WO2020149280A1 - Real-time processing state display device - Google Patents

Real-time processing state display device Download PDF

Info

Publication number
WO2020149280A1
WO2020149280A1 PCT/JP2020/000962 JP2020000962W WO2020149280A1 WO 2020149280 A1 WO2020149280 A1 WO 2020149280A1 JP 2020000962 W JP2020000962 W JP 2020000962W WO 2020149280 A1 WO2020149280 A1 WO 2020149280A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
data
tool
machining
acceleration
Prior art date
Application number
PCT/JP2020/000962
Other languages
French (fr)
Japanese (ja)
Inventor
憲吾 山本
貴行 山内
村上 浩二
Original Assignee
株式会社山本金属製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山本金属製作所 filed Critical 株式会社山本金属製作所
Priority to JP2020566417A priority Critical patent/JPWO2020149280A1/en
Publication of WO2020149280A1 publication Critical patent/WO2020149280A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4063Monitoring general control system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/409Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using manual data input [MDI] or by using control panel, e.g. controlling functions with the panel; characterised by control panel details or by setting parameters

Definitions

  • the present invention relates to a real-time machining state display device capable of visualizing in real time physical changes such as temperature and acceleration at a machining position of a tool etc. of a machine tool.
  • Patent Documents 1 to 3 a tool holder unit for machine tools that can measure the temperature and acceleration of a rotating tool during processing, and has also developed and provided technology for predicting abnormalities such as tool damage based on the measurement results.
  • This technique is advantageous in that it can detect the physical change of the tool or the like during processing in real time and can detect an abnormality by an external device (such as a personal computer) that can wirelessly communicate with the tool or the machine tool.
  • an external device such as a personal computer
  • the present invention was created in view of the above circumstances, and physical changes such as temperature and acceleration in a machining tool such as a tool of a machine tool are displayed at the same time as the three-dimensional position of machining, and the physical change occurs at the actual machining position. It is an object of the present invention to provide a real-time machining status display device that visualizes the situation in real time.
  • the real-time processing state display device of the present invention is specifically A real-time machining status display device for mapping the status on the machining path of a machining tool at the tip of a machine tool, Measuring means for chronologically monitoring one or more physical quantity data of at least the temperature, acceleration or stress of the processing tool, Position acquisition means for reading the time series coordinates of the working tool from the time information and position information of the operation control means (CNC) of the machine tool, Based on the time-series physical quantity data from the measuring means and the time-series coordinate data from the position acquisition means, the physical quantity data at the coordinates on the processing path are converted into visualization data and displayed at the position on the processing path.
  • the real-time machining status display device of the present invention changes in temperature, acceleration and stress of the machining tool used in the machine tool can be mapped and visualized on the machining path. Specifically, the temperature, acceleration, and stress of the machining tool are monitored in real time, and the measurement data output in time series is displayed on the axis of the machining tool position/time based on the control numerical information (CNC) of the machine tool. It is converted into data, and the status of the processing tool at each coordinate is plotted by color change etc. and mapped. As a result, it becomes possible to easily understand where in the three-dimensional coordinates the state change of the processing tool, which has been difficult to understand at first glance as a change in the measured value in a predetermined time, occurs.
  • CNC control numerical information
  • the mapping unit converts the physical quantity data into a color designation value set in advance corresponding to a predetermined numerical value of the physical quantity data and displays the color designation value on a pixel corresponding to the coordinate data. ..
  • the mapping means presets a color designation value (RGB value) corresponding to a predetermined measurement value of temperature, acceleration, or stress, and sets a color designation value corresponding to the actual measurement value on the display screen. It is displayed on the pixel indicating the three-dimensional coordinates of the processing tool.
  • RGB value color designation value
  • the measuring means has a thermocouple inserted in the machining tool, and a temperature measuring unit that outputs information from the thermocouple as temperature data,
  • the mapping means displays temperature data in the XY plane, the XZ plane, and the YZ plane based on the coordinate data.
  • the measuring means includes an acceleration sensor arranged in a machine tool or a tool holder gripped by the machine tool, and an acceleration measuring unit that outputs information from the acceleration sensor as acceleration data,
  • the time-series coordinate data from the position acquisition means is coordinate data in the three-dimensional XYZ directions
  • the mapping means displays temperature data in the XY plane, the XZ plane, and the YZ plane based on the coordinate data.
  • thermocouple data obtained by inserting a thermocouple into the machining tool and measuring the temperature, and measuring data by an acceleration sensor mounted on a tool holder that is connected to the spindle of the machine tool and holds the machining tool are used.
  • XY plane view, XZ plane view and YZ plane view are preferable because all three-dimensional positions of the processing tool and the measured values of temperature and acceleration can be visualized on one display screen.
  • the machine tool is a rotary tool that rotates the machining tool to machine the workpiece
  • the acceleration sensor is located on a horizontal plane in the tool holder at a position symmetrical in the radial direction with respect to the center of the rotation axis of the rotary tool.
  • it is composed of a pair of acceleration sensors arranged in a pair, and a pair of acceleration sensors arranged in a position having a phase difference of approximately 90°.
  • the present real-time machining state display device since it is possible to detect acceleration in the horizontal direction and the rotational direction, for example, abnormal vibration during cutting can be understood at a glance at the position and measurement value on the machining path, and the machining accuracy can be improved. It is possible to visualize the cause of a large decrease in the so-called "chatter", which is a precursor of tool damage, and the occurrence of stick-slip phenomenon during tapping. In addition, it is possible to search for optimum machining conditions such as the rotation speed, feed rate, and depth of cut of the machining tool, and at the same time achieve and contradict the contradictory phenomenon of speeding up the machining process and safety (prevention of tool breakage). be able to.
  • the mapping means displays at least the temperature data or acceleration data in the XY plane in the XY plane display window, displays the temperature data or acceleration data in the XZ plane in the XZ plane display window, and displays the temperature data in the YZ plane.
  • the acceleration data is displayed in the YZ plane display window, and the preset color designation value corresponding to each numerical value of the temperature data or the acceleration data is displayed in the color conversion table window.
  • temperature measurement data and acceleration measurement data can be displayed in XY plane view, XZ plane view point and YZ plane view on one display screen, and at the same time, the measured value of the plotted color. Is advantageous because it can be visualized as to whether or not it is close to the limit.
  • a machine tool from a measuring means included in a machine tool for measuring physical quantity data of one or more of temperature, acceleration or stress of a machining tool and an operation state of the machine tool is displayed on the same time axis.
  • measurement data of machine tools such as servo motors, acceleration pickups, dynamometers, and displacement meters can be displayed on the same time axis time chart.
  • another embodiment of the present invention provides a real-time machining status display device for displaying the status change on the machining path of the machining tool at the tip of the machine tool.
  • This real-time machining state display device measures and stores one or more physical quantity data of temperature, acceleration, or stress of a machining tool at a reference time point, and uses the time information and the position information of the operation control means of the machine tool to indicate that the machine is operating.
  • a reference data creating means for creating reference data by reading the time-series coordinates of the processing tool, and a physical quantity data measured and saved by the reference data creating means at the time when a predetermined time has elapsed from the reference time.
  • Comparing data creating means for creating comparative data by reading the time series coordinates of the working tool from the time information and position information of the operation controlling means, the reference data creating means, and the comparative data creating means. Based on the time series coordinates of the processing tool, the comparison calculation means for calculating the difference between the physical quantity data at the time series coordinates of the processing tool read from and the difference between the physical quantity data calculated by the comparison calculation means. Display means for displaying the coordinates on the path.
  • this real-time machining status display device it is possible to quantitatively evaluate changes over time, deterioration, and abnormalities of machining tools, machine tools, and their parts, reduce the frequency of defective products, improve machining dimensional accuracy, It is possible to improve the quality of the processed surface of the workpiece.
  • the real-time machining status display device of the present invention with respect to changes in physical quantities such as temperature and acceleration in a machining tool such as a tool of a machine tool, the three-dimensional coordinates of the machining position and the physical quantities such as temperature and acceleration are simultaneously displayed, and actually displayed. By displaying the situation occurring at the machining position in real time, the abnormality detection location and its physical quantity can be visualized even in the case of complex shape machining.
  • FIG. 1 It is a schematic diagram showing a relation between acceleration and "chatter" in machining in a machine tool, a conventional measurement data, and an image of data displayed by a real-time machining state display device of the present invention.
  • A is a conventional display result image of the acceleration of the machining tool by monitoring the acceleration etc. of the machining tool of FIG. 1, and
  • (b) is a display result image of the acceleration of the machining tool in the real-time machining state display device. ..
  • A) shows an example of a screen that measures and displays the acceleration and temperature in real time when the actual workpiece is cut by the processing tool with this real-time processing status display device, and (b) shows the actual cutting.
  • a plan view photograph of an example of a workpiece being processed is shown.
  • the concrete example 1 of a processing flow in this real-time processing state display device is shown.
  • the concrete example 2 of a process flow in this real-time processing state display device is shown.
  • the concrete example 3 of a process flow in this real-time processing state display device is shown.
  • the concrete example 4 of a process flow in this real-time processing state display device is shown.
  • Fig. 1 is a conceptual diagram that schematically shows "chatter" during machining of a ball end mill used for milling as an example of a machining tool.
  • the ball end mill 1 is provided with a spherical cutting blade at its tip and is mounted on a spindle of a machining center as a processing device.
  • FIG. 1 shows the state of the ball end mill 1 at each of the positions (a) to (d) when the workpiece 2 to be cut by the ball end mill 1 has undulations in the vertical direction.
