WO2020149065A1 - Pm sensor - Google Patents

Pm sensor Download PDF

Info

Publication number
WO2020149065A1
WO2020149065A1 PCT/JP2019/048738 JP2019048738W WO2020149065A1 WO 2020149065 A1 WO2020149065 A1 WO 2020149065A1 JP 2019048738 W JP2019048738 W JP 2019048738W WO 2020149065 A1 WO2020149065 A1 WO 2020149065A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
particle concentration
blower
sensor
air
Prior art date
Application number
PCT/JP2019/048738
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 石黒
熊田 辰己
耕治 加藤
健太 中嶋
尚敬 石山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020149065A1 publication Critical patent/WO2020149065A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/24Devices purely for ventilating or where the heating or cooling is irrelevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke

Definitions

  • the present disclosure relates to a PM sensor that detects the particle concentration of particulate matter contained in air.
  • ⁇ Vehicle air conditioner controls the temperature of the air taken into the air conditioning unit from inside the vehicle or outside the vehicle, and blows out the temperature-controlled air into the vehicle interior.
  • the temperature control of the air is performed by a heater core or an evaporator in the air conditioning unit, as described in Patent Document 1 below, for example.
  • the present inventors are studying to add a function of measuring the concentration of particles floating in the air, such as PM2.5, to an air conditioner for a vehicle.
  • the PM sensor detects the suspended particles in the air by receiving the scattered light when the light emitted from the light emitting element of the light emitting unit hits the suspended particles by the light receiving element of the light receiving unit. If such a PM sensor is provided in a vehicle air conditioner and a part of the air drawn into the air conditioning unit flows through the PM sensor, the particle concentration in the air drawn into the air conditioning unit can be measured. Is possible.
  • the gain of the light receiving portion becomes 0 at low frequencies, and the gain increases as the frequency increases. There is.
  • the light receiving unit of the PM sensor has a high-pass filter that removes low-frequency components, and outputs a sensor signal representing 0 at low frequencies.
  • This PM sensor measures the particle concentration in the air flowing through the PM sensor at a certain flow velocity or higher.
  • the particle concentration data indicating the particle concentration specified by the sensor signal output from the light receiving unit is sequentially stored in the buffer by the control unit.
  • the particle concentration measured by the PM sensor varies greatly, so we are considering using moving averages to identify the particle concentration.
  • the moving average is a value obtained by shifting an interval from an average value of certain constant intervals in time series data.
  • the control unit of the PM sensor stores the particle concentration in a buffer such as a memory at predetermined time intervals, and in the particle concentration data stored in the buffer, obtains an average value for each fixed period while shifting the period.
  • a buffer such as a memory
  • Memory is a non-transitional tangible storage medium.
  • the particle concentration data representing 0 is sequentially stored in the buffer while the blower is off. For this reason, the rising of the moving average becomes gentle immediately after the blower that takes in air to the air conditioning unit is turned on. Therefore, there is a problem that the response is poor and the particle concentration cannot be accurately specified.
  • the present disclosure has an object of providing excellent responsiveness and enabling accurate identification of particle concentration even immediately after the blower is turned on.
  • a PM sensor that detects the particle concentration of a particulate matter contained in the air flowing in a case by the operation of a blower emits light to the air, and the PM sensor emits the light.
  • Light is received by the scattered light scattered by the particulate matter, the sensor signal according to the intensity of the scattered light is output, and a low-frequency component of the sensor signal is removed.
  • the storage controller Based on the particle concentration data indicating the particle concentration of the particulate matter specified based on the storage controller, the storage controller sequentially stores the data in the storage unit at predetermined intervals, and the predetermined particle concentration data sequentially stored in the storage unit by the storage controller.
  • a moving average calculation unit that sequentially calculates the average value for each period as a moving average while shifting the period, and specifies the particle concentration of the particulate matter based on the moving average calculated by the moving average calculation unit, and the specified particulate matter
  • the signal output unit that outputs a concentration signal indicating the particle concentration of the blower, the operation determination unit that determines the operation state of the blower, and the operation determination unit determines that the storage unit stores the blower from the stopped state to the started state.
  • a refresh unit that refreshes the stored particle concentration data.
  • the moving average calculation unit excludes the particle concentration data refreshed by the refresh unit, and calculates the moving average using the particle concentration data stored in the storage unit after being refreshed by the refresh unit.
  • the refresh unit refreshes the particle concentration data stored in the storage unit when the operation determination unit determines that the blower has changed from the operation stopped state to the startup state, and the moving average calculation unit,
  • the particle concentration data of the particulate matter refreshed by the refresh section is excluded, and the moving average is calculated using the particle concentration data stored in the storage section after being refreshed by the refresh section, so immediately after the blower is turned on.
  • the responsiveness is excellent and the particle concentration can be accurately specified.
  • FIG. 3 is a flowchart of a control unit of the PM sensor according to the first embodiment. It is a figure showing the value of the buffer when there is no refresh. It is a figure showing the value of the buffer at the time of refreshing. It is a flow chart of a control part of a PM sensor. It is a flow chart of a control part of a PM sensor concerning a 2nd embodiment. It is a flow chart of a control part of a PM sensor concerning a 3rd embodiment. It is a figure showing composition of a PM sensor. It is the figure which showed the frequency characteristic of PM sensor. It is a block diagram of a PM sensor. It is a figure for demonstrating the calculation method of the moving average of particle concentration. It is a figure for demonstrating the rising of the moving average immediately after a blower turns on from OFF.
  • the PM sensor 50 Before describing the PM sensor according to the present embodiment, the PM sensor 50 under consideration by the present inventors and a method for identifying the particle concentration will be described.
  • the configuration of the PM sensor under consideration by the present inventors is shown in FIG.
  • the PM sensor 50 detects the floating particles in the air by receiving the scattered light when the light emitted from the light emitting element 511 of the light emitting section 51 hits the floating particles by the light receiving element 521 of the light receiving section 52. If such a PM sensor 50 is provided in a vehicle air conditioner and a part of the air drawn into the air conditioning unit flows through the PM sensor 50, the particle concentration in the air drawn into the air conditioning unit can be measured. It becomes possible to do.
  • the scattered light received by the light receiving element 521 is separated from the ambient light from the surroundings. Therefore, as shown in FIG. 10, the gain of the light receiving unit 52 becomes 0 when the frequency becomes 0 Hertz, The gain is increased as the frequency is increased.
  • the light receiving unit 52 of the PM sensor 50 includes a light receiving element 521 that receives light and a high-pass filter 524 that removes low-frequency components included in the signal output from the light receiving element 521. And are equipped with.
  • a control unit 525 that performs various controls is connected to the light receiving unit 52.
  • a sensor signal indicating 0 is output to the control unit 525 when the blower that takes in air to the air conditioning unit is turned off and the flow velocity of the air flowing in the PM sensor becomes 0 m/sec. Further, when the blower that takes in air to the air conditioning unit is turned on and the flow velocity of the air flowing in the PM sensor increases, a sensor signal corresponding to the intensity of scattered light is output.
  • the moving average is a value obtained by shifting an interval from an average value of certain constant intervals in time series data.
  • control unit 525 stores the particle concentration in a buffer such as a memory at fixed time intervals, and in the particle concentration data stored in the buffer, obtains an average value for each fixed period while shifting the period. ..
  • the average particle concentration in the period A to X is calculated as a moving average
  • the average particle concentration in the period B to Y is calculated as a moving average
  • the average of the particle concentrations during the period C to Z is calculated as the moving average.
  • the PM sensor according to the first embodiment will be described with reference to FIGS. 1 to 6.
  • the PM sensor 50 is arranged in the vehicle air conditioner 1 mounted on the vehicle.
  • the PM sensor 50 detects the concentration of dust contained in the air flowing in the air conditioning case 21 of the vehicle air conditioner 1, that is, the concentration of particles of the particulate matter, by the operation of the blower 23.
  • the vehicle air conditioner 1 includes an air conditioning unit 2 and an air conditioning control device 40.
  • the air conditioning unit 2 is a vehicle air conditioning unit that is installed in the vehicle compartment and performs air conditioning in the vehicle interior.
  • the air conditioning unit 2 is installed in an instrument panel arranged on the front side of the vehicle in the vehicle interior.
  • the air conditioning unit 2 includes an air conditioning case 21, an inside/outside air switching door 22, a blower 23, an evaporator 26, a heater core 27, an air mix door 28, an air filter 30, blowout opening doors 254, 255, 256 and the like. have.
  • the air conditioning case 21 is made of a resin that has some elasticity and is also excellent in strength. Examples of the resin forming the air conditioning case 21 include polypropylene.
  • the air-conditioning case 21 forms the outer shell of the air-conditioning unit 2, and inside the air-conditioning case 21, an air passage, that is, a ventilation passage 24, through which air blown into the vehicle compartment is formed.
  • the air conditioning case 21 has an inside air introduction port 241 for introducing inside air into the ventilation passage 24 from a predetermined location in the vehicle compartment on the upstream side in the air flow direction of the ventilation passage 24, and introduces outside air into the ventilation passage 24 from outside the vehicle.
  • an outside air introduction port 242 for.
  • the inside air is the air inside the vehicle compartment
  • the outside air is the air outside the vehicle compartment.
  • the air conditioning case 21 has a plurality of blowout openings 251, 252, 253 on the downstream side of the air passage 24 in the air flow direction for blowing air from the air passage 24 to the front seat area in the vehicle interior. ..
  • the plurality of blowout openings 251, 252, 253 include a face blowout opening 251, a foot blowout opening 252, and a defroster blowout opening 253.
  • the face blowout opening 251 blows air-conditioning air toward the upper half of the occupant seated in the front seat.
  • the foot blowout opening 252 blows out the conditioned air toward the feet of the occupant.
  • the defroster blowout opening 253 blows out the conditioned air toward the windshield of the vehicle.
  • an inside/outside air switching door 22 Inside the air conditioning case 21, an inside/outside air switching door 22, a blower 23, an evaporator 26, a heater core 27, an air mix door 28, etc. are provided.
  • the inside/outside air switching door 22 is for continuously adjusting the opening area of the inside air inlet 241 and the opening area of the outside air inlet 242.
  • the inside/outside air switching door 22 is driven by an actuator such as a servo motor (not shown).
  • the inside/outside air switching door 22 rotates so that the opening of one of the inside air inlet 241 and the outside air inlet 242 closes the other inlet.
  • the inside/outside air switching door 22 can adjust the ratio between the air volume of the inside air introduced into the ventilation passage 24 and the air volume of the outside air.
  • the intake mode to the ventilation passage 24 there are an inside air mode for introducing the inside air inside the vehicle and an outside air mode for introducing outside air outside the vehicle.
  • the inside/outside air switching door 22 is positioned at an operating position where the inside air introduction port 241 is opened and the outside air introduction port 242 is closed.
  • the inside/outside air switching door 22 is positioned at an operating position where the inside air introduction port 241 is closed and the outside air introduction port 242 is opened.
  • the blower 23 is a centrifugal blower that blows air, and has a centrifugal fan 231 arranged in the ventilation passage 24 and a motor (not shown) that rotationally drives the centrifugal fan 231.
  • a centrifugal fan 231 of the blower 23 When the centrifugal fan 231 of the blower 23 is rotationally driven, an air flow is formed in the ventilation passage 24.
  • the air introduced into the ventilation passage 24 from the inside air introduction port 241 or the outside air introduction port 242 flows through the ventilation passage 24 and at least the face blowout opening 251, the foot blowout opening 252, and the defroster blowout opening 253. Blow out from one.
  • air In the ventilation passage 24, on the downstream side of the centrifugal fan 231 in the air flow direction, air roughly flows in the direction indicated by an arrow Ar.
  • An air introduction path 211 is formed at the end of the air conditioning case 21 where the centrifugal fan 231 is arranged.
  • the air introduction path 211 is formed as a space in which air flows from the outside of the air conditioning case 21 to the inside of the air conditioning case 21.
  • the face outlet opening door 254 is provided in the face outlet opening 251, and the opening area of the face outlet opening 251 is adjusted.
  • the foot outlet opening door 255 is provided in the foot outlet opening 252, and adjusts the opening area of the foot outlet opening 252.
  • the defroster outlet opening door 256 is provided in the defroster outlet opening 253, and adjusts the opening area of the defroster outlet opening 253.
  • the evaporator 26 is a heat exchanger for cooling the air flowing through the ventilation passage 24.
  • the evaporator 26 exchanges heat between the air passing through the evaporator 26 and the refrigerant, thereby cooling the air and evaporating the refrigerant.
  • the heater core 27 is a heat exchanger for heating the air flowing through the ventilation passage 24.
  • the heater core 27 exchanges heat between the engine cooling water and the air passing through the heater core 27, for example, and heats the air with the heat of the engine cooling water.
  • the heater core 27 is arranged downstream of the evaporator 26 in the air flow direction.
  • An air mix door 28 is provided between the evaporator 26 and the heater core 27 of the air conditioning unit 2.
  • the air mix door 28 adjusts the ratio of the air volume that passes through the evaporator 26 and bypasses the heater core 27 and the air volume that passes through the evaporator 26 and then passes through the heater core 27.
  • the air filter 30 is arranged between the blower 23 and the evaporator 26 in the ventilation path 24 of the air conditioning case 21.
  • the air filter 30 is arranged downstream of the blower 23 in the air flow direction and upstream of the evaporator 26 in the air flow direction.
  • the air filter 30 captures dust and the like contained in the air passing through the air filter 30 to some extent. Therefore, the air blown from the blower 23 flows into the evaporator 26 after dust and the like in the air are removed to some extent by the air filter 30.
  • the air conditioning control device 40 can operate the air conditioning unit 2 so as to reduce the dust concentration in the vehicle interior. In such an operation, the air conditioning control device 40 operates the blower 23 after setting the air conditioning unit 2 to the inside air mode, for example. The larger the amount of air blown by the blower 23, the higher the dust removing capability of the air conditioning unit 2 for removing dust in the vehicle interior.
  • the PM sensor 50 is arranged in the ventilation path 24, through which the air blown into the vehicle interior of the vehicle flows, upstream of the blower 23 in the air flow direction and upstream in the air flow direction with respect to the air filter 30. Therefore, the PM sensor 50 detects the concentration of dust contained in the air before passing through the air filter 30.
  • the PM sensor 50 detects the dust concentration, which is the concentration of suspended particles contained in the air at a predetermined sensing location Are, and outputs a detection signal indicating the detected dust concentration to the air conditioning controller 40. ..
  • the dust concentration is also called dust concentration, and more specifically, it is the mass concentration of dust contained in the air, and the unit of dust concentration is, for example, “ ⁇ g/m 3 ”.
  • the PM sensor 50 of this embodiment is an optical dust sensor configured to detect the dust concentration by the light scattering method.
  • the PM sensor 50 includes a light emitting portion 51 having a light emitting element 511 that emits light, a light receiving portion 52 that receives the light emitted by the light emitting element 511, and a sensor case 53 that houses the light emitting portion 51 and the light receiving portion 52. ing.
  • the light emitting element 511 is composed of, for example, a light emitting diode. Part of the air flowing through the air introduction passage 211 formed in the air conditioning case 21 flows inside the sensor case 53 of the PM sensor 50.
  • the PM sensor 50 detects the concentration of dust contained in the air flowing inside the sensor case 53 by receiving the scattered light, which is the light emitted from the light emitting unit 51 hit by the particulate matter and scattered by the light receiving unit 52. ..
  • the block configuration of the light receiving section 52 of the PM sensor 50 is the same as that shown in FIG. That is, the light receiving unit 52 of the PM sensor 50 includes a light receiving element 521 that receives light, and a high pass filter 524 that removes low frequency components included in the signal output from the light receiving element 521.
  • the light receiving element 521 is composed of, for example, a photodiode. A current corresponding to the amount of received light flows through the light receiving element 521.
  • a control unit 525 that performs various controls is connected to the light receiving unit 52.
  • a high pass filter 524 is arranged between the element 521 and the control unit 525.
  • the PM sensor 50 is configured so that the gain becomes 0 when the frequency of the sensor signal becomes 0 hertz.
  • the gain increases as the flow velocity of the air flowing in the sensor case 53 increases, that is, as the frequency increases.
  • the air conditioning control device 40 shown in FIG. 1 is a control device that controls the air conditioning unit 2.
  • the air conditioning control device 40 is an electronic control device including a storage unit configured by a non-transitional physical storage medium such as a semiconductor memory and a processor.
  • Semiconductor memory is a non-transitional tangible storage medium.
  • the air conditioning control device 40 executes a computer program stored in its storage unit. By executing this computer program, the method corresponding to the computer program is executed. That is, the air conditioning control device 40 executes various control processes such as the processes of FIGS. 5 to 6 described later according to the computer program.
  • the air conditioning control device 40 controls the operation of each actuator by outputting a control signal to each actuator included in the air conditioning unit 2.
  • the air conditioning control device 40 performs various air conditioning controls in the air conditioning unit 2.
  • the blower 23, the inside/outside air switching door 22, the air mix door 28, the face outlet opening door 254, the foot outlet opening door 255, and the defroster outlet opening door 256 described above are drive-controlled by the air conditioning controller 40. ..
  • the air conditioning control device 40 is electrically connected to, for example, sensors such as the PM sensor 50 and actuators such as doors, as well as an operating device 44 and a display device 46.
  • the operation device 44 is an operation unit operated by an occupant when adjusting the air volume, temperature, etc. of the conditioned air blown from the air conditioning unit 2.
  • the operation device 44 is arranged, for example, on an instrument panel of a vehicle.
  • the operation device 44 can set, for example, the air volume of the conditioned air, the target room temperature in the passenger compartment, and the outlet of the conditioned air.
  • the operation device 44 can also set an automatic air conditioning mode in which air volume adjustment of air conditioning air, temperature adjustment of air conditioning air, and selection of inside air circulation or outside air introduction are automatically performed.
  • the operation device 44 outputs information indicating these settings, that is, operation information indicating an occupant operation performed on the operation device 44 to the air conditioning control device 40.
  • control unit 525 will be described with reference to FIGS. 3 to 6. First, the processing shown in FIG. 3 will be described.
  • the control unit 525 carries out the processing shown in FIG.
  • the control unit 525 identifies the sensor output value in S100. Specifically, the process of specifying the sensor output value based on the sensor signal output from the light receiving unit 52 and storing the specified sensor output value in the memory as a buffer is repeatedly performed for a certain period. As a result, the sensor output value is sequentially stored in the predetermined buffer area.
  • a memory is a tangible transitional storage medium.
  • the sensor output value specified based on the sensor signal output from the light receiving unit 52 is sequentially stored in the memory as a buffer.
  • the sensor output value is set to 0 and sequentially stored in the memory as a buffer.
  • the control unit 525 determines in S104 that the blower is Recognizing that 23 is turned on, the process returns to S100.
  • the sensor output value specified based on the sensor signal output from the light receiving unit 52 is sequentially stored in the memory as a buffer.
  • the control unit 525 refers to the sensor output value stored in the memory to determine whether the density change rate R, which is the change rate of the density of dust per unit time, is equal to or greater than the threshold value R noise .
  • the threshold value R noise is a constant that determines whether or not the density change ratio R is determined as noise.
  • the control unit 525 recognizes in S112 that the blower 23 is off, and returns to S108. By repeating such processing, the sensor output value is sequentially stored in the memory as 0.
  • the control unit 525 recognizes that the blower 23 is turned on in S114.
  • control unit 525 determines in S115 whether or not the time from the operation stop state of the blower 23 to the start state is equal to or more than a threshold value.
  • the control unit 525 refreshes the particle concentration data sequentially stored in the memory as the buffer in S116. .. Specifically, the predetermined specific code is stored in the memory, and the process returns to S100.
  • FIG. 5 shows the particle concentration data stored in the memory when refresh is performed.
  • the particle concentration data is refreshed at the refresh time Tref.
  • the hyphen "-" in the figure represents a specific code that means that the refresh has been performed.
  • the blower 23 is turned on based on the sensor output values A to B in S114.
  • control unit 525 performs a moving average calculation process that excludes the refreshed particle concentration data and calculates a moving average. This moving average calculation process will be described later.
  • the control unit 525 determines the particle concentration stored in the memory in S118.
  • the particle concentration data stored in the memory is corrected using the sensor output value before the blower 23 is in the operation stopped state and the sensor output value in which the variation amount is equal to or less than the predetermined threshold value.
  • the concentration of particles around the vehicle is determined based on the WEB information and the like. May be estimated. Then, the particle concentration data stored in the memory may be corrected with this particle concentration. After correcting the particle concentration data in this way, the control unit 525 returns to S100.
  • control unit 525 periodically executes the processing shown in FIG. 6 in parallel with the processing shown in FIG.
  • control unit 525 reads the particle concentration data from the memory as a buffer in S200.
  • the control unit 525 calculates a moving average in S202.
  • the moving average is obtained by shifting the intervals of the average value for each certain interval in the time series data.
  • the control unit 525 stores the particle concentration in a buffer such as a memory at regular time intervals, and in the particle concentration data stored in the buffer, obtains an average value for each constant period while shifting the period.
  • the average value of the particle concentration data read from the memory as the buffer in a certain section is calculated.
  • the control unit 525 excludes the refreshed particle concentration data and calculates the average value of the particle concentration data in a certain section. For example, when there is refreshed particle concentration data and particle concentration data stored in the buffer after the refresh is executed, the concentration data stored in the buffer after being refreshed is used to average the particle concentration data over a certain section. Calculate the value.
  • control unit 525 identifies the particle concentration based on the average value of the particle concentration data calculated in S202 in a certain section, and outputs a signal indicating the particle concentration. Specifically, a pulse signal with a duty ratio is output according to the particle concentration, and this processing is repeatedly performed.
  • the PM sensor of this embodiment includes the light emitting unit (51) that irradiates air with light. Further, a light receiving unit (52) for receiving scattered light which is emitted by the light emitting unit and scattered by hitting the particulate matter, outputs a sensor signal according to the intensity of the scattered light, and removes a low frequency component of the sensor signal. I have it. Further, a storage control unit (S100) is provided for sequentially storing, in the storage unit, particle concentration data indicating the particle concentration of the particulate matter specified based on the sensor signal output from the light receiving unit. ..
  • the storage control unit includes a moving average calculation unit (S202) that sequentially calculates an average value of the particle concentration data of the particulate matter for each predetermined period sequentially stored in the storage unit as a moving average while shifting the period.
  • a signal output unit (S204) is provided that specifies the particle concentration of the particulate matter based on the moving average calculated by the moving average calculation unit and outputs a concentration signal indicating the particle concentration of the specified particulate matter. ..
  • the operation determining unit (S102, S202, S110) for determining the operation state of the blower is provided.
  • the operation determination unit includes a refresh unit (S116) that refreshes the particle concentration data of the particulate matter stored in the storage unit when it is determined that the blower has changed from the operation stop state to the start state.
  • the moving average calculation unit excludes the particle concentration data of the particulate matter refreshed by the refreshing unit, and calculates the moving average using the particle concentration data stored in the storage unit after being refreshed by the refreshing unit.
  • the refresh unit refreshes the particle concentration data of the particulate matter stored in the storage unit when the operation determination unit determines that the blower has changed from the operation stopped state to the startup state. Further, the moving average calculation unit excludes the particle concentration data of the particulate matter refreshed by the refreshing unit. Since the moving average calculation unit calculates the moving average using the particle concentration data stored in the storage unit after being refreshed by the refresh unit, it has excellent responsiveness and high accuracy even immediately after the blower is turned on. The particle concentration can be specified.
  • the light receiving section includes a light receiving element (521) through which a current corresponding to the intensity of scattered light hitting the particulate matter flows, and a high pass filter (524) for removing low frequency components included in the signal output from the light receiving element. And are equipped with. Then, when the blower stops operating, a sensor signal representing 0 is output.
  • the operation determination unit determines that the blower is in a stopped state when the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit is 0 continuously for the reference number of times or more. ..
  • the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit is 0 for the reference number of times or more, it can be determined that the blower is in the stopped state. ..
  • the operation determination unit determines that the concentration change rate of the particle concentration of the particulate matter per unit time is equal to or higher than a predetermined noise determination level based on the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit. If it becomes, it is determined that the blower is in operation.
  • the PM sensor includes a time determination unit (S115) that determines whether or not the time from the operation stop state of the blower to the start state is equal to or greater than a threshold value. Further, when the time determination unit determines that the time from the operation stop state to the start state of the blower is less than the threshold value, the particle concentration data of the particulate matter stored in the storage unit is corrected to a value larger than 0.
  • the correction unit determines that the time from the operation stop state to the start state of the blower is less than the threshold value by the time determination unit, the particle concentration data of the particulate matter stored in the storage unit is It is corrected to a value greater than 0. Therefore, it is possible to specify the particle concentration more accurately.
  • the PM sensor according to the second embodiment will be described with reference to FIG. 7.
  • the configuration of the PM sensor 50 of this embodiment is the same as that of the first embodiment.
  • the configuration of the PM sensor 50 of this embodiment is different from that of the first embodiment in the processing of the control unit 525.
  • FIG. 7 shows a flowchart of the control unit 525 of this embodiment.
  • the control unit 525 of the present embodiment is different in that the determination of S202 is performed instead of S102 of FIG.
  • the control unit 525 of this embodiment refers to the sensor output value stored in the memory, and the density change rate R, which is the change rate of the density of dust per unit time, is equal to or less than the threshold value R noise. Or not. Then, in the case of a positive determination, it is recognized that the blower 23 is off, and in the case of a negative determination, it is recognized that the blower 23 is on. In this way, the determination in S202 may be performed instead of S102 in FIG.
  • the operation determination unit when the concentration change rate of the particle concentration of the particulate matter per unit time becomes less than or equal to a predetermined value based on the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit. , It is determined that the blower is stopped.
  • the blower It can be determined that it is in a stopped state.
  • the PM sensor according to the third embodiment will be described with reference to FIG.
  • the configuration of the PM sensor 50 of this embodiment is the same as that of the first embodiment.
  • the control unit 525 of the PM sensor 50 of the present embodiment is different in that when the determination of S102 of FIG. 3 is affirmative, the determination of S302 of FIG. 7 is further performed.
  • the concentration change rate R which is the change rate of the dust concentration per unit time
  • S302 the concentration change rate of the dust concentration per unit time
  • the operation determination unit determines that the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit becomes 0 continuously for the reference number of times or more, and the particle concentration of the particulate matter per unit time.
  • concentration change rate is less than or equal to the predetermined value, it is determined that the blower is in a stopped state.
  • the blower is It can be determined that it is in a stopped state.
  • the operation determination unit determines whether or not the blower is in a stopped state, and in S202, the operation determination unit is sequentially stored in the storage unit by the storage control unit. Based on the particle concentration data of the particulate matter, it was determined whether or not the blower was stopped. On the other hand, the operation state of the blower may be determined based on the blower control signal sent from the air conditioning controller (40) that controls the operation of the blower.
  • the PM sensor includes a light emitting unit that irradiates air with light. Further, the light emitting unit is provided with a light receiving unit that receives scattered light scattered by the particulate matter hitting the particulate matter, outputs a sensor signal according to the intensity of the scattered light, and removes low-frequency components of the sensor signal. ..
  • the storage control unit is provided that sequentially stores the particle concentration data indicating the particle concentration of the particulate matter specified based on the sensor signal output from the light receiving unit in the storage unit for each predetermined period.
  • the storage control unit includes a moving average calculation unit that sequentially calculates an average value of the particle concentration data of the particulate matter for each predetermined period sequentially stored in the storage unit as a moving average while shifting the period. Further, it is provided with a signal output unit that specifies the particle concentration of the particulate matter based on the moving average calculated by the moving average calculation unit and outputs a concentration signal indicating the particle concentration of the specified particulate matter. Further, it is provided with an operation determination unit that determines the operation state of the blower. Further, when the operation determination unit determines that the blower has changed from the operation stop state to the start state, the refresh unit is provided to refresh the particle concentration data of the particulate matter stored in the storage unit. Then, the moving average calculation unit excludes the particle concentration data of the particulate matter refreshed by the refreshing unit, and calculates the moving average using the particle concentration data stored in the storage unit after being refreshed by the refreshing unit.
  • the light receiving section removes the light receiving element in which a current corresponding to the intensity of the scattered light hitting the particulate matter flows, and the low frequency component contained in the signal output from the light receiving element. And a high pass filter (524). Then, when the blower stops operating, a sensor signal representing 0 is output.
  • the operation determination unit is configured such that, when the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit is equal to or greater than the reference number of times and is continuously 0. Is determined to be in a stopped state.
  • the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit is 0 for the reference number of times or more, it can be determined that the blower is in the stopped state. ..
  • the operation determination unit is configured to determine the concentration change rate of the particle concentration of the particulate matter per unit time based on the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit. Is less than or equal to a predetermined value, it is determined that the blower is in a stopped state.
  • the blower It can be determined that it is in a stopped state.
  • the operation determination unit determines that the particle concentration data of the particulate matter is 0 continuously for the reference number of times or more, and the concentration change rate of the particle concentration of the particulate matter per unit time. Is less than or equal to a predetermined value, it is determined that the blower is in a stopped state.
  • the blower is It can be determined that it is in a stopped state.
  • the operation determination unit based on the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit, the concentration change rate of the particle concentration of the particulate matter per unit time. Is above a predetermined noise determination level, it is determined that the blower is in an operating state.
  • the operation determination unit determines the operation state of the blower based on the blower control signal sent from the air conditioning control device that controls the operation of the blower.
  • the PM sensor includes a time determination unit that determines whether or not the time from the operation stop state of the blower to the start state is a threshold value or more.
  • the time determination unit determines that the time from the operation stop state to the start state of the blower is less than the threshold value, the particle concentration data of the particulate matter stored in the storage unit is corrected to a value greater than 0.
  • the correction unit is provided.
  • the correction unit determines that the time from the operation stop state to the start state of the blower is less than the threshold value by the time determination unit, the particle concentration data of the particulate matter stored in the storage unit is It is corrected to a value greater than 0. Therefore, it is possible to specify the particle concentration more accurately.
  • S100 corresponds to the storage control unit
  • S202 corresponds to the moving average calculation unit
  • S204 corresponds to the signal output unit
  • S102, S202, and S110 correspond to the operation determination unit
  • S116 corresponds to the refresh unit
  • S115 corresponds to the time determination unit
  • S118 corresponds to the correction unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

A PM sensor is provided with a storage control unit (S100) for causing particle concentration data to be stored sequentially in a storage unit for each predetermined period on the basis of a sensor signal corresponding to the intensity of scattered light scattered by impingement on particulate matter, a moving average calculation unit (S202) for sequentially calculating an average value for each predetermined period of the particle concentration data as a moving average while shifting the period thereof, a signal output unit (S204) for outputting a concentration signal indicating a particle concentration specified on the basis of the moving average, and a refreshing unit (S116) for refreshing the particle concentration data stored in the storage unit when a blower goes from an operation-stopped state to a starting state, the moving average calculation unit excluding refreshed particle concentration data, and calculating the moving average using the particle concentration data stored in the storage unit after refreshing.

