WO2022032637A1 - Methods and apparatuses for pool sharing procedure between nr sidelink ues - Google Patents

Methods and apparatuses for pool sharing procedure between nr sidelink ues Download PDF

Info

Publication number
WO2022032637A1
WO2022032637A1 PCT/CN2020/109173 CN2020109173W WO2022032637A1 WO 2022032637 A1 WO2022032637 A1 WO 2022032637A1 CN 2020109173 W CN2020109173 W CN 2020109173W WO 2022032637 A1 WO2022032637 A1 WO 2022032637A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource pools
resource
subset
sensing
sidelink
Prior art date
Application number
PCT/CN2020/109173
Other languages
French (fr)
Inventor
Zhennian SUN
Jing HAN
Xiaodong Yu
Haipeng Lei
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2020/109173 priority Critical patent/WO2022032637A1/en
Publication of WO2022032637A1 publication Critical patent/WO2022032637A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • Embodiments of the present application are related to wireless communication technology, and more particularly, related to methods and apparatuses for a pool sharing procedure between new radio (NR) sidelink user equipments (UEs) under 3GPP (3rd Generation Partnership Project) 5G system.
  • NR new radio
  • UEs sidelink user equipments
  • 3GPP 3rd Generation Partnership Project
  • V2X Vehicle to everything
  • a sidelink is a long-term evolution (LTE) feature introduced in 3GPP Release 12, and enables a direct communication between proximal UEs, and data does not need to go through a base station (BS) or a core network.
  • LTE long-term evolution
  • 3GPP 5G and/or NR networks are expected to increase network throughput, coverage, and robustness and reduce latency and power consumption.
  • 5G and NR networks various aspects need to be studied and developed to perfect the 5G and/or NR technology.
  • Some embodiments of the present application provide a method, which may be performed by a user equipment (UE) .
  • the method includes: receiving configuration information regarding one or more resource pools, wherein the one or more resource pools are shared between a UE and another UE, wherein a sidelink resource in time and frequency domains for a sidelink transmission of the UE is allocated by a BS to the UE, and wherein a sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned another UE; receiving a signaling from the BS, wherein the signaling indicates a subset of the one or more resource pools; performing a sensing procedure in the subset of the one or more resource pools; and reporting, to the BS, a sensing result of the sensing procedure.
  • the apparatus includes: a non-transitory computer-readable medium having stored thereon computer-executable instructions, a receiving circuitry; a transmitting circuitry; and a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry, wherein the computer-executable instructions cause the processor to implement the abovementioned method for receiving a signaling performed by a UE.
  • Some embodiments of the present application provide a method which may be performed by a BS.
  • the method includes: transmitting configuration information regarding one or more resource pools, wherein the one or more resource pools are shared between a UE and another UE, wherein a sidelink resource in time and frequency domains for a sidelink transmission of the UE is allocated by the BS to the UE, and wherein a sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned another UE; transmitting a signaling to the UE, wherein the signaling indicates the subset of the one or more resource pools; and receiving a sensing result from the UE, wherein the sensing result is generated by the UE via a sensing procedure in the subset of the one or more resource pools.
  • the apparatus includes: a non-transitory computer-readable medium having stored thereon computer-executable instructions, a receiving circuitry; a transmitting circuitry; and a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry, wherein the computer-executable instructions cause the processor to implement the abovementioned method for transmitting a signaling performed by a BS.
  • Some embodiments of the present application provide a method, which may be performed by a UE.
  • the method includes: receiving configuration information regarding one or more resource pools, wherein the one or more resource pools are shared between a UE and another UE, wherein a sidelink resource in time and frequency domains for a sidelink transmission of the UE is allocated by a BS to the UE, and wherein a sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned another UE; selecting a subset of the one or more resource pools from the one or more resource pools; performing a sensing procedure in the subset of the one or more resource pools; and reporting, to the BS, a sensing result of the sensing procedure.
  • the apparatus includes: a non-transitory computer-readable medium having stored thereon computer-executable instructions, a receiving circuitry; a transmitting circuitry; and a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry, wherein the computer-executable instructions cause the processor to implement the abovementioned method performed by a UE.
  • Some embodiments of the present application provide a method which may be performed by a BS.
  • the method includes: transmitting configuration information regarding one or more resource pools, wherein the one or more resource pools are shared between a UE and another UE, wherein a sidelink resource in time and frequency domains for a sidelink transmission of the UE is allocated by the BS to the UE, and wherein a sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned another UE; and receiving a sensing result from the UE, wherein the sensing result is generated by the UE via a sensing procedure in the subset of the one or more resource pools, and the subset of the one or more resource pools is selected from the one or more resource pools.
  • the apparatus includes: a non-transitory computer-readable medium having stored thereon computer-executable instructions, a receiving circuitry; a transmitting circuitry; and a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry, wherein the computer-executable instructions cause the processor to implement the abovementioned method performed by a BS.
  • FIG. 1 illustrates an exemplary V2X communication system in accordance with some embodiments of the present application
  • FIG. 2 illustrates a flow chart of a method for performing a sensing procedure according to some embodiments of the present application
  • FIG. 3 illustrates an exemplary flow chart of a pool sharing procedure according to some embodiments of the present application
  • FIG. 4 illustrates a flow chart of a method for transmitting a signaling according to some embodiments of the present application
  • FIG. 5 illustrates a flow chart of a method for performing a sensing procedure according to some embodiments of the present application
  • FIG. 6 illustrates a further exemplary flow chart of a pool sharing procedure according to some embodiments of the present application
  • FIG. 7 illustrates a flow chart of a method for receiving a sensing result according to some embodiments of the present application
  • FIG. 8 illustrates an exemplary diagram of a resource index definition according to some embodiments of the present application.
  • FIG. 9 illustrates a further exemplary diagram of a resource index definition according to some embodiments of the present application.
  • FIG. 10 illustrates an exemplary block diagram of an apparatus according to some embodiments of the present application.
  • FIG. 1 illustrates an exemplary V2X communication system in accordance with some embodiments of the present application.
  • a wireless communication system 100 includes at least one user equipment (UE) 101 and at least one base station (BS) 102.
  • the wireless communication system 100 includes two UEs 101 (e.g., UE 101a and UE 101b) and one BS 102 for illustrative purpose.
  • UEs 101 and BS 102 are depicted in FIG. 1, it is contemplated that any number of UEs 101 and BSs 102 may be included in the wireless communication system 100.
  • the UE (s) 101 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like.
  • the UE (s) 101 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network.
  • a UE is a pedestrian UE (P-UE or PUE) or a cyclist UE.
  • the UE (s) 101 includes wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like.
  • the UE (s) 101 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
  • the UE (s) 101 may communicate directly with BSs 102 via LTE or NR Uu interface.
  • each of the UE (s) 101 may be deployed an IoT application, an eMBB application and/or a URLLC application.
  • UE 101a may implement an IoT application and may be named as an IoT UE
  • UE 101b may implement an eMBB application and/or a URLLC application and may be named as an eMBB UE, an URLLC UE, or an eMBB/URLLC UE.
  • the specific type of application (s) deployed in the UE (s) 101 may be varied and not limited.
  • UE 101a may exchange V2X messages with UE 101b through a sidelink, for example, PC5 interface as defined in 3GPP TS 23.303.
