WO2020150905A1 - 通气配件及患者通气接口 - Google Patents

通气配件及患者通气接口 Download PDF

Info

Publication number
WO2020150905A1
WO2020150905A1 PCT/CN2019/072706 CN2019072706W WO2020150905A1 WO 2020150905 A1 WO2020150905 A1 WO 2020150905A1 CN 2019072706 W CN2019072706 W CN 2019072706W WO 2020150905 A1 WO2020150905 A1 WO 2020150905A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
ventilation
patient
sampling
breathing
Prior art date
Application number
PCT/CN2019/072706
Other languages
English (en)
French (fr)
Inventor
蔡琨
田朝阳
陈培涛
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2019/072706 priority Critical patent/WO2020150905A1/zh
Priority to CN201980083039.5A priority patent/CN113195025B/zh
Publication of WO2020150905A1 publication Critical patent/WO2020150905A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes

Definitions

  • This application relates to the field of medical equipment, in particular to a ventilation accessory and a patient ventilation interface.
  • a ventilator is used to output gas, and through ventilation accessories, and patient interfaces connected to the patient through nasal congestion, nasal mask, oronasal mask, etc., to achieve ventilation with the patient.
  • a ventilator is used to output gas, and through ventilation accessories, and patient interfaces connected to the patient through nasal congestion, nasal mask, oronasal mask, etc., to achieve ventilation with the patient.
  • the application provides a ventilation accessory and a patient ventilation interface.
  • the present application provides a ventilation accessory, wherein the ventilation accessory includes a breathing connection part and a pipeline connection part connected to the breathing connection part, the breathing connection part is connected to the patient interface, and the breathing connection part is provided with a ventilation accessory port and a first sampling port,
  • the pipeline connection part is provided with a ventilation pipeline port and a first sampling connection port, the ventilation pipeline port is connected with the ventilation fitting port, and the first sampling connection port is connected with the first sampling port.
  • the present application provides a patient ventilation interface, wherein the patient ventilation interface includes the above-mentioned ventilation accessories, the patient ventilation interface further includes a patient interface, the patient interface is a non-invasive ventilation interface, the patient interface is connected to the breathing connection part, and the patient interface is used to contact the patient .
  • the present application provides a patient ventilation interface, wherein the patient ventilation interface includes a ventilation fitting and a patient interface, the ventilation fitting is provided with a ventilation fitting port and a ventilation line port communicating with the ventilation fitting port, the patient interface is connected with the ventilation fitting, and the patient interface is provided There are a patient ventilation port, a first sampling port and a first sampling connection port, the patient ventilation port is connected with the ventilation fitting port, and the first sampling port is connected with the first sampling connection port.
  • the ventilation fitting and patient ventilation interface of the present application are provided with a ventilation fitting port and a first sampling port through the breathing connection part.
  • the ventilation fitting port is used to ventilate the patient through the patient interface.
  • the first sampling port obtains the patient's exhaled gas and connects it through sampling
  • the port is connected with the monitoring device, so that the patient's breathing state can be monitored.
  • Fig. 1 is a three-dimensional schematic diagram of a ventilation fitting provided by an embodiment of the present application.
  • Fig. 2 is a schematic cross-sectional view of a vent fitting provided by another embodiment of the present application.
  • Fig. 3 is a schematic cross-sectional view of a vent fitting provided by another embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional view of a ventilation fitting provided by another embodiment of the present application.
  • Fig. 5 is a three-dimensional schematic diagram of a ventilation accessory provided by another embodiment of the present application.
  • Fig. 6 is a three-dimensional schematic diagram of a ventilation accessory provided by another embodiment of the present application.
  • Fig. 7 is an exploded schematic diagram of the vent fitting of Fig. 1.
  • Fig. 8 is another exploded schematic view of the vent fitting of Fig. 1.
  • Fig. 9 is a schematic cross-sectional view taken along the II-II section of the vent fitting of Fig. 1.
  • Fig. 10 is an exploded schematic view of the vent fitting of Fig. 9.
  • Fig. 11 is another perspective schematic view of the vent fitting of Fig. 9.
  • FIG. 12 is a partially cut-away exploded schematic diagram of a vent fitting provided by another embodiment of the present application.
  • Fig. 13 is a three-dimensional schematic diagram of a patient ventilation interface provided by an embodiment of the present application.
  • Fig. 14 is an exploded schematic diagram of the ventilation fitting of the patient vent interface of Fig. 13.
  • Fig. 15 is a schematic cross-sectional view of a patient ventilation interface provided by another embodiment of the present application.
  • Fig. 16 is a schematic cross-sectional view of a patient ventilation interface provided by another embodiment of the present application.
  • Fig. 17 is another three-dimensional schematic diagram of a patient ventilation interface provided by an embodiment of the present application.
  • Fig. 18 is a cut-away schematic view of the patient ventilation interface of Fig. 17 along III-III.
  • Fig. 19 is a three-dimensional schematic diagram of a patient ventilation interface provided by another embodiment of the present application.
  • Fig. 20 is an exploded schematic diagram of the patient ventilation interface of Fig. 19.
  • Fig. 21 is an exploded schematic diagram of the patient ventilation interface of Fig. 19.
  • Fig. 22 is a three-dimensional schematic diagram of a patient ventilation interface provided by another embodiment of the present application.
  • Fig. 23 is an exploded schematic diagram of the patient ventilation interface of Fig. 22.
  • Fig. 24 is an exploded schematic diagram of the patient ventilation interface of Fig. 23.
  • a component when referred to as being "fixed to” another component, it can be directly on the other component or a central component may also exist.
  • a component When a component is considered to be “connected” to another component, it can be directly connected to another component or a centered component may exist at the same time.
  • the ventilating accessory 10 includes a breathing connecting portion 20 and a pipeline connecting portion 30 connected to the breathing connecting portion 20.
  • the breathing connection part 20 is used to interface with a patient contacting the patient, such as a nasal plug, a face mask, or a nasal mask.
  • the breathing connection part 20 is provided with a ventilation fitting port 21 and a first sampling port 22.
  • the ventilation fitting port 21 is used to ventilate the patient through a patient interface such as a nasal plug, a face mask, or a nasal mask that contacts the patient.
  • the first sampling port 22 obtains the patient's exhaled air.
  • the pipeline connection portion 30 is provided with a first sampling connection port 31 and a vent pipeline port 39, and the first sampling connection port 31 is in communication with the first sampling port 22.
  • the first sampling connection port 31 is used to connect with a monitoring device so that the patient's breathing state can be monitored.
  • the vent line port 39 communicates with the vent fitting port 21.
  • the ventilation fitting 10 can be connected to the ventilator via a pipeline, and the ventilator and the patient can be ventilated by connecting the nasal plug, mask, or nasal mask to the patient interface that contacts the patient. That is, the ventilation fitting 10 may be a ventilation connection structure between the patient and the ventilator.
  • Respiratory support methods include non-invasive ventilation and invasive ventilation.
  • clinicians tend to give priority to non-invasive ventilation in the early stage, and decide whether to give invasive mechanical ventilation based on the effect of non-invasive ventilation support.
  • nasal non-invasive ventilation is often used for respiratory support and treatment to promote oxygenation and effectively discharge carbon dioxide.
  • Ventilation methods include NCPAP (Nasal Continuous Positive Airway Pressure, non-invasive continuous positive pressure ventilation) ), NIPPV (Non Invasive Positive Pressure Ventilation, Non-invasive Intermittent Positive Pressure Ventilation), BiPAP (Bi-level Positive Airway Pressure, Bi-level Positive Airway Pressure), etc. Because it is easy to connect and can effectively reduce expiratory work, it is widely used in neonatal non-invasive ventilation.
  • the ventilation accessory 10 provided in the present application can be applied to a non-invasive ventilation ventilator to realize non-invasive ventilation for patients.
  • the breathing connection portion 20 and the pipeline connection portion 30 are disposed oppositely.
  • the breathing connection part 20 can be detachably connected with a patient interface such as a nasal plug, a face mask, or a nasal mask that contacts the patient.
  • the ventilating accessory port 21 can communicate with the ventilating cavity of the patient interface contacting the patient, such as a nasal congestion, a face mask, or a nasal mask, so as to facilitate ventilation of the ventilating accessory port 21 with the patient's nose or mouth.
  • the first sampling port 22 may be connected to the ventilation cavity of the patient interface contacting the patient, such as a nasal plug, a face mask, or a nasal mask, so that the first sampling port 22 can obtain the patient's exhaled gas or obtain the gas delivered to the patient.
  • the first sampling connection port 31 may be connected to a monitoring device via a pipeline, where the monitoring device may be a device that works independently of the ventilator, or may be a monitoring module integrated into the ventilator.
  • the first sampling connection port 31 is connected to a monitoring device or a ventilator, which can monitor the patient's exhaled gas component concentration, component composition, air pressure, humidity, temperature and other exhaled gas parameters, and can realize the patient's inhaled gas component concentration , Component composition, pressure, temperature, humidity and other inhaled gas parameters are monitored to ensure real-time monitoring of the patient’s breathing state and reduce medical risks.
  • a monitoring device or a ventilator which can monitor the patient's exhaled gas component concentration, component composition, air pressure, humidity, temperature and other exhaled gas parameters, and can realize the patient's inhaled gas component concentration , Component composition, pressure, temperature, humidity and other inhaled gas parameters are monitored to ensure real-time monitoring of the patient’s breathing state and reduce medical risks.
  • the breathing connection part 20 is fixedly connected to the pipeline connection part 30.
  • the breathing connection part 20 and the pipeline connection part 30 may be integrally provided.
  • the ventilation accessory port 21 performs exhalation ventilation and inhalation ventilation for the patient.
  • the pipeline connecting portion 30 is provided with two ventilation pipeline ports 39, and the two ventilation pipeline ports 39 are respectively an expiratory pipeline port 34 and an inspiratory pipeline port 36.
  • the exhalation circuit port 34 can be ventilated with the patient through the ventilation accessory port 21, and the inhalation circuit port 34 can also be inhaled and ventilated with the patient through the ventilation accessory port 21.
  • the vent fitting port 21 and the expiratory line port 34 and the inspiratory line port 36 may be in communication with each other via a gas channel.
  • the inhalation line port 36 may be connected to the ventilator via a pipeline, and the ventilation accessory port 21 may be in communication with the ventilator via the gas channel, the inhalation line port 36 and the pipeline.
  • the pipeline connecting portion 30 may also be provided with a ventilation pipeline port 39, and the ventilation pipeline port 39 is connected to the expiratory pipeline and the inhalation pipeline.
  • the breathing connection part 20 and the pipeline connection part 30 are rotationally connected.
  • the breathing connecting portion 20 is provided with a rotating shaft 201
  • the pipeline connecting portion 30 is provided with a rotating shaft hole 301.
  • the rotating shaft 201 is inserted into the rotating shaft hole 301 and rotatably matched with the rotating shaft hole 301.
  • the end peripheral side wall of the rotating shaft 201 is provided with a rotating flange 2011.
  • the inner peripheral side wall of the rotating shaft hole 301 is provided with a rotating groove 3011 that cooperates with the rotating flange 2011.
  • the outer diameter of the rotating flange 2011 is small.
  • the rotating flange 2011 is inserted into the rotating shaft hole 301 through the rotating shaft 201.
  • the pipeline connecting portion 30 can rotate relative to the breathing connecting portion 20, and the pipeline connecting portion 30 It is not easy to detach from the breathing connection part 20.
  • the ventilation fitting port 21 and the first sampling port 22 are arranged at the breathing connection part 20 away from the rotating shaft 201.
  • the first sampling connection port 31 and the ventilation pipe port 39 are arranged at the pipe connection part 30 away from the shaft hole 301.
  • the first sampling port 22 is coaxially arranged with the rotating shaft 201.
  • the bottom of the shaft hole 301 is provided with a ventilation docking hole 312 that is docked with the ventilation fitting port 21, and a sampling docking hole 3013 that is docked with the first sampling port 22 is provided.
  • the ventilation docking hole 3012 is in communication with the ventilation pipeline port 39, and the sampling docking hole 3013 is in communication with the first sampling connection port 31.
  • the sampling docking hole 3013 and the shaft hole 301 are arranged coaxially, and the venting docking hole 312 is an annular hole provided on the peripheral side of the sampling docking hole 3012 to facilitate the breathing connection part 20 and the pipeline connection part 30 to ensure ventilation accessories
  • the port 21 is in communication with the vent line port 39, and the first sampling port 22 is in communication with the first sampling connection port 31.
  • the breathing connection part 20 and the pipeline connection part 30 are telescopically connected.
  • the breathing connection part 20 is provided with a sliding shaft 202.
  • the pipeline connecting portion 30 is provided with a sliding shaft hole 302.
  • the sliding shaft 202 can be inserted into the sliding shaft hole 302 and can slide relative to the pipeline connection portion 30 along the depth direction of the sliding shaft hole 302 to realize the expansion and contraction of the breathing connection portion 20 relative to the pipeline connection portion 30.
  • the pipeline connecting portion 30 is also provided with a sliding limit groove 303 communicating with the sliding shaft hole 302. The extending direction of the sliding limit groove 303 is parallel to the depth direction of the sliding shaft hole 302.
  • the breathing connecting portion 20 is provided with a limiting protrusion 203 on the outer side wall of the sliding shaft 202.
  • the limiting boss 203 slides in the sliding limiting groove 303 to slide and limit the sliding shaft 202 relative to the pipeline connecting portion 30 to prevent the breathing connecting portion 20 from being separated from the pipeline connecting portion 30.
  • the ventilation fitting port 21 and the first sampling port 22 are arranged at the breathing connection part 20 away from the sliding shaft 202.
  • the first sampling connection port 31 and the ventilation pipe port 39 are arranged at the pipe connection portion 30 away from the sliding shaft hole 302.
  • the pipeline connecting portion 30 is provided with a ventilation sliding pipeline 3021 and a sampling sliding pipeline 3022 in the sliding shaft hole 302, and the ventilation sliding pipeline 3021 can be slidably connected to the ventilation fitting port 21.
  • the sampling sliding pipe 3022 can be slidably connected to the first sampling port 22.
  • One end of the ventilation sliding pipeline 3021 away from the ventilation fitting port 21 is in communication with the ventilation pipeline port 39.
  • An end of the sampling sliding pipe 3022 away from the first sampling port 22 is in communication with the first sampling connection port 31.
  • the breathing connection portion 20 is provided with two ventilation fitting ports 21, one is an exhalation port 211 for receiving the patient's exhaled air, and the other It is an inhalation port 212 that provides inhalation gas to the patient, and the first sampling port 22 is provided in the exhalation port 211.
  • the exhalation port 211 is in communication with the exhalation circuit port 34, and the inhalation port 212 is in communication with the inhalation circuit port 36.
  • the exhalation port 211 ventilates the patient, the inspiratory port 212 is in a non-ventilating state.
  • the exhalation port 211 When the inhalation port 212 inhales and ventilates the patient, the exhalation port 211 is in a non-ventilating state.
  • the first sampling port 22 may also be arranged separately from the exhalation port 211 and close to the exhalation port 211.
  • the first sampling port 22 may also be arranged in the suction port 212, or may be arranged separately from the suction port 212 and close to the suction port 212.
  • the first sampling port 22 is a carbon dioxide sampling port, and the first sampling port 22 can collect carbon dioxide gas exhaled or inhaled by the patient.
  • the first sampling connection port 31 can be connected to the carbon dioxide monitoring device via a pipeline, so that the first sampling port 22 is connected to the carbon dioxide monitoring device via the first sampling connection port 31 and the pipeline, so that the carbon dioxide monitoring device can obtain the carbon dioxide exhaled or inhaled by the patient Gas to monitor the concentration of carbon dioxide that the patient exhales or will inhale.
  • the first sampling port 22 may be disposed in the ventilation accessory port 21, or may be separately disposed from the ventilation accessory port 21, or partly separated from the ventilation accessory port 21 and partly overlapped with the ventilation accessory port 21.
  • the first sampling port 22 can also be an oxygen sampling port
  • the first sampling connection port 31 is an oxygen monitoring connection port
  • the first sampling connection port 31 can be connected to an oxygen monitoring device through a pipeline to make oxygen
