WO2020151655A1 - 基于逐跳自动重传请求的数据传输方法以及用户设备ue - Google Patents

基于逐跳自动重传请求的数据传输方法以及用户设备ue Download PDF

Info

Publication number
WO2020151655A1
WO2020151655A1 PCT/CN2020/073192 CN2020073192W WO2020151655A1 WO 2020151655 A1 WO2020151655 A1 WO 2020151655A1 CN 2020073192 W CN2020073192 W CN 2020073192W WO 2020151655 A1 WO2020151655 A1 WO 2020151655A1
Authority
WO
WIPO (PCT)
Prior art keywords
adaptation
hop
entity
rlc
node
Prior art date
Application number
PCT/CN2020/073192
Other languages
English (en)
French (fr)
Inventor
肖芳英
刘仁茂
Original Assignee
夏普株式会社
鸿颖创新有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 鸿颖创新有限公司 filed Critical 夏普株式会社
Publication of WO2020151655A1 publication Critical patent/WO2020151655A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals

Definitions

  • the present invention relates to the field of wireless communication technology, and more specifically, to a data transmission method based on a hop-by-hop automatic retransmission request and a user equipment UE.
  • HbH ARQ hop-by-hop Automatic Repeat request
  • the RLC sending entity when the RLC sending entity receives the RLC status report, it indicates the successfully sent RLC SDU to the PDCP entity, and the PDCP entity deletes the corresponding PDCP PDU and PDCP SDU after receiving the indication.
  • the UE In the uplink transmission, if the data is successfully received by the access IAB node, the UE will delete the corresponding data, and then the access IAB node will forward the data to the next hop and delete it. At this time, if an error occurs in the intermediate IAB node, the data considered by the UE to have been successfully sent will not be received by the IAB donor.
  • one of the goals proposed by the IAB work item is to define a mechanism to ensure hop-by-hop ARQ transmission without packet loss.
  • the present disclosure is dedicated to solving the problem of hop-by-hop ARQ transmission packet loss in uplink transmission, specifically including what operations the RLC entity and/or adaptation entity in the IAB node perform.
  • Non-Patent Document 1 RP-182882: New WID: Integrated Access and Backhaul for NR
  • the present invention provides a data transmission method based on hop-by-hop automatic retransmission request.
  • One aspect of the present invention is a data transmission method based on hop-by-hop automatic retransmission request, which includes:
  • the RLC entity of the IAB node instructs the upper layer to indicate the instruction for the inquiry, that is, the inquiry instruction step.
  • it preferably also includes:
  • the adaptation entity of the IAB node After receiving the query indication from the RLC entity, the adaptation entity of the IAB node carries the query or sets the query bit to 1 in the adaptation PDU to be sent;
  • the step of the adaptation entity of the IAB node submitting or transmitting the generated adaptation PDU containing the query to the lower layer for sending to the next hop node;
  • the adaptation entity indicates to the corresponding lower layer the relevant information of the adapted SDU that has been confirmed to be successfully received, that is, the step of sending the status indication.
  • the RLC entity of the IAB node constructs an RLC status report after receiving the transmission status indication information from the adaptation entity, and submits the RLC status report to the lower layer and sends it to the user equipment UE. Steps in the peer RLC entity.
  • the RLC entity of the IAB node is configured to indicate the inquiry instruction to the upper layer.
  • the IAB node receives a configuration message from an IAB donor, and the configuration message includes an indication identifier for instructing the corresponding RLC entity to indicate the query to the upper layer when receiving the query.
  • next hop node is an IAB node or an IAB donor.
  • the adaptation entity starts a timer, and after the timer expires, it selects an adaptation SDU or adaptation PDU to send and includes a query in it.
  • the adaptation entity stops the timer after receiving the adaptation status report.
  • the adaptation status report includes the following fields: D/C field and CPT field.
  • Another aspect of the present invention is a user equipment UE, including: a processor; and a memory, storing instructions; wherein the instructions execute the above-mentioned hop-by-hop-based automatic retransmission request when run by the processor Data transfer method.
  • FIG. 1 is a flowchart showing an example of operations performed by the RLC entity of the IAB node in uplink transmission in the embodiment.
  • Fig. 2 is a flowchart showing an example of operations performed by the adaptation entity of the IAB node in uplink transmission in the embodiment.
  • Fig. 3 is a flowchart showing an example of operations performed by an adaptation entity of an IAB node in downlink transmission in an embodiment.
  • FIG. 4 is a flowchart showing an example of operations performed by the RLC entity of the IAB node in downlink transmission in the embodiment.
  • FIG. 5 is a block diagram schematically showing an example of user equipment UE related to the present disclosure.
  • RLC Radio Link Control, radio link control.
  • the transmission mode of the RLC entity can be configured as one of transparent transmission mode TM, unconfirmed mode UM or confirmed mode AM.
  • MAC Medium Access Control, media access control.
  • PDU Protocol Data Unit, protocol data unit.
  • SDU Service Data Unit, service data unit.
  • the data received from or sent to the upper layer is called SDU
  • the data sent to or received from the lower layer is called PDU.
  • the data received by the RLC entity from the upper layer or the data sent to the upper layer is called RLC SDU
  • the data received by the RLC entity from the MAC entity or the data sent to the MAC entity is called RLC PDU.
  • the adaptation layer in the IAB node is the upper layer of the RLC layer.
  • the adaptation PDU is an RLC SDU, because the adaptation entity directly forwards it according to the data forwarding rule or the UE ID or the logical channel ID after receiving the RLC SDU.
  • the adaptation SDU is RLC SDU.
  • the adaptation PDU is suitable
  • the configuration entity removes the header of the adaptation PDU and submits the obtained adaptation SDU to the lower layer or RLC layer according to the data forwarding rule or the UE ID or the logical channel ID.
  • the RLC SDU is the adaptation SDU.
  • the IAB node receives the RLC SDU from the RLC entity of the local UE, it adds an adaptation header to it to obtain an adapted PDU and forward it according to the data forwarding rules. From the perspective of the adaptation layer, the RLC SDU is an adapted PDU .
  • the access IAB node of the user equipment it is called the access IAB node of the user equipment.
  • the user equipment UE is referred to as the local UE of this IAB node.
  • IAB node refers to the RAN node that supports wireless access and wireless backhaul access traffic of user equipment (RAN node that supports wireless access to UEs and wirelessly backhauls the access traffic).
  • IAB donor IAB-donor, a RAN node (RAN node which provides UE’s interface to core network and wireless backhauling functionality to IAB-nodes) that provides UE interfaces for the core network and provides wireless backhaul functions for IAB nodes.
  • RAN node RAN node which provides UE’s interface to core network and wireless backhauling functionality to IAB-nodes
  • DRB Data Radio Bearer carrying user plane data, a data radio bearer that carries user plane data or simply a data radio bearer.
  • SRB Signaling Radio Bearer, signaling radio bearer.
  • BSR Buffer Status Reporting, buffer status report.
  • CU Central Unit, the central unit or gNB-CU.
  • the NB-CU terminates the F1 interface connected to the gNB-DU.
  • CU can be divided into CU-CP (or gNB-CU-CP) and CU-UP (or gNB-CU-UP).
  • CU-CP is a logical node that carries the control plane part of the PDCP protocol of RRC and gNB-CU, and is used for en-gNB or gNB.
  • the gNB-CU-CP terminates the E1 interface connected to gNB-CU-UP and the F1-C interface connected to gNB-DU.
  • CU-UP is a logical node used to carry the user plane part of the PDCP protocol of gNB-CU of en-gNB, the user plane part of PDCP protocol of gNB-CU and the SDAP protocol of gNB-CU.
  • the gNB-CU-UP terminates the E1 interface connected to the gNB-CU-CP and the F1-U interface connected to the gNB-DU.
  • the DU Distributed Unit, distributed unit.
  • the DU can be located in the IAB node or the IAB donor. In the IAB node or IAB donor, the DU may also have an adaptation layer.
  • MT Mobile-Termination, mobile terminal.
  • MT is the radio interface layer used in the IAB node to terminate the backhaul Uu interface with the IAB donor or other IAB nodes (MT is referred to as a function resisting on an IAB-node that terminates the radio interface layers of the backhaul Uu interface toward the IAB-donor or other IAB-nodes).
  • Each IAB node connects to an uplink IAB node or an IAB donor through an MT, and establishes an RLC channel with a UE or a MT of a downlink IAB node through the DU.
  • the IAB donor supports the MT of the UE and the downlink IAB node through the DU.
  • RLC-BearerConfig cell The cell RLC-BearerConfig is used to configure the association between the RLC entity, the corresponding logical channel in the MAC, and the PDCP entity (the bearer of the service) (used to configure an RLC entity, a corresponding logical channel in MAC) and the linking to a PDCP entity (served radio bearer)).
  • the following describes an embodiment for ensuring no packet loss in the hop-by-hop ARQ in uplink transmission according to operations required by different entities in the IAB node.
  • FIG. 1 is a flowchart showing an example of operations performed by the RLC entity of the IAB node in uplink transmission in the embodiment. Referring to Figure 1 below, the operations that the RLC entity needs to perform are described in detail.
  • step S001 the RLC entity of the IAB node receives a poll from the user equipment UE or receives an RLC PDU containing the inquiry.
  • the query bit field that is, the P field in the received RLC PDU is set to 1.
