WO2020151901A1 - Procédé et dispositif de production de produits énergétiques par craquage catalytique d'un matériau solide hydrocarboné sans formation de coke - Google Patents

Procédé et dispositif de production de produits énergétiques par craquage catalytique d'un matériau solide hydrocarboné sans formation de coke Download PDF

Info

Publication number
WO2020151901A1
WO2020151901A1 PCT/EP2019/087174 EP2019087174W WO2020151901A1 WO 2020151901 A1 WO2020151901 A1 WO 2020151901A1 EP 2019087174 W EP2019087174 W EP 2019087174W WO 2020151901 A1 WO2020151901 A1 WO 2020151901A1
Authority
WO
WIPO (PCT)
Prior art keywords
cracking
dispersion
oxygenated
temperature
hydrocarbon
Prior art date
Application number
PCT/EP2019/087174
Other languages
English (en)
Inventor
Pierre Dumons
Original Assignee
Pierre Dumons
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierre Dumons filed Critical Pierre Dumons
Publication of WO2020151901A1 publication Critical patent/WO2020151901A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/08Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts
    • C10G1/083Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal with moving catalysts in the presence of a solvent

Definitions

  • the invention relates to a method and a device for producing energy products by catalytic cracking of a solid hydrocarbon material without the formation of coke.
  • gaseous dihydrogen H 2
  • green dihydrogen when it comes from the decomposition of renewable biomass and / or waste.
  • the invention therefore relates in particular to such a method and such a device for the catalytic cracking of a solid hydrocarbon material considered to be waste and for the recovery of this waste in the form of energy products of high added value. Certain aspects of the invention relate in particular to such a method and such a device for the recovery of such waste containing biomass.
  • racking denotes the thermal reaction of conversion of a hydrocarbon compound into hydrocarbons of molecular weights lower than the molecular weight of the hydrocarbon compound, involving a breaking of covalent bonds
  • hydrocarbon material denotes a material comprising at least one hydrocarbon compound, that is to say at least one compound formed mainly carbon atoms and hydrogen atoms. It may be a material formed exclusively from hydrocarbon compounds. It can also be a material comprising at least one hydrocarbon compound and at least one compound free of carbon and hydrogen. Such a hydrocarbon material can comprise at least one hydrocarbon compound having at least one heteroatom such as, for example, oxygen (O), nitrogen (N), phosphorus (P), sulfur (S), at least a halogen (Cf, Br, F, I), etc.
  • O oxygen
  • N nitrogen
  • P phosphorus
  • S sulfur
  • Cf halogen
  • hydrocarbon material also denotes a material which may comprise biomass; - the term “waste” designates the practically unused part of a material, requiring storage and / or appropriate reprocessing with a view to its storage. It can be, for example, industrial waste, agricultural waste - such as non-recovered parts of plants - or household waste.
  • WO2018 / 127438 discloses a method and a device for producing fuel by catalytic cracking of a solid hydrocarbon material.
  • a hydrocarbon dispersion of a solid material in the divided state containing at least one hydrocarbon compound, a catalytic cracking catalyst and an alkali compound is heated in a liquid which is inert to cracking.
  • catalytic at a temperature above the cracking temperature of at least one hydrocarbon compound and is introduced into the cracking chamber and in contact with the hydrocarbon dispersion at the cracking temperature, a flow of oxygenated gaseous composition capable of allowing a reaction exothermic combustion of at least a part of hydrogen gas produced during cracking.
  • cracking contributes to the production of additional thermal energy allowing to raise the temperature in the cracking chamber and to reach the cracking temperature of the higher hydrocarbon compounds
  • the invention aims to overcome this drawback.
  • the invention therefore aims to provide a product production process
  • the invention also aims to provide such a process for producing an energy product by catalytic cracking of a solid hydrocarbon material without the formation of coke, dioxins and furans.
  • the invention therefore relates to a process for producing an energy product - in particular fuel - by catalytic cracking of a material - in particular a waste - solid hydrocarbon without formation of coke, in which a flow of d is formed.
  • a composition called an oxygenated cracking dispersion, by mixing: - a flow rate of a composition, called a hydrocarbon dispersion, comprising:
  • a flow rate of a composition called an oxygenated composition, capable of introducing gaseous dioxygen (0 2 ) into said hydrocarbon dispersion;
  • hydrocarbon dispersion is at a temperature below the cracking temperature of each hydrocarbon compound of the solid material in the divided state when it is mixed with said oxygenated composition.
  • At least one hydrocarbon compound of the solid hydrocarbon material is converted by catalytic cracking into an energy product of molecular mass lower than the molecular mass of the hydrocarbon compound.
  • At least one hydrocarbon compound is transformed into an energy product, in particular chosen from the group formed of alkane (s), cyclo-alkane (s), alkene (s) and aromatic hydrocarbons, without the formation of coke, dioxins and furans.
  • at least one compound is converted
  • gaseous hydrogen (H 2 ) is formed by catalytic cracking of a solid hydrocarbon material containing biomass. Consequently, according to the choice and the composition of the solid hydrocarbon material and according to the flow rate of the oxygenated composition, the catalytic cracking is directed towards the final production of gaseous dihydrogen (H 2 ) or towards its exothermic combustion producing heat energy and / or towards the hydrogenation of unsaturated hydrocarbons into saturated hydrocarbons constituting fuels.
  • the step of mixing said hydrocarbon dispersion and said oxygenated composition is carried out so that the dioxygen
  • At least part of the hydrogen (H 2 ) gas formed due to the catalytic cracking undergoes an exothermic reaction of controlled combustion in the presence of the oxygen (0 2 ) gas of said oxygenated cracking dispersion.
  • the process according to the invention being a process for the production of hydrogen (H 2 ) gas, the supply of dioxygen is suspended.
  • the proportion of biomass contained in the solid hydrocarbon material is adjusted to a minimum proportion of biomass necessary to produce an amount
  • the energy products formed by cracking are
  • the proportion of biomass contained in the solid hydrocarbon material is adjusted to a proportion of biomass suitable for producing a quantity of
  • the energy products formed by cracking are essentially saturated hydrocarbons constituting fuel.
  • the proportion of biomass contained in the solid hydrocarbon material is adjusted to a high proportion of biomass promoting the production of hydrogen (H 2 ) gas, allowing the reaction exothermic combustion, allowing hydrogenation of unsaturated hydrocarbons into fuels, allowing the
  • gaseous hydrogen (H 2 ) is formed by catalytic cracking of a solid hydrocarbon material rich in biomass.
  • the catalytic cracking is directed towards the formation of one and / or the other of the energy products such as
  • said oxygenated composition and said hydrocarbon dispersion are mixed while said hydrocarbon dispersion is at a temperature below the cracking temperature of each hydrocarbon compound-that is to say in the absence of cracking and any formation of hydrogen (H 2 ) gas and any gaseous energy product.
  • this mixture is carried out so that the exothermic reaction of combustion of hydrogen (H 2 ) gas occurs in a controlled manner and without ignition.
  • the flow rate of said oxygenated composition is adjusted, the
  • Such heating of said oxygenated cracking dispersion actually allows, in combination with the exothermic combustion reaction of hydrogen (H 2 ) gas, to form and vaporize at least one energy product without spontaneous ignition of the product (s). energy (s).
  • the proportion of hydrogen (H 2 ) gas in said oxygenated cracking dispersion is necessarily less than the proportion of hydrogen (H 2 ) gas formed in the process of WO2018 / 127438, in which the dioxygen (0 2 ) gaseous is introduced during the cracking reaction and is likely to lead to an uncontrolled combustion reaction due to the accumulation of hydrogen (H 2 ) gas resulting from catalytic cracking and initially formed in the absence of oxygen (0 2 ) gas .
  • the inventor has observed experimentally that the accidental and uncontrolled entry of atmospheric air into the cracking chamber of WO2018 / 127438, brought to a cracking temperature, is sufficient to cause ignition of the gases in the cracking chamber.
  • gaseous less than 4% relative to the gas volume in said oxygenated cracking dispersion in reality allows a controlled exothermic combustion reaction of hydrogen (H 2 ) gas, without ignition and also without formation of coke, dioxins and furans.
  • the flow rate of said oxygenated composition is introduced into the flow rate of said hydrocarbon dispersion before the initiation of catalytic cracking.
  • said oxygenated cracking dispersion is kneaded so as to allow distribution
  • condensation of at least one hydrocarbon in the gaseous state formed during catalytic cracking is carried out, under conditions suitable for forming the energy product in the liquid state.
  • condensation from a gaseous state to a liquid state is carried out at atmospheric pressure.
  • said oxygenated cracking dispersion is heated to a temperature between 260 ° C and 350 ° C above the cracking temperature of at least one hydrocarbon compound of solid material in the divided state. In other embodiments, said oxygenated cracking dispersion is heated to a
  • oxygenated composition is a gaseous composition.
  • liquid composition capable of releasing dioxygen (0 2 ) in the gaseous state in said hydrocarbon dispersion.
  • oxygenated composition is atmospheric air.
  • oxygenated composition is an oxygenated composition at a pressure greater than atmospheric pressure.
  • the catalytic cracking is carried out at atmospheric pressure.
  • the method according to the invention is therefore simple to implement.
  • said oxygenated cracking dispersion is heated so that it reaches the cracking temperature of at least one hydrocarbon compound, but without contact of said oxygenated cracking dispersion with a wall of heat exchange brought to a temperature necessarily greater than 360 ° C, so that said oxygenated cracking dispersion reaches the cracking temperature to the core, and without risk of formation of coke, dioxins and furans.
  • no coke, dioxins and furans are formed.
  • the method comprises at least one step of heating said hydrocarbon dispersion and / or a step of heating said oxygenated composition and / or a step of heating said oxygenated cracking dispersion, by conduction from a heat source to a lower temperature at 360 ° C - in particular between 200 ° C and 360 ° C -
  • the method comprises at least one step of heating said hydrocarbon dispersion and / or said oxygenated composition and / or of said conduction oxygenated cracking dispersion capable of raising the temperature of said hydrocarbon dispersion and / or of said oxygenated cracking dispersion to a temperature below said cracking temperature, but close to said cracking temperature.
  • At least one conduction heating step is a heating step by heat exchange with a flow rate of a heat transfer fluid.
  • the method comprises at least one step of heating by conduction of the flow of heat transfer fluid to a temperature below 360 ° C -in particular between 200 ° C and 360 ° C-.
  • the heat transfer fluid is an inert liquid at a temperature between 200 ° C and 360 ° C, substantially free of solid material in the divided state and of catalyst.
  • the inert liquid is an inert liquid recycled from a mixed solid / liquid composition formed of solids resulting from the catalytic cracking dispersed in the inert liquid (due to cracking catalytic).
  • the recycled inert liquid is formed by settling of solids of density greater than the density of the recycled inert liquid and separation of the inert liquid and solids.
  • the recycled inert liquid is formed by flotation of solids with a density lower than the density of the recycled inert liquid and separation of the inert liquid and the solids. Any other mode of separation is possible. It can be a separation by centrifugation, by filtration, for example.
  • At least one heating step called heating by mixing, during which the flow rate of said oxygenated cracking dispersion is mixed with a flow rate of inert liquid brought to a temperature above the temperature of said oxygenated cracking dispersion and above the temperature cracking at least one hydrocarbon compound, said mixture being produced so that the dispersion formed by this mixture reaches a temperature at least equal to the cracking temperature of at least one hydrocarbon compound and less than 400 ° C - in particular lower at 360 ° C- and without formation of coke, dioxins and furans or risk of formation of coke, dioxins and furans.
  • the method comprises at least one heating step, called preheating, during which the flow rate of said dispersion is heated
  • oxygenated - reaches a temperature close to the cracking temperature of each hydrocarbon compound but below said cracking temperature and below 360 ° C, without resorting to contact heating of said
  • a subsequent step of heating said oxygenated cracking dispersion is carried out so that said oxygenated cracking dispersion reaches the cracking temperature of at least one hydrocarbon compound.
  • catalytic undergoes an exothermic reaction of controlled combustion in presence of dioxygen (O2) gas from said oxygenated cracking dispersion.
  • O2 dioxygen
  • advantage is taken of the exothermic reaction of controlled combustion of at least part of the hydrogen (H 2 ) gas formed during cracking to heat and / or maintain the temperature. of said oxygenated cracking dispersion during cracking at a temperature greater than or equal to the cracking temperature of at least one hydrocarbon compound.
  • the method according to the invention comprises at least one heating step, called microwave heating, by a
  • the flow rate of said cracking oxygenated cracking dispersion is subjected to said microwave heating.
  • the flow rate of said oxygenated cracking dispersion during cracking is subjected to said microwave heating so as to supplement the supply of thermal energy due to a limiting production of gaseous dihydrogen (H 2 ) and an exothermic combustion of the dihydrogen. (H 2 ) gas insufficient to maintain the temperature in the cracking chamber at the cracking temperature of at least one hydrocarbon compound, in particular of each hydrocarbon compound.
  • H 2 gaseous dihydrogen
  • the temperature of said oxygenated cracking dispersion during cracking is precisely adjusted.
  • Said microwave heating advantageously makes it possible to compensate for the endothermic enthalpy of vaporization of the hydrocarbons formed during cracking.
  • said oxygenated cracking dispersion is subjected to ultrasound during catalytic cracking.
  • ultrasound promotes, by its vibratory mechanical action, a redistribution of the catalyst in said oxygenated cracking dispersion during cracking and an activation of the cracking reaction.
  • the flow rate of said oxygenated cracking dispersion is subjected simultaneously to said heating by microwaves and to ultrasound.
  • a step of deoxygenation of a dispersion of the solid material in the divided state is carried out in inert liquid.
  • Such a step aims to limit the presence of gaseous dioxygen (0 2 ) in this dispersion in trace amounts, making it possible to control, by the controlled supply of said oxygenated composition in said hydrocarbon dispersion, the quantity of dioxygen (0 2 ) gaseous in said oxygenated cracking dispersion.
  • a deoxygenation step is carried out by any means.
  • the dispersion of the solid material in the divided state is maintained in inert liquid in contact with a gaseous atmosphere.
  • a step of drying the solid material in the divided state is carried out, during which a dispersion of the solid material in the divided state is maintained in inert liquid at a temperature greater than 100 ° C so as to form a dispersion of a material, said dry material, solid in the divided state having a humidity level of less than 10% - in particular less than 5% - in inert liquid.
  • the drying step is carried out so that only the water of constitution of the solid material in the divided state remains in the solid material in the divided state, that is, that is to say the constitutive and non-extractable water of the solid material in the divided state.
  • a flow rate of a mixed solid / liquid composition resulting from the catalytic cracking of said oxygenated cracking dispersion is collected, the mixed composition being formed of a dispersion in the inert liquid of solids formed due to catalytic cracking.
  • the flow rate of mixed composition is collected by overflow and then gravity flow, due to the flow rate of said oxygenated cracking dispersion.
  • the flow of mixed solid / liquid composition is subjected to a liquid / solid separation step by which a flow of inert liquid substantially free of solids, then the flow of inert liquid formed during this liquid / solid separation step is recycled.
  • the liquid / solid separation step is a separation step by settling of solids with a density greater than the density of the inert liquid and by flotation of solids with a density lower than the density. inert liquid.
  • a hydrocarbon dispersion is prepared by mixing the solid material in the divided state, the catalyst (s), the alkali compound (s) and inert liquid, then;
  • a step of drying and deoxygenating said hydrocarbon dispersion is carried out, by which a cracking dispersion is formed, then;
  • the gaseous energy products formed by cracking are collected by distillation / condensation so as to obtain the energy products in the liquid state.
  • a non-condensed gas phase is collected during the distillation of gaseous energy products and of the condensation of liquid energy products, the non-condensed gas phase comprising in particular short-chain hydrocarbons , excess hydrogen (H 2 ) gas after cracking and / or carbon dioxide (C0 2 ) in particular, and the non-condensable gaseous phase is subjected to at least one step of separation / purification by osmosis of the hydrogen ( H 2 ) gas, gaseous saturated hydrocarbons and carbon dioxide.
  • the invention also relates to a device for producing an energy product - in particular fuel - by catalytic cracking of a material - in particular a solid hydrocarbon waste without the formation of coke.
  • the invention relates to such a device for implementing a method according to the invention.
  • the invention relates to a device for implementing a method according to the invention for producing an energy product by catalytic cracking of a solid hydrocarbon material without the formation of coke, the device comprising:
  • upstream is defined in relation to the direction of flow of said oxygenated cracking dispersion being formed between the zone
  • the means for the controlled introduction of the flow of oxygenated composition open into the supply pipe between the production zone of said hydrocarbon dispersion and the means for heating the enclosure for cracking the flow of said dispersion of oxygenated cracking at a temperature above the cracking temperature of at least one hydrocarbon compound of the solid material in the divided state.
  • a device enables:
  • oxygenated composition is introduced into said hydrocarbon dispersion before any formation of hydrogen (H 2 ) gas in said dispersion
  • the cracking enclosure defines:
  • an upstream oxygenation zone comprising an inlet for a flow rate of said cracking dispersion and an inlet for a flow rate of oxygenated composition, said upstream oxygenation zone being intended to receive said cracking dispersion and said oxygenated composition and comprising means for homogeneously mixing said cracking dispersion and said oxygenated composition allowing a substantially uniform distribution of oxygen at all points of said oxygenated cracking dispersion; an intermediate cracking zone extending downstream of the oxygenation zone and comprising the device for heating the flow rate of said oxygenated cracking dispersion to the cracking temperature;
  • the yield zone a downstream zone, called the yield zone, extending downstream of the cracking zone and allowing cracking conditions to be maintained for a sufficient period of time for optimized cracking
  • conduit for supplying the flow of oxygenated composition into the oxygenation zone of the cracking chamber and means for controlled introduction of the flow of an oxygenated composition into the oxygenation zone;
  • the pipe for supplying the flow of the oxygenated composition into the oxygenation zone opens into the oxygenation zone upstream of said heating device.
  • a device comprises a device for the distillation / condensation of at least one gaseous hydrocarbon and for conversion into a liquid energy product.
  • the device for heating the flow rate of said oxygenated cracking dispersion in the cracking chamber is chosen from:
  • Heating means by mixing the flow of said oxygenated cracking dispersion with a flow of inert liquid at a temperature above the cracking temperature.
  • said inlet of the cracking enclosure being emerging in the lower part of the cracking enclosure, the cracking enclosure - and the yield zone of the cracking enclosure - partly presents top, an overflow lip and gravity flow of a flow rate of a mixed solid / liquid composition resulting from catalytic cracking and means for collecting the flow rate of the mixed composition due to the flow rate of said oxygenated cracking dispersion.
  • the device according to the invention comprises means for preparing, drying and deoxygenating said hydrocarbon dispersion.
  • the invention also relates to a method and a cracking device.
  • FIG. 1 is a block diagram of a first variant of a method according to the invention
  • FIG. 2 represents a block diagram of a second variant of a method according to the invention
  • FIG. 3 is a representative diagram of a particular embodiment of a device according to the invention.
  • FIG. 4 is a representative diagram of a variant of a cracking chamber as shown in Fig. 3 of a device according to the invention.
  • a solid hydrocarbon material is selected, that is to say a solid material containing at least one hydrocarbon compound. It may be a solid waste containing at least one hydrocarbon compound, in particular at least one organic compound, cellulosic material and / or synthetic polymeric materials. Such waste can be substantially free of material
  • waste can include putrescible materials.
  • Such waste can be formed by selective sorting of household waste or by compression treatment of household waste in a press suitable for being able to separate putrescible materials and combustible materials from this household waste.
  • such solid waste in a divided state can exhibit a moisture content of between 10% to 30%.
  • household waste is subjected to compression up to a pressure greater than 750 bars under conditions suitable for extracting water and a fermentable fraction in the form of a wet pulp and for forming the material - in particular waste - solid hydrocarbon .
  • such compression is carried out by means of an extruding press, for example as described in EP 0 563 173.
  • a fragmentation of the material - in particular of the solid waste - is carried out
  • a solid material 1 is formed in the divided state in the form of solid particles having a greater dimension less than of the order of 20 mm and at least one dimension less than or equal to 3 mm, in particular of the order of 2 mm .
  • the solid material 1 in the divided state is in the form of solid particles having a specific surface area less than or equal to 10 cm 2 and a thickness less than or equal to 3 mm, in particular of the order of 2 mm.
  • hydrocarbon dispersion 40 by mixing 11 a quantity - in particular a flow - of a solid material 1 - in particular a waste - in the divided state containing at at least one hydrocarbon compound, of an amount -in particular of a flow rate- of at least one catalyst 10, of an amount -in particular of a flow rate- of at least one alkaline compound -in particular of lime- and of a quantity - in particular a flow - of a liquid 30 inert to catalytic cracking, that is to say an inert liquid 30 which does not undergo chemical modification when placed in conditions (catalyst, temperature, etc.) for cracking and converting hydrocarbon compounds from the solid material in the divided state into product
  • the mixture 11 is produced by assaying the various components — in particular the flow rates of the various components — of said hydrocarbon dispersion 40.
  • At least one catalyst is a catalytic cracking catalyst of
  • At least one catalyst is selected from the group consisting of potassium silicates, sodium silicates, calcium silicates, magnesium and aluminum silicates. Other cracking catalysts can be used. Such catalysts are also inexpensive catalysts. At least one catalyst is a solid in the divided state.
  • At least one alkaline compound 20 is in an amount suitable for the pH of said hydrocarbon dispersion 40 to be greater than 8.5. At least one alkaline compound 20 is in an amount suitable for the pH of said hydrocarbon dispersion 40 to be between 8 and 9.
  • a pH value makes it possible, on the one hand, to promote — in particular to allow — the catalytic cracking reaction. It also makes it possible to limit the corrosion of the elements of the device, brought into contact with said hydrocarbon dispersion 40. It also makes it possible to carry out catalytic cracking of chlorinated hydrocarbon compounds.
  • lime, or calcium oxide (CaO) is used as the alkali compound.
  • the inert liquid is formed from at least one mineral oil, each mineral oil being inert with respect to catalytic cracking and stable at the cracking temperature.
  • the inert liquid is liquid at room temperature and at cracking temperature.
  • the inert liquid 30 has a density less than the density of the catalyst 10. In some embodiments, the inert liquid 30 has a density of the order of 0.85. According to some embodiments, the inert liquid is in the liquid state at a temperature of 0 ° C. In certain embodiments, for the preparation of said hydrocarbon dispersion 40, nothing prevents the inert liquid 30 from being formed at least in part from inert liquid 32 recycled at the end of the catalytic cracking step, the recycled inert liquid 32 being, at least due to cracking, at a
  • the quantity - in particular the flow rate - of the solid material 1 - in particular of the waste - in the divided state containing at least one hydrocarbon compound - is adapted, the quantity - in particular the flow rate - of the catalyst (s) 10 , the amount - in particular the flow rate - of the alkaline compound (s) 20 - in particular lime - and the amount - in particular the flow rate - of the inert liquid 30 and / or of the inert liquid 32 recycled, suitably to respect their proportions in said hydrocarbon dispersion 40.
  • the mixing is carried out so that said cracking dispersion has a ratio between the volume of solid material in the divided state and the volume of said cracking dispersion of between of the order of 20 % and around 50%.
  • hydrocarbon dispersion 40 remains below the cracking temperature of each hydrocarbon compound so that catalytic cracking does not occur.
  • Mixing step 11 is carried out so that said hydrocarbon dispersion 40 formed is not brought into contact with a wall heated to a temperature greater than 360 ° C - in particular greater than 400 ° C - that is to say greater than the temperature of formation of coke, dioxins and / or furans. No coke, dioxins and furans are formed on contact with said wall.
  • Mixing step 11 is carried out under conditions chosen to allow a dispersion of the solid material 1 in the divided state, of the catalyst 10 and of the alkaline compound 20 in the inert liquid 30 and a contacting of the hydrocarbon compounds. solid material 1 in the divided state and catalyst 10.
  • said dispersion is heated 40
  • said hydrocarbon dispersion is not brought into contact with a wall of a heat exchanger heated to a temperature above the temperature of formation of coke, dioxins and furans, that is to say at a temperature above the formation temperature of coke, dioxins and furans. temperature above 360 ° C, especially at a temperature above 400 ° C.
  • said dispersion 40 is prepared
  • hydrocarbon at a temperature as close as possible to the cracking temperature of at least one hydrocarbon compound, but lower than this cracking temperature, so that cracking does not occur at this preparation step.
  • the oxygenated composition 23 is formed from atmospheric air.
  • the oxygenated composition 23 can be atmospheric air under pressure.
  • an oxygenated cracking dispersion 52 is formed at a temperature below the
  • the oxygenation step 24 allows a distribution of gaseous dioxygen (0 2 ) in said oxygenated cracking dispersion 52 in contact with the solid material 1 in the divided state and with the catalyst 10. Step is carried out.
  • the temperature of the oxygenated cracking dispersion 52 is increased - comprising the solid material 1 in the divided state, the cracking catalyst (s) 10, of the compound (s) ) 20 alkaline (s), inert liquid 30 and gaseous dioxygen (0 2 ) - by heating 60 of the oxygenated cracking dispersion 52 to a temperature above the cracking temperature of at least one hydrocarbon compound of the solid material 1 in the divided state.
  • This heating 60 is carried out so that said oxygenated cracking dispersion 52 is not heated to a temperature greater than 360 ° C-in particular greater than 400 ° C- (coke formation temperature) and so that the cracking dispersion 52 oxygenated is not in contact with a heat exchange wall brought to a temperature greater than 360 ° C. —in particular greater than 400 ° C.— [0127]
  • This heating step 60 is carried out by any suitable means. It is
  • this heating by mixing a flow of the oxygenated cracking dispersion 52 with a flow of inert liquid 30, 32 heated to a temperature above the cracking temperature of at least one hydrocarbon compound and under conditions suitable for that this mixture reaches the cracking temperature of at least one hydrocarbon compound, whereby catalytic cracking occurs. It is possible to achieve this heating 60 by heat exchange by conduction from a flow rate of heat transfer fluid at a temperature above the cracking temperature of at least one compound. hydrocarbon and such that the oxygenated cracking dispersion 52 reaches the cracking temperature of at least one hydrocarbon compound, whereby catalytic cracking occurs. None prevents this heating from being carried out, at least in part, by exposing the flow rate of the oxygenated cracking dispersion 52 to electromagnetic radiation with a frequency of between 1 GHz and 300 GHz.
  • the heating step 60 brings the temperature of the oxygenated cracking dispersion 52 to a temperature above the cracking temperature of at least one hydrocarbon compound.
  • the catalytic cracking reaction occurs. Due to the catalytic cracking, a foam 43 is formed comprising a gas phase 17 formed due to the cracking and escaping from a mixed solid / liquid composition 18 resulting from the cracking.
  • the gas phase 17 comprises in particular short-chain hydrocarbons 50 in the gaseous state, hydrogen (H 2 ) gas originating from catalytic cracking, carbon dioxide (C0 2 ) gas and water vapor.
  • the catalytic cracking reaction leads to a dissociation of the catalyst (s) and the hydrocarbon compounds and to a release of the catalyst (s) which is (are) instantaneously
  • dispersion 52 of oxygenated cracking at the cracking temperature of at least one hydrocarbon compound in compensation for the (endothermic) enthalpy of vaporization of the hydrocarbons formed. It allows cracking to continue.
  • a step 25 is carried out for condensing the gas phase 17 - in particular energy products 50 in the gaseous state - and forming energy products 51 in the liquid state.
  • a treatment is also carried out on the mixed solid / liquid composition 18 resulting from cracking and solid / liquid separation 19 of a recycled inert liquid 32 and of the solids 21 resulting from the catalytic cracking.
  • Such a separation treatment 19 is carried out by any suitable means, for example by sedimentation of the solids 21, by decantation, by flotation or by filtration.
  • gaseous hydrogen (H 2 ) is formed as an energy product by catalytic cracking of a waste - in particular a waste rich in biomass.
  • the inhibition of the inhibition is compensated for. exothermic combustion reaction by any means of heating upstream or downstream of said oxygenated cracking dispersion.
  • FIG.2 A block diagram of another variant of a process for producing an energy product by catalytic cracking of a solid hydrocarbon material according to the invention is shown in Fig.2.
  • a material 1 which is solid in the divided state and comprising at least one hydrocarbon compound is chosen or prepared.
  • the solid material 1 in the divided state is subjected to a drying step 3 by heating during which the solid material 1 is maintained in the divided state at a maximum temperature of 180 ° C and a minimum temperature of 100 ° C - in particular an optimum temperature of 120 ° C. allowing extraction of water 14 in vapor form and at least partial drying of the solid material 1 in the divided state.
  • This heating also makes it possible to facilitate the subsequent dispersion of the solid material 1 to the divided state in inert liquid.
  • Drying 3 is carried out by heating a flow of solid material 1 in the divided state in a conveyor, called a heating / drying conveyor, screw equipped with a peripheral heating sheath and adapted to be able to heat the solid material 1 to the divided state during its conveyance.
  • the solid material 1 is introduced in the continuously divided state into said heating / drying conveyor from a hopper for the storage and controlled distribution of the material 1. solid in the divided state.
  • the drying 3 is carried out by heating using a flow of hot inert liquid 30.32 circulating in a heating peripheral sheath of said heating / drying conveyor.
  • a flow of inert liquid 32 is used which is recycled at a temperature of between 100 ° C. and 200 ° C.
  • additional heating means distinct from the flow of hot inert liquid 30,32, alone or in combination with the flow of hot inert liquid 30,32.
  • additional induction heating means which are activated as long as the temperature of the solid material 1 in the divided state does not exceed the temperature of 100 ° C, indicative of a vaporization of water.
  • Drying 3 by heating results in a solid material in the divided state, called dry material 4, which is hot and has a moisture content of less than 10%, in particular less than 5%.
  • the moisture content of the solid material 4 in the divided state is determined by any suitable standard means, for example by measuring the maximum loss in mass of the solid material 4 in the divided state placed under drying conditions at a temperature above 100 ° C.
  • Said 4 sec material is then subjected to a step 5 of mixing said
  • Such a mixture is carried out in a mixing device adapted to allow a dispersion of said dry material 4 in inert liquid.
  • a dispersion of said dry material 4 in inert liquid.
  • a dispersion, called hot dispersion 6, of said dry material 4 is formed in the inert liquid 30.
  • step 7 of deoxygenation is carried out by any suitable means, for example by placing said hot dispersion 6 in contact with a gaseous atmosphere at a pressure below atmospheric pressure or by placing said hot dispersion 6 in contact with a gaseous atmosphere having a pressure.
  • partial oxygen (0 2 ) lower than the partial oxygen pressure of atmospheric air.
  • this deoxygenation step 7 is carried out in a deoxygenation conveyor comprising a sealed bell for bringing said hot dispersion 6 into contact with a gaseous composition having a partial pressure value of gaseous dioxygen (0 2 ) less than the partial pressure in oxygen (0 2 ) gas from atmospheric air.
  • the gaseous composition may be an inert gas devoid of gaseous oxygen (O 2 ).
  • the gas composition may be atmospheric air placed in the sealed bell at a pressure below atmospheric pressure.
  • Such a deoxygenation step 7 makes it possible to limit to a low and controlled value the quantity of gaseous dioxygen (0 2 ) of the deoxygenated dispersion 8. It also makes it possible to limit, by controlling it, the exothermic effect of the combustion of gaseous dihydrogen (H 2 ) during the subsequent catalytic cracking reaction, by a controlled supply of oxygen (0 2 ) gas in said hydrocarbon dispersion. . It makes it possible to minimize the uncontrolled reaction of exothermic combustion of hydrogen (H 2 ) gas liable to lead to:
  • said hydrocarbon-based dispersion 40 is prepared, by mixing 11 of an amount - in particular of a flow rate - of deoxygenated dispersion 8, of an amount - in particular of 'a flow rate- of at least one catalyst 10, an amount -in particular a flow- of at least one alkaline compound -in particular lime- and an amount -in particular a flowrate- of inert liquid 30 and / or recycled inert liquid 32.
  • the mixture 11 is produced by assaying the various components of said hydrocarbon dispersion 40.
  • Said hydrocarbon dispersion is formed at a temperature below the cracking temperature of each hydrocarbon compound so that catalytic cracking does not occur at this stage.
  • Said hydrocarbon dispersion is formed in which the catalyst (s) is (are) in contact with the hydrocarbon compound (s) of the solid material in the divided state.
  • a preheating 90 of said hydrocarbon dispersion 40 is carried out by induction heating means so as to obtain the cracking dispersion 41 preheated to a temperature of, for example, between 100 ° C. and 150 ° C.
  • a step 24 is carried out of oxygenation of the preheated cracking dispersion 41 by introducing an oxygenated composition 23 into the preheated cracking dispersion 41. by which an oxygenated cracking dispersion 52 is formed and the oxygenated composition 23 is distributed by kneading 16 in the volume of the oxygenated cracking dispersion 52.
  • a preheating 90 of said hydrocarbon dispersion 40 is carried out by induction heating means so as to obtain the cracking dispersion 41 preheated to a temperature of, for example, between 100 ° C. and 150 ° C.
  • a step 24 is carried out of oxygenation of the preheated cracking dispersion 41 by introducing an oxygenated composition 23 into the preheated cracking dispersion 41. by which an oxygenated cracking dis
  • this preheating 91 of the oxygenated cracking dispersion 52 is carried out by heat transfer by conduction between the oxygenated cracking dispersion 52 and a flow of inert liquid at a temperature of the order of 300 ° C in a heat exchanger.
  • the dispersion 52 of oxygenated cracking is heated by mixing 92 with a flow of liquid 31 heated to a temperature above the cracking temperature of at least one hydrocarbon compound and so that the oxygenated cracking dispersion 52 reaches a temperature above said cracking temperature, whereby the catalytic cracking reaction occurs. Due to the catalytic cracking, a foam 43 is formed resulting from the formation of a gas phase 17 within a mixed solid / liquid composition 18 resulting from the cracking.
  • the gaseous phase 17 comprises gaseous dihydrogen (H 2 ) originating from the catalytic cracking which undergoes, as soon as it is formed, the exothermic combustion reaction and without accumulation of gaseous dihydrogen (H 2 ) in the oxygenated cracking dispersion 52.
  • the thermal energy released due to the exothermic combustion reaction in said oxygenated cracking dispersion 52 makes it possible to at least partially compensate the enthalpy of vaporization of the hydrocarbons formed. It allows the continuation of catalytic cracking.
  • a step 93 of heating the foam 43 during catalytic cracking by radiation is carried out.
