or the like. The shape of the vacuum heat insulating material 1 is not limited to the flat plate shape described above. For example, the vacuum heat insulating material 1 may be formed in a curved surface shape that is convex upward or downward in FIG. Further, for example, the vacuum heat insulating material 1 may be used for a heat insulating bag having a deformable outer bag and an inner bag.
 1 真空断熱材、3 外包材、4 吸着剤、20 芯材、21 第1芯材、22 第2芯材、23 第1面、24 第2面、100 断熱箱、110 内箱、120 外箱、130 発泡ウレタン断熱材。 1 vacuum insulation material, 3 outer packaging material, 4 adsorbent, 20 core material, 21 first core material, 22 second core material, 23 first surface, 24 second surface, 100 heat insulation box, 110 inner box, 120 outer box , 130 Foam urethane insulation.

Claims (5)

  1.  芯材と、前記芯材を包む外包材とを備え、前記外包材で覆われた内部空間が減圧状態となっている板状の真空断熱材であって、
     前記芯材は、
     ガラスチョップドストランドのニードルマットである第1芯材と、ガラス短繊維で形成された第2芯材とを備え、
     前記第1芯材と前記第2芯材とが当該真空断熱材の厚み方向に積層された構成であり、
     前記外包材と前記厚み方向に対向して該外包材と接する前記芯材の2面のうちの少なくとも1面は、前記第1芯材で構成されている真空断熱材。
    A plate-shaped vacuum heat insulating material comprising a core material and an outer packaging material that wraps the core material, wherein the internal space covered with the outer packaging material is in a reduced pressure state
    The core material is
    A first core material, which is a needle mat of glass chopped strands, and a second core material formed of short glass fibers,
    A configuration in which the first core material and the second core material are laminated in the thickness direction of the vacuum heat insulating material,
    The vacuum heat insulating material, wherein at least one of the two surfaces of the core material facing the outer packaging material in the thickness direction and in contact with the outer packaging material is composed of the first core material.
  2.  前記外包材と前記厚み方向に対向して該外包材と接する前記芯材の前記2面の両面が、前記第1芯材で構成されている請求項1に記載の真空断熱材。 The vacuum heat insulating material according to claim 1, wherein both of the two surfaces of the core material facing the outer packaging material in the thickness direction and in contact with the outer packaging material are composed of the first core material.
  3.  前記芯材全体の質量に対する前記第1芯材の質量の割合が、25質量%以上であり75質量%以下である請求項1又は請求項2に記載の真空断熱材。 The vacuum heat insulating material according to claim 1 or 2, wherein the ratio of the mass of the first core material to the mass of the entire core material is 25% by mass or more and 75% by mass or less.
  4.  前記第1芯材に結合剤が用いられていない請求項1~請求項3のいずれか一項に記載の真空断熱材。 The vacuum heat insulating material according to any one of claims 1 to 3, wherein a binder is not used in the first core material.
  5.  外箱と、
     前記外箱の内部に配置された内箱と、
     前記外箱と前記内箱との間に配置された請求項1~請求項4のいずれか一項に記載の真空断熱材と、
     を備えた断熱箱。
    Outer box,
    An inner box arranged inside the outer box,
    The vacuum heat insulating material according to any one of claims 1 to 4, which is disposed between the outer box and the inner box.
    Insulation box equipped with.
PCT/JP2019/002496 2019-01-25 2019-01-25 Vacuum heat insulation material and heat insulation box WO2020152854A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/002496 WO2020152854A1 (en) 2019-01-25 2019-01-25 Vacuum heat insulation material and heat insulation box
JP2020567336A JP7154316B2 (en) 2019-01-25 2019-01-25 Vacuum insulation material and insulation box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002496 WO2020152854A1 (en) 2019-01-25 2019-01-25 Vacuum heat insulation material and heat insulation box

Publications (1)

Publication Number Publication Date
WO2020152854A1 true WO2020152854A1 (en) 2020-07-30

Family

ID=71736683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002496 WO2020152854A1 (en) 2019-01-25 2019-01-25 Vacuum heat insulation material and heat insulation box

Country Status (2)