Description

PMセンサPM sensor 関連出願への相互参照Cross-reference to related application
 本出願は、2019年1月18日に出願された日本特許出願番号2019-7075号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2019-7075 filed on January 18, 2019, the description of which is incorporated herein by reference.
 本開示は、空気に含まれる粒子状物質の粒子濃度を検出するPMセンサに関するものである。 The present disclosure relates to a PM sensor that detects the particle concentration of particulate matter contained in air.
 車両用空調装置は、車室内又は車両の外から空調ユニットに取り込んだ空気の温度を調節し、温度調節後の空気を車室内に向けて吹き出すものである。空気の温度調節は、例えば下記特許文献1に記載されているように、空調ユニット内のヒータコアやエパポレータによって行われる。 ▽Vehicle air conditioner controls the temperature of the air taken into the air conditioning unit from inside the vehicle or outside the vehicle, and blows out the temperature-controlled air into the vehicle interior. The temperature control of the air is performed by a heater core or an evaporator in the air conditioning unit, as described in Patent Document 1 below, for example.
特開2008-24032号公報JP, 2008-24032, A
 本発明者らは、例えば、PM2.5のような空気中を漂う粒子の濃度を測定する機能を、車両用空調装置に付与することについて検討を進めている。PMセンサは、発光部の発光素子から発せられた光が浮遊粒子に当たった際の散乱光を受光部の受光素子で受光することにより空気中の浮遊粒子を検知する。このようなPMセンサを車両用空調装置に備え、空調ユニットに引き込まれる空気の一部がPMセンサを通って流れるような構成とすれば、空調ユニットに引き込まれる空気中における粒子濃度を測定することが可能となる。
 検討中のPMセンサにおいては、受光素子で受光される散乱光と周囲からの外乱光を切り分けるため、低周波数では受光部のゲインが0となり、周波数が高くなるにつれてゲインが大きくなるよう構成されている。具体的には、PMセンサの受光部は、低周波数成分を除去するハイパスフィルタを有し、低周波数では0を表すセンサ信号を出力する。このPMセンサは、PMセンサ内をある流速以上で流れる空気中における粒子濃度を測定する。なお、受光部から出力されたセンサ信号により特定される粒子濃度を示す粒子濃度データは、制御部によって順次、バッファに記憶される。
The present inventors are studying to add a function of measuring the concentration of particles floating in the air, such as PM2.5, to an air conditioner for a vehicle. The PM sensor detects the suspended particles in the air by receiving the scattered light when the light emitted from the light emitting element of the light emitting unit hits the suspended particles by the light receiving element of the light receiving unit. If such a PM sensor is provided in a vehicle air conditioner and a part of the air drawn into the air conditioning unit flows through the PM sensor, the particle concentration in the air drawn into the air conditioning unit can be measured. Is possible.
In the PM sensor under consideration, in order to separate scattered light received by the light receiving element and ambient light from the surroundings, the gain of the light receiving portion becomes 0 at low frequencies, and the gain increases as the frequency increases. There is. Specifically, the light receiving unit of the PM sensor has a high-pass filter that removes low-frequency components, and outputs a sensor signal representing 0 at low frequencies. This PM sensor measures the particle concentration in the air flowing through the PM sensor at a certain flow velocity or higher. The particle concentration data indicating the particle concentration specified by the sensor signal output from the light receiving unit is sequentially stored in the buffer by the control unit.
 一方で、PMセンサによって測定される粒子濃度はバラツキが大きいため、移動平均を用いて粒子濃度を特定することを検討している。ここで、移動平均とは、時系列データにおいて、ある一定区間毎の平均値を区間をずらしながら求めたものである。 On the other hand, the particle concentration measured by the PM sensor varies greatly, so we are considering using moving averages to identify the particle concentration. Here, the moving average is a value obtained by shifting an interval from an average value of certain constant intervals in time series data.
 PMセンサの制御部は、所定時間間隔毎に粒子濃度をメモリ等のバッファに記憶させておき、バッファに記憶させた粒子濃度データにおいて、一定期間毎の平均値を期間をずらしながら求める。メモリは、非遷移的実体的記憶媒体である。 The control unit of the PM sensor stores the particle concentration in a buffer such as a memory at predetermined time intervals, and in the particle concentration data stored in the buffer, obtains an average value for each fixed period while shifting the period. Memory is a non-transitional tangible storage medium.
 しかし、上述した構成では、送風機がオフしている間に、順次、バッファに0を表す粒子濃度データが記憶される。このため、空調ユニットに空気を取り込む送風機がオフからオンした直後に、移動平均の立ち上がりが緩やかとなってしまう。このため、応答性が悪く、精度良く粒子濃度を特定することができないといった問題がある。 However, in the configuration described above, the particle concentration data representing 0 is sequentially stored in the buffer while the blower is off. For this reason, the rising of the moving average becomes gentle immediately after the blower that takes in air to the air conditioning unit is turned on. Therefore, there is a problem that the response is poor and the particle concentration cannot be accurately specified.
 本開示は、送風機がオフからオンした直後でも、応答性に優れるとともに精度良く粒子濃度を特定できるようにすることを目的とする。 The present disclosure has an object of providing excellent responsiveness and enabling accurate identification of particle concentration even immediately after the blower is turned on.
 本開示の1つの観点によれば、送風機の動作によりケース内を流れる空気に含まれる粒子状物質の粒子濃度を検出するPMセンサは、空気に光を照射する発光部と、発光部が照射した光が粒子状物質に当たって散乱した散乱光を受光し、該散乱光の強度に応じたセンサ信号を出力するとともにセンサ信号の低周波数成分を除去する受光部と、受光部より出力されるセンサ信号に基づいて特定される粒子状物質の粒子濃度を示す粒子濃度データを、所定期間毎に順次、記憶部に記憶させる記憶制御部と、記憶制御部により記憶部に順次記憶された粒子濃度データの所定期間毎の平均値を期間をずらしながら移動平均として順次算出する移動平均算出部と、移動平均算出部により算出された移動平均に基づいて粒子状物質の粒子濃度を特定し、特定した粒子状物質の粒子濃度を示す濃度信号を出力する信号出力部と、送風機の動作状態を判定する動作判定部と、動作判定部により送風機が動作停止状態から始動状態になったと判定された場合、記憶部に記憶させた粒子濃度データをリフレッシュするリフレッシュ部と、を備えている。 According to one aspect of the present disclosure, a PM sensor that detects the particle concentration of a particulate matter contained in the air flowing in a case by the operation of a blower emits light to the air, and the PM sensor emits the light. Light is received by the scattered light scattered by the particulate matter, the sensor signal according to the intensity of the scattered light is output, and a low-frequency component of the sensor signal is removed. Based on the particle concentration data indicating the particle concentration of the particulate matter specified based on the storage controller, the storage controller sequentially stores the data in the storage unit at predetermined intervals, and the predetermined particle concentration data sequentially stored in the storage unit by the storage controller. A moving average calculation unit that sequentially calculates the average value for each period as a moving average while shifting the period, and specifies the particle concentration of the particulate matter based on the moving average calculated by the moving average calculation unit, and the specified particulate matter The signal output unit that outputs a concentration signal indicating the particle concentration of the blower, the operation determination unit that determines the operation state of the blower, and the operation determination unit determines that the storage unit stores the blower from the stopped state to the started state. And a refresh unit that refreshes the stored particle concentration data.
 そして、移動平均算出部は、リフレッシュ部によりリフレッシュされた粒子濃度データを除外し、リフレッシュ部によりリフレッシュされた後に記憶部に記憶された粒子濃度データを用いて移動平均を算出する。 Then, the moving average calculation unit excludes the particle concentration data refreshed by the refresh unit, and calculates the moving average using the particle concentration data stored in the storage unit after being refreshed by the refresh unit.
 上記した構成によれば、リフレッシュ部は、動作判定部により送風機が動作停止状態から始動状態になったと判定された場合、記憶部に記憶させた粒子濃度データをリフレッシュし、移動平均算出部は、リフレッシュ部によりリフレッシュされた粒子状物質の粒子濃度データを除外し、リフレッシュ部によりリフレッシュされた後に記憶部に記憶された粒子濃度データを用いて移動平均を算出するので、送風機がオフからオンした直後でも、応答性に優れるとともに精度良く粒子濃度を特定することができる。 According to the above-described configuration, the refresh unit refreshes the particle concentration data stored in the storage unit when the operation determination unit determines that the blower has changed from the operation stopped state to the startup state, and the moving average calculation unit, The particle concentration data of the particulate matter refreshed by the refresh section is excluded, and the moving average is calculated using the particle concentration data stored in the storage section after being refreshed by the refresh section, so immediately after the blower is turned on. However, the responsiveness is excellent and the particle concentration can be accurately specified.
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 Note that the reference numerals in parentheses attached to the respective constituent elements and the like indicate an example of a correspondence relationship between the constituent elements and the like and specific constituent elements and the like described in the embodiments described later.
第1実施形態に係るPMセンサを備えた車両用空調装置の概略構成を模式的に示した図である。It is the figure which showed typically the schematic structure of the vehicle air conditioner provided with the PM sensor which concerns on 1st Embodiment. PMセンサの構成を示した図である。It is a figure showing composition of a PM sensor. 第1実施形態に係るPMセンサの制御部のフローチャートである。3 is a flowchart of a control unit of the PM sensor according to the first embodiment. リフレッシュなしの場合のバッファの値を示した図である。It is a figure showing the value of the buffer when there is no refresh. リフレッシュありの場合のバッファの値を示した図である。It is a figure showing the value of the buffer at the time of refreshing. PMセンサの制御部のフローチャートである。It is a flow chart of a control part of a PM sensor. 第2実施形態に係るPMセンサの制御部のフローチャートである。It is a flow chart of a control part of a PM sensor concerning a 2nd embodiment. 第3実施形態に係るPMセンサの制御部のフローチャートである。It is a flow chart of a control part of a PM sensor concerning a 3rd embodiment. PMセンサの構成を示した図である。It is a figure showing composition of a PM sensor. PMセンサの周波数特性を示した図である。It is the figure which showed the frequency characteristic of PM sensor. PMセンサのブロック図である。It is a block diagram of a PM sensor. 粒子濃度の移動平均の算出方法について説明するための図である。It is a figure for demonstrating the calculation method of the moving average of particle concentration. 送風機がオフからオンした直後の移動平均の立ち上がりについて説明するための図である。It is a figure for demonstrating the rising of the moving average immediately after a blower turns on from OFF.
 本実施形態に係るPMセンサについて説明する前に、本発明者らが検討中のPMセンサ50と粒子濃度の特定手法について説明する。 Before describing the PM sensor according to the present embodiment, the PM sensor 50 under consideration by the present inventors and a method for identifying the particle concentration will be described.
 本発明者らが検討中のPMセンサの構成を図9に示す。PMセンサ50は、発光部51の発光素子511から発せられた光が浮遊粒子に当たった際の散乱光を受光部52の受光素子521で受光することにより空気中の浮遊粒子を検知する。このようなPMセンサ50を車両用空調装置に備え、空調ユニットに引き込まれる空気の一部がPMセンサ50を通って流れるような構成とすれば、空調ユニットに引き込まれる空気中における粒子濃度を測定することが可能となる。 The configuration of the PM sensor under consideration by the present inventors is shown in FIG. The PM sensor 50 detects the floating particles in the air by receiving the scattered light when the light emitted from the light emitting element 511 of the light emitting section 51 hits the floating particles by the light receiving element 521 of the light receiving section 52. If such a PM sensor 50 is provided in a vehicle air conditioner and a part of the air drawn into the air conditioning unit flows through the PM sensor 50, the particle concentration in the air drawn into the air conditioning unit can be measured. It becomes possible to do.
 検討中のPMセンサ50においては、受光素子521で受光される散乱光と周囲からの外乱光を切り分けるため、図10に示すように、周波数が0ヘルツになると受光部52のゲインが0となり、周波数が高くなるにつれてゲインが大きくなるよう構成されている。 In the PM sensor 50 under consideration, the scattered light received by the light receiving element 521 is separated from the ambient light from the surroundings. Therefore, as shown in FIG. 10, the gain of the light receiving unit 52 becomes 0 when the frequency becomes 0 Hertz, The gain is increased as the frequency is increased.
 具体的には、図11に示すように、PMセンサ50の受光部52は、光を受光する受光素子521と、受光素子521から出力された信号に含まれる低周波数成分を除去するハイパスフィルタ524と、を備えている。また、受光部52には、各種制御を行う制御部525が接続されている。 Specifically, as shown in FIG. 11, the light receiving unit 52 of the PM sensor 50 includes a light receiving element 521 that receives light and a high-pass filter 524 that removes low-frequency components included in the signal output from the light receiving element 521. And are equipped with. A control unit 525 that performs various controls is connected to the light receiving unit 52.
 空調ユニットに空気を取り込む送風機がオフして、PMセンサ内を流れる空気の流速が0m/秒となった際に、制御部525に0を表すセンサ信号が出力される。また、空調ユニットに空気を取り込む送風機がオンして、PMセンサ内を流れる空気の流速が大きくなると、散乱光の強度に応じたセンサ信号が出力される。 A sensor signal indicating 0 is output to the control unit 525 when the blower that takes in air to the air conditioning unit is turned off and the flow velocity of the air flowing in the PM sensor becomes 0 m/sec. Further, when the blower that takes in air to the air conditioning unit is turned on and the flow velocity of the air flowing in the PM sensor increases, a sensor signal corresponding to the intensity of scattered light is output.
 一方で、PMセンサによって測定される粒子濃度はバラツキが大きいため、発明者らは移動平均を用いて粒子濃度を特定することを検討している。ここで、移動平均とは、時系列データにおいて、ある一定区間毎の平均値を区間をずらしながら求めたものである。 On the other hand, since the particle concentration measured by the PM sensor varies greatly, the inventors are considering using a moving average to specify the particle concentration. Here, the moving average is a value obtained by shifting an interval from an average value of certain constant intervals in time series data.
 具体的には、制御部525は、一定時間間隔毎に粒子濃度をメモリ等のバッファに記憶させておき、バッファに記憶させた粒子濃度データにおいて、一定期間毎の平均値を期間をずらしながら求める。 Specifically, the control unit 525 stores the particle concentration in a buffer such as a memory at fixed time intervals, and in the particle concentration data stored in the buffer, obtains an average value for each fixed period while shifting the period. ..
 例えば、図12に示すように、時刻a秒では、A~Xの期間の粒子濃度の平均を移動平均として算出し、時刻a+1秒では、B~Yの期間の粒子濃度の平均を移動平均として算出し、時刻a+2秒では、C~Zの期間の粒子濃度の平均を移動平均として算出する。このように、移動平均を用いて各時刻における粒子濃度を特定することで粒子濃度のバラツキを吸収してより精度良く粒子濃度を特定することが可能となる。 For example, as shown in FIG. 12, at time a seconds, the average particle concentration in the period A to X is calculated as a moving average, and at time a+1 second, the average particle concentration in the period B to Y is calculated as a moving average. At time a+2 seconds, the average of the particle concentrations during the period C to Z is calculated as the moving average. As described above, by specifying the particle concentration at each time using the moving average, it becomes possible to absorb the variation in particle concentration and specify the particle concentration more accurately.
 しかし、上述したように送風機がオフしている間に、順次、バッファに0を表す粒子濃度データが記憶される構成では、空調ユニットに空気を取り込む送風機がオフからオンした直後に、図13中のAに示すように、移動平均の立ち上がりが緩やかとなってしまう。このため、応答性が悪く、精度良く粒子濃度を特定することができない。 However, as described above, in the configuration in which the particle concentration data representing 0 is sequentially stored in the buffer while the blower is off, as shown in FIG. As indicated by A, the rising of the moving average becomes gradual. Therefore, the response is poor and the particle concentration cannot be specified accurately.