  • the ball end mill 1 can monitor the acceleration and temperature at the cutting edge at the tip in real time, but the acceleration monitoring will be described below by focusing on the “chatter” detection.
  • the tip (cutting edge) 1a of the ball end mill 1 is in contact with a high position 2a on the surface of the workpiece 2, and this position is assumed to be the machining start position.
  • the ball end mill 1 moves rightward with respect to the work piece 2 while cutting from there, the height of the work piece 2 becomes lower, and at the position (b), the height of the ball end mill is lower than that of the lower position 2b of the work piece 2.
  • the tip 1a is floated in the height direction, and the right side is pressed while being pressed by the workpiece to be cut. At this time, the acceleration of the ball end mill 1 increases, and a large "chatter" occurs as shown by the arrow in (b).
  • the ball end mill 1 further moves to the right, and the height of the workpiece 2 increases.
  • the acceleration becomes small and the "chatter" disappears.
  • the tip 1a of the ball end mill moves to the right and rises to a height slightly lower than the position (b)
  • the acceleration of the ball end mill 1 is again about the middle of the acceleration at the positions (b) to (c). It becomes large, and a moderate amount of "chatter” occurs as shown by the arrow in (d).
  • FIG. 2 exemplifies the conventional display result of the acceleration monitored by the ball end mill 1 of Fig. 1 and the display result of this real-time machining status display device.
  • FIG. 2A shows the display result of the conventional method, in which the time axis (time [s]) is the horizontal axis and the acceleration [m/s2] at each time is the vertical axis.
  • the acceleration is the same as at the position of FIG. 1(b), and at the position of (c), the acceleration is small like at the position of FIG. 1(c).
  • (C) the acceleration increases again as in the position shown in FIG. 1(d).
  • the display method of FIG. 2A there is a problem that it is difficult to grasp at a glance because the position where the acceleration is large and “chatter” occurs (b) is not visualized at which position on the workpiece 2. is there.
  • FIG. 2B is a display result example in the real-time machining state display device of the present invention, in which the horizontal position of the cutting edge 1a of the ball end mill 1 (the position in the X direction ([mm]) is taken as the horizontal axis).
  • the vertical position is the position of the cutting edge 1a of the ball end mill 1 in the height direction (the position in the Z direction ([mm]).
  • a lookup table shown in the upper right of FIG. In 4, the magnitude of acceleration is displayed in color, and the color changes stepwise from the color at the left end (min.) to the color at the right end (max.).
  • the acceleration display 3 in the figure shows the machining path (trajectory) of the position of the cutting edge 1a of the ball end mill 1 in the XZ direction, at the position on the machining path.
  • the acceleration is displayed in a color corresponding to the above-mentioned lookup table 4.
  • the maximum is the same as the position (b) of Fig. 1 and the position (b) of Fig. 2(a). 2 is measured, and a color corresponding to the acceleration is displayed (plotted) on the acceleration display 3. Therefore, in the case of the display of FIG. It is possible to visualize in real time that "chatter" has occurred on the cutting edge 1a of Fig. 2.
  • the acceleration at the position in the XZ direction is visualized. It is also possible to display the acceleration at the position in the XY direction or the position in the YZ direction, or to display these at the same time.
  • FIG. 3 shows a screen example in which the real-time machining state display device measures and displays the acceleration/temperature in real time when the actual workpiece 2 is cut by the ball end mill 1.
  • FIG. 2B shows plan view photographs of an example of the workpiece 2 that is actually cut.
  • the workpiece 2 which is a stainless steel thick plate is cut into a concave star shape.
  • the upper row shows the translational acceleration (ACCX) in the X direction of the cutting edge 1a of the ball end mill 1, the rotational acceleration around the axis (ACCR), and the temperature (TEMP) in order from the left.
  • the measured values at this display point are 4.780 (mm/S2), 447.609 (r ⁇ /S2), and 6698.640 (C°), respectively.
  • the vertical axis is the X direction
  • the horizontal axis is the Y direction in order from the top view showing the translational acceleration, rotational acceleration, and temperature on the machining path
  • the vertical axis is the X direction
  • the horizontal axis is the Z direction.
  • a front view showing translational acceleration, rotational acceleration, and temperature on the machining path, and a side view showing translational acceleration, rotational acceleration, and temperature on the machining path with the vertical axis in the Y direction and the horizontal axis in the Z direction are shown.
  • Switch tab 5 (timeChart, ACCX, ACC-R, Temperature) to display the time chart (see Fig. 2(a)), translational acceleration, rotational acceleration, and temperature.
  • the lookup table 4 (see the lookup table 4 in FIG. 2B) plotted as the measured values of acceleration and temperature on the machining path is shown in the lower stage.
  • Fig. 3(a) it is visualized by mapping that the acceleration is large especially in the contours and corners in the machining path of the star-shaped ball end mill machining, and "vibration", and in turn, deterioration of machining accuracy and tool It can be seen that the damage sign and its location are revealed in real time.
  • the time chart shown in FIG. 2(a) is displayed as shown in the time chart at the right end of the tab 5, and the temporal changes in translational acceleration, rotational acceleration, and temperature are displayed on the same time axis. It can also be displayed.
  • FIG. 4 shows an example of processing flow example 1 in which the temperature, acceleration, and force are monitored for changes in each processing of the processing tool 1 such as a ball end mill, and changes in the state of the blade (cutting blade, etc.) 1a are displayed.
  • the measuring means arranged in the tool holder of the machine tool measures the temperature, acceleration, force (stress) of the blade 1a in real time.
  • acceleration data translational acceleration or rotational acceleration
  • strain gauges or the like
  • the initial state of the blade 1a (at the start of processing) is detected, or the previous processing stored in the real-time processing state display device is performed.
  • the state of time and the amount of change of the blade 1a this time are calculated (ST3).
  • the processing is started, the amount of change in temperature, acceleration, and stress of the cutting tool 1a during processing which is read is displayed (ST4). Then, when the measurement of the variation amount is completed, the process is completed (ST5 to ST6).
  • FIG. 5 shows a processing flow example 2 in which data of a servo motor, an acceleration pickup, a dynamometer, a displacement meter, etc. are synchronously collected and plotted together with the temperature of the blade and the acceleration/force of the holder.
  • the machine tool and its peripheral equipment may be able to read measurement data other than the temperature, acceleration, and stress read in the processing flow example 1.
  • a servo motor for driving the machining tool 1 an acceleration pickup (vibration pickup) as a sensor that detects vibration and converts it into an electric signal, a dynamometer that measures power such as rotational torque from input/output data of a machine tool, It is a displacement meter or the like that measures the amount of movement of the blade 1a and the spindle.
  • the auxiliary use of these measurement data can improve the accuracy of abnormality detection of the processing tool 1.
  • the temperature, acceleration, and force (stress) of the blade 1a are read in real time (ST2).
  • the temperature data, the acceleration data, and the stress data of the processing tool 2 are read (ST2)
  • the data from the servo motor, the acceleration pickup, the dynamometer, and the displacement meter are read (ST7).
  • the process is completed (ST5 to ST6).
  • the measurement data of the temperature, acceleration, and stress of the processing tool 2 the measurement data of the machine tool such as the servo motor, the acceleration pickup, the dynamometer, and the displacement meter are displayed on the same time axis (see Fig. 2 ( a) and the left end (time chart) of tab 5 in FIG. 3)) are displayed in real time, the accuracy of machining abnormality detection can be further improved.
  • FIG. 6 shows a processing flow example 3 in which the temperature, acceleration, and stress of the cutting tool 1a of the processing tool 1 are mapped and visualized. According to this processing flow example 3, it is possible to visually convey to an operator such as a beginner engineer a portion where an abnormality such as overheating and chatter is likely to occur or a portion where the abnormality actually occurs.
  • the temperature, acceleration, and force (stress) of the blade 1a are read in real time (ST2).
  • the read temperature/acceleration/stress data is converted into a predetermined color according to each value.
  • the colors set according to the respective values of temperature, acceleration, and stress are displayed on the lookup table 4 or the like as shown in FIGS.
  • the color set in ST9 in each measurement value of temperature, acceleration, and stress is in the coordinate plane on the display corresponding to the position coordinates of the processing point read in ST10 (see windows 6, 7, and 8 in FIG. 3).
  • a pixel (voxel) in the coordinate space (XYZ coordinate space) of the three-dimensional window and is mapped in real time over the entire area being processed (ST11).
  • the processing ends (ST5 to ST6).
  • the frequency of defective products of the processing tool 1 is reduced, the processing dimension accuracy of the workpiece 2 is improved, the quality of the processing surface is improved, the work efficiency is improved, and the sense of the expert is quantitatively determined. Understanding and acquisition, even experts can gain new knowledge.
  • FIG. 7A shows an example of a processing flow for creating temperature data, acceleration data, and stress data (including updating) on the machining path of the reference tool 1a and the machine tool (and its tool holder) to create reference data.
  • FIG. 7(b) compares the temperature/acceleration/stress/coordinate data on each machining path after a predetermined period of the same machine tool with the reference data saved/created in (a), and is visible.
  • the example of the process flow to be displayed is shown.
  • the temperature, acceleration, and force (stress) of the blade 1a are read in real time (ST2).
  • the position coordinates (XYZ coordinates) of the current machining point are read from the CNC of the machine tool (ST10).
  • the temperature, acceleration, and stress measurement data read from ST2 and ST10 and the position coordinate data of the corresponding machining point are saved, and if the machining tool is replaced or the machine tool is activated, the reference data is used as the initial time. Are created (ST12).
  • the reference data is stored in, for example, a dedicated server or a cloud server, the reference data is stored, and the process ends when the measurement ends (ST5 to ST6).
  • the data is sequentially and periodically saved every time the process of FIG. 7A is performed, and the data is saved as comparison data. It is also possible to use the comparison data stored so far as the reference data for the previous measurement and set the current data as the comparison data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

[Problem] To provide a real-time processing state display device that maps the state of a processing tool at a tip of a machine tool along a processing path. [Solution] This real-time processing state display device comprises: a measurement means which monitors, in time series, one or more items of physical quantity data from among at least the temperature, acceleration, and stress of the processing tool; a position acquisition means which reads time-series coordinates of the processing tool in operation from time information and position information of an operation control means (CNC) of the machine tool; and a mapping means which, on the basis of time-series physical quantity data from the sensor and time-series coordinate data from the position acquisition means, converts physical quantity data associated with coordinates of positions along the processing path into visualized data and displays the visualized data at positions along the processing path.