  • UE 101a may transmit information or data to other UE (s) within the V2X communication system, through sidelink unicast, sidelink groupcast, or sidelink broadcast.
  • UE 101a transmits data to UE 101b in a sidelink unicast session.
  • UE 101a may transmit data to UE 101b and other UEs in a groupcast group (not shown in FIG. 1) by a sidelink groupcast transmission session.
  • UE 101a may transmit data to UE 101b and other UEs (not shown in FIG. 1) by a sidelink broadcast transmission session.
  • Both UE 101a and UE 101b in the embodiments of FIG. 1 may transmit information to BS (s) 102 and receive control information from BS (s) 102, for example, via LTE or NR Uu interface.
  • the BS (s) 102 may be distributed over a geographic region.
  • each of the BS (s) 102 may also be referred to as an access point, an access terminal, a base, a base unit, a macro cell, a Node-B, an evolved Node B (eNB) , a gNB, a Home Node-B, a relay node, or a device, or described using other terminology used in the art.
  • the BS (s) 102 is generally a part of a radio access network that may include one or more controllers communicably coupled to one or more corresponding BS (s) 102.
  • the wireless communication system 100 may be compatible with any type of network that is capable of sending and receiving wireless communication signals.
  • the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a Time Division Multiple Access (TDMA) -based network, a Code Division Multiple Access (CDMA) -based network, an Orthogonal Frequency Division Multiple Access (OFDMA) -based network, an LTE network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high altitude platform network, and/or other communications networks.
  • TDMA Time Division Multiple Access
  • CDMA Code Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the wireless communication system 100 is compatible with the 5G NR of the 3GPP protocol, wherein the BS (s) 102 transmit data using an OFDM modulation scheme on the downlink (DL) and the UE (s) 101 transmit data on the uplink (UL) using a Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) or cyclic prefix-OFDM (CP-OFDM) scheme. More generally, however, the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX, among other protocols.
  • DFT-S-OFDM Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing
  • CP-OFDM cyclic prefix-OFDM
  • the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX, among other protocols.
  • the BS (s) 102 may communicate using other communication protocols, such as the IEEE 802.11 family of wireless communication protocols. Further, in some embodiments of the present application, the BS (s) 102 may communicate over licensed spectrums, whereas in other embodiments, the BS (s) 102 may communicate over unlicensed spectrums. The present application is not intended to be limited to the implementation of any particular wireless communication system architecture or protocol. In yet some embodiments of present application, the BS (s) 102 may communicate with the UE (s) 101 using the 3GPP 5G protocols.
  • the UE (s) 101 may access the BS (s) 102 to receive data packets from the BS (s) 102 via a downlink channel and/or transmit data packets to the BS (s) 102 via an uplink channel.
  • the UE (s) 101 since the UE (s) 101 does not know when the BS (s) 102 will transmit data packets to it, the UE (s) 101 has to be awake all the time to monitor the downlink channel (e.g., a Physical Downlink Control Channel (PDCCH) ) to get ready for receiving data packets from the BS (s) 102.
  • the downlink channel e.g., a Physical Downlink Control Channel (PDCCH)
  • the UE (s) 101 keeps monitoring the downlink channel all the time even when there is no traffic between the BS (s) 102 and the UE (s) 101, it would result in significant power waste, which is problematic to a power limited or power sensitive UE.
  • Mode 1 the sidelink resource in time and frequency domains allocation is provided by a network or a BS.
  • Mode 2 a UE decides the SL transmission resources in time and frequency domains in a resource pool.
  • the configured resource pools can be multiplexed in a frequency division multiplexing (FDM) manner, in a time division multiplexing (TDM) manner, or in both FMD and TDM manners.
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • Embodiments of the present application consider an ambiguity on the understanding of the reported resources between a BS and a UE with Mode 1, define a pool sharing procedure, and will be specifically described below.
  • FIG. 2 illustrates a flow chart of a method for performing a sensing procedure according to some embodiments of the present application.
  • the embodiments of FIG. 2 may be performed by a UE (e.g., UE 101a or UE 101b illustrated and shown in FIG. 1 or UE (a) illustrated and shown in FIG. 3) .
  • a UE e.g., UE 101a or UE 101b illustrated and shown in FIG. 1 or UE (a) illustrated and shown in FIG. 3
  • UE e.g., UE 101a or UE 101b illustrated and shown in FIG. 1 or UE (a) illustrated and shown in FIG. 3
  • FIG. 2 illustrates a flow chart of a method for performing a sensing procedure according to some embodiments of the present application.
  • the embodiments of FIG. 2 may be performed by a UE (e.g., UE 101a or UE 101b illustrated and shown in FIG. 1 or UE (a) illustrated and shown in FIG. 3) .
  • a UE receives configuration information regarding one or more resource pools.
  • the one or more resource pools are shared between the UE and another UE (e.g., UE 101b illustrated and shown in FIG. 1) .
  • FIG. 2 assume that the UE works in Mode 1 and the abovementioned another UE works in Mode 2. That is to say, a sidelink resource in time and frequency domains for a sidelink transmission of the UE is allocated by a BS (e.g., BS 102 as illustrated and shown in FIG. 1 or BS (a) illustrated and shown in FIG. 6) to the UE. A sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned another UE.
  • a BS e.g., BS 102 as illustrated and shown in FIG. 1 or BS (a) illustrated and shown in FIG. 6
  • a sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned another UE.
  • the UE receives a signaling from the BS.
  • the signaling indicates a subset of the one or more resource pools.
  • each resource pool of the subset of the one or more resource pools is multiplexed in a FDM manner or in both FDM and TDM manners.
  • the UE performs a sensing procedure in the subset of the one or more resource pools.
  • the UE reports, to the BS, a sensing result of the sensing procedure.
  • the UE during performing the sensing procedure in the subset of the one or more resource pools, the UE indicates, to a physical layer of the UE, the subset of the one or more resource pools; the physical layer of the UE senses on the subset of the one or more resource pools, to generate a sensing result; and the physical layer of the UE reports the sensing result to a higher layer of the UE. Then, the higher layer of the UE reports the sensing result of the sensing procedure to the BS. For instance, the sensing result includes one or more candidate resources.
  • the sensing result includes one or more index values of one or more candidate resources that are sensed during the sensing procedure.
  • index value (s) of the one or more candidate resources are individually numbered in each resource pool within the subset of the one or more resource pools.
  • index value (s) of the one or more candidate resources are jointly numbered in the subset of the one or more resource pools. Specific examples are described in FIGS. 8 and 9.
  • FIGS. 1 and 3-10 Details described in the embodiments as illustrated and shown in FIGS. 1 and 3-10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 2. Moreover, details described in the embodiments of FIG. 2 are applicable for all the embodiments of FIGS. 1 and 3-10.
  • FIG. 3 illustrates an exemplary flow chart of a pool sharing procedure according to some embodiments of the present application.
  • BS (a) configures resource pool (s) .
  • the resource pool (s) may be shared by UE (a) (e.g., UE 101a illustrated and shown in FIG. 1) which works in Mode 1 and another UE with Mode 2 (e.g., UE 101b illustrated and shown in FIG. 1) which is not shown in FIG. 3.
  • BS (a) triggers UE (a) with Mode 1 to perform a sensing procedure and to report a sensing result. Meanwhile, BS (a) selects one or more resource pools and indicates the selected resource pool (s) to UE (a) with Mode 1 in step 302.
  • An indication of the selected resource pool (s) may be an ID of the selected resource pool (s) .
  • an indication of the selected resource pool (s) may be index value (s) of the selected resource pool (s) when more than one resource pools are configured. From a perspective of UE (a) , the selected resource pool (s) may be named as the indicated resource pool (s) .
  • a higher layer of UE (a) indicates the indicated resource pool (s) to a physical layer of UE (a) .
  • the physical layer of UE (a) performs sensing on the indicated resource pool (s) and reports a sensing result (e.g., candidate resources) to the higher layer of UE (a) .