 以上、本発明者らが検討中のPMセンサ50と、移動平均を用いて粒子濃度を特定する手法について説明した。以下に示すPMセンサは、このような点を解決するものである。以下、実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。 Above, the PM sensor 50 under study by the present inventors and the method for specifying the particle concentration using the moving average have been described. The PM sensor shown below solves such a point. Hereinafter, embodiments will be described with reference to the drawings. In each of the following embodiments, the same or equivalent parts are designated by the same reference numerals in the drawings.
 (第1実施形態)
 第1実施形態に係るPMセンサについて図1~図6を用いて説明する。図1に示すように、PMセンサ50は、車両に搭載される車両用空調装置1に配置されている。PMセンサ50は、送風機23の動作により車両用空調装置1の空調ケース21内を流れる空気に含まれる埃濃度、すなわち粒子状物質の粒子濃度を検出する。
(First embodiment)
The PM sensor according to the first embodiment will be described with reference to FIGS. 1 to 6. As shown in FIG. 1, the PM sensor 50 is arranged in the vehicle air conditioner 1 mounted on the vehicle. The PM sensor 50 detects the concentration of dust contained in the air flowing in the air conditioning case 21 of the vehicle air conditioner 1, that is, the concentration of particles of the particulate matter, by the operation of the blower 23.
 車両用空調装置1は、空調ユニット2および空調制御装置40を備えている。空調ユニット2は、車室内に設置され車室内の空調を行う車両用空調ユニットである。例えば、空調ユニット2は、車室内のうち車両前方側に配置されたインストルメントパネル内に設置される。 The vehicle air conditioner 1 includes an air conditioning unit 2 and an air conditioning control device 40. The air conditioning unit 2 is a vehicle air conditioning unit that is installed in the vehicle compartment and performs air conditioning in the vehicle interior. For example, the air conditioning unit 2 is installed in an instrument panel arranged on the front side of the vehicle in the vehicle interior.
 図1に示すように、空調ユニット2は、空調ケース21、内外気切替ドア22、送風機23、エバポレータ26、ヒータコア27、エアミックスドア28、空気フィルタ30、吹出開口部ドア254、255、256などを有している。 As shown in FIG. 1, the air conditioning unit 2 includes an air conditioning case 21, an inside/outside air switching door 22, a blower 23, an evaporator 26, a heater core 27, an air mix door 28, an air filter 30, blowout opening doors 254, 255, 256 and the like. have.
 空調ケース21は、ある程度の弾性を有し、強度的にも優れた樹脂にて形成されている。空調ケース21を形成する樹脂として、例えばポリプロピレンが挙げられる。空調ケース21は空調ユニット2の外殻を成し、空調ケース21の内側には、車室内へ吹き出る空気が流通する空気通路すなわち通風路24が形成されている。また、空調ケース21は、通風路24の空気流れ方向上流側に、車室内の所定箇所から通風路24に内気を導入するための内気導入口241と、車外から通風路24に外気を導入するための外気導入口242とを有している。ここで、内気とは車室内の空気であり、外気とは車室外の空気である。 The air conditioning case 21 is made of a resin that has some elasticity and is also excellent in strength. Examples of the resin forming the air conditioning case 21 include polypropylene. The air-conditioning case 21 forms the outer shell of the air-conditioning unit 2, and inside the air-conditioning case 21, an air passage, that is, a ventilation passage 24, through which air blown into the vehicle compartment is formed. In addition, the air conditioning case 21 has an inside air introduction port 241 for introducing inside air into the ventilation passage 24 from a predetermined location in the vehicle compartment on the upstream side in the air flow direction of the ventilation passage 24, and introduces outside air into the ventilation passage 24 from outside the vehicle. And an outside air introduction port 242 for. Here, the inside air is the air inside the vehicle compartment, and the outside air is the air outside the vehicle compartment.
 また、空調ケース21は、通風路24の空気流れ方向下流側に、通風路24から車室内の前席領域に空気を送風するための複数の吹出開口部251、252、253を有している。その複数の吹出開口部251、252、253は、フェイス吹出開口部251とフット吹出開口部252とデフロスタ吹出開口部253とを含んでいる。 Further, the air conditioning case 21 has a plurality of blowout openings 251, 252, 253 on the downstream side of the air passage 24 in the air flow direction for blowing air from the air passage 24 to the front seat area in the vehicle interior. .. The plurality of blowout openings 251, 252, 253 include a face blowout opening 251, a foot blowout opening 252, and a defroster blowout opening 253.
 フェイス吹出開口部251は、前座席に着座した乗員の上半身に向けて空調風を吹き出すものである。フット吹出開口部252は、その乗員の足元に向けて空調風を吹き出すものである。デフロスタ吹出開口部253は、車両のフロントウインドウに向けて空調風を吹き出すものである。 The face blowout opening 251 blows air-conditioning air toward the upper half of the occupant seated in the front seat. The foot blowout opening 252 blows out the conditioned air toward the feet of the occupant. The defroster blowout opening 253 blows out the conditioned air toward the windshield of the vehicle.
 空調ケース21の内部には、内外気切替ドア22、送風機23、エバポレータ26、ヒータコア27、およびエアミックスドア28などが設けられている。 Inside the air conditioning case 21, an inside/outside air switching door 22, a blower 23, an evaporator 26, a heater core 27, an air mix door 28, etc. are provided.
 内外気切替ドア22は、内気導入口241の開口面積と外気導入口242の開口面積とを連続的に調整するものである。内外気切替ドア22は、図示していないサーボモータなどのアクチュエータによって駆動される。内外気切替ドア22は、内気導入口241と外気導入口242とのうち一方の導入口を開くほど他方の導入口を閉じるように回転動作する。これにより、内外気切替ドア22は、通風路24に導入される内気の風量と外気の風量との割合を調整することが可能である。 The inside/outside air switching door 22 is for continuously adjusting the opening area of the inside air inlet 241 and the opening area of the outside air inlet 242. The inside/outside air switching door 22 is driven by an actuator such as a servo motor (not shown). The inside/outside air switching door 22 rotates so that the opening of one of the inside air inlet 241 and the outside air inlet 242 closes the other inlet. As a result, the inside/outside air switching door 22 can adjust the ratio between the air volume of the inside air introduced into the ventilation passage 24 and the air volume of the outside air.
 通風路24への吸気モードとして、車両の室内の内気を導入する内気モードと、車両の室外の外気を導入する外気モードがある。例えば、通風路24に専ら内気が導入される内気モードでは、内外気切替ドア22は、内気導入口241を開く一方で外気導入口242を閉じる作動位置に位置決めされる。逆に、通風路24に専ら外気が導入される外気モードでは、内外気切替ドア22は、内気導入口241を閉じる一方で外気導入口242を開く作動位置に位置決めされる。 As the intake mode to the ventilation passage 24, there are an inside air mode for introducing the inside air inside the vehicle and an outside air mode for introducing outside air outside the vehicle. For example, in the inside air mode in which the inside air is exclusively introduced into the ventilation passage 24, the inside/outside air switching door 22 is positioned at an operating position where the inside air introduction port 241 is opened and the outside air introduction port 242 is closed. On the contrary, in the outside air mode in which the outside air is exclusively introduced into the ventilation passage 24, the inside/outside air switching door 22 is positioned at an operating position where the inside air introduction port 241 is closed and the outside air introduction port 242 is opened.
 送風機23は空気を送風する遠心送風機であり、通風路24に配置された遠心ファン231と、その遠心ファン231を回転駆動する不図示のモータとを有している。送風機23の遠心ファン231が回転駆動されると、通風路24に気流が形成される。これにより、内気導入口241または外気導入口242から通風路24に導入された空気は、その通風路24を流れ、フェイス吹出開口部251とフット吹出開口部252とデフロスタ吹出開口部253との少なくとも1つから吹き出される。なお、通風路24のうち遠心ファン231よりも空気流れ方向下流側では、大まかには矢印Arで示される方向に空気が流れる。 The blower 23 is a centrifugal blower that blows air, and has a centrifugal fan 231 arranged in the ventilation passage 24 and a motor (not shown) that rotationally drives the centrifugal fan 231. When the centrifugal fan 231 of the blower 23 is rotationally driven, an air flow is formed in the ventilation passage 24. Thereby, the air introduced into the ventilation passage 24 from the inside air introduction port 241 or the outside air introduction port 242 flows through the ventilation passage 24 and at least the face blowout opening 251, the foot blowout opening 252, and the defroster blowout opening 253. Blow out from one. In the ventilation passage 24, on the downstream side of the centrifugal fan 231 in the air flow direction, air roughly flows in the direction indicated by an arrow Ar.
 遠心ファン231が配置されている空調ケース21の端部には、空気導入路211が形成されている。空気導入路211は、空調ケース21の外側から空調ケース21の内側に空気が流れる空間として形成されている。 An air introduction path 211 is formed at the end of the air conditioning case 21 where the centrifugal fan 231 is arranged. The air introduction path 211 is formed as a space in which air flows from the outside of the air conditioning case 21 to the inside of the air conditioning case 21.
 フェイス吹出開口部ドア254はフェイス吹出開口部251に設けられており、そのフェイス吹出開口部251の開口面積を調整する。フット吹出開口部ドア255はフット吹出開口部252に設けられており、そのフット吹出開口部252の開口面積を調整する。デフロスタ吹出開口部ドア256はデフロスタ吹出開口部253に設けられており、そのデフロスタ吹出開口部253の開口面積を調整する。 The face outlet opening door 254 is provided in the face outlet opening 251, and the opening area of the face outlet opening 251 is adjusted. The foot outlet opening door 255 is provided in the foot outlet opening 252, and adjusts the opening area of the foot outlet opening 252. The defroster outlet opening door 256 is provided in the defroster outlet opening 253, and adjusts the opening area of the defroster outlet opening 253.
 エバポレータ26は、通風路24を流れる空気を冷却するための熱交換器である。エバポレータ26は、エバポレータ26を通過する空気と冷媒とを熱交換させ、それにより、その空気を冷却すると共に冷媒を蒸発させる。 The evaporator 26 is a heat exchanger for cooling the air flowing through the ventilation passage 24. The evaporator 26 exchanges heat between the air passing through the evaporator 26 and the refrigerant, thereby cooling the air and evaporating the refrigerant.
 ヒータコア27は、通風路24を流れる空気を加熱するための熱交換器である。ヒータコア27は、例えばエンジン冷却水とヒータコア27を通過する空気とを熱交換させ、エンジン冷却水の熱で空気を加熱する。また、ヒータコア27は、エバポレータ26に対し空気流れ方向下流側に配置されている。 The heater core 27 is a heat exchanger for heating the air flowing through the ventilation passage 24. The heater core 27 exchanges heat between the engine cooling water and the air passing through the heater core 27, for example, and heats the air with the heat of the engine cooling water. The heater core 27 is arranged downstream of the evaporator 26 in the air flow direction.
 空調ユニット2のエバポレータ26とヒータコア27との間には、エアミックスドア28が設けられている。エアミックスドア28は、エバポレータ26を通過し、ヒータコア27を迂回して流れる風量と、エバポレータ26を通過した後にヒータコア27を通過する風量との割合を調整する。 An air mix door 28 is provided between the evaporator 26 and the heater core 27 of the air conditioning unit 2. The air mix door 28 adjusts the ratio of the air volume that passes through the evaporator 26 and bypasses the heater core 27 and the air volume that passes through the evaporator 26 and then passes through the heater core 27.
 空気フィルタ30は、空調ケース21の通風路24のうち送風機23とエバポレータ26との間に配置されている。言い換えれば、空気フィルタ30は、送風機23に対する空気流れ方向下流側で且つエバポレータ26に対する空気流れ方向上流側に配置されている。 The air filter 30 is arranged between the blower 23 and the evaporator 26 in the ventilation path 24 of the air conditioning case 21. In other words, the air filter 30 is arranged downstream of the blower 23 in the air flow direction and upstream of the evaporator 26 in the air flow direction.
 空気フィルタ30は、その空気フィルタ30を通過する空気中に含まれる塵埃等を或る程度捕捉する。従って、送風機23から吹き出された空気は、その空気中の塵埃等が空気フィルタ30によって或る程度取り除かれてから、エバポレータ26へ流入する。 The air filter 30 captures dust and the like contained in the air passing through the air filter 30 to some extent. Therefore, the air blown from the blower 23 flows into the evaporator 26 after dust and the like in the air are removed to some extent by the air filter 30.
 この空気フィルタ30が空調ケース21の通風路24に設けられているので、空調制御装置40は、車室内の埃濃度を低減するように空調ユニット2を運転することが可能である。そのように運転する場合、空調制御装置40は、例えば、空調ユニット2を内気モードとした上で、送風機23を作動させる。そして、送風機23の送風量が大きくなるほど、空調ユニット2が車室内の埃を除去する埃除去能力は高くなる。 Since this air filter 30 is provided in the ventilation passage 24 of the air conditioning case 21, the air conditioning control device 40 can operate the air conditioning unit 2 so as to reduce the dust concentration in the vehicle interior. In such an operation, the air conditioning control device 40 operates the blower 23 after setting the air conditioning unit 2 to the inside air mode, for example. The larger the amount of air blown by the blower 23, the higher the dust removing capability of the air conditioning unit 2 for removing dust in the vehicle interior.
 次に、PMセンサ50について図2を用いて説明する。PMセンサ50は、車両の室内へ吹き出る空気が流通する通風路24における送風機23より空気流れ上流側で且つ空気フィルタ30に対する空気流れ方向上流側に配置されている。そのため、PMセンサ50は、空気フィルタ30を通過する前の空気に含まれる埃の濃度を検出する。 Next, the PM sensor 50 will be described with reference to FIG. The PM sensor 50 is arranged in the ventilation path 24, through which the air blown into the vehicle interior of the vehicle flows, upstream of the blower 23 in the air flow direction and upstream in the air flow direction with respect to the air filter 30. Therefore, the PM sensor 50 detects the concentration of dust contained in the air before passing through the air filter 30.
 PMセンサ50は、図2に示すように、所定のセンシング箇所Areの空気に含まれる浮遊粒子の濃度である埃濃度を検出し、検出した埃濃度を示す検出信号を空調制御装置40へ出力する。その埃濃度は塵埃濃度とも言い、詳細に言えば、空気中に含まれる埃の質量濃度であり、埃濃度の単位は例えば「μg/m3」である。 As shown in FIG. 2, the PM sensor 50 detects the dust concentration, which is the concentration of suspended particles contained in the air at a predetermined sensing location Are, and outputs a detection signal indicating the detected dust concentration to the air conditioning controller 40. .. The dust concentration is also called dust concentration, and more specifically, it is the mass concentration of dust contained in the air, and the unit of dust concentration is, for example, “μg/m 3 ”.
 本実施形態のPMセンサ50は、光散乱法により埃濃度を検出するように構成された光学式塵埃センサである。PMセンサ50は、光を発する発光素子511を有する発光部51と、発光素子511が発した光を受ける受光部52と、その発光部51と受光部52とを収容するセンサケース53とを備えている。発光素子511は、例えば、発光ダイオードにより構成される。空調ケース21に形成された空気導入路211を流れる空気の一部がPMセンサ50のセンサケース53の内部を流れるようになっている。PMセンサ50は、その発光部51から照射された光が粒子状物質に当たって散乱した散乱光を受光部52が受光することにより、センサケース53の内部を流通する空気に含まれる埃濃度を検出する。 The PM sensor 50 of this embodiment is an optical dust sensor configured to detect the dust concentration by the light scattering method. The PM sensor 50 includes a light emitting portion 51 having a light emitting element 511 that emits light, a light receiving portion 52 that receives the light emitted by the light emitting element 511, and a sensor case 53 that houses the light emitting portion 51 and the light receiving portion 52. ing. The light emitting element 511 is composed of, for example, a light emitting diode. Part of the air flowing through the air introduction passage 211 formed in the air conditioning case 21 flows inside the sensor case 53 of the PM sensor 50. The PM sensor 50 detects the concentration of dust contained in the air flowing inside the sensor case 53 by receiving the scattered light, which is the light emitted from the light emitting unit 51 hit by the particulate matter and scattered by the light receiving unit 52. ..
 PMセンサ50の受光部52のブロック構成は、図11に示したものと同じである。すなわち、PMセンサ50の受光部52は、光を受光する受光素子521と、受光素子521から出力された信号に含まれる低周波数成分を除去するハイパスフィルタ524と、を備えている。受光素子521は、例えば、フォトダイオードにより構成される。受光素子521には、受光量に応じた電流が流れる。また、受光部52には、各種制御を行う制御部525が接続されている。 The block configuration of the light receiving section 52 of the PM sensor 50 is the same as that shown in FIG. That is, the light receiving unit 52 of the PM sensor 50 includes a light receiving element 521 that receives light, and a high pass filter 524 that removes low frequency components included in the signal output from the light receiving element 521. The light receiving element 521 is composed of, for example, a photodiode. A current corresponding to the amount of received light flows through the light receiving element 521. A control unit 525 that performs various controls is connected to the light receiving unit 52.