  • the temperature of the cracking foam 43 is maintained at a temperature allowing the catalytic cracking of hydrocarbon compounds of the highest cracking temperatures, but without the formation of coke, dioxins and furans, since the cracking foam 43 does not is not in contact with a heating surface heated to a temperature higher than 360 ° C, in particular higher than 400 ° C.
  • a treatment 22 is carried out to regenerate the catalyst (s) 10 of the solids 21 resulting from the catalytic cracking. Where appropriate, the catalyst (s) 10 thus regenerated are recycled during the operations for preparing said dispersion 40.
  • Said cracking device 100 shown forms a continuous circuit 125 for preparing a flow of hydrocarbon dispersion 40 from its constituent reagents, then catalytic cracking of hydrocarbon compounds of said hydrocarbon dispersion 40, then recycling of products formed during cracking. catalyst for the preparation of the hydrocarbon dispersion.
  • Said cracking device 100 has:
  • a hopper 142 for introducing a solid material 1 in the divided state into the preparation circuit 125;
  • Said cracking device 100 shown in FIG. 3 comprises a unit 170 for preparing the flow rate of said hydrocarbon dispersion 40.
  • the preparation unit 170 comprises a hopper 142 for dispensing solid material 1 in the divided state into a screw conveyor 141 for drying and deoxygenating the solid material 1 in the divided state.
  • drying / deoxygenation is driven in rotation by a motor member 161 whose speed of rotation makes it possible to control the flow of solid material 1 in the divided state in the drying / deoxygenation conveyor 141 and at the outlet of this conveyor.
  • the hopper 142 comprises means for controlling the flow of solid material 1 in the divided state introduced into the conveyor 141 of
  • Said cracking device 100 comprises a frustoconical duct 146 for guiding the solid material 1 in the divided state interposed between the hopper 142 and opening into the drying / deoxygenation conveyor 141.
  • the frustoconical duct 146 is equipped with a rotary screw 174 driven in rotation by a motor member 160, the rotary screw 174 cooperating with the frustoconical duct 146 to allow the flow of solid material 1 in the divided state to fall by gravity in the divided state. drying / deoxygenation conveyor 141.
  • the drying / deoxygenation conveyor 141 has means for heating the solid material 1 in the divided state at a temperature between 80 ° C and 120 ° C during its transport in the conveyor 141 of
  • drying / deoxygenation It comprises an outer conduction heating sheath 143 through which a flow of recycled and hot inert liquid 32 passes from the circuit 125 for preparing said hydrocarbon dispersion 40.
  • the flow of hot inert liquid 32 can be at a temperature between 150 ° C and 200 ° C - in particular of the order of 180 ° C to 190 ° C - at the inlet of the outer sheath 143.
  • the outer heating sheath 143 is in communication of hot inert liquid 32 with the internal space 184 of the drying / deoxygenation conveyor 141 through orifices 182 whereby the hot inert liquid 32 is contacted with the solid material 1 at the same time.
  • the divided state to form a dispersion of the solid material 1 in the divided state in the inert liquid 32.
  • drying / deoxygenation comprises induction heating means 183 extending downstream of the outer conduction heating sheath 143.
  • the induction heating means 183 are controlled so that the
  • the temperature of the dispersion of the solid material 1 in the divided state in the inert liquid 32 at the outlet of the drying / deoxygenation conveyor 141 is substantially greater than 100 ° C. attesting to the absence of residual water in the dispersion.
  • the drying / deoxygenation conveyor 141 has a degassing member 162 comprising a bell 150 maintained in a vacuum — that is to say at a pressure below atmospheric pressure — by a suction pump 123.
  • the drying / deoxygenation conveyor 141 allows the training of a degassed - in particular at least partially deoxygenated - and dried dispersion of the solid material 1 in the divided state in the inert liquid 30.
  • the downstream end of the drying / deoxygenation conveyor 141 opens into a chamber 1 1 1 for preparing said hydrocarbon dispersion 40.
  • the preparation chamber 1 1 1 comprises a conduit 109 for supplying a flow of catalyst 10 and a conduit 1 10 for supplying a flow of alkaline compound 20 in the preparation chamber 1 1 1.
  • the preparation chamber 1 1 1 comprises means 1 18 for mixing the mixture formed and driven in rotation by a member 1 19 motor.
  • the hydrocarbon dispersion 40 resulting from the mixing is entrained in the pipe 171 for supplying said hydrocarbon dispersion 40 to a cracking chamber 106, due to the flow of solid material 1 in the divided state in the drying / deoxygenation conveyor 141, due to the supply of inert liquid in the drying / deoxygenation conveyor 141, due to the supply of catalyst 10 and of alkaline compound 20 in the preparation chamber 1 1 1 and due to first pumping means 1 15 of said hydrocarbon dispersion 40.
  • the first pumping means 1 15 extend in said long loop 139 of the inert liquid distribution circuit 125 upstream of the chamber 1 1 1 for preparing the flow rate of said hydrocarbon dispersion 40 and downstream of an injection nozzle 187 for means 175 for introducing a flow of oxygenated composition into the flow of said hydrocarbon dispersion 40.
  • Any suction and delivery device for said hydrocarbon dispersion 40 can be used as pumping means 1 15. There is nothing to prevent the use of a worm screw (or Archimedes screw) in association with a delivery turbine cooperating with the mixing means 1 18 of the chamber 1 1 1 for preparing said hydrocarbon dispersion.
  • Said cracking device 100 shown in FIG. 3 comprises a member 129 for heating the flow rate of said hydrocarbon dispersion 40.
  • the heating member 129 of said hydrocarbon dispersion 40 is chosen so as to be able to heat said hydrocarbon dispersion 40 to a temperature below the cracking temperature of each hydrocarbon compound of the solid material 1 in the divided state so that cracking does not occur. not at this stage. It is also chosen so as not to allow contact of said hydrocarbon-based dispersion 40 with a heat exchange surface at a temperature above 360 ° C, especially above 400 ° C, so that coke, dioxins and furans are not formed.
  • the heater 129 is an induction heater.
  • the heater 129 prevents the heater 129 from being a conduction heater, a heater by electromagnetic radiation, a heater by mixing the flow rate of said hydrocarbon dispersion 40 with a flow rate of inert liquid 30 at a rate. temperature higher than the temperature of said hydrocarbon dispersion 40.
  • Said cracking device 100 shown in FIG. 3 comprises means 175 for introducing a flow of oxygenated composition into the supply line 171.
  • These means 175 for introducing a flow of oxygenated composition comprise a source 185 of oxygenated composition under pressure and a conduit 186 for distributing a flow of oxygenated composition communicating with the conduit 171 for supplying it by at least one nozzle 187 d injection and mixing of the flow rate of oxygenated composition and the flow rate of said hydrocarbon dispersion 40.
  • the injection nozzle (s) 187 open into the long loop 139 of the distribution circuit 125, downstream of the chamber 111 for preparing the flow rate of said hydrocarbon dispersion 40 and upstream of a mixing member 134 and of the cracking enclosure 106.
  • oxygenated are arranged in said cracking device 100 to introduce the flow of oxygenated composition into the flow of said dispersion 40
  • the means 175 for introducing the flow of oxygenated composition are arranged in said cracking device 100 upstream of the means for heating the hydrocarbon dispersion 40 to a temperature above the cracking temperature of at least one hydrocarbon compound.
  • the means 175 for introducing the flow rate of oxygenated composition into the supply pipe 171 are means for introducing an adjustable flow rate of oxygenated composition according to the solid material 1 in the divided state, according to the temperature of said hydrocarbon dispersion 40 during the introduction, according to the flow rate of said hydrocarbon dispersion 40 and according to the cracking temperature.
  • Said cracking device 100 shown in Fig.3 comprises a member
  • the heating member 132 is a heating member by conduction and heat exchange from a flow of inert liquid from a loop, called long loop 139, of the circuit 125 of distribution of inert liquid to the drying / deoxygenation conveyor 141.
  • Said long loop 139 of the distribution circuit 125 comprises a member 151 for liquid / solid separation of a flow of recycled inert liquid 32 and of solids 21 resulting from catalytic cracking from the mixed solid / liquid composition 18 resulting from catalytic cracking .
  • the separation member 151 comprises means - in particular a drain valve 116 - for taking out solids 21 with a density greater or less than the density of the inert liquid.
  • the separation member 151 comprises an inlet 112 of inert liquid from an inert liquid storage of
  • Said long loop 139 comprises extending downstream of the separation member 151, pumping means 131 and means 172 for heating the flow of inert liquid 32 recycled in said long loop 139.
  • Said long loop 139 comprises a valve 158 for adjusting the flow rate of inert liquid in the long loop 139.
  • the heating means 172 can be of any type and are suitable for being able to heat the flow of recycled inert liquid 32 to a temperature between 300 ° C and 350 ° C. It may, for example, be means 172 for heating the flow of inert liquid 32 recycled by the Joule effect.
  • the heating means 172 are chosen to allow an adjustment of the temperature of the flow rate of recycled inert liquid 32 when it enters the drying / deoxygenation conveyor 141.
  • said cracking device 100 comprises a mixing member 134 driven in rotation about an axis 137 by a driving member 136. The actuation of the mixing member 134 makes it possible to distribute the dioxygen (O2) gas in said oxygenated cracking dispersion 52 and to optimize the distribution of the solid material in the divided state, of the catalyst and of the alkali compound in the liquid.
  • said cracking device 100 comprises a valve 159 for draining said short loop 139 and said cracking device 100 with a view to its maintenance.
  • the liquid / solid separation member 151 can be of any type. It may be a device for liquid / solid separation by settling of the solids 21 of the mixed solid / liquid composition 18 obtained from catalytic cracking. It may be a device for liquid / solid separation by filtration and retention of the solids 21 of the mixed solid / liquid composition 18. It may be a liquid / solid separation device by flotation allowing separation of a flow of recycled inert liquid 32, of solids 21 of density greater than the density of inert liquid 32 and of materials of density less than the density of the inert liquid 32.
  • the heating member 132 is adapted to be able to heat said oxygenated cracking dispersion 52 circulating in the supply line 171 to a temperature below the cracking temperature of each compound. of said dispersion 40, but as close as possible to this temperature.
  • said dispersion 52 of oxygenated cracking circulating in the conduit 171 for supplying upstream of the member 132 for heating said dispersion 52 of oxygenated cracking can be at a temperature between 200 ° C and 260 ° C, in particular between about 250 ° C and 260 ° C.
  • Said cracking device 100 shown in Fig.3 comprises a cracking chamber 106 extending downstream of the injection nozzle 187 of the flow rate of
  • the cracking enclosure 106 extends between an inlet 133 for the flow of said deoxygenated cracking dispersion 52 in the cracking enclosure 106 and an outlet 102 of gaseous energy products 50 and of a mixed solid / liquid composition 18. formed due to catalytic cracking.
  • the outlet 102 opens into a collector 103 of gaseous energy products 50 resulting from cracking and into a collector 104 of mixed solid / liquid composition 18 resulting from cracking.
  • the cracking chamber 106 comprises in its downstream part a device for heating said oxygenated cracking dispersion 52 by mixing, in a mixing chamber 107, with a flow rate of said dispersion 52 of oxygenated cracking at a temperature below said cracking temperature and a flow of recycled inert liquid 32 heated to a temperature above the cracking temperature of at least one hydrocarbon compound so that the temperature of the mixture of said dispersion 52 of oxygenated cracking and inert liquid 32 is greater than the cracking temperature of at least one hydrocarbon compound and cracking occurs.
  • said cracking device 100 comprises means 173 for heating the flow of inert liquid 32 of a loop, called a short loop 140, of the circuit 125 of
  • Said short loop 140 comprises extending downstream of the separation member 151, pumping means 130 and means 173 for heating the flow of inert liquid 32 recycled in said short loop 140.
  • the heating means 173 can be of any type and are suitable for being able to heat the flow of recycled inert liquid 32 to a temperature of the order of 300 ° C to 350 ° C. It may, for example, be means 173 for heating the flow of inert liquid 32 recycled by the Joule effect.
  • Said short loop 140 comprises a valve 157 for adjusting the flow rate of inert liquid in the short loop 140.
  • the cracking enclosure 106 has in its upstream part, a device 147 for heating the flow rate of said oxygenated cracking dispersion 52, capable of raising the temperature of said oxygenated cracking dispersion 52 in the cracking enclosure 106 to a temperature above the cracking temperature of at least one hydrocarbon compound of the solid material in the divided state.
  • the device 147 for heating the flow rate of said oxygenated cracking dispersion 52 may be a conduction heat exchanger, an induction heating device or any other heating device. Any heating device can be used, with the exception of a heating device in which said oxygenated cracking dispersion 52 is brought into contact with a heat exchange wall heated to a temperature above 360 ° C,
  • said cracking device 100 allows heating of said oxygenated cracking dispersion 52 initially by mixing with a flow of hot inert liquid coming from the heating means 173, then by an exothermic reaction of controlled combustion of the gaseous hydrogen (H 2 ) supplemented, where appropriate, by heating with electromagnetic radiation without exceeding the temperature of formation of coke, dioxins and furans.
  • H 2 gaseous hydrogen
  • Said cracking device 100 comprises a heating device 120
  • the complementary heating device 120 is a device emitting electromagnetic radiation of frequency between 1 GHz and 300 GHz arranged to heat said dispersion 52 of oxygenated cracking during cracking in the cracking chamber 106.
  • Said cracking device 100 comprises an ultrasound generator 121
  • the ultrasound generator 121 makes it possible to ensure the distribution of the gaseous oxygen in said oxygenated cracking dispersion 52 and to optimize the distribution of the solid material in the divided state, of the catalyst and of the alkali compound in the inert liquid by promoting the contacts.
  • the cracking chamber 106 comprises means 122 for mixing
  • the mixing means 122 are chosen to allow the creation of turbulence in the cracking chamber and to promote contacts between the constituents of said oxygenated cracking dispersion 52.
  • the device 126 for distillation / condensation of the energy product (s) of said cracking device 100 comprises a nozzle 113 for discharging vapors liable to be emitted when the device is put into service. stopped during maintenance operations.
  • the discharge nozzle 113 is provided with a valve 114 for discharging these vapors.
  • distillation / condensation is fitted with a valve 117 for evacuating residues from maintenance of the distillation / condensation column.
  • the cracking chamber 106 extends between an inlet 133 of the flow rate of said deoxygenated cracking dispersion 52 in the cracking chamber 106 and an outlet 102 of gaseous energy products 50 and of a mixed solid / composition 18. liquid formed due to catalytic cracking.
  • the outlet 102 opens into a collector 103 of gaseous energy products 50 resulting from cracking and into a collector 104 of mixed solid / liquid composition 18 resulting from cracking.
  • the cracking enclosure 106 comprises means 175 for the controlled introduction of a flow rate of an oxygenated composition into the flow rate of said hydrocarbon dispersion 40 while said hydrocarbon dispersion 40 is at a temperature below the cracking temperature of each compound. hydrocarbonaceous solid material in the divided state of said hydrocarbon dispersion. Means 175
  • hydrocarbon dispersion 40 comprise a source 185 of pressurized oxygenated composition and a conduit 186 for distributing a flow rate of
  • oxygenated composition communicating with the pipe 171 supplied by a torus supporting nozzles 187 for injecting the flow of oxygenated composition into the flow of said hydrocarbon dispersion 40.
  • the cracking chamber 106 comprises a device 147 for heating the flow rate of oxygenated cracking dispersion capable of raising the temperature of the oxygenated cracking dispersion to a temperature above the cracking temperature of at least one hydrocarbon compound of the solid material at the divided state of said oxygenated cracked dispersion.
  • the heating device 147 is located downstream of the nozzles 187 for injecting the flow of oxygenated composition and makes it possible to induce the cracking reaction of at least one hydrocarbon compound in the presence of dioxygen from said oxygenated cracking dispersion.
  • the cracking chamber 106 has a yield zone 192 located downstream of the heating device 147 dimensioned to allow the cracking of a major part, in particular all, of the hydrocarbon compounds of the solid material in the divided state circulating from upstream downstream in the cracking chamber 106.
  • the yield zone 192 is in this dimensioned to allow a stay of the solid material in the divided state in the yield zone 192 for a period of the order of 3 minutes.
  • the yield zone 192 comprises two eccentric turbines creating a turbulent movement to maintain the solid material in the divided state under cracking conditions.
  • the invention can be the subject of numerous variants and applications other than those described above.
  • the structural and / or functional characteristics of the various embodiments described above may be the subject in whole or in part of any different juxtaposition or any different combination.
  • the sizing, organization in space and the design of the various constituent elements of the device are subject to infinite variations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un procédé de production d'un produit (51) énergétique par craquage catalytique d'un matériau solide hydrocarboné sans formation de coke, dans lequel on forme un débit d'une composition, dite dispersion (52) de craquage oxygénée, par mélange : - d'un débit d'une composition, dite dispersion (40) hydrocarbonée, comprenant : + un liquide (30,32) inerte vis-à-vis du craquage catalytique; + un matériau (1) solide à l'état divisé contenant au moins un composé hydrocarboné; + au moins un catalyseur (10) de craquage catalytique, et; + au moins un composé (20) alcalin, et; - d'un débit d'une composition, dite composition (23) oxygénée, apte à introduire du dioxygène (O2) gazeux dans ladite dispersion (40) hydrocarbonée; puis, on chauffe ladite dispersion (52) de craquage oxygénée à une température comprise entre 260°C et 360°C, supérieure à la température de craquage d'au moins un composé hydrocarboné du matériau (1) solide à l'état divisé, ce par quoi au moins un hydrocarbure (50) gazeux et du dihydrogène (H2) gazeux sont formés du fait du craquage catalytique; caractérisé en ce que ladite dispersion (40) hydrocarbonée est à une température inférieure à la température de craquage de chaque composé hydrocarboné du matériau solide à l'état divisé lors de son mélange avec ladite composition (23) oxygénée. L'invention concerne un tel procédé de production de produits énergétiques tels que des carburants, du dihydrogène (H2) gazeux et/ou des réactifs de synthèse de polymères synthétiques. L'invention s'étend aussi à un dispositif de production d'un produit énergétique pour la mise en œuvre de ce procédé.

