WO2020149027A1 - Foreign matter removal device, substrate cleaning device, substrate treatment device, and cleaning member - Google Patents

Foreign matter removal device, substrate cleaning device, substrate treatment device, and cleaning member Download PDF

Info

Publication number
WO2020149027A1
WO2020149027A1 PCT/JP2019/046673 JP2019046673W WO2020149027A1 WO 2020149027 A1 WO2020149027 A1 WO 2020149027A1 JP 2019046673 W JP2019046673 W JP 2019046673W WO 2020149027 A1 WO2020149027 A1 WO 2020149027A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cleaning
foreign matter
polishing
contact
Prior art date
Application number
PCT/JP2019/046673
Other languages
French (fr)
Japanese (ja)
Inventor
大保 忠司
浩國 檜山
和田 雄高
高東 智佳子
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2020149027A1 publication Critical patent/WO2020149027A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a foreign matter removing device, a substrate cleaning device, a substrate processing device, and a cleaning member.
  • the present application claims priority based on Japanese Patent Application No. 2019-005255 filed in Japan on January 16, 2019, the contents of which are incorporated herein by reference.
  • a substrate polishing apparatus that flattens the surface of a substrate such as a silicon wafer by chemical mechanical polishing (CMP: Chemical Mechanical Polishing).
  • CMP Chemical Mechanical Polishing
  • Such a substrate polishing apparatus includes a substrate polishing apparatus for polishing a substrate and a substrate cleaning apparatus for cleaning/drying the polished substrate. Since the residue of the slurry used for CMP, metal polishing dust, and the like adhere to the polished substrate as fine particles (foreign matter), the substrate cleaning apparatus removes the fine particles.
  • a main component is polyurethane having fine pores with an average pore size of 10 to 200 ⁇ m on the contact surface with the object to be cleaned.
  • a cleaning method in which the cleaning member is brought into contact with an object to be cleaned and scrubbed.
  • the present invention has been made in view of the above circumstances, and provides a foreign matter removing device, a substrate cleaning device, a substrate processing device, and a cleaning member that can effectively remove minute foreign substances attached to a work.
  • a first aspect of the present invention is a foreign matter removing apparatus for removing foreign matter adhering to a work, comprising: a nanopillar structure having a plurality of nanosized pillars; and an actuator for bringing the nanopillar structure and the work into contact with or in proximity to each other.
  • a second aspect of the present invention is the foreign matter removing apparatus of the first aspect, which may further include an elastic support that elastically supports the nanopillar structure.
  • a third aspect of the present invention is a substrate cleaning apparatus for cleaning a substrate, comprising the foreign matter removing apparatus according to the first aspect or the second aspect as a foreign matter removing apparatus for removing foreign matter adhering to the substrate.
  • a dry cleaning unit for dry cleaning the substrate may be provided, and the dry cleaning unit may have the foreign matter removing device.
  • a fifth aspect of the present invention is the substrate cleaning apparatus according to the third aspect or the fourth aspect, including a plurality of cleaning units for sequentially cleaning the substrate, wherein at least one of the plurality of cleaning units removes the foreign matter. It may have a device.
  • a sixth aspect of the present invention is the substrate cleaning apparatus according to any one of the third to fifth aspects, wherein the foreign matter removing apparatus has a contact member that comes into contact with the substrate, and the substrate is the contact member.
  • the contact surface may have the nanopillar structure.
  • the contact member in the substrate cleaning apparatus of the sixth aspect, may rotate relatively while being in contact with the substrate.
  • An eighth aspect of the present invention is a substrate processing apparatus, comprising: a substrate polishing apparatus for polishing a substrate; and a substrate cleaning apparatus for cleaning the substrate, wherein the substrate cleaning apparatus has the above third to seventh aspects.
  • the substrate cleaning apparatus according to any one of the above.
  • a ninth aspect of the present invention is a substrate processing apparatus, comprising a plating apparatus for plating a substrate and a substrate cleaning apparatus for cleaning the substrate, wherein the substrate cleaning apparatus is the above third to seventh aspects.
  • the substrate cleaning apparatus according to any one aspect is provided.
  • a tenth aspect of the present invention is a cleaning member for cleaning a work, comprising a protrusion that comes into contact with the work when cleaning the work, and a nano-sized pillar provided on a tip surface of the protrusion. It has a plurality of nano pillar structures, and a skin layer which covers at least one copy of the peripheral surface of the above-mentioned projection other than the above-mentioned tip surface.
  • minute foreign matter attached to the work can be effectively removed.
  • FIG. 4 is a process chart showing an example of a method for manufacturing a nanopillar structure according to one embodiment. It is a block diagram which shows the neutral particle beam etching apparatus used in the manufacturing process of the nano pillar structure which concerns on one Embodiment. It is explanatory drawing which shows a mode that the foreign material adhering to the board
  • FIG. 9 It is a figure which shows the washing
  • FIG. 1 is a plan view showing the overall configuration of a substrate processing apparatus 1 according to an embodiment.
  • the substrate processing apparatus 1 shown in FIG. 1 is a chemical mechanical polishing (CMP) apparatus for flatly polishing the surface of a substrate (work) W such as a silicon wafer.
  • the substrate processing apparatus 1 includes a rectangular box-shaped housing 2.
  • the housing 2 is formed in a substantially rectangular shape in a plan view.
  • the substrates W to be processed are semiconductor wafers, glass substrates (for liquid crystal display devices, plasma displays), optical disc substrates, magneto-optical disc substrates, magnetic disc substrates, printed wiring boards, memory circuit substrates. , A logic circuit substrate, and an image sensor substrate (for example, a CMOS sensor substrate).
  • the shape is not limited to a circular shape, and may be, for example, a rectangular shape.