 空調ユニット2に空気を取り込む送風機23がオフして、PMセンサ50内を流れる空気の流速が0m/秒となった際に、制御部525にセンサ出力=0を示す信号が入力されるよう受光素子521と制御部525の間にハイパスフィルタ524が配置されている。 When the blower 23 that takes in air to the air conditioning unit 2 is turned off and the flow velocity of the air flowing in the PM sensor 50 becomes 0 m/sec, the control unit 525 receives a signal indicating that the sensor output=0. A high pass filter 524 is arranged between the element 521 and the control unit 525.
 図10に示したように、PMセンサ50は、センサ信号の周波数が0ヘルツになるとゲインが0となるよう構成されている。そして、センサケース53内を流れる空気の流速が大きくなるにつれて、すなわち、周波数が高くなるにつれてゲインが大きくなるよう構成されている。 As shown in FIG. 10, the PM sensor 50 is configured so that the gain becomes 0 when the frequency of the sensor signal becomes 0 hertz. The gain increases as the flow velocity of the air flowing in the sensor case 53 increases, that is, as the frequency increases.
 次に、空調制御装置40について説明する。図1に示す空調制御装置40は、空調ユニット2を制御する制御装置である。具体的に、空調制御装置40は、半導体メモリなどの非遷移的実体的記憶媒体で構成された記憶部とプロセッサとを含んだ電子制御装置である。半導体メモリは非遷移的実体的記憶媒体である。空調制御装置40は、その記憶部に格納されたコンピュータプログラムを実行する。このコンピュータプログラムが実行されることで、コンピュータプログラムに対応する方法が実行される。すなわち、空調制御装置40は、そのコンピュータプログラムに従って、後述する図5~図6の処理など、種々の制御処理を実行する。 Next, the air conditioning control device 40 will be described. The air conditioning control device 40 shown in FIG. 1 is a control device that controls the air conditioning unit 2. Specifically, the air conditioning control device 40 is an electronic control device including a storage unit configured by a non-transitional physical storage medium such as a semiconductor memory and a processor. Semiconductor memory is a non-transitional tangible storage medium. The air conditioning control device 40 executes a computer program stored in its storage unit. By executing this computer program, the method corresponding to the computer program is executed. That is, the air conditioning control device 40 executes various control processes such as the processes of FIGS. 5 to 6 described later according to the computer program.
 また、空調制御装置40は空調ユニット2に含まれる各アクチュエータへ制御信号を出力することにより、各アクチュエータの作動を制御する。要するに、空調制御装置40は、空調ユニット2において種々の空調制御を行う。例えば、上述した送風機23、内外気切替ドア22、エアミックスドア28、フェイス吹出開口部ドア254、フット吹出開口部ドア255、およびデフロスタ吹出開口部ドア256は、空調制御装置40によって駆動制御される。 Further, the air conditioning control device 40 controls the operation of each actuator by outputting a control signal to each actuator included in the air conditioning unit 2. In short, the air conditioning control device 40 performs various air conditioning controls in the air conditioning unit 2. For example, the blower 23, the inside/outside air switching door 22, the air mix door 28, the face outlet opening door 254, the foot outlet opening door 255, and the defroster outlet opening door 256 described above are drive-controlled by the air conditioning controller 40. ..
 また、図1に示すように、空調制御装置40には、例えば、PMセンサ50などのセンサ類やドア等のアクチュエータのほか、操作装置44および表示装置46が電気的に接続されている。 Further, as shown in FIG. 1, the air conditioning control device 40 is electrically connected to, for example, sensors such as the PM sensor 50 and actuators such as doors, as well as an operating device 44 and a display device 46.
 操作装置44は、空調ユニット2から吹き出される空調風の風量や温度等を調整する際に乗員により操作される操作部である。操作装置44は、例えば車両のインストルメントパネルに配置されている。操作装置44では、例えば空調風の風量、車室内の目標室温、及び空調風の吹出口等を設定することができる。また、操作装置44では、空調風の風量調整、空調風の温度調整、および内気循環または外気導入の選択が自動的に行われる自動空調モードを設定することもできる。操作装置44は、これらの設定を示す情報、すなわち操作装置44に対して為された乗員操作を示す操作情報を、空調制御装置40に出力する。 The operation device 44 is an operation unit operated by an occupant when adjusting the air volume, temperature, etc. of the conditioned air blown from the air conditioning unit 2. The operation device 44 is arranged, for example, on an instrument panel of a vehicle. The operation device 44 can set, for example, the air volume of the conditioned air, the target room temperature in the passenger compartment, and the outlet of the conditioned air. In addition, the operation device 44 can also set an automatic air conditioning mode in which air volume adjustment of air conditioning air, temperature adjustment of air conditioning air, and selection of inside air circulation or outside air introduction are automatically performed. The operation device 44 outputs information indicating these settings, that is, operation information indicating an occupant operation performed on the operation device 44 to the air conditioning control device 40.
 次に、制御部525の処理について図3~図6を用いて説明する。まず、図3に示す処理について説明する。制御部525は、該制御部525への電力供給が開始されると、図3に示す処理を実施する。 Next, the processing of the control unit 525 will be described with reference to FIGS. 3 to 6. First, the processing shown in FIG. 3 will be described. When the power supply to the control unit 525 is started, the control unit 525 carries out the processing shown in FIG.
 まず、制御部525は、S100にて、センサ出力値を特定する。具体的には、受光部52から出力されるセンサ信号に基づいてセンサ出力値を特定し、特定したセンサ出力値をバッファとしてのメモリに記憶させる処理を一定期間繰り返し実施する。これにより、予め定められたバッファ領域にセンサ出力値が順次記憶される。メモリは、非実体的遷移的記憶媒体である。 First, the control unit 525 identifies the sensor output value in S100. Specifically, the process of specifying the sensor output value based on the sensor signal output from the light receiving unit 52 and storing the specified sensor output value in the memory as a buffer is repeatedly performed for a certain period. As a result, the sensor output value is sequentially stored in the predetermined buffer area. A memory is a tangible transitional storage medium.
 ここで、送風機23がオンしている場合には、受光部52から出力されるセンサ信号に基づいて特定されたセンサ出力値がバッファとしてのメモリに順次記憶される。ただし、送風機23がオフして、PMセンサ50内を流れる空気の流速が0m/秒となった際には、センサ出力値が0としてバッファとしてのメモリに順次記憶される。 Here, when the blower 23 is turned on, the sensor output value specified based on the sensor signal output from the light receiving unit 52 is sequentially stored in the memory as a buffer. However, when the blower 23 is turned off and the flow velocity of the air flowing in the PM sensor 50 becomes 0 m/sec, the sensor output value is set to 0 and sequentially stored in the memory as a buffer.
 次に、制御部525は、S102にて、メモリに記憶されたセンサ出力値を参照してセンサ出力値=0が連続して一定数(X回)以上、メモリに記憶されているか否かを判定する。 Next, in S102, the control unit 525 refers to the sensor output value stored in the memory to determine whether or not the sensor output value=0 is continuously stored in the memory for a certain number (X times) or more. judge.
 ここで、メモリに記憶されたセンサ出力値を参照してセンサ出力値=0が連続して一定数(X回)以上、メモリに記憶されていない場合、制御部525は、S104にて、送風機23がオンしていると認識し、S100へ戻る。 Here, if the sensor output value=0 is not stored in the memory for a certain number (X times) or more in succession with reference to the sensor output value stored in the memory, the control unit 525 determines in S104 that the blower is Recognizing that 23 is turned on, the process returns to S100.
 このような処理を繰り返し実施して、受光部52から出力されるセンサ信号に基づいて特定されたセンサ出力値がバッファとしてのメモリに順次記憶される。 By repeatedly performing such processing, the sensor output value specified based on the sensor signal output from the light receiving unit 52 is sequentially stored in the memory as a buffer.
 また、送風機23がオフして、メモリに記憶されたセンサ出力値を参照してセンサ出力値=0が連続して一定数(X回)以上、メモリに記憶されている場合、制御部525は、S106にて、送風機23がオフしていると認識する。 When the blower 23 is turned off and the sensor output value stored in the memory is referred to and the sensor output value=0 is continuously stored in the memory for a certain number (X times) or more, the control unit 525 , S106, it is recognized that the blower 23 is off.
 次に、制御部525は、S108にて、センサ出力値を特定する。具体的には、受光部52から出力されるセンサ信号に基づいてセンサ出力値を特定し、特定したセンサ出力値をバッファとしてのメモリに記憶させる処理を一定期間繰り返し実施する。これにより、予め定められたバッファ領域にセンサ出力値が順次記憶される。ただし、ここでは、送風機23がオフしているため、センサ出力値が0として特定され、センサ出力値=0がメモリに順次記憶される。 Next, the control unit 525 identifies the sensor output value in S108. Specifically, the process of specifying the sensor output value based on the sensor signal output from the light receiving unit 52 and storing the specified sensor output value in the memory as a buffer is repeatedly performed for a certain period. As a result, the sensor output value is sequentially stored in the predetermined buffer area. However, since the blower 23 is off here, the sensor output value is specified as 0, and the sensor output value=0 is sequentially stored in the memory.
 次に、制御部525は、S110にて、メモリに記憶されたセンサ出力値を参照して単位時間当たりの埃の濃度の変化割合である濃度変化割合Rが閾値Rnoise以上であるか否かを判定する。ここで、ある時点での埃の濃度をCT=N-t、ある時点から一定時間t経過後の埃の濃度をCT=Nとすると、濃度変化割合Rは、R=(CT=N-CT=N-t)/tとして表すことができる。また、閾値Rnoiseは、濃度変化割合Rをノイズと判別するか否かの定数である。 Next, in S110, the control unit 525 refers to the sensor output value stored in the memory to determine whether the density change rate R, which is the change rate of the density of dust per unit time, is equal to or greater than the threshold value R noise . To judge. Assuming that the dust concentration at a certain time point is C T =Nt and the dust concentration after a certain time t has passed from a certain time point is C T =N , the concentration change ratio R is R=(C T=N − It can be expressed as C T =Nt )/t. In addition, the threshold value R noise is a constant that determines whether or not the density change ratio R is determined as noise.
 単位時間当たりの埃の濃度変化が小さく、濃度変化割合Rが閾値Rnoise未満となった場合、制御部525は、S112にて、送風機23がオフしていると認識し、S108へ戻る。このような処理を繰り返し実施して、センサ出力値が0としてメモリに順次記憶される。 When the density change of dust per unit time is small and the density change ratio R is less than the threshold value R noise , the control unit 525 recognizes in S112 that the blower 23 is off, and returns to S108. By repeating such processing, the sensor output value is sequentially stored in the memory as 0.
 また、埃の濃度が急に大きくなり、濃度変化割合Rが閾値Rnoise以上となると、制御部525は、S114にて、送風機23がオンしていると認識する。 When the dust concentration suddenly increases and the concentration change ratio R becomes equal to or higher than the threshold value R noise , the control unit 525 recognizes that the blower 23 is turned on in S114.
 次に、制御部525は、S115にて、送風機23が動作停止状態から始動状態になるまでの時間が閾値以上であるか否かを判定する。 Next, the control unit 525 determines in S115 whether or not the time from the operation stop state of the blower 23 to the start state is equal to or more than a threshold value.
 ここで、送風機23が動作停止状態から始動状態になるまでの時間が閾値以上となった場合、制御部525は、S116にて、バッファとしてのメモリに順次記憶されている粒子濃度データをリフレッシュする。具体的には、予め定められた特定コードをメモリに記憶させ、S100に戻る。 Here, when the time from the operation stop state to the start state of the blower 23 becomes the threshold value or more, the control unit 525 refreshes the particle concentration data sequentially stored in the memory as the buffer in S116. .. Specifically, the predetermined specific code is stored in the memory, and the process returns to S100.
 図4は、リフレッシュを実施しない場合のメモリに記憶されている粒子濃度データを表している。図に示すように、センサ出力値=0が連続して記憶された後、受光部52から出力されるセンサ信号に基づいて特定されたセンサ出力値A~Dが順次記憶されている。 FIG. 4 shows the particle concentration data stored in the memory when refresh is not performed. As shown in the figure, after the sensor output value=0 is continuously stored, the sensor output values A to D specified based on the sensor signal output from the light receiving unit 52 are sequentially stored.
 図5は、リフレッシュを実施した場合のメモリに記憶されている粒子濃度データを表している。リフレッシュ時間Trefで粒子濃度データがリフレッシュされている。図中のハイフン「-」は、リフレッシュされたことを意味する特定コードを表している。図に示すように、センサ出力値=0が連続して記憶された後、センサ出力値A~Bが順次記憶されると、S114にて、センサ出力値A~Bに基づいて送風機23がオンしていると認識され、リフレッシュされたことを意味する特定コードが記憶される。具体的には、連続するセンサ出力値=0と、センサ出力値A~Bが特定コードに置換される。その後、センサ出力値C~Dが順次記憶される。 FIG. 5 shows the particle concentration data stored in the memory when refresh is performed. The particle concentration data is refreshed at the refresh time Tref. The hyphen "-" in the figure represents a specific code that means that the refresh has been performed. As shown in the figure, when the sensor output value=0 is continuously stored and then the sensor output values A to B are sequentially stored, the blower 23 is turned on based on the sensor output values A to B in S114. A specific code is stored, which means that it has been recognized that it has been refreshed. Specifically, the continuous sensor output value=0 and the sensor output values A to B are replaced with the specific code. After that, the sensor output values C to D are sequentially stored.
 なお、制御部525は、リフレッシュされた粒子濃度データを除外して移動平均を算出する移動平均算出処理を実施する。この移動平均算出処理については後で説明する。 Note that the control unit 525 performs a moving average calculation process that excludes the refreshed particle concentration data and calculates a moving average. This moving average calculation process will be described later.
 また、制御部525は、S115にて、送風機23が動作停止状態から始動状態になるまでの時間が閾値未満となった場合、制御部525は、S118にて、メモリに記憶されている粒子濃度データをセンサ出力値=0よりも大きな値に補正する。例えば、送風機23が動作停止状態になる前のセンサ出力値で、かつ、変動量が所定の閾値以下となっているセンサ出力値を用いてメモリに記憶されている粒子濃度データを補正する。なお、車両の窓開信号に基づいて車両の窓が開いていると判定し、通風路24への吸気モードが外気モードであると判定した場合、WEB情報等に基づいて車両周辺の粒子の濃度を推定してもよい。そして、この粒子の濃度でメモリに記憶されている粒子濃度データを補正するようにしてもよい。このように、制御部525は、粒子濃度データを補正すると、S100に戻る。 In S115, when the time from the operation stop state to the start state of the blower 23 is less than the threshold value, the control unit 525 determines the particle concentration stored in the memory in S118. The data is corrected to a value larger than the sensor output value=0. For example, the particle concentration data stored in the memory is corrected using the sensor output value before the blower 23 is in the operation stopped state and the sensor output value in which the variation amount is equal to or less than the predetermined threshold value. When it is determined that the vehicle window is open based on the vehicle window opening signal and the intake mode to the ventilation passage 24 is determined to be the outside air mode, the concentration of particles around the vehicle is determined based on the WEB information and the like. May be estimated. Then, the particle concentration data stored in the memory may be corrected with this particle concentration. After correcting the particle concentration data in this way, the control unit 525 returns to S100.
 次に、この移動平均算出処理について図6を用いて説明する。制御部525は、図3に示した処理を並行して図6に示す処理を定期的に実施する。 Next, this moving average calculation process will be described with reference to FIG. The control unit 525 periodically executes the processing shown in FIG. 6 in parallel with the processing shown in FIG.
 まず、制御部525は、S200にて、バッファとしてのメモリから粒子濃度データを読み出す。 First, the control unit 525 reads the particle concentration data from the memory as a buffer in S200.