  • the higher layer of UE (a) reports, to BS (a) , the sensing result of the resource pool (s) that are indicated by BS (a) in step 302.
  • FIGS. 1, 2, and 4-10 Details described in the embodiments as illustrated and shown in FIGS. 1, 2, and 4-10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 3. Moreover, details described in the embodiments of FIG. 3 are applicable for all the embodiments of FIGS. 1, 2, and 4-10.
  • FIG. 4 illustrates a flow chart of a method for transmitting a signaling according to some embodiments of the present application.
  • the embodiments of FIG. 4 may be performed by a BS (e.g., BS 102 illustrated and shown in FIG. 1 or BS (a) illustrated and shown in FIG. 3) .
  • a BS e.g., BS 102 illustrated and shown in FIG. 1 or BS (a) illustrated and shown in FIG. 3
  • a BS e.g., BS 102 illustrated and shown in FIG. 1 or BS (a) illustrated and shown in FIG. 3
  • a BS e.g., BS 102 illustrated and shown in FIG. 1 or BS (a) illustrated and shown in FIG. 3
  • FIG. 4 illustrates a flow chart of a method for transmitting a signaling according to some embodiments of the present application.
  • the embodiments of FIG. 4 may be performed by a BS (e.g., BS 102 illustrated and shown in FIG. 1
  • a BS transmits configuration information regarding one or more resource pools.
  • the one or more resource pools are shared between a UE (e.g., UE 101a illustrated and shown in FIG. 1 or UE (a) illustrated and shown in FIG. 3) and another UE (e.g., UE 101b illustrated and shown in FIG. 1) .
  • the embodiments of FIG. 4 assume that the UE works in Mode 1 and the abovementioned another UE works in Mode 2. That is to say, a sidelink resource in time and frequency domains for a sidelink transmission of the UE is allocated by the BS to the UE. A sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned another UE.
  • the BS transmits a signaling to the UE, to indicate a subset of the one or more resource pools.
  • each resource pool of the subset of the one or more resource pools is multiplexed in a FDM manner or in both FDM and TDM manners.
  • the BS receives a sensing result from the UE.
  • the sensing result is generated by the UE via a sensing procedure in the subset of the one or more resource pools.
  • the sensing result includes one or more index values of one or more candidate resources that are sensed during the sensing procedure.
  • the index values of the one or more candidate resources are individually numbered in each resource pool within the subset of the one or more resource pools.
  • the index values of the one or more candidate resources are jointly numbered in the subset of the one or more resource pools. Specific examples are described in FIGS. 8 and 9.
  • FIGS. 1-3 and 5-10 Details described in the embodiments as illustrated and shown in FIGS. 1-3 and 5-10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 4. Moreover, details described in the embodiments of FIG. 4 are applicable for all the embodiments of FIGS. 1-3 and 5-10.
  • FIG. 5 illustrates a flow chart of a method for performing a sensing procedure according to some embodiments of the present application.
  • FIG. 5 may be performed by a UE (e.g., UE 101a or UE 101b illustrated and shown in FIG. 1 or UE (b) illustrated and shown in FIG. 6) .
  • a UE e.g., UE 101a or UE 101b illustrated and shown in FIG. 1 or UE (b) illustrated and shown in FIG. 6
  • UE e.g., UE 101a or UE 101b illustrated and shown in FIG. 1 or UE (b) illustrated and shown in FIG. 6
  • UE e.g., UE 101a or UE 101b illustrated and shown in FIG. 1 or UE (b) illustrated and shown in FIG. 6
  • FIG. 5 may be performed by a UE (e.g., UE 101a or UE 101b illustrated and shown in FIG. 1 or UE (b) illustrated and shown in FIG. 6) .
  • UE e.g., UE 101a or UE 101b illustrated and shown in FIG. 1 or UE (b) illustrated and shown
  • a UE receives configuration information regarding one or more resource pools.
  • the one or more resource pools are shared between a UE and another UE (e.g., UE 101b illustrated and shown in FIG. 1) .
  • the embodiments of FIG. 5 assume that the UE works in Mode 1 and the abovementioned another UE works in Mode 2.
  • the UE selects a subset of the one or more resource pools from the one or more resource pools.
  • each resource pool of the subset of the one or more resource pools is multiplexed in a FDM manner or in both FDM and TDM manners.
  • the UE performs a sensing procedure in the subset of the one or more resource pools.
  • the UE reports, to a BS (e.g., BS 102 illustrated and shown in FIG. 1 or BS (b) illustrated and shown in FIG. 6) , a sensing result of the sensing procedure.
  • a BS e.g., BS 102 illustrated and shown in FIG. 1 or BS (b) illustrated and shown in FIG. 6
  • the UE during performing the sensing procedure in the subset of the one or more resource pools, the UE indicates, to a physical layer of the UE, the subset of the one or more resource pools; the physical layer of the UE senses on the subset of the one or more resource pools, to generate a sensing result; and the physical layer of the UE reports the sensing result to a higher layer of the UE. The, the higher layer of the UE reports the sensing result to the BS.
  • the sensing result includes an identifier (ID) of each resource pool within the subset of the one or more resource pools.
  • ID of a resource pool may be a configured ID of the resource pool within the subset of the one or more resource pools.
  • the ID of a resource pool may be an index value of the resource pool within the subset of the one or more resource pools.
  • the sensing result includes one or more index values of one or more candidate resources that are sensed during the sensing procedure.
  • index value (s) of the one or more candidate resources are individually numbered in each resource pool within the subset of the one or more resource pools.
  • index value (s) of the one or more candidate resources are jointly numbered in the subset of the one or more resource pools. Specific examples are described in FIGS. 8 and 9.
  • FIGS. 1-4 and 6-10 Details described in the embodiments as illustrated and shown in FIGS. 1-4 and 6-10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 5. Moreover, details described in the embodiments of FIG. 5 are applicable for all the embodiments of FIGS. 1-4 and 6-10.
  • FIG. 6 illustrates a further exemplary flow chart of a pool sharing procedure according to some embodiments of the present application.
  • BS (b) configures resource pool (s) .
  • the resource pool (s) may be shared by UE (b) (e.g., UE 101a illustrated and shown in FIG. 1) which works in Mode 1 and another UE with Mode 2 (e.g., UE 101b illustrated and shown in FIG. 1) which is not shown in FIG. 3.
  • BS (b) triggers UE (b) with Mode 1 to perform a sensing procedure and to report a sensing result. Then, UE (b) selects one or more resource pools to perform sensing. For example, the selected resource pool (s) may be determined by an implementation of UE (b) .
  • the higher layer of UE (b) may indicate the selected resource pool (s) to a physical layer of UE (b) . Then, the physical layer of UE (b) performs sensing on the selected resource pool (s) and reports a sensing result (e.g., candidate resources) to the higher layer of UE (b) .
  • a sensing result e.g., candidate resources
  • UE (b) reports the sensing result to BS (b) . Since the resource pool selection is performed at UE (b) side, UE (b) needs to report an identity of the selected resource pool to BS (b) .
  • the identity of the selected resource pool may be an ID of the resource pool or an index value of each resource pool when multiple resource pools are configured.
  • FIGS. 1-5 and 7-10 Details described in the embodiments as illustrated and shown in FIGS. 1-5 and 7-10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 6. Moreover, details described in the embodiments of FIG. 6 are applicable for all the embodiments of FIGS. 1-5 and 7-10.
  • FIG. 7 illustrates a flow chart of a method for receiving a sensing result according to some embodiments of the present application.
  • the embodiments of FIG. 7 may be performed by a BS (e.g., BS 102 illustrated and shown in FIG. 1 or BS (b) illustrated and shown in FIG. 6) .
  • a BS e.g., BS 102 illustrated and shown in FIG. 1 or BS (b) illustrated and shown in FIG. 6
  • BS e.g., BS 102 illustrated and shown in FIG. 1 or BS (b) illustrated and shown in FIG. 6
  • FIG. 7 illustrates a flow chart of a method for receiving a sensing result according to some embodiments of the present application.
  • the embodiments of FIG. 7 may be performed by a BS (e.g., BS 102 illustrated and shown in FIG. 1 or BS (b) illustrated and shown in FIG. 6) .
  • BS e.g., BS 102 illustrated and shown in FIG. 1 or
  • a BS (e.g., BS 102 illustrated and shown in FIG. 1) transmits configuration information regarding one or more resource pools.
  • the one or more resource pools are shared between a UE (e.g., UE 101a illustrated and shown in FIG. 1 or UE (b) illustrated and shown in FIG. 6) and another UE (e.g., UE 101b illustrated and shown in FIG. 1) .
  • the embodiments of FIG. 7 assume that the UE works in Mode 1 and the abovementioned another UE works in Mode 2.
