WO2020151679A1 - 上行传输方法及设备 - Google Patents

上行传输方法及设备 Download PDF

Info

Publication number
WO2020151679A1
WO2020151679A1 PCT/CN2020/073329 CN2020073329W WO2020151679A1 WO 2020151679 A1 WO2020151679 A1 WO 2020151679A1 CN 2020073329 W CN2020073329 W CN 2020073329W WO 2020151679 A1 WO2020151679 A1 WO 2020151679A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
terminal
period
timing advance
time length
Prior art date
Application number
PCT/CN2020/073329
Other languages
English (en)
French (fr)
Inventor
韩静
王雪松
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CA3127251A priority Critical patent/CA3127251A1/en
Priority to NZ778933A priority patent/NZ778933B2/en
Priority to EP20745849.8A priority patent/EP3907896A4/en
Publication of WO2020151679A1 publication Critical patent/WO2020151679A1/zh
Priority to US17/380,320 priority patent/US20210391969A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0042Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to an uplink transmission method and device.
  • NR New Radio
  • 3GPP has proposed the Measurement Gap (MG) method, that is, during the normal data transmission and reception process, a portion of time (ie measurement interval) is reserved. During this time, the terminal will not send or receive any data. And turn the receiver to the target frequency point, measure the target frequency point, and then turn to the current frequency point after the measurement interval ends, and continue to send and receive data.
  • MG Measurement Gap
  • the time interval between the end of the existing measurement interval and the uplink transmission is a fixed value, which is not applicable to the NR technology. Therefore, for the NR technology, it is urgent to regulate the uplink transmission behavior after the end of the measurement interval.
  • the embodiments of the present application provide an uplink transmission method and device to standardize the uplink transmission behavior after the measurement interval ends, so that the uplink transmission does not affect the measurement within the measurement interval and does not waste resources.
  • an uplink transmission method including:
  • the terminal performs measurement within the measurement interval
  • the terminal determines whether to perform uplink transmission within a period of time, where the period of time is a period of time starting from the end of the measurement interval, and the period of time is adjacent to and located after the measurement interval. It can be a time period with subframes, time slots, symbols, etc. as time units, or time with milliseconds, microseconds, etc. as time units; the time length of the period of time is determined by the terminal according to communication parameters,
  • the communication parameter may be a parameter used to characterize the cell coverage and the actual distance between the terminal and the network device.
  • the period of time is adjacent to the time slot that partially overlaps the measurement interval and is located after the time slot. It can be a time period with subframes, time slots, symbols, etc. as time units, or time with milliseconds, microseconds, etc. as time units; the time length of the period of time is determined by the terminal according to communication parameters,
  • the communication parameter may be a parameter used to characterize the cell coverage and the actual distance between the terminal and the network device.
  • the length of the period of time is determined according to the communication parameters, the length of the period of time is not a certain value, and can be flexibly determined according to the communication parameters.
  • the terminal timing is avoided The existence of the terminal causes the uplink transmission of the terminal to fall within the measurement interval, and also avoids the waste of resources caused by the terminal not performing uplink transmission for a long time after the measurement interval ends.
  • the communication parameter is the timing advance of the terminal; the timing advance has a mapping relationship with the length of time, wherein, if the first timing advance is less than the second Timing advance, the first time length corresponding to the first timing advance is not greater than the second time length corresponding to the second timing advance.
  • the timing advance and the time length may have a positive correlation, that is, the larger the timing advance, the greater the time length, so as to prevent the terminal from performing uplink transmission during the measurement interval.
  • the TA is the timing advance
  • the TL is the length of time
  • the a Ns
  • the b a+Ms
  • the N and M are positive integers
  • the s is half or one
  • the X is the margin
  • the length of X is the length of the cyclic prefix CP.
  • the time length is greater than the timing advance, so that when the terminal decides not to perform uplink transmission within the period of time, and performs uplink transmission after the period of time, the terminal’s timing advance
  • the operation will not affect the measurement of the terminal within the measurement interval, and also ensures that the terminal can perform uplink transmission in time, which improves resource utilization.
  • the communication parameter is parameter information of the serving cell of the terminal; the parameter information of the serving cell includes one or a combination of the following: subcarrier spacing, frequency range .
  • the subcarrier interval and the time length have a mapping relationship, wherein, if the first subcarrier interval is greater than the second subcarrier interval, the first subcarrier interval corresponds to The first time length of is not greater than the second time length corresponding to the second subcarrier interval;
  • the frequency range and the time length have a mapping relationship, wherein if the frequency band corresponding to the first frequency range is higher than the frequency band corresponding to the second frequency range, the first time length corresponding to the first frequency range is not greater than the The second time length corresponding to the second frequency range.
  • the sub-carrier interval and the time length may have a negative correlation, that is, the larger the sub-carrier interval, the smaller the time length, and the mapping relationship between the sub-carrier interval and the time length may also be a step function.
  • the length of the period of time is determined by the subcarrier interval or frequency range, and the maximum cell radius that may be supported under a certain subcarrier interval or frequency range is mainly considered. Therefore, when the terminal decides not to perform uplink transmission within this period of time, When the uplink transmission is performed after a period of time, the timing advance of the terminal will not affect the measurement of the terminal within the measurement interval, and it also ensures that the terminal can perform the uplink transmission in time, which improves resource utilization.
  • the communication parameter is a first message; the method further includes:
  • the terminal receives a first message sent by the network device, where the first message is used to indicate the length of time.
  • the first message may be configuration information or instruction information or other communication information between the terminal and the network device.
  • An indication field is set in the first message, and the indication field is used to display and indicate the length of time.
  • the terminal can efficiently and directly obtain the time length, which improves the processing efficiency of the terminal.
  • the communication parameter is a guard interval for downlink to uplink handover, and the method further includes:
  • the terminal receives a second message sent by the network device, where the second message carries the guard interval, and the time length is determined by the terminal according to the guard interval.
  • the second message may be a system message or a configuration message.
  • the guard interval carried in the second message is used to implicitly indicate the time length of the period of time, without increasing the signaling overhead between the network device and the terminal device.
  • the time length is determined according to communication parameters, that is, the time length of the period of time is not a fixed value, and the terminal performs uplink transmission after the end of the period of time according to the scheduling of the network device, and the measurement within the measurement interval will not be affected. It also ensures that the terminal can perform uplink transmission in time, which improves resource utilization.
  • the terminal is configured with multiple serving cells
  • Each of the serving cells corresponds to a period of time, and the length of the period of time is determined according to the communication parameters of the corresponding serving cell;
  • All serving cells correspond to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells;
  • Each serving cell group corresponds to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells in the group; the serving cell group is determined according to the location of each serving cell The frequency range or the timing advance group where each serving cell is located.
  • the terminal determines the realization of the time length of the period of time, so that in the scenario where the terminal is in multiple serving cells, the uplink transmission of the terminal after the measurement interval will not affect the measurement interval.
  • the internal measurement can also ensure that the terminal can perform uplink transmission in time and improve resource utilization.
  • an uplink transmission method including:
  • the network device generates scheduling information, which is used to schedule the terminal to perform uplink transmission after a period of time ends, that is, the scheduling information avoids scheduling the terminal to perform uplink transmission within a period of time; wherein, the period of time is from the end of the measurement interval A starting time period, the time length of the period of time is determined by the network device according to communication parameters, and the measurement interval is the time for the terminal to perform measurement;
  • the network device sends the scheduling information to the terminal.
  • the network device sends scheduling information to the terminal device to avoid scheduling the terminal’s uplink transmission within a period of time.
  • the period of time is determined according to the communication parameters, that is, the period of time is not a fixed value, thus clarifying the network device
  • the terminal performs uplink transmission after the end of the period of time according to the scheduling of the network device, it will not affect the measurement within the measurement interval, and it also ensures that the terminal can perform uplink transmission in time, improving resource utilization.
  • the communication parameter is the timing advance of the terminal; the timing advance and the length of time have a mapping relationship, wherein, if the first timing advance is less than the second Timing advance, the first time length corresponding to the first timing advance is not greater than the second time length corresponding to the second timing advance.
  • the TA is the timing advance
  • the TL is the time length
  • the a Ns
  • the b a+Ms
  • the N and M are positive integers
  • the s is half or one
  • the X is the margin
  • the length of X is the length of the cyclic prefix CP.
  • the communication parameter is parameter information of the serving cell of the terminal; the parameter information of the serving cell includes one or a combination of the following: subcarrier spacing, frequency range .
  • the subcarrier interval has a mapping relationship with the time length, wherein if the first subcarrier interval is greater than the second subcarrier interval, the first subcarrier interval corresponds to The first time length of is not greater than the second time length corresponding to the second subcarrier interval;
  • the frequency range and the time length have a mapping relationship, wherein if the frequency band corresponding to the first frequency range is higher than the frequency band corresponding to the second frequency range, the first time length corresponding to the first frequency range is not greater than the The second time length corresponding to the second frequency range.
  • the method further includes:
  • the network device sends a first message to the terminal, where the first message is used to indicate the length of time.
  • the communication parameter is a guard interval for downlink to uplink handover; the method further includes:
  • the network device sends a second message to the terminal, the second message carries the guard interval, and the guard interval is used to implicitly indicate the length of time.
  • the terminal is configured with multiple serving cells
  • Each of the serving cells corresponds to a period of time, and the length of the period of time is determined according to the communication parameters of the corresponding serving cell;
  • All serving cells correspond to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells;
  • Each serving cell group corresponds to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells in the group; the serving cell group is determined according to the location of each serving cell The frequency range or the timing advance group where each serving cell is located.
  • an embodiment of the present application provides a terminal, including:
  • Transceiver module used to measure within the measurement interval
  • the processing module is configured to determine whether to perform uplink transmission within a period of time, where the period of time is a period of time starting from the end of the measurement interval, and the length of the period of time is determined by the terminal according to communication parameters.
  • the communication parameter is the timing advance of the terminal; the timing advance and the time length have a mapping relationship, wherein, if the first timing advance is less than the second Timing advance, the first time length corresponding to the first timing advance is not greater than the second time length corresponding to the second timing advance.
  • the TA is the timing advance
  • the TL is the time length
  • the a Ns
  • the b a+Ms
  • the N and M are positive integers
  • the s is half or one
  • the X is the margin
  • the length of X is the length of the cyclic prefix CP.
  • the communication parameter is parameter information of the serving cell of the terminal; the parameter information of the serving cell includes one or a combination of the following: subcarrier spacing, frequency range .
  • the subcarrier interval and the time length have a mapping relationship, wherein, if the first subcarrier interval is greater than the second subcarrier interval, the first subcarrier interval corresponds to The first time length of is not greater than the second time length corresponding to the second subcarrier interval;
  • the frequency range and the time length have a mapping relationship, wherein if the frequency band corresponding to the first frequency range is higher than the frequency band corresponding to the second frequency range, the first time length corresponding to the first frequency range is not greater than the The second time length corresponding to the second frequency range.
  • the communication parameter is a first message; the transceiver module is further configured to: receive a first message sent by the network device, and the first message is used to indicate the length of time.
  • the communication parameter is a guard interval for handover from downlink to uplink
  • the transceiver module is further configured to: receive a second message sent by the network device, where the second message is The guard interval is carried, and the time length is determined by the terminal according to the guard interval.
  • the terminal is configured with multiple serving cells
  • Each of the serving cells corresponds to a period of time, and the length of the period of time is determined according to the communication parameters of the corresponding serving cell;
  • All serving cells correspond to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells;
  • Each serving cell group corresponds to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells in the group; the serving cell group is determined according to the location of each serving cell The frequency range or the timing advance group where each serving cell is located.
  • an embodiment of the present application provides a network device, including:
  • the processing module is configured to generate scheduling information for scheduling the terminal to perform uplink transmission after a period of time ends; wherein the period of time is a period of time starting from the end of the measurement interval, and the length of the period of time is Determined by the network device according to the communication parameter, the measurement interval is the time for the terminal to perform measurement
  • the transceiver module is configured to send the scheduling information to the terminal.
  • the communication parameter is the timing advance of the terminal; the timing advance and the time length have a mapping relationship, wherein, if the first timing advance is less than the second Timing advance, the first time length corresponding to the first timing advance is not greater than the second time length corresponding to the second timing advance.
  • the TA is the timing advance
  • the TL is the time length
  • the a Ns
  • the b a+Ms
  • the N and M are positive integers
  • the s is half or one
  • the X is the margin
  • the length of X is the length of the cyclic prefix CP.
  • the communication parameter is parameter information of the serving cell of the terminal; the parameter information of the serving cell includes one or a combination of the following: subcarrier spacing, frequency range .
  • the subcarrier interval and the time length have a mapping relationship, wherein, if the first subcarrier interval is greater than the second subcarrier interval, the first subcarrier interval corresponds to The first time length of is not greater than the second time length corresponding to the second subcarrier interval;
  • the frequency range and the time length have a mapping relationship, wherein if the frequency band corresponding to the first frequency range is higher than the frequency band corresponding to the second frequency range, the first time length corresponding to the first frequency range is not greater than the The second time length corresponding to the second frequency range.
  • the transceiver module is further configured to send a first message to the terminal, where the first message is used to indicate the length of time.
  • the communication parameter is a guard interval for handover from downlink to uplink; the transceiver module is further configured to send a second message to the terminal, and the second message carries the
  • the guard interval is used to implicitly indicate the length of time.
  • the terminal is configured with multiple serving cells
  • Each of the serving cells corresponds to a period of time, and the length of the period of time is determined according to the communication parameters of the corresponding serving cell;
  • All serving cells correspond to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells;
  • Each serving cell group corresponds to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells in the group; the serving cell group is determined according to the location of each serving cell The frequency range or the timing advance group where each serving cell is located.
  • an embodiment of the present application provides a communication device, including: a memory, a processor, and a computer program, the computer program is stored in the memory, and the processor runs the computer program to execute the first aspect or In the first aspect, various possible designs are described.
  • embodiments of the present application provide a storage medium, where the storage medium includes a computer program, and the computer program is used to implement the method described in the first aspect or various possible designs of the first aspect.
  • an embodiment of the present application provides a communication device, including: a memory, a processor, and a computer program, the computer program is stored in the memory, and the processor runs the computer program to execute the second aspect or In the second aspect, various possible designs are described.
  • inventions of the present application provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the above-mentioned first aspect or the first aspect. It is possible to design the described method.
  • an embodiment of the present application provides a chip, including a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the processing
  • the device executes the method described in the first aspect or various possible designs of the first aspect.
  • an embodiment of the present application provides a storage medium, the storage medium includes a computer program, and the computer program is used to implement the method described in the second aspect or various possible designs of the second aspect.
  • an embodiment of the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the above second aspect or each of the second aspect.
  • an embodiment of the present application provides a chip including a memory and a processor, the memory is used to store a computer program, and the processor is used to call and run the computer program from the memory, so that the The processor executes the methods described in the above second aspect or various possible designs of the second aspect.
  • the terminal performs measurement within a measurement interval, and the terminal determines whether to perform uplink transmission within a period of time, where a period of time is a period from the end of the measurement interval, and the period of time
  • the time length is determined according to the communication parameters, that is, the time length of the period of time is not a fixed value, which regulates the uplink transmission of the terminal after the measurement interval.
  • the terminal decides to perform the uplink transmission within this period of time, it will not affect
  • the terminal when the terminal decides not to perform uplink transmission within the period of time, the terminal performs uplink transmission after the period of time ends.
  • the timing advance of the terminal will not affect the measurement of the terminal during the measurement interval.
  • it also ensures that the terminal can perform uplink transmission in time, which improves resource utilization.
  • Figure 1 shows a network architecture to which the embodiments of this application may be applicable
  • FIG. 2 is a schematic diagram of timing of network equipment and terminals provided by an embodiment of the application.
  • FIG. 3 is a signaling flowchart of uplink transmission provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of a period of time provided by an embodiment of the application.
  • FIG. 5 is a signaling flowchart of uplink transmission provided by an embodiment of this application.
  • FIG. 6 is a signaling flowchart of uplink transmission provided by an embodiment of this application.
  • FIG. 7 is a signaling flowchart of uplink transmission provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of hardware of a terminal provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of hardware of a network device provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 13 is another schematic diagram of a communication device provided by an embodiment of this application.
  • FIG. 14 is still another schematic diagram of the communication device provided by the embodiment of this application.
  • FIG. 15 is another schematic diagram of the communication device provided by the embodiment of the application.
  • the embodiments of this application can be applied to wireless communication systems.
  • the wireless communication systems mentioned in the embodiments of this application include but are not limited to: Narrow Band-Internet of Things (NB-IoT), Global Mobile Communication system (Global System for Mobile Communications, GSM), Enhanced Data rate for GSM Evolution (EDGE), Wideband Code Division Multiple Access (WCDMA), Code Division Multiple Access 2000 system (Code Division Multiple Access, CDMA2000), Time Division-Synchronization Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE) and fifth-generation mobile communications (the 5 th Generation, 5G for short) New Radio (NR) mobile communication system.
  • NB-IoT Narrow Band-Internet of Things
  • GSM Global System for Mobile Communications
  • EDGE Enhanced Data rate for GSM Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access 2000 system
  • TD-SCDMA Time Division-Synchronization Code Division Multiple Access
  • LTE Long Term Evolution
  • 5G 5G for short
  • Figure 1 shows a network architecture to which the embodiments of this application may be applicable.
  • the network architecture provided by this embodiment includes a network device 101 and a terminal 102.
  • the network device 101 is a device that connects the terminal to the wireless network, and can be a base station in Global System of Mobile Communications (GSM) or Code Division Multiple Access (CDMA) (Base Transceiver Station, referred to as BTS), can also be the base station (NodeB, referred to as NB) in Wideband Code Division Multiple Access (WCDMA), or long term evolution (Long Term Evolution, referred to as LTE) Evolved Node B (evolved Node B, referred to as eNB or eNodeB), or relay station or access point, or network side equipment (such as base station) of NR standard in the future 5G network or the public land mobile network (Public Land Mobile) Network equipment, etc. in PLMN) are not limited here.
  • FIG. 1 schematically depicts a possible schematic diagram, taking the network device 101 as a base station as an example.