  • step S002 the RLC entity of the IAB node instructs the instruction for the inquiry (also referred to as the inquiry instruction) to the upper layer (for example, the adaptation entity).
  • the inquiry instruction also referred to as the inquiry instruction
  • the RLC entity of the IAB node is configured to indicate an inquiry instruction to the upper layer.
  • the IAB node receives a configuration message (for example, an RRC message) from an IAB donor, and the message contains an indication identifier, which may be used to indicate that the corresponding RLC entity indicates the query to the upper layer when receiving the query.
  • the indication identifier is included in the configuration information related to the RLC bearer (for example, included in the RLC-BearerConfig information element), and when the identifier appears or takes a value of 1 or true, the corresponding query is indicated to the upper layer. When the identifier does not appear or has a value of 0 or false, the corresponding query is not indicated to the upper layer.
  • the RLC entity of the IAB node constructs an RLC status report after receiving the transmission status indication information from the upper layer.
  • the RLC status report is submitted to the lower layer or the MAC layer and sent to the user equipment UE.
  • the transmission status indication information includes the RLC SDU or RLC PDU that has been confirmed by the destination node (for example, the destination IAB donor DU) to have been successfully received or unsuccessfully received.
  • steps S001, S002, and S003 are not all necessary, and the RLC entity may perform one or more steps.
  • Fig. 2 is a flowchart showing an example of operations performed by the adaptation entity of the IAB node in uplink transmission in the embodiment. With reference to Figure 2 below, the operations that the adaptation entity needs to perform are described in detail.
  • step S004 after receiving an inquiry instruction from a lower layer (such as an RLC entity), the adaptation entity of the IAB node carries the inquiry in the adaptation PDU to be sent or sets the inquiry bit to 1.
  • a lower layer such as an RLC entity
  • the adaptation SDU comes from the corresponding lower layer (such as the RLC entity), that is, the lower layer (such as the RLC entity) that sends the query indication.
  • the header of the adaptation PDU may include one or more of the following fields (or called fields): P, sequence number.
  • P is used to indicate whether the sending adaptation entity or the adaptation entity sender requests its peer entity or peer adaptation entity or target peer entity or target peer adaptation entity to send an adaptation status report.
  • the value of the P field is 0, which means that no adaptation status report is requested; the value of the P field is 1, which means that the adaptation status report is requested.
  • the sequence number field is used to indicate the sequence number of the corresponding adaptation SDU or adaptation PDU. For each adapted SDU or adapted PDU from a specific RLC entity, the sequence number is increased by 1.
  • step S005 optionally, the adaptation entity of the IAB node submits (or transmits) the generated adaptation PDU containing the query to the lower layer for transmission to the next hop node.
  • the next hop node may be an IAB node or an IAB donor.
  • the adaptation entity starts the timer AdaptationPollRetransTimer.
  • the value of the timer is configured by the IAB donor, for example, configured through an RRC message. If the timer expires, select an adapted SDU or adapted PDU to send and include a query in it.
  • step S006 the adaptation entity of the IAB node receives the adaptation status report.
  • the adaptation status report may include one or more of the following: D/C, CPT, destination address, UE identity, bearer identity, ACK_SN, E1, E2, NACK_SN, NACK range.
  • the D/C field indicates whether the adaptation PDU is an adaptation control PDU or an adaptation data PDU, for example, 0 means adaptation data PDU, and 1 means adaptation control PDU.
  • the CPT (Control PDU Type) field is used to indicate the type of control PDU, which can be identified by 1 or 2 or 3 or 4 bits. For example, a CPT value of 000 represents a status PDU (in the embodiments of the present disclosure, it is called an adaptation status PDU to distinguish it from an RLC status PDU).
  • the destination address is the address that finally receives the adaptation status PDU, such as the identifier of the IAB node DU (or the target IAB donor DU) or the identifier of the final IAB node (or the target IAB donor DU) to which the adaptation status PDU is sent.
  • the UE identity and bearer identity are used to indicate the UE and bearer for which the adaptation status PDU is targeted.
  • ACK_SN is used to indicate the sequence number of the next unreceived adapted SDU or PDU and the adapted SDU (or PDU) is not reported as an unreceived adapted SDU (or PDU) in the status report.
  • the sending adaptation entity When the sending adaptation entity receives the adaptation status report, it considers that except for the adaptation SDU (or PDU) whose sequence number is NACK_SN and/or the adaptation SDU (or PDU) whose sequence number is determined by NACK_SN and NACK range , All adapted SDUs (or PDUs) with sequence numbers smaller than ACK_SN have been received by their peer entities or peer adaptation entities.
  • NACK_SN is used to indicate the sequence number of the adaptation SDU (or PDU) that the receiving adaptation entity has not received or has lost.
  • the E1 field is an extended bit field used to indicate whether there is a set of NACK_SN, E1 and/or E2 subsequently.
  • a value of 0 in the E1 field indicates that there is no set of NACK_SN, E1 and/or E2 subsequently, and a value of 1 in the E1 field indicates that there is a set of NACK_SN, E1 and/or E2 subsequently.
  • E2 is used to indicate whether it contains the information of the continuous adaptation SDU (or PDU) that has not been received.
  • the value of E2 means that the corresponding NACK_SN does not include the NACK range field, and the value of E2 is 1 means the corresponding NACK_SN includes the NACK range. area.
  • the NACK range field is used to indicate the number of adaptive SDUs (or PDUs) that are continuously lost starting from the first NACK_SN.
  • the adaptation entity stops the timer AdaptationPollRetransTimer after receiving the adaptation status report.
  • the adaptation entity indicates to the corresponding lower layer the relevant information (referred to as the transmission status indication) of the adaptation SDU (or PDU) that has been confirmed to be successfully received, and the transmission status indication It can be used for the lower layer (such as the RLC entity) to construct the RLC status report.
  • the lower layer may be the lower layer corresponding to the bearer identifier included in the adaptation status report.
  • the following describes an embodiment for ensuring no packet loss in the hop-by-hop ARQ in downlink transmission according to operations required by different entities of the IAB node.
  • Fig. 3 is a flowchart showing an example of operations performed by an adaptation entity of an IAB node in downlink transmission in an embodiment. The following describes the operations that the adaptation entity needs to perform with reference to FIG. 3.
  • step S011 the adaptation entity of the IAB node receives an adaptation PDU or SDU containing a query from an IAB donor or other IAB node, and the destination address of the adaptation PDU or SDU is this IAB node Or the user equipment UE connected to this IAB node.
  • the adaptation entity of the IAB node indicates the indication for the query (also referred to as the query indication) to the corresponding lower layer (for example, the RLC entity).
  • the IAB node sends an instruction or an inquiry instruction to the corresponding lower layer, and the instruction is used by the lower layer to carry the inquiry in the sent RLC SDU (or PDU).
  • the lower layer may be determined by adapting the UE identity and/or bearer identity carried in the PDU.
  • step S013 the adaptation entity of the IAB node constructs the adaptation status report after receiving the indication information related to the RLC status report from the lower layer (for example, the RLC entity).
  • the adaptation status report may include one or more of the following: D/C, CPT, destination address, UE identity, bearer identity, ACK_SN, E1, E2, NACK_SN, NACK range.
  • the D/C field indicates whether the adaptation PDU is an adaptation control PDU or an adaptation data PDU, for example, 0 means adaptation data PDU, and 1 means adaptation control PDU.
  • the CPT (Control PDU Type) field is used to indicate the type of control PDU, which can be identified by 1 or 2 or 3 or 4 bits. For example, a CPT value of 000 represents a status PDU (in the embodiments of the present disclosure, it is called an adaptation status PDU to distinguish it from an RLC status PDU).
  • the destination address is the identifier of the IAB node MT (or the MT of the target IAB node) that finally receives the adaptation status PDU or the identifier of the final UE to which the adaptation status PDU is to be sent.
  • the UE identity and bearer identity are used to indicate the UE and bearer for which the adaptation status PDU is targeted.
  • ACK_SN is used to indicate the sequence number of the next unreceived adapted SDU or PDU and the adapted SDU or PDU is not reported as an unreceived adapted SDU or PDU in the status report.
  • the sending adaptation entity When the sending adaptation entity receives the adaptation status report, it considers that except for the adaptation SDU (or PDU) whose sequence number is NACK_SN and/or the adaptation SDU (or PDU) whose sequence number is determined by NACK_SN and NACK range , All adapted SDUs (or PDUs) with sequence numbers smaller than ACK_SN have been received by their peer entities or peer adaptation entities.
  • NACK_SN is used to indicate the sequence number of the adaptation SDU (or PDU) that the receiving adaptation entity has not received or has lost.
  • the E1 field is an extended bit field used to indicate whether there is a set of NACK_SN, E1 and/or E2 subsequently.