  • the size of the semiconductor wafer in the case of a circle includes, for example, wafers having a diameter of 100 mm, 150 mm, 200 mm, 300 mm, and 450 mm.
  • the housing 2 has a substrate transfer path 3 extending in the longitudinal direction at the center thereof.
  • a load/unload unit 10 is arranged at one end of the substrate transport path 3 in the longitudinal direction.
  • a substrate polishing device 20 is provided on one side of the substrate transport path 3 in the width direction (direction orthogonal to the longitudinal direction in plan view), and a substrate cleaning device 30 is provided on the other side.
  • a substrate transfer device 40 that transfers the substrate W is provided in the substrate transfer path 3.
  • the substrate processing apparatus 1 also includes a control device (control panel) 50 that comprehensively controls the operations of the load/unload unit 10, the substrate polishing device 20, the substrate cleaning device 30, and the substrate transfer device 40.
  • the loading/unloading unit 10 includes a front loading unit 11 that accommodates the substrate W.
  • a plurality of front load parts 11 are provided on one side surface of the housing 2 in the longitudinal direction.
  • the plurality of front load portions 11 are arranged in the width direction of the housing 2.
  • the front loading unit 11 is equipped with, for example, an open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Unified Pod).
  • the SMIF and FOUP are hermetically sealed containers in which the cassette of the substrate W is housed and covered with a partition wall, and can maintain an environment independent of the external space.
  • the loading/unloading unit 10 includes two transfer robots 12 for loading/unloading the substrate W into/from the front loading unit 11, and a traveling mechanism 13 for causing the transfer robots 12 to travel along the alignment of the front loading unit 11. .
  • Each of the transfer robots 12 is provided with two upper and lower hands, and is used properly before and after processing the substrate W. For example, the upper hand is used to return the substrate W to the front load unit 11, and the lower hand is used to take out the unprocessed substrate W from the front load unit 11.
  • the substrate polishing apparatus 20 includes a plurality of polishing units 21 (21A, 21B, 21C, 21D) for polishing (flattening) the substrate W.
  • the plurality of polishing parts 21 are arranged in the longitudinal direction of the substrate transport path 3.
  • the polishing unit 21 includes a polishing table 23 that rotates a polishing pad 22 having a polishing surface, a top ring 24 that holds a substrate W and polishes the substrate W while pressing the substrate W against the polishing pad 22 on the polishing table 23, and a polishing pad.
  • a polishing liquid or a dressing liquid for example, pure water
  • a dresser 26 for dressing the polishing surface of the polishing pad 22
  • a liquid for example, pure water
  • a gas for example, nitrogen gas
  • the substrate W is pressed against the polishing pad 22 by the top ring 24, and the top ring 24 and the polishing table 23 are relatively moved. Thus, the substrate W is polished to make its surface flat.
  • the dresser 26 hard particles such as diamond particles and ceramic particles are fixed to a rotating portion at a tip end that contacts the polishing pad 22, and the rotating portion is swung while rotating to uniformly cover the entire polishing surface of the polishing pad 22. To form a flat polished surface.
  • the atomizer 27 cleans the polishing surface and polishing grains remaining on the polishing surface of the polishing pad 22 with a high-pressure fluid, and cleans the polishing surface and sharpens the polishing surface by the dresser 26, which is a mechanical contact, that is, polishing. Achieve face regeneration.
  • the substrate cleaning apparatus 30 includes a plurality of cleaning units 31 (31A, 31B) for cleaning the substrate W, and a drying unit 32 for drying the cleaned substrate W.
  • the plurality of cleaning units 31 and the drying units 32 are arranged in the longitudinal direction of the substrate transport path 3.
  • a first transfer chamber 33 is provided between the cleaning unit 31A and the cleaning unit 31B.
  • the first transfer chamber 33 is provided with a transfer robot 35 that transfers the substrate W between the substrate transfer device 40, the cleaning unit 31A, and the cleaning unit 31B.
  • a second transfer chamber 34 is provided between the cleaning unit 31B and the drying unit 32.
  • the second transfer chamber 34 is provided with a transfer robot 36 that transfers the substrate W between the cleaning unit 31B and the drying unit 32.
  • the cleaning unit 31A includes, for example, a module including a roll-type cleaning member (a surface-made PVA (polyvinyl alcohol) sponge or urethane sponge) (hereinafter referred to as a roll-type cleaning module), and primarily cleans the substrate W. ..
  • the cleaning unit 31B also includes a roll-type cleaning module and secondarily cleans the substrate W.
  • the cleaning unit 31A and the cleaning unit 31B may be the same cleaning module or different cleaning modules.
  • a cleaning module including a pencil-type cleaning member, a cleaning module including a two-fluid jet type two-fluid jet nozzle that ejects gas and gas, and a cleaning liquid discharged from the cleaning nozzle are formed into a mist. Module (for example, refer to FIG. 8 of Japanese Patent Laid-Open No. 2018-101790).
  • the drying unit 32 includes, for example, a drying module that performs Rotagoni drying (IPA (Iso-Propyl Alcohol) drying). After the drying, the shutter 1a provided on the partition wall between the drying unit 32 and the loading/unloading unit 10 is opened, and the substrate W is taken out from the drying unit 32 by the transfer robot 12.
  • IPA Rotagoni drying
  • the “cleaning” referred to in the present embodiment includes not only normal cleaning using a liquid such as a chemical solution or pure water (referred to as wet cleaning in the present embodiment) but also cleaning not using a liquid at the time of cleaning (dry cleaning). Say) is included.
  • Both of the cleaning unit 31A and the cleaning unit 31B may be a wet cleaning unit or a dry cleaning unit. Further, one of the cleaning unit 31A and the cleaning unit 31B may be a wet cleaning unit and the other may be a dry cleaning unit.