  • the terminal 102 may also be called a terminal device.
  • the terminal may be a wireless terminal or a wired terminal.
  • the wireless terminal may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless connection function, Or other processing equipment connected to a wireless modem.
  • a wireless terminal can communicate with one or more core networks via a radio access network (Radio Access Network, RAN for short).
  • the wireless terminal can be a mobile terminal, such as a mobile phone (or called a "cellular" phone) and a mobile phone with a mobile terminal.
  • Computers for example, can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • Wireless terminal can also be called system, subscriber unit (Subscriber Unit), subscriber station (Subscriber Station), mobile station (Mobile Station), mobile station (Mobile), remote station (Remote Station), remote terminal (Remote Terminal), connection The access terminal (Access Terminal), user terminal (User Terminal), and user agent (User Agent) are not limited here.
  • Figure 1 schematically depicts a possible schematic.
  • the network device 101 and the terminals 102A-102F form a communication system.
  • the terminals 102A-102F can send uplink data or signals to the network device 101, and the network device 101 needs to receive the uplink data or signals sent by the terminals 102A-102F; the network device 101 can send downlink data or signals to the terminal 102A -102F, the terminals 102A-102F need to receive downlink data or signals sent by the network device 101.
  • the terminals 102D-102F can also form a communication system.
  • the network device 101 can send downlink data to the terminal 102A, the terminal 102B, the terminal 102E, etc.; the terminal 102E can also send downlink data or signals to the terminal 102D and the terminal 102F.
  • FIG. 2 is a timing diagram of a network device and a terminal provided by an embodiment of the application.
  • the terminal uses Timing Advance (TA) for uplink transmission, so the uplink timing of the terminal It predates network equipment.
  • TA Timing Advance
  • the terminal can obtain the physical cell identity, timing information, and SSB-based measurement results of the cell by detecting a synchronization signal block (SSB).
  • SSB synchronization signal block
  • the terminal measures the target frequency point within the measurement interval.
  • the measurement may be a same-frequency measurement or a different-frequency measurement.
  • the specific implementation manner of the terminal measurement is not particularly limited in this embodiment.
  • the terminal neither sends data nor receives data within this measurement interval.
  • the terminal when determining the starting point of the measurement interval, the terminal refers to the downlink timing regardless of whether the terminal actually performs uplink transmission or downlink reception before the measurement interval.
  • different serving cells may have different timings due to different distances from the network equipment.
  • the starting point of the measurement interval refers to the downlink timing of the latest cell among all serving cells. This embodiment does not particularly limit the measurement gap length (Measurement Gap Length, MGL) of the measurement gap.
  • the terminal can immediately receive the downlink data or signal sent by the network device, but consider the terminal's uplink timing advance to avoid the uplink transmission within the measurement interval, causing interference to the measurement, and considering the large cell radius of NR , From tens of meters to hundreds of kilometers, at present, after the measurement interval, the uplink transmission is not performed by setting a fixed time of 1ms or 1 time slot. The 1ms or 1 time slot may be insufficient or wasted.
  • the sending behavior needs to be regulated.
  • the embodiment of this application will be directed to the uplink transmission of the terminal, regulate how long the terminal can perform uplink transmission after the end of the measurement interval, and clarify the uplink resources that the network device can schedule after the end of the measurement interval.
  • Fig. 3 is a signaling flow chart of uplink transmission provided by an embodiment of the application. As shown in Fig. 3, the method includes:
  • the terminal performs measurement within the measurement interval.
  • the terminal determines whether to perform uplink transmission within a period of time, where the period of time is a period of time starting from the end of the measurement interval, and the length of the period of time is determined by the terminal according to communication parameters.
  • the terminal performs measurement within the measurement interval, and the measurement may be intra-frequency measurement or inter-frequency measurement.
  • the measurement performed by the terminal within the measurement interval is not particularly limited. In this measurement interval, the terminal will not send or receive any data, but will adjust the receiver to the target frequency point to measure the target frequency point.
  • the terminal determines whether to perform uplink transmission within a period of time.
  • the period of time is a period of time from the end of the measurement interval, and the length of the period of time is determined according to communication parameters.
  • the time-related concepts such as measurement interval, period of time, and time length involved in this embodiment are all defined for the system time of the communication system.
  • the system time refers to the time that the terminal and the network device follow at the same time.
  • the system time is the same as the time of the network device.
  • the period of time may be a period of time using subframes, time slots, symbols, etc. as time units.
  • the symbol may be an Orthogonal Frequency Division Multiplexing (OFDM) symbol, and the period of time may also be a time in milliseconds, microseconds, etc., as the time unit, and this embodiment does not make any special mention to the unit of the period of time. limit.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the period of time when the measurement interval is advanced and a time slot that partially overlaps the end of the measurement interval is generated, the period of time is adjacent to the time slot that partially overlaps the measurement interval, and After the time slot, the period of time may be a period of time with subframes, time slots, symbols, etc. as time units, or a time with milliseconds, microseconds, etc., as time units;
  • the terminal is determined according to the communication parameter, and the communication parameter may be a parameter used to characterize the cell coverage and the actual distance between the terminal and the network device.
  • the terminal can decide whether to perform uplink transmission within a period of time according to the implementation. In a possible manner, if the terminal has two radio frequency transceivers, the terminal uses one radio frequency transceiver to perform measurements within the measurement interval, and the other transceiver performs uplink transmission within the period of time. In another way, the network device schedules the terminal to perform uplink transmission within this period of time, and in order to avoid the influence of uplink transmission on the measurement performed during the measurement interval, the terminal determines that it will no longer perform uplink transmission within this period of time. . In another manner, when the terminal has completed the measurement before the measurement interval has ended, the terminal determines to perform uplink transmission within the period of time.
  • the terminal can perform uplink transmission within this period of time.
  • the terminal's uplink transmission within this period of time will affect the measurement, that is, the terminal cannot perform uplink transmission.
  • the terminal decides to perform uplink transmission after the end of the period of time, that is, the network device can start uplink reception after the end of the period of time.
  • the terminal performs uplink transmission, it needs to consider the uplink synchronization between the terminal and the network device, and the terminal performs uplink transmission according to the end point and the timing advance at the end of the period of time.
  • the uplink transmission may be physical uplink control channel (Physical Uplink Control Channel, PUCCH), physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), sounding reference signal (Sounding Reference Signal, SRS), etc.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Reference Signal
  • this embodiment does not specifically limit specific uplink transmission.
  • FIG. 4 is a schematic diagram of a period of time provided by an embodiment of the application. As shown in FIG. 4, this embodiment takes the system time and the network device timing as an example for description. After the measurement interval (Measurement Gap, MG) ends, this period of time is immediately followed. Those skilled in the art can understand that for the uplink transmission of the terminal after the end of the measurement interval, the network device maintains the uplink receiving state after the end of the measurement interval. This period of time is a part of the uplink receiving time, that is, within the period of time, if the If the terminal can perform uplink transmission, the network device can perform uplink reception. If the terminal cannot perform uplink transmission, the network device will start uplink reception after the period of time is over.
  • Measurement Gap Measurement Gap
  • the length of the period of time is determined according to communication parameters. That is, the time length of the period of time is not a fixed value, but is determined according to the communication parameters corresponding to the communication environment in which the terminal is located.
  • the cell coverage of different frequency ranges may be considered, or the cell coverage actually deployed by the network may be considered, or the actual distance between the terminal and the network device may be considered, so as to determine the time length of the period of time. For example, the greater the cell coverage, the greater the time length, or the greater the actual distance, the greater the time length.
  • the communication parameter may be a parameter used to characterize the coverage area of a cell, or a parameter used to characterize the distance between the terminal and the network device.
  • the communication parameter may be a parameter of the serving cell of the terminal, such as subcarrier spacing, frequency range, etc., and the communication parameter may also be a communication parameter of the terminal, such as the timing advance of the terminal.
  • the communication parameter may also be the guard interval of the system, etc., which is not particularly limited in this embodiment.
  • the terminal may determine the length of the period of time according to the communication parameters, or the network device may determine the length of the period of time, and then the network device indicates the length of the period of time to the terminal.
  • the length of the period of time is determined according to the communication parameters, the length of the period of time is not a certain value, and can be flexibly determined according to the communication parameters.
  • the terminal timing is avoided The existence of the terminal causes the uplink transmission of the terminal to fall within the measurement interval, and also avoids the waste of resources caused by the terminal not performing uplink transmission for a long time after the measurement interval ends.
  • the terminal performs measurement within a measurement interval, and after the measurement interval ends, the terminal determines whether to perform uplink transmission within a period of time, where the period of time is the time period starting from the end of the measurement interval.
  • the time length of a period of time is determined according to the communication parameters, that is, the time length of the period of time is not a fixed value, which regulates the uplink transmission of the terminal after the measurement interval.
  • the terminal decides to perform uplink transmission within this period of time, It will not affect the measurement in the measurement interval.
  • the terminal decides not to perform uplink transmission within this period of time, the terminal will perform uplink transmission after the period of time.
  • the timing advance of the terminal will not affect the terminal’s measurement interval.
  • it also ensures that the terminal can perform uplink transmission in time, which improves resource utilization.
  • the period of time may be determined by the terminal according to communication parameters, or may be determined by a network device according to the communication parameters, and then sent by the network device to the terminal.
  • the network device and/or terminal determining the period of time according to the communication parameters may include at least the following possible implementation manners.
  • the communication parameter is the timing advance of the terminal.
  • the timing advance may be the timing advance of the initial timing advance process or the timing advance of the timing advance update process.
  • the network device determines the initial timing advance according to the random access preamble sent by the terminal, and sends a random access response carrying the initial timing advance to the terminal. However, as the distance between the terminal and the network device changes, the initial timing advance will no longer be applicable, and the timing advance needs to be updated.
  • the network device sends a timing advance command to the terminal.
  • the timing advance command includes adjustment information, and the terminal updates the timing advance according to the adjustment information.
  • the first detectable path advance of the uplink transmission relative to the downlink of the reference cell is (N TA + N TA_offset ) ⁇ T c
  • the timing advance in the present invention can be It is (N TA + N TA_offset ) ⁇ T c , where the N TA is the timing advance configured to the terminal on the network side, the N TA_offset is the fixed offset advance, and the T c is the time unit.
  • the time length may be greater than or equal to the timing advance.
  • the timing advance and the time length have a mapping relationship. Wherein, if the first timing advance is less than the second timing advance, the first time length corresponding to the first timing advance is not greater than the second time length corresponding to the second timing advance.
  • the timing advance and the time length may have a positive correlation, that is, the greater the timing advance, the greater the time length.
  • This embodiment does not specifically limit the implementation manner of the terminal determining the timing advance.
  • the margin can be set based on empirical values, or can be determined based on other factors.
  • the symbol may be an OFDM symbol, for example.
  • the length of X is the length of the cyclic prefix CP.
  • MGTA measurement interval advance
  • the cyclic prefix may be a regular cyclic prefix, an extended cyclic prefix or other types of cyclic prefixes, and the type of cyclic prefixes is not particularly limited in this embodiment.
  • the margin mainly considers the terminal's autonomous timing adjustment.
  • the margin may be the length of the CP or other lengths.
  • the implementation of the margin is not particularly limited in this embodiment.
  • the timing advances belonging to the same range correspond to the same length of time, for example, TAs between a-x and b-x correspond to the same length of time.
  • the timing advance at the boundary such as a-x, b-x, etc.
  • the time length corresponding to a-x is a instead of b
  • the time length corresponding to b-x is b.
  • it can also be determined that the corresponding time length when a-x and b-x are the left boundary is the final time length.
  • the time length corresponding to a-x is b, not a.
  • the boundary value is not particularly limited, as long as the value of the time length corresponding to the boundary is unique.
  • this embodiment gives a part of the step function, and the step function can also include more content.
  • the step function can also include more content.
  • the a, b, c, and d may be a series of gradually increasing numbers, for example, a, b, c, and d are a series of arithmetic numbers, and the tolerance is an integer multiple of half or one time slot.
  • the time length in this embodiment is an integer multiple of the half time slot length, and the time length is greater than the timing advance.
  • the difference between this time length and the timing advance is not less than the length of the cyclic prefix.
  • the terminal when the terminal is close to the network device, for example, the distance between the terminal and the network device is 500 meters, and the actual timing advance is 3.3us, using the above-mentioned fixed time length of 1ms will cause unnecessary waste of resources.
  • the timing advance By dividing the timing advance, multiple time lengths can be obtained, and the time length corresponding to the timing advance can be determined according to the range to which the timing advance belongs, so as to avoid resource waste.
  • the time length of the period of time is determined according to the timing advance, and the time length is greater than the timing advance. Therefore, when the terminal decides not to perform uplink transmission within the period of time and performs uplink transmission after the period of time, the terminal The timing advance operation does not affect the measurement of the terminal within the measurement interval, and also ensures that the terminal can perform uplink transmission in time, thereby improving resource utilization.
  • the communication parameter is parameter information of the serving cell of the terminal.
  • the parameter information of the serving cell includes one or a combination of the following: subcarrier spacing, frequency range.
  • the subcarrier interval has a mapping relationship with the time length.
  • the frequency bands used by 5G services span a large span and the deployment methods are also diverse.
  • the sub-carrier interval of 5G NR is 15 ⁇ 2 n KHz, where n is an integer, for example, the sub-carrier interval is 15KHz, 30KHz, 60KHz, 120KHz, 240KHz.
  • the purpose of designing a large subcarrier spacing is to support delay-sensitive services, small area coverage scenarios, and high carrier frequency scenarios
  • the purpose of designing a small subcarrier spacing is to support low carrier frequency scenarios, large area coverage scenarios, Narrow bandwidth equipment and enhanced broadcast/multicast services.
  • the first time length corresponding to the first subcarrier interval is not greater than the second time length corresponding to the second subcarrier interval.
  • the subcarrier interval and the time length may have a negative correlation, that is, the larger the subcarrier interval, the smaller the time length, and the mapping relationship between the subcarrier interval and the time length may also be a step function.
  • sub-carrier spacing 15KHz and 30KHz mapping time length A sub-carrier spacing 60KHz and 120KHz mapping time length B
  • sub-carrier spacing 240KHz mapping time length C corresponding time length A>time length B>time length C.
  • the frequency range of a cell refers to the high and low frequency range of the frequency band.
  • the frequency range and the time length have a mapping relationship. If the frequency band corresponding to the first frequency range is higher than the frequency band corresponding to the second frequency range, the first time length corresponding to the first frequency range is not greater than the second frequency range corresponding to the second frequency range. length of time.
  • the frequency range (Frequency Range, FR) corresponding to the frequency range can have a negative correlation with the time length, that is, the higher the frequency band, the The smaller the time length, or similar to the sub-carrier spacing, can also be a step function relationship, that is, the time lengths corresponding to two adjacent frequency bands are the same.
  • the earliest uplink transmission time of the terminal in FR1 is 2 ms from the end of the measurement interval
  • the earliest uplink transmission time of the terminal in FR2 is 0.125 ms from the end of the measurement interval.
  • the length of the period of time is determined by the subcarrier interval or frequency range, and the maximum cell radius that may be supported under a certain subcarrier interval or frequency range is mainly considered, so that when the terminal decides not to perform uplink transmission within this period of time
  • the timing advance of the terminal does not affect the measurement of the terminal within the measurement interval, and also ensures that the terminal can perform uplink transmission in time, which improves resource utilization.
  • the communication parameter is a first message sent by the network device to the terminal, and the first message is used to indicate the length of time.
  • the first message may be configuration information or indication information or other communication information between the terminal and the network device, and the implementation of the first message is not particularly limited in this embodiment.
  • An indication field is set in the first message, and the indication field is used to display and indicate the length of time.
  • the terminal can efficiently and directly obtain the time length, which improves the processing efficiency of the terminal.
  • the time length is determined according to the guard interval.
  • the guard interval is a guard interval (Guard Period, GP) from downlink transmission to uplink transmission to reduce interference between uplink and downlink transmissions.
  • the guard interval can be flexibly configured. In different scenarios, the length of the guard interval is different. This embodiment does not specifically limit the implementation manner of determining the guard interval by the network device.
  • the guard interval is configured by the network device to the terminal, and the terminal can determine the length of time for a period of time according to the guard interval.
  • the length of time is the length of the guard interval.
  • the network device may indicate the time length to the terminal in an implicit indication manner, for example, the terminal determines the time length through a guard interval.
  • the guard interval can be understood as a communication parameter, and the terminal determines the time length of the period of time according to the guard interval.
  • the network device sends a guard interval to the terminal device to implicitly indicate the length of the period of time, which saves the signaling overhead between the network device and the terminal.
  • the terminal uses the length of the guard interval as the period of time. Length, the terminal does not need to perform other processing, thereby reducing the processing of the terminal and saving the resources of the terminal.
  • the network device determines the time length of the period of time, and the terminal is scheduled and configured according to the length of the period of time, which will be described in detail below with reference to FIGS. 5 to 6.
  • the network device determines the time length of the period of time, and the terminal is scheduled and configured according to the length of the period of time, which will be described in detail below with reference to FIGS. 5 to 6.
  • FIG. 5 is a signaling flowchart of uplink transmission provided by an embodiment of the application. As shown in Figure 5, the process includes:
  • the network device generates scheduling information, which is used to schedule the terminal to perform uplink transmission after a period of time ends; wherein, the period of time is a period of time from the end of the measurement interval, and the length of the period of time is based on If the communication parameter is determined, the measurement interval is the time for the terminal to perform measurement;
  • S502 The network device sends scheduling information to the terminal.
  • S503 The terminal performs measurement within the measurement interval
  • S504 The terminal determines whether to perform uplink transmission within a period of time.
  • the network device sends scheduling information to the terminal.
  • the scheduling information prevents the terminal from being scheduled to perform uplink transmission within a period of time.
  • the scheduling information may include the uplink resources used by the terminal for uplink transmission. information.
  • the scheduling information is determined according to the time length of the period of time, and the scheduling information avoids scheduling uplink resources within a period of time, that is, the uplink resources do not include resources within the period of time.
  • the network device may schedule the terminal to perform uplink transmission on the resource after a period of time, and the resource is the resource for uplink transmission after a period of time.
  • the time length of the period of time is determined according to the communication parameters. For details, please refer to the above-mentioned embodiment, and this embodiment will not be repeated here. Those skilled in the art can understand that when the terminal has no uplink data transmission, the network device may not schedule the uplink transmission of the terminal.
  • the terminal After receiving the scheduling information, the terminal performs measurement within the measurement interval.
  • the measurement interval For a specific implementation process, refer to the embodiment shown in FIG. 3 above, and this embodiment will not be repeated here.
  • the network device sends scheduling information to the terminal device to avoid scheduling the terminal’s uplink transmission within a period of time.