  • a value of 0 in the E1 field indicates that there is no subsequent set of NACK_SN, E1, and/or E2, and a value of 1 in the E1 field indicates that there is a subsequent set of NACK_SN, E1, and E2.
  • E2 is used to indicate whether it contains the information of the continuous adaptation SDU (or PDU) that has not been received.
  • the value of E2 means that the corresponding NACK_SN does not include the NACK range field, and the value of E2 is 1 means that the corresponding NACK_SN includes the NACK range. area.
  • the NACK range field is used to indicate the number of adaptive SDUs (or PDUs) that are continuously lost starting from the first NACK_SN.
  • steps S011 to S013 are not all necessary, and the adaptation entity may perform one or more steps.
  • FIG. 4 is a flowchart showing an example of operations performed by the RLC entity of the IAB node in downlink transmission in the embodiment. The following describes the operations that the RLC entity needs to perform with reference to FIG. 4.
  • the RLC entity of the IAB node after receiving the query indication from the upper layer (for example, the adaptation entity), carries the query in the RLC SDU or PDU currently sent or to be sent. If the adaptation entity of the IAB node indicates to the lower layer or the RLC layer in the query indication, the adaptation entity submits the data obtained after the adaptation header is removed (ie RLC SDU) and the query indication to the RLC layer, then the RLC entity The query may be carried in the RLC PDU corresponding to the RLC SDU.
  • the adaptation entity of the IAB node indicates to the lower layer or the RLC layer in the query indication
  • the adaptation entity submits the data obtained after the adaptation header is removed (ie RLC SDU) and the query indication to the RLC layer, then the RLC entity The query may be carried in the RLC PDU corresponding to the RLC SDU.
  • the RLC entity of the IAB node indicates the relevant information of the RLC status report to the upper layer (for example, the adaptation entity).
  • the relevant information of the RLC status report includes the RLC SDU or PDU that has been successfully received and/or the RLC SDU or PDU that has not been successfully received.
  • the RLC entity that receives the inquiry indication from the upper layer refers to the sender of the RLC entity; the RLC entity that receives the sending status indication from the upper layer is the RLC entity receiver; the RLC entity that sends the inquiry instruction to the upper layer is the RLC entity receiving end.
  • steps S014 to S015 are not all necessary, and the RLC entity may perform one or more steps.
  • the RLC layer, the adaptation layer, and the MAC layer can be replaced with an RLC entity, an adaptation entity, and a MAC entity, respectively, and vice versa.
  • the local UE of the IAB node refers to the user equipment UE directly connected to the IAB node or the node DU through a Uu or wireless interface.
  • the local UE refers to that the user equipment UE uses this IAB node as the access IAB node, and the UE is called the local UE of the IAB node.
  • the identifier of the IAB donor may refer to the identifier of the DU or CU of the IAB donor, for example, the IP address of the DU or CU of the IAB donor.
  • the identifier of the IAB-node may refer to the identifier of the DU or MT of the IAB node, for example, the IP address of the DU or MT of the IAB node.
  • including the query means that the query field or the query bit is set to 1.
  • the adaptation entity adds an adaptation layer header to the data (such as RLC SDU) received from the user equipment UE or the local UE, and delivers the generated adaptation PDU to the data forwarding rule or the destination address.
  • the data (adaptation PDU) received from other IAB nodes or their adaptation entities is delivered to the corresponding lower layer or corresponding adaptation entity according to the data forwarding rules or the destination address.
  • the data forwarding rule may be configured by the IAB donor for the IAB node, for example, configured through an RRC message.
  • the data of the adaptation layer can be called adaptation SDU (which does not include the header of the adaptation layer) and adaptation PDU (which includes the header of the adaptation layer), respectively, where the adaptation PDU can be Divided into adaptation data PDU and adaptation control PDU.
  • a field (denoted as D/C field) can be used in the header of the adaptation PDU to indicate whether the adaptation PDU is a control PDU or a data PDU. If the value of the D/C field is 0, it means that the data PDU is adapted, and if the value of the D/C field is 1, it means that the control PDU is adapted. vice versa.
  • the mapping relationship between the receiving logical channel and the sending logical channel in this disclosure can be replaced by the receiving RLC entity (or RLC)
  • the mapping relationship between the entity receiving end) and the sending RLC entity (or the RLC entity sending end) can also be replaced by the mapping between the receiving adaptation entity (or the adapting entity receiving end) and the sending adaptation entity (or the adapting entity sending end)
  • the mapping relationship can also be replaced with the configuration of forwarding data or data forwarding rules.
  • the lower layer of the adaptation entity may be the RLC layer or the MAC layer. If there is a one-to-one mapping relationship between the DU and/or MT and the adaptation entity (that is, an adaptation entity is defined in a DU or MT), the adaptation entity (or IP layer or routing is implemented) during data transmission The functional entity) should select the corresponding sending adaptation entity (or MT adaptation entity) according to the destination address or the address of the IAB-donor DU (for example, the IP address of the IAB-donor DU).
  • the adaptation entity selects the corresponding RLC entity according to the destination address or the address of the IAB-donor DU (for example, the IP address of the IAB-donor DU).
  • the embodiments of the present disclosure are described based on the many-to-one mapping relationship between the DU and/or MT and the adaptation layer.
  • the adaptation entity (or the IP layer or the entity implementing the routing function) needs to select the sending adaptation entity according to the correspondence between the DU and/or MT and the adaptation entity when forwarding data.
  • the foregoing sending adaptation entity can also be used to receive data, and the receiving adaptation entity can also send data.
  • both the sending adaptation entity and the receiving adaptation entity can be called adaptation entities; or the sending adaptation entity is called For the sending end of the adaptation entity, the receiving adaptation entity is called the receiving end of the adaptation entity.
  • the routing function is integrated in the adaptation entity in the present disclosure.
  • the receiving adaptation entity sends the data to the upper layer after receiving the data that needs to be forwarded, and the upper layer sends the data according to the destination address. Route (or deliver) to the corresponding sending adaptation entity.
  • the destination address in the adaptation PDU may not be included in the adaptation PDU, for example, as the header of the IP packet included in the destination IP address.
  • the destination address can refer to the address of IAB-donor (or IAB-donor DU), such as the IP address of IAB-donor (or IAB-donor DU); for the downlink, the destination address can be Refers to the address of the IAB-nod (or IAB-node MT), such as the IP address of the IAB-nod (or IAB-node MT); for the downlink, the destination address can also be the identity of the UE, such as C-RNTI.
  • the IAB node used to receive data may be the DU of the IAB node, and the IAB donor used to receive data may be the DU of the IAB donor.
  • the IAB node used to receive data may be the MT of the IAB node.
  • the computer-executable instructions or program running on the user equipment UE may be a program that enables the computer to implement the functions of the embodiments of the present invention by controlling a central processing unit (CPU).
  • the program or the information processed by the program can be temporarily stored in volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.
  • FIG. 5 schematically shows a block diagram of an example of the user equipment UE involved in the present disclosure.
  • Computer-executable instructions or programs for implementing the functions of the various embodiments of the present invention may be recorded on a computer-readable storage medium. Corresponding functions can be realized by causing the computer system to read the programs recorded on the recording medium and execute these programs.
  • the so-called “computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as peripheral devices).
  • the "computer-readable storage medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium storing a program dynamically for a short time, or any other recording medium readable by a computer.
  • circuits for example, single-chip or multi-chip integrated circuits.
  • Circuits designed to perform the functions described in this specification can include general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above devices.
  • the general-purpose processor may be a microprocessor, or any existing processor, controller, microcontroller, or state machine.
  • the above-mentioned circuit can be a digital circuit or an analog circuit. In the case of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology, one or more embodiments of the present invention can also be implemented using these new integrated circuit technologies.
  • the present invention is not limited to the above-mentioned embodiment. Although various examples of the embodiment have been described, the present invention is not limited thereto.
  • Fixed or non-mobile electronic equipment installed indoors or outdoors can be used as terminal equipment or communication equipment, such as AV equipment, kitchen equipment, cleaning equipment, air conditioning, office equipment, vending machines, and other household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种基于逐跳自动重传请求的数据传输方法,其中,包括:IAB节点的RLC实体接收来自所述用户设备UE的询问的步骤;和IAB节点的所述RLC实体向上层指示针对所述询问的指示即询问指示的步骤。