  • the monitoring device can obtain the oxygen gas exhaled or inhaled by the patient, so as to monitor the concentration of oxygen exhaled or inhaled by the patient.
  • the first sampling port 22 may also be a pressure sampling port, and the first sampling connection port 31 may be connected to a pressure sensor of the monitoring device via a pipeline to monitor the air pressure in the patient's breathing airway.
  • the sampling and monitoring gas obtained by the first sampling port 22 of the present application is not limited, and the sampling and monitoring method is not limited.
  • the first sampling port 22 is provided at the breathing connection portion 20 of the ventilating accessory 10 and may be closer to the ventilating accessory port 21.
  • the breathing connecting portion 20 of the ventilating accessory 10 can be directly connected to a patient interface such as a nasal congestion, a face mask, or a nasal mask that contacts the patient, the breathing connecting portion 20 of the ventilating accessory 10 is close to the patient.
  • the first sampling port 22 can be arranged close to the ventilation fitting port 21 or arranged in the ventilation fitting port 21.
  • the first sampling port 22 can be connected with the ventilation fitting port 21 to a patient interface such as a nasal plug, a face mask, or a nasal mask that contacts the patient.
  • the ventilation fitting port 21 is close to the patient’s nose or mouth, which can shorten the distance between the first sampling port 22 and the patient’s nose or mouth, so as to facilitate the first sampling port 22 to exhale or inhale the patient at a position close to the patient’s nose or mouth.
  • the gas is sampled. Since the first sampling port 22 is located at the proximal end or the proximal end of the patient's breathing airway, the influence of the basal flow in the airway on the patient's exhaled gas can be reduced, and the sampled gas can more truly reflect the concentration of the patient's exhaled gas , Humidity, temperature and other parameters.
  • the first sampling port 21 can be located near the nose of the patient or near the mouth of the patient to collect the carbon dioxide gas that the patient will exhale, and connect with the first sampling connection port 31 through the carbon dioxide monitoring device, so that the carbon dioxide monitoring device can accurately measure the patient
  • concentration of exhaled carbon dioxide can be monitored by monitoring equipment to reflect the patient's metabolism, blood gas partial pressure, alveolar ventilation function and parameters, and support medical staff for diagnosis.
  • the carbon dioxide concentration analyzer can be connected to the ventilator for communication data or integrated into the ventilator, and the ventilator can display the carbon dioxide concentration monitoring value and the carbon dioxide waveform graph on the screen.
  • the first sampling port 22 is provided in the vent fitting port 21.
  • the breathing connection portion 20 is provided with a ventilation channel 23 extending from the ventilation fitting port 21, and a first sampling inlet channel 24 extending from the first sampling end 22.
  • the sampling in the first sampling inlet channel 24 The direction of the extraction air flow is parallel to the direction of the patient's exhalation or inhalation air flow in the ventilation channel 23. That is, the extension direction of the ventilation channel 23 and the extension direction of the first sampling inlet channel 24 are substantially parallel to the direction of the patient's exhaled air, so as to reduce the patient's work of breathing.
  • the first sampling port 22 can quickly obtain the gas exhaled by the patient, and the monitoring device can accurately monitor the gas in the breathing gas path and respond quickly.
  • the first sampling inlet passage 24 is arranged in the ventilation passage 23, and the end of the first sampling inlet passage 24 extends out of the ventilation passage 23.
  • the inner wall of the air passage 23 is provided with a protrusion 231.
  • the protrusion 231 extends for a certain length along the depth direction of the air passage 23.
  • the first sampling port 22 is opened at the end of the protrusion 231, and the first sampling air inlet passage 24 is opened in the protrusion 231 and extends along the length of the protrusion 231.
  • One end of the protrusion 231 extends out of the ventilation channel 23.
  • the first sampling port 22 is provided on the end surface of the protrusion 231 protruding from the ventilation fitting port 21, so that the first sampling port 22 can preferentially obtain the gas exhaled by the patient.
  • the end surface of the protrusion 231 protruding from the ventilating fitting port 21 is arc-shaped to reduce the patient's exhaled air resistance.
  • the ventilation channel 23 is provided with a built-in pipeline 232, and the built-in pipeline 232 and the ventilation channel 23 are arranged coaxially. There is a distance between the outer circumferential side wall of the built-in pipeline 232 and the inner circumferential side wall of the air passage 23.
  • the extension direction of the built-in pipeline 232 is consistent with the extension direction of the ventilation channel 23.
  • the first sampling port 22 is opened at an end of the built-in pipeline 232 away from the bottom of the ventilation channel 23.
  • the first sampling air intake passage 24 is opened in the built-in pipeline 232.
  • the first sampling inlet passage 24 and the ventilation passage 23 are arranged coaxially, so that the first sampling inlet passage 24 transmits gas faster, increases the monitoring response speed, and improves the monitoring accuracy.
  • the first sampling port 22 is located outside the ventilation fitting port 21.
  • a gap is provided between the first sampling port 22 and the ventilation fitting port 21.
  • the opening direction of the first sampling port 22 is parallel to the opening direction of the ventilation fitting port 21.
  • the first sampling intake passage 24 extends parallel to the ventilation passage 23. Utilizing the first sampling port 22 and the ventilation fitting port 21 to be arranged separately, the first sampling gas inlet channel 24 is arranged outside the ventilation channel 23, which can increase the inner diameter of the ventilation channel 23, the gas flow rate in the ventilation channel 23 is changed, and the patient's ventilation is more effective. Smooth.
  • the breathing connection portion 20 is provided with two ventilation accessory ports 21 and two first sampling ports 22.
  • the two ventilation accessory ports 21 are isolated and are extended by the two ventilation accessory ports 21
  • the two ventilation channels 23 are parallel.
  • the two ventilating fitting ports 21 can be connected to the two nostrils of the patient via a nasal mask or nasal congestion, so as to increase the rate at which the first sampling port 22 obtains sample gas.
  • the two first sampling ports 22 are respectively arranged in the two ventilation fitting ports 21.
  • the ventilation fitting 10 may be provided with one first sampling connection port 31 to communicate with two first sampling ports 22.
  • the ventilation fitting 10 may also be provided with two first sampling connection ports 31 respectively communicating with the two first sampling ports 22 to increase the ventilation structure of the ventilation fitting 10.
  • the two ventilation passages 23 are parallel, so that the patient can breathe air through the ventilation fitting 10 smoothly.
  • the two first sampling air intake passages 24 are parallel to ensure that the patient's exhaled gas is unobstructed.
  • the ventilating accessory 10 includes a first assembling piece 40 and a second assembling piece 50, and the first assembling piece 40 and the second assembling piece 50 are joined together to form the ventilating accessory 10.
  • the two vent fitting ports 21 are respectively disposed on the first assembling piece 40 and the second assembling piece 50.
  • the two air passages 23 are respectively provided on the first assembling piece 40 and the second assembling piece 50.
  • the two first sampling ports 22 are respectively arranged on the first assembling piece 40 and the second assembling piece 50, and the two first sampling air intake passages 24 are respectively arranged on the first assembling piece 40 and the second assembling piece 50.
  • the ventilating fitting 10 may be made of plastic materials to facilitate the molding of the first assembling piece 40 and the second assembling piece 50 through an injection molding process.
  • the first assembling piece 40 has a first end surface 41
  • the second assembling piece 50 has a second end surface 51 that can be flush with the first end surface 41.
  • the two air passages 23 respectively penetrate the first end surface 41 and the second end surface 51 and extend substantially perpendicular to the first end surface 41 and the second end surface 51 respectively.
  • the first assembling piece 40 also has a first bottom surface 42, and the first bottom surface 42 and the first end surface 41 may form a certain angle.
  • the second assembling piece 50 also has a second bottom surface 52 that can be substantially flush with the first bottom surface 42, and the second bottom surface 52 and the second end surface 51 can form a certain angle.
  • the suction port 36 and the first sampling connection port 31 may be opened on the first bottom surface 42 and the second bottom surface 52.
  • the pipeline connection portion 30 is provided with a first sampling connection port 31, and one first sampling connection port 31 is in communication with two first sampling air inlet passages 24.
  • first sampling connection port 31 is opened on the edge of the first bottom surface 42, and the other half is opened on the edge of the second bottom surface 52.
  • first sampling connection port 31 is formed at the bottom of the pipeline connection portion 30.
  • the pipeline connection portion 30 is provided with a first sampling output channel 32 extending from the first sampling connection port 31.
  • One first sampling output channel 32 communicates with two first sampling intake channels 24.
  • One half of the first sampling output channel 32 is opened in the first assembling piece 40, and the other half is opened in the second assembling piece 50 to facilitate forming the first sampling output channel 32.
  • the first sampling output channel 32 includes a first output section 321, a second output section 322, and a third output section 323 connected in sequence.
  • the first output section 321 extends from the first sampling connection port 31.
  • the inner diameter of the first output section 321 is relatively large to facilitate the sealing cooperation between the inner wall of the first output section 321 and the outer wall of the pipeline of the carbon dioxide concentration analyzer.
  • the first output section 321 is substantially perpendicular to the first bottom surface 42 and the second bottom surface 52.
  • the second output section 322 is coaxially arranged with the first output section 321, and the inner diameter of the second output section 322 is smaller than the inner diameter of the first output section 321.
  • the third output section 323 is bent along an arc-shaped curve to facilitate the first sampling inlet passage 24 to be connected to the first sampling output passage 32 at a certain inclination angle.
  • the third output section 323 is used to bend along an arc curve to reduce the transmission resistance of carbon dioxide gas and reduce the work done by the patient's exhaled gas.
  • the first sampling connection port 31 is located at the pipeline connection portion 30 near the breathing connection portion 20 to reduce the length of the first sampling output channel 32 and facilitate the first sampling connection port 31 to quickly output gas to the monitoring instrument.
  • the pipeline connection portion 30 may also be provided with two first sampling connection ports 31, and the two first sampling connection ports 31 are respectively connected to the two first sampling ports 22.
  • the pipeline connecting portion 30 is provided with a confluence channel 33 communicating with the first sampling output channel 32, and two ends of the confluence channel 33 are connected to the two first sampling inlet channels 24 respectively. Connected.
  • the confluent passage 33 is substantially parallel to the first bottom surface 42 and the second bottom surface 52.
  • Half of the confluence channel 33 is opened in the first assembling piece 40 and the other half is opened in the second assembling piece 50.
  • the confluence passage 33 communicates with the third output section 323.
  • the merging channel 33 merges the gas of the two first sampling air inlet channels 24 to the first sampling output channel 32 to realize the communication between one sampling output channel 32 and the two first sampling air inlet channels 24.
  • the pipeline connecting portion 30 is provided with an exhalation channel 35 extending from the exhalation tube port 34, and the exhalation channel 35 is in communication with the two ventilation channels 23.
  • the pipeline connecting portion 30 is provided with two exhalation channels 35, and the two exhalation channels 35 are respectively connected to the two ventilation channels 23.
  • Two exhalation channels 35 are respectively opened in the first assembling piece 40 and the second assembling piece 50.
  • the two exhalation channels 35 extend substantially parallel to the first bottom surface 42 and the second bottom surface 52, so that the exhalation channel 35 and the ventilation channel 23 can be arranged at an angle, so that the angle between the exhalation channel 35 and the ventilation channel 23 can be set reasonably.
  • the basal flow located in the exhalation channel 35 and the ventilation channel 23 will have flow reversal to drive the exhaled air to exhale from the exhalation channel 35, thereby reducing the patient's expiratory work.
  • the first assembling piece 40 includes a first end surface 43 opposite to the first end surface 41.
  • the second assembling piece 50 includes a second end surface 53 opposite to the second end surface 51.
  • the first end surface 43 and the second end surface 53 may be flush.
  • the openings of the two exhalation line ports 34 may be opened on the first end surface 43 and the second end surface 53 respectively.
  • the pipeline connection part 30 is connected to the ventilator via the pipeline through the two expiratory pipeline ports 34 to realize the transmission of the gas exhaled by the patient to the ventilator.
  • the pipeline connecting portion 30 is provided with an inhalation channel 37 extending from the inhalation pipeline port 36, and the inhalation channel 37 is in communication with the two ventilation channels 23.
  • the suction pipe port 36 may be opened on the first bottom surface 42 and the second bottom surface 52.
  • the inhalation line port 36 is located at the end of the line connection part 30 away from the breathing connection part 20.
  • the suction line port 36 faces substantially parallel to the direction of the carbon dioxide connection port 311.
  • the pipeline connecting portion 30 is provided with an inhalation pipeline port 36, and an inhalation pipeline port 36 is in communication with the two ventilation channels 23.
  • the suction pipe port 36 is opened on the edge of the first bottom surface 42, and the other half is opened on the edge of the second bottom surface 52.
  • the suction pipe port 36 is formed at the bottom of the pipe connecting portion 30.
  • One suction channel 37 communicates with two ventilation channels 23.
  • One half of the suction channel 37 is opened in the first assembling piece 40 and the other half is opened in the second assembling piece 50 to facilitate forming the suction channel 32.
  • the pipeline connecting portion 30 is provided with a triangular boss 38 at the top opposite to the first bottom surface 42 and the second bottom surface 52.
  • the suction channel 37 includes a first suction section 371 connected to the suction pipe port 36 and a second suction section 372 curved relative to the first suction section 371.
  • the end of the second inhalation section 372 away from the first inhalation section 371 extends to the triangular boss 38, so that one end of the second inhalation section 372 is roughly located in the extending direction of the ventilation channel 23, reducing the breathing gas in the ventilation channel 23.
  • the flow resistance in the suction channel 37 is made to the suction channel 37.
  • the pipeline connection portion 30 is provided with a branch passage 39 communicating with the suction passage 37 and two branch passages 310 communicating with the branch passage 39, and the two branch passages 310 are respectively communicated with the two ventilation passages 23.
  • the branch passage 39 is substantially parallel to the merge passage 33.
  • the shunt passage 30 is connected to the second suction section 372 of the suction passage 37.
  • Half of the shunt passage 39 is opened in the first assembling piece 40 and the other half is opened in the second assembling piece 50.
  • the two branch channels 310 are respectively provided in the first assembling piece 40 and the second assembling piece 50.
  • the branch channel 310 is parallel to the ventilation channel 23 to reduce the patient's inspiratory work.
  • the inspiratory line port 36 can be connected to the ventilator via a pipeline, and the inspiratory line port 36 obtains ventilation gas from the ventilator and outputs it to the inhalation channel 37 and the ventilation channel 23 patient.
  • the patient exhales air to the ventilation channel 23, and the exhalation pressure is greater than the average pressure in the air path of the ventilation fitting 10, so that the exhaled air is exhaled through the exhalation channel 35 together with the basic flow maintaining the average pressure.
  • the breathing connection portion 20 is provided with a second sampling port 222, which is used to communicate with a patient interface such as a nasal congestion, a face mask, or a nasal mask in contact with the patient, and the pipeline is connected
  • the part 30 is provided with a second sampling connection port 312 communicating with the second sampling port 222.
  • the second sampling port 222 is separately arranged from the first sampling port 22 and separately arranged from the ventilation fitting port 21.
  • the second sampling port 222 is located between the two ventilation fitting ports 21.
  • the orientation of the second sampling port 222 is substantially parallel to the orientation of the ventilation fitting port 21.
  • Half of the second sampling port 222 is opened in the first assembling piece 40 and the other half is opened in the second assembling piece 50.
  • the second sampling connection port 312 is provided at the bottom of the pipeline connection part 30.
  • the second sampling connection port 312 is located between the first sampling connection port 31 and the suction line port 36.
  • the orientation of the second sampling connection port 312 is parallel to the orientation of the first sampling connection port 311.