  • the period of time is determined according to the communication parameters, that is, the period of time. It is not a fixed value, which clarifies the schedulable resources of the network equipment.
  • the terminal will not affect the measurement in the measurement interval when the terminal performs the uplink transmission after the end of the period of time, and also ensures that the terminal can perform the uplink in time Send to improve resource utilization.
  • Fig. 6 is a signaling flow chart of uplink transmission provided by an embodiment of the application. As shown in Figure 6, the process includes:
  • the network device sends a first message to the terminal, where the first message is used to indicate a period of time, where the period of time is a period of time from the end of the measurement interval, and the period of time is based on If the communication parameter is determined, the measurement interval is the time for the terminal to perform measurement;
  • the terminal performs measurement within the measurement interval.
  • the terminal determines whether to perform uplink transmission within a period of time.
  • the network device may explicitly indicate the length of time of the period of time to the terminal through the first message.
  • the first message may be high-level signaling, such as system information, radio resource control message, downlink control information, etc., and an indication field may be added to the high-level signaling, and the indication field is used to indicate the period of time The length of time.
  • the first message may also be independent configuration information, that is, newly-added indication signaling, and there is an indication field in the indication signaling to indicate the length of the period of time.
  • the indication field in the first message may directly indicate the time length, or the indication value of the indication field in the first message has a corresponding relationship with the time length, and the terminal determines the time length according to the corresponding relationship and the indication value.
  • This embodiment does not specifically limit the implementation manner of the first message indicating the time length.
  • the network device indicates the length of time for a period of time by sending a first message to the terminal, which can explicitly indicate the length of time, so that the terminal can quickly obtain and conveniently obtain the length of time.
  • the length of time is Determined according to the communication parameters, that is, the length of the period of time is not a fixed value.
  • the terminal will not affect the measurement in the measurement interval when it performs uplink transmission after the end of the period of time, and also ensure that the terminal can Uplink transmission is performed in time to improve resource utilization.
  • Fig. 7 is a signaling flow chart of uplink transmission provided by an embodiment of the application. As shown in Figure 7, the process includes:
  • the network device sends a second message to the terminal, where the second message carries a guard interval, and the guard interval is used to implicitly indicate the length of time for a period of time, where the period of time is the time from the end of the measurement interval.
  • the measurement interval is the time for the terminal to perform measurement;
  • the terminal performs measurement within the measurement interval.
  • the terminal determines whether to perform uplink transmission within a period of time.
  • the network device After the network device determines the guard interval, the network device generates a second message, and the second message carries the guard interval.
  • the value of the guard interval is not a fixed value, and the guard interval may have a variety of values. This embodiment does not specifically limit the implementation manner of determining the guard interval by the network device.
  • the guard interval can implicitly indicate the length of time.
  • the second message may be a system message, which carries a guard interval; the second message may also be a configuration message, which carries a guard interval, and the implementation of the second message is not particularly limited in this embodiment.
  • the terminal determines the time length according to the guard interval in the second message. Specifically, the terminal determines the time length of the guard interval as the time length of the period of time.
  • the network device implicitly indicates the time length of the period of time through the guard interval carried in the second message, without increasing the signaling overhead between the network device and the terminal device.
  • the time length is determined according to communication parameters, that is, the time length of the period of time is not a fixed value, and the terminal performs uplink transmission after the end of the period of time according to the scheduling of the network device, and the measurement within the measurement interval will not be affected. It also ensures that the terminal can perform uplink transmission in time, which improves resource utilization.
  • the terminal may determine the time length of the period of time through one of the implementation manners in the embodiments shown in FIG. 5 to FIG. 7.
  • the terminal is acquiring scheduling information through the implementation shown in FIG. 5, and at the same time, the terminal may also acquire the time length of the period of time through the implementation shown in FIG. 6 or FIG. 7.
  • the terminal can perform uplink transmission on each serving cell.
  • the terminal and the network device determine the time length of the period of time including the following possible implementation manners.
  • each serving cell corresponds to a period of time, and the length of the period of time is determined according to the communication parameters of the corresponding serving cell.
  • the time length of a period of time of each serving cell is obtained according to the foregoing implementation manner, and a one-to-one correspondence between the serving cell and the time length of a period of time is established, that is, each serving cell corresponds to a time length.
  • Another possible implementation manner is: all serving cells correspond to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of each serving cell.
  • the time length of a period of time of each serving cell is obtained according to the above-mentioned implementation, and then the longest time length is determined as the final time length among all the time lengths, and all serving cells are established with the longest time length. Correspondence of length.
  • each serving cell group corresponds to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells in the group;
  • the serving cell group is determined according to the frequency range where each serving cell is located or the timing advance group where each serving cell is located.
  • the serving cells of the group can be divided according to the frequency range. That is, the serving cells in the same frequency range are a group, and they can also be divided according to the timing advance group of the serving cell, which are located in the same timing advance.
  • the serving cell of the group is a group.
  • each serving cell group corresponds to a period of time, that is, there is a one-to-one correspondence between the serving cell group and the period of time.
  • the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells in the group. That is, each serving cell in the serving cell group corresponds to a time length, and the maximum time length is taken as the time length of the serving cell group.
  • This embodiment provides an implementation manner for the terminal to determine the length of time for a period of time when the terminal is configured with multiple uplink serving cells, so that in the scenario of the terminal in multiple serving cells, the uplink transmission of the terminal after the measurement interval is not Influencing the measurement within the measurement interval can also ensure that the terminal can perform uplink transmission in time and improve resource utilization.
  • the present application also provides an embodiment, which illustrates the indication of the configuration time slot format of the terminal by the network device.
  • the basic scheduling unit of the time domain is a slot or mini-slot, which is collectively referred to as a slot for simplicity.
  • the time slot is composed of several OFDM symbols.
  • NR supports a flexible time slot format, that is, all symbols in a time slot can be used to transmit uplink data, all are used to transmit downlink data, some are used to transmit uplink data, or some are used to transmit downlink data.
  • the slot format can also be understood as a slot format (Slot Format) or slot format related information (Slot format related information).
  • the time slot format can be indicated by the control information carried in the public physical downlink control channel.
  • the downlink control information includes a slot format indication (Slot Format indication, SFI), which is used to indicate which symbols in a slot are uplink symbols, which are downlink symbols, or which are guard intervals.
  • SFI Slot Format indication
  • the network equipment when configuring the time slot format indication (SFI) for the terminal, the network equipment should ensure:
  • the network equipment should ensure that at least two symbols before the first uplink symbol after the guard interval are not used when configuring SFI for the terminal Receive or send, but as a guard interval to ensure that the uplink transmission is not affected.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment of the application. As shown in FIG. 8, the terminal 80 includes:
  • the transceiver module 801 is used to perform measurement within the measurement interval;
  • the processing module 802 is configured to determine whether to perform uplink transmission within a period of time, where the period of time is a period of time starting from the end of the measurement interval, and the length of the period of time is determined by the terminal according to communication parameters .
  • the communication parameter is the timing advance of the terminal; the timing advance has a mapping relationship with the length of time, wherein if the first timing advance is less than the second timing advance, then The first time length corresponding to the first timing advance is not greater than the second time length corresponding to the second timing advance.
  • the TA is the timing advance
  • the TL is the time length
  • the a Ns
  • the b a+Ms
  • the N and M are positive integers
  • the s is half or one
  • the X is the margin
  • the length of X is the length of the cyclic prefix CP.
  • the communication parameter is parameter information of the serving cell of the terminal; the parameter information of the serving cell includes one or a combination of the following: subcarrier spacing, frequency range.
  • the sub-carrier interval and the time length have a mapping relationship, wherein if the first sub-carrier interval is greater than the second sub-carrier interval, the first time corresponding to the first sub-carrier interval The length is not greater than the second time length corresponding to the second subcarrier interval;
  • the frequency range and the time length have a mapping relationship, wherein if the frequency band corresponding to the first frequency range is higher than the frequency band corresponding to the second frequency range, the first time length corresponding to the first frequency range is not greater than the The second time length corresponding to the second frequency range.
  • the communication parameter is a first message; the transceiver module 801 is further configured to receive a first message sent by the network device, where the first message is used to indicate the length of time.
  • the communication parameter is a guard interval for switching from downlink to uplink
  • the transceiver module 801 is further configured to: receive a second message sent by the network device, and the second message carries the A guard interval, where the length of time is determined by the terminal according to the guard interval.
  • the terminal is configured with multiple serving cells
  • Each of the serving cells corresponds to a period of time, and the length of the period of time is determined according to the communication parameters of the corresponding serving cell;
  • All serving cells correspond to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells;
  • Each serving cell group corresponds to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells in the group; the serving cell group is determined according to the location of each serving cell The frequency range or the timing advance group where each serving cell is located.
  • the terminal provided in the embodiment of the present application may be used to execute the methods shown in FIG. 3 to FIG. 7 above, and the implementation principles and technical effects are similar, and details are not described in this embodiment.
  • processing module 802 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 801 may be implemented by a transceiver or transceiver-related circuit components.
  • FIG. 9 is a schematic diagram of hardware of a terminal provided by an embodiment of the application.
  • the terminal 90 includes: a processor 901 and a memory 902; wherein
  • the memory 902 is used to store computer programs
  • the processor 901 is configured to execute a computer program stored in the memory to implement the method executed by the terminal in FIG. 3 to FIG. 7 above. For details, refer to the related description in the foregoing method embodiment.
  • the memory 902 may be independent or integrated with the processor 901.
  • the terminal 90 may further include:
  • the bus 903 is used to connect the memory 902 and the processor 901.
  • the terminal 90 may further include a transceiver 904 for performing measurement within the measurement interval.
  • the embodiment of the present application provides a storage medium, the storage medium includes a computer program, and the computer program is used to implement the method executed by the terminal in FIGS. 3 to 7 above.
  • the embodiments of the present application provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the method performed by the terminal in Figs. 3 to 7 above.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of this application. As shown in FIG. 10, the network device 100 includes:
  • the processing module 1001 is configured to generate scheduling information, which is used to schedule the terminal to perform uplink transmission after a period of time ends; wherein, the period of time is a period of time from the end of the measurement interval, and the length of the period of time Is determined by the network device according to communication parameters, and the measurement interval is the time for the terminal to perform measurement
  • the transceiver module 1002 is configured to send the scheduling information to the terminal.
  • the communication parameter is the timing advance of the terminal; the timing advance has a mapping relationship with the length of time, wherein if the first timing advance is less than the second timing advance, Then the first time length corresponding to the first timing advance is not greater than the second time length corresponding to the second timing advance.
  • the TA is the timing advance
  • the TL is the time length
  • the a Ns
  • the b a+Ms
  • the N and M are positive integers
  • the s is half or one
  • the X is the margin
  • the length of X is the length of the cyclic prefix CP.
  • the communication parameter is parameter information of the serving cell of the terminal; the parameter information of the serving cell includes one or a combination of the following: subcarrier spacing, frequency range.
  • the sub-carrier interval and the time length have a mapping relationship, wherein if the first sub-carrier interval is greater than the second sub-carrier interval, the first time corresponding to the first sub-carrier interval The length is not greater than the second time length corresponding to the second subcarrier interval;
  • the frequency range and the time length have a mapping relationship, wherein if the frequency band corresponding to the first frequency range is higher than the frequency band corresponding to the second frequency range, the first time length corresponding to the first frequency range is not greater than the The second time length corresponding to the second frequency range.
  • the transceiver module 1002 is further configured to send a first message to the terminal, where the first message is used to indicate the length of time.
  • the communication parameter is a guard interval for handover from downlink to uplink; the transceiver module 1002 is further configured to send a second message to the terminal, and the second message carries the guard interval,
  • the guard interval is used to implicitly indicate the length of time.
  • the terminal is configured with multiple serving cells
  • Each of the serving cells corresponds to a period of time, and the length of the period of time is determined according to the communication parameters of the corresponding serving cell;
  • All serving cells correspond to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells;
  • Each serving cell group corresponds to a period of time, and the period of time is determined according to the maximum value of multiple time lengths determined by the communication parameters of all serving cells in the group; the serving cell group is determined according to the location of each serving cell The frequency range or the timing advance group where each serving cell is located.
  • processing module 1001 in the embodiment of the present application may be implemented by a processor or processor-related circuit components
  • transceiver module 1002 may be implemented by a transceiver or transceiver-related circuit components.
  • FIG. 11 is a schematic diagram of hardware of a network device provided by an embodiment of the application.
  • the network device 110 includes: a processor 1101 and a memory 1102; where
  • the memory 1102 is used to store computer programs
  • the processor 1101 is configured to execute a computer program stored in the memory to implement the method executed by the network device in FIG. 3 to FIG. 7 above. For details, refer to the related description in the foregoing method embodiment.
  • the memory 1102 may be independent or integrated with the processor 1101.
  • the network device 110 may further include:
  • the bus 1103 is used to connect the memory 1102 and the processor 1101.
  • the network device 110 may further include a transceiver 1104 for sending scheduling information.
  • the embodiment of the present application provides a storage medium, the storage medium includes a computer program, and the computer program is used to implement the method executed by the network device in FIG. 3 to FIG. 7 above.
  • the embodiment of the present application also provides a communication device, which may be a terminal or a circuit.
  • the communication device can be used to perform the actions performed by the terminal in the foregoing method embodiments.
  • FIG. 12 shows a simplified structural diagram of a terminal. It is easy to understand and easy to illustrate.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, control the terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 12. In actual terminal products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal device
  • the processor with the processing function can be regarded as the processing unit of the terminal device.
  • the terminal device includes a transceiver unit 1210 and a processing unit 1220.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1210 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1210 as the sending unit, that is, the transceiver unit 1210 includes a receiving unit and a sending unit.
  • the transceiver unit can sometimes be called a transceiver, transceiver, or transceiver circuit, etc.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1210 is used to perform the sending and receiving operations on the terminal device side in the foregoing method embodiment, and the processing unit 1220 is used to perform other operations on the terminal device in the foregoing method embodiment except for the transceiving operation.
  • the transceiver unit 1210 is used to perform the receiving operation on the terminal side in S301 in FIG. 3, to receive signals sent by the network device within the measurement interval for measurement, and/or the transceiver unit 1210 also uses To perform other receiving and sending steps on the terminal side in the embodiment of the present application.
  • the processing unit 1220 is configured to execute S302 in FIG. 3, and/or the processing unit 1220 is further configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the transceiver unit 1210 is configured to perform the steps of receiving scheduling information in FIG. 5, and/or the transceiver unit 1220 is also configured to perform other transceiver steps on the terminal side in the embodiment of the present application.
  • the processing unit 1220 is configured to execute S503 in FIG. 5, and/or the processing unit 1220 is further configured to execute other processing steps on the terminal side in the embodiment of the present application.
  • the transceiver unit 1210 is configured to perform the step of receiving the first message in FIG. 6, and/or the transceiver unit 1210 is also configured to perform other transceiver steps on the terminal side in the embodiment of the present application.
  • the processing unit 1220 is configured to execute S603 in FIG. 6, and/or the processing unit 1220 is further configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the transceiving unit 1210 is configured to perform the step of receiving the second message in FIG. 7, and/or the transceiving unit 1210 is further configured to perform other transceiving steps on the terminal device side in the embodiment of the present application.
  • the processing unit 1220 is configured to execute S703 in FIG. 7, and/or the processing unit 1220 is further configured to execute other processing steps on the terminal device side in the embodiment of the present application.
  • the chip When the communication device is a chip, the chip includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the device shown in FIG. 13 can be referred to.
  • the device can perform functions similar to the processor 901 in FIG. 9.
  • the device includes a processor 1310, a data sending processor 1320, and a data receiving processor 1330.
  • the processing module 802 in the foregoing embodiment may be the processor 1310 in FIG. 13 and completes corresponding functions.
  • the transceiver module 801 in the foregoing embodiment may be the sending data processor 1320 and/or the receiving data processor 1330 in FIG. 13.
  • the channel encoder and the channel decoder are shown in FIG. 13, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • the processing device 1400 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the communication device in this embodiment can be used as a modulation subsystem therein.
  • the modulation subsystem may include a processor 1403 and an interface 1404.
  • the processor 1403 completes the function of the aforementioned processing module 802, and the interface 1404 completes the function of the aforementioned transceiver module 801.
  • the modulation subsystem includes a memory 1406, a processor 1403, and a program stored in the memory 1406 and running on the processor. When the processor 1403 executes the program, the terminal device side in the above method embodiment is implemented. Methods.
  • the memory 1406 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1400, as long as the memory 1406 can be connected to the The processor 1403 is sufficient.
  • the device 1500 includes one or more radio frequency units, such as a remote radio unit (RRU) 1510 and one or more basebands A unit (baseband unit, BBU) (also referred to as a digital unit, digital unit, DU) 1520.
  • RRU 1510 may be called a transceiver module, which corresponds to the transceiver module 1002 in FIG. 10.
  • the transceiver module may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1511 ⁇ RF unit 1512.
  • the RRU 1510 part is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending instruction information to the terminal.
  • the 1510 part of the BBU is mainly used for baseband processing and control of the base station.
  • the RRU 1510 and the BBU 1520 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1520 is the control center of the base station, and may also be called a processing module, which may correspond to the processing module 1001 in FIG. 10, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1520 may be composed of one or more single boards, and multiple single boards may jointly support a single access standard radio access network (such as an LTE network), or can support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1520 also includes a memory 1521 and a processor 1522.
  • the memory 1521 is used to store necessary instructions and data.
  • the processor 1522 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1521 and the processor 1522 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the processor mentioned in the embodiment of the present invention may be a central processing unit (Central Processing Unit, CPU), or may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits ( Application Specific Integrated Circuit (ASIC), ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be Read-Only Memory (ROM), Programmable Read-Only Memory (Programmable ROM, PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), and Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the foregoing processes does not mean the order of execution.
  • the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement Of Unknown Time Intervals (AREA)