  • the above-described drying unit 32 may be arranged to dry the substrate W. That is, the dry cleaning unit may be arranged after the drying unit 32.
  • the substrate transfer device 40 includes a lifter 41, a first linear transporter 42, a second linear transporter 43, and a swing transporter 44.
  • the first transfer position TP1, the second transfer position TP2, the third transfer position TP3, the fourth transfer position TP4, the fifth transfer position TP5, and the sixth transfer position are sequentially transferred from the load/unload unit 10 side.
  • the position TP6 and the seventh transport position TP7 are set.
  • the lifter 41 is a mechanism that vertically transfers the substrate W at the first transfer position TP1.
  • the lifter 41 receives the substrate W from the transfer robot 12 of the load/unload unit 10 at the first transfer position TP1. Further, the lifter 41 transfers the substrate W received from the transfer robot 12 to the first linear transporter 42.
  • a shutter 1b is provided on a partition wall between the first transfer position TP1 and the loading/unloading section 10. When the substrate W is transferred, the shutter 1b is opened and the transfer robot 12 receives the substrate W on the lifter 41. Passed.
  • the first linear transporter 42 is a mechanism that transports the substrate W among the first transport position TP1, the second transport position TP2, the third transport position TP3, and the fourth transport position TP4.
  • the first linear transporter 42 includes a plurality of transfer hands 45 (45A, 45B, 45C, 45D) and a linear guide mechanism 46 that horizontally moves each transfer hand 45 at a plurality of heights.
  • the transport hand 45A is moved by the linear guide mechanism 46 between the first transport position TP1 and the fourth transport position TP4.
  • the transport hand 45A is a pass hand that receives the substrate W from the lifter 41 and transfers it to the second linear transporter 43.
  • the transport hand 45B is moved between the first transport position TP1 and the second transport position TP2 by the linear guide mechanism 46.
  • the transport hand 45B receives the substrate W from the lifter 41 at the first transport position TP1 and transfers the substrate W to the polishing section 21A at the second transport position TP2.
  • the transfer hand 45B is provided with an elevating/lowering drive unit, and moves up when the substrate W is transferred to the top ring 24 of the polishing unit 21A, and descends after transferring the substrate W to the top ring 24.
  • the transport hand 45C and the transport hand 45D are also provided with the same lifting drive unit.
  • the transport hand 45C is moved between the first transport position TP1 and the third transport position TP3 by the linear guide mechanism 46.
  • the transport hand 45C receives the substrate W from the lifter 41 at the first transport position TP1 and transfers the substrate W to the polishing section 21B at the third transport position TP3.
  • the transport hand 45C also functions as an access hand that receives the substrate W from the top ring 24 of the polishing section 21A at the second transport position TP2 and transfers the substrate W to the polishing section 21B at the third transport position TP3.
  • the transfer hand 45D is moved between the second transfer position TP2 and the fourth transfer position TP4 by the linear guide mechanism 46.
  • the transport hand 45D receives the substrate W from the top ring 24 of the polishing section 21A or the polishing section 21B at the second transport position TP2 or the third transport position TP3, and receives the substrate W at the swing transporter 44 at the fourth transport position TP4. Functions as an access hand to pass.
  • the swing transporter 44 has a hand that can move between the fourth transport position TP4 and the fifth transport position TP5, and transfers the substrate W from the first linear transporter 42 to the second linear transporter 43. ..
  • the swing transporter 44 also transfers the substrate W polished by the substrate polishing apparatus 20 to the substrate cleaning apparatus 30.
  • a temporary placing table 47 for the substrate W is provided on the side of the swing transporter 44.
  • the swing transporter 44 vertically inverts the substrate W received at the fourth transfer position TP4 or the fifth transfer position TP5 and places it on the temporary placing table 47.
  • the substrate W placed on the temporary placing table 47 is transferred to the first transfer chamber 33 by the transfer robot 35 of the substrate cleaning apparatus 30.
  • the second linear transporter 43 is a mechanism that transports the substrate W between the fifth transport position TP5, the sixth transport position TP6, and the seventh transport position TP7.
  • the second linear transporter 43 includes a plurality of transport hands 48 (48A, 48B, 48C) and a linear guide mechanism 49 that horizontally moves each of the transport hands 45 at a plurality of heights.
  • the transport hand 48A is moved between the fifth transport position TP5 and the sixth transport position TP6 by the linear guide mechanism 49.
  • the transfer hand 45A functions as an access hand that receives the substrate W from the swing transporter 44 and transfers it to the polishing section 21C.
  • the transfer hand 48B moves between the sixth transfer position TP6 and the seventh transfer position TP7.
  • the transfer hand 48B functions as an access hand that receives the substrate W from the polishing section 21C and transfers it to the polishing section 21D.
  • the transport hand 48C moves between the seventh transport position TP7 and the fifth transport position TP5.
  • the transfer hand 48C receives the substrate W from the top ring 24 of the polishing section 21C or the polishing section 21D at the sixth transfer position TP6 or the seventh transfer position TP7, and receives the substrate W at the swing transporter 44 at the fifth transfer position TP5. Functions as an access hand to pass.
  • the operation of the transfer hand 48 at the time of delivering the substrate W is the same as the operation of the first linear transporter 42 described above.
  • FIG. 2 is a perspective view showing the configuration of the cleaning unit 31 according to the embodiment.
  • the cleaning unit 31 includes, for example, a foreign matter removing device (cleaning module) 60 as shown in FIG.
  • the foreign matter removing device 60 includes a rotating mechanism 80 that rotates the substrate W, and a roll cleaning member (contact member, cleaning member) 81 that rotates while making the peripheral surface contact with the substrate W.
  • the rotation mechanism 80 includes a plurality of holding rollers 80a that hold the outer periphery of the substrate W and rotate about an axis extending in the vertical direction.