Description

Description
Titre de l'invention : PROCÉDÉ ET DISPOSITIF DE PRODUCTION DE
PRODUITS ÉNERGÉTIQUES PAR CRAQUAGE CATALYTIQUE D’UN MATÉRIAU SOLIDE HYDROCARBONÉ SANS FORMATION DE COKE
[0001 ] [L'invention concerne un procédé et un dispositif de production de produits énergétiques par craquage catalytique d’un matériau solide hydrocarboné sans formation de coke.
[0002] Un tel procédé et un tel dispositif trouvent des applications notamment pour :
- la production d’hydrocarbures, dits « carburant », « diesel » ou « gazole »,
« essence » ou « kérosène », à chaînes courtes, aptes à être utilisés à titre de carburant pour un moteur à essence ou pour un moteur diesel ou pour un turboréacteur ou pour un turbocompresseur, et/ou ;
- la production d’hydrocarbures insaturés -notamment des hydrocarbures à chaînes carbonées linéaires- (tels que des alcènes, de formule générale CnH2n) recyclés, susceptibles d’être utilisés à titre de réactifs pour la synthèse de polymères synthétiques (PE, PVC, PP, PET, PMMA, par exemple), et/ou ;
- la production de dihydrogène (H2) gazeux qualifié de dihydrogène « vert » dès lors qu’il est issu de la décomposition de biomasse renouvelable et/ou d’un déchet.
[0003] L’invention concerne donc en particulier un tel procédé et un tel dispositif de craquage catalytique d’un matériau solide hydrocarboné considéré comme un déchet et de valorisation de ce déchet sous la forme de produits énergétiques de haute valeur ajoutée. Certains aspects de l’invention concernent en particulier un tel procédé et un tel dispositif pour la valorisation d’un tel déchet contenant de la biomasse.
[0004] Dans tout le texte :
- le terme « craquage » désigne la réaction thermique de conversion d’un composé hydrocarboné en hydrocarbures de poids moléculaires plus faibles que le poids moléculaire du composé hydrocarboné, impliquant une rupture de liaisons covalentes ;
- l’expression « matériau hydrocarboné » désigne un matériau comprenant au moins un composé hydrocarboné, c’est-à-dire au moins un composé formé majoritairement d’atomes de carbone et d’atomes d’hydrogène. Il peut s’agir d’un matériau formé exclusivement de composés hydrocarbonés. Il peut aussi s’agir d’un matériau comprenant au moins un composé hydrocarboné et au moins un composé exempt de carbone et d’hydrogène. Un tel matériau hydrocarboné peut comprendre au moins un composé hydrocarboné présentant au moins un hétéroatome tel que, par exemple, l’oxygène (O), l’azote (N), le phosphore (P), le soufre (S), au moins un halogène (Cf, Br, F, I), etc. L’expression « matériau hydrocarboné » désigne aussi un matériau pouvant comprendre de la biomasse ; - le terme « déchet » désigne la partie en pratique non utilisée d’une matière, nécessitant un stockage et/ou un retraitement approprié en vue de son stockage. Il peut s’agir par exemple d’un déchet industriel, d’un déchet agricole -telles que des parties non valorisées de plantes- ou d’un déchet ménager.
[0005] On connaît de WO2018/127438 un procédé et un dispositif de production de carburant par craquage catalytique d’un matériau solide hydrocarboné. Dans ce procédé, on chauffe une dispersion hydrocarbonée d’un matériau solide à l’état divisé contenant au moins un composé hydrocarboné, d’un catalyseur de craquage catalytique et d’un composé alcalin dans un liquide inerte vis-à-vis du craquage catalytique, à une température supérieure à la température de craquage d’au moins un composé hydrocarboné et on introduit dans la chambre de craquage et au contact de la dispersion hydrocarbonée à la température de craquage, un débit de composition gazeuse oxygénée apte à permettre une réaction exothermique de combustion d’au moins une partie de dihydrogène gazeux produit lors du craquage.
[0006] Un tel apport de composition gazeuse oxygénée dans la chambre de
craquage contribue à une production d’énergie thermique complémentaire permettant d’élever la température dans la chambre de craquage et d’atteindre la température de craquage des composés hydrocarbonés de plus haute
température de craquage. Il contribue aussi à une production d’énergie
thermique complémentaire favorisant le maintien à l’état gazeux des
hydrocarbures formés lors de la réaction de craquage, par compensation au moins partielle, voire excédentaire, de l’enthalpie (endothermique) de
vaporisation des hydrocarbures formés. [0007] L’inventeur a cependant observé que l’introduction incontrôlée de dioxygène (O2) gazeux dans ladite dispersion hydrocarbonée en cours de craquage -c’est-à- dire dans ladite dispersion hydrocarbonée portée préalablement à cette introduction à une température provoquant le craquage d’au moins un composé hydrocarboné et la formation de dihydrogène (H2) gazeux dans la chambre de craquage-, entraîne une réaction exothermique incontrôlée de combustion du dihydrogène (H2) gazeux en présence de dioxygène (02) gazeux et une augmentation incontrôlée de la température.
[0008] L’augmentation incontrôlée de la température résultant de cette réaction
exothermique incontrôlée ne permet pas de garantir la formation de produits énergétiques sans formation de coke, de dioxines et de furannes.
[0009] Cette augmentation incontrôlée de la température ne permet pas non plus de garantir le maintien des produits énergétiques à l’état gazeux issus du craquage à une température suffisamment basse pour permettre -notamment dans des conditions compatibles avec une mise en œuvre à l’échelle industrielle- leur condensation et leur récupération à l’état liquide.
[0010] L’invention vise à pallier cet inconvénient.
[001 1 ] L’invention vise donc à proposer un procédé de production de produit
énergétique par craquage catalytique d’un matériau solide hydrocarboné sans augmentation incontrôlée de la température lors du craquage.
[0012] L'invention vise également à proposer un tel procédé de production de produit énergétique par craquage catalytique d’un matériau solide hydrocarboné sans formation de coke, de dioxines et de furannes.
[0013] L'invention concerne donc un procédé de production d’un produit énergétique -notamment de carburant- par craquage catalytique d’un matériau -notamment d’un déchet- solide hydrocarboné sans formation de coke, dans lequel on forme un débit d’une composition, dite dispersion de craquage oxygénée, par mélange : - d’un débit d’une composition, dite dispersion hydrocarbonée, comprenant :
+ un liquide inerte vis-à-vis du craquage catalytique -c’est-à-dire un liquide choisi pour ne pas subir de modification de sa structure chimique lors du craquage catalytique- ;
+ un matériau solide à l’état divisé contenant au moins un composé hydrocarboné ;
+ au moins un catalyseur -notamment un catalyseur solide à l’état divisé- de craquage catalytique, et ;
+ au moins un composé alcalin ;
- d’un débit d’une composition, dite composition oxygénée, apte à introduire du dioxygène (02) gazeux dans ladite dispersion hydrocarbonée ;
puis on chauffe ladite dispersion de craquage oxygénée à une température comprise entre 260°C et 360°C, supérieure à la température de craquage d’au moins un composé hydrocarboné du matériau solide à l’état divisé, ce par quoi au moins un hydrocarbure gazeux et du dihydrogène (H2) gazeux sont formés du fait du craquage catalytique d’au moins un composé hydrocarboné ;
caractérisé en ce que ladite dispersion hydrocarbonée est à une température inférieure à la température de craquage de chaque composé hydrocarboné du matériau solide à l’état divisé lors de son mélange avec ladite composition oxygénée.
[0014] Dans un procédé selon l’invention, on transforme par craquage catalytique, au moins un composé hydrocarboné du matériau solide hydrocarboné en un produit énergétique de masse moléculaire inférieure à la masse moléculaire du composé hydrocarboné. On transforme au moins un composé hydrocarboné en un produit énergétique, notamment choisi dans le groupe formé des alcane(s), des cyclo-alcane(s), des alcène(s) et des hydrocarbures aromatiques, sans formation de coke, de dioxines et de furannes. Selon le choix du matériau solide hydrocarboné et sa composition, on transforme au moins un composé
hydrocarboné en produits énergétiques tels que des hydrocarbures insaturés et du dihydrogène (H2) gazeux. Avantageusement, on forme du dihydrogène (H2) gazeux par craquage catalytique d’un matériau solide hydrocarboné contenant de la biomasse. Dès lors, selon le choix et la composition du matériau solide hydrocarboné et selon le débit de la composition oxygénée, on oriente le craquage catalytique vers la production finale de dihydrogène (H2) gazeux ou vers sa combustion exothermique productrice d'énergie calorifique et/ou vers l’hydrogénation d’hydrocarbures insaturés en hydrocarbures saturés constitutifs de carburants. [0015] Selon l’invention, on réalise l’étape de mélange de ladite dispersion hydrocarbonée et de ladite composition oxygénée de façon que le dioxygène
(02) gazeux de ladite composition oxygénée soit au contact du catalyseur, du matériau solide à l’état divisé et du dihydrogène (H2) gazeux dès l'instant de sa formation lors du craquage. En particulier, on réalise cette mise en contact par malaxage de ladite dispersion hydrocarbonée et de ladite composition oxygénée. On réalise cette étape de mélange et de malaxage par tout moyen adapté pour obtenir une répartition homogène de ladite composition oxygénée dans le mélange formé.
[0016] Selon certains modes de réalisation d’un procédé selon l’invention, au moins une partie du dihydrogène (H2) gazeux formé du fait du craquage catalytique subit une réaction exothermique de combustion contrôlée en présence du dioxygène (02) gazeux de ladite dispersion de craquage oxygénée. Cependant, dans d’autre modes de réalisation, le procédé selon l’invention étant un procédé de production de dihydrogène (H2) gazeux, on suspend l’apport de dioxygène
(02) gazeux de façon à limiter la réaction de combustion exothermique, l’énergie nécessaire à la poursuite de la réaction de craquage étant apportée par des moyens alternatifs de chauffage, notamment par un apport de liquide inerte chaud recyclé ou tout autre moyen à l’exclusion d’une mise en contact avec une paroi portée à une température supérieure à la température de formation de coke.
[0017] Selon l’invention, on ajuste la proportion de biomasse contenue dans le
matériau solide hydrocarboné de façon à contrôler la quantité de dihydrogène (H2) gazeux formé lors du craquage catalytique.
[0018] Dans un premier mode de réalisation d’un procédé selon l’invention, on ajuste la proportion de biomasse contenue dans le matériau solide hydrocarboné à une proportion minimale de biomasse nécessaire pour produire une quantité
minimale de dihydrogène (H2) gazeux nécessaire pour permettre la réaction exothermique de combustion, pour atteindre et maintenir la température de craquage et pour permettre la régénération du catalyseur. Dans ce premier mode de réalisation, les produits énergétiques formés par craquage sont
essentiellement des hydrocarbures insaturés (tels que des alcènes), susceptibles d’être utilisés à titre de réactifs pour la synthèse de polymères synthétiques. [0019] Dans un deuxième mode de réalisation d’un procédé selon l’invention, on ajuste la proportion de biomasse contenue dans le matériau solide hydrocarboné à une proportion de biomasse adaptée pour produire une quantité de
dihydrogène (H2) gazeux nécessaire pour la réaction exothermique de
combustion, pour atteindre et maintenir la température de craquage, pour permettre une hydrogénation d’hydrocarbures insaturés en carburants et pour permettre la régénération du catalyseur. Dans ce deuxième mode de réalisation, les produits énergétiques formés par craquage sont essentiellement des hydrocarbures saturés constitutifs de carburant.
[0020] Dans un autre mode de réalisation d’un procédé selon l’invention, on ajuste la proportion de biomasse contenue dans le matériau solide hydrocarboné à une proportion élevée de biomasse favorisant la production de dihydrogène (H2) gazeux, permettant la réaction exothermique de combustion, permettant une hydrogénation d’hydrocarbures insaturés en carburants, permettant la
régénération du catalyseur, le solde du dihydrogène (H2) gazeux étant formé à titre de produit énergétique. Dans cet autre mode de réalisation, on forme du dihydrogène (H2) gazeux par craquage catalytique d’un matériau solide hydrocarboné riche en biomasse.
[0021 ] Selon le choix et la composition du matériau solide hydrocarboné et selon le débit de la composition oxygénée, on oriente le craquage catalytique vers la formation de l’un et/ou l’autre des produits énergétiques tels que des
hydrocarbures saturés, des hydrocarbures insaturés et/ou du dihydrogène (H2) gazeux.
[0022] Dans certains modes de réalisation de l’invention, on mélange ladite
composition oxygénée et ladite dispersion hydrocarbonée de façon à permettre, ultérieurement au mélange et dès l’initiation du craquage catalytique, la réaction exothermique de combustion de dihydrogène (H2) gazeux naissant dans ladite dispersion de craquage oxygénée du fait de la réaction de craquage, en présence de dioxygène (02) gazeux à titre de comburant. Dans ces modes de réalisation de l’invention, au moins une partie du dihydrogène (H2) gazeux formé du fait du craquage est consommé par combustion exothermique dès son apparition. [0023] Dans un procédé selon l’invention, on mélange ladite composition oxygénée et ladite dispersion hydrocarbonée alors que ladite dispersion hydrocarbonée est à une température inférieure à la température de craquage de chaque composé hydrocarboné -c’est-à-dire en absence de craquage et de toute formation de dihydrogène (H2) gazeux et de tout produit énergétique gazeux-. Dans un procédé selon l’invention, on réalise ce mélange de façon que la réaction exothermique de combustion du dihydrogène (H2) gazeux se produise de façon contrôlée et sans inflammation.
[0024] Selon l’invention, on ajuste le débit de ladite composition oxygénée, la
quantité d’oxygène dans ladite composition oxygénée et le débit de ladite dispersion hydrocarbonée de façon que la température de ladite dispersion de craquage oxygénée ne dépasse pas la température de formation de coke, de dioxines et de furannes.
[0025] L’inventeur a découvert de façon surprenante que le chauffage de ladite
dispersion de craquage oxygénée à une température supérieure ou égale à la température de craquage d'au moins un composé hydrocarboné, n’entraine pas d’inflammation du dihydrogène (H2) gazeux formé lors du craquage.
[0026] Un tel chauffage de ladite dispersion de craquage oxygénée permet en réalité, en combinaison avec la réaction exothermique de combustion du dihydrogène (H2) gazeux, de former et de vaporiser au moins un produit énergétique sans inflammation spontanée du(des) produit(s) énergétique(s).
[0027] Le fait qu’une quantité contrôlée de dioxygène (02) gazeux soit présente dans ladite dispersion de craquage oxygénée avant que celle-ci atteigne la
température de craquage, c’est-à-dire que du dioxygène (02) gazeux soit réparti dans ladite dispersion de craquage oxygénée avant craquage, permet lorsque ladite dispersion de craquage oxygénée atteint la température de craquage catalytique et que du dihydrogène (H2) gazeux naissant soit produit, que dès l’instant de sa formation, ce dihydrogène (H2) gazeux naissant participe avec le dioxygène (02) gazeux à une réaction exothermique de combustion du
dihydrogène (H2) gazeux parfaitement contrôlée du fait du contrôle du débit de la composition oxygénée. [0028] L’inventeur suppose que la réaction exothermique de combustion contrôlée du dihydrogène (H2) gazeux permet de compenser au moins en partie l’enthalpie de vaporisation endothermique des produits énergétiques et de maintenir la température de ladite dispersion de craquage oxygénée à une température permettant la poursuite du craquage catalytique et l’entrée des produits énergétiques à l’état gazeux dans la distillation.
[0029] Ainsi, la proportion de dihydrogène (H2) gazeux dans ladite dispersion de craquage oxygénée est nécessairement inférieure à la proportion de dihydrogène (H2) gazeux formé dans le procédé de WO2018/127438, dans lequel le dioxygène (02) gazeux est introduit au cours de la réaction de craquage et est susceptible de conduire à une réaction incontrôlée de combustion du fait de l’accumulation du dihydrogène (H2) gazeux issu du craquage catalytique et formé initialement en absence de dioxygène (02) gazeux. À cet égard, l’inventeur a observé expérimentalement que l’entrée accidentelle et incontrôlée d’air atmosphérique dans la chambre de craquage de WO2018/127438, portée à une température de craquage suffit à provoquer une inflammation des gaz dans la chambre de craquage. Par contre, il a aussi observé qu’un traitement selon l’invention d’une dispersion de craquage dans laquelle du dioxygène (02) gazeux est présent en quantité importante et non contrôlée avant chauffage de la dispersion de craquage à la température de craquage, conduit certes à une augmentation non contrôlable de la température dans la chambre de craquage, mais sans inflammation dans la chambre de craquage.
[0030] L’inventeur a observé qu’une proportion volumique de dihydrogène (H2)
gazeux inférieure à 4% par rapport au volume gazeux dans ladite dispersion de craquage oxygénée permet en réalité une réaction exothermique contrôlée de combustion du dihydrogène (H2) gazeux, sans inflammation et également sans formation de coke, de dioxines et de furannes.
[0031 ] Dans un procédé selon l’invention, on introduit le débit de ladite composition oxygénée dans le débit de ladite dispersion hydrocarbonée avant l’initiation du craquage catalytique. Dans un procédé selon l’invention, on malaxe ladite dispersion de craquage oxygénée de façon à permettre une répartition
homogène du dioxygène (02) gazeux dans ladite dispersion de craquage oxygénée à température inférieure à la température de craquage de chaque composé hydrocarboné.
[0032] Dans un procédé selon l’invention, on réalise une condensation d’au moins un hydrocarbure à l’état gazeux formé lors du craquage catalytique, dans des conditions propres à former le produit énergétique à l’état liquide. On réalise une telle condensation (d’un état gazeux à un état liquide) à pression atmosphérique.
[0033] Dans certains modes de réalisation d’un procédé selon l’invention, on chauffe ladite dispersion de craquage oxygénée à une température comprise entre 260°C et 350°C supérieure à la température de craquage d’au moins un composé hydrocarboné du matériau solide à l’état divisé. Dans d’autres modes de réalisation, on chauffe ladite dispersion de craquage oxygénée à une
température comprise entre 260°C et 340°C, notamment comprise entre 260°C et 330°C, de préférence entre 260°C et 320°C. Rien n’empêche cependant que la réaction de combustion exothermique conduise à une augmentation finale de la température jusqu’à une valeur inférieure à 400°C -notamment de l’ordre de 390°C-, dès lors que tout risque de formation de coke est écarté du fait du craquage et de l’épuisement des composés hydrocarbonés du matériau solide à l’état divisé.
[0034] Dans certains modes de réalisation d’un procédé selon l’invention, ladite
composition oxygénée est une composition gazeuse.
[0035] Rien n’empêche cependant que ladite composition oxygénée soit une
composition liquide apte à libérer du dioxygène (02) à l’état gazeux dans ladite dispersion hydrocarbonée.
[0036] Dans certains modes de réalisation d’un procédé selon l’invention, ladite
composition oxygénée est de l’air atmosphérique.
[0037] Dans certains modes de réalisation d’un procédé selon l’invention, ladite
composition oxygénée est une composition oxygénée à une pression supérieure à la pression atmosphérique.
[0038] Dans certains modes de réalisation avantageux d’un procédé selon l’invention, on réalise le craquage catalytique à pression atmosphérique. Le procédé selon l’invention est donc simple à mettre en œuvre. [0039] Dans un procédé selon l’invention, on chauffe ladite dispersion de craquage oxygénée de façon qu’elle atteigne la température de craquage d’au moins un composé hydrocarboné, mais sans contact de ladite dispersion de craquage oxygénée avec une paroi d’échange thermique portée à une température nécessairement supérieure à 360°C, de façon que ladite dispersion de craquage oxygénée atteigne à cœur la température de craquage, et sans risque de formation de coke, de dioxines et de furannes. Dans un procédé selon l’invention, on ne forme pas de coke, de dioxines et de furannes.
[0040] Dans certains modes de réalisation conformes à l’invention, le procédé
comprend au moins une étape de chauffage de ladite dispersion hydrocarbonée et/ou une étape de chauffage de ladite composition oxygénée et/ou une étape de chauffage de ladite dispersion de craquage oxygénée, par conduction à partir d’une source de chaleur à une température inférieure à 360°C -notamment comprise entre 200°C et 360°C- Dans certains modes de réalisation conformes à l’invention, le procédé comprend au moins une étape de chauffage de ladite dispersion hydrocarbonée et/ou de ladite composition oxygénée et/ou de ladite dispersion de craquage oxygénée par conduction apte à porter la température de ladite dispersion hydrocarbonée et/ou de ladite dispersion de craquage oxygénée à une température inférieure à ladite température de craquage, mais proche de ladite température de craquage. Dans certains modes de réalisation conformes à l’invention, au moins une étape de chauffage par conduction est une étape de chauffage par échange de chaleur avec un débit d’un fluide caloporteur. Dans certains modes de réalisation conformes à l’invention, le procédé comprend au moins une étape de chauffage par conduction du débit de fluide caloporteur à une température inférieure à 360°C -notamment comprise entre 200°C et 360°C-. Dans certains modes de réalisation conformes à l’invention, le fluide caloporteur est du liquide inerte à une température comprise entre 200°C et 360°C, sensiblement exempt de matériau solide à l’état divisé et de catalyseur.
[0041 ] Dans certains modes de réalisation conformes à l’invention, le liquide inerte est un liquide inerte recyclé à partir d’une composition mixte solide/liquide formée de matières solides issues du craquage catalytique dispersées dans le liquide inerte (du fait du craquage catalytique). Selon certains modes de réalisation, le liquide inerte recyclé est formé par décantation de matières solides de densité supérieure à la densité du liquide inerte recyclé et séparation du liquide inerte et des matières solides. Selon certains modes de réalisation, en combinaison ou non, le liquide inerte recyclé est formé par flottation de matières solides de densité inférieure à la densité du liquide inerte recyclé et séparation du liquide inerte et des matières solides. Tout autre mode de séparation est possible. Il peut s’agir d’une séparation par centrifugation, par filtration, par exemple.