  • the BS receives a sensing result from the UE.
  • the sensing result is generated by the UE via a sensing procedure in the subset of the one or more resource pools.
  • the subset of the one or more resource pools is selected by the UE from the one or more resource pools.
  • each resource pool of the subset of the one or more resource pools is multiplexed in a FDM manner or in both FDM and TDM manners.
  • the sensing result includes an ID of each resource pool within the subset of the one or more resource pools.
  • the sensing result includes one or more index values of one or more candidate resources that are sensed during the sensing procedure.
  • index value (s) of the one or more candidate resources are individually numbered in each resource pool within the subset of the one or more resource pools.
  • index value (s) of the one or more candidate resources are jointly numbered in the subset of the one or more resource pools. Specific examples are described in FIGS. 8 and 9.
  • FIGS. 1-6 and 8-10 Details described in the embodiments as illustrated and shown in FIGS. 1-6 and 8-10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 7. Moreover, details described in the embodiments of FIG. 7 are applicable for all the embodiments of FIGS. 1-6 and 8-10.
  • FIG. 8 illustrates an exemplary diagram of a resource index definition according to some embodiments of the present application.
  • FIG. 8 shows two resource pools, i.e., resource pool #1 and resource pool #2.
  • Each resource pool includes candidate resources in time and frequency domains, and the candidate resources are multiplexed in a FDM manner.
  • index values of candidate resources in resource pools #1 and #2 are individually numbered in each resource pool.
  • FIG. 8 assume that each two subframes in one slot own one index value. It can be contemplated that different number of subframes in one slot may own one index value according to other embodiments.
  • resource pool #1 includes candidate resources in two slots, i.e., “slot reference” and “slot reference+1” as shown in FIG. 8.
  • resource pool #1 includes five subframes, which are marked as “0” to “4” , respectively.
  • index values of subframes “0” to “4” in “slot reference” are resourceIndex#1, resourceIndex#101, resourceIndex#201, and etc..
  • resource pool #1 includes five subframes, which are marked as “0” to “4” , respectively, as shown in FIG. 8.
  • index values of subframes “0” to “4” in “slot reference+1” are resourceIndex#2, resourceIndex#102, resourceIndex#202, and etc..
  • resource pool #2 also includes candidate resources in “slot reference” and “slot reference+1” .
  • resource pool #2 includes eight subframes, which are marked as “0” to “7” , respectively, as shown in FIG. 8.
  • index values of subframes “0” to “7” in “slot reference” of resource pool #2 are resourceIndex#1, resourceIndex#101, resourceIndex#201, and etc..
  • resource pool #2 includes eight subframes, which are marked as “0” to “7” , respectively, as shown in FIG. 8.
  • index values of subframes “0” to “7” in “slot reference+1” of resource pool #2 are resourceIndex#2, resourceIndex#102, resourceIndex#202, and etc..
  • index values of candidate resources in resource pool #1 and resource pool #2 are individually numbered per each resource pool, some index values in these two resource pools are the same.
  • FIGS. 1-7, 9, and 10 Details described in the embodiments as illustrated and shown in FIGS. 1-7, 9, and 10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 8. Moreover, details described in the embodiments of FIG. 8 are applicable for all the embodiments of FIGS. 1-7, 9, and 10.
  • FIG. 9 illustrates a further exemplary diagram of a resource index definition according to some embodiments of the present application.
  • FIG. 9 shows two resource pools, i.e., resource pool #1 and resource pool #2.
  • Each resource pool includes candidate resources in time and frequency domains, and the candidate resources are multiplexed in a FDM manner.
  • index values of candidate resources in resource pools #1 and #2 are jointly numbered in these two resource pools.
  • each two subframes in one slot own one index value. It can be contemplated that different number of subframes in one slot may own one index value according to other embodiments.
  • resource pool #1 includes candidate resources in two slots, i.e., “slot reference” and “slot reference+1” .
  • resource pool #2 also includes candidate resources in “slot reference” and “slot reference+1” .
  • slot reference resource pool #1 includes five subframes, which are marked as “0” to “4” , respectively, as shown in FIG. 9; and resource pool #2 includes eight subframes, which are marked as “0” to “7” , respectively, as shown in FIG. 9.
  • index values of subframes “0” to “4” of resource pool #1 in “slot reference” are resourceIndex#1, resourceIndex#101, resourceIndex#201, and etc.
  • index values of subframes “0” to “7” of resource pool #2 in “slot reference” are resourceIndex#x01, resourceIndex# (x+1) 01, resourceIndex# (x+2) 01, resourceIndex# (x+3) 01, resourceIndex# (x+4) 01, and etc..
  • index values in “slot reference” are continuously numbered.
  • resource pool #1 includes five subframes, which are marked as “0” to “4” , respectively, as shown in FIG. 9; and resource pool #2 includes eight subframes, which are marked as “0” to “7” , respectively, as shown in FIG. 9.
  • index values of subframes “0” to “4” of resource pool #1 in “slot reference+1” are resourceIndex#2, resourceIndex#102, resourceIndex#202, and etc.
  • index values of subframes “0” to “7” of resource pool #2 in “slot reference+1” are resourceIndex#x02, resourceIndex# (x+1) 02, resourceIndex# (x+2) 02, resourceIndex# (x+3) 02, resourceIndex# (x+4) 02, and etc..
  • index values in “slot reference+1” are continuously numbered.
  • each index value of the candidate resources in resource pool #1 and resource pool #2 is unique, even if these two resource pools are configured in a FDM manner. That is to say, no index value in these two resource pools is the same.
  • FIGS. 1-8 and 10 Details described in the embodiments as illustrated and shown in FIGS. 1-8 and 10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 9. Moreover, details described in the embodiments of FIG. 9 are applicable for all the embodiments of FIGS. 1-8 and 10.
  • FIG. 10 illustrates an exemplary block diagram of an apparatus according to some embodiments of the present application.
  • the apparatus 1000 may be a UE, which can at least perform the method illustrated in FIG. 2 or FIG. 5.
  • the apparatus 1000 may be a BS, which can at least perform the method illustrated in FIG. 4 or FIG. 7.
  • the apparatus 1000 may include at least one receiver 1002, at least one transmitter 1004, at least one non-transitory computer-readable medium 1006, and at least one processor 1008 coupled to the at least one receiver 1002, the at least one transmitter 1004, and the at least one non-transitory computer-readable medium 1006.
  • the at least one receiver 1002 and the at least one transmitter 1004 are combined into a single device, such as a transceiver.
  • the apparatus 1000 may further include an input device, a memory, and/or other components.
  • the at least one non-transitory computer-readable medium 1006 may have stored thereon computer-executable instructions which are programmed to implement the operations of the methods, for example as described in view of FIG. 2, FIG. 4, FIG. 5, or FIG. 7, with the at least one receiver 1002, the at least one transmitter 1004, and the at least one processor 1008.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • the operations of a method may reside as one or any combination or set of codes and/or instructions on a non-transitory computer-readable medium, which may be incorporated into a computer program product.
  • the terms “includes, ” “including, ” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • An element proceeded by “a, ” “an, ” or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element.
  • the term “another” is defined as at least a second or more.
  • the term “having” and the like, as used herein, are defined as “including. ”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to methods and apparatuses for a pool sharing procedure between new radio (NR) sidelink user equipments (UEs) under 3GPP (3rd Generation Partnership Project) 5G system. According to an embodiment of the present disclosure, a method includes: receiving configuration information regarding one or more resource pools, wherein the one or more resource pools are shared between a UE and another UE, wherein a sidelink resource in time and frequency domains for a sidelink transmission of the UE is allocated by a base station (BS) to the UE, and wherein a sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned another UE; receiving a signaling from the BS, wherein the signaling indicates a subset of the one or more resource pools; performing a sensing procedure in the subset of the one or more resource pools; and reporting, to the BS, a sensing result of the sensing procedure.