  • the plurality of holding rollers 80a are connected to an electric drive unit such as a motor and rotate horizontally. Further, the plurality of holding rollers 80a have a configuration that can be moved up and down by an air drive unit such as an air cylinder.
  • the roll cleaning member 81 includes an upper roll cleaning member 81a that contacts the upper surface (polishing surface) W1 of the substrate W and a lower roll cleaning member 81b that contacts the lower surface W2 of the substrate W.
  • the upper roll cleaning member 81a and the lower roll cleaning member 81b are connected to an electric drive unit such as a motor and rotate.
  • the upper roll cleaning member 81a can be moved up and down by an air drive unit (actuator) such as an air cylinder.
  • the lower roll cleaning member 81b is held at a constant height.
  • the upper roll cleaning member 81a and the plurality of holding rollers 80a are raised.
  • the raised holding rollers 80a hold the substrate W in a horizontal posture, and then lower the substrate W until the lower surface W2 of the substrate W contacts the lower roll cleaning member 81b.
  • the upper roll cleaning member 81a is lowered and brought into contact with the upper surface W1 of the substrate W.
  • the pair of roll cleaning members 81 are rotated while rotating the substrate W by the holding roller 80a to remove foreign matters (fine particles) attached to the upper surface W1 and the lower surface W2 of the substrate W.
  • a chemical solution and pure water may be supplied toward the upper surface W1 of the substrate W from a nozzle (not shown), and the substrate W may be scrub-cleaned by the pair of roll cleaning members 81.
  • SC1 ammonia/hydrogen peroxide mixed aqueous solution
  • FIG. 3 is a cross-sectional configuration diagram showing the roll cleaning member 81 according to the embodiment.
  • FIG. 4 is an enlarged view showing the area A shown in FIG.
  • the roll cleaning member 81 includes a rotating shaft 82, an elastic support 83, and a nanopillar structure 84.
  • the rotating shaft 82 extends in the horizontal direction (the direction perpendicular to the plane of FIG. 3), and both ends thereof are supported by bearings (not shown) or the like.
  • the elastic support body 83 is formed in a cylindrical shape and is horizontally supported by the rotating shaft 82.
  • an elastic body such as a porous PVA sponge, urethane foam, rubber or elastomer can be used.
  • the nanopillar structure 84 is formed on the peripheral surface of the roll cleaning member 81, and is elastically supported by the elastic support 83. That is, the nanopillar structure 84 can be displaced in the radial direction of the roll cleaning member 81 by elastic deformation of the elastic support 83.
  • the nanopillar structure 84 has a plurality of nanosize pillars (columnar bodies) 85.
  • the pillars 85 are two-dimensionally arranged on the surface 87 of the base 86.
  • the base 86 on which the pillar 85 is erected may be integral with the elastic support body 83 or may be a separate body from the elastic support body 83. When the base 86 is a separate body from the elastic support body 83, the base 86 is more preferably a sheet body that can be wound around the peripheral surface of the elastic support body 83.
  • Pillar 85 is formed in a nano-sized substantially cylindrical or truncated cone shape. That is, the nanopillar structure 84 means a structure in which a plurality of columnar bodies having a substantially cylindrical shape or a truncated cone shape having a cross section having a size on the order of nanometers are provided so as to project over the surface 87 of the base 86.
  • the diameter D of the pillar 85 is 100 nm (nanometers) or less, preferably about 4 nm to 20 nm.
  • the height H of the pillar 85 is 100 nm or less, preferably about 10 nm to 100 nm.
  • the gap S between the adjacent pillars 85 is 100 nm or less, preferably about 6 nm to 50 nm.
  • Such a pillar 85 can be formed on an inorganic/organic base material (base 86) such as Si (silicon) or carbon (graphene).
  • base 86 such as Si (silicon) or carbon (graphene).
  • Si silicon
  • carbon graphene
  • the base 86 when the base 86 is an organic base material, it can be manufactured in the same manner as the following description (in the case of a Si wafer base material) after sputtering Si on the surface 87.
  • FIG. 5A to 5D are process diagrams showing an example of a method for manufacturing the nanopillar structure 84 according to one embodiment.
  • a Si wafer base material of an inorganic base material is prepared as the base 86.
  • Si may be sputtered on the surface 88 of the base 86 of the organic base material as described above.
  • an oxide film SiO 2 is formed on the surface 88 of the base 86 (before the pillar 85 is formed).
  • Ferritin 100 having the metal core 101 encapsulated in the protein 102 is two-dimensionally arranged on the surface of the base 86 on which the oxide film is formed.
  • Ferritin 100 is also called Listeria ferritin, a biobioconjugate.
  • Ferritin 100 has a structure in which a metal nucleus 101 made of iron oxide (Fe 2 O 3 ) also called an iron core is contained in a protein 102 containing a heme group bonded to the center of a cyclic compound called porphyrin.
  • Ferritin 100 is a substance that can contain, for example, 4500 atoms of iron ions (Fe3+) in the metal nucleus 101, and is a complex protein of about 480 kDa containing 24 polypeptide subunits.
  • the protein 102 of the ferritin 100 is annealed and removed in an oxygen atmosphere.
  • the metal nuclei 101 made of the iron oxide core are left on the oxide film on the surface 88 of the base 86, and the metal nuclei 101 are two-dimensionally arranged. These metal nuclei 101 are a mask for etching in the next step.
  • the oxide film (SiO 2 ) on the surface 88 of the base 86 exposed from the mask is removed by NF 3 gas/hydrogen radical treatment using the metal nuclei 101 as a mask. Further, anisotropic (vertical) neutral particle beam (NB) etching is performed using the metal nuclei 101 and the oxide film thereunder as a mask. In this process, the periphery of the mask is etched to the surface 87 (after the pillar 85 is formed), so that the shape of the mask is transferred to the base 86 as the pillar 85.