 次に、制御部525は、S202にて、移動平均を算出する。上述したように、移動平均とは、時系列データにおいて、ある一定区間毎の平均値を区間をずらしながら求めたものである。制御部525は、一定時間間隔毎に粒子濃度をメモリ等のバッファに記憶させておき、バッファに記憶させた粒子濃度データにおいて、一定期間毎の平均値を期間をずらしながら求める。ここでは、バッファとしてのメモリから読み出した粒子濃度データの一定区間の平均値を算出する。 Next, the control unit 525 calculates a moving average in S202. As described above, the moving average is obtained by shifting the intervals of the average value for each certain interval in the time series data. The control unit 525 stores the particle concentration in a buffer such as a memory at regular time intervals, and in the particle concentration data stored in the buffer, obtains an average value for each constant period while shifting the period. Here, the average value of the particle concentration data read from the memory as the buffer in a certain section is calculated.
 この際、制御部525は、S116にて、リフレッシュされた粒子濃度データがある場合、このリフレッシュされた粒子濃度データを除外して粒子濃度データの一定区間の平均値を算出する。例えば、リフレッシュされた粒子濃度データと、リフレッシュが実施された後にバッファに記憶させた粒子濃度データがある場合、リフレッシュされた後にバッファに記憶された濃度データを用いて粒子濃度データの一定区間の平均値を算出する。 At this time, if there is refreshed particle concentration data in S116, the control unit 525 excludes the refreshed particle concentration data and calculates the average value of the particle concentration data in a certain section. For example, when there is refreshed particle concentration data and particle concentration data stored in the buffer after the refresh is executed, the concentration data stored in the buffer after being refreshed is used to average the particle concentration data over a certain section. Calculate the value.
 次に、制御部525は、S204にて、S202にて算出した粒子濃度データの一定区間の平均値に基づいて粒子濃度を特定し、粒子濃度を示す信号を出力する。具体的には、粒子濃度に応じてデューティー比のパルス信号を出力し、本処理を繰り返し実施する。 Next, in S204, the control unit 525 identifies the particle concentration based on the average value of the particle concentration data calculated in S202 in a certain section, and outputs a signal indicating the particle concentration. Specifically, a pulse signal with a duty ratio is output according to the particle concentration, and this processing is repeatedly performed.
 なお、S202にて、リフレッシュされた粒子濃度データを除外することなく粒子濃度データの一定区間の平均値を算出した場合、図13中のAに示したように、送風機がオフからオンした直後に移動平均の立ち上がりが緩やかとなる。このため、応答性が悪く、精度良く粒子濃度を特定することができない。 In S202, when the average value of a certain section of the particle concentration data is calculated without excluding the refreshed particle concentration data, as shown in A in FIG. The moving average rises slowly. Therefore, the response is poor and the particle concentration cannot be specified accurately.
 これに対し、S202にて、リフレッシュされた粒子濃度データを除外して粒子濃度データの一定区間の平均値を算出した場合、送風機がオフからオンした直後でも、移動平均の立ち上がりがより急峻となる。このため、応答性が良く、精度良く粒子濃度を特定することができる。 On the other hand, in S202, when the refreshed particle concentration data is excluded to calculate the average value of the particle concentration data in a certain section, the rising of the moving average becomes steeper even immediately after the blower is turned on. .. Therefore, the responsiveness is good, and the particle concentration can be specified accurately.
 以上、説明したように、本実施形態のPMセンサは、空気に光を照射する発光部(51)を備えている。また、発光部が照射した光が粒子状物質に当たって散乱した散乱光を受光し、該散乱光の強度に応じたセンサ信号を出力するとともにセンサ信号の低周波数成分を除去する受光部(52)を備えている。また、受光部より出力されるセンサ信号に基づいて特定される粒子状物質の粒子濃度を示す粒子濃度データを、所定期間毎に順次、記憶部に記憶させる記憶制御部(S100)を備えている。また、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データの所定期間毎の平均値を期間をずらしながら移動平均として順次算出する移動平均算出部(S202)を備えている。また、移動平均算出部により算出された移動平均に基づいて粒子状物質の粒子濃度を特定し、特定した粒子状物質の粒子濃度を示す濃度信号を出力する信号出力部(S204)を備えている。また、送風機の動作状態を判定する動作判定部(S102、S202、S110)を備えている。また、動作判定部により送風機が動作停止状態から始動状態になったと判定された場合、記憶部に記憶させた粒子状物質の粒子濃度データをリフレッシュするリフレッシュ部(S116)を備えている。また、移動平均算出部は、リフレッシュ部によりリフレッシュされた粒子状物質の粒子濃度データを除外し、リフレッシュ部によりリフレッシュされた後に記憶部に記憶された粒子濃度データを用いて移動平均を算出する。 As described above, the PM sensor of this embodiment includes the light emitting unit (51) that irradiates air with light. Further, a light receiving unit (52) for receiving scattered light which is emitted by the light emitting unit and scattered by hitting the particulate matter, outputs a sensor signal according to the intensity of the scattered light, and removes a low frequency component of the sensor signal. I have it. Further, a storage control unit (S100) is provided for sequentially storing, in the storage unit, particle concentration data indicating the particle concentration of the particulate matter specified based on the sensor signal output from the light receiving unit. .. In addition, the storage control unit includes a moving average calculation unit (S202) that sequentially calculates an average value of the particle concentration data of the particulate matter for each predetermined period sequentially stored in the storage unit as a moving average while shifting the period. In addition, a signal output unit (S204) is provided that specifies the particle concentration of the particulate matter based on the moving average calculated by the moving average calculation unit and outputs a concentration signal indicating the particle concentration of the specified particulate matter. .. Further, the operation determining unit (S102, S202, S110) for determining the operation state of the blower is provided. In addition, the operation determination unit includes a refresh unit (S116) that refreshes the particle concentration data of the particulate matter stored in the storage unit when it is determined that the blower has changed from the operation stop state to the start state. Further, the moving average calculation unit excludes the particle concentration data of the particulate matter refreshed by the refreshing unit, and calculates the moving average using the particle concentration data stored in the storage unit after being refreshed by the refreshing unit.
 上記した構成によれば、リフレッシュ部は、動作判定部により送風機が動作停止状態から始動状態になったと判定された場合、記憶部に記憶させた粒子状物質の粒子濃度データをリフレッシュする。また、移動平均算出部は、リフレッシュ部によりリフレッシュされた粒子状物質の粒子濃度データを除外する。そして、移動平均算出部は、リフレッシュ部によりリフレッシュされた後に記憶部に記憶された粒子濃度データを用いて移動平均を算出するので、送風機がオフからオンした直後でも、応答性に優れるとともに精度良く粒子濃度を特定することができる。 According to the above configuration, the refresh unit refreshes the particle concentration data of the particulate matter stored in the storage unit when the operation determination unit determines that the blower has changed from the operation stopped state to the startup state. Further, the moving average calculation unit excludes the particle concentration data of the particulate matter refreshed by the refreshing unit. Since the moving average calculation unit calculates the moving average using the particle concentration data stored in the storage unit after being refreshed by the refresh unit, it has excellent responsiveness and high accuracy even immediately after the blower is turned on. The particle concentration can be specified.
 また、受光部は、粒子状物質に当たった散乱光の強度に応じた電流が流れる受光素子(521)と、受光素子から出力された信号に含まれる低周波数成分を除去するハイパスフィルタ(524)と、を備えている。そして、送風機が動作を停止した際に、0を表すセンサ信号を出力する。 In addition, the light receiving section includes a light receiving element (521) through which a current corresponding to the intensity of scattered light hitting the particulate matter flows, and a high pass filter (524) for removing low frequency components included in the signal output from the light receiving element. And are equipped with. Then, when the blower stops operating, a sensor signal representing 0 is output.
 このように、受光素子から出力された信号に含まれる低周波数成分を除去するハイパスフィルタ524を用いて低周波数では0を表すセンサ信号を出力する受光部を構成することができる。 In this way, it is possible to configure a light receiving unit that outputs a sensor signal that represents 0 at a low frequency by using the high-pass filter 524 that removes the low frequency component included in the signal output from the light receiving element.
 また、動作判定部は、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データが、基準回数以上、連続して0となっている場合、送風機が停止状態であると判定する。 Further, the operation determination unit determines that the blower is in a stopped state when the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit is 0 continuously for the reference number of times or more. ..
 このように、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データが、基準回数以上、連続して0となっている場合、送風機が停止状態であると判定することができる。 As described above, when the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit is 0 for the reference number of times or more, it can be determined that the blower is in the stopped state. ..
 また、動作判定部は、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データに基づいて単位時間当たりの粒子状物質の粒子濃度の濃度変化割合が所定のノイズ判定レベル以上となった場合、送風機が動作状態であると判定する。 In addition, the operation determination unit determines that the concentration change rate of the particle concentration of the particulate matter per unit time is equal to or higher than a predetermined noise determination level based on the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit. If it becomes, it is determined that the blower is in operation.
 このように、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データに基づいて単位時間当たりの粒子状物質の粒子濃度の濃度変化割合が所定のノイズ判定レベル以上となった場合、送風機が動作状態であると判定することができる。 In this way, when the concentration change rate of the particle concentration of the particulate matter per unit time becomes equal to or higher than the predetermined noise determination level based on the particle concentration data of the particulate matter sequentially stored in the storage section by the storage control section. It can be determined that the blower is in the operating state.
 また、PMセンサは、送風機が動作停止状態から始動状態になるまでの時間が閾値以上であるか否かを判定する時間判定部(S115)を備えている。さらに、時間判定部により送風機が動作停止状態から始動状態になるまでの時間が閾値未満であると判定された場合、記憶部に記憶させた粒子状物質の粒子濃度データを0より大きな値に補正する補正部(S118)と、を備えている。 Also, the PM sensor includes a time determination unit (S115) that determines whether or not the time from the operation stop state of the blower to the start state is equal to or greater than a threshold value. Further, when the time determination unit determines that the time from the operation stop state to the start state of the blower is less than the threshold value, the particle concentration data of the particulate matter stored in the storage unit is corrected to a value larger than 0. The correction unit (S118) for
 このように、補正部により、時間判定部により送風機が動作停止状態から始動状態になるまでの時間が閾値未満であると判定された場合、記憶部に記憶させた粒子状物質の粒子濃度データが0より大きな値に補正される。したがって、より精度良く粒子濃度を特定することが可能である。 As described above, when the correction unit determines that the time from the operation stop state to the start state of the blower is less than the threshold value by the time determination unit, the particle concentration data of the particulate matter stored in the storage unit is It is corrected to a value greater than 0. Therefore, it is possible to specify the particle concentration more accurately.
 (第2実施形態)
 第2実施形態に係るPMセンサについて図7を用いて説明する。本実施形態のPMセンサ50の構成は上記第1実施形態と同じである。本実施形態のPMセンサ50の構成は上記第1実施形態と比較して、制御部525の処理が異なる。
(Second embodiment)
The PM sensor according to the second embodiment will be described with reference to FIG. 7. The configuration of the PM sensor 50 of this embodiment is the same as that of the first embodiment. The configuration of the PM sensor 50 of this embodiment is different from that of the first embodiment in the processing of the control unit 525.
 本実施形態の制御部525のフローチャートを図7に示す。本実施形態の制御部525は、図3のS102に代えて、S202の判定を実施する点が異なる。 FIG. 7 shows a flowchart of the control unit 525 of this embodiment. The control unit 525 of the present embodiment is different in that the determination of S202 is performed instead of S102 of FIG.
 上記第1実施形態の制御部525は、S202にて、メモリに記憶されたセンサ出力値を参照してセンサ出力値=0が連続して一定数(X回)以上、メモリに記憶されているか否かを判定する。そして、肯定判定の場合に送風機23がオフしていると認識し、否定判定の場合に送風機23がオンしていると認識した。 In S202, the control unit 525 of the first embodiment refers to the sensor output value stored in the memory, and determines whether the sensor output value=0 is continuously stored in the memory for a certain number (X times) or more. Determine whether or not. Then, it was recognized that the blower 23 was turned off in the case of a positive determination, and was recognized that the blower 23 was turned on in the case of a negative determination.
 これに対し、本実施形態の制御部525は、S202にて、メモリに記憶されたセンサ出力値を参照して単位時間当たりの埃の濃度の変化割合である濃度変化割合Rが閾値Rnoise以下であるか否かを判定する。そして、肯定判定の場合には送風機23がオフしていると認識し、否定判定の場合には送風機23がオンしていると認識する。このように、図3のS102に代えて、S202の判定を実施するようにしてもよい。 On the other hand, in S202, the control unit 525 of this embodiment refers to the sensor output value stored in the memory, and the density change rate R, which is the change rate of the density of dust per unit time, is equal to or less than the threshold value R noise. Or not. Then, in the case of a positive determination, it is recognized that the blower 23 is off, and in the case of a negative determination, it is recognized that the blower 23 is on. In this way, the determination in S202 may be performed instead of S102 in FIG.
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。 In this embodiment, the same effect as that of the configuration common to the first embodiment can be obtained in the same manner as the first embodiment.
 また、動作判定部は、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データに基づいて単位時間当たりの粒子状物質の粒子濃度の濃度変化割合が所定値以下となった場合、送風機が停止状態であると判定する。 In addition, the operation determination unit, when the concentration change rate of the particle concentration of the particulate matter per unit time becomes less than or equal to a predetermined value based on the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit. , It is determined that the blower is stopped.
 このように、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データに基づいて単位時間当たりの粒子状物質の粒子濃度の濃度変化割合が所定値以下となった場合、送風機が停止状態であると判定することができる。 In this way, when the concentration change rate of the particle concentration of the particulate matter per unit time becomes less than or equal to the predetermined value based on the particle concentration data of the particulate matter sequentially stored in the storage section by the storage control section, the blower It can be determined that it is in a stopped state.
 (第3実施形態)
 第3実施形態に係るPMセンサについて図8を用いて説明する。本実施形態のPMセンサ50の構成は上記第1実施形態と同じである。本実施形態のPMセンサ50の制御部525は、図3のS102の判定で肯定判定となった場合に、さらに図7のS302の判定を実施する点が異なる。
(Third Embodiment)
The PM sensor according to the third embodiment will be described with reference to FIG. The configuration of the PM sensor 50 of this embodiment is the same as that of the first embodiment. The control unit 525 of the PM sensor 50 of the present embodiment is different in that when the determination of S102 of FIG. 3 is affirmative, the determination of S302 of FIG. 7 is further performed.
 図8に示すように、制御部525は、S102にて、メモリに記憶されたセンサ出力値を参照してセンサ出力値=0が連続して一定数(X回)以上、メモリに記憶されているか否かを判定する。そして、S102の判定が肯定判定となった場合、S302にて、メモリに記憶されたセンサ出力値を参照して単位時間当たりの埃の濃度の変化割合である濃度変化割合Rが閾値Rnoise以下であるか否かを判定する。そして、S302の判定が肯定判定となった場合には送風機23がオフしていると認識し、否定判定となった場合には送風機23がオンしていると認識する。 As shown in FIG. 8, in S102, the control unit 525 refers to the sensor output value stored in the memory and the sensor output value=0 is continuously stored in the memory for a certain number (X times) or more. It is determined whether or not there is. When the determination in S102 is affirmative, the concentration change rate R, which is the change rate of the dust concentration per unit time, is referred to in S302 by referring to the sensor output value stored in the memory, and is equal to or less than the threshold value R noise. Or not. When the determination in S302 is affirmative, it is recognized that the blower 23 is off, and when it is negative, it is recognized that the blower 23 is on.