Country Link
JP (1) JP7154316B2 (en)
WO (1) WO2020152854A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310384A (en) * 2001-04-11 2002-10-23 Matsushita Refrig Co Ltd Vacuum heat insulation material, refrigerating appliance with vacuum heat insulation material, electric water heater, and oven-range
JP2010060048A (en) * 2008-09-03 2010-03-18 Panasonic Corp Vacuum heat insulating core material, vacuum heat insulating material using the same, and method of manufacturing the vacuum heat insulating core maerial
KR20130078005A (en) * 2011-12-30 2013-07-10 제일모직주식회사 Core for vacuum insulation panel with excellent heat insulation property and pinhole resistance
JP2015137688A (en) * 2014-01-21 2015-07-30 日本グラスファイバー工業株式会社 Vacuum insulation material and process for manufacture of vacuum insulation material
WO2017195329A1 (en) * 2016-05-12 2017-11-16 三菱電機株式会社 Vacuum heat-insulating material and manufacturing method therefor
WO2018047261A1 (en) * 2016-09-08 2018-03-15 三菱電機株式会社 Vacuum insulation material and insulation box
WO2018087983A1 (en) * 2016-11-10 2018-05-17 三菱電機株式会社 Vacuum thermal insulating material, method for producing vacuum thermal insulating material, and apparatus for producing vacuum thermal insulating material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310384A (en) * 2001-04-11 2002-10-23 Matsushita Refrig Co Ltd Vacuum heat insulation material, refrigerating appliance with vacuum heat insulation material, electric water heater, and oven-range
JP2010060048A (en) * 2008-09-03 2010-03-18 Panasonic Corp Vacuum heat insulating core material, vacuum heat insulating material using the same, and method of manufacturing the vacuum heat insulating core maerial
KR20130078005A (en) * 2011-12-30 2013-07-10 제일모직주식회사 Core for vacuum insulation panel with excellent heat insulation property and pinhole resistance
JP2015137688A (en) * 2014-01-21 2015-07-30 日本グラスファイバー工業株式会社 Vacuum insulation material and process for manufacture of vacuum insulation material
WO2017195329A1 (en) * 2016-05-12 2017-11-16 三菱電機株式会社 Vacuum heat-insulating material and manufacturing method therefor
WO2018047261A1 (en) * 2016-09-08 2018-03-15 三菱電機株式会社 Vacuum insulation material and insulation box
WO2018087983A1 (en) * 2016-11-10 2018-05-17 三菱電機株式会社 Vacuum thermal insulating material, method for producing vacuum thermal insulating material, and apparatus for producing vacuum thermal insulating material

Also Published As

Publication number Publication date
JP7154316B2 (en) 2022-10-17
JPWO2020152854A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
KR101164306B1 (en) Vacuum heat insulating material, heat-insulating box body using the same and refrigerator
WO2010087039A1 (en) Vacuum insulation material and insulation box using the same
KR20090017645A (en) Vacuum heat insulation material
JP2011074934A (en) Vacuum thermal insulator and thermally insulating box including the vacuum thermal insulator
CN103574229B (en) Vacuum heat insulation materials, refrigerator, employ the equipment of vacuum heat insulation materials
JP5111331B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
EP2105648B1 (en) Vacuum heat insulating material and heat insulating box using the same
WO2020152854A1 (en) Vacuum heat insulation material and heat insulation box
WO2010116720A1 (en) Vacuum insulation material and device provided with same
JP4997198B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JPWO2018087983A1 (en) Vacuum heat insulating material, vacuum heat insulating material manufacturing method, and vacuum heat insulating material manufacturing apparatus
JP6092131B2 (en) Vacuum heat insulating material and manufacturing method thereof
KR100965971B1 (en) Vacuum heat insulation material
JP5779555B2 (en) Vacuum insulation and refrigerator
JP4591288B2 (en) Manufacturing method of vacuum insulation
JP2015137688A (en) Vacuum insulation material and process for manufacture of vacuum insulation material
JP5953159B2 (en) Vacuum insulation and refrigerator
JP2018115755A (en) Vacuum heat-insulating material, method of manufacturing vacuum heat-insulating material, and refrigerator
JP2013036595A (en) Vacuum heat insulating material
JP6793571B2 (en) Vacuum heat insulating material, equipment equipped with it, and manufacturing method of vacuum heat insulating material
JP6598715B2 (en) Vacuum insulation panel and method for manufacturing the same, gas adsorption pack
WO2013153813A1 (en) Vacuum heat insulator, and refrigerator-freezer and home wall provided with same
EP2985376B1 (en) Core material for vacuum insulator, comprising organic synthetic fiber, and vacuum insulator containing same
JP2007002996A (en) Method for manufacturing vacuum heat insulating material and vacuum heat insulating material manufactured by same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567336

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912089

Country of ref document: EP

Kind code of ref document: A1