  • the metal nuclei 101 are removed by wet etching with HCl (hydrochloric acid). Note that the oxide film below the metal nucleus 101 can be removed by NF 3 treatment or the like. In this way, the nanopillar structure 84 in which the nanosize pillars 85 are two-dimensionally arranged can be manufactured as shown in FIG.
  • the gap S of the pillar 85 can be controlled by decorating the protein 102 shown in FIG. 5B with PEG (polyethylene glycol) having an appropriate molecular weight.
  • FIG. 6 is a configuration diagram showing the neutral particle beam etching apparatus 200 used in the manufacturing process of the nanopillar structure 84 according to one embodiment.
  • the neutral particle beam etching apparatus 200 includes a support base 201 that supports a base (base material) 86, and a neutral particle beam irradiation apparatus 202 that irradiates the base 86 with a neutral particle beam. doing.
  • the neutral particle beam irradiation device 202 includes a beam generation unit 203 and an orifice plate 204.
  • the beam generation unit 203 introduces gases such as SF 6 , CHF 3 , CF 4 , Cl 2 , Ar, O 2 , N 2 , and C 4 F 8 and turns them into plasma.
  • the orifice plate 204 accelerates and neutralizes the ions generated by plasmaization, and irradiates the neutralized neutral particle beam to the base 86.
  • the orifice plate 204 has a plurality of openings 204a and is arranged between the beam generator 203 and the support base 201.
  • the orifice plate 204 is an electrode whose surface is covered with a dielectric film, accelerates ions, and guides them to the opening 204a.
  • the ions are neutralized at the peripheral wall of the opening 204a, neutralized by charge exchange with the gas remaining inside the opening 204a, or charged on the dielectric film of the orifice plate 204. It is neutralized by recombining with the electron and becomes a neutral particle beam.
  • the neutral particle beam that has been neutralized while passing through the orifice plate 204 goes straight through the opening 204a and is applied to the base 86 placed on the support 201, and the etching of the base 86 is performed by the neutral particle beam. It becomes possible to do it.
  • the orifice plate 204 not only neutralizes the ions, but also prevents the radiation light generated from the plasma from irradiating the base 86. As a result, it is possible to reduce the influence of ultraviolet rays or the like that damages the base 86. Further, when an insulator such as glass or ceramic material is processed, charge-up occurs on the surface. However, by irradiating the neutralized particles thus neutralized, the charge-up amount can be kept small and high accuracy can be obtained. Etching is possible.
  • a dry etching method other than the above-described method can be used depending on the material of the base 86.
  • a method of performing dry etching using an electron beam lithography technique as shown in US Pat. No. 8,906,244 may be used.
  • a method for producing a hybrid nanostructure in which nanopillars are arranged on a base layer as shown in Japanese Patent Publication No. 2015-531816 or Japanese Unexamined Patent Publication No. 2018-161714, is used. It may be used to form the nanopillar structure 84.
  • FIGS. 7A to 7C are explanatory views showing how the foreign matter X1 and X2 attached to the substrate W according to the embodiment are removed by the nanopillar structure 84.
  • FIG. 7A shows that the nano-sized foreign matters X1 and X2 are attached to the upper surface W1 of the substrate W.
  • the foreign material X1 is an organic material
  • the foreign material X2 is an inorganic material. If, for example, nano-sized foreign matters X1 and X2 are attached to the upper surface (polishing surface) W1 of the substrate W, it may cause various problems such as a short circuit in the nano-sized circuit wiring. , X2 should be removed as much as possible.
  • the foreign matter removing apparatus 60 brings the roll cleaning member 81 having the nanopillar structure 84 closer to the upper surface W1 of the substrate W in the cleaning unit 31, as shown in FIG. 7B.
  • the nanopillar structure 84 collects the foreign substances X1 and X2 attached to the upper surface W1 of the substrate W by contacting or approaching the upper surface W1 of the substrate W. Specifically, when the nanopillar structure 84 comes into contact with the upper surface W1 of the substrate W, the foreign matters X1 and X2 enter and are collected in the nanosize gaps of the pillar 85.
  • the nanopillar structure 84 comes into contact with or comes close to the upper surface W1 of the substrate W, an intermolecular force or the like is generated, and the foreign substances X1 and X2 are adsorbed and collected by the pillar 85.
  • the roll cleaning member 81 comes into contact with the upper surface W1 of the substrate W and rotates, the foreign substances X1 and X2 attached to the upper surface W1 are scraped out by the pillars 85 and removed like brushes. Further, when the nanopillar structure 84 is triboelectrically charged, the foreign substances X1 and X2 can be electrostatically attracted to the pillar 85 and the like. After the foreign matters X1 and X2 attached to the substrate W are removed by the nanopillar structure 84 as described above, the roll cleaning member 81 is separated from the substrate W as shown in FIG. 7C.
  • the principle of removing foreign matter by the nanopillar structure 84 is that the intermolecular force acting between the nanopillar structure 84 and the foreign matter acts, and the nanopillar structure 84 comes into contact with the substrate W relatively.
  • a physical removal action is performed such that foreign matter is removed from the substrate W by sliding, and when cleaning is performed in the presence of a liquid such as a chemical solution, the chemical solution chemically reacts with the foreign matter.
  • the lift-off effect and the like that act in combination act in a composite manner, whereby foreign substances can be removed by these.
  • wet cleaning the foreign matter can be removed more effectively by rinsing the foreign matter once lifted off from the substrate W with pure water or a cleaning liquid.