 このように、S102の判定で肯定判定となった場合に、さらにS302の判定を実施することで、より精度良く送風機23がオフしているか否かを認識することが可能である。 In this way, when the determination in S102 is affirmative, it is possible to more accurately recognize whether or not the blower 23 is off by performing the determination in S302.
 本実施形態では、上記第1実施形態と共通の構成から奏される同様の効果を上記第1実施形態と同様に得ることができる。 In this embodiment, the same effect as that of the configuration common to the first embodiment can be obtained in the same manner as the first embodiment.
 また、動作判定部は、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データが、基準回数以上、連続して0となり、かつ、単位時間当たりの粒子状物質の粒子濃度の濃度変化割合が所定値以下となった場合、送風機が停止状態であると判定する。 Further, the operation determination unit determines that the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit becomes 0 continuously for the reference number of times or more, and the particle concentration of the particulate matter per unit time. When the concentration change rate is less than or equal to the predetermined value, it is determined that the blower is in a stopped state.
 このように、粒子状物質の粒子濃度データが、基準回数以上、連続して0となり、かつ、単位時間当たりの粒子状物質の粒子濃度の濃度変化割合が所定値以下となった場合、送風機が停止状態であると判定することができる。
 (他の実施形態)
As described above, when the particle concentration data of the particulate matter becomes 0 continuously for the reference number of times or more and the concentration change rate of the particle concentration of the particulate matter per unit time becomes less than the predetermined value, the blower is It can be determined that it is in a stopped state.
(Other embodiments)
 (1)上記各実施形態では、S106にて、送風機23がオフしていると認識した後、S114にて、送風機23がオンしていると認識した場合、S116にて、バッファに順次記憶されている粒子濃度データをリフレッシュした。これに対し、S106にて、送風機23がオフしていると認識した後、S114にて、送風機23がオンしていると認識するまでの時間が閾値未満の場合、粒子濃度データをリフレッシュしないようにしてもよい。そして、送風機23が動作停止状態になる一定時間前の値をバッファに記憶させるようにしてもよい。 (1) In each of the above-described embodiments, when it is recognized in S106 that the blower 23 is off, and when it is recognized in S114 that the blower 23 is on, it is sequentially stored in the buffer in S116. The particle concentration data was refreshed. On the other hand, if it is determined that the blower 23 is turned off in S106 and then the time until the blower 23 is turned on in S114 is less than the threshold value, the particle concentration data is not refreshed. You may Then, the value of a certain time before the blower 23 becomes inoperative may be stored in the buffer.
 (2)上記各実施形態では、S102にて、動作判定部は、送風機が停止状態であるか否かを判定し、S202にて、動作判定部は、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データに基づいて送風機が停止状態であるか否かを判定した。これに対し、送風機の動作を制御する空調制御装置(40)から送出される送風機の制御信号に基づいて送風機の動作状態を判定するようにしてもよい。 (2) In each of the above embodiments, in S102, the operation determination unit determines whether or not the blower is in a stopped state, and in S202, the operation determination unit is sequentially stored in the storage unit by the storage control unit. Based on the particle concentration data of the particulate matter, it was determined whether or not the blower was stopped. On the other hand, the operation state of the blower may be determined based on the blower control signal sent from the air conditioning controller (40) that controls the operation of the blower.
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。 It should be noted that the present disclosure is not limited to the above-described embodiment, and can be modified as appropriate. Further, the above embodiments are not unrelated to each other, and can be appropriately combined unless a combination is obviously impossible. In addition, in each of the above-described embodiments, it goes without saying that the elements constituting the embodiment are not necessarily essential unless explicitly stated as being essential and in principle considered to be essential. Yes. Further, in each of the above-mentioned embodiments, when numerical values such as the number of components of the embodiment, numerical values, amounts, ranges, etc. are mentioned, it is clearly limited to a particular number when explicitly stated as being essential. The number is not limited to the specific number, except in the case of being. Further, in each of the above-mentioned embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., unless specifically stated or in principle limited to a specific material, shape, positional relationship, etc. However, the material, shape, positional relationship, etc. are not limited.
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、PMセンサは、空気に光を照射する発光部を備えている。また、発光部が照射した光が粒子状物質に当たって散乱した散乱光を受光し、該散乱光の強度に応じたセンサ信号を出力するとともにセンサ信号の低周波数成分を除去する受光部を備えている。また、受光部より出力されるセンサ信号に基づいて特定される粒子状物質の粒子濃度を示す粒子濃度データを、所定期間毎に順次、記憶部に記憶させる記憶制御部を備えている。また、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データの所定期間毎の平均値を期間をずらしながら移動平均として順次算出する移動平均算出部を備えている。また、移動平均算出部により算出された移動平均に基づいて粒子状物質の粒子濃度を特定し、特定した粒子状物質の粒子濃度を示す濃度信号を出力する信号出力部を備えている。また、送風機の動作状態を判定する動作判定部を備えている。また、動作判定部により送風機が動作停止状態から始動状態になったと判定された場合、記憶部に記憶させた粒子状物質の粒子濃度データをリフレッシュするリフレッシュ部を備えている。そして、移動平均算出部は、リフレッシュ部によりリフレッシュされた粒子状物質の粒子濃度データを除外し、リフレッシュ部によりリフレッシュされた後に記憶部に記憶された粒子濃度データを用いて移動平均を算出する。
(Summary)
According to the first aspect shown in part or all of each of the above-described embodiments, the PM sensor includes a light emitting unit that irradiates air with light. Further, the light emitting unit is provided with a light receiving unit that receives scattered light scattered by the particulate matter hitting the particulate matter, outputs a sensor signal according to the intensity of the scattered light, and removes low-frequency components of the sensor signal. .. In addition, the storage control unit is provided that sequentially stores the particle concentration data indicating the particle concentration of the particulate matter specified based on the sensor signal output from the light receiving unit in the storage unit for each predetermined period. Further, the storage control unit includes a moving average calculation unit that sequentially calculates an average value of the particle concentration data of the particulate matter for each predetermined period sequentially stored in the storage unit as a moving average while shifting the period. Further, it is provided with a signal output unit that specifies the particle concentration of the particulate matter based on the moving average calculated by the moving average calculation unit and outputs a concentration signal indicating the particle concentration of the specified particulate matter. Further, it is provided with an operation determination unit that determines the operation state of the blower. Further, when the operation determination unit determines that the blower has changed from the operation stop state to the start state, the refresh unit is provided to refresh the particle concentration data of the particulate matter stored in the storage unit. Then, the moving average calculation unit excludes the particle concentration data of the particulate matter refreshed by the refreshing unit, and calculates the moving average using the particle concentration data stored in the storage unit after being refreshed by the refreshing unit.
 また、第2の観点によれば、受光部は、粒子状物質に当たった散乱光の強度に応じた電流が流れる受光素子と、受光素子から出力された信号に含まれる低周波数成分を除去するハイパスフィルタ(524)と、を備えている。そして、送風機が動作を停止した際に、0を表すセンサ信号を出力する。 Further, according to the second aspect, the light receiving section removes the light receiving element in which a current corresponding to the intensity of the scattered light hitting the particulate matter flows, and the low frequency component contained in the signal output from the light receiving element. And a high pass filter (524). Then, when the blower stops operating, a sensor signal representing 0 is output.
 このように、受光素子から出力された信号に含まれる低周波数成分を除去するハイパスフィルタを用いて低周波数では0を表すセンサ信号を出力する受光部を構成することができる。 In this way, it is possible to configure a light receiving unit that outputs a sensor signal that represents 0 at low frequencies by using a high-pass filter that removes low frequency components included in the signal output from the light receiving element.
 また、第3の観点によれば、動作判定部は、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データが、基準回数以上、連続して0となっている場合、送風機が停止状態であると判定する。 Further, according to a third aspect, the operation determination unit is configured such that, when the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit is equal to or greater than the reference number of times and is continuously 0. Is determined to be in a stopped state.
 このように、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データが、基準回数以上、連続して0となっている場合、送風機が停止状態であると判定することができる。 As described above, when the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit is 0 for the reference number of times or more, it can be determined that the blower is in the stopped state. ..
 また、第4の観点によれば、動作判定部は、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データに基づいて単位時間当たりの粒子状物質の粒子濃度の濃度変化割合が所定値以下となった場合、送風機が停止状態であると判定する。 Further, according to the fourth aspect, the operation determination unit is configured to determine the concentration change rate of the particle concentration of the particulate matter per unit time based on the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit. Is less than or equal to a predetermined value, it is determined that the blower is in a stopped state.
 このように、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データに基づいて単位時間当たりの粒子状物質の粒子濃度の濃度変化割合が所定値以下となった場合、送風機が停止状態であると判定することができる。 In this way, when the concentration change rate of the particle concentration of the particulate matter per unit time becomes less than or equal to the predetermined value based on the particle concentration data of the particulate matter sequentially stored in the storage section by the storage control section, the blower It can be determined that it is in a stopped state.
 また、第5の観点によれば、動作判定部は、粒子状物質の粒子濃度データが、基準回数以上、連続して0となり、かつ、単位時間当たりの粒子状物質の粒子濃度の濃度変化割合が所定値以下となった場合、送風機が停止状態であると判定する。 Further, according to a fifth aspect, the operation determination unit determines that the particle concentration data of the particulate matter is 0 continuously for the reference number of times or more, and the concentration change rate of the particle concentration of the particulate matter per unit time. Is less than or equal to a predetermined value, it is determined that the blower is in a stopped state.
 このように、粒子状物質の粒子濃度データが、基準回数以上、連続して0となり、かつ、単位時間当たりの粒子状物質の粒子濃度の濃度変化割合が所定値以下となった場合、送風機が停止状態であると判定することができる。 As described above, when the particle concentration data of the particulate matter becomes 0 continuously for the reference number of times or more and the concentration change rate of the particle concentration of the particulate matter per unit time becomes less than the predetermined value, the blower is It can be determined that it is in a stopped state.
 また、第6の観点によれば、動作判定部は、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データに基づいて単位時間当たりの粒子状物質の粒子濃度の濃度変化割合が所定のノイズ判定レベル以上となった場合、送風機が動作状態であると判定する。 Further, according to a sixth aspect, the operation determination unit, based on the particle concentration data of the particulate matter sequentially stored in the storage unit by the storage control unit, the concentration change rate of the particle concentration of the particulate matter per unit time. Is above a predetermined noise determination level, it is determined that the blower is in an operating state.
 このように、記憶制御部により記憶部に順次記憶された粒子状物質の粒子濃度データに基づいて単位時間当たりの粒子状物質の粒子濃度の濃度変化割合が所定のノイズ判定レベル以上となった場合、送風機が動作状態であると判定することができる。 In this way, when the concentration change rate of the particle concentration of the particulate matter per unit time becomes equal to or higher than the predetermined noise determination level based on the particle concentration data of the particulate matter sequentially stored in the storage section by the storage control section. It can be determined that the blower is in the operating state.
 また、第7の観点によれば、動作判定部は、送風機の動作を制御する空調制御装置から送出される送風機の制御信号に基づいて送風機の動作状態を判定する。 According to the seventh aspect, the operation determination unit determines the operation state of the blower based on the blower control signal sent from the air conditioning control device that controls the operation of the blower.
 このように、送風機の動作を制御する空調制御装置から送出される送風機の制御信号に基づいて送風機の動作状態を判定することもできる。 In this way, it is also possible to determine the operating state of the blower based on the blower control signal sent from the air conditioning control device that controls the operation of the blower.
 また、第8の観点によれば、PMセンサは、送風機が動作停止状態から始動状態になるまでの時間が閾値以上であるか否かを判定する時間判定部を備えている。また、時間判定部により送風機が動作停止状態から始動状態になるまでの時間が閾値未満であると判定された場合、記憶部に記憶させた粒子状物質の粒子濃度データを0より大きな値に補正する補正部を備えている。 Further, according to the eighth aspect, the PM sensor includes a time determination unit that determines whether or not the time from the operation stop state of the blower to the start state is a threshold value or more. When the time determination unit determines that the time from the operation stop state to the start state of the blower is less than the threshold value, the particle concentration data of the particulate matter stored in the storage unit is corrected to a value greater than 0. The correction unit is provided.
 このように、補正部により、時間判定部により送風機が動作停止状態から始動状態になるまでの時間が閾値未満であると判定された場合、記憶部に記憶させた粒子状物質の粒子濃度データが0より大きな値に補正される。したがって、より精度良く粒子濃度を特定することが可能である。 As described above, when the correction unit determines that the time from the operation stop state to the start state of the blower is less than the threshold value by the time determination unit, the particle concentration data of the particulate matter stored in the storage unit is It is corrected to a value greater than 0. Therefore, it is possible to specify the particle concentration more accurately.
 なお、S100が記憶制御部に相当し、S202が移動平均算出部に相当し、S204が信号出力部に相当する。また、S102、S202、S110が動作判定部に相当し、S116がリフレッシュ部に相当し、S115が時間判定部に相当し、S118が補正部に相当する。 Note that S100 corresponds to the storage control unit, S202 corresponds to the moving average calculation unit, and S204 corresponds to the signal output unit. Further, S102, S202, and S110 correspond to the operation determination unit, S116 corresponds to the refresh unit, S115 corresponds to the time determination unit, and S118 corresponds to the correction unit.