Abstract

本申请实施例提供一种上行传输方法及设备,该方法包括:终端在测量间隔内进行测量;所述终端确定是否在一段时间内进行上行发送,其中,所述一段时间为从所述测量间隔结束开始的时间段,所述一段时间的时间长度是所述终端根据通信参数确定的。本申请实施例使得上行发送不会影响测量间隔内的测量,且不浪费资源。

Description

上行传输方法及设备
本申请要求于2019年1月21日提交中国专利局、申请号为2019100546668、申请名称为“上行传输方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种上行传输方法及设备。
背景技术
在新无线(New Radio,NR)技术中,在一些场景下,当待测的目标频点不在终端的工作带宽,终端对目标频点进行测量时,一种简单的方式是在终端中安装2种射频接收机,分别测量终端的当前频点和目标频点,但这样会带来成本提升和不同频点之间相互间干扰的问题。因此,3GPP提出了测量间隔(Measurement Gap,MG)这种方式,即在正常收发数据过程中,预留一部分时间(即测量间隔),在这段时间内,终端不会发送和接收任何数据,而将接收机调向目标频点,对目标频点进行测量,测量间隔结束后再转到当前频点,继续进行数据收发。
目前,现有测量间隔结束之后到上行发送之间的时间间隔为固定值,对于NR技术而言并不适用,因此针对NR技术,亟需对测量间隔结束之后的上行发送行为进行规范。
发明内容
本申请实施例提供一种上行传输方法及设备,以对测量间隔结束后的上行发送行为进行规范,使得上行发送不会影响测量间隔内的测量,且不浪费资源。
第一方面,本申请实施例提供一种上行传输方法,包括:
终端在测量间隔内进行测量;
所述终端确定是否在一段时间内进行上行发送,其中,所述一段时间为从所述测量间隔结束开始的时间段,该一段时间与该测量间隔相邻,且位于测量间隔之后,该一段时间可以为以子帧、时隙、符号等为时间单位的时间段,也可以为以毫秒、微秒等为时间单位的时间;所述一段时间的时间长度是所述终端根据通信参数确定的,该通信参数可以为用于表征小区覆盖范围、终端与网络设备的实际距离的参数。
可选的,当测量间隔提前导致产生与测量间隔部分交叠的时隙时,该一段时间与所述与测量间隔有部分交叠的时隙相邻,且位于该时隙之后,该一段时间可以为以子帧、时隙、符号等为时间单位的时间段,也可以为以毫秒、微秒等为时间单位的时间;所述一段时间的时间长度是所述终端根据通信参数确定的,该通信参数可以为用于表征小区覆盖范围、终端与网络设备的实际距离的参数。
由于该一段时间的时间长度是根据通信参数确定的,因此,该一段时间的时间长 度不是确定值,可以根据通信参数灵活确定,在终端根据实现不在该一段时间进行上行发送时,避免终端定时提前的存在,导致终端的上行发送落在该测量间隔内的情况,也避免了在测量间隔结束后,终端长时间不进行上行发送导致的资源浪费。
在第一方面的一种可能的设计中,所述通信参数为所述终端的定时提前量;所述定时提前量与所述时间长度具有映射关系,其中,若第一定时提前量小于第二定时提前量,则所述第一定时提前量对应的第一时间长度不大于所述第二定时提前量对应的第二时间长度。例如,定时提前量和时间长度可以为正相关的关系,即定时提前量越大,则时间长度越大,从而避免终端在测量间隔内进行上行发送。
在第一方面的一种可能的设计中,所述时间长度为所述定时提前量的阶跃函数,若TA∈[0,a-x),则TL=a;若TA∈[a-x,b-x],则TL=b;
其中,所述TA为定时提前量,所述TL为所述时间长度,所述a=Ns,所述b=a+Ms,所述N、M为正整数,所述s为半个或一个时隙长度或一个符号长度,所述X为余量,所述X的长度为循环前缀CP的长度。
通过根据定时提前量确定该一段时间的时间长度,该时间长度大于定时提前量,从而当该终端决定不在该一段时间内进行上行发送,在该一段时间结束后进行上行发送时,终端的定时提前操作不会影响终端在测量间隔内的测量,也保证终端能够及时进行上行发送,提高资源利用率。
在第一方面的一种可能的设计中,所述通信参数为所述终端的服务小区的参数信息;所述服务小区的参数信息包括如下中的一个或者他们的组合:子载波间隔、频率范围。
在第一方面的一种可能的设计中,所述子载波间隔与所述时间长度具有映射关系,其中,若第一子载波间隔大于第二子载波间隔,则所述第一子载波间隔对应的第一时间长度不大于所述第二子载波间隔对应的第二时间长度;
所述频率范围与所述时间长度具有映射关系,其中,若第一频率范围对应的频段高于第二频率范围对应的频段,则所述第一频率范围对应的第一时间长度不大于所述第二频率范围对应的第二时间长度。子载波间隔与该时间长度可以为负相关的关系,即子载波间隔越大,则时间长度越小,子载波间隔与时间长度的映射关系也可以为阶跃函数。
通过子载波间隔或频率范围来确定该一段时间的长度,主要考虑一定的子载波间隔或者频率范围下可能支持的最大的小区半径,从而当该终端决定不在该一段时间内进行上行发送,在该一段时间结束后进行上行发送时,终端的定时提前不会影响终端在测量间隔内的测量,也保证终端能够及时进行上行发送,提高资源利用率。
在第一方面的一种可能的设计中,所述通信参数为第一消息;所述方法还包括:
所述终端接收所述网络设备发送的第一消息,所述第一消息用于指示所述时间长度。其中,该第一消息可以为配置信息或指示信息或终端与网络设备的其它通信信息。该第一消息中设置有指示域,该指示域用于显示指示该时间长度。
通过第一消息显示指示该时间长度,终端能够高效直接的获取该时间长度,提高了终端的处理效率。
在第一方面的一种可能的设计中,所述通信参数为下行到上行切换的保护间隔, 所述方法还包括:
所述终端接收所述网络设备发送的第二消息,所述第二消息中携带所述保护间隔,所述时间长度是所述终端根据所述保护间隔确定的。该第二消息可以为系统消息或配置消息。
通过第二消息中携带的保护间隔,来隐式指示该一段时间的时间长度,不会增加网络设备与终端设备之间的信令开销。该时间长度是根据通信参数确定的,即该一段时间的时间长度不是固定值,终端根据网络设备的调度,在该一段时间结束后进行上行发送时,不会影响在该测量间隔内的测量,也保证终端能够及时进行上行发送,提高资源利用率。
在第一方面的一种可能的设计中,若所述终端被配置了多个服务小区;
每个所述服务小区分别各自对应一个一段时间,所述一段时间的时间长度是根据对应的服务小区的通信参数确定的;或者
所有服务小区对应一个一段时间,所述一段时间是根据所有服务小区的通信参数确定的多个时间长度中的最大值确定的;或者
每个服务小区组分别各自对应一个一段时间,所述一段时间是根据组内所有服务小区的通信参数确定的多个时间长度中的最大值确定的;所述服务小区组是根据各服务小区所在的频率范围或者各服务小区所在的定时提前组确定的。
在终端被配置了多个上行服务小区时,终端确定该一段时间的时间长度的实现方式,使得终端在多个服务小区的场景下,终端在测量间隔后的上行发送不会影响在该测量间隔内的测量,也可以保证终端能够及时进行上行发送,提高资源利用率。
第二方面,本申请实施例提供一种上行传输方法,包括:
网络设备生成调度信息,所述调度信息用于调度终端在一段时间结束后进行上行传输,即所述调度信息避免调度终端在一段时间内进行上行传输;其中,所述一段时间为从测量间隔结束开始的时间段,所述一段时间的时间长度是所述网络设备根据通信参数确定的,所述测量间隔为所述终端进行测量的时间;
所述网络设备向所述终端发送所述调度信息。
网络设备通过向终端设备发送调度信息,避免调度终端在一段时间内的上行传输,该一段时间的时间长度是根据通信参数确定的,即该一段时间的时间长度不是固定值,从而明确了网络设备可调度的资源,终端根据网络设备的调度,在该一段时间结束后进行上行发送时,不会影响在该测量间隔内的测量,也保证终端能够及时进行上行发送,提高资源利用率。
在第二方面的一种可能的设计中,所述通信参数为所述终端的定时提前量;所述定时提前量与所述时间长度具有映射关系,其中,若第一定时提前量小于第二定时提前量,则所述第一定时提前量对应的第一时间长度不大于所述第二定时提前量对应的第二时间长度。
在第二方面的一种可能的设计中,所述时间长度为所述定时提前量的阶跃函数,若TA∈[0,a-x),则TL=a;若TA∈[a-x,b-x],则TL=b;
其中,所述TA为定时提前量,所述TL为所述时间长度,所述a=Ns,所述b=a+Ms,所述N、M为正整数,所述s为半个或一个时隙长度或一个符号长度,所述X为余量, 所述X的长度为循环前缀CP的长度。
在第二方面的一种可能的设计中,所述通信参数为所述终端的服务小区的参数信息;所述服务小区的参数信息包括如下中的一个或者他们的组合:子载波间隔、频率范围。
在第二方面的一种可能的设计中,所述子载波间隔与所述时间长度具有映射关系,其中,若第一子载波间隔大于第二子载波间隔,则所述第一子载波间隔对应的第一时间长度不大于所述第二子载波间隔对应的第二时间长度;
所述频率范围与所述时间长度具有映射关系,其中,若第一频率范围对应的频段高于第二频率范围对应的频段,则所述第一频率范围对应的第一时间长度不大于所述第二频率范围对应的第二时间长度。
在第二方面的一种可能的设计中,所述方法还包括:
所述网络设备向所述终端发送第一消息,所述第一消息用于指示所述时间长度。
在第二方面的一种可能的设计中,所述通信参数为下行到上行切换的保护间隔;所述方法还包括:
所述网络设备向所述终端发送第二消息,所述第二消息中携带所述保护间隔,所述保护间隔用于隐式指示所述时间长度。
在第二方面的一种可能的设计中,若所述终端被配置了多个服务小区;
每个所述服务小区分别各自对应一个一段时间,所述一段时间的时间长度是根据对应的服务小区的通信参数确定的;或者
所有服务小区对应一个一段时间,所述一段时间是根据所有服务小区的通信参数确定的多个时间长度中的最大值确定的;或者
每个服务小区组分别各自对应一个一段时间,所述一段时间是根据组内所有服务小区的通信参数确定的多个时间长度中的最大值确定的;所述服务小区组是根据各服务小区所在的频率范围或者各服务小区所在的定时提前组确定的。
第三方面吧,本申请实施例提供一种终端,包括:
收发模块,用于在测量间隔内进行测量;
处理模块,用于确定是否在一段时间内进行上行发送,其中,所述一段时间为从所述测量间隔结束开始的时间段,所述一段时间的时间长度是所述终端根据通信参数确定的。
在第三方面的一种可能的设计中,所述通信参数为所述终端的定时提前量;所述定时提前量与所述时间长度具有映射关系,其中,若第一定时提前量小于第二定时提前量,则所述第一定时提前量对应的第一时间长度不大于所述第二定时提前量对应的第二时间长度。
在第三方面的一种可能的设计中,所述时间长度为所述定时提前量的阶跃函数,若TA∈[0,a-x),则TL=a;若TA∈[a-x,b-x],则TL=b;
其中,所述TA为定时提前量,所述TL为所述时间长度,所述a=Ns,所述b=a+Ms,所述N、M为正整数,所述s为半个或一个时隙长度或一个符号长度,所述X为余量,所述X的长度为循环前缀CP的长度。
在第三方面的一种可能的设计中,所述通信参数为所述终端的服务小区的参数信 息;所述服务小区的参数信息包括如下中的一个或者他们的组合:子载波间隔、频率范围。
在第三方面的一种可能的设计中,所述子载波间隔与所述时间长度具有映射关系,其中,若第一子载波间隔大于第二子载波间隔,则所述第一子载波间隔对应的第一时间长度不大于所述第二子载波间隔对应的第二时间长度;
所述频率范围与所述时间长度具有映射关系,其中,若第一频率范围对应的频段高于第二频率范围对应的频段,则所述第一频率范围对应的第一时间长度不大于所述第二频率范围对应的第二时间长度。
在第三方面的一种可能的设计中,所述通信参数为第一消息;所述收发模块还用于:接收所述网络设备发送的第一消息,所述第一消息用于指示所述时间长度。
在第三方面的一种可能的设计中,所述通信参数为下行到上行切换的保护间隔,所述收发模块还用于:接收所述网络设备发送的第二消息,所述第二消息中携带所述保护间隔,所述时间长度是所述终端根据所述保护间隔确定的。
在第三方面的一种可能的设计中,若所述终端被配置了多个服务小区;
每个所述服务小区分别各自对应一个一段时间,所述一段时间的时间长度是根据对应的服务小区的通信参数确定的;或者
所有服务小区对应一个一段时间,所述一段时间是根据所有服务小区的通信参数确定的多个时间长度中的最大值确定的;或者
每个服务小区组分别各自对应一个一段时间,所述一段时间是根据组内所有服务小区的通信参数确定的多个时间长度中的最大值确定的;所述服务小区组是根据各服务小区所在的频率范围或者各服务小区所在的定时提前组确定的。
第四方面,本申请实施例提供一种网络设备,包括:
处理模块,用于生成调度信息,所述调度信息用于调度终端在一段时间结束后进行上行传输;其中,所述一段时间为从测量间隔结束开始的时间段,所述一段时间的时间长度是所述网络设备根据通信参数确定的,所述测量间隔为所述终端进行测量的时间
收发模块,用于向所述终端发送所述调度信息。
在第四方面的一种可能的设计中,所述通信参数为所述终端的定时提前量;所述定时提前量与所述时间长度具有映射关系,其中,若第一定时提前量小于第二定时提前量,则所述第一定时提前量对应的第一时间长度不大于所述第二定时提前量对应的第二时间长度。
在第四方面的一种可能的设计中,所述时间长度为所述定时提前量的阶跃函数,若TA∈[0,a-x),则TL=a;若TA∈[a-x,b-x],则TL=b;
其中,所述TA为定时提前量,所述TL为所述时间长度,所述a=Ns,所述b=a+Ms,所述N、M为正整数,所述s为半个或一个时隙长度或一个符号长度,所述X为余量,所述X的长度为循环前缀CP的长度。
在第四方面的一种可能的设计中,所述通信参数为所述终端的服务小区的参数信息;所述服务小区的参数信息包括如下中的一个或者他们的组合:子载波间隔、频率范围。
在第四方面的一种可能的设计中,所述子载波间隔与所述时间长度具有映射关系,其中,若第一子载波间隔大于第二子载波间隔,则所述第一子载波间隔对应的第一时间长度不大于所述第二子载波间隔对应的第二时间长度;
所述频率范围与所述时间长度具有映射关系,其中,若第一频率范围对应的频段高于第二频率范围对应的频段,则所述第一频率范围对应的第一时间长度不大于所述第二频率范围对应的第二时间长度。
在第四方面的一种可能的设计中,所述收发模块还用于:向所述终端发送第一消息,所述第一消息用于指示所述时间长度。
在第四方面的一种可能的设计中,所述通信参数为下行到上行切换的保护间隔;所述收发模块还用于向所述终端发送第二消息,所述第二消息中携带所述保护间隔,所述保护间隔用于隐式指示所述时间长度。
在第四方面的一种可能的设计中,若所述终端被配置了多个服务小区;
每个所述服务小区分别各自对应一个一段时间,所述一段时间的时间长度是根据对应的服务小区的通信参数确定的;或者
所有服务小区对应一个一段时间,所述一段时间是根据所有服务小区的通信参数确定的多个时间长度中的最大值确定的;或者
每个服务小区组分别各自对应一个一段时间,所述一段时间是根据组内所有服务小区的通信参数确定的多个时间长度中的最大值确定的;所述服务小区组是根据各服务小区所在的频率范围或者各服务小区所在的定时提前组确定的。
第五方面,本申请实施例提供一种通信设备,包括:存储器、处理器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行如上第一方面或第一方面各种可能的设计所述的方法。
第六方面,本申请实施例提供一种存储介质,所述存储介质包括计算机程序,所述计算机程序用于实现如上第一方面或第一方面各种可能的设计所述的方法。
第七方面,本申请实施例提供一种通信设备,包括:存储器、处理器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行如上第二方面或第二方面各种可能的设计所述的方法。
第八方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如上第一方面或第一方面各种可能的设计所述的方法。
第九方面,本申请实施例提供一种芯片,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器执行如上第一方面或第一方面各种可能的设计所述的方法。
第十方面,本申请实施例提供一种存储介质,所述存储介质包括计算机程序,所述计算机程序用于实现如上第二方面或第二方面各种可能的设计所述的方法。
第十一方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如上第二方面或第二方面各种可能的设计所述的方法。
第十二方面,本申请实施例提供一种芯片,包括存储器和处理器,所述存储器用于存 储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述处理器执行如上第二方面或第二方面各种可能的设计所述的方法。
本申请实施例提供的上行传输方法及设备,通过终端在测量间隔内进行测量,终端确定是否在一段时间内进行上行发送,其中,一段时间为从测量间隔结束开始的时间段,该一段时间的时间长度是根据通信参数确定的,即该一段时间的时间长度不是固定值,从而对终端在测量间隔后的上行发送进行了规范,同时终端决定在该一段时间内进行上行发送时,不会影响在该测量间隔内的测量,当该终端决定不在该一段时间内进行上行发送,则终端在该一段时间结束后进行上行发送,一方面终端的定时提前不会影响终端在测量间隔内的测量,另一方面也保证终端能够及时进行上行发送,提高资源利用率。
附图说明
图1示出了本申请实施例可能适用的一种网络架构;
图2为本申请实施例提供的网络设备和终端的定时示意图;
图3为本申请一实施例提供的上行传输的信令流程图;
图4为本申请一实施例提供的一段时间的示意图;
图5为本申请一实施例提供的上行传输的信令流程图;
图6为本申请一实施例提供的上行传输的信令流程图;
图7为本申请一实施例提供的上行传输的信令流程图;
图8为本申请实施例提供的终端的结构示意图;
图9为本申请实施例提供的终端的硬件示意图;
图10为本申请实施例提供的网络设备的结构示意图;
图11为本申请实施例提供的网络设备的硬件示意图;
图12为本申请实施例提供的通信装置的一示意图;
图13为本申请实施例提供的通信装置的另一示意图;
图14为本申请实施例提供的通信装置的再一示意图;
图15为本申请实施例提供的通信装置的再一示意图。
具体实施方式
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例可以应用于无线通信系统,需要说明的是,本申请实施例提及的无线通信系统包括但不限于:窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple  Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA),长期演进系统(Long Term Evolution,LTE)以及第五代移动通信(the 5 th Generation,简称5G)的新无线(New Radio,NR)移动通信系统。
下面结合图1对本申请实施例的可能的网络架构进行介绍。图1示出了本申请实施例可能适用的一种网络架构。如图1所示,本实施例提供的网络架构包括网络设备101和终端102。
其中,网络设备101是一种将终端接入到无线网络的设备,可以是全球移动通讯(Global System of Mobile communication,简称GSM)或码分多址(Code Division Multiple Access,简称CDMA)中的基站(Base Transceiver Station,简称BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)中的基站(NodeB,简称NB),还可以是长期演进(Long Term Evolution,简称LTE)中的演进型基站(Evolved Node B,简称eNB或eNodeB),或者中继站或接入点,或者未来5G网络中NR制式的网络侧设备(例如基站)或未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等,在此并不限定。图1示意性的绘出了一种可能的示意,以该网络设备101为基站为例进行了绘示。