  • cobalt has a lower standard electrode potential than copper and is more easily corroded than copper. It can be adversely affected by exposure. Therefore, after the chemical mechanical polishing of the substrate W, at least one of (A) a reducing agent having an electron donating property to the metal on the substrate W, (B) a deoxidizing agent for reducing dissolved oxygen, and (C) an anticorrosive agent.
  • A a reducing agent having an electron donating property to the metal on the substrate W
  • B a deoxidizing agent for reducing dissolved oxygen
  • C an anticorrosive agent.
  • the nanopillar structure 84 having a plurality of nanosize pillars 85 is brought into contact with or close to the substrate W, and the foreign matter X1 attached to the substrate W. , X2 are removed. According to such a configuration, since the substrate W is cleaned by the nanopillar structure 84, the nano-level foreign substances X1 and X2 attached to the substrate W can be effectively removed.
  • the elastic support 83 that elastically supports the nanopillar structure 84 is provided. Therefore, the nanopillar structure 84 can be displaced in the radial direction of the roll cleaning member 81, and the nanopillar structure 84 is brought into close contact with the substrate W without adjusting/controlling the posture of the roll cleaning member 81 at the nano level. be able to. Therefore, the nano-level foreign substances X1 and X2 attached to the substrate W can be effectively removed.
  • the nanopillar structure 84 may be supported while the nanopillar structure 84 is moved toward or away from the substrate W by an actuator (not shown) instead of or together with the elastic support 83.
  • an actuator not shown
  • a stretchable and flexible structure such as an airbag can be used.
  • the elastic support body 83 can be substituted by the elasticity of the base material itself depending on the material of the base material (base 86) on which the nanopillar structure 84 is formed. That is, the elastic support body 83 may be a base material (base 86) on which the nanopillar structure 84 is formed.
  • Such a foreign matter removing device 60 may be provided in a dry cleaning unit for dry cleaning the substrate W in the substrate cleaning device 30 (see FIG. 1). Accordingly, since the cleaning liquid (liquid) is not present between the nanopillar structure 84 and the substrate W, the foreign substances X1 and X2 easily enter the gap of the nanopillar structure 84, and the nanopillar structure 84 causes the foreign substance X1 to enter. Intermolecular force or the like that collects X2 also easily occurs. Furthermore, since no liquid is used, corrosion is less likely to occur. In addition, if the nanopillar structure 84 is close to the substrate W, it is possible to perform semi-physical cleaning capable of removing foreign matter without contact. Therefore, damage to the substrate W can be reduced as compared with non-contact cleaning such as conventional so-called two-fluid jet cleaning. In addition, such semi-physical cleaning can eliminate the concern that the pattern of the substrate W may collapse due to the process or conditions.
  • the foreign matter removing device 60 includes, for example, at least one of the plurality of cleaning units 31 that sequentially cleans the substrate W in the substrate cleaning device 30 that wet-cleans the substrate W, for example, the final cleaning unit 31 (the cleaning illustrated in FIG. 1). It is more effective if it is provided in the portion 31B).
  • the cleaning unit 31A for the primary cleaning of the substrate W foreign substances of submicron level or higher are removed (rough cleaning), and in the cleaning unit 31B for the secondary cleaning of the substrate W, the nano-pillar structure 84 is used for the nano-level structure.
  • the substrate W can be efficiently cleaned.
  • a cleaning flow as shown in FIG. 8 can be exemplified.
  • the substrate W is loaded into the substrate cleaning device 30 (step S1), and then the substrate W is held (set) in the rotating mechanism 80 described above (step S2). Then, brush cleaning (coarse cleaning) is performed by the roll cleaning member 81 (without the nanopillar structure 84) described above (step S3), and the substrate W is rinsed with the liquid supplied from the nozzle (not shown) (step S4). ..
  • step S5 after the substrate W is loaded into the drying unit 32 or the like shown in FIG. 1 and the substrate W is dried (step S5), the roll cleaning member 81 having the nanopillar structure 84 described above (see FIGS. 2 and 3). Foreign matter removal (finish cleaning) is performed (step S6). After that, the holding of the substrate W is released (step S7), and the substrate W is unloaded from the substrate cleaning device 30 (step S8).
  • FIGS. 9 to 14 may be adopted.
  • configurations that are the same as or equivalent to those of the above-described embodiment will be assigned the same reference numerals, and description thereof will be simplified or omitted.
  • FIG. 9 is a perspective view showing a configuration of a foreign matter removing device 60 according to a modified example of the embodiment.
  • the foreign matter removing device 60 includes a pencil cleaning member (contact member, cleaning member) 92.
  • the foreign matter removing device 60 includes a rotating mechanism 90 that rotates the substrate W, and a pencil cleaning mechanism (actuator) 91 that rotates by bringing the pencil cleaning member 92 into contact with the substrate W.
  • the rotating mechanism 90 includes a plurality of chucks 90a1 that hold the outer periphery of the substrate W, and a rotating stage 90a that rotates the substrate W around an axis extending in the vertical direction.
  • the rotary stage 90a is connected to an electric drive unit such as a motor on the lower surface W2 side of the substrate W and horizontally rotates.
  • the pencil cleaning mechanism 91 includes a pencil cleaning member 92 and an arm 91b that holds the pencil cleaning member 92.
  • the pencil cleaning member 92 has a contact portion 93 having a nanopillar structure 84 on a contact surface 92a which comes into contact with the substrate W, and a mounting portion 94 which is connected to the contact portion 93 and mounted on the tip of the arm 91b.
  • the contact portion 93 is preferably a columnar elastic support member such as a PVA (polyvinyl alcohol) sponge or a urethane sponge.
  • the pencil cleaning member 92 is rotated around an axis extending in the vertical direction by an electric drive unit such as a motor arranged inside the arm 91b.
  • the arm 91b is arranged above the substrate W.