[0042] Dans certains modes de réalisation conformes à l’invention, le procédé
comprend au moins une étape de chauffage, dit chauffage par mélange, lors duquel on mélange le débit de ladite dispersion de craquage oxygénée et un débit de liquide inerte porté à une température supérieure à la température de ladite dispersion de craquage oxygénée et supérieure à la température de craquage d’au moins un composé hydrocarboné, ledit mélange étant réalisé de façon que la dispersion formée par ce mélange atteigne une température au moins égale à la température de craquage d’au moins un composé hydrocarboné et inférieure à 400°C -notamment inférieure à 360°C- et sans formation de coke, de dioxines et de furannes ni risque de formation de coke, de dioxines et de furannes.
[0043] Rien n’empêche cependant que dans certains modes de réalisation
conformes à l’invention, le procédé comprenne au moins une étape de chauffage, dit préchauffage, lors de laquelle on chauffe le débit de ladite dispersion
hydrocarbonée -et/ou de ladite dispersion de craquage oxygénée- de façon que ladite dispersion hydrocarbonée -et/ou de ladite dispersion de craquage
oxygénée- atteigne une température proche de la température de craquage de chaque composé hydrocarboné mais inférieure à ladite température de craquage et inférieure à 360°C, sans recourir à un chauffage par contact de ladite
dispersion hydrocarbonée avec une paroi chauffée à une température supérieure à 350°C et sans formation de coke, de dioxines et de furannes et sans risque de formation de coke, de dioxines et de furannes. Dans ces autres modes de réalisation, on réalise une étape ultérieure de chauffage de ladite dispersion de craquage oxygénée de façon que ladite dispersion de craquage oxygénée atteigne la température de craquage d’au moins un composé hydrocarboné.
[0044] Selon l’invention, du dihydrogène (H2) gazeux formé du fait du craquage
catalytique subit une réaction exothermique de combustion contrôlée en présence du dioxygène (O2) gazeux de ladite dispersion de craquage oxygénée. Dans certains modes de réalisation d’un procédé selon l’invention, on tire avantageusement profit de la réaction exothermique de combustion contrôlée d’au moins une partie du dihydrogène (H2) gazeux formé lors du craquage pour chauffer et/ou maintenir la température de ladite dispersion de craquage oxygénée en cours de craquage à une température supérieure ou égale à la température de craquage d’au moins un composé hydrocarboné.
[0045] Dans certains modes de réalisation, le procédé selon l’invention comprend au moins une étape de chauffage, dit chauffage par microondes, par un
rayonnement électromagnétique de fréquence comprise entre 1 GHz et 300 GHz. Dans certains modes de réalisation, on soumet le débit de ladite dispersion de craquage oxygénée en cours de craquage audit chauffage par microondes. On soumet notamment le débit de ladite dispersion de craquage oxygénée en cours de craquage audit chauffage par microondes de façon à complémenter l’apport d’énergie thermique du fait d’une production limitante de dihydrogène (H2) gazeux et une combustion exothermique du dihydrogène (H2) gazeux insuffisante pour maintenir la température dans la chambre de craquage à la température de craquage d’au moins un composé hydrocarboné, notamment de chaque composé hydrocarboné.
[0046] Dans ces modes de réalisation, on ajuste précisément du fait dudit chauffage par microondes, la température de ladite dispersion de craquage oxygénée en cours de craquage. Ledit chauffage par microondes permet avantageusement de compenser l’enthalpie endothermique de vaporisation des hydrocarbures formés lors du craquage.
[0047] Dans certains modes de réalisation conformes à l’invention, on soumet ladite dispersion de craquage oxygénée à des ultrasons lors du craquage catalytique. L’inventeur suppose que les ultrasons favorisent, par leur action mécanique vibratoire, une redistribution du catalyseur dans ladite dispersion de craquage oxygénée lors du craquage et une activation de la réaction de craquage. En particulier, on soumet le débit de ladite dispersion de craquage oxygénée simultanément audit chauffage par microondes et aux ultrasons. [0048] Dans certains modes de réalisation conformes à l’invention, on réalise une étape de désoxygénation d’une dispersion du matériau solide à l’état divisé dans du liquide inerte. Une telle étape vise à limiter la présence de dioxygène (02) gazeux dans cette dispersion à l’état de traces, permettant de contrôler par l’apport contrôlé de ladite composition oxygénée dans ladite dispersion hydrocarbonée, la quantité de dioxygène (02) gazeux dans ladite dispersion de craquage oxygénée. On réalise une telle étape de désoxygénation par tout moyen. Dans certains modes de réalisation conformes à l’invention, lors de cette étape de désoxygénation, on maintient la dispersion du matériau solide à l’état divisé dans du liquide inerte en contact avec une atmosphère gazeuse
présentant une valeur de pression partielle en dioxygène (02) gazeux inférieure à la pression partielle en oxygène (02) gazeux de l’air atmosphérique, ce par quoi on forme une dispersion sensiblement désoxygénée du matériau solide à l’état divisé dans le liquide inerte.
[0049] Dans certains modes de réalisation conformes à l’invention, on réalise une étape de séchage du matériau solide à l’état divisé lors de laquelle on maintient une dispersion du matériau solide à l’état divisé dans du liquide inerte à une température supérieure à 100°C de façon à former une dispersion d’un matériau, dit matériau sec, solide à l’état divisé présentant un taux d’humidité inférieur à 10% -notamment inférieur à 5%- dans du liquide inerte. Dans certains modes de réalisation conformes à l’invention, on réalise l’étape de séchage de façon que ne subsiste dans le matériau solide à l’état divisé sensiblement que l’eau de constitution du matériau solide à l’état divisé, c’est-à-dire l’eau constitutive et non extractible du matériau solide à l’état divisé.
[0050] Dans certains modes de réalisation conformes à l’invention, on collecte un débit d’une composition mixte solide/liquide résultant du craquage catalytique de ladite dispersion de craquage oxygénée, la composition mixte étant formée d’une dispersion dans le liquide inerte de matières solides formées du fait du craquage catalytique. Dans certains modes de réalisation conformes à l’invention, on collecte le débit de composition mixte par débordement puis écoulement gravitaire, du fait du débit de ladite dispersion de craquage oxygénée. Dans ces modes de réalisation conformes à l’invention, on soumet le débit de composition mixte solide/liquide à une étape de séparation liquide/solide par laquelle on forme un débit de liquide inerte sensiblement exempt de matières solides, puis on recycle le débit de liquide inerte formé lors de cette étape de séparation liquide/solide. Dans certains modes de réalisation conformes à l’invention, l’étape de séparation liquide/solide est une étape de séparation par décantation de matières solides de densité supérieure à la densité du liquide inerte et par flottation de matières solides de densité inférieure à la densité du liquide inerte.
[0051 ] Dans certains modes de réalisation conformes à l’invention ;
- on prépare une dispersion hydrocarbonée par mélange du matériau solide à l’état divisé, du(des) catalyseur(s), du(des) composé(s) alcalin(s) et de liquide inerte, puis ;
- on réalise une étape de séchage et de désoxygénation de ladite dispersion hydrocarbonée ce par quoi est formée une dispersion de craquage, puis ;
- on chauffe ladite dispersion de craquage à une température inférieure à la température de craquage de chaque composé hydrocarboné (mais proche de la température de craquage du composé de plus basse température de craquage) ;
- on prépare ladite dispersion de craquage oxygénée par mélange de ladite dispersion de craquage et de ladite composition oxygénée, puis ;
- on chauffe ladite dispersion de craquage oxygénée à une température supérieure à la température de craquage d’au moins un composé hydrocarboné, ce par quoi du dihydrogène (H2) gazeux est formé et subit dès l’instant de sa formation une réaction de combustion exothermique contrôlée en présence de dioxygène (02) gazeux de ladite dispersion de craquage oxygénée, et ;
- on collecte par distillation/condensation des produits énergétiques gazeux formés par craquage de façon à obtenir les produits énergétiques à l’état liquide.
[0052] Dans certains modes de réalisation conformes à l’invention, on collecte une phase gazeuse non condensée lors de la distillation des produits énergétiques gazeux et de la condensation des produits énergétiques liquides, la phase gazeuse non condensée comprenant notamment des hydrocarbures à chaîne courte, du dihydrogène (H2) gazeux excédentaire à l’issue du craquage et/ou du dioxyde de carbone (C02) notamment, et on soumet la phase gazeuse non condensable à au moins une étape de séparation/purification par osmose du dihydrogène (H2) gazeux, des hydrocarbures saturés à l’état gazeux et du dioxyde de carbone. [0053] L’invention concerne aussi un dispositif de production d’un produit énergétique -notamment de carburant- par craquage catalytique d’un matériau - notamment d’un déchet- solide hydrocarboné sans formation de coke.
[0054] L’invention concerne un tel dispositif pour la mise en œuvre d’un procédé selon l’invention.
[0055] Selon certains modes de réalisation, l’invention concerne un dispositif pour la mise en œuvre d’un procédé selon l’invention de production d’un produit énergétique par craquage catalytique d’un matériau solide hydrocarboné sans formation de coke, le dispositif comprenant :
- une enceinte de craquage comprenant :
+ une entrée d’un débit de ladite dispersion de craquage oxygénée à une température inférieure à la température de craquage de chaque composé hydrocarboné du matériau solide à l’état divisé ;
+ un dispositif de chauffage du débit de ladite dispersion de craquage oxygénée dans l’enceinte de craquage, apte à porter la température de ladite dispersion de craquage oxygénée à une température supérieure à la température de craquage d’au moins un composé hydrocarboné du matériau solide à l’état divisé ;
+ une sortie de produits énergétiques à l’état gazeux formés dans l’enceinte de craquage du fait du craquage catalytique ;
- une conduite d’amenée dans l’enceinte de craquage du débit de ladite dispersion de craquage oxygénée à une température inférieure à la température de craquage de chaque composé hydrocarboné, la conduite d’amenée débouchant dans l’enceinte de craquage ;
- des moyens d’introduction contrôlée d’un débit d’une composition oxygénée dans le débit de ladite dispersion hydrocarbonée et de mélange du débit de composition oxygénée et du débit de ladite dispersion hydrocarbonée ;
caractérisé en ce que les moyens d’introduction contrôlée du débit de ladite composition oxygénée débouchent dans la conduite d’amenée en amont dudit dispositif de chauffage.
[0056] On définit le terme « amont » par rapport au sens d’écoulement de ladite dispersion de craquage oxygénée en cours de formation entre la zone
d’élaboration de ladite dispersion hydrocarbonée et l’enceinte de craquage. Selon l’invention, les moyens d’introduction contrôlée du débit de composition oxygénée débouchent dans la conduite d’amenée entre la zone d’élaboration de ladite dispersion hydrocarbonée et les moyens de chauffage de l’enceinte de craquage du débit de ladite dispersion de craquage oxygénée à une température supérieure à la température de craquage d’au moins un composé hydrocarboné du matériau solide à l’état divisé.
[0057] Un dispositif selon l’invention permet de réaliser :
- un mélange préalable du débit de ladite dispersion hydrocarbonée et du débit de composition oxygénée, ladite dispersion hydrocarbonée étant à une température inférieure à la température de craquage de chaque composé hydrocarboné du matériau solide à l’état divisé -et ne permettant pas le craquage-, puis ;
- un chauffage du débit de la dispersion de craquage oxygénée formée du fait de ce mélange conduisant au craquage d’au moins un composé hydrocarboné et à la formation de produits énergétiques et de dihydrogène (H2) gazeux naissant susceptible de permettre dès sa formation une réaction exothermique avec du dioxygène ( 02 ) de ladite dispersion de craquage oxygénée de chauffage complémentaire de ladite dispersion de craquage oxygénée.
[0058] Dans certains modes de réalisation d’un dispositif selon l’invention, les
moyens d’introduction du débit de composition oxygénée débouchent dans la conduite d’amenée en amont de l’enceinte de craquage et des moyens de chauffage de ladite dispersion de craquage oxygénée de sorte que la
composition oxygénée est introduite dans ladite dispersion hydrocarbonée avant toute formation de dihydrogène (H2) gazeux dans ladite dispersion
hydrocarbonée.
[0059] Dans un autre mode de réalisation, l’enceinte de craquage définit :
- une zone amont d'oxygénation comprenant une entrée d’un débit de ladite dispersion de craquage et une entrée d’un débit de composition oxygénée, ladite zone amont d'oxygénation étant destinée à recevoir ladite dispersion de craquage et ladite composition oxygénée et comprenant des moyens de mélange homogène de ladite dispersion de craquage et ladite composition oxygénée permettant une distribution sensiblement uniforme de l'oxygène en tous points de ladite dispersion de craquage oxygénée ; - une zone intermédiaire de craquage s’étendant en aval de la zone d’oxygénation et comprenant le dispositif de chauffage du débit de ladite dispersion de craquage oxygénée à la température de craquage ;
- une zone aval, dite zone de rendement, s’étendant en aval de la zone de craquage et permettant un maintien des conditions de craquage pendant une durée suffisante pour un craquage optimisé ;
- une conduite d’amenée du débit de ladite dispersion de craquage dans la zone d’oxygénation de l’enceinte de craquage ;
- une conduite d’amenée du débit de la composition oxygénée dans la zone d’oxygénation de l’enceinte de craquage et des moyens d’introduction contrôlée du débit d’une composition oxygénée dans la zone d’oxygénation ;
caractérisé en ce que la conduite d’amenée du débit de la composition oxygénée dans la zone d’oxygénation débouchent dans la la zone d’oxygénation en amont dudit dispositif de chauffage.
[0060] Un dispositif selon certains modes de réalisation de l’invention comprend un dispositif de distillation/condensation d’au moins un hydrocarbure gazeux et de conversion en produit énergétique liquide.
[0061 ] Dans certains modes de réalisation, le dispositif de chauffage du débit de ladite dispersion de craquage oxygénée dans l’enceinte de craquage est choisi parmi :
- des moyens de chauffage par un rayonnement électromagnétique de fréquence comprise entre 1 GHz et 300 GHz ;
- des moyens de chauffage par mélange du débit de ladite dispersion de craquage oxygénée avec un débit de liquide inerte à une température supérieure à la température de craquage.
[0062] Dans certains modes de réalisation, ladite entrée de l’enceinte de craquage étant débouchante en partie basse de l’enceinte de craquage, l’enceinte de craquage -et la zone de rendement de l’enceinte de craquage- présente en partie haute, une lèvre de débordement et d’écoulement gravitaire d’un débit d’une composition mixte solide/liquide résultant du craquage catalytique et des moyens de collecte du débit de la composition mixte du fait du débit de ladite dispersion de craquage oxygénée. [0063] Dans certains modes de réalisation, le dispositif selon l’invention comprend des moyens de préparation, de séchage et de désoxygénation de ladite dispersion hydrocarbonée.
[0064] L'invention concerne également un procédé et un dispositif de craquage
catalytique d’un matériau solide hydrocarboné caractérisés, en combinaison ou non, par tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après. Quelle que soit la présentation formelle qui en est donnée, sauf indication contraire explicite, les différentes caractéristiques mentionnées ci-dessus ou ci- après ne doivent pas être considérées comme étroitement ou inextricablement liées entre elles, l’invention pouvant concerner l’une seulement de ces
caractéristiques structurelles ou fonctionnelles, ou une partie seulement de ces caractéristiques structurelles ou fonctionnelles, ou une partie seulement de l’une de ces caractéristiques structurelles ou fonctionnelles, ou encore tout
groupement, combinaison ou juxtaposition de tout ou partie de ces
caractéristiques structurelles ou fonctionnelles.
[0065] D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante donnée à titre non limitatif de certains de ses modes de réalisation possibles et qui se réfère aux figures annexées dans lesquelles :
- [Fig. 1 ] représente un schéma synoptique d’une première variante d’un procédé selon l’invention ;
- [Fig. 2] représente un schéma synoptique d’une deuxième variante d’un procédé selon l’invention ;
- [Fig. 3] représente un schéma représentatif d’un mode de réalisation particulier d’un dispositif selon l’invention, et ;
- [Fig. 4] est un schéma représentatif d’une variante d’une chambre de craquage telle que représentée Fig. 3 d’un dispositif selon l’invention.
[0066] Sur les figures, les échelles et les proportions ne sont pas nécessairement strictement respectées uniquement à des fins de clarté de l’illustration.
[0067] Un schéma synoptique d’une première variante d’un procédé de production de produit énergétique par craquage catalytique d’un matériau solide
hydrocarboné selon l’invention est représenté Fig.1. [0068] On sélectionne un matériau solide hydrocarboné, c’est-à-dire un matériau solide contenant au moins un composé hydrocarboné. Il peut s’agir d’un déchet solide contenant au moins un composé hydrocarboné, notamment au moins un composé organique, de la matière cellulosique et/ou des matériaux synthétiques polymériques. Un tel déchet peut être sensiblement exempt de matière
putrescible. Cependant, s’agissant d’un déchet ménager, un tel déchet peut comprendre des matières putrescibles. Un tel déchet peut être formé par le tri sélectif de déchets ménagers ou par un traitement par compression d’ordures ménagères dans une presse adaptée pour pouvoir séparer les matières putrescibles et les matières combustibles de ces ordures ménagères. En général, un tel déchet solide à l’état divisé peut présenter un taux d’humidité compris entre 10% à 30%. Par exemple, on soumet des ordures ménagères à une compression jusqu'à une pression supérieure à 750 bars dans des conditions propres à extraire l’eau et une fraction fermentescible sous forme de pulpe humide et à former le matériau -notamment le déchet- solide hydrocarboné.
Avantageusement, on réalise une telle compression au moyen d’une presse à extruder, par exemple telle que décrite dans EP 0 563 173.
[0069] On réalise une fragmentation du matériau -notamment du déchet- solide
hydrocarboné de façon à former le matériau 1 -notamment le déchet- solide à l’état divisé. On réalise une fragmentation du matériau solide hydrocarboné par tout procédé approprié. On peut soumettre le matériau solide hydrocarboné à une fragmentation dans un extrudeur -par exemple, un extrudeur simple vis ou bi-vis-. Le matériau 1 solide à l’état divisé peut aussi être obtenu par lacération du matériau solide hydrocarboné. On forme un matériau 1 solide à l’état divisé sous forme de particules solides présentant une plus grande dimension inférieure à de l’ordre de 20 mm et au moins une dimension inférieure ou égale à 3 mm, notamment de l’ordre de 2 mm. De préférence, le matériau 1 solide à l’état divisé est sous forme de particules solides présentant une surface spécifique inférieure ou égale à 10 cm2 et une épaisseur inférieure ou égale à 3 mm, notamment de l’ordre de 2 mm.
[0070] Dans un procédé selon l’invention, on prépare une composition, dite
dispersion 40 hydrocarbonée, par mélange 11 d’une quantité -notamment d’un débit- d’un matériau 1 solide -notamment d’un déchet- à l’état divisé contenant au moins un composé hydrocarboné-, d’une quantité -notamment d’un débit- d’au moins un catalyseur 10, d’une quantité -notamment d’un débit- d’au moins un composé 20 alcalin -notamment de chaux- et d’une quantité -notamment d’un débit- d’un liquide 30 inerte vis-à-vis du craquage catalytique, c'est-à-dire un liquide 30 inerte qui ne subit pas de modification chimique lorsqu’il est placé dans des conditions (catalyseur, température... ) de craquage et de transformation de composés hydrocarbonés du matériau solide à l’état divisé en produit
énergétique, notamment en hydrocarbures à chaînes courtes. On réalise le mélange 11 par dosage des différents composants -notamment des débits des différents composants- de ladite dispersion 40 hydrocarbonée.
[0071 ] Au moins un catalyseur est un catalyseur de craquage catalytique de
composés hydrocarbonés en hydrocarbures. Au moins un catalyseur est choisi dans le groupe formé des silicates de potassium, des silicates de sodium, des silicates de calcium, des silicates de magnésium et d’aluminium. D’autres catalyseurs de craquage sont utilisables. De tels catalyseurs sont en outre des catalyseurs peu onéreux. Au moins un catalyseur est un solide à l’état divisé.
[0072] Au moins un composé 20 alcalin est en quantité adaptée pour que le pH de ladite dispersion 40 hydrocarbonée soit supérieur à 8,5. Au moins un composé 20 alcalin est en quantité adaptée pour que le pH de ladite dispersion 40 hydrocarbonée soit compris entre 8 et 9. Une telle valeur de pH permet d’une part de favoriser -notamment de permettre- la réaction de craquage catalytique. Elle permet également de limiter la corrosion des éléments du dispositif, mis en contact avec ladite dispersion 40 hydrocarbonée. Elle permet aussi de réaliser un craquage catalytique de composés hydrocarbonés chlorés. Dans certains modes de réalisation d’un procédé selon l’invention, on utilise de la chaux, ou oxyde de calcium (CaO) à titre de composé alcalin.
[0073] Le liquide 30 inerte est formé d’au moins une huile minérale, chaque huile minérale étant inerte vis-à-vis du craquage catalytique et stable à la température de craquage. Le liquide 30 inerte est liquide à température ambiante et à la température de craquage. Le liquide 30 inerte présente une densité inférieure à la densité du catalyseur 10. Selon certains modes de réalisation, le liquide 30 inerte présente une densité de l’ordre de 0,85. Selon certains modes de réalisation, le liquide 30 inerte est à l’état liquide à la température de 0°C. [0074] Dans certains modes de réalisation, pour la préparation de ladite dispersion 40 hydrocarbonée, rien n’empêche que le liquide 30 inerte soit formé au moins en partie de liquide 32 inerte recyclé à l’issue de l’étape de craquage catalytique, le liquide 32 inerte recyclé étant, au moins du fait du craquage, à une