Description

基于逐跳自动重传请求的数据传输方法以及用户设备UE 技术领域
本发明涉及无线通信技术领域,更具体地,涉及一种基于逐跳自动重传请求的数据传输方法以及用户设备UE。
背景技术
2018年9月,在第三代合作伙伴计划(3rd Generation Partnership Project:3GPP)RAN#81次全会上,高通提出了一个关于NR一体接入和回程(Integrated Access and Backhaul for NR,简称IAB)的工作项目(参见非专利文献1),并获批准。在RAN2#104次会议上达成多跳的IAB网络中采用逐跳自动重传请求(Hop-by-Hop Automatic Repeat request,记为HbH ARQ)方式进行数据传输,基于HbH ARQ的问题之一是无法保证端到端的无丢包传输(lossless delivery)。
在目前的RLC ARQ中,当RLC发送实体接收到RLC状态报告时,将成功发送的RLC SDU指示给PDCP实体,PDCP实体在接收到所述指示后删除对应的PDCP PDU和PDCP SDU。在上行传输中,如果数据被接入IAB节点成功接收后,UE将删除对应的数据,随后接入IAB节点将数据转发给下一跳并删除。此时,如果中间IAB节点发生错误,则这些被UE认为已成功发送的数据将不能被IAB施主接收到。基于此,IAB工作项目提出的目标之一就是定义一种机制来确保逐跳ARQ的无丢包传输。本公开致力于解决上行传输中逐跳ARQ的传输丢包问题,具体包括IAB节点中的RLC实体和/或适配实体执行哪些操作。
在先技术文献
非专利文献
非专利文献1:RP-182882:New WID:Integrated Access and Backhaul for NR
发明内容
为了解决上述问题中的至少一些,本发明提供一种基于逐跳自动重传请求的数据传输方法。
本发明的一个方面是一种基于逐跳自动重传请求的数据传输方法,其中,包括:
IAB节点的RLC实体接收来自所述用户设备UE的询问的步骤;和
IAB节点的所述RLC实体向上层指示针对所述询问的指示即询问指示的步骤。
其中,优选还包括:
在接收到来自所述RLC实体的询问指示后,该IAB节点的适配实体在将要发送的适配PDU中携带询问或将询问比特设置为1的步骤;
IAB节点的适配实体将产生的包含询问的适配PDU递交或传输给下层,以发送到下一跳节点的步骤;
IAB节点的所述适配实体接收适配状态报告的步骤;以及
根据接收到的适配状态报告,所述适配实体向相应的下层指示已被确认成功接收的适配SDU相关信息即发送状态指示的步骤。
优选,还包括:IAB节点的所述RLC实体在接收到来自所述适配实体的发送状态指示信息后构建RLC状态报告,将所述RLC状态报告递交给下层并发送给位于所述用户设备UE中的对等RLC实体的步骤。
进一步,优选IAB节点的所述RLC实体被配置为向上层指示所述询问指示。
再有,优选所述IAB节点接收来自IAB施主的配置消息,所述配置消息中包含用于指示对应的所述RLC实体在接收到询问时将所述询问指示给所述上层的指示标识。
还有,优选所述下一跳节点是IAB节点或IAB施主。
另外,优选所述适配实体启动定时器,在所述定时器到期后,选择一个适配SDU或适配PDU发送并在其中包含询问。
其中,所述适配实体在接收到所述适配状态报告后停止所述定时器。
还有,优选所述适配状态报告包括以下字段:D/C域、及CPT域。
本发明的再一方面是一种用户设备UE,包括:处理器;以及存储器, 存储有指令;其中,所述指令在由所述处理器运行时执行以上所述的基于逐跳自动重传请求的数据传输方法。
根据本发明的基于逐跳自动重传请求的数据传输方法,能够确保逐跳ARQ的无丢包传输。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1是表示实施例中IAB节点的RLC实体在上行传输中执行的操作的一例的流程图。
图2是表示实施例中IAB节点的适配实体在上行传输中执行的操作的一例的流程图。
图3是表示实施例中IAB节点的适配实体在下行传输中执行的操作的一例的流程图。
图4是表示实施例中IAB节点的RLC实体在下行传输中执行的操作的一例的流程图。
图5是示意性示出本公开所涉及的用户设备UE的一例的框图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下面描述本公开涉及的部分术语,如未特别说明,本公开涉及的术语采用此处定义。本公开给出的术语在NR、LTE和eLTE中可能采用不同的命名方式,但本公开中采用统一的术语,在应用到具体的系统中时,可以替换为相应系统中采用的术语。
RLC:Radio Link Control,无线链路控制。RLC实体的传输模式可以配置为透传模式TM、非确认模式UM或确认模式AM之一。
MAC:Medium Access Control,媒体访问控制。
PDU:Protocol Data Unit,协议数据单元。
SDU:Service Data Unit,服务数据单元。
在本公开实施例中,将从上层接收或发往上层的数据称为SDU,将发往下层或从下层接收的数据称为PDU。例如,RLC实体从上层接收的数据或发往上层的数据称为RLC SDU;RLC实体从MAC实体接收到的数据或发往MAC实体的数据称为RLC PDU。
需要注意的是,在IAB节点中适配层是RLC层的上层。在中间IAB节点中,适配PDU是RLC SDU,因为适配实体在接收到RLC SDU后直接根据数据转发规则或UE标识或逻辑信道标识转发。在访问IAB节点中,对IAB节点中对应的本地UE的RLC实体来说,适配SDU是RLC SDU,这是因为,当IAB节点接收到来自其他IAB节点或IAB施主的适配PDU时,适配实体移除适配PDU的头部并根据数据转发规则或UE标识或逻辑信道标识将得到的适配SDU递交给下层或RLC层,此时RLC SDU就是适配SDU。此外,当IAB节点接收到来自本地UE的RLC实体的RLC SDU,为其增加适配头部得到适配PDU并根据数据转发规则转发,从适配层看来,所述RLC SDU就是适配PDU。如果用户设备UE无线接入的IAB节点称为用户设备的访问IAB节点。所述用户设备UE称为这个IAB节点的本地UE。
IAB节点:IAB-node,指支持用户设备的无线接入和无线回程接入流量的RAN节点(RAN node that supports wireless access to UEs and wirelessly backhauls the access traffic)。
IAB施主:IAB-donor,为核心网络提供UE接口,并为IAB节点提供无线回程功能的RAN节点(RAN node which provides UE’s interface to core network and wireless backhauling functionality to IAB-nodes)。
DRB:Data Radio Bearer carrying user plane data,承载用户面数据的数据无线承载或简称数据无线承载。
SRB:Signalling Radio Bearer,信令无线承载。
BSR:Buffer Status Reporting,缓存状态报告。
CU:Central Unit,中心单元或记为gNB-CU。一个具有(hosting)或至少具有基站的RRC、SDAP和PDCP协议或者eh-gNB的RRC和PDCP协议,并控制一个或多个DU或gNB-DU。NB-CU终止与gNB-DU连接 的F1接口。CU又可分为CU-CP(或记为gNB-CU-CP)和CU-UP(或记为gNB-CU-UP)。CU-CP是一个逻辑节点,承载RRC和gNB-CU的PDCP协议的控制面部分,用于en-gNB或gNB。gNB-CU-CP终止与gNB-CU-UP连接的E1接口和与gNB-DU连接的F1-C接口。CU-UP是一个逻辑节点,用于承载en-gNB的gNB-CU的PDCP协议的用户面部分,以及gNB-CU的PDCP协议的用户面部分和gNB-CU的SDAP协议。gNB-CU-UP终止与gNB-CU-CP连接的E1接口和与gNB-DU连接的F1-U接口。
DU:Distributed Unit,分布式单元。一个具有或至少具有RLC、MAC和物理层的逻辑节点。DU可以位于IAB节点或IAB施主中。在IAB节点或IAB施主中,DU还可以具有适配层。