  • a swivel shaft 91c is connected to the base end of the arm 91b.
  • An electric drive unit such as a motor for turning the arm 91b is connected to the turning shaft 91c.
  • the arm 91b is configured to rotate about a rotation axis 91c in a plane parallel to the substrate W. That is, by rotating the arm 91b, the pencil cleaning member 92 supported by the arm 91b moves in the radial direction of the substrate W and cleans the upper surface W1 of the substrate W. As a result, the nano-level foreign matter attached to the upper surface W1 of the substrate W can be effectively removed.
  • FIG. 10 is a cross-sectional view of the pencil cleaning member 92 included in the foreign matter removing device 60 shown in FIG.
  • the pencil cleaning member 92 has a contact portion (projection) 93 that contacts the substrate W when cleaning the substrate W, and a contact surface (tip surface of the projection) 92 a with the substrate W.
  • the skin layer 95 covers the peripheral surface of the contact portion 93 from the base end side opposite to the contact surface 92a to the middle of the tip side, and also covers the peripheral surface of the mounting portion 94 on the base end side. ..
  • the nano-level foreign matter (fine particles) captured inside the pencil cleaning member 92 by the nanopillar structure 84 from reattaching to the substrate W. That is, since the peripheral surface of the contact portion 93 is covered with the skin layer 95, the cleaning liquid that has collided with the peripheral surface of the contact portion 93 does not enter the inside of the contact portion 93, and it is difficult to discharge the captured fine particles, and the substrate W Can be prevented from being redeposited. Further, the skin layer 95 can prevent particles contained in the cleaning liquid from entering the inside of the contact portion 93 from the peripheral surface. Therefore, it is possible to more effectively prevent the pattern collapse on the substrate W during the cleaning/drying of the substrate W while performing the cleaning.
  • FIG. 11 is a perspective view showing a configuration of a foreign matter removing device 60 according to a modified example of the embodiment.
  • the foreign matter removing device 60 shown in FIG. 11 includes a roll cleaning member 81 having a plurality of protrusions 82a on its peripheral surface.
  • the nanopillar structure 84 described above is provided on the tip end surface of the protrusion 82a and the skin layer 95 described above is provided on the peripheral surface (peripheral surface) of the protrusion 82a other than the tip end surface, then The same effect as the effect is obtained.
  • FIG. 12 is a plan view showing the configuration of the foreign matter removing device 60 according to the modified example of the embodiment.
  • the foreign matter removing device 60 includes a bevel cleaning member (contact member) 111, as shown in FIG.
  • the foreign matter removing device 60 includes a rotation mechanism (not shown) that rotates the substrate W, and a bevel cleaning mechanism 110 that rotates by contacting the bevel cleaning member 111 to the peripheral edge (bevel portion) W3 of the substrate W.
  • the bevel cleaning mechanism 110 includes a belt-shaped bevel cleaning member 111 and a rotating body 112 around which the bevel cleaning member 111 is wound.
  • the bevel cleaning member 111 has a nanopillar structure 84 on a contact surface 111a that contacts the substrate W.
  • the rotating body 112 has a peripheral surface formed of PVA sponge (elastic support) or the like, and elastically supports the bevel cleaning member 111.
  • the rotating body 112 rotates the bevel cleaning member 111 in the direction opposite to the rotating direction of the substrate W. As a result, the peripheral edge W3 of the substrate W is cleaned, and the nano-level foreign matter adhering to the peripheral edge W3 can be effectively removed.
  • FIG. 13 is a side view showing the configuration of the substrate processing apparatus according to the modified example of the embodiment.
  • the substrate processing apparatus shown in FIG. 13 holds a substrate W horizontally and rotates a hollow substrate rotating mechanism 210 that rotates about its axis, and scrubs (rubs) the upper surface of the substrate W held by the substrate rotating mechanism 210.
  • a scrubber (processing head, foreign matter removing device) 250 that removes foreign matters and scratches from the upper surface of the substrate W by washing) and a static pressure support mechanism 290 that supports the lower surface of the substrate W by fluid pressure in a non-contact manner. ..
  • the scrubber 250 is arranged above the substrate W held by the substrate rotating mechanism 210, and the static pressure support mechanism 290 is arranged below the substrate W held by the substrate rotating mechanism 210. Further, the static pressure support mechanism 290 is arranged in the inner space of the substrate rotation mechanism 210. The substrate rotation mechanism 210, the scrubber 250, and the static pressure support mechanism 290 are surrounded by the partition wall 206.
  • a clean air intake 206a and an exhaust duct 209 are formed in the partition wall 206, and an exhaust mechanism 208 is installed.
  • the exhaust mechanism 208 includes a fan 208A and a filter 208B.
  • the surface treatment (scrub treatment), cleaning, and drying of the substrate W in the substrate processing apparatus according to the above-described embodiment may be continuously performed in the processing chamber 207 in the internal space of the partition wall 206.
  • the substrate rotating mechanism 210 includes a plurality of chucks 211 that grip the peripheral edge of the substrate W, and a hollow motor 212 that rotates the substrate W via the chucks 211.
  • the stator of the hollow motor 212 is fixed to a cylindrical stationary member 214. Further, the rotor of the hollow motor 212 is fixed to the rotation base 216.
  • the above-mentioned chuck 211 and the rotation cover 225 are provided on the rotation base 216.
  • the chuck 211 is connected to the lift mechanism 230.
  • a cleaning liquid supply nozzle 227 that supplies pure water as a cleaning liquid to the upper surface of the substrate W is arranged.
  • the cleaning liquid supply nozzle 227 is connected to a cleaning liquid supply source (not shown), and pure water is supplied to the upper surface of the substrate W through the cleaning liquid supply nozzle 227.