Description

リアルタイム加工状態表示装置Real-time machining status display
 本発明は、工作機械の工具等の加工位置での温度・加速度等の物理変化についてリアルタイムに可視化し得るリアルタイム加工状態表示装置に関する。 The present invention relates to a real-time machining state display device capable of visualizing in real time physical changes such as temperature and acceleration at a machining position of a tool etc. of a machine tool.
 マシンニング切削加工装置等の工作機械において、加工精度の向上、工具破損防止等を考慮するには実際の加工時の工具の摩耗や疲労、破損、「びびり」等を評価することが要求される。しかしながら、従来、工具の評価は、装置メーカや工具メーカがその装置や工具ごとに行っており、一般的な評価基準、学術的に標準化された評価基準に基づいたものに留まり、加工時における実際の工具についてのリアルタイム検証はできていなかった。 In machine tools such as machining cutting machines, it is required to evaluate the wear, fatigue, damage, and "chatter" of tools during actual machining in order to improve machining accuracy and prevent tool damage. .. However, in the past, tool evaluations have been performed by equipment manufacturers and tool manufacturers for each equipment and tool, and they are limited to those based on general evaluation criteria and academically standardized evaluation criteria. Real-time verification of the tool was not completed.
 これに対して出願人は回転工具の加工中の温度や加速度を計測し得る工作機械のツールホルダユニットを開発・提供し、この計測結果に基づく工具破損等の異常予知技術についても開発・提供してきた(特許文献1~特許文献3)。この技術では加工中の工具等の物理変化をリアルタイムに検出でき、工具や工作機械と無線通信可能なの外部装置(パソコン等)で異常検出を行う点できる点で有利である。例えば、ボールエンドミル加工において加速度をモニタリングし、加工精度が低下し易い所謂「びびり」の発生を検出することも可能である。 On the other hand, the applicant has developed and provided a tool holder unit for machine tools that can measure the temperature and acceleration of a rotating tool during processing, and has also developed and provided technology for predicting abnormalities such as tool damage based on the measurement results. (Patent Documents 1 to 3). This technique is advantageous in that it can detect the physical change of the tool or the like during processing in real time and can detect an abnormality by an external device (such as a personal computer) that can wirelessly communicate with the tool or the machine tool. For example, it is also possible to monitor the acceleration in the ball end mill processing and detect the occurrence of so-called "chatter" in which the processing accuracy is likely to decrease.
 しかしながら、従来、検出される工具の温度・加速度等の変化は時系列であり、異常を検出してもそれがどの加工位置であるか詳細がわかり難いという問題があった。例えば上述するようにボールエンドミル加工中に加速度を計測しモニタリングし、加速度が閾値を超えて「びびり」が発生していると判断できたとしても、実際どの位置の加工において「びびり」が発生しているかが直ちにわかり難く、複雑形状を加工する際に加工対象における「びびり」箇所を特定が困難であった。このことは工具の温度・加速度等のリアルタイム計測データを一般加工現場で広く活用させ、高精度な加工が担保される社会の提供の阻害要件になっていると考えられる。 However, in the past, changes in the detected tool temperature, acceleration, etc. were chronological, and even if an abnormality was detected, it was difficult to know in detail which processing position it was. For example, as described above, even if the acceleration is measured and monitored during machining of the ball end mill and it is determined that the acceleration exceeds the threshold value and "chatter" has occurred, "chatter" actually occurs at any position of the machining. It was difficult to immediately understand if there was any, and it was difficult to identify the “chatter” part in the machining target when machining a complex shape. This is considered to be an obstacle to the provision of a society in which real-time measurement data such as tool temperature and acceleration are widely used in general machining sites and high-precision machining is guaranteed.
国際公開公報WO2015-022967International Publication WO2015-022967 国際公開公報WO2016-136919International Publication WO2016-136919 特開2018-54611号公報JP, 2018-54611, A
 本発明は上記実情に鑑みて創作されたものであり、工作機械の工具等の加工ツールにおける温度・加速度等の物理変化について、加工の3次元位置と同時に表示し、実際の加工位置で生じている状況をリアルタイムに可視化するリアルタイム加工状態表示装置を提供することを目的とする。 The present invention was created in view of the above circumstances, and physical changes such as temperature and acceleration in a machining tool such as a tool of a machine tool are displayed at the same time as the three-dimensional position of machining, and the physical change occurs at the actual machining position. It is an object of the present invention to provide a real-time machining status display device that visualizes the situation in real time.
 上記目的を達成するため具体的に本発明のリアルタイム加工状態表示装置は、
 工作機械の先端の加工ツールの加工パス上の状態をマッピングするリアルタイム加工状態表示装置であって、
 少なくとも加工ツールの温度、加速度又は応力のうちの1つ以上の物理量データを時系列でモニタリングする計測手段と、
 工作機械の動作制御手段(CNC)の時間情報及び位置情報から動作中の加工ツールの時系列の座標を読み取る位置取得手段と、
 前記計測手段からの時系列の物理量データと前記位置取得手段からの時系列の座標データとに基づいて、加工パス上の座標での物理量データを可視化データに変換して加工パス上の位置に表示するマッピング手段と、を有する。
To achieve the above object, the real-time processing state display device of the present invention is specifically
A real-time machining status display device for mapping the status on the machining path of a machining tool at the tip of a machine tool,
Measuring means for chronologically monitoring one or more physical quantity data of at least the temperature, acceleration or stress of the processing tool,
Position acquisition means for reading the time series coordinates of the working tool from the time information and position information of the operation control means (CNC) of the machine tool,
Based on the time-series physical quantity data from the measuring means and the time-series coordinate data from the position acquisition means, the physical quantity data at the coordinates on the processing path are converted into visualization data and displayed at the position on the processing path. Mapping means for
 本発明のリアルタイム加工状態表示装置によれば、工作機械で使用する加工ツールの温度や加速度、応力の変化を加工パス上でマッピングして可視化表示することができる。具体的には、加工ツールの温度や加速度、応力をリアルタイムにモニタリングし、時系列で出力される計測データを、工作機械の制御数値情報(CNC)に基づく加工ツールの位置/時間の軸の表示データに変換し、それぞれの座標での加工ツールの状況を色の変化等でプロットし、マッピングする。これにより従来、所定時間における計測値の変化としてしか一見理解し難かった加工ツールの状態変化が3次元座標のどこで発生しているか容易に理解できるようになる。例えば、上述したようなボールエンドミル加工において所謂「びびり」が発生すると加工ツールの加速度が大きくなり、複雑な形状を加工する場合ほど「びびり」による加工精度の低下や工具破損の問題がおおきくなるが、本装置を使用すれば加工パス上のどの位置で「びびり」が生じているかを一見して特定できるようになり有利である。 According to the real-time machining status display device of the present invention, changes in temperature, acceleration and stress of the machining tool used in the machine tool can be mapped and visualized on the machining path. Specifically, the temperature, acceleration, and stress of the machining tool are monitored in real time, and the measurement data output in time series is displayed on the axis of the machining tool position/time based on the control numerical information (CNC) of the machine tool. It is converted into data, and the status of the processing tool at each coordinate is plotted by color change etc. and mapped. As a result, it becomes possible to easily understand where in the three-dimensional coordinates the state change of the processing tool, which has been difficult to understand at first glance as a change in the measured value in a predetermined time, occurs. For example, when so-called "vibration" occurs in the ball end mill machining as described above, the acceleration of the machining tool increases, and as with the machining of complicated shapes, the problem of machining precision deterioration and tool breakage due to "chatter" becomes more serious. Advantageously, the use of this apparatus makes it possible to identify at a certain position on the processing path where "chatter" has occurred, which is advantageous.
 また、前記マッピング手段は、前記物理量データを、前記物理量データの所定数値に対応して予め設定した色指定値に変換し、該色指定値を座標データに対応する画素に表示する、ことが好ましい。 Further, it is preferable that the mapping unit converts the physical quantity data into a color designation value set in advance corresponding to a predetermined numerical value of the physical quantity data and displays the color designation value on a pixel corresponding to the coordinate data. ..
 具体的にマッピング手段は、温度や加速度、応力の所定の計測値に対応する色指定値(RGB値)を予め設定しておき、これに実際の計測値に対応する色指定値を表示画面上の加工ツールの3次元座標を示す画素に表示する。 Specifically, the mapping means presets a color designation value (RGB value) corresponding to a predetermined measurement value of temperature, acceleration, or stress, and sets a color designation value corresponding to the actual measurement value on the display screen. It is displayed on the pixel indicating the three-dimensional coordinates of the processing tool.
 また、本リアルタイム加工状態表示装置例として、前記計測手段は、加工ツール内に挿入された熱電対と、該熱電対からの情報を温度データとして出力する温度計測部とを有し、
 前記位置取得手段からの時系列の座標データは、3次元XYZ方向の座標データであり、前記マッピング手段は、該座標データに基づいてXY平面、XZ平面及びYZ平面内の温度データを表示する場合、又は、
 前記計測手段は、工作機械又は工作機械に把持されるツールホルダに配設される加速度センサと、該加速度センサからの情報を加速度データとして出力する加速度計測部とを有し、
 前記位置取得手段からの時系列の座標データは、3次元XYZ方向の座標データであり、前記マッピング手段は、該座標データに基づいてXY平面、XZ平面及びYZ平面内の温度データを表示する場合、がある。
Further, as an example of the present real-time machining state display device, the measuring means has a thermocouple inserted in the machining tool, and a temperature measuring unit that outputs information from the thermocouple as temperature data,
When the time-series coordinate data from the position acquisition means is coordinate data in the three-dimensional XYZ directions, and the mapping means displays temperature data in the XY plane, the XZ plane, and the YZ plane based on the coordinate data. Or
The measuring means includes an acceleration sensor arranged in a machine tool or a tool holder gripped by the machine tool, and an acceleration measuring unit that outputs information from the acceleration sensor as acceleration data,
When the time-series coordinate data from the position acquisition means is coordinate data in the three-dimensional XYZ directions, and the mapping means displays temperature data in the XY plane, the XZ plane, and the YZ plane based on the coordinate data. , There is.
 実際の表示例としては、加工ツール内に熱電対を挿入して温度計測したデータや、工作機械の主軸に連結して加工ツールを把持するツールホルダに配設した加速度センサで加速度計測したデータを、XY平面視、XZ平面視点及びYZ平面視で表示することが1つの表示画面で加工ツールの全て3次元位置と温度・加速度の計測値が可視化でき、好ましい。 As an actual display example, data obtained by inserting a thermocouple into the machining tool and measuring the temperature, and measuring data by an acceleration sensor mounted on a tool holder that is connected to the spindle of the machine tool and holds the machining tool are used. , XY plane view, XZ plane view and YZ plane view are preferable because all three-dimensional positions of the processing tool and the measured values of temperature and acceleration can be visualized on one display screen.
 また、工作機械は前記加工ツールを回転させてワークを加工する回転ツールであり、前記加速度センサは、前記ツールホルダ内の水平平面上に前記回転ツールの回転軸線中心に対して径方向対称の位置に配列された一対の加速度センサと、これと略90°位相が異なる位置に配列された一対の加速度センサとで構成される、場合もある。 Further, the machine tool is a rotary tool that rotates the machining tool to machine the workpiece, and the acceleration sensor is located on a horizontal plane in the tool holder at a position symmetrical in the radial direction with respect to the center of the rotation axis of the rotary tool. There is also a case where it is composed of a pair of acceleration sensors arranged in a pair, and a pair of acceleration sensors arranged in a position having a phase difference of approximately 90°.