Description

METHODS AND APPARATUSES FOR POOL SHARING PROCEDURE BETWEEN NR SIDELINK UES TECHNICAL FIELD
Embodiments of the present application are related to wireless communication technology, and more particularly, related to methods and apparatuses for a pool sharing procedure between new radio (NR) sidelink user equipments (UEs) under 3GPP (3rd Generation Partnership Project) 5G system.
BACKGROUND
Vehicle to everything (V2X) has been introduced into 5G wireless communication technology. In terms of a channel structure of V2X communication, the direct link between two UEs is called a sidelink. A sidelink is a long-term evolution (LTE) feature introduced in 3GPP Release 12, and enables a direct communication between proximal UEs, and data does not need to go through a base station (BS) or a core network.
3GPP 5G and/or NR networks are expected to increase network throughput, coverage, and robustness and reduce latency and power consumption. With the development of 5G and NR networks, various aspects need to be studied and developed to perfect the 5G and/or NR technology.
SUMMARY
Some embodiments of the present application provide a method, which may be performed by a user equipment (UE) . The method includes: receiving configuration information regarding one or more resource pools, wherein the one or  more resource pools are shared between a UE and another UE, wherein a sidelink resource in time and frequency domains for a sidelink transmission of the UE is allocated by a BS to the UE, and wherein a sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned another UE; receiving a signaling from the BS, wherein the signaling indicates a subset of the one or more resource pools; performing a sensing procedure in the subset of the one or more resource pools; and reporting, to the BS, a sensing result of the sensing procedure.
Some embodiments of the present application provide an apparatus. The apparatus includes: a non-transitory computer-readable medium having stored thereon computer-executable instructions, a receiving circuitry; a transmitting circuitry; and a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry, wherein the computer-executable instructions cause the processor to implement the abovementioned method for receiving a signaling performed by a UE.
Some embodiments of the present application provide a method which may be performed by a BS. The method includes: transmitting configuration information regarding one or more resource pools, wherein the one or more resource pools are shared between a UE and another UE, wherein a sidelink resource in time and frequency domains for a sidelink transmission of the UE is allocated by the BS to the UE, and wherein a sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned another UE; transmitting a signaling to the UE, wherein the signaling indicates the subset of the one or more resource pools; and receiving a sensing result from the UE, wherein the sensing result is generated by the UE via a sensing procedure in the subset of the one or more resource pools.
Some embodiments of the present application provide an apparatus. The apparatus includes: a non-transitory computer-readable medium having stored thereon  computer-executable instructions, a receiving circuitry; a transmitting circuitry; and a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry, wherein the computer-executable instructions cause the processor to implement the abovementioned method for transmitting a signaling performed by a BS.
Some embodiments of the present application provide a method, which may be performed by a UE. The method includes: receiving configuration information regarding one or more resource pools, wherein the one or more resource pools are shared between a UE and another UE, wherein a sidelink resource in time and frequency domains for a sidelink transmission of the UE is allocated by a BS to the UE, and wherein a sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned another UE; selecting a subset of the one or more resource pools from the one or more resource pools; performing a sensing procedure in the subset of the one or more resource pools; and reporting, to the BS, a sensing result of the sensing procedure.
Some embodiments of the present application provide an apparatus. The apparatus includes: a non-transitory computer-readable medium having stored thereon computer-executable instructions, a receiving circuitry; a transmitting circuitry; and a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry, wherein the computer-executable instructions cause the processor to implement the abovementioned method performed by a UE.
Some embodiments of the present application provide a method which may be performed by a BS. The method includes: transmitting configuration information regarding one or more resource pools, wherein the one or more resource pools are shared between a UE and another UE, wherein a sidelink resource in time and frequency domains for a sidelink transmission of the UE is allocated by the BS to the UE, and wherein a sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned  another UE; and receiving a sensing result from the UE, wherein the sensing result is generated by the UE via a sensing procedure in the subset of the one or more resource pools, and the subset of the one or more resource pools is selected from the one or more resource pools.
Some embodiments of the present application provide an apparatus. The apparatus includes: a non-transitory computer-readable medium having stored thereon computer-executable instructions, a receiving circuitry; a transmitting circuitry; and a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry, wherein the computer-executable instructions cause the processor to implement the abovementioned method performed by a BS.
The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to describe the manner in which advantages and features of the present application can be obtained, a description of the present application is rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. These drawings depict only exemplary embodiments of the present application and are not therefore intended to limit the scope of the present application.
FIG. 1 illustrates an exemplary V2X communication system in accordance with some embodiments of the present application;
FIG. 2 illustrates a flow chart of a method for performing a sensing procedure according to some embodiments of the present application;
FIG. 3 illustrates an exemplary flow chart of a pool sharing procedure according to some embodiments of the present application;
FIG. 4 illustrates a flow chart of a method for transmitting a signaling according to some embodiments of the present application;
FIG. 5 illustrates a flow chart of a method for performing a sensing procedure according to some embodiments of the present application;
FIG. 6 illustrates a further exemplary flow chart of a pool sharing procedure according to some embodiments of the present application;
FIG. 7 illustrates a flow chart of a method for receiving a sensing result according to some embodiments of the present application;
FIG. 8 illustrates an exemplary diagram of a resource index definition according to some embodiments of the present application;
FIG. 9 illustrates a further exemplary diagram of a resource index definition according to some embodiments of the present application; and
FIG. 10 illustrates an exemplary block diagram of an apparatus according to some embodiments of the present application.
DETAILED DESCRIPTION
The detailed description of the appended drawings is intended as a description of preferred embodiments of the present application and is not intended to represent the only form in which the present application may be practiced. It should be understood that the same or equivalent functions may be accomplished by different embodiments that are intended to be encompassed within the spirit and scope of the present application.
Reference will now be made in detail to some embodiments of the present application, examples of which are illustrated in the accompanying drawings. To facilitate understanding, embodiments are provided under specific network architecture and new service scenarios, such as 3GPP 5G, 3GPP LTE Release 8, B5G, 6G, and so on. It is contemplated that along with developments of network architectures and new service scenarios, all embodiments in the present application are also applicable to similar technical problems; and moreover, the terminologies recited in the present application may change, which should not affect the principle of the present application.
FIG. 1 illustrates an exemplary V2X communication system in accordance with some embodiments of the present application.
As shown in FIG. 1, a wireless communication system 100 includes at least one user equipment (UE) 101 and at least one base station (BS) 102. In particular, the wireless communication system 100 includes two UEs 101 (e.g., UE 101a and UE 101b) and one BS 102 for illustrative purpose. Although a specific number of UEs 101 and BS 102 are depicted in FIG. 1, it is contemplated that any number of UEs 101 and BSs 102 may be included in the wireless communication system 100.
The UE (s) 101 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like. According to some embodiments of the present application, the UE (s) 101 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network.
In some embodiments of the present application, a UE is a pedestrian UE (P-UE or PUE) or a cyclist UE. In some embodiments of the present application, the UE (s) 101 includes wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the UE (s) 101 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art. The UE (s) 101 may communicate directly with BSs 102 via LTE or NR Uu interface.
In some embodiments of the present application, each of the UE (s) 101 may be deployed an IoT application, an eMBB application and/or a URLLC application. For instance, UE 101a may implement an IoT application and may be named as an IoT UE, while UE 101b may implement an eMBB application and/or a URLLC application and may be named as an eMBB UE, an URLLC UE, or an eMBB/URLLC UE. It is contemplated that the specific type of application (s) deployed in the UE (s) 101 may be varied and not limited.
According to some embodiments of FIG. 1, UE 101a may exchange V2X messages with UE 101b through a sidelink, for example, PC5 interface as defined in 3GPP TS 23.303. UE 101a may transmit information or data to other UE (s) within the V2X communication system, through sidelink unicast, sidelink groupcast, or sidelink broadcast. For instance, UE 101a transmits data to UE 101b in a sidelink unicast session. UE 101a may transmit data to UE 101b and other UEs in a groupcast group (not shown in FIG. 1) by a sidelink groupcast transmission session. Also, UE 101a may transmit data to UE 101b and other UEs (not shown in FIG. 1) by a sidelink broadcast transmission session.
Both UE 101a and UE 101b in the embodiments of FIG. 1 may transmit information to BS (s) 102 and receive control information from BS (s) 102, for example, via LTE or NR Uu interface. The BS (s) 102 may be distributed over a geographic region. In certain embodiments of the present application, each of the  BS (s) 102 may also be referred to as an access point, an access terminal, a base, a base unit, a macro cell, a Node-B, an evolved Node B (eNB) , a gNB, a Home Node-B, a relay node, or a device, or described using other terminology used in the art. The BS (s) 102 is generally a part of a radio access network that may include one or more controllers communicably coupled to one or more corresponding BS (s) 102.
The wireless communication system 100 may be compatible with any type of network that is capable of sending and receiving wireless communication signals. For example, the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a Time Division Multiple Access (TDMA) -based network, a Code Division Multiple Access (CDMA) -based network, an Orthogonal Frequency Division Multiple Access (OFDMA) -based network, an LTE network, a 3GPP-based network, a 3GPP 5G network, a satellite communications network, a high altitude platform network, and/or other communications networks.
In some embodiments of the present application, the wireless communication system 100 is compatible with the 5G NR of the 3GPP protocol, wherein the BS (s) 102 transmit data using an OFDM modulation scheme on the downlink (DL) and the UE (s) 101 transmit data on the uplink (UL) using a Discrete Fourier Transform-Spread-Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) or cyclic prefix-OFDM (CP-OFDM) scheme. More generally, however, the wireless communication system 100 may implement some other open or proprietary communication protocols, for example, WiMAX, among other protocols.