  • the second sampling port 222 may be a pressure monitoring port, the second sampling connection port 312 may be connected to a ventilator with pressure monitoring function through a pipeline, and the second sampling port 222 may be connected to a ventilator with pressure monitoring function through the second sampling connection port 312 , Use a ventilator with pressure monitoring function to monitor the air pressure in the patient's breathing airway.
  • the pipeline connection part 30 is provided with a second sampling output channel 313 connecting the second sampling port 222 and the second sampling connection port 312. One half of the second sampling output channel 313 is disposed on the first assembling piece 40 and the other half is disposed on the second assembling piece 50.
  • the second sampling output channel 313 extends along a curved curve to reduce air flow transmission resistance.
  • the second sampling port 222 can also obtain water molecules of the patient's breathing gas
  • the second sampling connection port 312 can be connected to a ventilator with a humidity analysis function to monitor the humidity of the patient's breathing gas.
  • the breathing connection part 20 may also be provided with a third sampling port, and the pipeline connection part may also be provided with a third sampling connection port communicating with the third sampling port; the third sampling port may be connected to the first sampling port 22 and the second sampling port 222 separation; the ventilation accessories of this application do not limit the number of sampling ports and the number of sampling connection ports connected to the monitoring device, and do not limit the sampling method of the sampling ports.
  • the second sampling port 222 is arranged in the ventilation fitting port 21 and is arranged separately from the first sampling port 22.
  • the second sampling port 22 may be provided on the inner wall of the ventilation channel 23.
  • the second sampling connection port 22 communicates with two second sampling ports 222.
  • the breathing connection part 20 is provided with two second sampling air intake channels 3131.
  • the two second sampling intake passages 3131 are respectively connected to the two second sampling ports 222.
  • the pipeline connection portion 20 is provided with a second sampling output channel 313 connected to the second sampling connection port 22.
  • the second sampling output channel is connected to the second sampling intake channel 3131.
  • the present application also provides a patient ventilation interface 100, and the patient ventilation interface 100 includes a ventilation accessory 10.
  • the patient ventilation interface 100 further includes a patient interface 70, which is a non-invasive ventilation interface.
  • the patient interface 70 is connected to the breathing connection part 20 of the ventilation accessory 10.
  • the patient interface 70 may be a nasal congestion, a nasal mask, an oronasal mask, a breathing mask, or the like.
  • the patient interface 70 is nasal congestion.
  • the patient interface 70 is in contact with the patient, so that the ventilation fitting port 21 of the ventilation fitting 10 ventilates the patient.
  • the patient interface 70 is detachably and fixedly connected to the ventilation fitting 10.
  • the breathing connection portion 20 is provided with a first plug-in portion 25, and the first plug-in portion 25 is a plug groove.
  • the first plug-in portion 25 is adapted to the patient interface 70, and the ventilation accessory port 21, the first sampling port 22 and the second sampling port 222 are arranged at the bottom of the first plug-in portion 25 to facilitate communication with the patient interface 70.
  • the first end surface 41 and the second end surface 51 of the breathing connecting portion 20 are disposed at the bottom of the first plug-in portion 25.
  • the breathing connection portion 20 is provided with two plug-in pipes 26 at the bottom of the first plug-in portion 25.
  • the two plug-in pipes 26 are respectively arranged on the first assembling piece 40 and the second assembling piece 50.
  • the two vent fitting ports 21 are respectively disposed on the two plug-in pipelines 26, and the two vent channels 23 respectively extend from the end faces of the two plug-in pipelines 26 toward the pipeline connection portion 30.
  • the two plug-in pipelines 26 can be plugged into the patient interface 70 to realize that the ventilation fitting port 21 and the first sampling port 22 are connected to the patient interface 70.
  • the side wall of the plug-in pipeline 26 is provided with a gap 27 communicating with the ventilation channel 23 to increase the air transmission space of the ventilation channel 23 to increase the ventilation rate of the ventilation channel 23 and the patient interface 70.
  • the breathing connection part 20 is provided with two expansion ear parts 28 at the opening end of the first plug-in part 25.
  • the two expansion ears 28 are provided with a first assembling piece 40 and a second assembling piece 50 respectively.
  • the two extended ears 28 are used to fit the patient interface 70 to increase the connection stability between the ventilation accessory 10 and the patient interface 70.
  • the patient interface 70 includes a connecting portion 71 and a contact portion 72.
  • the connecting portion 71 is fixedly connected to the breathing connecting portion 20 detachably.
  • the connecting portion 71 is provided with a second plug-in portion 710.
  • the second plug-in portion 710 is a plug-in boss.
  • the second plug-in portion 710 can be inserted into the first plug-in portion 25 of the ventilation fitting 10.
  • the connecting portion 71 is provided with a connecting port 711, and the connecting port 711 is provided at the end of the second plug-in portion 710.
  • the second plug-in portion 710 is plug-fitted with the first plug-in portion 25 of the ventilation fitting 10, the connection port 711 can be inserted into the two plug-in pipes 26, the connection port 711 is connected to the ventilation fitting port 21, the first sampling port 22 and The second sampling port 222 is connected.
  • the contact portion 72 is used to contact the patient, and the contact portion 72 is provided with a patient ventilation port 721 communicating with the connection port 711.
  • the contact portion 72 is provided with two ventilation cannulas 722.
  • the two patient ventilation ports 721 are respectively arranged on the two ventilation cannulas 722.
  • Two ventilating cannulas 722 can be docked with the two nostrils of the patient.
  • the ventilation fitting port 21 is arranged opposite to the patient ventilation port 721 so that the patient can breathe gas toward the ventilation fitting port 21.
  • the central axis of the ventilation cannula 722 is approximately coaxially arranged with the central axes of the two plug-in pipelines 26, so that the airflow direction in the patient ventilation port 721 is substantially parallel to the airflow direction in the ventilation accessory port 21, and the patient ventilation port 721
  • the airflow direction of is approximately parallel to the sampling airflow direction in the first sampling port 22.
  • first plug-in portion 25 and the second plug-in portion 710 may also be a mating structure of a plug-in boss and a plug-in groove respectively, or may be a plug-in card slot and a plug-in groove respectively.
  • the mating structure of the buckle can also be the mating structure of the plug hole and the plug post respectively.
  • the patient interface 70 can be made of flexible materials with elastic deformation properties such as plastic, rubber, silicone, etc., to ensure the comfort and air tightness of the patient interface 70 in contact with the patient.
  • the contact portion 72 is provided with two expansion pieces 723.
  • the two expansion pieces 723 respectively cooperate with the two expansion ears 28 to increase the connection stability between the patient interface 70 and the ventilation fitting 10.
  • the connecting portion 71 and the breathing connecting portion 20 are detachably connected in rotation.
  • the breathing connection portion 20 is provided with a bearing groove 204, a first bearing sleeve 205 fixed in the bearing groove 204, and a second bearing sleeve 206 rotatably matched with the first bearing sleeve 205.
  • the vent fitting port 21, the first sampling port 22 and the second sampling port 222 are all arranged at the bottom of the bearing groove 204 and are spaced opposite to the inner side of the second bearing sleeve 206.
  • the connecting portion 71 is provided with a rotating plug shaft 712 that is plugged into the second bearing sleeve 206.
  • the connection port 711 is disposed at the end of the rotating plug shaft 712.
  • the outer peripheral side wall of the first bearing sleeve 205 and the inner peripheral side wall of the bearing groove 204 are interference fit.
  • the second bearing sleeve 206 is located inside the first bearing sleeve 205.
  • a plurality of balls 207 are arranged between the second bearing sleeve 206 and the first bearing sleeve 205 to reduce the rotational friction between the second bearing bar 206 and the first bearing sleeve 205.
  • the inner arm of the second bearing sleeve 206 is provided with an insertion slot 208.
  • the outer side wall of the rotating plug shaft 712 is provided with a plug board 713.
  • the rotating plug shaft 712 is inserted into the inner side of the second bearing sleeve 206, and the plug card 713 fits closely with the plug slot 208 to restrict the rotation of the rotating plug shaft 712 relative to the second bearing sleeve 206 and facilitate the rotation of the plug shaft 712 and the second bearing sleeve 206 are detachable.
  • the connecting portion 71 and the breathing connecting portion 20 are detachably telescopically connected.
  • the breathing connection portion 20 is provided with a sliding groove 209, and the ventilation fitting port 21, the first sampling port 22 and the second sampling port 222 are all arranged at the bottom of the sliding groove 209.
  • the connecting portion 70 is provided with a sliding rod 714, the sliding rod 714 is slidably connected to the sliding groove 209, and the connecting port 711 is provided at the end of the sliding rod 714.
  • a guide groove 2091 is provided on the inner peripheral side wall of the sliding groove 209.
  • the outer peripheral side wall of the sliding rod 714 is provided with a guide flange 715.
  • the guide flange 715 is in sliding fit with the guide groove 2091, and the side wall of the guide flange 715 is provided with a damping sheet to increase the sliding damping force of the sliding rod 714 in the sliding groove 209 and prevent the sliding rod 714 from sliding freely in the sliding groove 209 , In order to meet the need to adjust the expansion and contraction length of the breathing connecting portion 20 and the connecting portion 71 as required.
  • the ventilation fitting 10 is further provided with a sliding limit pin 2092 detachably connected to the breathing connection part 20.
  • the sliding limit pin 2092 passes through the outer side wall of the breathing connecting portion 20 into the sliding groove 209. One end of the sliding limit pin 2092 is located in the sliding groove 209.
  • the outer side wall of the sliding rod 714 is also provided with a limit fitting groove 716. One end of the sliding limit pin 2092 is slidingly fitted in the limit fitting groove 716 to restrict the sliding rod 714 from leaving the sliding groove 209.
  • the patient ventilation interface 100 includes an expiratory tube 60, the expiratory tube 60 is fixedly connected to the pipeline connecting portion 30, and the expiratory tube 60 is provided with a general exhalation chamber 61 and two The expiratory sub-cavity 62 communicates with the total expiratory cavity 61, and the two expiratory sub-cavities 62 are respectively connected to the two expiratory channels 35.
  • the exhalation tube 60 is detachably connected to the ventilation fitting 10.
  • the exhalation tube 60 includes a straight tube 63 and two branch tubes 64 provided on the circumference of the straight tube 63.
  • the general exhalation cavity 61 is arranged in the straight-through tube 63.
  • the two expiration sub-cavities 62 are arranged in the two branch pipes 64.
  • the branch pipe 64 is substantially parallel to the exhalation passage 35.
  • the through pipe 63 is substantially perpendicular to the branch pipe 64.
  • One end of the two branch pipes 64 away from the straight pipe 63 can be inserted into the expiratory line port 34.
  • the straight tube 63 is provided with an exhalation line port at one end away from the branch tube 64, and is plugged into the tube through the breathing tube port.
  • the exhalation tube 60 is connected to the ventilator through the tube, so that the ventilator can receive the patient's breath.
  • the first sampling port 22 and the first sampling connection port 31 are provided on the patient interface 70.
  • the patient interface 70 is nasal congestion
  • the patient interface 70 is provided with a ventilation cannula 722 that can be inserted into the nose of the patient
  • the patient ventilation port 721 and the first sampling port 22 are provided on the ventilation cannula 722.
  • the breathing connection part 20 of the ventilation fitting 10 is provided with a ventilation fitting port 21 and a second sampling port 222.
  • the pipeline connection portion 30 of the ventilation fitting 10 is provided with an exhalation pipeline port 34, an inhalation pipeline port 36, and a second sampling connection port 312.
  • the exhalation pipeline port 34 is in communication with the ventilation fitting port 21, and the inhalation pipeline port 36 is in communication with the vent fitting port 21, and the second sampling connection port 312 is in communication with the second sampling port 222.
  • the patient interface 70 is detachably connected to the ventilation fitting 10.
  • the contact portion 72 of the patient interface 70 is provided with a patient ventilation port 721 and a first sampling port 22.
  • the first sampling port 22 is provided in the patient ventilation port 721.
  • the first sampling port 22 is built into the patient ventilation port 721, and the patient ventilation port 721 is connected to the patient After the nose end is docked, the first sampling port 22 can quickly obtain the gas exhaled by the patient.
  • the connecting portion 71 of the patient interface 70 is provided with a connecting port 711 communicating with the ventilation fitting port 21 and the second sampling port 222.
  • the plug-in line 26 of the breathing connection part 20 can be inserted into the connection port 711.
  • An external sampling connection pipeline 701 is provided on the outside of the patient interface 70, and the first sampling connection port 31 is set to the external sampling connection pipeline 701.
  • the first sampling connection port 31 can be connected to the sampling monitoring device through the pipeline, and the monitoring device The patient interface 70 is connected, so that the monitoring device monitors the gas in the patient's breathing airway.
  • the patient interface 70 is a nasal mask.
  • the patient interface 70 is provided with a contact port 724 which can contact the face of the patient and a breathing cavity 723 extending from the contact port 724.
  • the breathing cavity 723 can cover the nose of the patient.
  • the patient ventilation port 721 and the first sampling port 22 are located on the opposite side of the patient interface 70 and the contact port 724.
  • the patient ventilation port 721 is ventilated with the patient through the breathing cavity 723, and the first sampling port 22 is inhaled for sampling through the breathing cavity 723.
  • the contact port 724 can be fitted with the patient's nose to increase the air tightness and comfort of the patient interface 70 in contact with the patient.
  • the contact port 724 is used to oppose the patient ventilation port 721, so that after the patient wears the patient interface 70, the patient's nostrils are close to the patient ventilation port 721.
  • the patient's nostrils generally breathe air toward the vent fitting port 21.
  • the distance from the first sampling port 22 to the contact port 724 is smaller than the distance from the patient ventilation port 721 to the contact port 724.
  • the contact portion 72 is provided with a sampling pipe 725 on the inner side wall of the breathing cavity 723. One end of the sampling tube 725 is close to the contact port 724, and the other end extends to the patient ventilation port 721.
  • the first sampling port 22 is disposed at one end of the sampling pipe 725 close to the contact port 724.
  • the connecting portion 71 is provided with a first sampling connection port 31 communicating with the first sampling port 22.
  • the first sampling connection port 31 communicates with the internal sampling gas channel of the sampling pipeline 725.
  • the first sampling port 22 may communicate with the first sampling connection port 31 via a gas channel.
  • Two first sampling connection ports 31 are provided at the bottom of the connecting portion 71.
  • the two first sampling connection ports 31 can be connected to monitoring equipment via pipelines.
  • the connection portion 71 of the patient interface 70 is provided with a connection port 711 communicating with the patient ventilation interface 721.
  • the breathing connection part 20 of the ventilation fitting 10 is provided with a ventilation fitting port 21 and a second sampling port 222.
  • the ventilation fitting port 21 is provided in the plug-in line 26 of the breathing connection part 20.
  • the pipeline connection portion 30 of the ventilation fitting 10 is provided with an exhalation pipeline port 34, an inhalation pipeline port 36, and a second sampling connection port 312.
  • the exhalation pipeline port 34 is in communication with the ventilation fitting port 21, and the inhalation pipeline port 36 is in communication with the vent fitting port 21, and the second sampling connection port 312 is in communication with the second sampling port 222.
  • the patient interface 70 is detachably connected to the ventilation fitting 10.
  • the plug-in line 26 of the breathing connection part 20 can be inserted into the connection port 711.
  • the connection port 711 communicates with the ventilation fitting port 21 and the second sampling port 222.
  • the present invention adds a sampling port on the proximal nose of the patient through the patient ventilation interface.
  • the sampling port can be used to collect the patient's exhaled gas, and the sampling connection port can be used to pass the exhaled gas to the gas detection sensor module, or gas
  • the analyzer analyzes and monitors the gas concentration, humidity, temperature, pressure and other parameters to evaluate the patient's respiratory ventilation level. Since the sampling port is located near the nose of the patient, parameters such as concentration, humidity, temperature, or pressure in the patient's inhaled and exhaled gas can be accurately measured, for example, the concentration of carbon dioxide exhaled by the patient can be accurately measured.