Claims (8)

  1.  送風機(23)の動作によりケース内を流れる空気に含まれる粒子状物質の粒子濃度を検出するPMセンサであって、
     前記空気に光を照射する発光部(51)と、
     前記発光部が照射した光が前記粒子状物質に当たって散乱した散乱光を受光し、該散乱光の強度に応じたセンサ信号を出力するとともに前記センサ信号の低周波数成分を除去する受光部(52)と、
     前記受光部より出力される前記センサ信号に基づいて特定される前記粒子状物質の粒子濃度を示す粒子濃度データを、所定期間毎に順次、記憶部に記憶させる記憶制御部(S100)と、
     前記記憶制御部により前記記憶部に順次記憶された前記粒子濃度データの所定期間毎の平均値を期間をずらしながら移動平均として順次算出する移動平均算出部(S202)と、
     前記移動平均算出部により算出された前記移動平均に基づいて前記粒子状物質の粒子濃度を特定し、特定した前記粒子状物質の粒子濃度を示す濃度信号を出力する信号出力部(S204)と、
     前記送風機の動作状態を判定する動作判定部(S102、S202、S110)と、
     前記動作判定部により前記送風機が動作停止状態から始動状態になったと判定された場合、前記記憶部に記憶させた前記粒子濃度データをリフレッシュするリフレッシュ部(S116)と、を備え、
     前記移動平均算出部は、前記リフレッシュ部によりリフレッシュされた前記粒子濃度データを除外し、前記リフレッシュ部によりリフレッシュされた後に前記記憶部に記憶された前記粒子濃度データを用いて前記移動平均を算出するPMセンサ。
    A PM sensor for detecting the particle concentration of particulate matter contained in the air flowing in the case by the operation of the blower (23),
    A light emitting unit (51) for irradiating the air with light,
    A light receiving unit (52) that receives scattered light that is emitted by the light emitting unit and is scattered by hitting the particulate matter, outputs a sensor signal according to the intensity of the scattered light, and removes low-frequency components of the sensor signal. When,
    A storage control unit (S100) for sequentially storing, in a storage unit, particle concentration data indicating a particle concentration of the particulate matter specified based on the sensor signal output from the light receiving unit, every predetermined period;
    A moving average calculation unit (S202) that sequentially calculates an average value of the particle concentration data sequentially stored in the storage unit by the storage control unit as a moving average while shifting the period.
    A signal output unit (S204) that specifies the particle concentration of the particulate matter based on the moving average calculated by the moving average calculation unit, and outputs a concentration signal indicating the particle concentration of the specified particulate matter,
    An operation determination unit (S102, S202, S110) for determining the operation state of the blower,
    A refreshing unit (S116) for refreshing the particle concentration data stored in the storage unit when the operation determining unit determines that the blower has changed from an operation stop state to a start state,
    The moving average calculating unit excludes the particle concentration data refreshed by the refreshing unit, and calculates the moving average using the particle concentration data stored in the storage unit after being refreshed by the refreshing unit. PM sensor.
  2.  前記受光部は、
     前記粒子状物質に当たった前記散乱光の強度に応じた電流が流れる受光素子(521)と、
     前記受光素子から出力された信号に含まれる低周波数成分を除去するハイパスフィルタ(524)と、を備え、
     前記送風機が動作を停止した際に、0を表す前記センサ信号を出力する請求項1に記載のPMセンサ。
    The light receiving unit,
    A light receiving element (521) through which an electric current flows according to the intensity of the scattered light hitting the particulate matter;
    A high-pass filter (524) for removing low frequency components included in the signal output from the light receiving element,
    The PM sensor according to claim 1, which outputs the sensor signal indicating 0 when the blower stops operating.
  3.  前記動作判定部は、前記記憶制御部により前記記憶部に順次記憶された前記粒子濃度データが、基準回数以上、連続して0となっている場合、前記送風機が停止状態であると判定する請求項2に記載のPMセンサ。 The operation determination unit determines that the blower is in a stopped state when the particle concentration data sequentially stored in the storage unit by the storage control unit is 0 for a predetermined number of times or more. Item 2. The PM sensor according to Item 2.
  4.  前記動作判定部は、前記記憶制御部により前記記憶部に順次記憶された前記粒子濃度データに基づいて単位時間当たりの前記粒子状物質の粒子濃度の濃度変化割合が所定値以下となった場合、前記送風機が停止状態であると判定する請求項2に記載のPMセンサ。 The operation determination unit, when the concentration change ratio of the particle concentration of the particulate matter per unit time is less than or equal to a predetermined value based on the particle concentration data sequentially stored in the storage unit by the storage control unit, The PM sensor according to claim 2, wherein it is determined that the blower is in a stopped state.
  5.  前記動作判定部は、前記記憶制御部により前記記憶部に順次記憶された前記粒子濃度データが、基準回数以上、連続して0となり、かつ、前記記憶制御部により前記記憶部に順次記憶された前記粒子濃度データに基づいて単位時間当たりの前記粒子状物質の粒子濃度の濃度変化割合が所定値以下となった場合、前記送風機が停止状態であると判定する請求項2に記載のPMセンサ。 In the operation determination unit, the particle concentration data sequentially stored in the storage unit by the storage control unit becomes 0 continuously for a reference number of times or more, and is sequentially stored in the storage unit by the storage control unit. The PM sensor according to claim 2, wherein when the concentration change rate of the particle concentration of the particulate matter per unit time is less than or equal to a predetermined value based on the particle concentration data, it is determined that the blower is in a stopped state.
  6.  前記動作判定部は、前記記憶制御部により前記記憶部に順次記憶された前記粒子濃度データに基づいて単位時間当たりの前記粒子状物質の粒子濃度の濃度変化割合が所定のノイズ判定レベル以上となった場合、前記送風機が動作状態であると判定する請求項2に記載のPMセンサ。 The operation determination unit, based on the particle concentration data sequentially stored in the storage unit by the storage control unit, the concentration change rate of the particle concentration of the particulate matter per unit time is equal to or higher than a predetermined noise determination level. The PM sensor according to claim 2, wherein the blower determines that the blower is in an operating state.
  7.  前記動作判定部は、前記送風機の動作を制御する空調制御装置(40)から送出される前記送風機の制御信号に基づいて前記送風機の動作状態を判定する請求項1に記載のPMセンサ。 The PM sensor according to claim 1, wherein the operation determination unit determines the operation state of the blower based on a control signal of the blower sent from an air conditioning controller (40) that controls the operation of the blower.
  8.  前記送風機が動作停止状態から始動状態になるまでの時間が閾値以上であるか否かを判定する時間判定部(S115)と、
     前記時間判定部により前記送風機が動作停止状態から始動状態になるまでの時間が閾値未満であると判定された場合、前記記憶部に記憶させた前記粒子濃度データを0より大きな値に補正する補正部(S118)と、を備えた請求項1に記載のPMセンサ。
    A time determination unit (S115) for determining whether or not the time from the operation stop state to the start state of the blower is a threshold value or more;
    Correction for correcting the particle concentration data stored in the storage unit to a value greater than 0 when the time determination unit determines that the time from the operation stop state to the start state of the blower is less than the threshold value The PM sensor according to claim 1, further comprising a section (S118).
PCT/JP2019/048738 2019-01-18 2019-12-12 Pm sensor WO2020149065A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019007075A JP2020118453A (en) 2019-01-18 2019-01-18 PM sensor
JP2019-007075 2019-01-18