MT:Mobile-Termination,移动终端。MT是IAB节点中用于终止与IAB施主或其他IAB节点的回程Uu接口的无线接口层(MT is referred to as a function residing on an IAB-node that terminates the radio interface layers of the backhaul Uu interface toward the IAB-donor or other IAB-nodes)。
每个IAB节点通过MT连接到上行IAB节点或IAB施主,并通过DU与UE或下行IAB节点的MT建立RLC通道。IAB施主通过DU来支持UE和下行IAB节点的MT。
RLC-BearerConfig信元:所述信元RLC-BearerConfig用于配置RLC实体、在MAC中对应的逻辑信道和PDCP实体(服务的承载)的关联(used to configure an RLC entity,a corresponding logical channel in MAC and the linking to a PDCP entity(served radio bearer))。
下面根据IAB节点中不同实体所需要执行的操作来描述上行传输中确保逐跳ARQ无丢包的实施例。
图1是表示实施例中IAB节点的RLC实体在上行传输中执行的操作的一例的流程图。下面参照图1,具体描述RLC实体需要执行的操作。
如图1所示,在步骤S001中,IAB节点的RLC实体接收到来自用户设备UE的询问(poll)或接收到包含询问的RLC PDU。换言之,接收到的RLC PDU中询问比特域即P域被设置为1。
在步骤S002中,IAB节点的RLC实体将针对所述询问的指示(又称为询问指示)指示给上层(例如适配实体)。
可选的,IAB节点的RLC实体被配置为向上层指示询问指示。例如,IAB节点接收到来自IAB施主的配置消息(例如RRC消息),所述消息中包含一个指示标识,所述指示标识可以用于指示对应的RLC实体在接收到询问时将询问指示给上层。例如,所述指示标识包含在RLC承载相关的配置信息中(例如包含在RLC-BearerConfig信元中),当所述标识出现或取值为1或真时,将对应的询问指示给上层,当所述标识不出现或取值为0或假时,不将对应的询问指示给上层。
在步骤S003中,IAB节点的RLC实体在接收到来自上层的发送状态指示信息后构建RLC状态报告。将所述RLC状态报告递交给下层或MAC层并发送给用户设备UE。所述发送状态指示信息中包含已被目的节点(例如目的IAB施主DU)确认已成功接收或未成功接收的RLC SDU或RLC PDU。
需要说明的,上述步骤S001、S002、S003并非都是必须的,RLC实体可以执行其中的一步或多步。
图2是表示实施例中IAB节点的适配实体在上行传输中执行的操作的一例的流程图。下面参照图2,具体描述适配实体需要执行的操作。
如图2所示,在步骤S004,在接收到来自下层(例如RLC实体)的询问指示后,IAB节点的适配实体在将要发送的适配PDU中携带询问或将询问比特设置为1。
需要说明的是,所述携带询问的适配PDU的数据部分(即适配SDU)是来自对应的下层(例如RLC实体),即发送询问指示的下层(例如RLC实体)。
在一个实施例中,所述适配PDU的头部可以包括以下字段(或称为域)中的一个或多个:P、序列号。其中,P域,用于指示发送适配实体或适配实体发送端是否请求其对等实体或对等适配实体或目的对等实体或目的对等适配实体发送适配状态报告。P域取值为0,表示未请求适配状态报告;P域取值为1,表示请求适配状态报告。序列号域用于指示对应适配SDU或适配PDU的序列号。对于来自特定RLC实体的每个适配 SDU或适配PDU,序列号增加1。
在步骤S005,可选的,IAB节点的适配实体将产生的包含询问的适配PDU递交(或传输)给下层以发送到下一跳节点。所述下一跳节点可以是IAB节点或IAB施主。
可选的,适配实体启动定时器AdaptationPollRetransTimer。所述定时器的值由IAB施主配置,例如通过RRC消息配置。如果所述定时器到期,则选择一个适配SDU或适配PDU发送并在其中包含询问。
在步骤S006,IAB节点的适配实体接收适配状态报告。
在一个实施例中,所述适配状态报告可以包含以下一项或多项:D/C、CPT、目的地址、UE标识、承载标识、ACK_SN、E1、E2、NACK_SN、NACK range。D/C域指示适配PDU是适配控制PDU还是适配数据PDU,例如0表示适配数据PDU,1表示适配控制PDU。CPT(Control PDU Type)域用于指示控制PDU的类型,可以用1或2或3或4个比特标识。例如CPT取值为000表示状态PDU(在本公开实施例中均称为适配状态PDU,以区别于RLC状态PDU)。目的地址是最终接收适配状态PDU的地址,例如IAB节点DU(或目的IAB施主DU)的标识或适配状态PDU要发往的最终IAB节点(或目的IAB施主DU)的标识。UE标识和承载标识用于指示适配状态PDU针对的UE和承载。ACK_SN用于指示下一个未接收到的适配SDU或PDU的序列号且所述适配SDU(或PDU)未在状态报告中报告为未收到的适配SDU(或PDU)。发送适配实体在接收到所述适配状态报告时,它认为除序列号为NACK_SN的适配SDU(或PDU)和/或序列号由NACK_SN和NACK range确定的适配SDU(或PDU)外,所有序列号小于ACK_SN的所有适配SDU(或PDU)都已被其对等实体或对等适配实体接收。NACK_SN用于指示接收适配实体未接收到或已丢失的适配SDU(或PDU)的序列号。E1域是扩展比特域,用于指示随后是否有NACK_SN、E1和/或E2的集合。E1域取值为0表示随后没有NACK_SN、E1和/或E2的集合,E1域取值为1表示随后有NACK_SN、E1和/或E2的集合。E2用于指示是否包含尚未收到的连续适配SDU(或PDU)的信息,E2取值为0表示对应的NACK_SN后面不包含NACK range域,E2取值为1表示对应的NACK_SN后面包含NACK range域。NACK  range域用于指示从第一NACK_SN开始连续丢失的适配SDU(或PDU)数。
可选的,适配实体在接收到适配状态报告后停止定时器AdaptationPollRetransTimer。
在步骤S007,根据接收到的适配状态报告,适配实体将已被确认成功接收的适配SDU(或PDU)相关信息(称为发送状态指示)指示给相应的下层,所述发送状态指示可以用于下层(例如RLC实体)构建RLC状态报告。所述下层可以是适配状态报告中包含的承载标识对应的下层。
需要说明的,上述步骤S004~S007并非都是必须的,适配实体可以执行其中的一步或多步。
下面根据IAB节点不同实体所需要执行的操作来描述下行传输中确保逐跳ARQ无丢包的实施例。
图3是表示实施例中IAB节点的适配实体在下行传输中执行的操作的一例的流程图。下面参照图3描述适配实体需要执行的操作。
如图3所示,在步骤S011中,IAB节点的适配实体接收到来自IAB施主或其他IAB节点的包含询问的适配PDU或SDU,所述适配PDU或SDU的目的地址为这个IAB节点或连接到这个IAB节点的用户设备UE。
在步骤S012中,IAB节点的适配实体将针对所述询问的指示(又称为询问指示)指示给对应的下层(例如RLC实体)。换言之,IAB节点向对应的下层发送指示或发送询问指示,所述指示用于下层在发送的RLC SDU(或PDU)中携带询问。所述下层可以通过适配PDU中携带的UE标识和/或承载标识确定。
在步骤S013中,IAB节点的适配实体接收到来自下层(例如RLC实体)的RLC状态报告相关的指示信息后,构建适配状态报告。