Landscapes

  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种通气配件(10)及患者通气接口(100),通气配件(10)包括呼吸连接部(20)和与呼吸连接部(20)固定连接的管路连接部(30),呼吸连接部(20)与患者接口(70)连接,呼吸连接部(20)设有通气配件端口(21)和第一采样端口(22),管路连接部(30)设有呼气管路端口(34)、吸气管路端口(36)和第一采样连接端口(31),第一采样连接端口(31)与第一采样端口(22)连通。通过呼吸连接部(20)设有通气配件端口(21)和第一采样端口(22),通气配件端口(21)用于经患者接口(70)与患者通气,第一采样端口(22)获取患者呼出气体,并经第一采样连接端口(31)与监测设备连通,以使患者呼吸状态可监测。

Description

通气配件及患者通气接口 技术领域
本申请涉及医疗设备领域,具体涉及一种通气配件及患者通气接口。
背景技术
目前在无创通气的设备中,利用呼吸机输出气体,并经过通气配件,以及经过鼻塞、鼻罩、口鼻罩等与患者相连的患者接口,实现与患者通气。然而在无创通气过程中,并没有设置可以监测患者呼吸状态的采样结构,导致患者的呼吸状态无法实时监测,存在危险性。
发明内容
本申请提供一种通气配件及患者通气接口。
本申请提供一种通气配件,其中,通气配件包括呼吸连接部和与呼吸连接部连接的管路连接部,呼吸连接部与患者接口连接,呼吸连接部设有通气配件端口和第一采样端口,管路连接部设有通气管路端口和第一采样连接端口,通气管路端口与通气配件端口连通,第一采样连接端口与第一采样端口连通。
本申请提供一种患者通气接口,其中,患者通气接口包括上述的通气配件,患者通气接口还包括患者接口,患者接口为无创通气接口,患者接口连接于呼吸连接部,患者接口用以与患者接触。
本申请提供一种患者通气接口,其中,患者通气接口包括通气配件和患者接口,通气配件设有通气配件端口和与通气配件端口连通的通气管路端口,患者接口与通气配件连接,患者接口设有患者通气端口、第一采样端口和第一采样连接端口,患者通气端口与通气配件端口连通,第一采样端口与第一采样连接端口连通。
本申请的通气配件及患者通气接口,通过呼吸连接部设有通气配件端口和第一采样端口,通气配件端口用于经患者接口与患者通气,第一采样端口获取患者呼出气体,并经采样连接端口与监测设备连通,以使患者呼吸状态可监测。
附图说明
图1是本申请实施例提供的通气配件的立体示意图。
图2是本申请另一实施例提供的通气配件的截面示意图。
图3是本申请另一实施例提供的通气配件的截面示意图。
图4是本申请另一实施例提供的通气配件的截面示意图。
图5是本申请另一实施例提供的通气配件的立体示意图。
图6是本申请另一实施例提供的通气配件的立体示意图。
图7是图1的通气配件的分解示意图。
图8是图1的通气配件的另一分解示意图。
图9是图1的通气配件的沿II-II的截面剖开示意图。
图10是图9的通气配件的分解示意图。
图11是图9的通气配件的另一立体示意图。
图12是本申请另一实施例提供的通气配件的局部剖示分解示意图。
图13是本申请实施例提供的患者通气接口的立体示意图。
图14是图13的患者通气接口通气配件的分解示意图。
图15是本申请另一实施例提供的患者通气接口的截面示意图。
图16是本申请另一实施例提供的患者通气接口的截面示意图。
图17是本申请实施例提供的患者通气接口的另一立体示意图。
图18是图17患者通气接口的沿III-III的剖开示意图。
图19是本申请另一实施例提供的患者通气接口的立体示意图。
图20是图19的患者通气接口的分解示意图。
图21是图19的患者通气接口的分解示意图。
图22是本申请另一实施例提供的患者通气接口的立体示意图。
图23是图22的患者通气接口的分解示意图。
图24是图23的患者通气接口的分解示意图。
具体实施例
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,本申请提供一种通气配件10,通气配件10包括呼吸连接部20和与呼吸连接部20连接的管路连接部30。呼吸连接部20用以与鼻塞、面罩、或鼻罩等与患者接触的患者接口连接。呼吸连接部20设有通气配件端口21和第一采样端口22。通气配件端口21用于经鼻塞、面罩、或鼻罩等与患者接触的患者接口与患者通气。第一采样端口22获取患者呼出气体。管路连接部30设有第一采样连接端口31和通气管路端口39,第一采样连接端口31与 第一采样端口22连通。第一采样连接端口31用以与监测设备连接,以使患者呼吸状态可监测。通气管路端口39与通气配件端口21连通。
可以理解的是,通气配件10可以经管路连接至呼吸机,以及通过连接鼻塞、面罩、或鼻罩等与患者接触的患者接口,实现呼吸机与患者通气。即通气配件10可以是患者与呼吸机的通气连接结构。
目前新生儿尤其是早产儿由于肺功能不足或其他呼吸疾病,往往需要进行呼吸支持。呼吸支持的方式包括无创通气及有创通气。为了尽量减少有创机械通气的并发症同时又可以有效治疗呼吸疾病,临床医生倾向于早期优先应用无创通气,根据无创通气支持效果决定是否给予有创机械通气。在新生儿重症监护病房中经常会采用经鼻无创通气,进行呼吸支持、治疗,达到促进氧合和有效排出二氧化碳等效果,常用的通气方式有NCPAP(Nasal Continuous Positive Airway Pressure,无创持续正压通气),NIPPV(Non Invasive Positive Pressure Ventilation,无创间歇正压通气),BiPAP(Bi-level Positive Airway Pressure,双水平正压气道通气)等。因为连接简便,并能有效降低呼气做功,在新生儿无创通气中应用十分广泛。本申请提供的通气配件10可以应用于无创通气呼吸机,实现对患者无创通气。
本实施方式中,呼吸连接部20与管路连接部30相对设置。呼吸连接部20可以与鼻塞、面罩、或鼻罩等与患者接触的患者接口可拆卸连接。通气配件端口21可以与鼻塞、面罩、或鼻罩等与患者接触的患者接口的通气腔体连通,方便通气配件端口21与患者的鼻或口通气。通过将通气配件10的管路连接部30经管路与呼吸机连接,再将通气配件10的呼吸连接部20经患者接口与患者鼻或口连接,实现呼吸机经通气配件10向患者进行呼吸通气。第一采样端口22可以与鼻塞、面罩、或鼻罩等与患者接触的患者接口的通气腔体连通,方便第一采样端口22可以获取患者呼出气体,或者是获取输送至患者的气体。第一采样连接端口31可以经管路连接至监测设备,其中,该监测设备可以是与呼吸机相互独立工作的设备,也可以是集成到呼吸机的监测模块。通过第一采样连接端口31与监测设备或呼吸机连接,可以实现对患者呼出气体的成分浓度、成分组成、气压、湿度、温度等呼出气体参数进行监测,以及可以实现对患者吸入的气体成分浓度、成分组成、压力、温度、湿度等吸入气体参数进行监测,以保证对患者的呼吸状态实时监控,减小医疗危险性。
在一个实施例中,呼吸连接部20与管路连接部30固定连接。呼吸连接部20与管路连接部30可以是一体设置。通气配件端口21对患者进行呼气通气和吸气通气。管路连接部30设置两个通气管路端口39,两个通气管路端口39分别为呼气管路端口34和吸气管路端口36。呼气管路端口34可以经通气配件端口21与患者呼气通气,吸气管路端口34也可以经通气配件端口21与患者吸气通气。通气配件端口21与呼气管路端口34及吸气管路端口36可以经气体通道连通。吸气管路端口36可以经管路连接至呼吸机,通气配件端口21可以经气体通道、吸气管路端口36和管路与呼吸机连通。当然,作为一种改进方式,管路连接部30也可以是设置一个通气管路端口39,通气管路端口39与呼气管路和吸气管路连接。
另一个实施例中,如图2所示,与图1所示实施例不同的是,呼吸连接部20与管路连接部30转动连接。呼吸连接部20设有转动轴201,管路连接部30设有转轴孔301。转动轴201插入转轴孔301,并与转轴孔301转动配合。转动轴201的端部周侧壁设有转动凸 缘2011。转轴孔301的内周侧壁设有与转动凸缘2011配合的转动凹槽3011。转动凸缘2011的外径较小,通过转动轴201插入转轴孔301,转动凸缘2011卡入转动凹槽3011后,管路连接部30可相对呼吸连接部20转动,且管路连接部30不易脱离呼吸连接部20。通气配件端口21和第一采样端口22设置于呼吸连接部20远离转动轴201处。第一采样连接端口31和通气管路端口39设置于管路连接部30远离转轴孔301处。
具体的,第一采样端口22与转动轴201同轴设置。转轴孔301底部设有与通气配件端口21对接的通气对接孔312,以及设有与第一采样端口22对接的采样对接孔3013。通气对接孔3012与通气管路端口39连通,采样对接孔3013与第一采样连接端口31连通。采样对接孔3013与转轴孔301同轴设置,通气对接孔312为设置于采样对接孔3012周侧的环形孔,以方便呼吸连接部20与管路连接部30在转动情况下,仍保证通气配件端口21与通气管路端口39连通,以及第一采样端口22与第一采样连接端口31连通。
在另一个实施例中,如图3所示,与图1所示实施例不同的是,呼吸连接部20与管路连接部30可伸缩地连接。具体的,呼吸连接部20设有滑动轴202。管路连接部30设有滑动轴孔302。滑动轴202可插入滑动轴孔302内,并可沿滑动轴孔302的深度方向相对管路连接部30滑动,实现呼吸连接部20相对管路连接部30伸缩。管路连接部30还设有与滑动轴孔302连通的滑动限位槽303。滑动限位槽303的延伸方向与滑动轴孔302的深度方向相平行。呼吸连接部20在滑动轴202的外侧壁设有限位凸块203。限位凸台203在滑动限位槽303内滑动,以对滑动轴202相对管路连接部30滑动限位,防止呼吸连接部20与管路连接部30脱离。通气配件端口21和第一采样端口22设置于呼吸连接部20远离滑动轴202处。第一采样连接端口31和通气管路端口39设置于管路连接部30远离滑动轴孔302处。
为保证第一采样连接端口31与第一采样端口22的气密性,以及保证通气管路端口39与通气配件端口21的气密性。管路连接部30在滑动轴孔302内设置通气滑动管路3021和采样滑动管路3022,通气滑动管路3021可以与通气配件端口21滑动对接。采样滑动管路3022可以与第一采样端口22滑动对接。通气滑动管路3021远离通气配件端口21一端与通气管路端口39连通。采样滑动管路3022远离第一采样端口22一端与第一采样连接端口31连通。
另一个实施例中,如图4所示,与图1所示实施例不同的是,呼吸连接部20设有两个通气配件端口21,一个是接收患者呼出气体的呼气端口211,另一个是向患者提供吸气气体的吸气端口212,第一采样端口22设置于呼气端口211内。呼气端口211与呼气管路端口34连通,吸气端口212与吸气管路端口36连通。当呼气端口211对患者呼气通气时,吸气端口212处于不通气状态。当吸气端口212对患者吸气通气时,呼气端口211处于不通气状态。当然,作为一种改进方式,第一采样端口22也可以是与呼气端口211分离设置,并靠近呼气端口211。作为一种改进方式,第一采样端口22也可以是设置于吸气端口212内,或者是与吸气端口212分离设置,并靠近吸气端口212。
请继续参阅图1,本实施方式中,第一采样端口22为二氧化碳采样端口,第一采样端口22可以采集患者呼出或吸入的二氧化碳气体。第一采样连接端口31可以经管路与二氧化碳监测设备连接,使得第一采样端口22经第一采样连接端口31及管路连接至二氧化碳 监测设备,使得二氧化碳监测设备可以获取患者呼出或将吸入的二氧化碳气体,以实现对患者呼出或将吸入的二氧化碳的浓度进行监测。第一采样端口22可以设置于通气配件端口21内,也可以与通气配件端口21分离设置,还可以是部分与通气配件端口21分离,部分与通气配件端口21重合。
当然,在其他实施方式中,第一采样端口22也可以是氧气采样端口,第一采样连接端口31为氧气监测连接端口,第一采样连接端口31可以经管路与氧气监测设备连接,以使得氧气监测设备可以获取患者呼出或将吸入的氧气气体,以实现对患者呼出或将吸入的氧气的浓度进行监测。
当然,第一采样端口22还可以是压力采样端口,第一采样连接端口31可以经管路与监测设备的压力传感器连接,实现对患者呼吸气路中的气压进行监测。也就是说,本申请的第一采样端口22所获取的采样监测的气体并不作限定,以及采样监测方式不作限定。