In some embodiments of the present application, the BS (s) 102 may communicate using other communication protocols, such as the IEEE 802.11 family of wireless communication protocols. Further, in some embodiments of the present application, the BS (s) 102 may communicate over licensed spectrums, whereas in other embodiments, the BS (s) 102 may communicate over unlicensed spectrums. The present application is not intended to be limited to the implementation of any  particular wireless communication system architecture or protocol. In yet some embodiments of present application, the BS (s) 102 may communicate with the UE (s) 101 using the 3GPP 5G protocols.
The UE (s) 101 may access the BS (s) 102 to receive data packets from the BS (s) 102 via a downlink channel and/or transmit data packets to the BS (s) 102 via an uplink channel. In normal operation, since the UE (s) 101 does not know when the BS (s) 102 will transmit data packets to it, the UE (s) 101 has to be awake all the time to monitor the downlink channel (e.g., a Physical Downlink Control Channel (PDCCH) ) to get ready for receiving data packets from the BS (s) 102. However, if the UE (s) 101 keeps monitoring the downlink channel all the time even when there is no traffic between the BS (s) 102 and the UE (s) 101, it would result in significant power waste, which is problematic to a power limited or power sensitive UE.
Currently, two sidelink resource allocation modes are supported, i.e., Mode 1 and Mode 2. In Mode 1, the sidelink resource in time and frequency domains allocation is provided by a network or a BS. In Mode 2, a UE decides the SL transmission resources in time and frequency domains in a resource pool. In a 3GPP 5G NR sidelink system or the like, the configured resource pools can be multiplexed in a frequency division multiplexing (FDM) manner, in a time division multiplexing (TDM) manner, or in both FMD and TDM manners. If the resource pools shared between Mode 1 and Mode 2 are multiplexed in a FDM manner or in both FDM and TDM manners, it will cause an ambiguity on the understanding of the reported resources between a BS and a UE with Mode 1. Thus, there is a need to provide solutions to address the issue on sensing results reporting for the UE with Mode 1 when resource pools are configured in the FDM manner or in both FMD and TDM manners.
Embodiments of the present application consider an ambiguity on the understanding of the reported resources between a BS and a UE with Mode 1, define a pool sharing procedure, and will be specifically described below.
FIG. 2 illustrates a flow chart of a method for performing a sensing procedure according to some embodiments of the present application. The embodiments of FIG. 2 may be performed by a UE (e.g., UE 101a or UE 101b illustrated and shown in FIG. 1 or UE (a) illustrated and shown in FIG. 3) . Although described with respect to a UE, it should be understood that other devices may be configured to perform a method similar to that of FIG. 2.
In the exemplary method 200 as shown in FIG. 2, in operation 201, a UE (e.g., UE 101a illustrated and shown in FIG. 1) receives configuration information regarding one or more resource pools. The one or more resource pools are shared between the UE and another UE (e.g., UE 101b illustrated and shown in FIG. 1) .
The embodiments of FIG. 2 assume that the UE works in Mode 1 and the abovementioned another UE works in Mode 2. That is to say, a sidelink resource in time and frequency domains for a sidelink transmission of the UE is allocated by a BS (e.g., BS 102 as illustrated and shown in FIG. 1 or BS (a) illustrated and shown in FIG. 6) to the UE. A sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned another UE.
In operation 202, the UE receives a signaling from the BS. The signaling indicates a subset of the one or more resource pools. In an example, each resource pool of the subset of the one or more resource pools is multiplexed in a FDM manner or in both FDM and TDM manners.
In operation 203, the UE performs a sensing procedure in the subset of the one or more resource pools. In operation 204, the UE reports, to the BS, a sensing result of the sensing procedure.
According to some embodiments, during performing the sensing procedure in the subset of the one or more resource pools, the UE indicates, to a physical layer of  the UE, the subset of the one or more resource pools; the physical layer of the UE senses on the subset of the one or more resource pools, to generate a sensing result; and the physical layer of the UE reports the sensing result to a higher layer of the UE. Then, the higher layer of the UE reports the sensing result of the sensing procedure to the BS. For instance, the sensing result includes one or more candidate resources.
According to some embodiments, the sensing result includes one or more index values of one or more candidate resources that are sensed during the sensing procedure. In an embodiment, index value (s) of the one or more candidate resources are individually numbered in each resource pool within the subset of the one or more resource pools. In a further embodiment, index value (s) of the one or more candidate resources are jointly numbered in the subset of the one or more resource pools. Specific examples are described in FIGS. 8 and 9.
Details described in the embodiments as illustrated and shown in FIGS. 1 and 3-10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 2. Moreover, details described in the embodiments of FIG. 2 are applicable for all the embodiments of FIGS. 1 and 3-10.
FIG. 3 illustrates an exemplary flow chart of a pool sharing procedure according to some embodiments of the present application.
As shown in FIG. 3, in step 301, BS (a) (e.g., BS 102 as illustrated and shown in FIG. 1) configures resource pool (s) . The resource pool (s) may be shared by UE (a) (e.g., UE 101a illustrated and shown in FIG. 1) which works in Mode 1 and another UE with Mode 2 (e.g., UE 101b illustrated and shown in FIG. 1) which is not shown in FIG. 3.
In step 302, BS (a) triggers UE (a) with Mode 1 to perform a sensing procedure and to report a sensing result. Meanwhile, BS (a) selects one or more  resource pools and indicates the selected resource pool (s) to UE (a) with Mode 1 in step 302. An indication of the selected resource pool (s) may be an ID of the selected resource pool (s) . Alternatively, an indication of the selected resource pool (s) may be index value (s) of the selected resource pool (s) when more than one resource pools are configured. From a perspective of UE (a) , the selected resource pool (s) may be named as the indicated resource pool (s) .
Then, a higher layer of UE (a) indicates the indicated resource pool (s) to a physical layer of UE (a) . The physical layer of UE (a) performs sensing on the indicated resource pool (s) and reports a sensing result (e.g., candidate resources) to the higher layer of UE (a) . Finally, in step 303, the higher layer of UE (a) reports, to BS (a) , the sensing result of the resource pool (s) that are indicated by BS (a) in step 302.
Details described in the embodiments as illustrated and shown in FIGS. 1, 2, and 4-10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 3. Moreover, details described in the embodiments of FIG. 3 are applicable for all the embodiments of FIGS. 1, 2, and 4-10.
FIG. 4 illustrates a flow chart of a method for transmitting a signaling according to some embodiments of the present application. The embodiments of FIG. 4 may be performed by a BS (e.g., BS 102 illustrated and shown in FIG. 1 or BS (a) illustrated and shown in FIG. 3) . Although described with respect to a BS, it should be understood that other devices may be configured to perform a method similar to that of FIG. 4.
In the exemplary method 400 as shown in FIG. 4, in operation 401, a BS (e.g., BS 102 illustrated and shown in FIG. 1) transmits configuration information regarding one or more resource pools. The one or more resource pools are shared between a UE (e.g., UE 101a illustrated and shown in FIG. 1 or UE (a) illustrated and shown in  FIG. 3) and another UE (e.g., UE 101b illustrated and shown in FIG. 1) .
The embodiments of FIG. 4 assume that the UE works in Mode 1 and the abovementioned another UE works in Mode 2. That is to say, a sidelink resource in time and frequency domains for a sidelink transmission of the UE is allocated by the BS to the UE. A sidelink resource in the time and frequency domains for a sidelink transmission of the abovementioned another UE is decided by the abovementioned another UE.
In operation 402, the BS transmits a signaling to the UE, to indicate a subset of the one or more resource pools. In an example, each resource pool of the subset of the one or more resource pools is multiplexed in a FDM manner or in both FDM and TDM manners.
In operation 403, the BS receives a sensing result from the UE. The sensing result is generated by the UE via a sensing procedure in the subset of the one or more resource pools. According to some embodiments, the sensing result includes one or more index values of one or more candidate resources that are sensed during the sensing procedure. In an embodiment, the index values of the one or more candidate resources are individually numbered in each resource pool within the subset of the one or more resource pools. In a further embodiment, the index values of the one or more candidate resources are jointly numbered in the subset of the one or more resource pools. Specific examples are described in FIGS. 8 and 9.
Details described in the embodiments as illustrated and shown in FIGS. 1-3 and 5-10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 4. Moreover, details described in the embodiments of FIG. 4 are applicable for all the embodiments of FIGS. 1-3 and 5-10.
FIG. 5 illustrates a flow chart of a method for performing a sensing  procedure according to some embodiments of the present application.
The embodiments of FIG. 5 may be performed by a UE (e.g., UE 101a or UE 101b illustrated and shown in FIG. 1 or UE (b) illustrated and shown in FIG. 6) . Although described with respect to a UE, it should be understood that other devices may be configured to perform a method similar to that of FIG. 5.
In the exemplary method 500 as shown in FIG. 5, in operation 501, a UE (e.g., UE 101a illustrated and shown in FIG. 1) receives configuration information regarding one or more resource pools. The one or more resource pools are shared between a UE and another UE (e.g., UE 101b illustrated and shown in FIG. 1) . The embodiments of FIG. 5 assume that the UE works in Mode 1 and the abovementioned another UE works in Mode 2.
In operation 502, the UE selects a subset of the one or more resource pools from the one or more resource pools. In an example, each resource pool of the subset of the one or more resource pools is multiplexed in a FDM manner or in both FDM and TDM manners.
In operation 503, the UE performs a sensing procedure in the subset of the one or more resource pools. In operation 504, the UE reports, to a BS (e.g., BS 102 illustrated and shown in FIG. 1 or BS (b) illustrated and shown in FIG. 6) , a sensing result of the sensing procedure.
According to some embodiments, during performing the sensing procedure in the subset of the one or more resource pools, the UE indicates, to a physical layer of the UE, the subset of the one or more resource pools; the physical layer of the UE senses on the subset of the one or more resource pools, to generate a sensing result; and the physical layer of the UE reports the sensing result to a higher layer of the UE. The, the higher layer of the UE reports the sensing result to the BS.
According to some embodiments, the sensing result includes an identifier (ID)  of each resource pool within the subset of the one or more resource pools. The ID of a resource pool may be a configured ID of the resource pool within the subset of the one or more resource pools. Alternatively, the ID of a resource pool may be an index value of the resource pool within the subset of the one or more resource pools.
According to some other embodiments, the sensing result includes one or more index values of one or more candidate resources that are sensed during the sensing procedure. In an embodiment, index value (s) of the one or more candidate resources are individually numbered in each resource pool within the subset of the one or more resource pools. In a further embodiment, index value (s) of the one or more candidate resources are jointly numbered in the subset of the one or more resource pools. Specific examples are described in FIGS. 8 and 9.
Details described in the embodiments as illustrated and shown in FIGS. 1-4 and 6-10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 5. Moreover, details described in the embodiments of FIG. 5 are applicable for all the embodiments of FIGS. 1-4 and 6-10.