 本リアルタイム加工状態表示装置によれば、水平方向、回転方向の加速度を検出することができるので、例えば切削加工時の異常振動を加工パス上の位置及び計測値を一見して理解でき、加工精度の大幅低下の原因や工具破損前兆の所謂「びびり」や、タッピング加工時のスティックスリップ現象等の発生を可視化することができる。さらに、加工ツールの回転速度・送り量・切込量の最適加工条件の探索をすることもでき、背反する事象である加工工程の迅速化、安全化(工具破損防止)を同時に達成・両立させることができる。 According to the present real-time machining state display device, since it is possible to detect acceleration in the horizontal direction and the rotational direction, for example, abnormal vibration during cutting can be understood at a glance at the position and measurement value on the machining path, and the machining accuracy can be improved. It is possible to visualize the cause of a large decrease in the so-called "chatter", which is a precursor of tool damage, and the occurrence of stick-slip phenomenon during tapping. In addition, it is possible to search for optimum machining conditions such as the rotation speed, feed rate, and depth of cut of the machining tool, and at the same time achieve and contradict the contradictory phenomenon of speeding up the machining process and safety (prevention of tool breakage). be able to.
 さらに、前記マッピング手段は少なくとも、XY平面内の温度データ又は加速度データをXY平面表示ウィンドウに表示し、XZ平面内の温度データ又は加速度データをXZ平面表示ウィンドウに表示し、YZ平面内の温度データ又は加速度データをYZ平面表示ウィンドウに表示し、前記温度データ又は前記加速度データそれぞれの数値に対応して予め設定した色指定値を色変換表ウィンドウに表示する、ことが好ましい。 Further, the mapping means displays at least the temperature data or acceleration data in the XY plane in the XY plane display window, displays the temperature data or acceleration data in the XZ plane in the XZ plane display window, and displays the temperature data in the YZ plane. Alternatively, it is preferable that the acceleration data is displayed in the YZ plane display window, and the preset color designation value corresponding to each numerical value of the temperature data or the acceleration data is displayed in the color conversion table window.
 本リアルタイム加工状態表示装置によれば、温度計測データや加速度計測データを、1つの表示画面でXY平面視、XZ平面視点及びYZ平面視で表示できると同時にプロットされた色がどの程度の計測値を示すものであるか限界に近付いているか否か等を可視化することができ、有利である。 According to this real-time processing state display device, temperature measurement data and acceleration measurement data can be displayed in XY plane view, XZ plane view point and YZ plane view on one display screen, and at the same time, the measured value of the plotted color. Is advantageous because it can be visualized as to whether or not it is close to the limit.
 また、他の本発明のリアルタイム加工状態表示装置では、加工ツールの温度、加速度又は応力のうちの1つ以上の物理量データと工作機械の動作状態を計測する工作機械が備える計測手段からの工作機械の計測データを時系列でモニタリングする計測手段と、前記計測手段からの時系列の前記物理量データと前記工作機械からの計測データ、又は両データの経時的変化を同一時間軸で表示する。 Further, in another real-time machining state display device of the present invention, a machine tool from a measuring means included in a machine tool for measuring physical quantity data of one or more of temperature, acceleration or stress of a machining tool and an operation state of the machine tool. Measuring means for monitoring the measurement data in time series, the time series physical quantity data from the measuring means and the measurement data from the machine tool, or time-dependent changes of both data are displayed on the same time axis.
 このリアルタイム加工状態表示装置によれば、加工ツールの温度・加速度・応力の計測データに加えて、サーボモータ・加速度ピックアップ・動力計・変位計など工作機械の計測データを同一時間軸のタイムチャートでリアルタイム表示することで加工の異常検知の精度を向上することができる。 According to this real-time machining status display device, in addition to measurement data of temperature, acceleration, and stress of machining tools, measurement data of machine tools such as servo motors, acceleration pickups, dynamometers, and displacement meters can be displayed on the same time axis time chart. By displaying in real time, the accuracy of processing abnormality detection can be improved.
 さらに、他の本発明では工作機械の先端の加工ツールの加工パス上の状態変化を表示するリアルタイム加工状態表示装置を提供する。このリアルタイム加工状態表示装置は、基準時点における加工ツールの温度、加速度又は応力のうちの1つ以上の物理量データを計測・保存し、工作機械の動作制御手段の時間情報及び位置情報から動作中の加工ツールの時系列の座標を読み取った基準データを作成する基準データ作成手段と、基準時点から所定時間経過時点における前記基準データ作成手段において計測・保存された物理量データを計測・保存し、工作機械の動作制御手段の時間情報及び位置情報から動作中の加工ツールの時系列の座標を読み取った比較用データを作成する比較用データ作成手段と、前記基準データ作成手段と前記比較用データ作成手段とからの読取った加工ツールの時系列の座標での物理量データの差分を算出する比較算出手段と、前記比較算出手段で算出された物理量データの差分を加工ツールの時系列の座標に基づいて、加工パス上の座標に表示する表示手段と、を有する。 Furthermore, another embodiment of the present invention provides a real-time machining status display device for displaying the status change on the machining path of the machining tool at the tip of the machine tool. This real-time machining state display device measures and stores one or more physical quantity data of temperature, acceleration, or stress of a machining tool at a reference time point, and uses the time information and the position information of the operation control means of the machine tool to indicate that the machine is operating. A reference data creating means for creating reference data by reading the time-series coordinates of the processing tool, and a physical quantity data measured and saved by the reference data creating means at the time when a predetermined time has elapsed from the reference time. Comparing data creating means for creating comparative data by reading the time series coordinates of the working tool from the time information and position information of the operation controlling means, the reference data creating means, and the comparative data creating means. Based on the time series coordinates of the processing tool, the comparison calculation means for calculating the difference between the physical quantity data at the time series coordinates of the processing tool read from and the difference between the physical quantity data calculated by the comparison calculation means. Display means for displaying the coordinates on the path.
 本リアルタイム加工状態表示装置によれば、加工ツール、工作機械及びその部品の経時変化・劣化・異常などを定量的に評価することができ、不良品発生頻度の低減、加工寸法精度の向上、被加工物の加工面の品質の向上を図ることができる。 With this real-time machining status display device, it is possible to quantitatively evaluate changes over time, deterioration, and abnormalities of machining tools, machine tools, and their parts, reduce the frequency of defective products, improve machining dimensional accuracy, It is possible to improve the quality of the processed surface of the workpiece.
 本発明のリアルタイム加工状態表示装置によれば、工作機械の工具等の加工ツールにおける温度・加速度等の物理量変化について、加工位置の3次元座標と温度・加速度等の物理量とを同時に表示し、実際の加工位置で生じている状況をリアルタイムに表示することで複雑形状加工であっても異常検出箇所及びその物理量を可視化することができる。 According to the real-time machining status display device of the present invention, with respect to changes in physical quantities such as temperature and acceleration in a machining tool such as a tool of a machine tool, the three-dimensional coordinates of the machining position and the physical quantities such as temperature and acceleration are simultaneously displayed, and actually displayed. By displaying the situation occurring at the machining position in real time, the abnormality detection location and its physical quantity can be visualized even in the case of complex shape machining.
工作機械での加工における加速度と「びびり」の関係、従来の計測データ及び本発明のリアルタイム加工状態表示装置で表示したデータのイメージを示す略図である。It is a schematic diagram showing a relation between acceleration and "chatter" in machining in a machine tool, a conventional measurement data, and an image of data displayed by a real-time machining state display device of the present invention. (a)図1の加工ツールの加速度等をモニタリングした加工ツールの加速度の従来式の表示結果イメージであり、(b)は本リアルタイム加工状態表示装置での加工ツールの加速度の表示結果イメージである。(A) is a conventional display result image of the acceleration of the machining tool by monitoring the acceleration etc. of the machining tool of FIG. 1, and (b) is a display result image of the acceleration of the machining tool in the real-time machining state display device. .. (a)に本リアルタイム加工状態表示装置で実際の被加工物を加工ツールで切削加工した際における加速度・温度をリアルタイムで計測・表示している画面例が示され、(b)に実際に切削加工している被加工物の例の平面視写真が示されている。(A) shows an example of a screen that measures and displays the acceleration and temperature in real time when the actual workpiece is cut by the processing tool with this real-time processing status display device, and (b) shows the actual cutting. A plan view photograph of an example of a workpiece being processed is shown. 本リアルタイム加工状態表示装置における具体的な処理フロー例1を示している。The concrete example 1 of a processing flow in this real-time processing state display device is shown. 本リアルタイム加工状態表示装置における具体的な処理フロー例2を示している。The concrete example 2 of a process flow in this real-time processing state display device is shown. 本リアルタイム加工状態表示装置における具体的な処理フロー例3を示している。The concrete example 3 of a process flow in this real-time processing state display device is shown. 本リアルタイム加工状態表示装置における具体的な処理フロー例4を示している。The concrete example 4 of a process flow in this real-time processing state display device is shown.
 上述する本発明のリアルタイム加工状態表示装置の構成の具体的な処理フロー例について説明する。 A concrete processing flow example of the configuration of the real-time machining status display device of the present invention described above will be described.
 図1には、加工ツールの一例としてフライス加工に利用されるボールエンドミルの加工中の「びびり」を模式化した概念図である。ボールエンドミル1は先端に球状の切刃を設け、加工装置としてのマシニングセンタのスピンドルに装着されるものである。図1ではボールエンドミル1で切削する被加工物2に上下方向の起伏がある場合における各位置(a)~(d)でのボールエンドミル1の様子を示している。本リアルタイム加工状態表示装置では、ボールエンドミル1は先端の切刃における加速度や温度をリアルタイムにモニタリングすることができるが、以下に「びびり」検出に注目して加速度のモニタリングについて説明する。 Fig. 1 is a conceptual diagram that schematically shows "chatter" during machining of a ball end mill used for milling as an example of a machining tool. The ball end mill 1 is provided with a spherical cutting blade at its tip and is mounted on a spindle of a machining center as a processing device. FIG. 1 shows the state of the ball end mill 1 at each of the positions (a) to (d) when the workpiece 2 to be cut by the ball end mill 1 has undulations in the vertical direction. In the present real-time processing state display device, the ball end mill 1 can monitor the acceleration and temperature at the cutting edge at the tip in real time, but the acceleration monitoring will be described below by focusing on the “chatter” detection.
 図1(a)では、ボールエンドミル1の先端(切刃)1aが被加工物2の表面の高位置2aに接し、この位置を加工スタートの位置と仮定する。そこから切削加工しながらボールエンドミル1が被加工物2に対して右側に移動すると被加工物2の高さが低くなり、(b)の位置では被加工物2の低位置2bよりボールエンドミルの先端1aが高さ方向に浮いた状態になり、右側が切削対象の被加工物に押圧されながら切削する。このときボールエンドミル1の加速度は大きくなり、(b)の矢印に示すように大きな「びびり」が発生する。その後、右側にボールエンドミル1がさらに移動し、被加工物2の高さが高くなり。(c)の位置では被加工物2の高位置2cの表面にボールエンドミルの先端1aが接触した状態になると加速度は小さくなり、「びびり」は解消する。さらにボールエンドミルの先端1aが右側に移動し、(b)の位置より少し低い程度の高さを上るときには、再びボールエンドミル1の加速度は(b)~(c)の位置の加速度の中間程度まで大きくなり、(d)の矢印に示すように中程度の「びびり」が発生する。 In FIG. 1(a), the tip (cutting edge) 1a of the ball end mill 1 is in contact with a high position 2a on the surface of the workpiece 2, and this position is assumed to be the machining start position. When the ball end mill 1 moves rightward with respect to the work piece 2 while cutting from there, the height of the work piece 2 becomes lower, and at the position (b), the height of the ball end mill is lower than that of the lower position 2b of the work piece 2. The tip 1a is floated in the height direction, and the right side is pressed while being pressed by the workpiece to be cut. At this time, the acceleration of the ball end mill 1 increases, and a large "chatter" occurs as shown by the arrow in (b). After that, the ball end mill 1 further moves to the right, and the height of the workpiece 2 increases. At the position (c), when the tip 1a of the ball end mill comes into contact with the surface of the high position 2c of the workpiece 2, the acceleration becomes small and the "chatter" disappears. Further, when the tip 1a of the ball end mill moves to the right and rises to a height slightly lower than the position (b), the acceleration of the ball end mill 1 is again about the middle of the acceleration at the positions (b) to (c). It becomes large, and a moderate amount of "chatter" occurs as shown by the arrow in (d).