可以理解的是,在无创通气过程中,对于患者的二氧化碳水平进行监测非常重要,以防止出现高碳酸血症等症状。现有新生儿无创通气过程中的二氧化碳水平评估,主要依靠采取患者的血气,以分析其中的二氧化碳分压。但是采血气会带来患儿的不适、疼痛和感染的风险,而且因为新生儿血量很少,周期性的采血甚至会带来贫血症和其它危害。因此,采用本实施方式提供的通气配件10采集患儿呼出气体,以进行二氧化碳水平评估,有助于减少医疗危害。
本实施方式中,第一采样端口22设置于通气配件10的呼吸连接部20,可以距离通气配件端口21较近。
具体的,由于通气配件10的呼吸连接部20可以与鼻塞、面罩、或鼻罩等与患者接触的患者接口直接连接,使得通气配件10的呼吸连接部20近患者。第一采样端口22可以靠近通气配件端口21设置,或设置于通气配件端口21内。第一采样端口22可以与通气配件端口21一同连接至鼻塞、面罩、或鼻罩等与患者接触的患者接口。通气配件端口21离患者鼻或口较近,可以缩短第一采样端口22与患者鼻或口的距离,以方便第一采样端口22在靠近患者鼻或口的位置处对患者呼出或将吸入的气体进行采样。由于第一采样端口22处于患者呼吸通气气路的近鼻端或近口端的位置,可以减小通气气路中基础流对患者呼出气体的影响,采样气体可以更真实地反应患者呼出气体的浓度、湿度、温度等参数。例如,第一采样端口21可以在近患者鼻端或近患者口端的位置,采集患者将呼出的二氧化碳气体,并通过二氧化碳监测设备与第一采样连接端口31对接,实现二氧化碳监测设备可以准确测量患者呼出的二氧化碳浓度,通过监测设备可以监测出二氧化碳浓度值和变化趋势来反映患者的新陈代谢、血气分压、肺泡通气功能和参数,支持医护人员进行诊断。可以理解的是,二氧化碳浓度分析仪可以与呼吸机通讯数据连接或者集成到呼吸机上,呼吸机可以将二氧化碳浓度监测值和二氧化碳波形图在屏幕上显示出来。
在一个实施例中,第一采样端口22设置于通气配件端口21内。
具体的,呼吸连接部20设有由通气配件端口21延伸的通气通道23,以及设有由第一采样端22口延伸的第一采样进气通道24,第一采样进气通道24内的采样抽取气流方向与通气通道23内的患者呼出或吸入气流方向相平行。也就是,通气通道23的延伸方向及第一采样进气通道24的延伸方向与患者呼出气体方向大致相平行,以减小患者呼吸做功。第一采样 端口22可快速获取患者呼出的气体,监测设备对呼吸气路中的气体监测准确、响应速度快。
作为一种可实施的方式,第一采样进气通道24设置于通气通道23内,第一采样进气通道24端部伸出通气通道23。具体的,通气通道23内壁设有凸起231。凸起231沿通气通道23的深度方向延伸一定长度。第一采样端口22开设于凸起231端部,第一采样进气通道24开设于凸起231内,并沿凸起231长度方向延伸。凸起231一端伸出通气通道23。第一采样端口22设置于凸起231伸出通气配件端口21的端面上,以方便第一采样端口22可以优先获取患者呼出的气体。凸起231伸出通气配件端口21的一端端面呈弧形曲面,减小患者呼出气体阻力。
请参阅图5,在另一个实施例中,与图1所示实施例不同的是,通气通道23内设有内置管路232,内置管路232与通气通道23同轴设置。内置管路232的外周侧壁与通气通道23的内周侧壁存在间距。内置管路232延伸方向与通气通道23的延伸方向一致。第一采样端口22开设于内置管路232远离通气通道23底部的一端。第一采样进气通道24开设于内置管路232内。第一采样进气通道24与通气通道23同轴设置,使得第一采样进气通道24传输气体速度更快,增加监测响应速度,以及提高监测准确性。
请参阅图6,在另一个实施例中,与图2所示实施例不同的是,第一采样端口22位于通气配件端口21外。第一采样端口22与通气配件端口21之间设置间距。第一采样端口22开口朝向与通气配件端口21开口朝向相平行。第一采样进气通道24平行通气通道23延伸。利用第一采样端口22与通气配件端口21分离设置,第一采样进气通道24设置于通气通道23外侧,可增大通气通道23的内径,通气通道23内气体流动速率更换,对患者通气更顺畅。
进一步地,请参阅图7和图8,呼吸连接部20设有两个通气配件端口21和两个第一采样端口22,两个通气配件端口21相隔离,由两个通气配件端口21延伸的两个通气通道23相平行。
本实施方式中,两个通气配件端口21可以经鼻罩或鼻塞与患者的两鼻孔对接,增大第一采样端口22获取采样气体的速率。两个第一采样端口22分别设置于两个通气配件端口21内。通气配件10可以设置一个第一采样连接端口31与两个第一采样端口22连通。通气配件10也可以是设置两个第一采样连接端口31分别与两个第一采样端口22连通,以增加通气配件10的通气结构形式。两个通气通道23相平行,使得患者经通气配件10呼吸气体通畅。而两个第一采样进气通道24相平行,以保证获取获取患者呼出的气体通畅。
具体的,通气配件10包括第一拼接件40和第二拼接件50,第一拼接件40与第二拼接件50相拼接构成通气配件10。两个通气配件端口21分别设置于第一拼接件40和第二拼接件50。两个通气通道23分别设置于第一拼接件40和第二拼接件50。两个第一采样端口22分别设置于第一拼接件40和第二拼接件50,两个第一采样进气通道24分别设置于第一拼接件40和第二拼接件50。利用第一拼接件40与第二拼接件50相拼接,可以方便制作通气配件10,以及方便加工通气配件端口21和第一采样端口22。通气配件10可以是采用塑胶材料,以方便第一拼接件40和第二拼接件50经注塑工艺成型。
第一拼接件40具有第一端面41,第二拼接件50具有可以与第一端面41平齐的第二端面51。两个通气通道23分别贯穿第一端面41和第二端面51,且分别大致垂直第一端面41和第二端面51延伸。第一拼接件40还具有第一底面42,第一底面42与第一端面41可以形成一定夹角。第二拼接件50还具有可以与第一底面42大致平齐的第二底面52,第二底面52与第二 端面51可以形成一定夹角。吸气端口36和第一采样连接端口31可以开设于第一底面42和第二底面52。
作为一种可实施的方式,管路连接部30设有一个第一采样连接端口31,一个第一采样连接端口31与两个第一采样进气通道24连通。
具体的,第一采样连接端口31一半开设于第一底面42的边缘,另一半开设于第二底面52的边缘。第一拼接件40与第二拼接件50拼接后,第一采样连接端口31形成于管路连接部30的底部。管路连接部30设有由第一采样连接端口31延伸的第一采样输出通道32。一个第一采样输出通道32与两个第一采样进气通道24连通。第一采样输出通道32一半开设于第一拼接件40,另一半开设于第二拼接件50,以方便成型第一采样输出通道32。第一采样输出通道32包括依次连接的第一输出段321、第二输出段322和第三输出段323。第一输出段321由第一采样连接端口31延伸出。第一输出段321的内径较大,以方便第一输出段321的内壁与二氧化碳浓度分析仪的管路的外壁密封配合。第一输出段321大致垂直第一底面42和第二底面52。第二输出段322与第一输出段321同轴设置,第二输出段322的内径小于第一输出段321内径。第三输出段323沿弧形曲线弯曲设置,以方便第一采样进气通道24以一定倾斜角度与第一采样输出通道32对接。利用第三输出段323沿弧形曲线弯曲,减小二氧化碳气体传输阻力,减小患者呼出气体做功。第一采样连接端口31位于管路连接部30近呼吸连接部20处,以减小第一采样输出通道32的长度,方便第一采样连接端口31快速输出气体至监测仪器。当然,在其他实施方式中,管路连接部30也可以是设置两个第一采样连接端口31,两个第一采样连接端口31分别与两个第一采样端口22连通。
更为具体的,请参阅图8和图9,管路连接部30设有与第一采样输出通道32连通的合流通道33,合流通道33的两端分别与两个第一采样进气通道24连通。合流通道33大致平行第一底面42和第二底面52。合流通道33一半开设于第一拼接件40,另一半开设于第二拼接件50。合流通道33与第三输出段323连通。合流通道33将两个第一采样进气通道24的气体合流至第一采样输出通道32,以实现一个采样输出通道32与两个第一采样进气通道24连通。
进一步地,请参阅图9和图10,管路连接部30设有由呼气管路端口34延伸的呼气通道35,呼气通道35与两个通气通道23连通。
本实施方式中,管路连接部30设有两个呼气通道35,两个呼气通道35分别与两个通气通道23连通。两个呼气通道35分别开设于第一拼接件40和第二拼接件50。两个呼气通道35大致沿平行第一底面42和第二底面52方向延伸,使得呼气通道35与通气通道23可以呈夹角设置,实现合理设置呼气通道35与通气通道23的角度,使得患者在呼气阶段,位于呼气通道35和通气通道23内的基础流会产生流量反转,以带动呼出气体从呼气通道35呼出,从而减小患者呼气做功。第一拼接件40包括与第一端面41相对的第一尾端面43。第二拼接件50包括与第二端面51相对的第二尾端面53。第一尾端面43与第二尾端面53可以相平齐。两个呼气管路端口34的开口可以分别开设于第一尾端面43和第二尾端面53。管路连接部30通过两个呼气管路端口34经管路连接至呼吸机,实现将患者呼出的气体传输至呼吸机。
进一步地,请参阅图11,管路连接部30设有由吸气管路端口36延伸的吸气通道37,吸气通道37与两个通气通道23连通。
本实施方式中,吸气管路端口36可以开设于第一底面42和第二底面52。吸气管路端口 36位于管路连接部30远离呼吸连接部20一端。吸气管路端口36朝向大致平行二氧化碳连接端口311的朝向。作为一种可实施的方式,管路连接部30设有一个吸气管路端口36,一个吸气管路端口36与两个通气通道23连通。
具体的,吸气管路端口36一半开设于第一底面42的边缘,另一半开设于第二底面52的边缘。第一拼接件40与第二拼接件50拼接后,吸气管路端口36形成于管路连接部30的底部。一个吸气通道37与两个通气通道23连通。吸气通道37一半开设于第一拼接件40,另一半开设于第二拼接件50,以方便成型吸气通道32。管路连接部30在与第一底面42和第二底面52相对的顶部设有三角形凸台38。吸气通道37包括连接吸气管路端口36的第一吸气段371和相对第一吸气段371弯曲的第二吸气段372。第二吸气段372远离第一吸气段371的一端延伸至三角形凸台38,以方便第二吸气段372的一端大致位于通气通道23的延伸方向上,减小呼吸气体在通气通道23和吸气通道37内的流动阻力。
更为具体的,管路连接部30设有与吸气通道37连通的分流通道39和与分流通道39连通的两个分支通道310,两个分支通道310分别与两个通气通道23连通。分流通道39大致与合流通道33平行。分流通道30与吸气通道37的第二吸气段372连接。分流通道39一半开设于第一拼接件40,另一半开设于第二拼接件50。两个分支通道310分别设置于第一拼接件40和第二拼接件50。分支通道310与通气通道23平行,以减小患者吸气做功。
可以理解的是,在患者吸气阶段,吸气管路端口36可以经管路与呼吸机连接,吸气管路端口36从呼吸机获取通气气体,并经吸气通道37和通气通道23输出至患者。在患者呼气阶段,患者呼出气体至通气通道23,利用呼气压力大于通气配件10的气路中平均压,使得呼出气体与维持平均压的基础流一同经呼气通道35呼出。
进一步地,请参阅图7和图8,呼吸连接部20设有第二采样端口222,第二采样端口222用以与鼻塞、面罩、或鼻罩等与患者接触的患者接口连通,管路连接部30设有与第二采样端口222连通的第二采样连接端口312。