该终端102也可以称为终端设备,该终端可以是无线终端也可以是有线终端,无线终端可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,简称RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(Personal Communication Service,简称PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,简称SIP)话机、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字助理(Personal Digital Assistant,简称PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent),在此不作限定。
图1示意性的绘出了一种可能的示意。其中,网络设备101和终端102A-102F组成一个通信系统。在该通信系统中,在终端102A-102F可以发送上行数据或信号给网络设备101,网络设备101需要接收终端102A-102F发送的上行数据或信号;网络设备101可以发送下行数据或信号给终端102A-102F,终端102A-102F需要接收网络设备101发送的下行数据或信号。此外,终端102D-102F也可以组成一个通信系统。在该通信系统中,网络设备101可以发送下行数据给终端102A、终端102B、终端102E等;终端102E也可以发送下行数据或信号给终端102D、终端102F。
在图1所示的通信系统中,网络设备与终端之间存在传播距离,该传播距离会产生网络设备与终端之间的传输时延。图2为本申请实施例提供的网络设备和终端的定时示意图。如图2所示,由于该传输时延,在下行(Downlink,DL)传输过程中,终端的下行定时是晚于网络设备的。在上行(Uplink,UL)传输时,为了保证与网络设备的距离不同的终端发送的信号可以同时到达网络设备,终端会对上行发送使用定时提前量(Timing Advance, TA),因此终端的上行定时是早于网络设备的。例如,在NR中,终端可以通过检测同步信号块(Synchronization Signal Block,SSB)来获取小区的物理小区标识、定时信息以及基于SSB的测量结果等。
当待测的目标频点不在终端的工作带宽,终端在测量间隔内对目标频点进行测量。该测量可以为同频测量,也可以为异频测量,本实施例对终端进行测量的具体实现方式不做特别限制。终端在该测量间隔内即不发送数据,也不接收数据。在NR中,在确定测量间隔的起始点时,不管测量间隔之前终端实际进行的是上行发送还是下行接收,终端都参考下行定时。在终端被配置了多个服务小区的情况下,不同的服务小区由于距离网络设备的远近不同,可能有不同的定时,测量间隔的起点参考所有服务小区里最晚的一个小区的下行定时。本实施例对该测量间隔的测量间隔长度(Measurement Gap Length,MGL)不做特别限制。
在测量间隔结束之后,终端可以立即接收网络设备发送的下行数据或信号,但是考虑终端的上行定时提前,以避免上行发送位于测量间隔内,对测量产生干扰,以及考虑NR的小区半径范围很大,从几十米到几百公里,目前在测量间隔后通过设定固定的1ms或1个时隙的时间不进行上行发送,该1ms或1个时隙可能不够或浪费的问题,因此对上行发送的行为需要规范。本申请实施例将针对终端的上行发送,规范终端在测量间隔结束后多久可以进行上行发送,同时明确了网络设备在测量间隔结束后可调度的上行资源。
图3为本申请一实施例提供的上行传输的信令流程图,如图3所示,该方法包括:
S301、终端在测量间隔内进行测量。
S302、所述终端确定是否在一段时间内进行上行发送,其中,所述一段时间为从所述测量间隔结束开始的时间段,所述一段时间的时间长度是所述终端根据通信参数确定的。
在本实施例中,终端在测量间隔内进行测量,该测量可以为同频测量也可以为异频测量,本实施例对终端在测量间隔内所进行的测量不做特别限制。在该测量间隔内,终端不会发送和接收任何数据,而将接收机调向目标频点,对该目标频点进行测量。
在该测量间隔结束后,终端确定是否在一段时间内进行上行发送。其中,在一种可能的实现方式中,该一段时间为从测量间隔结束开始的时间段,该一段时间的时间长度是根据通信参数确定的。
其中,本实施例所涉及的测量间隔、一段时间、时间长度等与时间相关的概念,均是针对通信系统的系统时间来定义的。其中,系统时间是指终端和网络设备同时遵循的时间。该系统时间与网络设备的时间相同。
该一段时间可以为以子帧、时隙、符号等为时间单位的时间段。该符号可以为正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,该一段时间也可以为以毫秒、微秒等为时间单位的时间,本实施例对该一段时间的单位不做特别限制。
在另一种可能的实现方式中,当测量间隔提前而产生与测量间隔的尾部存在部分交叠的时隙时,该一段时间与所述与测量间隔有部分交叠的时隙相邻,且位于该时隙之后,该一段时间可以为以子帧、时隙、符号等为时间单位的时间段,也可以为以毫秒、微秒等为时间单位的时间;所述一段时间的时间长度是所述终端根据通信参数确定的,该通信参数可以为用于表征小区覆盖范围、终端与网络设备的实际距离的参数。
终端可以根据实现决定是否在一段时间内进行上行发送。在一种可能的方式中,若终端具有两个射频收发机,则终端通过一个射频收发机在测量间隔内进行测量,通过另一个收发机在该一段时间内进行上行发送。在另一种方式中,网络设备在该一段时间内调度终端进行上行发送,而终端为了避免上行发送对在测量间隔内所进行的测量造成影响,则终端确定不再该一段时间内进行上行发送。在又一种方式中,终端在测量间隔还未结束时,终端完成了测量,则终端确定在该一段时间内进行上行发送。
即在一些场景下,终端可以在该一段时间内进行上行发送,在一些场景下,终端在该一段时间内进行上行发送将影响测量,即终端不可以进行上行发送。本实施例对终端根据实现决定是否在一段时间内进行上行发送的可能的方式,本实施例此处不再赘述。
本领域技术人员可以理解,当终端决定在该一段时间结束后进行上行发送,即网络设备能够在该一端时间结束后开始进行上行接收。终端在进行上行发送时,需要考虑终端与网络设备的上行同步,终端根据该一段时间结束的终点和定时提前量进行上行发送。
其中,该上行发送可以为物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)以及物理上行链路共享信道(Physical Uplink Shared Channel,简称PUSCH)以及探测参考信号(Sounding Reference Signal,SRS)等的上行发送,本实施例对具体的上行发送不做特别限制。
图4为本申请一实施例提供的一段时间的示意图。如图4所示,本实施例以系统时间与网络设备定时一致为例进行说明。在测量间隔(Measurement Gap,MG)结束后,紧接着为该一段时间。本领域技术人员可以理解,对于终端在测量间隔结束后的上行发送,网络设备在该测量间隔结束后保持上行接收状态,该一段时间为上行接收时间的一部分,即在该一段时间内,若该终端可以进行上行发送,则网络设备可以进行上行接收,若该终端不能进行上行发送,则网络设备在该一段时间结束后开始上行接收。
在本实施例中,该一段时间的时间长度是根据通信参数确定的。即该一段时间的时间长度不是固定值,而是根据终端所处的通信环境对应的通信参数确定的。可以考虑不同频率范围的小区覆盖范围、或考虑网络实际部署的小区覆盖范围,或考虑终端与网络设备的实际距离,从而确定该一段时间的时间长度。例如,小区覆盖范围越大,则该时间长度越大,或者该实际距离越大,则该时间长度越大。该通信参数可以为用于表征小区覆盖范围的参数,也可以为表征终端与网络设备的距离的参数。
在一种可能的设计中,该通信参数可以为终端的服务小区的参数,例如子载波间隔、频率范围等,该通信参数还可以终端的通信参数,例如终端的定时提前等。该通信参数还可以为系统的保护间隔等,本实施例对该通信参数不做特别限制。
终端可以根据通信参数确定该一段时间的长度,也可以由网络设备确定该一段时间的时间长度,然后由网络设备向终端指示该一段时间的长度。
由于该一段时间的时间长度是根据通信参数确定的,因此,该一段时间的时间长度不是确定值,可以根据通信参数灵活确定,在终端根据实现不在该一段时间进行上行发送时,避免终端定时提前的存在,导致终端的上行发送落在该测量间隔内的情况,也避免了在测量间隔结束后,终端长时间不进行上行发送导致的资源浪费。
本申请实施例提供的上行传输方法,终端在测量间隔内进行测量,在测量间隔结束后,终端确定是否在一段时间内进行上行发送,其中,一段时间为从测量间隔结束 开始的时间段,该一段时间的时间长度是根据通信参数确定的,即该一段时间的时间长度不是固定值,从而对终端在测量间隔后的上行发送进行了规范,同时终端决定在该一段时间内进行上行发送时,不会影响在该测量间隔内的测量,当该终端决定不在该一段时间内进行上行发送,则终端在该一段时间结束后进行上行发送,一方面终端的定时提前不会影响终端在测量间隔内的测量,另一方面也保证终端能够及时进行上行发送,提高资源利用率。
在上述实施例的基础上,该一段时间可以由终端根据通信参数决定,也可以有网络设备根据通信参数决定,然后由网络设备发送给终端。其中,网络设备和/或终端根据通信参数确定该一段时间可以至少包括如下可能的实现方式。
一种可能的实现方式,所述通信参数为所述终端的定时提前量。
该定时提前量可以为初始定时提前过程的定时提前量或定时提前更新过程的定时提前量。在随机接入过程中,网络设备根据终端发送的随机接入前导确定初始定时提前,并向终端发送携带该初始定时提前的随机接入响应。然而,随着终端与网络设备之间的距离的改变,该初始定时提前将不再适用,需要对该定时提前进行更新。当终端定时提前需要调整时,网络设备向终端发送定时提前命令,该定时提前命令包括调整信息,终端根据该调整信息来更新定时提前。在一种可能的实现方式中,根据38.133的要求,上行发送相对于参考小区的下行第一个可检测径提前为(N TA+N TA_offset)×T c,本发明中所述定时提前量可以为(N TA+N TA_offset)×T c,其中,所述N TA为网络侧向终端配置的定时提前量,所述N TA_offset为固定偏移提前量,所述T c为时间单位。
示例性地,该时间长度可以大于或等于该定时提前量。示例性地,所述定时提前量与所述时间长度具有映射关系。其中,若第一定时提前量小于第二定时提前量,则第一定时提前量对应的第一时间长度不大于第二定时提前量对应的第二时间长度。
示例性地,定时提前量和时间长度可以为正相关的关系,即定时提前量越大,则时间长度越大。本实施例对终端确定定时提前量的实现方式不做特别限制。
在一种可能的设计中,时间长度为定时提前量的阶跃函数,若TA∈[0,a-x),则TL=a;若TA∈[a-x,b-x],则TL=b;其中,TA为定时提前量,TL为时间长度,a=Ns,b=a+Ms,N、M为正整数,s为半个或一个时隙长度或一个符号长度,X为余量。该余量可以根据经验值来设定,也可以根据其它因素确定。该符号例如可以为OFDM符号。例如X的长度为循环前缀CP的长度。可选的,当测量间隔提前(MGTA)导致产生与测量间隔部分交叠的时隙时,s为半个时隙长度,其它情况下为以一个时隙长度。
该循环前缀(Cyclic Prefix,CP)可以为常规循环前缀、扩展循环前缀或其它类型的循环前缀,本实施例对循环前缀的类型不做特别限制。
X作为余量主要考虑终端自主的定时调整,该余量可以为CP的长度,也可以为其它长度,本实施例对该余量的实现方式不做特别限制。
在本实施例中,属于同一范围的定时提前量对应相同的时间长度,例如,介于a-x与b-x之间的TA,对应相同的时间长度。对于位于边界的定时提前量,例如a-x、b-x等,可以确定a-x、b-x为右边界时对应的时间长度为最终的时间长度。例如,a-x对应的时间长度为a,而不是b,b-x对应的时间长度为b。或者,也可以确定a-x、b-x为左边界时对应的时间长度为最终的时间长度。例如,a-x对应的时间长度为b,而不是a。本实施 例对边界取值不做特别限制,只要保证边界对应的时间长度的取值唯一即可。
示例性地,本实施例给出了该阶跃函数的部分,该阶跃函数还可以包括更多的内容,例如,若TA∈[b-x,c-x],则TL=c,若TA∈[c-x,d-x],则TL=d……依次类推。其中,该a、b、c、d可以为逐渐递增的数列,例如,a、b、c、d为等差数列,公差为半个或一个时隙的整数倍。
由上可知,本实施例中的时间长度为半个时隙长度的整数倍,且该时间长度大于定时提前量。该时间长度与定时提前量的差值不小于循环前缀的长度。
示例性地,对于终端距离网络设备较近时,例如终端与网络设备的距离为500米,实际的定时提前量在3.3us,使用上述固定的1ms的时间长度,会造成不必要的资源浪费,通过对定时提前量进行划分,可以得到多个时间长度,可以根据定时提前量所属的范围,确定该定时提前量对应的时间长度,从而避免资源浪费。
本实施例通过根据定时提前量确定该一段时间的时间长度,该时间长度大于定时提前量,从而当该终端决定不在该一段时间内进行上行发送,在该一段时间结束后进行上行发送时,终端的定时提前操作不会影响终端在测量间隔内的测量,也保证终端能够及时进行上行发送,提高资源利用率。
又一种可能的实现方式:通信参数为该终端的服务小区的参数信息。例如,该服务小区的参数信息包括如下中的一种或他们的组合:子载波间隔、频率范围。
子载波间隔与该时间长度具有映射关系。5G业务使用的频段的跨度很大,部署方式也多种多样。5G NR的子载波间隔为15×2 nKHz,其中n为整数,例如,子载波间隔为15KHz在、30KHz、60KHz、120KHz、240KHz。其中,设计大的子载波间隔的目的是支持时延敏感型业务、小面积覆盖场景,和高载频场景,而设计小的子载波间隔的目的是支持低载频场景、大面积覆盖场景、窄带宽设备和增强型广播/多播业务。
其中,若第一子载波间隔大于第二子载波间隔,则第一子载波间隔对应的第一时间长度不大于第二子载波间隔对应的第二时间长度。
在本实施例中,子载波间隔与该时间长度可以为负相关的关系,即子载波间隔越大,则时间长度越小,子载波间隔与时间长度的映射关系也可以为阶跃函数。例如,子载波间隔15KHz和30KHz映射时间长度A,子载波间隔60KHz和120KHz映射时间长度B,子载波间隔240KHz映射时间长度C,对应地时间长度A>时间长度B>时间长度C。
不同的小区,小区的频率范围可能不同。其中,小区的频率范围是指频段高低的频率范围。频率范围与时间长度具有映射关系,其中,若第一频率范围对应的频段高于第二频率范围对应的频段,则第一频率范围对应的第一时间长度不大于第二频率范围对应的第二时间长度。
其中,频段高的小区覆盖面积小,频段低的小区覆盖面积大,因此,频率范围(Frequency Range,FR)对应的频段的高低与该时间长度可以为负相关的关系,即频段越高,则时间长度越小,或者与子载波间隔类似,也可以为阶跃函数的关系,即存在相邻的两个频段对应的时间长度相同的情况。根据不同的频率范围,确定适用于终端的一段时间,例如FR1中终端的最早上行发送时间距离测量间隔结束2ms,FR2中终端的最早上行发送时间距离测量间隔结束0.125ms。
本实施例通过子载波间隔或频率范围来确定该一段时间的长度,主要考虑一定的子载波间隔或者频率范围下可能支持的最大的小区半径,从而当该终端决定不在该一段时间内进行上行发送,在该一段时间结束后进行上行发送时,终端的定时提前不会影响终端在测量间隔内的测量,也保证终端能够及时进行上行发送,提高资源利用率。
在又一种可能的实现方式中,通信参数为网络设备向终端发送的第一消息,该第一消息用于指示该时间长度。
其中,该第一消息可以为配置信息或指示信息或终端与网络设备的其它通信信息,本实施例对该第一消息的实现方式不做特别限制。该第一消息中设置有指示域,该指示域用于显示指示该时间长度。
通过网络设备向终端显示指示该时间长度,终端能够高效直接的获取该时间长度,提高了终端的处理效率。
在又一种可能的实现方式中,该时间长度是根据保护间隔确定的。其中,该保护间隔是下行传输到上行传输的保护间隔(Guard Period,GP),以降低上下行传输间的干扰。该保护间隔可以灵活配置,在不同的场景下,保护间隔的长度不同,本实施例对网络设备确定保护间隔的实现方式不做特别限制。
该保护间隔会由网络设备配置给终端,终端可以根据该保护间隔来确定一段时间的时间长度,例如,该时间长度即为保护间隔的时间长度。
本领域技术人员可以理解,对于网络设备而言,网络设备可以通过隐式指示的方式向终端指示该时间长度,例如终端通过保护间隔确定时间长度。对于终端而言,该保护间隔可以理解为通信参数,终端根据该保护间隔确定了该一段时间的时间长度。
本实施例通过网络设备向终端设备发送保护间隔,来隐式指示该一段时间的时间长度,节省了网络设备与终端之间的信令开销,终端将该保护间隔的长度作为该一段时间的时间长度,终端不需要进行其它处理,从而减小了终端的处理,节省了终端的资源。
在上述实施例中,给出了终端和/或网络设备根据通信参数确定一段时间的时间长度的几种可能的实现方式,本申请实施例并不限于上述可能的实现方式,还包括其它可能的实现方式,例如,对上述几种可能的实现方式进行变形得到的其它实现方式,或者对上述几种可能的实现方式中的一种或多种进行结合衍生出其它实现方式,等等。本实施例对根据通信参数得到时间长度的实现方式不做特别限制,只要网络设备与终端在确定时间长度时具有相同的理解即可。
在上述实施例的基础上,针对网络设备在确定了该一段时间的时间长度,根据该一段时间的长度对终端进行调度和配置,下面结合图5至图6进行详细说明。对于相同或相似的步骤或技术术语,可参见上述实施例,在下述实施例中将不再赘述。
图5为本申请一实施例提供的上行传输的信令流程图。如图5所示,该流程包括:
S501、网络设备生成调度信息,所述调度信息用于调度终端在一段时间结束后进行上行传输;其中,所述一段时间为从测量间隔结束开始的时间段,所述一段时间的时间长度是根据通信参数确定的,所述测量间隔为所述终端进行测量的时间;
S502、网络设备向终端发送调度信息;
S503、终端在测量间隔内进行测量;
S504、终端确定是否在一段时间内进行上行发送。
在本实施中,网络设备向终端发送调度信息,该调度信息避免调度终端在一段时间内进行上行传输,例如,在终端有上行传输时,该调度信息可以包括终端用于上行发送的上行资源的信息。其中,该调度信息是根据该一段时间的时间长度确定的,该调度信息避免调度一段时间内的上行资源,即该上行资源不包括该一段时间内的资源。网络设备可以调度终端在一段时间结束后的资源上进行上行发送,该资源为一段时间后的用于上行发送的资源。该一段时间的时间长度是根据通信参数确定的,具体可参见上述实施例,本实施例此处不再赘述。本领域技术人员可以理解,终端没有上行数据传输时,则网络设备可以不调度终端的上行传输。
终端在收到该调度信息后,在测量间隔内进行测量,具体的实现过程可参见上述图3所示实施例,本实施例此处不再赘述。
本实施例提供的上行传输方法,网络设备通过向终端设备发送调度信息,避免调度终端在一段时间内的上行传输,该一段时间的时间长度是根据通信参数确定的,即该一段时间的时间长度不是固定值,从而明确了网络设备可调度的资源,终端根据网络设备的调度,在该一段时间结束后进行上行发送时,不会影响在该测量间隔内的测量,也保证终端能够及时进行上行发送,提高资源利用率。