FIG. 6 illustrates a further exemplary flow chart of a pool sharing procedure according to some embodiments of the present application.
As shown in FIG. 6, in step 601, BS (b) (e.g., BS 102 as illustrated and shown in FIG. 1) configures resource pool (s) . The resource pool (s) may be shared by UE (b) (e.g., UE 101a illustrated and shown in FIG. 1) which works in Mode 1 and another UE with Mode 2 (e.g., UE 101b illustrated and shown in FIG. 1) which is not shown in FIG. 3.
In step 602, BS (b) triggers UE (b) with Mode 1 to perform a sensing procedure and to report a sensing result. Then, UE (b) selects one or more resource pools to perform sensing. For example, the selected resource pool (s) may be  determined by an implementation of UE (b) .
The higher layer of UE (b) may indicate the selected resource pool (s) to a physical layer of UE (b) . Then, the physical layer of UE (b) performs sensing on the selected resource pool (s) and reports a sensing result (e.g., candidate resources) to the higher layer of UE (b) .
Finally, in step 603, UE (b) reports the sensing result to BS (b) . Since the resource pool selection is performed at UE (b) side, UE (b) needs to report an identity of the selected resource pool to BS (b) . The identity of the selected resource pool may be an ID of the resource pool or an index value of each resource pool when multiple resource pools are configured.
Details described in the embodiments as illustrated and shown in FIGS. 1-5 and 7-10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 6. Moreover, details described in the embodiments of FIG. 6 are applicable for all the embodiments of FIGS. 1-5 and 7-10.
FIG. 7 illustrates a flow chart of a method for receiving a sensing result according to some embodiments of the present application. The embodiments of FIG. 7 may be performed by a BS (e.g., BS 102 illustrated and shown in FIG. 1 or BS (b) illustrated and shown in FIG. 6) . Although described with respect to a BS, it should be understood that other devices may be configured to perform a method similar to that of FIG. 7.
In the exemplary method 700 as shown in FIG. 7, in operation 701, a BS (e.g., BS 102 illustrated and shown in FIG. 1) transmits configuration information regarding one or more resource pools. The one or more resource pools are shared between a UE (e.g., UE 101a illustrated and shown in FIG. 1 or UE (b) illustrated and shown in FIG. 6) and another UE (e.g., UE 101b illustrated and shown in FIG. 1) . The  embodiments of FIG. 7 assume that the UE works in Mode 1 and the abovementioned another UE works in Mode 2.
In operation 702, the BS receives a sensing result from the UE. The sensing result is generated by the UE via a sensing procedure in the subset of the one or more resource pools. The subset of the one or more resource pools is selected by the UE from the one or more resource pools.
In an example, each resource pool of the subset of the one or more resource pools is multiplexed in a FDM manner or in both FDM and TDM manners. According to some embodiments, the sensing result includes an ID of each resource pool within the subset of the one or more resource pools.
According to some embodiments, the sensing result includes one or more index values of one or more candidate resources that are sensed during the sensing procedure. In an embodiment, index value (s) of the one or more candidate resources are individually numbered in each resource pool within the subset of the one or more resource pools. In a further embodiment, index value (s) of the one or more candidate resources are jointly numbered in the subset of the one or more resource pools. Specific examples are described in FIGS. 8 and 9.
Details described in the embodiments as illustrated and shown in FIGS. 1-6 and 8-10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 7. Moreover, details described in the embodiments of FIG. 7 are applicable for all the embodiments of FIGS. 1-6 and 8-10.
FIG. 8 illustrates an exemplary diagram of a resource index definition according to some embodiments of the present application.
FIG. 8 shows two resource pools, i.e., resource pool #1 and resource pool #2. Each resource pool includes candidate resources in time and frequency domains, and  the candidate resources are multiplexed in a FDM manner. In the embodiments of FIG. 8, index values of candidate resources in resource pools #1 and #2 are individually numbered in each resource pool.
The embodiments of FIG. 8 assume that each two subframes in one slot own one index value. It can be contemplated that different number of subframes in one slot may own one index value according to other embodiments.
In particular, resource pool #1 includes candidate resources in two slots, i.e., “slot reference” and “slot reference+1” as shown in FIG. 8. In “slot reference” , resource pool #1 includes five subframes, which are marked as “0” to “4” , respectively. In one example, index values of subframes “0” to “4” in “slot reference” are resourceIndex#1, resourceIndex#101, resourceIndex#201, and etc..
In “slot reference+1” , resource pool #1 includes five subframes, which are marked as “0” to “4” , respectively, as shown in FIG. 8. In one example, index values of subframes “0” to “4” in “slot reference+1” are resourceIndex#2, resourceIndex#102, resourceIndex#202, and etc..
Similarly, resource pool #2 also includes candidate resources in “slot reference” and “slot reference+1” . In “slot reference” , resource pool #2 includes eight subframes, which are marked as “0” to “7” , respectively, as shown in FIG. 8. In one example, index values of subframes “0” to “7” in “slot reference” of resource pool #2 are resourceIndex#1, resourceIndex#101, resourceIndex#201, and etc..
In “slot reference+1” , resource pool #2 includes eight subframes, which are marked as “0” to “7” , respectively, as shown in FIG. 8. In one example, index values of subframes “0” to “7” in “slot reference+1” of resource pool #2 are resourceIndex#2, resourceIndex#102, resourceIndex#202, and etc..
As can be seen, since the index values of candidate resources in resource pool #1 and resource pool #2 are individually numbered per each resource pool, some  index values in these two resource pools are the same.
Details described in the embodiments as illustrated and shown in FIGS. 1-7, 9, and 10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 8. Moreover, details described in the embodiments of FIG. 8 are applicable for all the embodiments of FIGS. 1-7, 9, and 10.
FIG. 9 illustrates a further exemplary diagram of a resource index definition according to some embodiments of the present application.
FIG. 9 shows two resource pools, i.e., resource pool #1 and resource pool #2. Each resource pool includes candidate resources in time and frequency domains, and the candidate resources are multiplexed in a FDM manner. In the embodiments of FIG. 9, index values of candidate resources in resource pools #1 and #2 are jointly numbered in these two resource pools.
The embodiments of FIG. 9 assume that each two subframes in one slot own one index value. It can be contemplated that different number of subframes in one slot may own one index value according to other embodiments.
In particular, resource pool #1 includes candidate resources in two slots, i.e., “slot reference” and “slot reference+1” . Similarly, resource pool #2 also includes candidate resources in “slot reference” and “slot reference+1” . In “slot reference” , resource pool #1 includes five subframes, which are marked as “0” to “4” , respectively, as shown in FIG. 9; and resource pool #2 includes eight subframes, which are marked as “0” to “7” , respectively, as shown in FIG. 9.
In one example, index values of subframes “0” to “4” of resource pool #1 in “slot reference” are resourceIndex#1, resourceIndex#101, resourceIndex#201, and etc., and index values of subframes “0” to “7” of resource pool #2 in “slot reference” are resourceIndex#x01, resourceIndex# (x+1) 01, resourceIndex# (x+2) 01,  resourceIndex# (x+3) 01, resourceIndex# (x+4) 01, and etc.. These index values in “slot reference” are continuously numbered.
In “slot reference+1” , resource pool #1 includes five subframes, which are marked as “0” to “4” , respectively, as shown in FIG. 9; and resource pool #2 includes eight subframes, which are marked as “0” to “7” , respectively, as shown in FIG. 9. In one example, index values of subframes “0” to “4” of resource pool #1 in “slot reference+1” are resourceIndex#2, resourceIndex#102, resourceIndex#202, and etc., and index values of subframes “0” to “7” of resource pool #2 in “slot reference+1” are resourceIndex#x02, resourceIndex# (x+1) 02, resourceIndex# (x+2) 02, resourceIndex# (x+3) 02, resourceIndex# (x+4) 02, and etc.. These index values in “slot reference+1” are continuously numbered.
As can be seen, since the index values of candidate resources in resource pool #1 and resource pool #2 are jointly numbered among these two resource pools, each index value of the candidate resources is unique, even if these two resource pools are configured in a FDM manner. That is to say, no index value in these two resource pools is the same.
Details described in the embodiments as illustrated and shown in FIGS. 1-8 and 10, especially, contents related to defining a pool sharing procedure, are applicable for the embodiments as illustrated and shown in FIG. 9. Moreover, details described in the embodiments of FIG. 9 are applicable for all the embodiments of FIGS. 1-8 and 10.
FIG. 10 illustrates an exemplary block diagram of an apparatus according to some embodiments of the present application. In some embodiments of the present application, the apparatus 1000 may be a UE, which can at least perform the method illustrated in FIG. 2 or FIG. 5. In some embodiments of the present application, the apparatus 1000 may be a BS, which can at least perform the method illustrated in FIG. 4 or FIG. 7.
As shown in FIG. 10, the apparatus 1000 may include at least one receiver 1002, at least one transmitter 1004, at least one non-transitory computer-readable medium 1006, and at least one processor 1008 coupled to the at least one receiver 1002, the at least one transmitter 1004, and the at least one non-transitory computer-readable medium 1006.
Although in FIG. 10, elements such as the at least one receiver 1002, the at least one transmitter 1004, the at least one non-transitory computer-readable medium 1006, and the at least one processor 1008 are described in the singular, the plural is contemplated unless limitation to the singular is explicitly stated. In some embodiments of the present application, the at least one receiver 1002 and the at least one transmitter 1004 are combined into a single device, such as a transceiver. In certain embodiments of the present application, the apparatus 1000 may further include an input device, a memory, and/or other components.
In some embodiments of the present application, the at least one non-transitory computer-readable medium 1006 may have stored thereon computer-executable instructions which are programmed to implement the operations of the methods, for example as described in view of FIG. 2, FIG. 4, FIG. 5, or FIG. 7, with the at least one receiver 1002, the at least one transmitter 1004, and the at least one processor 1008.
Those having ordinary skills in the art would understand that the operations of a method described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. Additionally, in some aspects, the operations of a method may reside as one or any combination or set of codes and/or instructions on a non-transitory computer-readable medium, which may be incorporated into a computer program product.
While this disclosure has been described with specific embodiments thereof, it is evident that many alternatives, modifications, and variations may be apparent to those skilled in the art. For example, various components of the embodiments may be interchanged, added, or substituted in the other embodiments. Also, all of the elements of each figure are not necessary for operation of the disclosed embodiments. For example, those having ordinary skills in the art would be enabled to make and use the teachings of the disclosure by simply employing the elements of the independent claims. Accordingly, embodiments of the disclosure as set forth herein are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the disclosure.
In this document, the terms “includes, ” “including, ” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “a, ” “an, ” or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element. Also, the term “another” is defined as at least a second or more. The term “having” and the like, as used herein, are defined as “including. ”