本实施方式中,第二采样端口222与第一采样端口22分离设置,以及与通气配件端口21分离设置。第二采样端口222位于两个通气配件端口21之间。第二采样端口222朝向大致与通气配件端口21朝向相平行。第二采样端口222一半开设于第一拼接件40,另一半开设于第二拼接件50。第二采样连接端口312设置于管路连接部30的底部。第二采样连接端口312位于第一采样连接端口31和吸气管路端口36之间。第二采样连接端口312朝向与第一采样连接端口311朝向相平行。第二采样端口222可以为压力监测端口,第二采样连接端口312可以经管路连接至具有压力监测功能的呼吸机,第二采样端口222经第二采样连接端口312连通具有压力监测功能的呼吸机,利用具有压力监测功能的呼吸机对患者呼吸通气气路中的气压进行监测。管路连接部30设有连接第二采样端口222和第二采样连接端口312的第二采样输出通道313。第二采样输出通道313一半设置于第一拼接件40,另一半设置于第二拼接件50。第二采样输出通道313沿弯曲曲线延伸,以减小气流传输阻力。当然,在其他实施方式中,第二采样端口222也可以获取患者呼吸气体的水分子,第二采样连接端口312可以与具有湿度分析功能的呼吸机连接,以呼吸机监测患者呼吸气体的湿度。呼吸连接部20还可以设有第三采样端口,管路连接部还可以设有与第三采样端口连通的第三采样连接端口;第三采样端口可以与第一采样端口22及第二采样端口222分离;本申请的通气配件对采样端口的数 量和连接至监测设备的采样连接端口的数量不作限定,以及对采样端口的采样方式不作限定。
在另一个实施例中,如图12所示,与图7和图8所示实施例不同的是,第二采样端口222设置于通气配件端口21内,并与第一采样端口22分离设置。第二采样端口22可以设置于通气通道23的内壁上。第二采样连接端口22与两个第二采样端口222连通。呼吸连接部20设有两个第二采样进气通道3131。两个第二采样进气通道3131分别与两个第二采样端口222连接。管路连接部20设有与第二采样连接端口22连接的第二采样输出通道313。第二采样输出通道与第二采样进气通道3131连接。
请参阅图13和图14,本申请还提供一种患者通气接口100,患者通气接口100包括通气配件10。患者通气接口100还包括患者接口70,患者接口70为无创通气接口。患者接口70连接于通气配件10的呼吸连接部20。患者接口70可以为鼻塞、鼻罩、口鼻罩或呼吸面罩等。
本实施方式中,患者接口70为鼻塞。患者接口70与患者接触,以使通气配件10的通气配件端口21与患者通气。患者接口70与通气配件10可拆卸地固定连接。
具体的,请一并参阅图7、图8和图14,呼吸连接部20设有第一插接部25,第一插接部25为插接凹槽。第一插接部25与患者接口70适配,通气配件端口21、第一采样端口22和第二采样端口222设置于第一插接部25底部,方便与患者接口70连通。更为具体的,呼吸连接部20的第一端面41和第二端面51设置于第一插接部25底部。呼吸连接部20在第一插接部25底部设有两个插接管路26。两个插接管路26分别设置于第一拼接件40和第二拼接件50。两个通气配件端口21分别设置于两个插接管路26,两个通气通道23分别由两个插接管路26端面朝管路连接部30延伸。两个插接管路26可以与患者接口70相插接,实现通气配件端口21和第一采样端口22连通至患者接口70。插接管路26的侧壁设有连通通气通道23的缺口27,增大通气通道23的气流传输空间,以增大通气通道23与患者接口70通气速率。呼吸连接部20在第一插接部25的开口端设有两个扩展耳部28。两个扩展耳部28分别设置第一拼接件40和第二拼接件50。两个扩展耳部28用以与患者接口70适配,增加通气配件10与患者接口70的连接稳固性。
患者接口70包括连接部71和接触部72。连接部71与呼吸连接部20可拆卸地固定连接。连接部71设置第二插接部710。第二插接部710为插接凸台。第二插接部710可插入通气配件10的第一插接部25内。连接部71设有连接端口711,连接端口711设置于第二插接部710的端部。将第二插接部710与通气配件10的第一插接部25插接配合,连接端口711可以供两个插接管路26插入,连接端口711与通气配件端口21、第一采样端口22和第二采样端口222连通。接触部72用以与患者接触,接触部72设有与连接端口711连通的患者通气端口721。接触部72设有两个通气插管722。两个患者通气端口721分别设置于两个通气插管722上。两个通气插管722可以与患者的两鼻孔对接。通气配件端口21与患者通气端口721相对设置,以使得患者可以朝通气配件端口21呼吸气体。通气插管722的中心轴线与两个插接管路26的中心轴线大致同轴设置,使得患者通气端口721内的气流方向与通气配件端口21内的气流方向大致相平行,且患者通气端口721内的气流方向与第一采样端口22内的采样气流方向大致相平行。
当然,在其他实施方式中,第一插接部25和第二插接部710还可以是分别为插接凸台和 插接凹槽相配合结构,也可以是分别为插接卡槽和插接卡扣相配合结构,还可以是分别为插接孔和插接柱相配合结构。
患者接口70可以采用塑胶、橡胶、硅胶等具有弹性形变性能的柔性材料,以保证患者接口70与患者接触的舒适性和气密性。接触部72设有两个扩展片723。两个扩展片723分别与两个扩展耳部28相配合,以增加患者接口70与通气配件10的连接稳固性。
在另一个实施例中,如图15所示,与图13和图14所示实施例不同的是,连接部71与呼吸连接部20可拆卸地转动连接。
具体的,呼吸连接部20设有轴承凹槽204、固定于轴承凹槽204内的第一轴承套205和与第一轴承套205转动配合的第二轴承套206。通气配件端口21、第一采样端口22和第二采样端口222均设置于轴承凹槽204底部,并与第二轴承套206内侧空间相对。连接部71设有与第二轴承套206插接的转动插接轴712。连接端口711设置于转动插接轴712端部。
第一轴承套205的外周侧壁与轴承凹槽204内周侧壁过盈配合。第二轴承套206位于第一轴承套205内侧。第二轴承套206与第一轴承套205之间设置多个滚珠207,以减小第二轴承条206与第一轴承套205的转动摩擦力。第二轴承套206内侧臂设有插接卡槽208。转动插接轴712的外侧壁设有插接卡板713。转动插接轴712插入第二轴承套206内侧,插接卡板713与插接卡槽208插接紧密配合,以限制转动插接轴712相对第二轴承套206转动,且方便转动插接轴712与第二轴承套206可拆卸。
在另一个实施例中,如图16所示,与图13和图14所示实施例不同的是,连接部71与呼吸连接部20可拆卸地伸缩连接。
具体的,呼吸连接部20设有滑动槽209,通气配件端口21、第一采样端口22和第二采样端口222均设置于滑动槽209底部。连接部70设有滑杆714,滑杆714滑动连接于滑动槽209,连接端口711设置于滑杆714端部。
滑动槽209内周侧壁设有导向槽2091。滑杆714的外周侧壁设有导向凸缘715。导向凸缘715与导向槽2091滑动配合,且导向凸缘715的侧壁设有阻尼片,以增加滑动杆714在滑动槽209内的滑动阻尼力,防止滑动杆714在滑动槽209内随意滑动,以满足根据需要调节呼吸连接部20与连接部71的伸缩长度。通气配件10还设有可拆卸连接呼吸连接部20的滑动限位销2092。滑动限位销2092由呼吸连接部20外侧壁穿过至滑动槽209内。滑动限位销2092一端位于滑动槽209内。滑动杆714的外侧壁还设有限位配合槽716。滑动限位销2092的一端在限位配合槽716内滑动配合,以限制滑杆714脱离滑动槽209。
进一步地,请参阅图17和图18,患者通气接口100包括呼气管60,呼气管60与管路连接部30固定连接,呼气管60设有一个呼气总腔61和两个与呼气总腔61连通的呼气分腔62,两个呼气分腔62分别与两个呼气通道35连通。
本实施方式中,呼气管60与通气配件10可拆卸连接。呼气管60包括直通管63和设置于直通管63周侧的两个分通管64。呼气总腔61设置于直通管63内。两个呼气分腔62设置于两个分通管64内。分通管64大致与呼气通道35平行。直通管63大致与分通管64垂直。两个分通管64远离直通管63的一端可插入呼气管路端口34内。直通管63远离分通管64的一端设置呼气管路端口,通过呼吸管路端口与管路插接,呼气管60经管路与呼吸机连通,以实现呼吸机接收患者呼出的气体。
请参阅图19、图20和图21,在另一个实施例中,与图13和图14所示实施例不同的是,第一采样端口22和第一采样连接端口31设置于患者接口70。具体的,患者接口70为鼻塞,患者接口70设有可插入患者鼻端的通气插管722,患者通气端口721和第一采样端口22设置于通气插管722。通气配件10的呼吸连接部20设有通气配件端口21和第二采样端口222。通气配件10的管路连接部30设有呼气管路端口34、吸气管路端口36和第二采样连接端口312,呼气管路端口34与通气配件端口21连通,吸气管路端口36与通气配件端口21连通,第二采样连接端口312与第二采样端口222连通。患者接口70与通气配件10可拆卸连接。患者接口70的接触部72设有患者通气端口721和第一采样端口22。第一采样端口22设置于患者通气端口721内。通过在通气插管722内设置内置采样管路7221,将第一采样端口22设置于内置采样管路7221,实现第一采样端口22内置于患者通气端口721内,在患者通气端口721与患者的鼻端对接后,第一采样端口22可以较快获取患者呼出的气体。患者接口70的连接部71设有与通气配件端口21和第二采样端口222连通的连接端口711。呼吸连接部20的插接管路26可插入连接端口711。患者接口70的外侧通过设置外置采样连接管路701,将第一采样连接端口31设置于外置采样连接管路701,第一采样连接端口31可经管路连接至采样监测设备,监测设备与患者接口70连通,实现监测设备对患者呼吸气路中的气体进行监测。
请参阅图22、图23和图24,在另一个实施例中,与图13和图14所示实施例不同的是,患者接口70为鼻罩。患者接口70设有可接触患者面部的接触端口724和由所述接触端口724延伸的呼吸腔体723。呼吸腔体723可罩住患者鼻端。患者通气端口721及第一采样端口22位于患者接口70与接触端口724相对的一侧。患者通气端口721经呼吸腔体723与患者通气,第一采样端口22经呼吸腔体723进气采样。接触端口724可以与患者的鼻子适配,以增加患者接口70与患者接触的气密性以及舒适性。利用接触端口724与患者通气端口721相对,使得在患者佩戴患者接口70后,患者鼻孔靠近患者通气端口721。患者的鼻孔大致朝通气配件端口21呼吸气体。
为了方便第一采样端口22进气采样,第一采样端口22至接触端口724的距离小于患者通气端口721至接触端口724的距离。具体的,接触部72在呼吸腔体723内侧壁设有采样管路725。采样管路725一端靠近接触端口724,另一端延伸至患者通气端口721。第一采样端口22设置于采样管路725靠近接触端口724一端。连接部71设有与第一采样端口22连通的第一采样连接端口31。第一采样连接端口31与采样管路725的内部采样气体通道连通。第一采样端口22可以经气体通道与第一采样连接端口31连通。连接部71的底部设有两个第一采样连接端口31。两个第一采样连接端口31可以经管路与监测设备连接。患者接口70的连接部71设有与患者通气接口721连通的连接端口711。
通气配件10的呼吸连接部20设有通气配件端口21和第二采样端口222。通气配件端口21设置于呼吸连接部20的插接管路26。通气配件10的管路连接部30设有呼气管路端口34、吸气管路端口36和第二采样连接端口312,呼气管路端口34与通气配件端口21连通,吸气管路端口36与通气配件端口21连通,第二采样连接端口312与第二采样端口222连通。患者接口70与通气配件10可拆卸连接。呼吸连接部20的插接管路26可插入连接端口711。连接端口711与通气配件端口21和第二采样端口222连通。
本发明在无创通气的过程中,通过患者通气接口在患者近鼻端上增加采样端口,可以 利用采样端口采集患者呼出气体,并利用采样连接端口将呼出气体通入至气体检测传感器模块、或气体分析仪以分析监测气体浓度、湿度、温度、压力等参数,用以评估患者的呼吸通气水平。由于采样端口处于患者的近鼻端,可以准确地测量患者吸入和呼出气体中的浓度、湿度、温度或压力等参数,例如准确测量患者呼出的二氧化碳浓度。通过最大程度地排除了用以产生呼吸平均压和PEEP压(呼气末压力)的新鲜气体的干扰,可以准确获取患者呼吸气体浓度值和变化趋势来反映患者的新陈代谢、血气分压、肺泡通气功能和参数,支持医护人员进行诊断。
以上对本申请实施例所提供的一种通气配件及患者通气接口进行了详细介绍,本文中应用了具体个例对本申请的原理及实施例进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施例及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (28)