在一个实施例中,所述适配状态报告可以包含以下一项或多项:D/C、CPT、目的地址、UE标识、承载标识、ACK_SN、E1、E2、NACK_SN、NACK range。D/C域指示适配PDU是适配控制PDU还是适配数据PDU,例如0表示适配数据PDU,1表示适配控制PDU。CPT(Control PDU Type) 域用于指示控制PDU的类型,可以用1或2或3或4个比特标识。例如CPT取值为000表示状态PDU(在本公开实施例中均称为适配状态PDU,以区别于RLC状态PDU)。目的地址是最终接收适配状态PDU的IAB节点MT(或目的IAB节点的MT)的标识或适配状态PDU要发往的最终UE的标识。UE标识和承载标识用于指示适配状态PDU针对的UE和承载。ACK_SN用于指示下一个未接收到的适配SDU或PDU的序列号且所述适配SDU或PDU未在状态报告中报告为未收到的适配SDU或PDU。发送适配实体在接收到所述适配状态报告时,它认为除序列号为NACK_SN的适配SDU(或PDU)和/或序列号由NACK_SN和NACK range确定的适配SDU(或PDU)外,所有序列号小于ACK_SN的所有适配SDU(或PDU)都已被其对等实体或对等适配实体接收。NACK_SN用于指示接收适配实体未接收到或已丢失的适配SDU(或PDU)的序列号。E1域是扩展比特域,用于指示随后是否有NACK_SN、E1和/或E2的集合。E1域取值为0表示随后没有NACK_SN、E1和/或E2的集合,E1域取值为1表示随后有NACK_SN、E1和E2的集合。E2用于指示是否包含尚未收到的连续适配SDU(或PDU)的信息,E2取值为0表示对应的NACK_SN后面不包含NACK range域,E2取值为1表示对应的NACK_SN后面包含NACK range域。NACK range域用于指示从第一NACK_SN开始连续丢失的适配SDU(或PDU)数。
需要说明的,上述步骤S011~S013并非都是必须的,适配实体可以执行其中的一步或多步。
图4是表示实施例中IAB节点的RLC实体在下行传输中执行的操作的一例的流程图。下面参照图4描述RLC实体需要执行的操作。
如图4所示,在步骤S014中,IAB节点的RLC实体在接收到来自上层(例如适配实体)的询问指示后,在当前发送或要发送的RLC SDU或PDU中携带询问。如果在IAB节点的适配实体向下层或RLC层指示的询问指示中,适配实体将适配头部移除后得到的数据(即RLC SDU)和询问指示一起递交到RLC层,则RLC实体可以在发送所述RLC SDU对应 的RLC PDU中携带询问。
在步骤S015中,IAB节点的RLC实体在接收到来自RLC实体接收端的RLC状态报告后,将所述RLC状态报告的相关信息指示给上层(例如适配实体)。所述RLC状态报告的相关信息包含已被成功接收的RLC SDU或PDU和/或未被成功接收的RLC SDU或PDU。
在本公开实施例中,从上层接收询问指示的RLC实体是指RLC实体的发送端;从上层接收发送状态指示的RLC实体是RLC实体接收端;向上层发送询问指示的RLC实体是RLC实体接收端。
需要说明的,上述步骤S014~S015并非都是必须的,RLC实体可以执行其中的一步或多步。
在本公开实施例中,RLC层、适配层和MAC层可分别替换为RLC实体、适配实体以及MAC实体,反之亦然。
在本公开实施例中,IAB节点的本地UE是指通过Uu或无线接口直接连接到IAB节点或节点DU的用户设备UE。换言之,本地UE是指用户设备UE以这个IAB节点为接入IAB节点,那么UE就称为这个IAB节点的本地UE。
本公开实施例中,IAB施主的标识可以指IAB施主的DU或CU的标识,例如IAB施主的DU或CU的IP地址。IAB-节点的标识可以指IAB节点的DU或MT的标识,例如IAB节点的DU或MT的IP地址。
在本公开实施例中,包含询问是指询问域或询问比特被置为1。
在本公开实施例中,适配实体为接收自用户设备UE或本地UE的数据(例如:RLC SDU)增加适配层头部,并根据数据转发规则或目的地址将产生的适配PDU递交给对应的适配实体或下层。对接收自其他IAB节点或其适配实体的数据(适配PDU)根据数据转发规则或目的地址递交给对应的下层或对应的适配实体。所述数据转发规则可以由IAB施主为IAB节点配置,例如,通过RRC消息配置。
本公开实施例中,适配层的数据可以分别称为适配SDU(其中不包含适配层的头部)和适配PDU(其中包含适配层的头部),其中适配PDU 又可分为适配数据PDU和适配控制PDU。可以在适配PDU的头部用一个域(记为D/C域)指示适配PDU是控制PDU还是数据PDU。如果D/C域取值为0表示适配数据PDU,如果D/C域取值为1表示适配控制PDU。反之亦然。
基于IAB节点中配置的数据转发规则(即来自某个端口或实体的数据应通过哪个端口或实体发送),本公开中接收逻辑信道与发送逻辑信道的映射关系可以替换为接收RLC实体(或RLC实体接收端)与发送RLC实体(或RLC实体发送端)间的映射关系,也可以替换为接收适配实体(或适配实体接收端)与发送适配实体(或适配实体发送端)的映射关系,还可以替换为转发数据的配置或数据转发规则。
在本公开实施例中所述适配实体的下层可以是RLC层或MAC层。如果DU和/或MT与适配实体之间是一对一的映射关系(即一个DU或MT中定义一个适配实体),在进行数据传输时,接收适配实体(或IP层或实现路由功能的实体)要根据目的地址或IAB-donor DU的地址(例如IAB-donor DU的IP地址)选择对应的发送适配实体(或MT适配实体)。如果DU和/或MT与适配层之间是多对一的映射关系(即多个DU和/或MT中定义一个适配实体或一个IAB节点或施主中定义一个适配实体),在进行数据传输时,适配实体(或IP层或实现路由功能的实体)根据目的地址或IAB-donor DU的地址(例如IAB-donor DU的IP地址)选择对应的RLC实体。本公开实施例是基于DU和/或MT与适配层之间是多对一的映射关系进行描述的,如果DU和/或MT与适配实体之间是一对一的映射关系,则接收适配实体(或IP层或实现路由功能的实体)在转发数据时需要按照DU和/或MT与适配实体之间的对应关系选择发送适配实体。上述发送适配实体也可以用于接收数据,接收适配实体也可以发送数据,在这种情形下,发送适配实体和接收适配实体都可称为适配实体;或者发送适配实体称为适配实体的发送端,接收适配实体称为适配实体的接收端。另外,本公开中将路由功能整合在适配实体中,如果路由功能属于适配实体的上层实体,则接收适配实体在接收到需要转发的数据后,发送给上层,上层按照目的地址将数据路由(或递交)到对应的发送适配实体。本公开实施例中,适配PDU中的目的地址可以不包含在适配PDU 中,例如,作为目的IP地址包含的IP报文的头部。本公开中,如未特别说明,对于上行,目的地址可以指IAB-donor(或IAB-donor DU)的地址,例如IAB-donor(或IAB-donor DU)的IP地址;对于下行,目的地址可以指IAB-nod(或IAB-node MT)的地址,例如IAB-nod(或IAB-node MT)的IP地址;对于下行,目的地址也可以是UE的标识,例如C-RNTI。
在本公开实施例中,对于上行,用于接收数据的IAB节点可以是IAB节点的DU,用于接收数据的IAB施主可以是IAB施主的DU。对于下行,用于接收数据的IAB节点可以是IAB节点的MT。
运行在根据本发明的用户设备UE上的计算机可执行指令或者程序可以是通过控制中央处理单元(CPU)来使计算机实现本发明的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。在图5中示意性示出本公开所涉及的用户设备UE的一例的框图。
用于实现本发明各实施例功能的计算机可执行指令或程序可以记录在计算机可读存储介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读存储介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本发明的一 个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本发明并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本发明并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本发明的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本发明也包括不偏离本发明主旨的任何设计改动。另外,可以在权利要求的范围内对本发明进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本发明的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (10)