température supérieure à la température ambiante, notamment comprise entre 100°C et 360°C, de préférence supérieure à 160°C. Dans certains modes de réalisation, rien n’empêche d’utiliser un tel liquide 32 inerte chaud à une température comprise entre 50°C et 250°C, notamment comprise entre 80°C et 200°C. Dans certains modes de réalisation, on utilise un tel liquide 32 inerte chaud à une température comprise entre 180°C et 200°C. On ajuste la
température du liquide 32 inerte chaud selon la nature du matériau solide à l’état divisé pour la préparation de ladite dispersion 40 hydrocarbonée.
[0075] On adapte la quantité -notamment le débit- du matériau 1 solide -notamment du déchet- à l’état divisé contenant au moins un composé hydrocarboné-, la quantité -notamment le débit- du(des) catalyseur(s) 10, la quantité -notamment le débit- du(des) composé(s) 20 alcalin(s) -notamment de chaux- et la quantité - notamment le débit- du liquide 30 inerte et/ou de liquide 32 inerte recyclé, de manière appropriée pour respecter leurs proportions dans ladite dispersion 40 hydrocarbonée.
[0076] Dans certains modes de réalisation, on réalise le mélange de façon que ladite dispersion de craquage présente un rapport entre le volume de matériau solide à l’état divisé et le volume de ladite dispersion de craquage compris entre de l’ordre de 20% et de l’ordre de 50%.
[0077] On réalise l’étape 11 de mélange du matériau 1 solide à l’état divisé, du
catalyseur 10, du composé alcalin 20 et du liquide 30 inerte et/ou du liquide 32 inerte recyclé par tout moyen approprié, par exemple au moyen d’un malaxeur, pour former ladite dispersion 40 hydrocarbonée.
[0078] On réalise l’étape 11 de mélange de façon que la température de ladite
dispersion 40 hydrocarbonée reste inférieure à la température de craquage de chaque composé hydrocarboné de sorte qu’il ne se produit pas de craquage catalytique. On réalise l’étape 11 de mélange de façon que ladite dispersion 40 hydrocarbonée formée ne soit pas mise en contact avec une paroi chauffée à une température supérieure à 360°C -notamment supérieure à 400°C- c’est-à- dire supérieure à la température de formation de coke, de dioxines et/ou de furannes. Il ne se forme pas de coke, de dioxines et de furannes au contact de ladite paroi.
[0079] On réalise l’étape 11 de mélange dans des conditions choisies pour permettre une dispersion du matériau 1 solide à l’état divisé, du catalyseur 10 et du composé 20 alcalin dans le liquide 30 inerte et une mise en contact des composés hydrocarbonés du matériau 1 solide à l’état divisé et du catalyseur 10.
[0080] Rien n’empêche de réaliser, suite à cette étape 11 de mélange, une étape additionnelle d’ajustement de la granulométrie de ladite dispersion 40
hydrocarbonée. On réalise un tel ajustement par tout moyen de fragmentation du matériau 1 solide à l’état divisé approprié.
[0081 ] Dans certains modes de réalisation, on chauffe ladite dispersion 40
hydrocarbonée ou au moins l’un des éléments constitutifs -notamment du liquide 30 inerte ou du liquide 32 inerte recyclé- de ladite dispersion 40 hydrocarbonée au cours de son élaboration dès lors que ce chauffage ne permet pas une élévation de la température de ladite dispersion 40 hydrocarbonée à une valeur supérieure à la température de craquage d’au moins un composé hydrocarboné. Dans ces conditions, aucune réaction de craquage d’un composé hydrocarboné, ni aucune réaction de formation de coke ne se produit. En particulier, on ne met pas ladite dispersion 40 hydrocarbonée en contact avec une paroi d’un échangeur de chaleur chauffée à une température supérieure à la température de formation de coke, de dioxines et de furannes, c’est-à-dire à une température supérieure à 360°C, notamment à une température supérieure à 400°C.
[0082] Dans un procédé selon l’invention, on prépare ladite dispersion 40
hydrocarbonée à une température aussi proche que possible de la température de craquage d’au moins un composé hydrocarboné, mais inférieure à cette température de craquage, de sorte que le craquage ne se produit pas à cette étape de préparation.
[0083] Dans un procédé selon l’invention, avant de chauffer ladite dispersion 52 de craquage oxygénée à une température supérieure à la température de craquage d’au moins un composé hydrocarboné, on réalise une étape 24 d’oxygénation de ladite dispersion 40 hydrocarbonée, lors de laquelle on introduit une composition
23 oxygénée dans ladite dispersion 40 hydrocarbonée.
[0084] Dans certains modes de réalisation, la composition 23 oxygénée est formée d’air atmosphérique. En particulier, la composition 23 oxygénée peut être de l’air atmosphérique sous pression. On forme lors de l’étape 24 d’oxygénation, une dispersion 52 de craquage oxygénée à une température inférieure à la
température de craquage de chaque composé hydrocarboné du matériau 1 solide à l’état divisé. L’étape 24 d’oxygénation permet une distribution de dioxygène (02) gazeux dans ladite dispersion 52 de craquage oxygénée au contact du matériau 1 solide à l’état divisé et du catalyseur 10. On réalise l’étape
24 d’oxygénation préalablement au chauffage de ladite dispersion 52 de craquage oxygénée à une température supérieure à la température de craquage d’au moins un composé hydrocarboné.
[0085] Selon l’invention, on accroît la température de la dispersion 52 de craquage oxygénée -comprenant le matériau 1 solide à l’état divisé, le(s) catalyseur(s) 10 de craquage, du(des) composé(s) 20 alcalin(s), du liquide 30 inerte et du dioxygène (02) gazeux- par chauffage 60 de la dispersion 52 de craquage oxygénée à une température supérieure à la température de craquage d’au moins un composé hydrocarboné du matériau 1 solide à l’état divisé. On réalise ce chauffage 60 de façon que ladite dispersion 52 de craquage oxygénée ne soit pas chauffée à une température supérieure à 360°C -notamment supérieure à 400°C- (température de formation de coke) et de façon que la dispersion 52 de craquage oxygénée ne soit pas en contact avec une paroi d’échange de chaleur portée à une température supérieure à 360°C -notamment supérieure à 400°C- [0086] On réalise cette étape de chauffage 60 par tout moyen approprié. Il est
possible de réaliser ce chauffage par mélange d’un débit de la dispersion 52 de craquage oxygénée avec un débit de liquide 30,32 inerte chauffé à une température supérieure à la température de craquage d’au moins un composé hydrocarboné et dans des conditions appropriées pour que ce mélange atteigne la température de craquage d’au moins un composé hydrocarboné, ce par quoi un craquage catalytique se produit. Il est possible de réaliser ce chauffage 60 par échange de chaleur par conduction à partir d’un débit de fluide caloporteur à une température supérieure à la température de craquage d’au moins un composé hydrocarboné et de façon que la dispersion 52 de craquage oxygénée atteigne la température de craquage d’au moins un composé hydrocarboné, ce par quoi un craquage catalytique se produit. Rien n’empêche de réaliser ce chauffage au moins en partie en exposant le débit de la dispersion 52 de craquage oxygénée à un rayonnement électromagnétique de fréquence comprise entre 1 GHz et 300 GHz.
[0087] L’étape 60 de chauffage porte la température de la dispersion 52 de craquage oxygénée à une température supérieure à la température de craquage d’au moins un composé hydrocarboné. La réaction de craquage catalytique se produit. Il se forme, du fait du craquage catalytique, une mousse 43 comprenant une phase 17 gazeuse formée du fait du craquage et s’échappant d’une composition 18 mixte solide/liquide résultant du craquage. La phase 17 gazeuse comprend notamment des hydrocarbures 50 à chaînes courtes et à l’état gazeux, du dihydrogène (H2) gazeux naissant du craquage catalytique, du dioxyde de carbone (C02) gazeux et de la vapeur d’eau. La réaction de craquage catalytique conduit à une dissociation du(des) catalyseur(s) et des composés hydrocarbonés et à une libération du(des) catalyseur(s) qui est(sont) instantanément
susceptible(s) d’interagir avec au moins un composé hydrocarboné et de former des hydrocarbures à chaînes courtes par craquage catalytique et, le cas échéant, du dihydrogène (H2) gazeux.
[0088] Le dihydrogène (H2) gazeux naissant au cœur de la dispersion 52 de
craquage oxygénée du fait du craquage catalytique subit une réaction
exothermique de combustion. La réaction exothermique de combustion du dihydrogène (H2) gazeux procède sans accumulation d’hydrogène (H2) gazeux dans ladite dispersion 52 de craquage oxygénée, le dihydrogène (H2) gazeux étant transformé en eau dès son apparition par combustion avec le dioxygène (02) gazeux présent dans ladite dispersion 52 de craquage oxygénée. L’énergie thermique libérée dans ladite dispersion 52 de craquage oxygénée du fait de cette réaction exothermique permet le maintien de la température de la
dispersion 52 de craquage oxygénée à la température de craquage d’au moins un composé hydrocarboné, en compensation de l’enthalpie (endothermique) de vaporisation des hydrocarbures formés. Elle permet la poursuite du craquage.
Elle permet aussi que la dispersion 52 de craquage oxygénée atteigne la température de craquage de composés hydrocarbonés de température de craquage plus élevée.
[0089] Dans un procédé selon l’invention, on réalise une étape 25 de condensation de la phase 17 gazeuse -notamment des produits 50 énergétiques à l'état gazeux- et de formation de produits 51 énergétiques à l’état liquide. On réalise aussi, le cas échéant, un traitement de la composition 18 mixte solide/liquide issue du craquage et de séparation 19 solide/liquide d’un liquide 32 inerte recyclé et des matières 21 solides issues du craquage catalytique. On réalise un tel traitement 19 de séparation par tout moyen approprié, par exemple par sédimentation des matières 21 solides, par décantation, par flottation ou par filtration.
[0090] Selon certains modes de réalisation avantageux, on ajuste le débit de
composition oxygénée à une valeur minime, ce par quoi on minimise la réaction de combustion exothermique et on collecte la phase gazeuse non condensable, comprenant le dihydrogène (H2) gazeux excédentaire à l’issue du craquage et/ou du dioxyde de carbone (C02), et on purifie le dihydrogène (H2) gazeux par osmose. Dans ces modes de réalisation, on forme du dihydrogène (H2) gazeux à titre de produit énergétique par craquage catalytique d’un déchet -notamment d’un déchet riche en biomasse- Dans ces modes de réalisation, on compense l’inhibition de la réaction de combustion exothermique par tout moyen de chauffage amont ou aval de ladite dispersion de craquage oxygénée.
[0091 ] Un schéma synoptique d’une autre variante d’un procédé de production de produit énergétique par craquage catalytique d’un matériau solide hydrocarboné selon l’invention est représenté Fig.2.
[0092] Dans cette variante, on choisit ou on prépare un matériau 1 solide à l’état divisé et comprenant au moins un composé hydrocarboné. On soumet le matériau 1 solide à l’état divisé à une étape 3 de séchage par chauffage lors de laquelle on maintient le matériau 1 solide à l’état divisé à une température maximale de 180°C et une température minimale de 100°C -notamment une température optimale de 120°C- permettant une extraction d’eau 14 sous forme vapeur et le séchage au moins partiel du matériau 1 solide à l’état divisé. Ce chauffage permet aussi de faciliter la dispersion ultérieure du matériau 1 solide à l’état divisé dans du liquide 30 inerte. On réalise le séchage 3 par chauffage d’un débit de matériau 1 solide à l’état divisé dans un convoyeur, dit convoyeur de chauffage/séchage, à vis équipé d’une gaine périphérique chauffante et adapté pour pouvoir chauffer le matériau 1 solide à l’état divisé lors de son convoyage. Dans un mode de réalisation préférentiel d’un procédé selon l’invention, on introduit le matériau 1 solide à l’état divisé en continu dans ledit convoyeur de chauffage/séchage à partir d’une trémie de stockage et de distribution contrôlée du matériau 1 solide à l’état divisé. Rien n’empêche qu’un tel convoyeur de chauffage/séchage présente des moyens de collecte de vapeur d’eau libérée lors du séchage 3 et de condensation de l’eau 14 de séchage. Rien n’empêche de soumettre une dispersion du matériau 1 solide à l’état divisé dans du liquide inerte à cette étape 3 de séchage par chauffage.
[0093] Dans un mode de réalisation préférentiel d’un procédé selon l’invention, on réalise le séchage 3 par chauffage en utilisant un débit de liquide inerte 30,32 chaud circulant dans une gaine périphérique chauffante dudit convoyeur de chauffage/séchage. On utilise en particulier un débit de liquide inerte 32 recyclé à une température comprise entre 100°C et 200°C. Rien n’empêche d’utiliser des moyens de chauffage complémentaires, distincts du débit de liquide inerte 30,32 chaud, seuls ou en combinaison avec le débit de liquide inerte 30,32 chaud. Il peut s’agir de moyens de chauffage complémentaires par induction qui sont activés tant que la température du matériau 1 solide à l’état divisé ne dépasse pas la température de 100°C, indicatrice d’une vaporisation d’eau. Il résulte du séchage 3 par chauffage un matériau solide à l’état divisé, dit matériau 4 sec, qui est chaud et présente un taux d’humidité de valeur inférieure à 10%, notamment inférieure à 5%. On détermine le taux d’humidité du matériau 4 solide à l’état divisé par tout moyen standard approprié, par exemple par une mesure de la perte maximale de masse du matériau 4 solide à l’état divisé placé dans des conditions desséchantes à une température supérieure à 100°C.
[0094] On soumet ensuite ledit matériau 4 sec à une étape 5 de mélange dudit
matériau 4 sec et de liquide 30 inerte -notamment de liquide 32 inerte recyclé-.
On réalise un tel mélange dans un dispositif de malaxage adapté pour permettre une dispersion dudit matériau 4 sec dans du liquide 30 inerte. Rien n’empêche d’utiliser le débit de liquide inerte 32 recyclé à une température comprise entre 100°C et 200°C pour chauffer le matériau 1 solide à l’état divisé en vue de son séchage, puis d’utiliser ce débit de liquide inerte 32 recyclé lors de l’étape 5 de mélange. On forme une dispersion, dite dispersion 6 chaude, dudit matériau 4 sec dans le liquide 30 inerte.
[0095] Suite à ce mélange, on soumet ladite dispersion 6 chaude à une étape 7 de désoxygénation. On réalise cette étape 7 de désoxygénation par tout moyen approprié, par exemple en plaçant ladite dispersion 6 chaude en contact avec une atmosphère gazeuse à une pression inférieure à la pression atmosphérique ou en plaçant ladite dispersion 6 chaude en contact avec une atmosphère gazeuse présentant une pression partielle en dioxygène (02) inférieure à la pression partielle en dioxygène de l’air atmosphérique. Il en résulte une
extraction du dioxygène (02) gazeux de ladite dispersion 6 chaude et la formation d’une dispersion 8 désoxygénée. On réalise par exemple cette étape 7 de désoxygénation dans un convoyeur de désoxygénation comprenant une cloche étanche de mise en contact de ladite dispersion 6 chaude avec une composition gazeuse présentant une valeur de pression partielle en dioxygène (02) gazeux inférieure à la pression partielle en dioxygène (02) gazeux de l’air atmosphérique. La composition gazeuse peut être un gaz inerte exempte de dioxygène (02) gazeux. La composition gazeuse peut être de l’air atmosphérique placé dans la cloche étanche à une pression inférieure à la pression atmosphérique.
[0096] Une telle étape 7 de désoxygénation permet de limiter à une valeur faible et contrôlée, la quantité de dioxygène (02) gazeux de la dispersion 8 désoxygénée. Elle permet également de limiter en le contrôlant l’effet exothermique de la combustion de dihydrogène (H2) gazeux au cours de la réaction ultérieure de craquage catalytique, par un apport lui-même contrôlé de dioxygène (02) gazeux dans ladite dispersion hydrocarbonée. Elle permet de minimiser la réaction incontrôlée de combustion exothermique du dihydrogène (H2) gazeux susceptible de conduire :
- à une formation massive et aléatoire de vapeur d’eau et à une augmentation incontrôlée de la température des vapeurs dégagées lors la réaction de craquage, une telle augmentation de la température des vapeurs étant de nature à
s’opposer à la condensation des produits énergétiques gazeux, et ;
- à une augmentation incontrôlée de la température de ladite dispersion 40 hydrocarbonée dans ladite chambre de craquage, notamment jusqu’à une température de l’ordre de 600°C (observée lorsque l’étape de désoxygénation n’est pas réalisée), température qui est incompatible avec le déroulement d’une réaction de craquage sans formation de coke.
[0097] Dans la variante du procédé selon l’invention représentée Fig.2, on prépare ladite dispersion 40 hydrocarbonée, par mélange 11 d’une quantité -notamment d’un débit- de dispersion 8 désoxygénée, d’une quantité -notamment d’un débit- d’au moins un catalyseur 10, d’une quantité -notamment d’un débit- d’au moins un composé 20 alcalin -notamment de chaux- et d’une quantité -notamment d’un débit- d’un liquide 30 inerte et/ou de liquide 32 inerte recyclé. On réalise le mélange 11 par dosage des différents composants de ladite dispersion 40 hydrocarbonée. On forme ladite dispersion 40 hydrocarbonée à une température inférieure à la température de craquage de chaque composé hydrocarboné de sorte que le craquage catalytique ne se produit pas à cette étape. On forme ladite dispersion 40 hydrocarbonée dans laquelle le(s) catalyseur(s) est(sont) en contact avec le(s) composé(s) hydrocarboné(s) du matériau solide à l’état divisé.
[0098] Rien n’empêche de réaliser au moins un préchauffage de ladite dispersion 40 hydrocarbonée, sans toutefois que ce(s) préchauffage(s) ne porte(nt) la température de la dispersion 41 de craquage préchauffée à une température supérieure à la température de craquage d’au moins un composé hydrocarboné. On peut réaliser ce(s) préchauffage(s) par tous moyens. On peut réaliser ce(s) préchauffage(s) en utilisant, par exemple, au moins un organe de chauffage par induction, au moins un échangeur de chaleur par conduction ou au moins un organe de chauffage par rayonnement électromagnétique. En particulier, on ne place pas ladite dispersion 40 hydrocarbonée au contact d’une paroi d’un échangeur de chaleur chauffée à une température supérieure à la température de formation de coke, de dioxines et/ou de furannes.
[0099] Dans la variante représentée Fig.2, on réalise un préchauffage 90 de ladite dispersion 40 hydrocarbonée par des moyens de chauffage par induction de façon à obtenir la dispersion 41 de craquage préchauffée à une température comprise, par exemple, entre 100°C et 150°C. Puis, on réalise une étape 24 d’oxygénation de la dispersion 41 de craquage préchauffée par introduction d’une composition 23 oxygénée dans la dispersion 41 de craquage préchauffée par laquelle on forme une dispersion 52 de craquage oxygénée et on répartit par malaxage 16 la composition 23 oxygénée dans le volume de la dispersion 52 de craquage oxygénée. Dans la variante représentée Fig.2, on réalise un
préchauffage 91 de la dispersion 52 de craquage oxygénée par des moyens de chauffage par conduction. Par exemple, on réalise ce préchauffage 91 par transfert de chaleur par conduction entre la dispersion 52 de craquage oxygénée et un débit de liquide inerte à une température de l’ordre de 300°C dans un échangeur de chaleur.
[0100] Dans la variante représentée Fig.2, on chauffe la dispersion 52 de craquage oxygénée par mélange 92 avec un débit de liquide 31 chauffé à une température supérieure à la température de craquage d’au moins un composé hydrocarboné et de façon que la dispersion 52 de craquage oxygénée atteigne une température supérieure à ladite température de craquage, ce par quoi la réaction de craquage catalytique se produit. On forme, du fait du craquage catalytique, une mousse 43 résultant de la formation d’une phase 17 gazeuse au sein d’une composition 18 mixte solide/liquide issue du craquage. La phase 17 gazeuse comprend du dihydrogène (H2) gazeux naissant du craquage catalytique qui subit dès sa formation la réaction exothermique de combustion et sans accumulation de dihydrogène (H2) gazeux dans la dispersion 52 de craquage oxygénée. L’énergie thermique libérée du fait de la réaction de combustion exothermique dans ladite dispersion 52 de craquage oxygénée permet de compenser au moins en partie l’enthalpie de vaporisation des hydrocarbures formés. Elle permet la poursuite du craquage catalytique.
[0101 ] Dans la variante représentée Fig.2, on réalise une étape 93 de chauffage de la mousse 43 en cours de craquage catalytique par un rayonnement
électromagnétique de fréquence comprise entre 1 GHz et 300 GHz. On maintient la température de la mouse 43 de craquage à une température permettant le craquage catalytique de composés hydrocarbonés de températures de craquage les plus élevées, mais sans formation de coke, de dioxines et de furannes, dès lors que la mousse 43 de craquage n’est pas en contact d’une surface de chauffage chauffée à une température supérieure à 360°C, notamment supérieure à 400°C. [0102] Dans la variante représentée Fig.2, on réalise un traitement 22 de régénération du(des) catalyseur(s) 10 des matières 21 solides issues du craquage catalytique. Le cas échéant, on recycle le(s) catalyseur(s) 10 ainsi régénérés lors des opérations de préparation de ladite dispersion 40
hydrocarbonée.
[0103] Un schéma général d’un dispositif, dit dispositif 100 de craquage, de
production d’un produit énergétique par craquage catalytique d’un matériau solide hydrocarboné sans formation de coke selon l’invention est représenté Fig.3. Ledit dispositif 100 de craquage représenté forme un circuit 125 continu de préparation d’un débit de dispersion 40 hydrocarbonée à partir de ses réactifs constitutifs, puis de craquage catalytique de composés hydrocarbonés de ladite dispersion 40 hydrocarbonée, puis de recyclage de produits formés lors du craquage catalytique pour la préparation de la dispersion 40 hydrocarbonée.
[0104] Ledit dispositif 100 de craquage présente :
une trémie 142 d’introduction d’un matériau 1 solide à l’état divisé dans le circuit 125 de préparation ;
- une entrée 109 de catalyseur 10 de craquage dans le circuit 125 de
préparation ;
- une entrée 110 de composé 20 alcalin dans le circuit 125 de préparation ;
- un collecteur 103 de produits 50 énergétiques à l’état gazeux produits dans le circuit 125 de craquage catalytique, le collecteur 103 des produits 50