Publications (1)

Publication Number Publication Date
WO2020149065A1 true WO2020149065A1 (en) 2020-07-23

Family

ID=71614347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048738 WO2020149065A1 (en) 2019-01-18 2019-12-12 Pm sensor

Country Status (2)

Country Link
JP (1) JP2020118453A (en)
WO (1) WO2020149065A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042282A1 (en) * 2021-09-15 2023-03-23 シャープNecディスプレイソリューションズ株式会社 Electronic apparatus, and notification control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090083A (en) * 2016-12-02 2018-06-14 株式会社デンソー Vehicular air conditioner
JP2018144603A (en) * 2017-03-03 2018-09-20 株式会社デンソー Air conditioner for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090083A (en) * 2016-12-02 2018-06-14 株式会社デンソー Vehicular air conditioner
JP2018144603A (en) * 2017-03-03 2018-09-20 株式会社デンソー Air conditioner for vehicle

Also Published As

Publication number Publication date
JP2020118453A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
WO2019045009A1 (en) Dust concentration detection device
US9434235B2 (en) Vehicle air handling system
US7461551B2 (en) Window fog detecting apparatus
JP4675229B2 (en) Air conditioning system for vehicles
JP2007145214A (en) Window fog detection device
WO2020149065A1 (en) Pm sensor
CN105817091B (en) Method and apparatus for monitoring filter life
JP4434051B2 (en) Window fogging detector
JP6631487B2 (en) Vehicle air conditioner
JP4967779B2 (en) Air conditioner for vehicles
CN113498386A (en) Particle concentration detection device
JP2010018227A (en) Air conditioner for vehicle
JP6841187B2 (en) Air conditioning controller
CN110290954A (en) Air conditioner for vehicles
JP2004230988A (en) Air-conditioner for vehicle
JP7234619B2 (en) vehicle air conditioner
KR102612916B1 (en) Apparatus for controlling air conditioner of vihicle and method thereof
JP2018034739A (en) Vehicular ventilation device
JP2009090906A (en) Co2 concentration detection system
KR20170022340A (en) Vehicle air conditioning device and method for preventing exhaust gas inflow in vehicle
CN111032389B (en) Air conditioner for vehicle
KR20070006146A (en) Device and thereof method adjusting automatically the air flow of duct for heating, ventilating, and air conditioning
WO2019039137A1 (en) Vehicle air conditioning apparatus
JP2009248608A (en) Air conditioning system for vehicle
JPH0732864A (en) Air conditioner for bus vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910470

Country of ref document: EP

Kind code of ref document: A1