  1. 一种基于逐跳自动重传请求的数据传输方法,其中,包括:
    lAB节点的RLC实体接收来自所述用户设备UE的询问的步骤;和
    lAB节点的所述RLC实体向上层指示针对所述询问的指示即询问指示的步骤。
  2. 根据权利要求1所述的基于逐跳自动重传请求的数据传输方法,其中,还包括:
    在接收到来自所述RLC实体的询问指示后,该lAB节点的适配实体在将要发送的适配PDU中携带询问或将询问比特设置为1的步骤;
    lAB节点的适配实体将产生的包含询问的适配PDU递交或传输给下层,以发送到下一跳节点的步骤;
    lAB节点的所述适配实体接收适配状态报告的步骤;以及
    根据接收到的适配状态报告,所述适配实体向相应的下层指示已被确认成功接收的适配SDU相关信息即发送状态指示的步骤。
  3. 根据权利要求2所述的基于逐跳自动重传请求的数据传输方法,其中,还包括:
    lAB节点的所述RLC实体在接收到来自所述适配实体的发送状态指示信息后构建RLC状态报告,将所述RLC状态报告递交给下层并发送给位于所述用户设备UE中的对等RLC实体的步骤。
  4. 根据权利要求1~3中任一项所述的基于逐跳自动重传请求的数据传输方法,其中,
    lAB节点的所述RLC实体被配置为向上层指示所述询问指示。
  5. 根据权利要求4所述的基于逐跳自动重传请求的数据传输方法,其中,
    所述lAB节点接收来自lAB施主的配置消息,所述配置消息中包含用于指示对应的所述RLC实体在接收到询问时将所述询问指示给所述上层的指示标识。
  6. 根据权利要求1~3中任一项所述的基于逐跳自动重传请求的数据传输方法,其中,
    所述下一跳节点是lAB节点或lAB施主。
  7. 根据权利要求1~3中任一项所述的基于逐跳自动重传请求的数据传输方法,其中,
    所述适配实体启动定时器,在所述定时器到期后,选择一个适配SDU或适配PDU发送并在其中包含询问。
  8. 根据权利要求7所述的基于逐跳自动重传请求的数据传输方法,其中,
    所述适配实体在接收到所述适配状态报告后停止所述定时器。
  9. 根据权利要求2所述的基于逐跳自动重传请求的数据传输方法,其中,
    所述适配状态报告包括以下字段:D/C域、及CPT域。
  10. 一种用户设备UE,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行权利要求1至9中任一项所述的基于逐跳自动重传请求的数据传输方法。
PCT/CN2020/073192 2019-01-25 2020-01-20 基于逐跳自动重传请求的数据传输方法以及用户设备ue WO2020151655A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910078121.0A CN111490856A (zh) 2019-01-25 2019-01-25 基于逐跳自动重传请求的数据传输方法以及用户设备ue
CN201910078121.0 2019-01-25