图6为本申请一实施例提供的上行传输的信令流程图。如图6所示,该流程包括:
S601、网络设备向终端发送第一消息,所述第一消息用于指示一段时间的时间长度,其中,所述一段时间为从测量间隔结束开始的时间段,所述一段时间的时间长度是根据通信参数确定的,所述测量间隔为所述终端进行测量的时间;
S602、终端在测量间隔内进行测量。
S603、在所述测量间隔结束后,所述终端确定是否在一段时间内进行上行发送。
在本实施例中,网络设备可以通过第一消息向终端显式指示该一段时间的时间长度。例如,该第一消息可以为高层信令,该高层信令例如为系统信息、无线资源控制消息、下行控制信息等,该高层信令中可以增加指示域,该指示域用于指示该一段时间的时间长度。再例如,该第一消息还可以为独立的配置信息,即新增的指示信令,该指示信令中存在指示域来指示该一段时间的时间长度。
其中,第一消息中的指示域可以直接指示该时间长度,或者,该第一消息中的指示域的指示值与时间长度具有对应关系,终端根据该对应关系和指示值来确定时间长度。本实施例对第一消息指示时间长度的实现方式不做特别限制。
本实施例提供的上行传输方法,网络设备通过向终端发送第一消息来指示一段时间的时间长度,能够显式指示该时间长度,使得终端能够快速获取便捷的获取该时间长度,该时间长度是根据通信参数确定的,即该一段时间的时间长度不是固定值,终端根据网络设备的调度,在该一段时间结束后进行上行发送时,不会影响在该测量间隔内的测量,也保证终端能够及时进行上行发送,提高资源利用率。
图7为本申请一实施例提供的上行传输的信令流程图。如图7所示,该流程包括:
S701、网络设备向终端发送第二消息,所述第二消息中携带保护间隔,所述保护间隔用于隐式指示一段时间的时间长度,其中,所述一段时间为从测量间隔结束开始的时间段,所述测量间隔为所述终端进行测量的时间;
S702、终端在测量间隔内进行测量;
S703、在所述测量间隔结束后,所述终端确定是否在一段时间内进行上行发送。
网络设备在确定保护间隔之后,网络设备生成第二消息,该第二消息中携带该保护间隔。其中,该保护间隔的值不是固定值,保护间隔可以具有多种取值,本实施例对网络设备确定保护间隔的实现方式不做特别限制。该保护间隔可以隐式指示该时间长度。
该第二消息可以为系统消息,该系统消息中携带保护间隔;该第二消息还可以为配置消息,在配置消息中携带保护间隔,本实施例对第二消息的实现方式不做特别限制。
终端在接收到第二消息后,终端根据该第二消息中的保护间隔确定该时间长度,具体的,终端将该保护间隔的时间长度确定为该一段时间的时间长度。
本实施例提供的上行传输方法,网络设备通过第二消息中携带的保护间隔,来隐式指示该一段时间的时间长度,不会增加网络设备与终端设备之间的信令开销。该时间长度是根据通信参数确定的,即该一段时间的时间长度不是固定值,终端根据网络设备的调度,在该一段时间结束后进行上行发送时,不会影响在该测量间隔内的测量,也保证终端能够及时进行上行发送,提高资源利用率。
在上述实施例的基础上,终端可以通过图5至图7所示实施例中的其中一种实现方式来确定该一段时间的时间长度。
或者,终端在通过图5所示实现方式获取调度信息,同时终端还可以通过图6或图7所示实现方式来获取该一段时间的时间长度。
在上述实施例的基础上,若终端被配置了多个服务小区,终端在每个服务小区上都可以进行上行发送。终端和网络设备确定该一段时间的时间长度包括以下可能的实现方式。
一种可能的实现方式为:每个服务小区分别各自对应一个一段时间,所述一段时间的时间长度是根据对应的服务小区的通信参数确定的。
示例性地,根据上述的实现方式来获取每个服务小区的一段时间的时间长度,建立服务小区与一段时间的时间长度的一一对应关系,即每个服务小区各自对应一个时间长度。
另一种可能的实现方式为:所有服务小区对应一个一段时间,所述一段时间是根据各服务小区的通信参数确定的多个时间长度中的最大值确定的。
示例性地,根据上述的实现方式来获取每个服务小区的一段时间的时间长度,然后在所有时间长度中确定最长的时间长度为最终的时间长度,建立所有服务小区与该最长的时间长度的对应关系。
又一种可能的实现方式为:每个服务小区组分别各自对应一个一段时间,所述一段时间是根据组内所有服务小区的通信参数确定的多个时间长度中的最大值确定的;所述服务小区组是根据各服务小区所在的频率范围或者各服务小区所在的定时提前组确定的。
将所有的服务小区分成多个组,在分组过程中,可以根据频率范围进行划分,即位于同一频率范围的服务小区为一个组,还可以根据服务小区的定时提前组进行划分, 位于同一定时提前组的服务小区为一个组。
其中,每个服务小区组分别各自对应一个一段时间,即服务小区组与一段时间为一一对应的关系。针对每个小区组的一段时间,该一段时间是根据组内所有服务小区的通信参数确定的多个时间长度中的最大值确定的。即服务小区组内的每个服务小区各自对应一个时间长度,将最大的时间长度作为该服务小区组的时间长度。
本实施例给出了终端被配置了多个上行服务小区时,终端确定该一段时间的时间长度的实现方式,使得终端在多个服务小区的场景下,终端在测量间隔后的上行发送不会影响在该测量间隔内的测量,也可以保证终端能够及时进行上行发送,提高资源利用率。
本申请还提供一实施例,该实施例对网络设备对终端配置时隙格式指示进行说明。
在NR中,时域的基本调度单位为时隙(slot)或迷你时隙(mini-slot),这里为了简便统称为时隙。时隙由若干个OFDM符号组成。NR支持灵活的时隙格式,即一个时隙中的符号可全部用于传输上行数据、全部用于传输下行数据、部分用于传输上行数据或者部分用于传输下行数据。时隙格式也可理解为时隙格式(Slot Format),或时隙格式相关信息(Slot format related information)。该时隙格式可由公共物理下行控制信道中携带的控制信息进行指示。
该下行控制信息包括时隙格式指示(Slot Format indication,SFI),该时隙格式指示用于指示一个时隙中哪些符号为上行符号,哪些为下行符号,或者哪些为保护间隔。
在一种可能的实现方式中,网络设备在为终端配置时隙格式指示(SFI)时,应保证:
如果测量间隔后的时隙中没有下行传输的符号,则测量间隔的末尾与第一个上行发送的符号间应留有足够大的保护间隔以保证上行传输不受影响。
如果测量间隔后的时隙中有下行传输的符号,则最后一个下行符号与第一个上行发送的符号间应留有足够大的保护间隔以保证上行传输不受影响。
例如,假设终端实际的TA与上下行转换时间加和后的长度为两个符号,则网络设备在为终端配置SFI时应保证保护间隔后的第一个上行符号前至少有两个符号不用于接收或者发送,而是作为保护间隔以保证上行传输不受影响。
图8为本申请实施例提供的终端的结构示意图,如图8所示,该终端80,包括:
收发模块801,用于在测量间隔内进行测量;
处理模块802,用于确定是否在一段时间内进行上行发送,其中,所述一段时间为从所述测量间隔结束开始的时间段,所述一段时间的时间长度是所述终端根据通信参数确定的。
一种可能的设计中,所述通信参数为所述终端的定时提前量;所述定时提前量与所述时间长度具有映射关系,其中,若第一定时提前量小于第二定时提前量,则所述第一定时提前量对应的第一时间长度不大于所述第二定时提前量对应的第二时间长度。
在一种可能的设计中,所述时间长度为所述定时提前量的阶跃函数,若TA∈[0,a-x),则TL=a;若TA∈[a-x,b-x],则TL=b;
其中,所述TA为定时提前量,所述TL为所述时间长度,所述a=Ns,所述b=a+Ms,所述N、M为正整数,所述s为半个或一个时隙长度或一个符号长度,所述X为余量, 所述X的长度为循环前缀CP的长度。
在一种可能的设计中,所述通信参数为所述终端的服务小区的参数信息;所述服务小区的参数信息包括如下中的一个或者他们的组合:子载波间隔、频率范围。
在一种可能的设计中,所述子载波间隔与所述时间长度具有映射关系,其中,若第一子载波间隔大于第二子载波间隔,则所述第一子载波间隔对应的第一时间长度不大于所述第二子载波间隔对应的第二时间长度;
所述频率范围与所述时间长度具有映射关系,其中,若第一频率范围对应的频段高于第二频率范围对应的频段,则所述第一频率范围对应的第一时间长度不大于所述第二频率范围对应的第二时间长度。
在一种可能的设计中,所述通信参数为第一消息;所述收发模块801还用于:接收所述网络设备发送的第一消息,所述第一消息用于指示所述时间长度。
在一种可能的设计中,所述通信参数为下行到上行切换的保护间隔,所述收发模块801还用于:接收所述网络设备发送的第二消息,所述第二消息中携带所述保护间隔,所述时间长度是所述终端根据所述保护间隔确定的。
在一种可能的设计中,若所述终端被配置了多个服务小区;
每个所述服务小区分别各自对应一个一段时间,所述一段时间的时间长度是根据对应的服务小区的通信参数确定的;或者
所有服务小区对应一个一段时间,所述一段时间是根据所有服务小区的通信参数确定的多个时间长度中的最大值确定的;或者
每个服务小区组分别各自对应一个一段时间,所述一段时间是根据组内所有服务小区的通信参数确定的多个时间长度中的最大值确定的;所述服务小区组是根据各服务小区所在的频率范围或者各服务小区所在的定时提前组确定的。
本申请实施例提供的终端,可用于执行上述图3至图7所示的方法,其实现原理和技术效果类似,本实施例此处不再赘述。
应理解,本申请实施例中的处理模块802可以由处理器或处理器相关电路组件实现,收发模块801可以由收发器或收发器相关电路组件实现。
图9为本申请实施例提供的终端的硬件示意图。如图9所示,该终端90包括:处理器901以及存储器902;其中
存储器902,用于存储计算机程序;
处理器901,用于执行存储器存储的计算机程序,以实现上述图3至图7中终端所执行的方法。具体可以参见前面方法实施例中的相关描述。
可选地,存储器902既可以是独立的,也可以跟处理器901集成在一起。
当所述存储器902是独立于处理器901之外的器件时,所述终端90还可以包括:
总线903,用于连接所述存储器902和处理器901。终端90还可以进一步包括收发器904,用于从在测量间隔内进行测量。
本申请实施例提供一种存储介质,所述存储介质包括计算机程序,所述计算机程序用于实现如上图3至图7中终端所执行的方法。
本申请实施例提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如上图3至图7中终端所执行 的方法。
图10为本申请实施例提供的网络设备的结构示意图。如图10所示,该网络设备100包括:
处理模块1001,用于生成调度信息,所述调度信息用于调度终端在一段时间结束后进行上行传输;其中,所述一段时间为从测量间隔结束开始的时间段,所述一段时间的时间长度是所述网络设备根据通信参数确定的,所述测量间隔为所述终端进行测量的时间
收发模块1002,用于向所述终端发送所述调度信息。
在一种可能的设计中,所述通信参数为所述终端的定时提前量;所述定时提前量与所述时间长度具有映射关系,其中,若第一定时提前量小于第二定时提前量,则所述第一定时提前量对应的第一时间长度不大于所述第二定时提前量对应的第二时间长度。
在一种可能的设计中,所述时间长度为所述定时提前量的阶跃函数,若TA∈[0,a-x),则TL=a;若TA∈[a-x,b-x],则TL=b;
其中,所述TA为定时提前量,所述TL为所述时间长度,所述a=Ns,所述b=a+Ms,所述N、M为正整数,所述s为半个或一个时隙长度或一个符号长度,所述X为余量,所述X的长度为循环前缀CP的长度。
在一种可能的设计中,所述通信参数为所述终端的服务小区的参数信息;所述服务小区的参数信息包括如下中的一个或者他们的组合:子载波间隔、频率范围。
在一种可能的设计中,所述子载波间隔与所述时间长度具有映射关系,其中,若第一子载波间隔大于第二子载波间隔,则所述第一子载波间隔对应的第一时间长度不大于所述第二子载波间隔对应的第二时间长度;
所述频率范围与所述时间长度具有映射关系,其中,若第一频率范围对应的频段高于第二频率范围对应的频段,则所述第一频率范围对应的第一时间长度不大于所述第二频率范围对应的第二时间长度。
在一种可能的设计中,所述收发模块1002还用于:向所述终端发送第一消息,所述第一消息用于指示所述时间长度。
在一种可能的设计中,所述通信参数为下行到上行切换的保护间隔;所述收发模块1002还用于向所述终端发送第二消息,所述第二消息中携带所述保护间隔,所述保护间隔用于隐式指示所述时间长度。
在一种可能的设计中,若所述终端被配置了多个服务小区;
每个所述服务小区分别各自对应一个一段时间,所述一段时间的时间长度是根据对应的服务小区的通信参数确定的;或者
所有服务小区对应一个一段时间,所述一段时间是根据所有服务小区的通信参数确定的多个时间长度中的最大值确定的;或者
每个服务小区组分别各自对应一个一段时间,所述一段时间是根据组内所有服务小区的通信参数确定的多个时间长度中的最大值确定的;所述服务小区组是根据各服务小区所在的频率范围或者各服务小区所在的定时提前组确定的。
应理解,本申请实施例中的处理模块1001可以由处理器或处理器相关电路组件实 现,收发模块1002可以由收发器或收发器相关电路组件实现。
图11为本申请实施例提供的网络设备的硬件示意图。如图11所示,该网络设备110包括:处理器1101以及存储器1102;其中
存储器1102,用于存储计算机程序;
处理器1101,用于执行存储器存储的计算机程序,以实现上述图3至图7中网络设备所执行的方法。具体可以参见前面方法实施例中的相关描述。
可选地,存储器1102既可以是独立的,也可以跟处理器1101集成在一起。
当所述存储器1102是独立于处理器1101之外的器件时,所述网络设备110还可以包括:
总线1103,用于连接所述存储器1102和处理器1101。网络设备110还可以进一步包括收发器1104,用于发送调度信息。
本申请实施例提供一种存储介质,所述存储介质包括计算机程序,所述计算机程序用于实现如上图3至图7中网络设备所执行的方法。
本申请实施例还提供一种通信装置,该通信装置可以是终端也可以是电路。该通信装置可以用于执行上述方法实施例中由终端所执行的动作。
当该通信装置为终端时,图12示出了一种简化的终端的结构示意图。便于理解和图示方便,图12中,终端以手机作为例子。如图12所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。如图12所示,终端设备包括收发单元1210和处理单元1220。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1210用于执行上述方法实施例中终端设备侧的发送操作和接收操作,处理单元1220用于执行上述方法实施例中终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1210用于执行图3中的S301中终端侧的接收操作,在测量间隔内接收网络设备发送的信号,以进行测量,和/或收发单元1210还用于执行本申请实施例中终端侧的其他收发步骤。处理单元1220,用于执行图3中的S302,和/或处理单元1220还用于执行本申请实施例中终端设备侧的其他处理步骤。
再例如,在另一种实现方式中,收发单元1210用于执行图5中接收调度信息的步骤,和/或收发单元1220还用于执行本申请实施例中终端侧的其他收发步骤。处理单元1220用于执行图5中的S503,和/或处理单元1220还用于执行本申请实施例中终端侧的其他处理步骤。
又例如,在再一种实现方式中,收发单元1210用于执行图6中接收第一消息的步骤,和/或收发单元1210还用于执行本申请实施例中终端侧的其他收发步骤。处理单元1220,用于执行图6中的S603,和/或处理单元1220还用于执行本申请实施例中终端设备侧的其他处理步骤。
又例如,在再一种实现方式中,收发单元1210用于执行图7中接收第二消息的步骤,和/或收发单元1210还用于执行本申请实施例中终端设备侧的其他收发步骤。处理单元1220,用于执行图7中的S703,和/或处理单元1220还用于执行本申请实施例中终端设备侧的其他处理步骤。
当该通信装置为芯片时,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。
本实施例中的通信装置为终端时,可以参照图13所示的设备。作为一个例子,该设备可以完成类似于图9中处理器901的功能。在图13中,该设备包括处理器1310,发送数据处理器1320,接收数据处理器1330。上述实施例中的处理模块802可以是图13中的该处理器1310,并完成相应的功能。上述实施例中的收发模块801可以是图13中的发送数据处理器1320,和/或接收数据处理器1330。虽然图13中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图14示出本实施例的另一种形式。处理装置1400中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的通信装置可以作为其中的调制子系统。具体的,该调制子系统可以包括处理器1403,接口1404。其中处理器1403完成上述处理模块802的功能,接口1404完成上述收发模块801的功能。作为另一种变形,该调制子系统包括存储器1406、处理器1403及存储在存储器1406上并可在处理器上运行的程序,该处理器1403执行该程序时实现上述方法实施例中终端设备侧的方法。需要注意的是,所述存储器1406可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1400中,只要该存储器1406可以连接到所述处理器1403即可。
本实施例中的装置为网络设备时,该网络设备可以如图15所示,装置1500包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1510和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1520。所述RRU 1510可以称为收发模块,与图10中的收发模块1002对应,可选地,该收发模块还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1511和射频单元1512。所述RRU 1510部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端发送指示信息。所述BBU 1510部分主要用于进行基带处理,对基站进行控制等。所述 RRU 1510与BBU 1520可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1520为基站的控制中心,也可以称为处理模块,可以与图10中的处理模块1001对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1520可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1520还包括存储器1521和处理器1522。所述存储器1521用以存储必要的指令和数据。所述处理器1522用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1521和处理器1522可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,本发明实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本发明实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。
通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种 情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (31)