Claims (26)

  1. A method performed by a first user equipment (UE) , comprising:
    receiving configuration information regarding one or more resource pools, wherein the one or more resource pools are shared between the first UE and a second UE, wherein a sidelink resource in time and frequency domains for a sidelink transmission of the first UE is allocated by a base station (BS) to the first UE, and wherein a sidelink resource in the time and frequency domains for a sidelink transmission of the second UE is decided by the second UE;
    receiving a signaling from the BS, wherein the signaling indicates a subset of the one or more resource pools;
    performing a sensing procedure in the subset of the one or more resource pools; and
    reporting, to the BS, a sensing result of the sensing procedure.
  2. The method of Claim 1, wherein each resource pool of the subset of the one or more resource pools is multiplexed in a frequency division multiplexing (FDM) manner.
  3. The method of Claim 1, wherein performing the sensing procedure in the subset of the one or more resource pools further comprises:
    indicating, to a physical layer of the first UE, the subset of the one or more resource pools;
    sensing, by the physical layer of the first UE, on the subset of the one or more resource pools, to generate the sensing result; and
    reporting, by the physical layer of the first UE, the sensing result to a higher layer of the first UE.
  4. The method of Claim 1, wherein the sensing result includes one or more index values of one or more candidate resources, and wherein the one or more candidate resources are sensed during the sensing procedure.
  5. The method of Claim 4, wherein the index values of the one or more candidate resources are individually numbered in each resource pool within the subset of the one or more resource pools.
  6. The method of Claim 4, wherein the index values of the one or more candidate resources are jointly numbered in the subset of the one or more resource pools.
  7. A method performed by a base station (BS) , comprising:
    transmitting configuration information regarding one or more resource pools, wherein the one or more resource pools are shared between a first user equipment (UE) and a second UE, wherein a sidelink resource in time and frequency domains for a sidelink transmission of the first UE is allocated by the BS to the first UE, and wherein a sidelink resource in the time and frequency domains for a sidelink transmission of the second UE is decided by the second UE;
    transmitting a signaling to the first UE, wherein the signaling indicates a subset of the one or more resource pools; and
    receiving a sensing result from the first UE, wherein the sensing result is generated by the first UE via a sensing procedure in the subset of the one or more resource pools.
  8. The method of Claim 7, wherein each resource pool of the subset of the one or more resource pools is multiplexed in a frequency division multiplexing (FDM) manner.
  9. The method of Claim 7, wherein the sensing result includes one or more index values of one or more candidate resources, and wherein the one or more candidate resources are sensed during the sensing procedure.
  10. The method of Claim 9, wherein the one or more index values of the one or more candidate resources are individually numbered in each resource pool within the subset of the one or more resource pools.
  11. The method of Claim 9, wherein the one or more index values of the one or more candidate resources are jointly numbered in the subset of the one or more resource pools.
  12. A method performed by a first user equipment (UE) , comprising:
    receiving configuration information regarding one or more resource pools, wherein the one or more resource pools are shared between the first UE and a second UE, wherein a sidelink resource in time and frequency domains for a sidelink transmission of the first UE is allocated by a base station (BS) to the first UE, and wherein a sidelink resource in the time and frequency domains for a sidelink transmission of the second UE is decided by the second UE;
    selecting a subset of the one or more resource pools from the one or more resource pools;
    performing a sensing procedure in the subset of the one or more resource pools; and
    reporting, to the BS, a sensing result of the sensing procedure, wherein the sensing result includes an identifier (ID) of each resource pool within the subset of the one or more resource pools.
  13. The method of Claim 12, wherein each resource pool of the subset of the one or more resource pools is multiplexed in a frequency division multiplexing (FDM) manner.
  14. The method of Claim 12, wherein performing the sensing procedure in the subset of the one or more resource pools further comprises:
    indicating, to a physical layer of the first UE, the subset of the one or more resource pools;
    sensing, by the physical layer of the first UE, on the subset of the one or more resource pools, to generate the sensing result; and
    reporting, by the physical layer of the first UE, the sensing result to a higher layer of the first UE.
  15. The method of Claim 12, wherein the sensing result includes one or more index values of one or more candidate resources, and wherein the one or more candidate resources are sensed during the sensing procedure.
  16. The method of Claim 15, wherein the index values of the one or more candidate resources are individually numbered in each resource pool within the subset of the one or more resource pools.
  17. The method of Claim 15, wherein the index values of the one or more candidate resources are jointly numbered in the subset of the one or more resource pools.
  18. A method performed by a base station (BS) , comprising:
    transmitting configuration information regarding one or more resource pools, wherein the one or more resource pools are shared between a first user equipment (UE) and a second UE, wherein a sidelink resource in time and frequency domains for a sidelink transmission of the first UE is allocated by the  BS to the first UE, and wherein a sidelink resource in the time and frequency domains for a sidelink transmission of the second UE is decided by the second UE; and
    receiving a sensing result from the first UE, wherein the sensing result is generated by the first UE via a sensing procedure in a subset of the one or more resource pools, wherein the subset of the one or more resource pools is selected from the one or more resource pools, and wherein the sensing result includes an identifier (ID) of each resource pool within the subset of the one or more resource pools.
  19. The method of Claim 18, wherein each resource pool of the subset of the one or more resource pools is multiplexed in a frequency division multiplexing (FDM) manner.
  20. The method of Claim 18, wherein the sensing result includes one or more index values of one or more candidate resources, and wherein the one or more candidate resources are sensed during the sensing procedure.
  21. The method of Claim 20, wherein the one or more index values of the one or more candidate resources are individually numbered in each resource pool within the subset of the one or more resource pools.
  22. The method of Claim 20, wherein the one or more index values of the one or more candidate resources are jointly numbered in the subset of the one or more resource pools.
  23. An apparatus, comprising:
    a non-transitory computer-readable medium having stored thereon computer-executable instructions;
    a receiving circuitry;
    a transmitting circuitry; and
    a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry,
    wherein the computer-executable instructions cause the processor to implement the method of any of Claims 1-6.
  24. An apparatus, comprising:
    a non-transitory computer-readable medium having stored thereon computer-executable instructions;
    a receiving circuitry;
    a transmitting circuitry; and
    a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry,
    wherein the computer-executable instructions cause the processor to implement the method of any of Claims 7-11.
  25. An apparatus, comprising:
    a non-transitory computer-readable medium having stored thereon computer-executable instructions;
    a receiving circuitry;
    a transmitting circuitry; and
    a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry,
    wherein the computer-executable instructions cause the processor to implement the method of any of Claims 12-17.
  26. An apparatus, comprising:
    a non-transitory computer-readable medium having stored thereon computer-executable instructions;
    a receiving circuitry;
    a transmitting circuitry; and
    a processor coupled to the non-transitory computer-readable medium, the receiving circuitry and the transmitting circuitry,
    wherein the computer-executable instructions cause the processor to implement the method of any of Claims 18-22.
PCT/CN2020/109173 2020-08-14 2020-08-14 Methods and apparatuses for pool sharing procedure between nr sidelink ues WO2022032637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109173 WO2022032637A1 (en) 2020-08-14 2020-08-14 Methods and apparatuses for pool sharing procedure between nr sidelink ues

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/109173 WO2022032637A1 (en) 2020-08-14 2020-08-14 Methods and apparatuses for pool sharing procedure between nr sidelink ues

Publications (1)

Publication Number Publication Date
WO2022032637A1 true WO2022032637A1 (en) 2022-02-17

Family

ID=80246857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109173 WO2022032637A1 (en) 2020-08-14 2020-08-14 Methods and apparatuses for pool sharing procedure between nr sidelink ues

Country Status (1)

Country Link
WO (1) WO2022032637A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062898A1 (en) * 2016-09-28 2018-04-05 엘지전자 주식회사 Method and apparatus for selecting resource and transmitting pssch in wireless communication system
CN110149698A (en) * 2018-02-11 2019-08-20 中兴通讯股份有限公司 Wireless communication sends the determination method and device of resource
US20190306835A1 (en) * 2018-04-03 2019-10-03 Idac Holdings, Inc. Resource pool sharing between network scheduled ue and autonomous scheduled ue transmissions
CN110603869A (en) * 2017-05-04 2019-12-20 松下电器(美国)知识产权公司 User equipment, base station and wireless communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062898A1 (en) * 2016-09-28 2018-04-05 엘지전자 주식회사 Method and apparatus for selecting resource and transmitting pssch in wireless communication system
CN110603869A (en) * 2017-05-04 2019-12-20 松下电器(美国)知识产权公司 User equipment, base station and wireless communication method
CN110149698A (en) * 2018-02-11 2019-08-20 中兴通讯股份有限公司 Wireless communication sends the determination method and device of resource
US20190306835A1 (en) * 2018-04-03 2019-10-03 Idac Holdings, Inc. Resource pool sharing between network scheduled ue and autonomous scheduled ue transmissions

Similar Documents

Publication Publication Date Title
US20240098757A1 (en) Methods and apparatuses for transmitting a sidelink positioning reference signal
EP3547772B1 (en) Data transmission method and apparatus
US8811309B2 (en) Implicit resource allocation using shifted synchronization sequence
US20240015740A1 (en) Method and apparatus for downlink transmission in physical downlink control channel
WO2021196154A1 (en) Method and apparatus for sensing measurement and report for nr sidelink
CN113330709B (en) Terminal device, network device and method thereof
US20200329446A1 (en) Signal transmission method, terminal device and network device
US20230057174A1 (en) Method and apparatus for beam-based transmission for sidelink
WO2021189254A1 (en) Method and apparatus for sidelink resource re-evaluation
RU2768254C2 (en) Method and device for transmitting information
JP2023537283A (en) Uplink signal transmission/reception method and apparatus
EP3142438B1 (en) Method for inter-device communications, base station, and user equipment
US10743292B2 (en) Method and apparatus for resource allocation
US20230397174A1 (en) Methods and apparatuses for indicating a set of resources on a nr sidelink
WO2022032637A1 (en) Methods and apparatuses for pool sharing procedure between nr sidelink ues
US20230276464A1 (en) Methods and apparatuses for a sidelink resource re-evaluation procedure
US20240224246A1 (en) Method and apparatus for determining slot formats of uplink and downlink transmission
WO2024031526A1 (en) Network device, user equipment and method for resource allocation within cot under sidelink transmission
WO2022204860A1 (en) Methods and apparatuses for a sensing-based transmission
WO2023197334A1 (en) Methods and apparatuses for sidelink beam management
US20240098720A1 (en) Terminal, System, and Method for Bandwidth Part Out-of-Sync Detection and Recovery
WO2022061736A1 (en) Methods and apparatuses for inter-ue coordination for a nr sidelink
WO2024073981A1 (en) Method and apparatus for supporting multiple csis in a csi report
WO2024026716A1 (en) Method and apparatus for a resource re-evaluation or pre-emption checking procedure
WO2023193233A1 (en) Method and apparatus for subband utilization in full duplex system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949135

Country of ref document: EP

Kind code of ref document: A1