énergétiques coopérant avec un dispositif 126 de
distillation/condensation du(des) produit(s) énergétique(s) ;
- un collecteur 104 de la composition 18 mixte solide/liquide issue du craquage catalytique et de recyclage des produits formés lors du craquage catalytique.
[0105] Ledit dispositif 100 de craquage représenté Fig.3 comprend une unité 170 de préparation du débit de ladite dispersion 40 hydrocarbonée. L’unité 170 de préparation comprend une trémie 142 de distribution de matériau 1 solide à l’état divisé dans un convoyeur 141 à vis de séchage et de désoxygénation du matériau 1 solide à l’état divisé. La vis du convoyeur 141 de
séchage/désoxygénation est entraînée en rotation par un organe 161 moteur dont la vitesse de rotation permet de contrôler le débit de matériau 1 solide à l’état divisé dans le convoyeur 141 de séchage/désoxygénation et en sortie de ce convoyeur. La trémie 142 comprend des moyens de contrôle du débit de matériau 1 solide à l’état divisé introduit dans le convoyeur 141 de
séchage/désoxygénation. Ledit dispositif 100 de craquage comprend un conduit 146 tronconique de guidage du matériau 1 solide à l’état divisé interposé entre la trémie 142 et débouchant dans le convoyeur 141 de séchage/désoxygénation. Le conduit 146 tronconique est équipé d’une vis 174 rotative entraînée en rotation par un organe 160 moteur, la vis 174 rotative coopérant avec le conduit 146 tronconique pour permettre la chute par gravité du débit de matériau 1 solide à l’état divisé dans le convoyeur 141 de séchage/désoxygénation.
06] Le convoyeur 141 de séchage/désoxygénation présente des moyens de chauffage du matériau 1 solide à l’état divisé à une température comprise entre 80°C et 120°C lors de son transport dans le convoyeur 141 de
séchage/désoxygénation. Il comprend une gaine 143 externe de chauffage par conduction parcourue par un débit de liquide 32 inerte recyclé et chaud du circuit 125 de préparation de ladite dispersion 40 hydrocarbonée. Le débit de liquide 32 inerte chaud peut être à une température comprise entre 150°C et 200°C - notamment de l’ordre de 180°C à 190°C- en entrée de la gaine 143 externe. La gaine 143 externe de chauffage est en communication de liquide 32 inerte chaud avec l’espace 184 interne du convoyeur 141 de séchage/désoxygénation par des orifices 182 ce par quoi le liquide 32 inerte chaud est mis en contact avec le matériau 1 solide à l’état divisé pour former une dispersion du matériau 1 solide à l’état divisé dans le liquide 32 inerte. Le convoyeur 141 de
séchage/désoxygénation comprend des moyens 183 de chauffage par induction s’étendant en aval de la gaine 143 externe de chauffage par conduction. Les moyens 183 de chauffage par induction sont contrôlés de façon que la
température de la dispersion du matériau 1 solide à l’état divisé dans le liquide 32 inerte en sortie du convoyeur 141 de séchage/désoxygénation soit sensiblement supérieure à 100°C attestant de l’absence d’eau résiduelle dans la dispersion. Le convoyeur 141 de séchage/désoxygénation présente un organe 162 de dégazage comprenant une cloche 150 maintenue en dépression -c’est-à-dire à une pression inférieure à la pression atmosphérique- par une pompe 123 aspirante. Le convoyeur 141 de séchage/désoxygénation permet la formation d’une dispersion dégazée -notamment au moins partiellement désoxygénée- et asséchée du matériau 1 solide à l’état divisé dans le liquide 30 inerte.
[0107] L’extrémité avale du convoyeur 141 de séchage/désoxygénation débouche dans une chambre 1 1 1 de préparation de ladite dispersion 40 hydrocarbonée. Outre l’entrée avale du convoyeur 141 de séchage/désoxygénation, la chambre 1 1 1 de préparation comprend un conduit 109 d’amenée d’un débit de catalyseur 10 et un conduit 1 10 d’amenée d’un débit de composé 20 alcalin dans la chambre 1 1 1 de préparation. La chambre 1 1 1 de préparation comprend des moyens 1 18 de malaxage du mélange formé et entraînés en rotation par un organe 1 19 moteur. La dispersion 40 hydrocarbonée résultant du malaxage est entraînée dans la conduite 171 d’amenée de ladite dispersion 40 hydrocarbonée vers une enceinte 106 de craquage, du fait du débit de matériau 1 solide à l’état divisé dans le convoyeur 141 de séchage/désoxygénation , du fait de l’apport de liquide inerte dans le convoyeur 141 de séchage/désoxygénation , du fait de l’apport de catalyseur 10 et de composé alcalin 20 dans la chambre 1 1 1 de préparation et du fait de premiers moyens 1 15 de pompage de ladite dispersion 40 hydrocarbonée. Dans certains modes de réalisation, les premiers moyens 1 15 de pompage s’étendent dans ladite boucle 139 longue du circuit 125 de distribution de liquide inerte en amont de la chambre 1 1 1 de préparation du débit de ladite dispersion 40 hydrocarbonée et en aval d’une buse 187 d’injection de moyens 175 d’introduction d’un débit de composition oxygénée dans le débit de ladite dispersion 40 hydrocarbonée. Tout dispositif d’aspiration et de refoulement de ladite dispersion 40 hydrocarbonée peut être utilisé à titre de moyens 1 15 de pompage. Rien n’empêche d’utiliser une vis sans fin (ou vis d’Archimède) en association avec une turbine de refoulement coopérant avec les moyens 1 18 de malaxage de la chambre 1 1 1 de préparation de ladite dispersion hydrocarbonée.
[0108] Ledit dispositif 100 de craquage représenté Fig.3 comprend un organe 129 de chauffage du débit de ladite dispersion 40 hydrocarbonée. L’organe 129 de chauffage de ladite dispersion 40 hydrocarbonée est choisi pour pouvoir chauffer ladite dispersion 40 hydrocarbonée à une température inférieure à la température de craquage de chaque composé hydrocarboné du matériau 1 solide à l’état divisé de sorte que le craquage ne se produit pas à ce stade. Il est aussi choisi pour ne pas permettre un contact de ladite dispersion 40 hydrocarbonée avec une surface d’échange de chaleur à une température supérieure à 360°C, notamment supérieure à 400°C, de sorte que du coke, des dioxines et des furannes ne se forment pas. Dans le mode réalisation représenté Fig.3, l’organe 129 de chauffage est un organe de chauffage par induction. Rien n’empêche cependant que l’organe 129 de chauffage soit un organe de chauffage par conduction, un organe de chauffage par rayonnement électromagnétique, un organe de chauffage par mélange du débit de ladite dispersion 40 hydrocarbonée avec un débit de liquide 30 inerte à une température supérieure à la température de ladite dispersion 40 hydrocarbonée.
[0109] Ledit dispositif 100 de craquage représenté Fig.3 comprend des moyens 175 d’introduction d’un débit de composition oxygénée dans la conduite 171 d’amenée. Ces moyens 175 d’introduction d’un débit de composition oxygénée comprennent une source 185 de composition oxygénée sous pression et un conduit 186 de distribution d’un débit de composition oxygénée communiquant avec la conduite 171 d’amenée par au moins une buse 187 d’injection et de mélange du débit de composition oxygénée et du débit de ladite dispersion 40 hydrocarbonée. La(les) buse(s) 187 d’injection débouchent dans la boucle 139 longue du circuit 125 de distribution, en aval de la chambre 111 de préparation du débit de ladite dispersion 40 hydrocarbonée et en amont d’un organe 134 de malaxage et de l’enceinte 106 de craquage.
[0110] Selon l’invention, les moyens 175 d’introduction du débit de composition
oxygénée sont disposés dans ledit dispositif 100 de craquage pour introduire le débit de composition oxygénée dans le débit de ladite dispersion 40
hydrocarbonée à une température inférieure à la température de craquage de chaque composé hydrocarboné. Les moyens 175 d’introduction du débit de composition oxygénée sont disposés dans ledit dispositif 100 de craquage en amont de moyens de chauffage de la dispersion 40 hydrocarbonée à une température supérieure à la température de craquage d’au moins un composé hydrocarboné.
[0111 ] Les moyens 175 d’introduction du débit de composition oxygénée dans la conduite 171 d’amenée sont des moyens d’introduction d’un débit ajustable de composition oxygénée selon le matériau 1 solide à l’état divisé, selon la température de ladite dispersion 40 hydrocarbonée lors de l’introduction, selon le débit de ladite dispersion 40 hydrocarbonée et selon la température de craquage.
[0112] Ledit dispositif 100 de craquage représenté Fig.3 comprend un organe
132,134 de chauffage et de malaxage du débit de ladite dispersion 52 de craquage oxygénée circulant dans la conduite 171 d’amenée, s’étendant en aval de la buse 187 d’injection du débit de la composition oxygénée. Dans le mode de réalisation représenté Fig.3, l’organe 132 de chauffage est un organe de chauffage par conduction et échange de chaleur à partir d’un débit de liquide inerte d’une boucle, dite boucle 139 longue, du circuit 125 de distribution de liquide inerte vers le convoyeur 141 de séchage/désoxygénation. Ladite boucle 139 longue du circuit 125 de distribution comprend un organe 151 de séparation liquide/solide d’un débit de liquide 32 inerte recyclé et de matières 21 solides issues du craquage catalytique à partir de la composition 18 mixte solide/liquide issue du craquage catalytique. L’organe 151 de séparation comprend des moyens -notamment une vanne 116 de vidange- de prélèvement des matières 21 solides de densité supérieure ou inférieure à la densité du liquide inerte. Dans le mode de réalisation représenté Fig.3, l’organe 151 de séparation comprend une entrée 112 de liquide inerte issu d’un stockage de liquide inerte de
renouvellement ou d’un circuit de récupération de liquide inerte inévitablement collecté avec les matières 21 solides extraites dans l’organe 151 de séparation. Ladite boucle 139 longue comprend s’étendant en aval de l’organe 151 de séparation, des moyens 131 de pompage et des moyens 172 de chauffage du débit de liquide 32 inerte recyclé dans ladite boucle 139 longue. Ladite boucle 139 longue comprend une vanne 158 de réglage du débit de liquide inerte dans la boucle 139 longue. Les moyens 172 de chauffage peuvent être de tout type et sont adaptés pour pouvoir chauffer le débit de liquide 32 inerte recyclé à une température comprise entre 300°C et 350°C. Il peut, par exemple, s’agir de moyens 172 de chauffage du débit de liquide 32 inerte recyclé par effet Joule.
Les moyens 172 de chauffage sont choisis pour permettre un ajustement de la température du débit de liquide 32 inerte recyclé lors de son entrée dans le convoyeur 141 de séchage/désoxygénation . Dans le mode de réalisation représenté Fig.3, ledit dispositif 100 de craquage comprend un organe 134 de malaxage entraîné en rotation autour d’un axe 137 par un organe 136 moteur. L’actionnement de l’organe 134 de malaxage permet de répartir le dioxygène (O2) gazeux dans ladite dispersion 52 de craquage oxygénée et d’optimiser la répartition du matériau solide à l’état divisé, du catalyseur et du composé alcalin dans le liquide inerte, Ledit dispositif 100 de craquage comprend une vanne 159 de vidange de ladite boucle 139 courte et dudit dispositif 100 de craquage en vue de sa maintenance.
[0113] L’organe 151 de séparation liquide/solide peut être de tout type. Il peut s’agir d’un dispositif de séparation liquide/solide par décantation des matières 21 solides de la composition 18 mixte solide/liquide issue du craquage catalytique. Il peut s’agir d’un dispositif de séparation liquide/solide par filtration et rétention des matières 21 solides de la composition 18 mixte solide/liquide. Il peut s’agir d’un dispositif de séparation liquide/solide par flottation permettant une séparation d’un débit de liquide 32 inerte recyclé, de matières 21 solides de densité supérieure à la densité du liquide 32 inerte et de matières de densité inférieure à la densité du liquide 32 inerte.
[0114] Dans le mode de réalisation représenté Fig.3, l’organe 132 de chauffage est adapté pour pouvoir chauffer ladite dispersion 52 de craquage oxygénée circulant dans la conduite 171 d’amenée à une température inférieure à la température de craquage de chaque composé hydrocarboné de ladite dispersion 40 mais aussi proche que possible de cette température. Ainsi, il ne se produit pas de craquage catalytique de ladite dispersion 52 de craquage oxygénée dans l’organe 132 de chauffage. À titre indicatif, ladite dispersion 52 de craquage oxygénée circulant dans la conduite 171 d’amenée en amont de l’organe 132 de chauffage de ladite dispersion 52 de craquage oxygénée peut être à une température comprise entre 200°C et 260°C, notamment comprise entre de l’ordre de 250°C et 260°C.
[0115] Ledit dispositif 100 de craquage représenté Fig.3 comprend une enceinte 106 de craquage s’étendant en aval de la buse 187 d’injection du débit de
composition oxygénée dans le débit de ladite dispersion 40 hydrocarbonée et de formation de ladite dispersion 52 de craquage désoxygénée. L’enceinte 106 de craquage s’étend entre une entrée 133 du débit de ladite dispersion 52 de craquage désoxygénée dans l’enceinte 106 de craquage et une sortie 102 de produits 50 énergétiques gazeux et d’une composition 18 mixte solide/liquide formés du fait du craquage catalytique. La sortie 102 débouche dans un collecteur 103 de produits 50 énergétiques gazeux issus du craquage et dans un collecteur 104 de composition 18 mixte solide/liquide issue du craquage.
[0116] Dans des modes de réalisation avantageux, l’enceinte 106 de craquage
présente une forme évasée vers le haut. Une telle forme évasée vers le haut permet de réduire la vitesse ascensionnelle de ladite dispersion 52 de craquage oxygénée et d’une mousse 43 de craquage en expansion dans l’enceinte 106 de craquage du fait du craquage.
[0117] Dans le mode de réalisation représenté Fig.3, l’enceinte 106 de craquage comprend dans sa partie aval un dispositif de chauffage de ladite dispersion 52 de craquage oxygénée par mélange, dans une chambre 107 de mélange, d’un débit de ladite dispersion 52 de craquage oxygénée à une température inférieure à ladite température de craquage et d’un débit de liquide 32 inerte recyclé chauffé à une température supérieure à la température de craquage d’au moins un composé hydrocarboné de sorte que la température du mélange de ladite dispersion 52 de craquage oxygénée et du liquide 32 inerte soit supérieure à la température de craquage d’au moins un composé hydrocarboné et que le craquage se produise. Dans le mode de réalisation représenté Fig.3, ledit dispositif 100 de craquage comprend des moyens 173 de chauffage du débit de liquide 32 inerte d’une boucle, dite boucle 140 courte, du circuit 125 de
distribution de liquide inerte vers l’enceinte 106 de craquage et dans la chambre 107 de mélange. Ladite boucle 140 courte du circuit 125 de distribution
comprend un organe 151 de séparation liquide/solide d’un débit de liquide 32 inerte recyclé et de matières 21 solides issues du craquage catalytique à partir de la composition 18 mixte solide/liquide issue du craquage catalytique. Ladite boucle 140 courte comprend s’étendant en aval de l’organe 151 de séparation, des moyens 130 de pompage et des moyens 173 de chauffage du débit de liquide 32 inerte recyclé dans ladite boucle 140 courte. Les moyens 173 de chauffage peuvent être de tout type et sont adaptés pour pouvoir chauffer le débit de liquide 32 inerte recyclé à une température de l’ordre de 300°C à 350°C. Il peut, par exemple, s’agir de moyens 173 de chauffage du débit de liquide 32 inerte recyclé par effet Joule. Ladite boucle 140 courte comprend une vanne 157 de réglage du débit de liquide inerte dans la boucle 140 courte. [0118] L’enceinte 106 de craquage présente dans sa partie amont, un dispositif 147 de chauffage du débit de ladite dispersion 52 de craquage oxygénée, apte à porter la température de ladite dispersion 52 de craquage oxygénée dans l’enceinte 106 de craquage à une température supérieure à la température de craquage d’au moins un composé hydrocarboné du matériau solide à l’état divisé. Le dispositif 147 de chauffage du débit de ladite dispersion 52 de craquage oxygénée peut être un échangeur de chaleur par conduction, un dispositif de chauffage par induction ou tout autre dispositif de chauffage. Tout dispositif de chauffage peut être utilisé, à l’exception d’un dispositif de chauffage dans lequel ladite dispersion 52 de craquage oxygénée est mise en contact avec une paroi d’échange de chaleur chauffée à une température supérieure à 360°C,
notamment supérieure à 400°C. Dans le mode de réalisation représenté Fig.3, ledit dispositif 100 de craquage permet un chauffage de ladite dispersion 52 de craquage oxygénée initialement par mélange avec un débit de liquide inerte chaud issu des moyens 173 de chauffage, puis par réaction exothermique de combustion contrôlée du dihydrogène (H2) gazeux complémentée, le cas échéant, par chauffage par un rayonnement électromagnétique sans dépassement de la température de formation de coke, de dioxines et de furannes.
[0119] Ledit dispositif 100 de craquage comprend un dispositif 120 de chauffage
complémentaire émetteur de microondes. Le dispositif 120 de chauffage complémentaire est un dispositif émetteur d’un rayonnement électromagnétique de fréquence comprise entre 1 GHz et 300 GHz disposé pour chauffer ladite dispersion 52 de craquage oxygénée en cours de craquage dans l’enceinte 106 de craquage.
[0120] Ledit dispositif 100 de craquage comprend un générateur 121 d’ultrasons
disposé pour stimuler le craquage catalytique dans la dispersion 52 de craquage oxygénée en cours de craquage sous forme d’une mousse 43 de craquage dans l’enceinte 106 de craquage. Le générateur 121 d’ultrason permet d’assurer la répartir du dioxygène gazeux dans ladite dispersion 52 de craquage oxygénée et d’optimiser la répartition du matériau solide à l’état divisé, du catalyseur et du composé alcalin dans le liquide inerte en favorisant les contacts.
[0121 ] L’enceinte 106 de craquage comprend des moyens 122 de malaxage de
ladite dispersion 52 de craquage oxygénée et de la mousse 43 de craquage en formation, entraînés en rotation par un organe 124 moteur. Les moyens 122 de malaxage sont choisis pour permettre la création de turbulences dans l’enceinte de craquage et favoriser les contacts entre les constituants de ladite dispersion 52 de craquage oxygénée.
[0122] Le dispositif 126 de distillation/condensation du(des) produit(s) énergétique(s) dudit dispositif 100 de craquage comprend une tuyère 113 d’évacuation de vapeurs susceptibles d’être émises lors d’une mise en service du dispositif arrêté lors d’opérations de maintenance. La tuyère 113 d’évacuation est munie d’une vanne 114 d’évacuation de ces vapeurs. Le dispositif 126 de
distillation/condensation est pourvu d’une vanne 117 d’évacuation de résidus issus de la maintenance de la colonne de distillation/condensation.
[0123] L’enceinte 106 de craquage s’étend entre une entrée 133 du débit de ladite dispersion 52 de craquage désoxygénée dans l’enceinte 106 de craquage et une sortie 102 de produits 50 énergétiques gazeux et d’une composition 18 mixte solide/liquide formés du fait du craquage catalytique. La sortie 102 débouche dans un collecteur 103 de produits 50 énergétiques gazeux issus du craquage et dans un collecteur 104 de composition 18 mixte solide/liquide issue du craquage.
[0124] Un détail d’une variante avantageuse d’un dispositif de production d’un
produit énergétique par craquage catalytique d’un matériau solide hydrocarboné sans formation de coke selon l’invention est représenté Fig.4. L’enceinte 106 de craquage comprend des moyens 175 d’introduction contrôlée d’un débit d’une composition oxygénée dans le débit de ladite dispersion 40 hydrocarbonée alors que ladite dispersion 40 hydrocarbonée est à une température inférieure à la température de craquage de chaque composé hydrocarboné du matériau solide à l’état divisé de ladite dispersion 40 hydrocarbonée. Les moyens 175
d’introduction du débit de composition oxygénée dans le débit de ladite
dispersion 40 hydrocarbonée comprennent une source 185 de composition oxygénée sous pression et un conduit 186 de distribution d’un débit de
composition oxygénée communiquant avec la conduite 171 d’amenée par un tore supportant des buses 187 d’injection du débit de composition oxygénée dans le débit de ladite dispersion 40 hydrocarbonée. Les buses 187 d’injection
débouchant à la base de l’enceinte 106 de craquage définissent une zone 190 d’oxygénation de ladite dispersion 40 hydrocarbonée permettant une diffusion du débit de composition oxygénée sous forme de bulles gazeuses dispersées dans ladite dispersion 40 hydrocarbonée de façon à former un débit d’une dispersion de craquage oxygénée circulant de bas en haut dans ladite enceinte de craquage. L’enceinte 106 de craquage comprend un dispositif 147 de chauffage du débit de dispersion de craquage oxygénée apte à porter la température de la dispersion de craquage oxygénée à une température supérieure à la température de craquage d’au moins un composé hydrocarboné du matériau solide à l’état divisé de ladite dispersion de craquage oxygénée. Le dispositif 147 de chauffage est situé en aval des buses 187 d’injection du débit de composition oxygénée et permet d’induire la réaction de craquage d’au moins composé hydrocarboné en présence de dioxygène de ladite dispersion de craquage oxygénée. L’enceinte 106 de craquage présente une zone 192 de rendement située en aval du dispositif 147 de chauffage dimensionnée pour permettre le craquage d’une majeure partie, notamment de la totalité, des composés hydrocarbonés du matériau solide à l’état divisé circulant d’amont en aval dans l’enceinte 106 de craquage. La zone 192 de rendement est en cela dimensionnée pour permettre un séjour du matériau solide à l’état divisé dans la zone 192 de rendement d’une durée de l’ordre de 3 minutes. Dans la variante représentée, la zone 192 de rendement comprend deux turbines excentrées créant un mouvement turbulent de maintien du matériau solide à l’état divisé dans les conditions de craquage.
[0125] L’invention peut faire l’objet de nombreuses variantes et applications autres que celles décrites ci-dessus. En particulier, il va de soi que sauf indication contraire les différentes caractéristiques structurelles et fonctionnelles de chacun des modes de réalisation décrits ci-dessus ne doivent pas être considérées comme combinées et/ou étroitement et/ou inextricablement liées les unes aux autres, mais au contraire comme de simples juxtapositions. En outre, les caractéristiques structurelles et/ou fonctionnelles des différents modes de réalisation décrits ci-dessus peuvent faire l’objet en tout ou partie de toute juxtaposition différente ou de toute combinaison différente. Par exemple, le dimensionnement, l’organisation dans l’espace et la conception des différents éléments constitutifs du dispositif sont sujets à des infinités de variantes. ]