  1. 一种上行传输方法,其特征在于,包括:
    终端在测量间隔内进行测量;
    所述终端确定是否在一段时间内能够进行上行发送,其中,所述一段时间为从所述测量间隔结束开始的时间段,所述一段时间的时间长度是所述终端根据通信参数确定的。
  2. 根据权利要求1所述的方法,其特征在于,所述通信参数为所述终端的定时提前量;所述定时提前量与所述时间长度具有映射关系,其中,若第一定时提前量小于第二定时提前量,则所述第一定时提前量对应的第一时间长度不大于所述第二定时提前量对应的第二时间长度。
  3. 根据权利要求2所述的方法,其特征在于,所述时间长度为所述定时提前量的阶跃函数,若TA∈[0,a-x),则TL=a;若TA∈[a-x,b-x],则TL=b;
    其中,所述TA为定时提前量,所述TL为所述时间长度,所述a=Ns,所述b=a+Ms,所述N、M为正整数,所述s为半个或一个时隙长度或一个符号长度,所述X为余量。
  4. 根据权利要求1所述的方法,其特征在于,所述通信参数为所述终端的服务小区的参数信息;所述服务小区的参数信息包括如下中的一个或者他们的组合:子载波间隔、频率范围。
  5. 根据权利要求4所述的方法,其特征在于,所述子载波间隔与所述时间长度具有映射关系,其中,若第一子载波间隔大于第二子载波间隔,则所述第一子载波间隔对应的第一时间长度不大于所述第二子载波间隔对应的第二时间长度;
    所述频率范围与所述时间长度具有映射关系,其中,若第一频率范围对应的频段高于第二频率范围对应的频段,则所述第一频率范围对应的第一时间长度不大于所述第二频率范围对应的第二时间长度。
  6. 根据权利要求1所述的方法,其特征在于,所述通信参数为第一消息;所述方法还包括:
    所述终端接收网络设备发送的第一消息,所述第一消息用于指示所述时间长度。
  7. 根据权利要求1所述的方法,其特征在于,所述通信参数为下行到上行切换的保护间隔,所述方法还包括:
    所述终端接收网络设备发送的第二消息,所述第二消息中携带所述保护间隔,所述时间长度是所述终端根据所述保护间隔确定的。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,若所述终端被配置了多个服务小区;
    每个所述服务小区分别各自对应一个一段时间,所述一段时间的时间长度是根据对应的服务小区的通信参数确定的;或者
    所有服务小区对应一个一段时间,所述一段时间是根据所有服务小区的通信参数确定的多个时间长度中的最大值确定的;或者
    每个服务小区组分别各自对应一个一段时间,所述一段时间是根据组内所有服务小区的通信参数确定的多个时间长度中的最大值确定的;所述服务小区组是根据各服 务小区所在的频率范围或者各服务小区所在的定时提前组确定的。
  9. 一种上行传输方法,其特征在于,包括:
    网络设备生成调度信息,所述调度信息用于避免调度终端在一段时间内进行上行传输;其中,所述一段时间为从测量间隔结束开始的时间段,所述一段时间的时间长度是所述网络设备根据通信参数确定的,所述测量间隔为所述终端进行测量的时间
    所述网络设备向所述终端发送所述调度信息。
  10. 根据权利要求9所述的方法,其特征在于,所述通信参数为所述终端的定时提前量;所述定时提前量与所述时间长度具有映射关系,其中,若第一定时提前量小于第二定时提前量,则所述第一定时提前量对应的第一时间长度不大于所述第二定时提前量对应的第二时间长度。
  11. 根据权利要求10所述的方法,其特征在于,所述时间长度为所述定时提前量的阶跃函数,若TA∈[0,a-x),则TL=a;若TA∈[a-x,b-x],则TL=b;
    其中,所述TA为定时提前量,所述TL为所述时间长度,所述a=Ns,所述b=a+Ms,所述N、M为正整数,所述s为半个或一个时隙长度或一个符号长度,所述X为余量。
  12. 根据权利要求9所述的方法,其特征在于,所述通信参数为所述终端的服务小区的参数信息;所述服务小区的参数信息包括如下中的一个或者他们的组合:子载波间隔、频率范围。
  13. 根据权利要求12所述的方法,其特征在于,所述子载波间隔与所述时间长度具有映射关系,其中,若第一子载波间隔大于第二子载波间隔,则所述第一子载波间隔对应的第一时间长度不大于所述第二子载波间隔对应的第二时间长度;
    所述频率范围与所述时间长度具有映射关系,其中,若第一频率范围对应的频段高于第二频率范围对应的频段,则所述第一频率范围对应的第一时间长度不大于所述第二频率范围对应的第二时间长度。
  14. 一种终端,其特征在于,包括:
    收发模块,用于在测量间隔内进行测量;
    处理模块,用于确定是否在一段时间内能够进行上行发送,其中,所述一段时间为从所述测量间隔结束开始的时间段,所述一段时间的时间长度是所述终端根据通信参数确定的。
  15. 根据权利要求14所述的终端,其特征在于,所述通信参数为所述终端的定时提前量;所述定时提前量与所述时间长度具有映射关系,其中,若第一定时提前量小于第二定时提前量,则所述第一定时提前量对应的第一时间长度不大于所述第二定时提前量对应的第二时间长度。
  16. 根据权利要求15所述的终端,其特征在于,所述时间长度为所述定时提前量的阶跃函数,若TA∈[0,a-x),则TL=a;若TA∈[a-x,b-x],则TL=b;
    其中,所述TA为定时提前量,所述TL为所述时间长度,所述a=Ns,所述b=a+Ms,所述N、M为正整数,所述s为半个或一个时隙长度或一个符号长度,所述X为余量。
  17. 根据权利要求14所述的终端,其特征在于,所述通信参数为所述终端的服务小区的参数信息;所述服务小区的参数信息包括如下中的一个或者他们的组合:子载波间隔、频率范围。
  18. 根据权利要求17所述的终端,其特征在于,所述子载波间隔与所述时间长度具有映射关系,其中,若第一子载波间隔大于第二子载波间隔,则所述第一子载波间隔对应的第一时间长度不大于所述第二子载波间隔对应的第二时间长度;
    所述频率范围与所述时间长度具有映射关系,其中,若第一频率范围对应的频段高于第二频率范围对应的频段,则所述第一频率范围对应的第一时间长度不大于所述第二频率范围对应的第二时间长度。
  19. 根据权利要求14所述的终端,其特征在于,所述通信参数为第一消息;所述收发模块还用于:接收网络设备发送的第一消息,所述第一消息用于指示所述时间长度。
  20. 根据权利要求14所述的终端,其特征在于,所述通信参数为下行到上行切换的保护间隔,所述收发模块还用于:接收网络设备发送的第二消息,所述第二消息中携带所述保护间隔,所述时间长度是所述终端根据所述保护间隔确定的。
  21. 根据权利要求14至20任一项所述的终端,其特征在于,若所述终端被配置了多个服务小区;
    每个所述服务小区分别各自对应一个一段时间,所述一段时间的时间长度是根据对应的服务小区的通信参数确定的;或者
    所有服务小区对应一个一段时间,所述一段时间是根据所有服务小区的通信参数确定的多个时间长度中的最大值确定的;或者
    每个服务小区组分别各自对应一个一段时间,所述一段时间是根据组内所有服务小区的通信参数确定的多个时间长度中的最大值确定的;所述服务小区组是根据各服务小区所在的频率范围或者各服务小区所在的定时提前组确定的。
  22. 一种网络设备,其特征在于,包括:
    处理模块,用于生成调度信息,所述调度信息避免调度终端在一段时间内进行上行传输;其中,所述一段时间为从测量间隔结束开始的时间段,所述一段时间的时间长度是所述网络设备根据通信参数确定的,所述测量间隔为所述终端进行测量的时间收发模块,用于向所述终端发送所述调度信息。
  23. 根据权利要求22所述的网络设备,其特征在于,所述通信参数为所述终端的定时提前量;所述定时提前量与所述时间长度具有映射关系,其中,若第一定时提前量小于第二定时提前量,则所述第一定时提前量对应的第一时间长度不大于所述第二定时提前量对应的第二时间长度。
  24. 根据权利要求23所述的网络设备,其特征在于,所述时间长度为所述定时提前量的阶跃函数,若TA∈[0,a-x),则TL=a;若TA∈[a-x,b-x],则TL=b;
    其中,所述TA为定时提前量,所述TL为所述时间长度,所述a=Ns,所述b=a+Ms,所述N、M为正整数,所述s为半个或一个时隙长度或一个符号长度,所述X为余量。
  25. 根据权利要求22所述的网络设备,其特征在于,所述通信参数为所述终端的服务小区的参数信息;所述服务小区的参数信息包括如下中的一个或者他们的组合:子载波间隔、频率范围。
  26. 根据权利要求25所述的网络设备,其特征在于,所述子载波间隔与所述时间长度具有映射关系,其中,若第一子载波间隔大于第二子载波间隔,则所述第一子载 波间隔对应的第一时间长度不大于所述第二子载波间隔对应的第二时间长度;
    所述频率范围与所述时间长度具有映射关系,其中,若第一频率范围对应的频段高于第二频率范围对应的频段,则所述第一频率范围对应的第一时间长度不大于所述第二频率范围对应的第二时间长度。
  27. 一种通信装置,其特征在于,包括:存储器、处理器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行如权利要求1至8任一项所述的上行传输方法。
  28. 一种存储介质,其特征在于,所述存储介质包括计算机程序,所述计算机程序用于实现如权利要求1至8任一项所述的上行传输方法。
  29. 一种通信装置,其特征在于,包括:存储器、处理器以及计算机程序,所述计算机程序存储在所述存储器中,所述处理器运行所述计算机程序执行如权利要求9至13任一项所述的上行传输方法。
  30. 一种存储介质,其特征在于,所述存储介质包括计算机程序,所述计算机程序用于实现如权利要求9至13任一项所述的上行传输方法。
  31. 一种通信系统,包括权利要求14-21之一的终端,以及权利要求22-26之一的网络设备;或者
    权利要求27的通信装置,以及权利要求29的通信装置。
PCT/CN2020/073329 2019-01-21 2020-01-20 上行传输方法及设备 WO2020151679A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3127251A CA3127251A1 (en) 2019-01-21 2020-01-20 Uplink transmission method and device
NZ778933A NZ778933B2 (en) 2020-01-20 Uplink transmission method and device
EP20745849.8A EP3907896A4 (en) 2019-01-21 2020-01-20 UPLINK TRANSMISSION METHOD AND DEVICE
US17/380,320 US20210391969A1 (en) 2019-01-21 2021-07-20 Uplink Transmission Method and Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910054666.8A CN111465050A (zh) 2019-01-21 2019-01-21 上行传输方法及设备
CN201910054666.8 2019-01-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/380,320 Continuation US20210391969A1 (en) 2019-01-21 2021-07-20 Uplink Transmission Method and Device