 図2には、図1のボールエンドミル1でモニタリングした加速度の従来式の表示結果と本リアルタイム加工状態表示装置での表示結果と例示している。図2(a)は、従来式の表示結果であり、時間軸(時間[s])を横軸とし、各時間における加速度[m/s2]を縦軸としている。図2(a)の例では、例えば(b)の位置では図1(b)の位置同様に加速度が一番大きく、(c)の位置では図1(c)の位置同様に加速度が小さくなり、(c)の位置では図1(d)の位置同様に再び加速度が大きくなっている。この図2(a)の表示方法の場合、加速度が大きく「びびり」が発生する(b)位置が被加工物2のどの位置かが可視化されておらず、一見して把握し難いという問題がある。 Fig. 2 exemplifies the conventional display result of the acceleration monitored by the ball end mill 1 of Fig. 1 and the display result of this real-time machining status display device. FIG. 2A shows the display result of the conventional method, in which the time axis (time [s]) is the horizontal axis and the acceleration [m/s2] at each time is the vertical axis. In the example of FIG. 2(a), for example, at the position of (b), the acceleration is the same as at the position of FIG. 1(b), and at the position of (c), the acceleration is small like at the position of FIG. 1(c). , (C), the acceleration increases again as in the position shown in FIG. 1(d). In the case of the display method of FIG. 2A, there is a problem that it is difficult to grasp at a glance because the position where the acceleration is large and “chatter” occurs (b) is not visualized at which position on the workpiece 2. is there.
 一方、図2(b)は、本発明のリアルタイム加工状態表示装置における表示結果例であり、ボールエンドミル1の切刃1aの横方向の位置(X方向の位置([mm])を横軸とし、ボールエンドミル1の切刃1aの高さ方向の位置(Z方向の位置([mm])を縦軸としている。また、図2(b)の右上に示すルックアップテーブル(Look-up table)4では加速度の大きさを色で表示し、左端の色(min.)から右端の色(max.)まで段階的に色が変化している(本図ではグレースケール表示であるが実際にはカラー表示している)。さらに、図中の加速度表示3は、実際にボールエンドミル1の切刃1aのXZ方向の位置の加工パス(軌跡)が示されており、その加工パス上の位置における加速度を前述したルックアップテーブル4に対応する色を表示している。例えば図2の位置(b)では、図1の位置(b)及び図2(a)の位置(b)と同様に最大の加速度が計測され、加速度表示3にその加速度に応じた色が表示(プロット)されている。したがって、図2(b)の表示の場合、被加工物2の位置(b)でボールエンドミル1の切刃1aに「びびり」が発生していることがリアルタイムに可視化して理解することができる。なお、図2(b)の例ではXZ方向の位置での加速度を可視化しているが、XY方向の位置やYZ方向の位置での加速度を表示する又はこれらを同時に表示することも可能である。 On the other hand, FIG. 2B is a display result example in the real-time machining state display device of the present invention, in which the horizontal position of the cutting edge 1a of the ball end mill 1 (the position in the X direction ([mm]) is taken as the horizontal axis). The vertical position is the position of the cutting edge 1a of the ball end mill 1 in the height direction (the position in the Z direction ([mm]). Also, a lookup table (Look-up table) shown in the upper right of FIG. In 4, the magnitude of acceleration is displayed in color, and the color changes stepwise from the color at the left end (min.) to the color at the right end (max.). Further, the acceleration display 3 in the figure shows the machining path (trajectory) of the position of the cutting edge 1a of the ball end mill 1 in the XZ direction, at the position on the machining path. The acceleration is displayed in a color corresponding to the above-mentioned lookup table 4. For example, in the position (b) of Fig. 2, the maximum is the same as the position (b) of Fig. 1 and the position (b) of Fig. 2(a). 2 is measured, and a color corresponding to the acceleration is displayed (plotted) on the acceleration display 3. Therefore, in the case of the display of FIG. It is possible to visualize in real time that "chatter" has occurred on the cutting edge 1a of Fig. 2. In the example of Fig. 2B, the acceleration at the position in the XZ direction is visualized. It is also possible to display the acceleration at the position in the XY direction or the position in the YZ direction, or to display these at the same time.
 次に図3では、(a)に本リアルタイム加工状態表示装置で実際の被加工物2をボールエンドミル1で切削加工した際における加速度・温度をリアルタイムで計測・表示している画面例が示され、(b)に実際に切削加工している被加工物2の例の平面視写真が示されている。この切削例では図2(b)に示すようにステンレスの厚板である被加工物2を凹んだ星型に切削している。図3(a)の画面例では、上段に左側から順にボールエンドミル1の切刃1aのX方向の並進加速度(ACC X)、軸周りの回転加速度(ACC R)、温度(TEMP)を示しており、この表示時点での計測値はそれぞれ、4.780(mm/S2)、447.609(rθ/S2)、6698.640(C°)を示している。また、中段には左側から順に縦軸をX方向、横軸をY方向とした加工パス上の並進加速度、回転加速度及び温度を示す上面視、縦軸をX方向、横軸をZ方向とした加工パス上の並進加速度、回転加速度及び温度を示す正面視、縦軸をY方向、横軸をZ方向とした加工パス上の並進加速度、回転加速度及び温度を示す側面視を示しており、それぞれタブ5(time Chart、ACC X、ACC-R、Temperature)を切り替えてタイムチャート(図2(a)参照)、並進加速度、回転加速度及び温度を表示する。さらに、下段には加工パス上に加速度・温度の実測値としてプロットするルックアップテーブル4(図2(b)のルックアップテーブル4参照)を示している。図3(a)では、星型のボールエンドミル加工の加工パスにおいて特に輪郭・角部で加速度が大きくなっていることがマッピングされて可視化されており、「びびり」ひいては加工精度の低下や工具の破損予兆がその位置とともにリアルタイムで明らかになっていることがわかる。 Next, in FIG. 3, (a) shows a screen example in which the real-time machining state display device measures and displays the acceleration/temperature in real time when the actual workpiece 2 is cut by the ball end mill 1. , (B) are plan view photographs of an example of the workpiece 2 that is actually cut. In this cutting example, as shown in FIG. 2B, the workpiece 2 which is a stainless steel thick plate is cut into a concave star shape. In the screen example of Fig. 3(a), the upper row shows the translational acceleration (ACCX) in the X direction of the cutting edge 1a of the ball end mill 1, the rotational acceleration around the axis (ACCR), and the temperature (TEMP) in order from the left. The measured values at this display point are 4.780 (mm/S2), 447.609 (rθ/S2), and 6698.640 (C°), respectively. Further, in the middle row, the vertical axis is the X direction, and the horizontal axis is the Y direction in order from the top view showing the translational acceleration, rotational acceleration, and temperature on the machining path, the vertical axis is the X direction, and the horizontal axis is the Z direction. A front view showing translational acceleration, rotational acceleration, and temperature on the machining path, and a side view showing translational acceleration, rotational acceleration, and temperature on the machining path with the vertical axis in the Y direction and the horizontal axis in the Z direction are shown. Switch tab 5 (timeChart, ACCX, ACC-R, Temperature) to display the time chart (see Fig. 2(a)), translational acceleration, rotational acceleration, and temperature. Further, the lookup table 4 (see the lookup table 4 in FIG. 2B) plotted as the measured values of acceleration and temperature on the machining path is shown in the lower stage. In Fig. 3(a), it is visualized by mapping that the acceleration is large especially in the contours and corners in the machining path of the star-shaped ball end mill machining, and "vibration", and in turn, deterioration of machining accuracy and tool It can be seen that the damage sign and its location are revealed in real time.
 また、図3では図示していないが図2(a)に示すタイムチャートがタブ5の右端のtime Chartに示すように表示され、並進加速度、回転加速度及び温度の経時的変化を同一時間軸で表示することもできる。 Although not shown in FIG. 3, the time chart shown in FIG. 2(a) is displayed as shown in the time chart at the right end of the tab 5, and the temporal changes in translational acceleration, rotational acceleration, and temperature are displayed on the same time axis. It can also be displayed.
≪加工ツールの変化量のリアルタイム表示≫
 次に、本リアルタイム加工状態表示装置における具体的な処理フロー例を説明する。
 図4には処理フロー例1として、温度・加速度・力について、ボールエンドミル等の加工ツール1の加工毎の変化を監視し、刃物(切刃等)1aの状態の変化を表示する例を示している。工作機械の加工が開始し、本リアルタイム加工状態表示装置の処理が開始すると(ST1)、工作機械のツールホルダ等に配置された計測手段が刃物1aの温度・加速度・力(応力)をリアルタイムに読み取る(ST2)。具体的には刃物1aの先端内部に設けられた熱電対等から検出された温度データや、ツールホルダ等に配置された加速度センサから検出された加速度データ(並進加速度や回転加速度)、歪ゲージ等から検出された応力データを読み取る。
≪Real-time display of the amount of change in processing tool≫
Next, a specific processing flow example in the present real-time processing state display device will be described.
FIG. 4 shows an example of processing flow example 1 in which the temperature, acceleration, and force are monitored for changes in each processing of the processing tool 1 such as a ball end mill, and changes in the state of the blade (cutting blade, etc.) 1a are displayed. ing. When the machining of the machine tool starts and the processing of the real-time machining state display device starts (ST1), the measuring means arranged in the tool holder of the machine tool measures the temperature, acceleration, force (stress) of the blade 1a in real time. Read (ST2). Specifically, from temperature data detected from a thermocouple or the like provided inside the tip of the blade 1a, acceleration data (translational acceleration or rotational acceleration) detected from an acceleration sensor arranged in a tool holder, strain gauges, or the like. Read the detected stress data.
 加工ツール2の温度データ・加速度データ・応力データが読み取ると(ST2)、次に刃物1aの初期状態(加工開始時)を検出する、又は本リアルタイム加工状態表示装置で記憶されている前回の加工時の状態と今回の刃物1aの変化量を計算する(ST3)。図4では示していないが、このとき刃物1aの初期状態や前回加工時からの変化量から加工に適当な刃物1aか否か判定し(予め設定された所定の閾値等に基づく)、不適当と判定された場合には警告や加工停止をすることもできる。加工が開始すると読み取られている加工中の刃物1aの温度・加速度・応力の変化量を表示する(ST4)。そして変化量の測定が終了すると処理が終了する(ST5~ST6)。 When the temperature data/acceleration data/stress data of the processing tool 2 is read (ST2), the initial state of the blade 1a (at the start of processing) is detected, or the previous processing stored in the real-time processing state display device is performed. The state of time and the amount of change of the blade 1a this time are calculated (ST3). Although not shown in FIG. 4, at this time, it is determined whether or not the blade 1a is suitable for processing based on the initial state of the blade 1a and the amount of change from the previous processing (based on a predetermined threshold value set in advance), and is inappropriate. If it is determined that it is determined, a warning can be given or processing can be stopped. When the processing is started, the amount of change in temperature, acceleration, and stress of the cutting tool 1a during processing which is read is displayed (ST4). Then, when the measurement of the variation amount is completed, the process is completed (ST5 to ST6).
≪加工ツール及び工作機械の計測データの同一時間軸表示≫
 図5には処理フロー例2として、サーボモータ・加速度ピックアップ・動力計・変位計などのデータについても同期収集し、刃物の温度やホルダの加速度・力と共にプロットする例が示されている。処理フロー例1で読み取る温度・加速度・応力以外の計測データも工作機械及びその周辺機器は読み取ることができる場合がある。例えば、加工ツール1駆動用のサーボモータや、振動を感知して電気信号に変換するセンサとしての加速度ピックアップ(振動ピックアップ)、工作機械の出入力データから回転トルク等の動力を測定する動力計、刃物1aや主軸の移動量を測定する変位計などである。これらの計測データを補助活用することで加工ツール1の異常検知の精度を向上させることができる。
≪Display of machining tool and machine tool measurement data on the same time axis≫