Claims

Revendications
[Revendication 1 ] [Procédé de production d’un produit (51 ) énergétique par craquage catalytique d’un matériau solide hydrocarboné sans formation de coke, dans lequel on forme un débit d’une composition, dite dispersion (52) de craquage oxygénée, par mélange :
- d’un débit d’une composition, dite dispersion (40) hydrocarbonée,
comprenant :
+ un liquide (30,32) inerte vis-à-vis du craquage catalytique ;
+ un matériau (1 ) solide à l’état divisé contenant au moins un composé hydrocarboné ;
+ au moins un catalyseur (10) de craquage catalytique, et ;
+ au moins un composé (20) alcalin, et ;
- d’un débit d’une composition, dite composition (23) oxygénée, apte à introduire du dioxygène (02) gazeux dans ladite dispersion (40)
hydrocarbonée ;
puis on chauffe ladite dispersion (52) de craquage oxygénée à une
température comprise entre 260°C et 360°C, supérieure à la température de craquage d’au moins un composé hydrocarboné du matériau (1 ) solide à l’état divisé, ce par quoi au moins un hydrocarbure (50) gazeux et du dihydrogène (H2) gazeux sont formés du fait du craquage catalytique d’au moins un composé hydrocarboné ;
caractérisé en ce que ladite dispersion (40) hydrocarbonée est à une température inférieure à la température de craquage de chaque composé hydrocarboné du matériau solide à l’état divisé lors de son mélange avec ladite composition (23) oxygénée.
[Revendication 2] Procédé selon la revendication 1 , caractérisé en ce qu’on chauffe ladite dispersion (52) de craquage oxygénée de façon que ladite dispersion (52) de craquage oxygénée atteigne la température de craquage d’au moins un composé hydrocarboné, mais sans contact de ladite dispersion (52) de craquage oxygénée avec une paroi d’échange thermique portée à une température supérieure à 360°C.
[Revendication 3] Procédé selon l’une des revendications 1 ou 2,
caractérisé en ce qu’il comprend au moins une étape de chauffage par conduction à partir d’une source de chaleur à une température inférieure à 360°C.
[Revendication 4] Procédé selon la revendication 3, caractérisé en ce qu’au moins une étape de chauffage par conduction est une étape de chauffage par échange de chaleur avec un débit de liquide (30) inerte à une température comprise entre 200°C et 360°C, sensiblement exempt de matériau (1 ) solide à l’état divisé et de catalyseur (10).
[Revendication 5] Procédé selon la revendication 4, caractérisé en ce que le liquide (30) inerte est du liquide (32) inerte recyclé à partir d’une
composition (18) mixte solide/liquide formée de matières (21 ) solides issues du craquage catalytique dispersées dans le liquide (30) inerte.
[Revendication 6] Procédé selon l’une des revendications 1 à 5, caractérisé en ce qu’il comprend au moins une étape de chauffage, dit chauffage par mélange, lors duquel on mélange le débit de ladite dispersion (52) de craquage oxygénée et un débit de liquide (31 ) inerte porté à une température supérieure à la température de ladite dispersion (52) de craquage oxygénée et supérieure à la température de craquage d’au moins un composé hydrocarboné, ledit mélange étant réalisé de façon que la dispersion formée par ce mélange atteigne une température au moins égale à la température de craquage d’au moins un composé hydrocarboné et inférieure à 400°C et sans formation de coke, de dioxines et de furannes.
[Revendication 7] Procédé selon l’une des revendications 1 à 6, caractérisé en ce qu’il comprend au moins une étape de chauffage, dit préchauffage, lors de laquelle on chauffe le débit de ladite dispersion (40) hydrocarbonée de façon que ladite dispersion (40) hydrocarbonée atteigne une température proche de la température de craquage de chaque composé hydrocarboné mais inférieure à ladite température de craquage et inférieure à 360°C, sans recourir à un chauffage par contact de ladite dispersion (40) hydrocarbonée avec une paroi chauffée à une température supérieure à 350°C et sans formation de coke, de dioxines et de furannes.
[Revendication 8] Procédé selon l’une des revendications 1 à 7, caractérisé en ce que le dihydrogène (H2) gazeux formé du fait du craquage catalytique subit une réaction exothermique de combustion contrôlée en présence du dioxygène (O2) gazeux de ladite dispersion (52) de craquage oxygénée.
[Revendication 9] Procédé selon l’une des revendications 1 à 8, caractérisé en ce qu’il comprend au moins une étape de chauffage, dit chauffage par microondes, par un rayonnement électromagnétique de fréquence comprise entre 1 GHz et 300 GHz.
[Revendication 10] Procédé selon l’une des revendications 1 à 9, caractérisé en ce qu’on soumet ladite dispersion (52) de craquage oxygénée à des ultrasons lors du craquage catalytique.
[Revendication 11 ] Procédé selon la revendication 10, caractérisé en ce qu’on soumet le débit de ladite dispersion (52) de craquage oxygénée simultanément audit chauffage par microondes et aux ultrasons.
[Revendication 12] Procédé selon l’une des revendications 1 à 11 ,
caractérisé en ce qu’on réalise une étape (7) de désoxygénation d’une dispersion du matériau (1 ) solide à l’état divisé dans du liquide (30) inerte.
[Revendication 13] Procédé selon la revendication 12, caractérisé en ce que lors de l’étape (7) de désoxygénation, on maintient la dispersion du matériau (1 ) solide à l’état divisé dans du liquide (30) inerte en contact avec une atmosphère gazeuse présentant une valeur de pression partielle en dioxygène inférieure à la pression partielle en dioxygène de l’air
atmosphérique, ce par quoi on forme une dispersion (8) désoxygénée du matériau (1 ) solide à l’état divisé dans le liquide (30) inerte.
[Revendication 14] Procédé selon l’une des revendications 1 à 13,
caractérisé en ce qu’on réalise une étape (3) de séchage du matériau (1 ) solide à l’état divisé lors de laquelle on maintient une dispersion du matériau
(1 ) solide à l’état divisé dans du liquide inerte à une température supérieure à 100°C de façon à former une dispersion d’un matériau, dit matériau (4) sec, solide à l’état divisé présentant un taux d’humidité inférieur à 10% dans du liquide (30) inerte.
[Revendication 15] Procédé selon l’une des revendications 1 à 14,
caractérisé en ce qu’on réalise une condensation d’au moins un hydrocarbure (50) à l’état gazeux formé lors du craquage catalytique, dans des conditions propres à former le produit (51 ) énergétique à l’état liquide.
[Revendication 16] Procédé selon l’une des revendications 1 à 15, caractérisé en ce qu’on collecte un débit d’une composition (18) mixte solide/liquide résultant du craquage catalytique de ladite dispersion (52) de craquage oxygénée, par débordement puis écoulement gravitaire, du fait du débit de ladite dispersion (52) de craquage oxygénée, la composition (18) mixte étant formée d’une dispersion dans le liquide (30) inerte de matières (21 ) solides formées du fait du craquage catalytique.
[Revendication 17] Procédé selon la revendication 16, caractérisé en ce qu’on soumet le débit de composition (18) mixte solide/liquide à une étape de séparation (19) liquide/solide par laquelle on forme un débit de liquide (30) inerte sensiblement exempt de matières (21 ) solides, puis on recycle le débit de liquide (30) inerte formé lors de cette étape de séparation (19)
liquide/solide.
[Revendication 18] Procédé selon la revendication 17, caractérisé en ce que l’étape de séparation (19) liquide/solide est une étape de séparation par décantation de matières solides de densité supérieure à la densité du liquide (30) inerte et par flottation de matières solides de densité inférieure à la densité du liquide (30) inerte.
[Revendication 19] Dispositif (100) pour la mise en œuvre d’un procédé
selon l’une des revendications 1 à 18, le dispositif comprenant :
- une enceinte (106) de craquage comprenant :
+ une entrée (133) d’un débit de ladite dispersion (52) de craquage oxygénée à une température inférieure à la température de craquage de chaque composé hydrocarboné du matériau solide à l’état divisé ;
+ un dispositif (147) de chauffage du débit de dispersion (52) de craquage oxygénée dans l’enceinte (106) de craquage, apte à porter la température de ladite dispersion (52) de craquage oxygénée à une température supérieure à la température de craquage d’au moins un composé hydrocarboné du matériau solide à l’état divisé ;
+ une sortie (102) de produits énergétiques (50) à l’état gazeux ;
- une conduite (171 ) d’amenée dans l’enceinte (106) de craquage du débit de ladite dispersion (52) de craquage oxygénée à une température inférieure à la température de craquage de chaque composé hydrocarboné, la conduite (171 ) d’amenée débouchant dans l’enceinte (106) de craquage ;
- des moyens (175) d’introduction contrôlée d’un débit d’une composition (23) oxygénée dans le débit de ladite dispersion (40) hydrocarbonée et de mélange du débit de ladite composition (23) oxygénée et du débit de ladite dispersion (40) hydrocarbonée ;
caractérisé en ce que les moyens (175) d’introduction contrôlée du débit de ladite composition oxygénée débouchent dans la conduite (171 ) d’amenée en amont dudit dispositif (147) de chauffage.
[Revendication 20] Dispositif selon la revendication 19, caractérisé en ce
qu’il comprend un dispositif (126) de distillation/condensation d’au moins un hydrocarbure (50) gazeux et sa conversion en produit (51 ) énergétique liquide.
[Revendication 21 ] Dispositif selon l’une des revendications 19 ou 20,
caractérisé en ce que le dispositif (147) de chauffage du débit de ladite dispersion hydrocarbonée dans l’enceinte (106) de craquage sont choisis parmi :
- des moyens de chauffage par un rayonnement électromagnétique de fréquence comprise entre 1 GHz et 300 GHz, et ;
- des moyens de chauffage par mélange du débit de ladite dispersion de craquage oxygénée avec un débit de liquide inerte à une température supérieure à la température de craquage.
[Revendication 22] Dispositif selon l’une des revendications 19 à 21 ,
caractérisé en ce que, ladite entrée (133) étant débouchante en partie basse de l’enceinte (106) de craquage, l’enceinte (106) de craquage présente en partie haute, une lèvre de débordement et des moyens de collecte d’un débit d’une composition (18) mixte solide/liquide résultant du craquage catalytique.
[Revendication 23] Dispositif selon l’une des revendications 19 à 22,
caractérisé en ce qu’il comprend des moyens de préparation de séchage et de désoxygénation de ladite dispersion (40) hydrocarbonée.
PCT/EP2019/087174 2019-01-25 2019-12-30 Procédé et dispositif de production de produits énergétiques par craquage catalytique d'un matériau solide hydrocarboné sans formation de coke WO2020151901A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1900685A FR3092117B1 (fr) 2019-01-25 2019-01-25 Procédé et dispositif de production de produits énergétiques par craquage catalytique d’un matériau solide hydrocarboné sans formation de coke
FR1900685 2019-01-25

Publications (1)

Publication Number Publication Date
WO2020151901A1 true WO2020151901A1 (fr) 2020-07-30

Family

ID=66776561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/087174 WO2020151901A1 (fr) 2019-01-25 2019-12-30 Procédé et dispositif de production de produits énergétiques par craquage catalytique d'un matériau solide hydrocarboné sans formation de coke

Country Status (2)

Country Link
FR (1) FR3092117B1 (fr)
WO (1) WO2020151901A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161696A (en) * 1958-09-06 1964-12-15 Basf Ag Autothermal cracking of hydrocarbons to cracked gas rich in olefines
EP0112117A2 (fr) * 1982-12-14 1984-06-27 King-Wilkinson Project Services, Inc. Procédé de conversion de matériaux carbonés
EP0563173A1 (fr) 1990-12-21 1993-10-06 Pierre Dumons Procede de traitement d'ordures ou dechets et presse perfectionnee pour sa mise en oeuvre.
US5625111A (en) * 1992-08-20 1997-04-29 Bp Chemicals Limited Process for the production of mono-olefins
CN101869834A (zh) * 2009-04-27 2010-10-27 中国石油化工股份有限公司 用于石油烃类裂解原料内加热的选择性氢燃烧催化剂及其应用
CN101869835A (zh) * 2009-04-27 2010-10-27 中国石油化工股份有限公司 一种用于石油烃类裂解原料内加热的选择性氢燃烧催化剂及其应用
WO2014110085A1 (fr) * 2013-01-14 2014-07-17 Accelergy Corporation Procédé de liquéfaction de charbon directe
WO2018127438A1 (fr) 2017-01-03 2018-07-12 D.M.S Procédé et dispositif de production de produits énergétiques par craquage catalytique d'un matériau solide hydrocarboné sans formation de coke

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161696A (en) * 1958-09-06 1964-12-15 Basf Ag Autothermal cracking of hydrocarbons to cracked gas rich in olefines
EP0112117A2 (fr) * 1982-12-14 1984-06-27 King-Wilkinson Project Services, Inc. Procédé de conversion de matériaux carbonés
EP0563173A1 (fr) 1990-12-21 1993-10-06 Pierre Dumons Procede de traitement d'ordures ou dechets et presse perfectionnee pour sa mise en oeuvre.
US5625111A (en) * 1992-08-20 1997-04-29 Bp Chemicals Limited Process for the production of mono-olefins
CN101869834A (zh) * 2009-04-27 2010-10-27 中国石油化工股份有限公司 用于石油烃类裂解原料内加热的选择性氢燃烧催化剂及其应用
CN101869835A (zh) * 2009-04-27 2010-10-27 中国石油化工股份有限公司 一种用于石油烃类裂解原料内加热的选择性氢燃烧催化剂及其应用
WO2014110085A1 (fr) * 2013-01-14 2014-07-17 Accelergy Corporation Procédé de liquéfaction de charbon directe
WO2018127438A1 (fr) 2017-01-03 2018-07-12 D.M.S Procédé et dispositif de production de produits énergétiques par craquage catalytique d'un matériau solide hydrocarboné sans formation de coke

Also Published As

Publication number Publication date
FR3092117A1 (fr) 2020-07-31
FR3092117B1 (fr) 2021-01-29

Similar Documents

Publication Publication Date Title
EP3565868B1 (fr) Procédé et dispositif de production de produits énergétiques par craquage catalytique d'un matériau solide hydrocarboné sans formation de coke
EP1947160B1 (fr) Procédé de conversion de biomasse pour la production de gaz de synthèse
EP2009353B1 (fr) Procédé de préparation d'une charge mixte contenant de la biomasse et une coupe hydrocarbonnée lourde en vue d'une gazéification ultérieure
CA2565936A1 (fr) Procede de production de gaz de synthese a partir de matiere carbonee et d'energie electrique
CH634097A5 (fr) Procede et appareil pour le traitement d'un produit carbonisable solide broye.
EP3152167B1 (fr) Procédé et dispositif de carbonisation hydrothermale à mélange optimisé de boue et vapeur
EP2658950A1 (fr) Procede de craquage catalytique pour le traitement d'une coupe a faible carbone conradson.
FR3072583B1 (fr) Dispositif pour la gazeification en milieu supercritique d'un effluent aqueux
WO2020151901A1 (fr) Procédé et dispositif de production de produits énergétiques par craquage catalytique d'un matériau solide hydrocarboné sans formation de coke
EP3173459A1 (fr) Réacteur de pyrolyse rapide de particules organiques de biomasse avec injection à contre-courant de gaz chauds
EP4384585A1 (fr) Procédé et dispositif de production de produits de valorisation par craquage catalytique d'un matériau solide hydrocarboné sans formation de coke
FR2929287A1 (fr) Procede d'obtention d'hydrocarbures liquides.
EP3828465B1 (fr) Réacteur solaire à jet, destiné à la conversion thermochimique d'une charge carbonée, à évacuation des cendres améliorée, procédé de fonctionnement associé, application à la gazéification de biomasse ou au reformage
FR3132235A1 (fr) Dispositif de traitement hydrothermal de composés organiques amélioré et procédé associé.
FR2916760A1 (fr) Module, systeme et procede de traitement de biomasse a lit fixe horizontal
FR2516931A1 (fr) Procede de conversion d'une matiere carbonee en hydrocarbures paraffiniques inferieurs et hydrocarbures aromatiques monocycliques
WO2024008756A1 (fr) Séparateur de sels intégré, comprenant une vis sans fin creuse et des billes formant des supports de précipitation et d'évacuation de sels, installation de gazéification de biomasse associée.
WO2024008757A1 (fr) Séparateur de sels comprenant une structure poreuse déformable formant un support de précipitation et d'évacuation de sels, installation de gazéification de biomasse associée.
BE462362A (fr)
WO2024023309A1 (fr) Procede de traitement de dechets complexes
FR2624877A1 (fr) Procede et dispositif pour le craquage catalytique de charges lourdes comportant un second strippage en lit fluide
FR3027311A1 (fr) Procede et dispositif pour la pyro-gazeification d'une matiere carbonee comprenant un bain de cendres en fusion
FR3056573A1 (fr) Procede de gazeification de charge de matiere carbonee dans un reacteur a flux entraine, a rendement ameliore
BE888700A (fr) Installation de traitement a haute temperature de matieres pulverulentes
BE815592A (fr) Procede d'oxydation du charbon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19827768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19827768

Country of ref document: EP

Kind code of ref document: A1