  1. 一种通气配件,其特征在于,所述通气配件包括呼吸连接部和与所述呼吸连接部连接的管路连接部,所述呼吸连接部与患者接口连接,所述呼吸连接部设有通气配件端口和第一采样端口,所述管路连接部设有通气管路端口和第一采样连接端口,所述通气管路端口与所述通气配件端口连通,所述第一采样连接端口与所述第一采样端口连通。
  2. 如权利要求1所述的通气配件,其特征在于,所述呼吸连接部与所述管路连接部固定连接。
  3. 如权利要求1所述的通气配件,其特征在于,所述呼吸连接部与所述管路连接部转动连接。
  4. 如权利要求1所述的通气配件,其特征在于,所述呼吸连接部与所述管路可伸缩地连接。
  5. 如权利要求1所述的通气配件,其特征在于,所述第一采样端口设置于所述通气配件端口内。
  6. 如权利要求5所述的通气配件,其特征在于,所述呼吸连接部设有由所述通气配件端口延伸的通气通道,以及设有由所述第一采样端口延伸的第一采样进气通道,所述第一采样进气通道内的采样抽取气流方向与所述通气通道内的患者呼出或吸入气流方向相平行。
  7. 如权利要求6所述的通气配件,其特征在于,所述第一采样进气通道设置于所述通气通道内。
  8. 如权利要求7所述的通气配件,其特征在于,所述第一采样进气通道端部伸出所述通气通道。
  9. 如权利要求1~8任意一项所述的通气配件,其特征在于,所述第一采样连接端口设置于所述管路连接部连接所述呼吸连接部的一端。
  10. 如权利要求1~8任意一项所述的通气配件,其特征在于,所述呼吸连接部设有第二采样端口,所述管路连接部设有与所述第二采样端口连通的第二采样连接端口。
  11. 如权利要求10所述的通气配件,其特征在于,所述第二采样端口与所述第一采样端口分离设置。
  12. 如权利要求10所述的通气配件,其特征在于,所述第二采样端口与所述通气配件端口分离设置。
  13. 一种患者通气接口,其特征在于,所述患者通气接口包括权利要求1~12任意一项所述的通气配件,所述患者通气接口还包括患者接口,所述患者接口为无创通气接口,所述患者接口连接于所述呼吸连接部,所述患者接口与患者接触。
  14. 如权利要求13所述的患者通气接口,其特征在于,所述患者接口包括连接部和接触部,所述连接部与所述呼吸连接部连接,所述连接部设有连接端口,所述连接端口与所述通气配件端口及所述第一采样端口连通,所述接触部与患者接触,所述接触部设有与所述连接端口连通的患者通气端口。
  15. 如权利要求14所述的患者通气接口,其特征在于,所述连接部与所述呼吸连接部可拆卸地固定连接。
  16. 如权利要求15所述的患者通气接口,其特征在于,所述呼吸连接部设有第一插接部,所述连接部设有第二插接部,所述第二插接部与所述第一插接部插接配合后,所述连接端口与所述通气配件端口和第一采样端口对接。
  17. 如权利要求16所述的患者通气接口,其特征在于,所述呼吸连接部在所述第一插接部设有插接管路,所述插接管路可插入所述连接端口,所述通气配件端口设置于所述插接管路。
  18. 如权利要求14所述的患者通气接口,其特征在于,所述连接部与所述呼吸连接部可拆卸地转动连接。
  19. 如权利要求18所述的患者通气接口,其特征在于,所述呼吸连接部设有轴承凹槽、固定于所述轴承凹槽内的第一轴承套和与所述第一轴承套转动配合的第二轴承套,所述连接部设有与所述第二轴承套插接的转动插接轴。
  20. 如权利要求14所述的患者通气接口,其特征在于,所述连接部与所述呼吸连接部可拆卸地伸缩连接。
  21. 如权利要求20所述的患者通气接口,其特征在于,所述呼吸连接部设有滑动槽,所述连接部设有滑杆,所述滑杆滑动连接于所述滑动槽。
  22. 如权利要求14所述的患者通气接口,其特征在于,所述患者通气端口内的气流方向与所述第一采样端口内的采样气流方向相平行。
  23. 如权利要求13~22任意一项所述的患者通气接口,其特征在于,所述患者通气接口包括呼气管,所述呼气管与所述管路连接部可拆卸连接,所述呼气管设有与所述呼气端口连通的呼气管路端口。
  24. 一种患者通气接口,其特征在于,所述患者通气接口包括通气配件和患者接口,所述通气配件设有通气配件端口和与所述通气配件端口连通的通气管路端口,所述患者接口与所述通气配件连接,所述患者接口设有患者通气端口、第一采样端口和第一采样连接端口,所述患者通气端口与所述通气配件端口连通,所述第一采样端口与所述第一采样连接端口连通。
  25. 如权利要求24所述的患者通气接口,其特征在于,所述患者接口设有可接触患者面部的接触端口和由所述接触端口延伸的呼吸腔体,所述呼吸腔体可罩住患者鼻端,所述患者通气端口及所述第一采样端口位于所述患者接口与所述接触端口相对的一侧,所述患者通气端口经所述呼吸腔体与患者通气,所述第一采样端口经所述呼吸腔体进气采样。
  26. 如权利要求25所述的患者通气接口,其特征在于,所述第一采样端口至所述接触端口的距离小于所述患者通气端口至所述接触端口的距离。
  27. 如权利要求24所述的患者通气接口,其特征在于,所述患者接口设有可插入患者鼻端的通气插管,所述患者通气端口和所述第一采样端口设置于所述通气插管。
  28. 如权利要求24~27任意一项所述的患者通气接口,其特征在于,所述通气配件设有与所述患者通气端口连通的第二采样端口,以及设有与所述第二采样端口连通的第二采样连接端口。
PCT/CN2019/072706 2019-01-22 2019-01-22 通气配件及患者通气接口 WO2020150905A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/072706 WO2020150905A1 (zh) 2019-01-22 2019-01-22 通气配件及患者通气接口
CN201980083039.5A CN113195025B (zh) 2019-01-22 2019-01-22 通气配件及患者通气接口