FIG. 5 shows a processing flow example 2 in which data of a servo motor, an acceleration pickup, a dynamometer, a displacement meter, etc. are synchronously collected and plotted together with the temperature of the blade and the acceleration/force of the holder. In some cases, the machine tool and its peripheral equipment may be able to read measurement data other than the temperature, acceleration, and stress read in the processing flow example 1. For example, a servo motor for driving the machining tool 1, an acceleration pickup (vibration pickup) as a sensor that detects vibration and converts it into an electric signal, a dynamometer that measures power such as rotational torque from input/output data of a machine tool, It is a displacement meter or the like that measures the amount of movement of the blade 1a and the spindle. The auxiliary use of these measurement data can improve the accuracy of abnormality detection of the processing tool 1.
 具体的には、上記処理フロー例1と同様に処理が開始すると(ST1)、刃物1aの温度・加速度・力(応力)をリアルタイムに読み取る(ST2)。加工ツール2の温度データ・加速度データ・応力データが読み取ると(ST2)、さらにサーボモータや、加速度ピックアップ、動力計、変位計からのデータを読み取る(ST7)。読み取られた温度・加速度・応力のデータ及びサーボモータ・加速度ピックアップ・動力計・変位計からのデータの各値の経時的変化を同一の時間軸でタイプチャート(図2(b)のタブ5(time Chart)参照)としてリアルタイムに表示する(ST8)。そして変化量の測定が終了すると処理が終了する(ST5~ST6)。この処理フロー例2により加工ツール2の温度・加速度・応力の計測データに加えて、サーボモータ・加速度ピックアップ・動力計・変位計など工作機械の計測データを同一時間軸のタイムチャート(図2(a)及び図3のタブ5左端(time Chart)参照))でリアルタイム表示することで加工の異常検知の精度をさらに向上することができる。 Specifically, when the processing is started in the same manner as in the processing flow example 1 (ST1), the temperature, acceleration, and force (stress) of the blade 1a are read in real time (ST2). When the temperature data, the acceleration data, and the stress data of the processing tool 2 are read (ST2), the data from the servo motor, the acceleration pickup, the dynamometer, and the displacement meter are read (ST7). Type chart (tab 5 (Fig. 2(b)) of the temperature/acceleration/stress data and the time-dependent change of each value of the data from the servo motor, accelerometer, dynamometer, and displacement meter on the same time axis. (See Time Chart)) in real time (ST8). Then, when the measurement of the variation amount is completed, the process is completed (ST5 to ST6). According to the processing flow example 2, in addition to the measurement data of the temperature, acceleration, and stress of the processing tool 2, the measurement data of the machine tool such as the servo motor, the acceleration pickup, the dynamometer, and the displacement meter are displayed on the same time axis (see Fig. 2 ( a) and the left end (time chart) of tab 5 in FIG. 3)) are displayed in real time, the accuracy of machining abnormality detection can be further improved.
≪異常発生の可視リアルタイム表示≫
 図6には処理フロー例3として、加工ツール1の刃物1aの温度・加速度・応力をマッピングして可視化する例が示されている。この処理フロー例3によれば、初級技能者等のオペレータに対して、過熱・びびりなどの異常が起こりやすい部分や実際に異常が発生した箇所を、視覚的に伝えるこができる。
≪Visual real-time display of abnormality occurrence≫
FIG. 6 shows a processing flow example 3 in which the temperature, acceleration, and stress of the cutting tool 1a of the processing tool 1 are mapped and visualized. According to this processing flow example 3, it is possible to visually convey to an operator such as a beginner engineer a portion where an abnormality such as overheating and chatter is likely to occur or a portion where the abnormality actually occurs.
 具体的には、処理フロー例1~2と同様に処理が開始すると(ST1)、刃物1aの温度・加速度・力(応力)をリアルタイムに読み取る(ST2)。読み取られた温度・加速度・応力のデータはそれぞれの値に応じて予め定めた色に変換される。図6では省略するが、温度・加速度・応力の各値に応じて設定される色は、図2~図3に示すようにルックアップテーブル4等で表示することが好ましい。次に、工作機械のNCプログラムと通信し、そのCNC変数から加工ツール1における現在の加工点の位置座標(X,Y、Z座標)を読み取る(ST10)。さらに、温度・加速度・応力の各計測値におけるST9で設定された色が、ST10で読み取られた加工点の位置座標に対応するディスプレイ上の座標平面内(図3のウィンドウ6、7、8参照)の画素(pixel)、又は三次元ウィンドウの座標空間(XYZ座標空間)内の画素(voxel)に表示(プロット)され、処理中の全領域にわたってリアルタイムにマッピングされていく(ST11)。そして、変化量の測定が終了すると処理が終了する(ST5~ST6)。この処理フロー例3により、加工ツール1の不良品発生頻度の低減や、被加工物2の加工寸法精度の向上、加工面の品質向上、作業の高効率化、熟練者の感覚を定量的に理解して習得、熟練者も新たな知見を得ることができる。 Specifically, when the processing is started in the same manner as in the processing flow examples 1 and 2 (ST1), the temperature, acceleration, and force (stress) of the blade 1a are read in real time (ST2). The read temperature/acceleration/stress data is converted into a predetermined color according to each value. Although not shown in FIG. 6, it is preferable that the colors set according to the respective values of temperature, acceleration, and stress are displayed on the lookup table 4 or the like as shown in FIGS. Next, it communicates with the NC program of the machine tool to read the position coordinates (X, Y, Z coordinates) of the current machining point in the machining tool 1 from the CNC variables (ST10). Furthermore, the color set in ST9 in each measurement value of temperature, acceleration, and stress is in the coordinate plane on the display corresponding to the position coordinates of the processing point read in ST10 (see windows 6, 7, and 8 in FIG. 3). ) Or a pixel (voxel) in the coordinate space (XYZ coordinate space) of the three-dimensional window, and is mapped in real time over the entire area being processed (ST11). Then, when the measurement of the amount of change is completed, the processing ends (ST5 to ST6). According to this processing flow example 3, the frequency of defective products of the processing tool 1 is reduced, the processing dimension accuracy of the workpiece 2 is improved, the quality of the processing surface is improved, the work efficiency is improved, and the sense of the expert is quantitatively determined. Understanding and acquisition, even experts can gain new knowledge.
≪装置・部品の経時的変化・劣化・異常の定量的評価≫
 図7には処理フロー例4として、工作機械の状態の定点観測として、評価用の刃物1aやツールホルダを用い、予め設定した軌跡(加工パス)で加工する温度・加速度・力と位置情報とを定期的に取得し、結果を比較する工作機械・部品の経時変化・劣化・異常などを定量的に評価する例が示されている。この処理フロー例4によれば、同一品を反復して加工する場合に工作機械・部品をそれまでの加工状態と可視的に比較評価できるため不良品発生頻度の低減、寸法精度の向上、加工面の品質向上を図ることができる。
<<Quantitative evaluation of changes/deterioration/abnormality of equipment/parts over time>>
As a processing flow example 4 in FIG. 7, as a fixed point observation of the state of the machine tool, temperature, acceleration, force, and position information for machining with a preset locus (machining path) using a tool 1a for evaluation and a tool holder. Is periodically obtained and the results are compared, and an example of quantitatively evaluating changes over time, deterioration, abnormality of machine tools and parts is shown. According to this processing flow example 4, since the machine tool/part can be visually compared and evaluated with the processing state up to that time when the same product is repeatedly processed, the frequency of defective products is reduced, the dimensional accuracy is improved, and the processing is improved. The quality of the surface can be improved.
 図7(a)は、基準となる刃物1a及び工作機械(及びそのツールホルダ)の加工パス上の温度・加速度・応力を保存(更新を含む)して基準データを作成する処理フロー例を示している。また、図7(b)は同じ工作機械の所定期間経過後の個々の加工パス上の温度・加速度・応力・座標のデータと(a)で保存・作成した基準データと、を比較し、可視的に表示する処理フロー例を示している。 FIG. 7A shows an example of a processing flow for creating temperature data, acceleration data, and stress data (including updating) on the machining path of the reference tool 1a and the machine tool (and its tool holder) to create reference data. ing. Further, FIG. 7(b) compares the temperature/acceleration/stress/coordinate data on each machining path after a predetermined period of the same machine tool with the reference data saved/created in (a), and is visible. The example of the process flow to be displayed is shown.
 具体的に図7(a)では、処理フロー例1~3と同様に処理が開始すると(ST1)、刃物1aの温度・加速度・力(応力)をリアルタイムに読み取る(ST2)。読み取られた温度・加速度・応力の計測データは現在の加工点の位置座標(XYZ座標)を工作機械のCNCから読み取る(ST10)。ST2,ST10から読み取られた温度・加速度・応力の計測データと対応する加工点の位置座標データとを保存し、加工ツールの交換時点や工作機械の作動時点であればそれを初期時点として基準データが作成される(ST12)。この基準データは、例えば専用サーバやクラウドサーバに保存され、基準データが保存され、測定が終了すると処理が終了する(ST5~ST6)。また、基準データが作成された後、逐次、定期的に図7(a)の処理がされるたびにデータが保存され、これを比較用データとして保存される。なお、これまで保存した比較用データを先回の測定時の基準データとし、現時点でのデータを比較用データとして設定することも可能である。 Specifically, in FIG. 7A, when the processing is started in the same manner as in the processing flow examples 1 to 3 (ST1), the temperature, acceleration, and force (stress) of the blade 1a are read in real time (ST2). Regarding the read measurement data of temperature, acceleration, and stress, the position coordinates (XYZ coordinates) of the current machining point are read from the CNC of the machine tool (ST10). The temperature, acceleration, and stress measurement data read from ST2 and ST10 and the position coordinate data of the corresponding machining point are saved, and if the machining tool is replaced or the machine tool is activated, the reference data is used as the initial time. Are created (ST12). The reference data is stored in, for example, a dedicated server or a cloud server, the reference data is stored, and the process ends when the measurement ends (ST5 to ST6). In addition, after the reference data is created, the data is sequentially and periodically saved every time the process of FIG. 7A is performed, and the data is saved as comparison data. It is also possible to use the comparison data stored so far as the reference data for the previous measurement and set the current data as the comparison data.
 次に図7(b)では、(a)と同様に処理が開始すると(ST1)、(a)で保存・作成された初期時点の基準データを読込み・設定し(ST13).同様に定期的に保存・作成された比較用データを読込み・設定する(ST14)。次に、ST13~ST14で設定された基準データと比較用データとを比較し、各座標位置での温度・加速度・応力の差を算出する(ST15)。そして、算出された各座標位置での温度・加速度・応力の差を図6のST11で示すように加工点の位置座標に対応するディスプレイ上の座標平面内の画素、又は三次元ウィンドウの座標空間内の画素に表示し(ST16)、表示が終了すると処理が終了する(ST6)。この処理フロー例4によれば、加工ツール、工作機械及びその部品の経時変化・劣化・異常などを定量的に評価することができ、不良品発生頻度の低減、加工寸法精度の向上、被加工物の加工面の品質の向上を図ることができる。 Next, in FIG. 7B, when the process is started in the same manner as in (a) (ST1), the reference data at the initial point saved and created in (a) is read and set (ST13). Similarly, the comparatively stored/created comparison data is read/set (ST14). Next, the reference data set in ST13 to ST14 is compared with the comparison data to calculate the difference in temperature, acceleration, and stress at each coordinate position (ST15). Then, the calculated temperature/acceleration/stress difference at each coordinate position is represented by a pixel in the coordinate plane on the display corresponding to the position coordinate of the processing point or the coordinate space of the three-dimensional window as shown in ST11 of FIG. It is displayed in the pixel inside (ST16), and when the display is completed, the process is completed (ST6). According to this processing flow example 4, it is possible to quantitatively evaluate changes over time, deterioration, abnormalities, etc. of the processing tool, the machine tool, and the parts thereof, reduce the frequency of defective products, improve the processing dimension accuracy, and process the workpiece. It is possible to improve the quality of the processed surface of the product.
1…加工ツール
2…被加工物
3…加速度表示
4…ルックアップテーブル
5…タブ
6~8…ウィンドウ
1... Machining tool 2... Workpiece 3... Acceleration display 4... Lookup table 5... Tabs 6-8... Window