Publications (1)

Publication Number Publication Date
WO2020151655A1 true WO2020151655A1 (zh) 2020-07-30

Family

ID=71736751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/073192 WO2020151655A1 (zh) 2019-01-25 2020-01-20 基于逐跳自动重传请求的数据传输方法以及用户设备ue

Country Status (2)

Country Link
CN (1) CN111490856A (zh)
WO (1) WO2020151655A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886722A (zh) * 2016-04-01 2018-11-23 高通股份有限公司 与传统无线接入技术交互工作用于连接到下一代核心网

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886722A (zh) * 2016-04-01 2018-11-23 高通股份有限公司 与传统无线接入技术交互工作用于连接到下一代核心网

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"End to End Reliability in IAB", 3GPP TSG-RAN WG2#103BIS, R2-1813711, 13 October 2018 (2018-10-13), XP051523206, DOI: 20200304172020A *
"Summary of [103#53][IAB] E2E Reliability in Hop-by-Hop RLC ARQ", 3GPP TSG-RAN WG2 #103BIS, R2-1815349, 12 October 2018 (2018-10-12), XP051524701, DOI: 20200304165810 *

Also Published As

Publication number Publication date
CN111490856A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
KR102272582B1 (ko) Qos 흐름 처리 방법 및 기기, 그리고 통신 시스템
US20220124552A1 (en) Method and apparatus for sidelink logical channel establishment in a wireless communication system
JP5823095B2 (ja) ネットワークベースモビリティ管理システムのためのマルチリンクサポート
JP4806030B2 (ja) 移動通信システムで信号を転送する方法
JP4668207B2 (ja) 移動通信システムにおけるパケット再送方法及びそのプログラムが記録されたコンピュータで読取り可能な記録媒体
JP2019532528A (ja) 無線通信システムにおけるUM RLCエンティティに関連したPDCPエンティティの再構成(re−establishment)のための方法及びその装置
US20150237525A1 (en) Traffic Shaping and Steering for a Multipath Transmission Control Protocol Connection
JP5351329B2 (ja) 無線通信システムにおいて1対多サービスを受信する方法及び端末
WO2020156569A1 (zh) 发送rlc状态报告的方法、设备和存储介质
US20070291695A1 (en) Method and apparatus for facilitating lossless handover in 3gpp long term evolution systems
WO2015058336A1 (zh) 数据传输装置和方法
JP2010534453A (ja) ハンドオフ中のデータパケットの順序配信のための方法および装置
JP2011508560A (ja) 移動通信システム及びそのpdcp状態報告転送方法
WO2020088472A1 (zh) 通信方法及装置
JP6806411B2 (ja) コネクションレス伝送における同期維持のためのシステムおよび方法
WO2018058380A1 (zh) 一种数据传输方法、网络设备及终端设备
WO2020151648A1 (zh) 适配实体和rlc实体的无线通信方法及通信设备
WO2020192776A1 (zh) 通信方法和装置
WO2011044839A1 (zh) 基于中继移动通信系统的数据传输方法及其装置
WO2018059148A1 (zh) 一种数据转发的方法及其设备
WO2020151655A1 (zh) 基于逐跳自动重传请求的数据传输方法以及用户设备ue
WO2015018009A1 (zh) 用于自动重传的方法、用户设备和基站
Nardini et al. A scalable data-plane architecture for one-to-one device-to-device communications in LTE-Advanced
Nardini et al. Performance evaluation of TCP-based traffic over direct communications in LTE-Advanced
KR102656608B1 (ko) 무선 통신 시스템에서 무선 노드 통신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20746027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20746027

Country of ref document: EP

Kind code of ref document: A1