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072706 WO2020150905A1 (zh) 2019-01-22 2019-01-22 通气配件及患者通气接口

Publications (1)

Publication Number Publication Date
WO2020150905A1 true WO2020150905A1 (zh) 2020-07-30

Family

ID=71735636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072706 WO2020150905A1 (zh) 2019-01-22 2019-01-22 通气配件及患者通气接口

Country Status (2)

Country Link
CN (1) CN113195025B (zh)
WO (1) WO2020150905A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202211917U (zh) * 2011-08-04 2012-05-09 中国人民解放军第三军医大学第一附属医院 多功能面罩
EP2589404A1 (en) * 2011-11-07 2013-05-08 General Electric Company Breathing mask for ventilating a patient and gas analyzer for respiratory gas measurement
WO2013083958A1 (en) * 2011-12-08 2013-06-13 Europlaz Technologies Limited Respiratory gas flow sensor with sampling port
WO2016007749A2 (en) * 2014-07-11 2016-01-14 Monitor Mask Inc. Facial access oxygen face mask and component system
CN106563199A (zh) * 2015-10-08 2017-04-19 北京谊安医疗系统股份有限公司 一种用于呼吸机的呼吸阀
CN107802934A (zh) * 2017-11-29 2018-03-16 天津市塑料研究所有限公司 零死腔插管型喉罩呼吸系统
CN108025154A (zh) * 2015-07-20 2018-05-11 费雪派克医疗保健有限公司 呼气端口

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1820528A1 (en) * 2006-02-20 2007-08-22 General Electric Company Patient breathing circuit
US8607794B2 (en) * 2010-10-05 2013-12-17 Carefusion 207, Inc. Non-invasive breathing assistance apparatus and method
GB201317499D0 (en) * 2013-10-03 2013-11-20 Flexicare Medical Ltd Naso-Oral Device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202211917U (zh) * 2011-08-04 2012-05-09 中国人民解放军第三军医大学第一附属医院 多功能面罩
EP2589404A1 (en) * 2011-11-07 2013-05-08 General Electric Company Breathing mask for ventilating a patient and gas analyzer for respiratory gas measurement
WO2013083958A1 (en) * 2011-12-08 2013-06-13 Europlaz Technologies Limited Respiratory gas flow sensor with sampling port
WO2016007749A2 (en) * 2014-07-11 2016-01-14 Monitor Mask Inc. Facial access oxygen face mask and component system
CN108025154A (zh) * 2015-07-20 2018-05-11 费雪派克医疗保健有限公司 呼气端口
CN106563199A (zh) * 2015-10-08 2017-04-19 北京谊安医疗系统股份有限公司 一种用于呼吸机的呼吸阀
CN107802934A (zh) * 2017-11-29 2018-03-16 天津市塑料研究所有限公司 零死腔插管型喉罩呼吸系统

Also Published As

Publication number Publication date
CN113195025A (zh) 2021-07-30
CN113195025B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
US11458270B2 (en) High flow therapy device utilizing a non-sealing respiratory interface and related methods
US20210353885A1 (en) High flow therapy device utilizing a non-sealing respiratory interface and related methods
US7568483B2 (en) Patient interface with respiratory gas measurement component
JP6284513B2 (ja) 呼吸器具及びアダプタ
US9138169B2 (en) Oxygen facemask with capnography monitoring ports
EP2383008B1 (en) Arrangement for maintaining volume of breathing gas in a desired level
JP6293760B2 (ja) 呼吸マスク
JP2719541B2 (ja) 治療用ガスを吸入させかつ定量分析用の呼気ガスをサンプリングするための装置
EP2163275A1 (en) Branching unit for delivering respiratory gas of a subject
EP2589404A1 (en) Breathing mask for ventilating a patient and gas analyzer for respiratory gas measurement
US8925549B2 (en) Flow control adapter for performing spirometry and pulmonary function testing
US20170021122A1 (en) Filter heat and moisture exchange device
WO2014193847A1 (en) Breathing mask for ventilating a patient
US11779724B2 (en) Respiration sensor attachment device
US11478596B2 (en) System and method for high flow oxygen therapy
WO2020150905A1 (zh) 通气配件及患者通气接口
US20230084620A1 (en) High flow therapy device utilizing a non-sealing respiratory interface and related methods
US11318267B2 (en) High flow therapy device utilizing a non-sealing respiratory interface and related methods
CN211096798U (zh) 麻醉呼吸管路接头及其组件
CN215741171U (zh) 一种可同时满足胃镜下吸氧及气体监测的一体化装置
CN215024296U (zh) 一种呼气二氧化碳监测鼻氧管
US11696992B2 (en) High flow therapy device utilizing a non-sealing respiratory interface and related methods
WO2016119561A1 (zh) 呼吸机及其气道辅助装置
AU2021221742A1 (en) Patent interface gas sampling
KR20240010716A (ko) 환자 인터페이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911132

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19911132

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19911132

Country of ref document: EP

Kind code of ref document: A1