Claims (8)

  1.  工作機械の先端の加工ツールの加工パス上の状態をマッピングするリアルタイム加工状態表示装置であって、
     少なくとも加工ツールの温度、加速度又は応力のうちの1つ以上の物理量データを時系列でモニタリングする計測手段と、
     工作機械の動作制御手段(CNC)の時間情報及び位置情報から動作中の加工ツールの時系列の座標を読み取る位置取得手段と、
     前記計測手段からの時系列の物理量データと前記位置取得手段からの時系列の座標データとに基づいて、加工パス上の座標での物理量データを可視化データに変換して加工パス上の位置に表示するマッピング手段と、を有するリアルタイム加工状態表示装置。
     
    A real-time machining status display device for mapping the status on the machining path of a machining tool at the tip of a machine tool,
    Measuring means for chronologically monitoring one or more physical quantity data of at least the temperature, acceleration or stress of the processing tool,
    Position acquisition means for reading the time series coordinates of the working tool from the time information and position information of the operation control means (CNC) of the machine tool,
    Based on the time-series physical quantity data from the measuring means and the time-series coordinate data from the position acquisition means, the physical quantity data at the coordinates on the processing path are converted into visualization data and displayed at the position on the processing path. And a real-time machining status display device including:
  2.  前記マッピング手段は、前記物理量データを、前記物理量データの所定数値に対応して予め設定した色指定値に変換し、該色指定値を座標データに対応する画素に表示する、請求項1に記載のリアルタイム加工状態表示装置。
     
    2. The mapping unit converts the physical quantity data into a color designation value set in advance corresponding to a predetermined numerical value of the physical quantity data, and displays the color designation value on a pixel corresponding to coordinate data. Real-time machining status display device.
  3.  前記計測手段は、加工ツール内に挿入された熱電対と、該熱電対からの情報を温度データとして出力する温度計測部とを有し、
     前記位置取得手段からの時系列の座標データは、3次元XYZ方向の座標データであり、前記マッピング手段は、該座標データに基づいてXY平面、XZ平面及びYZ平面内の温度データを表示する、請求項1又は2に記載のリアルタイム加工状態表示装置。
     
    The measuring unit has a thermocouple inserted in the processing tool, and a temperature measuring unit that outputs information from the thermocouple as temperature data,
    The time-series coordinate data from the position acquisition unit is three-dimensional XYZ direction coordinate data, and the mapping unit displays temperature data in the XY plane, the XZ plane, and the YZ plane based on the coordinate data. The real-time processing state display device according to claim 1 or 2.
  4.  前記計測手段は、工作機械又は工作機械に把持されるツールホルダに配設される加速度センサと、該加速度センサからの情報を加速度データとして出力する加速度計測部とを有し、
     前記位置取得手段からの時系列の座標データは、3次元XYZ方向の座標データであり、前記マッピング手段は、該座標データに基づいてXY平面、XZ平面及びYZ平面内の温度データを表示する、請求項1又は2に記載のリアルタイム加工状態表示装置。
     