Publications (1)

Publication Number Publication Date
WO2020151679A1 true WO2020151679A1 (zh) 2020-07-30

Family

ID=71680642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073329 WO2020151679A1 (zh) 2019-01-21 2020-01-20 上行传输方法及设备

Country Status (5)

Country Link
US (1) US20210391969A1 (zh)
EP (1) EP3907896A4 (zh)
CN (2) CN111465050A (zh)
CA (1) CA3127251A1 (zh)
WO (1) WO2020151679A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115086983A (zh) * 2021-03-12 2022-09-20 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023070278A1 (zh) * 2021-10-25 2023-05-04 北京小米移动软件有限公司 一种调度方法、装置及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790188A (zh) * 2009-01-24 2010-07-28 华为技术有限公司 一种调整时间偏置的方法及用户终端
CN104823387A (zh) * 2012-11-28 2015-08-05 三星电子株式会社 用于在无线通信系统中执行通信的方法和装置
CN108282879A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 数据传输方法及装置
US20180302195A1 (en) * 2015-10-13 2018-10-18 Lg Electronics Inc. Method and apparatus for transmitting or receiving sub-frame length information in wireless access system supporting non-licensed band

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646251B (zh) * 2008-08-07 2012-07-18 中兴通讯股份有限公司 随机接入过程和测量间隙冲突的处理方法
WO2014084638A1 (en) * 2012-11-28 2014-06-05 Samsung Electronics Co., Ltd. Method and apparatus for performing communication in a wireless communication system
CN105282766B (zh) * 2014-07-11 2019-03-15 普天信息技术有限公司 模拟终端和基站的接入距离的方法及系统模拟器
CN109217995B (zh) * 2017-06-30 2021-01-12 华为技术有限公司 一种数据处理方法、终端以及基站
US10412614B2 (en) * 2017-10-20 2019-09-10 Futurewei Technologies, Inc. Coordination of measurement gaps across sets of multiple frequencies
WO2020027615A1 (en) * 2018-08-02 2020-02-06 Lg Electronics Inc. Method and communication device for performing measurement
CN113056950A (zh) * 2018-09-28 2021-06-29 瑞典爱立信有限公司 在与间隙部分重叠的灵活分配时隙中适配操作

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101790188A (zh) * 2009-01-24 2010-07-28 华为技术有限公司 一种调整时间偏置的方法及用户终端
CN104823387A (zh) * 2012-11-28 2015-08-05 三星电子株式会社 用于在无线通信系统中执行通信的方法和装置
US20180302195A1 (en) * 2015-10-13 2018-10-18 Lg Electronics Inc. Method and apparatus for transmitting or receiving sub-frame length information in wireless access system supporting non-licensed band
CN108282879A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 数据传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3907896A4

Also Published As

Publication number Publication date
CN111491390A (zh) 2020-08-04
CN111465050A (zh) 2020-07-28
CA3127251A1 (en) 2020-07-30
US20210391969A1 (en) 2021-12-16
EP3907896A4 (en) 2022-03-16
NZ778933A (en) 2023-09-29
CN111491390B (zh) 2021-05-04
EP3907896A1 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
US11855827B2 (en) Method and apparatus for synchronization signals and random access for flexible radio communication
EP3605932B1 (en) Beam management methods, terminal device, network device and computer program
EP3639588B1 (en) Uplink carrier selection for prach transmission between a nr dedicated carrier and a lte/nr shared carrier
US11540309B2 (en) Data transmission method and apparatus
CN110167133B (zh) 一种上行同步方法及装置
WO2019062003A1 (zh) 数据传输的方法、终端设备和网络设备
US11109392B2 (en) Communication method, network device, and relay device
EP4017177A1 (en) Resource multiplexing method and apparatus
WO2020164576A1 (zh) 随机接入的方法和装置
WO2021104333A1 (en) Method and apparatus for determining cyclic prefix extentsion and user equipment
CN108633019B (zh) 信息收发方法和设备
KR20210055065A (ko) 시간 영역 리소스 구성 방법 및 액세스 네트워크 디바이스
WO2020164077A1 (zh) 一种资源配置方法、终端设备及网络设备
WO2020151679A1 (zh) 上行传输方法及设备
US11864146B2 (en) Solutions to timing reference for detection and report of UL RSat asynch nodes or nodes without a time frame structure
TWI744507B (zh) 多波束系統中確定控制通道的檢測範圍的方法和設備
WO2019098924A1 (en) Systems and methods for adapting the configuration of signals for a timing and/or frequency synchronization related procedure(s)
WO2018059349A1 (zh) 设置符号的方法和装置
CN116569610A (zh) 无线通信方法和设备
NZ778933B2 (en) Uplink transmission method and device
WO2023245546A1 (en) Method and apparatus of dynamic adaption of spatial elements
WO2023206355A1 (zh) 一种上行传输方法及装置、终端设备、网络设备
WO2022032637A1 (en) Methods and apparatuses for pool sharing procedure between nr sidelink ues
WO2020029258A1 (zh) 信息发送和接收方法以及装置
EP3883312A1 (en) Harq process determination method, network device and terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3127251

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020745849

Country of ref document: EP

Effective date: 20210803