    The measuring means includes an acceleration sensor arranged in a machine tool or a tool holder gripped by the machine tool, and an acceleration measuring unit that outputs information from the acceleration sensor as acceleration data,
    The time-series coordinate data from the position acquisition unit is three-dimensional XYZ direction coordinate data, and the mapping unit displays temperature data in the XY plane, the XZ plane, and the YZ plane based on the coordinate data. The real-time processing state display device according to claim 1 or 2.
  5.  工作機械は前記加工ツールを回転させてワークを加工する回転ツールであり、前記加速度センサは、前記ツールホルダ内の水平平面上に前記回転ツールの回転軸線中心に対して径方向対称の位置に配列された一対の加速度センサと、これと略90°位相が異なる位置に配列された一対の加速度センサとで構成される、請求項4に記載のリアルタイム加工状態表示装置。
     
    The machine tool is a rotary tool that rotates the machining tool to machine a workpiece, and the acceleration sensors are arranged on a horizontal plane in the tool holder at positions symmetrical in the radial direction with respect to the center of the rotation axis of the rotary tool. 5. The real-time machining state display device according to claim 4, wherein the real-time machining state display device includes a pair of acceleration sensors and a pair of acceleration sensors arranged at positions different in phase from each other by approximately 90 degrees.
  6.  前記マッピング手段は、XY平面内の温度データ又は加速度データをXY平面表示ウィンドウに表示し、XZ平面内の温度データ又は加速度データをXZ平面表示ウィンドウに表示し、YZ平面内の温度データ又は加速度データをYZ平面表示ウィンドウに表示し、前記温度データ又は前記加速度データそれぞれの数値に対応して予め設定した色指定値を色変換表ウィンドウに表示する、請求項3~5いずれか1項に記載のリアルタイム加工状態表示装置。
     
    The mapping means displays temperature data or acceleration data in the XY plane in an XY plane display window, displays temperature data or acceleration data in the XZ plane in an XZ plane display window, and temperature data or acceleration data in the YZ plane. Is displayed in the YZ plane display window, and a preset color designation value corresponding to each numerical value of the temperature data or the acceleration data is displayed in the color conversion table window. Real-time machining status display device.
  7.  工作機械の先端の加工ツールの加工パス上の状態をマッピングするリアルタイム加工状態表示装置であって、
     加工ツールの温度、加速度又は応力のうちの1つ以上の物理量データと工作機械の動作状態を計測する工作機械が備える計測手段からの工作機械の計測データを時系列でモニタリングする計測手段と、
     前記計測手段からの時系列の前記物理量データと前記工作機械からの計測データ、又は両データの経時的変化を同一時間軸で表示する、リアルタイム加工状態表示装置。
     
    A real-time machining status display device for mapping the status on the machining path of a machining tool at the tip of a machine tool,
    Measuring means for time-sequentially monitoring the machine tool measurement data from one or more physical quantity data of the machining tool temperature, acceleration or stress and the measuring means provided in the machine tool for measuring the operating state of the machine tool,
    A real-time machining state display device for displaying the time-series physical quantity data from the measuring means and the measurement data from the machine tool, or a temporal change of both data, on the same time axis.
  8.  工作機械の先端の加工ツールの加工パス上の状態変化を表示するリアルタイム加工状態表示装置であって、
     基準時点における加工ツールの温度、加速度又は応力のうちの1つ以上の物理量データを計測・保存し、工作機械の動作制御手段の時間情報及び位置情報から動作中の加工ツールの時系列の座標を読み取った基準データを作成する基準データ作成手段と、
     基準時点から所定時間経過時点における前記基準データ作成手段において計測・保存された物理量データを計測・保存し、工作機械の動作制御手段の時間情報及び位置情報から動作中の加工ツールの時系列の座標を読み取った比較用データを作成する比較用データ作成手段と、
     前記基準データ作成手段と前記比較用データ作成手段とからの読取った加工ツールの時系列の座標での物理量データの差分を算出する比較算出手段と、
     前記比較算出手段で算出された物理量データの差分を加工ツールの時系列の座標に基づいて、加工パス上の座標に表示する表示手段と、を有するリアルタイム加工状態表示装置。
    A real-time machining status display device for displaying a status change on a machining path of a machining tool at the tip of a machine tool,
    Measure and save one or more physical quantity data of the temperature, acceleration or stress of the processing tool at the reference time, and use the time information and position information of the operation control means of the machine tool to calculate the time series coordinates of the operating tool. Reference data creating means for creating the read reference data,
    The physical quantity data measured/saved by the reference data creation means at the time when a predetermined time has elapsed from the reference time is measured/saved, and the time series coordinates of the working tool in operation are calculated from the time information and position information of the operation control means of the machine tool. A comparison data creating means for creating the comparison data read by
    Comparison calculation means for calculating the difference between the physical quantity data at the time-series coordinates of the processing tool read from the reference data creation means and the comparison data creation means,
    A real-time machining state display device comprising: a display unit that displays the difference between the physical quantity data calculated by the comparison and calculation unit at the coordinates on the machining path based on the time-series coordinates of the machining tool.
PCT/JP2020/000962 2019-01-15 2020-01-15 Real-time processing state display device WO2020149280A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020566417A JPWO2020149280A1 (en) 2019-01-15 2020-01-15 Real-time machining status display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019004762 2019-01-15
JP2019-004762 2019-01-15
JP2019-115469 2019-06-21
JP2019115469 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020149280A1 true WO2020149280A1 (en) 2020-07-23

Family

ID=71613911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000962 WO2020149280A1 (en) 2019-01-15 2020-01-15 Real-time processing state display device

Country Status (2)

Country Link
JP (1) JPWO2020149280A1 (en)
WO (1) WO2020149280A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067699A1 (en) * 2021-10-19 2023-04-27 ファナック株式会社 Machined surface estimation device and computer-readable storage medium
WO2023181301A1 (en) * 2022-03-24 2023-09-28 ファナック株式会社 Display device and computer-readable storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045332A (en) * 2011-08-25 2013-03-04 Fanuc Ltd Tool locus display device with display part of acceleration or jerk at tool tip point
WO2015022967A1 (en) * 2013-08-13 2015-02-19 株式会社山本金属製作所 Temperature measurement method, and temperature measurement device
WO2016136919A1 (en) * 2015-02-25 2016-09-01 株式会社山本金属製作所 Temperature measurement device
JP2018054611A (en) * 2016-09-27 2018-04-05 株式会社山本金属製作所 Vibration measuring device
JP2018180780A (en) * 2017-04-07 2018-11-15 ファナック株式会社 Machining route display device
WO2018235170A1 (en) * 2017-06-20 2018-12-27 ヤマザキマザック株式会社 Machine tool management system and machine tool management method
JP2019095951A (en) * 2017-11-21 2019-06-20 三菱重工工作機械株式会社 Processing state display device, processing system, processing state display method, and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045332A (en) * 2011-08-25 2013-03-04 Fanuc Ltd Tool locus display device with display part of acceleration or jerk at tool tip point
WO2015022967A1 (en) * 2013-08-13 2015-02-19 株式会社山本金属製作所 Temperature measurement method, and temperature measurement device
WO2016136919A1 (en) * 2015-02-25 2016-09-01 株式会社山本金属製作所 Temperature measurement device
JP2018054611A (en) * 2016-09-27 2018-04-05 株式会社山本金属製作所 Vibration measuring device
JP2018180780A (en) * 2017-04-07 2018-11-15 ファナック株式会社 Machining route display device
WO2018235170A1 (en) * 2017-06-20 2018-12-27 ヤマザキマザック株式会社 Machine tool management system and machine tool management method
JP2019095951A (en) * 2017-11-21 2019-06-20 三菱重工工作機械株式会社 Processing state display device, processing system, processing state display method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067699A1 (en) * 2021-10-19 2023-04-27 ファナック株式会社 Machined surface estimation device and computer-readable storage medium
WO2023181301A1 (en) * 2022-03-24 2023-09-28 ファナック株式会社 Display device and computer-readable storage medium

Also Published As

Publication number Publication date
JPWO2020149280A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
TWI650625B (en) Tool wear detecting device, detecting method thereof and tool wear compensation method
US9864362B2 (en) Method for setting and/or monitoring operating parameters of a workpiece processing machine
JP5710391B2 (en) Processing abnormality detection device and processing abnormality detection method for machine tools
WO2020149280A1 (en) Real-time processing state display device
US7571022B2 (en) System and method for monitoring machine health
JP5014391B2 (en) Numerical control device having a function of determining a machine abnormality based on signals from a plurality of sensors
US9477216B2 (en) Numerical control device including display part for displaying information for evaluation of machining process
CN1827296B (en) Device checking method for machine tool
KR20190013344A (en) An Intelligent CNC machine control system for smart monitering, smart diagnosis and smart control by using the physical cutting characteristic map in which the cutting characteristics are mapped in accordance to cutting location in terms of cutting time on working coordinate
US11433498B2 (en) Method for monitoring a milling method
JP2021076395A (en) Diagnosis device
JP2007328431A (en) Observation device of internal data of controller
JP2017024112A (en) Tool state determination device of machine tool
JP2019148971A (en) Abnormality factor specifying apparatus
KR20200026108A (en) Machining environment estimation device
Dayam et al. In-process dimension monitoring system for integration of legacy machine tools into the industry 4.0 framework
CN111624940B (en) Information processing apparatus and information processing method
KR101407861B1 (en) Wear of Cutting Tool Wear and sensing devices using the same cutting tool detection methods
US10310494B2 (en) Diagnostic result display method in diagnostic device and diagnostic device
US11913992B2 (en) Current measuring system for machine tool and current measuring method thereof
JP5666397B2 (en) Machine Tools
KR102191510B1 (en) Monitoring method for machining flow
JP7278803B2 (en) Information processing method, information processing device, robot system, robot system control method, article manufacturing method using robot system, program, and recording medium
CN116137829A (en) Abnormality detection device
TWI770451B (en) Real-time visualization process for machining process information of machine tool and real-time visualization system of machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566417

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20741130

Country of ref document: EP

Kind code of ref document: A1