  • the pure water supplied to the substrate W is shaken off from the rotating substrate W by centrifugal force, further captured by the inner peripheral surface of the rotation cover 225, and discharged from a liquid discharge hole (not shown).
  • a two-fluid jet nozzle 300 is arranged above the substrate W.
  • the static pressure support mechanism 290 includes a support stage 291 arranged below the substrate W, a stage elevating mechanism 298 that elevates and lowers the support stage 291, and a stage rotating mechanism 299 that rotates the support stage 291.
  • the scrubber 250 is arranged above the substrate W.
  • the scrubber 250 is connected to one end of a swing arm 253 via a scrubber shaft 251, and the other end of the swing arm 253 is fixed to a swing shaft 254.
  • the swing shaft 254 is connected to the shaft rotation mechanism 255.
  • a scrubber lifting mechanism (actuator) 256 for moving the scrubber 250 in the vertical direction is further connected to the swing shaft 254.
  • pure water, a surfactant aqueous solution, and an alkaline or acidic cleaning liquid are supplied to the back surface of the substrate W facing upward.
  • the cleaning liquid may be supplied to the back surface of the substrate W when the scrubber 250 is not in contact with the substrate W.
  • FIG. 14 is a cross-sectional view showing the tape cartridge 260 provided in the scrubber 250 shown in FIG.
  • the tape cartridge 260 includes a cleaning tape (contact member) 261, a pressing member 262 that presses the cleaning tape 261 against the substrate W, and a biasing mechanism that biases the pressing member 262 toward the wafer. 263, a tape feeding reel 264 for feeding the cleaning tape 261, and a tape take-up reel 265 for winding the cleaning tape 261 used for the processing.
  • reference numeral 271 indicates an end mark detection sensor that detects an end mark of winding the cleaning tape 261.
  • the cleaning tape 261 is sent from the tape delivery reel 264 to the tape take-up reel 265 via the pressing member 262.
  • the plurality of pressing members 262 extend in the radial direction of the scrubber 250 and are arranged at equal intervals in the circumferential direction of the scrubber 250. Therefore, the contact surface (substrate contact surface) of each cleaning tape 261 with the substrate W extends in the radial direction of the scrubber 250.
  • a spring is used as the biasing mechanism 263.
  • the nanopillar structure 84 described above may be provided on the contact surface of the cleaning tape 261 with the substrate W. According to this configuration, the removal rate of foreign matter on the entire back surface of the substrate W is increased, and not only the foreign matter having a size of 100 nm or more but also the nanoscale foreign matter can be removed more effectively. It can be removed more appropriately.
  • a mechanism for rotating and holding the substrate W while being magnetically levitated is used instead of the rotating mechanism 80 shown in FIG. 2 described above. May be If this mechanism is combined with a roll cleaning member 81 having a nanopillar structure 84, foreign matter can be removed and cleaned at a level that can be practically used even while the pressing force on the held substrate W is reduced to some extent. it can.
  • a configuration may be adopted in which the substrate W is held and fixed at a predetermined position while vacuum suction is performed from the back surface side of the substrate W by a method such as Bernoulli chuck.
  • the contact member (the roll cleaning member 81, the pencil cleaning member 92, the bevel cleaning member 111) that contacts the substrate is rotated to remove foreign matter, but the contact member is not rotated.
  • the foreign matter may be removed only by bringing it closer to the substrate.
  • a configuration may be adopted in which a support plate having the above-mentioned nanopillar structure is installed on the temporary placing table 47 shown in FIG. 1 and the foreign matter is removed from the substrate W placed on the support plate.
  • the actuator in this case is, for example, the swing transporter 44 shown in FIG.
  • the form of foreign matter removal is not limited to the above-described form, and the foreign matter removal effect can be exhibited by pressing the sheet having the nanopillar structure 84 against the substrate (work) W or wiping the substrate (work) W with this sheet. ..
  • the actuator in this case may be, for example, a multi-joint robot arm.
  • the example in which the substrate W is placed horizontally (horizontal posture) and the foreign matter is removed is illustrated.
  • the substrate W may be placed vertically (vertical posture) to remove the foreign matter. Good.
  • the foreign matter removing device of the present invention is applied to a substrate cleaning device, and such a substrate cleaning device is installed in a CMP substrate processing device.
  • the foreign matter removing device may be a single substrate cleaning device used for cleaning the substrate, or a cleaning unit of a device other than the CMP device (for example, a back surface polishing device, a bevel polishing device, an etching device, or a plating device). Etc. can also be applied.
  • the substrate plating apparatus the electrolytic plating apparatus described in Japanese Patent No. 61576964 can be exemplified.
  • the apparatus of this example has a substrate cleaning device for cleaning the plated substrate.
  • the foreign matter removing apparatus 60 described above may be used after passing through the first cleaning unit, the second cleaning unit, and the drying unit.
  • the present invention can be widely applied to removal of foreign matter from a work, which requires a wide range of cleanliness.
  • cleaning validation in which after a drug manufacturing facility is washed to ensure quality in drug manufacturing, a residue evaluation test is conducted to prevent contamination of the predecessor drug and contamination by foreign substances. Has been done.
  • an analysis error may occur in a series of analysis steps in which the residue is wiped from the object to be analyzed with a swab material and then extracted into water for measurement. Therefore, wipe the residue of the analyte such as manufacturing tools used in the pharmaceutical manufacturing process with a swab material, and then extract it into water and measure it with nano-sized pillars on the surface of the swab material.
  • An apparatus may be provided which includes an actuator to be brought close to it, and a sampling device for immersing the swab material from which foreign matter has been removed in the chamber in water in the tank to extract and sample the eluate.
  • Substrate Processing Device 20 Substrate Polishing Device 30 Substrate Cleaning Device 31 Cleaning Section 44 Swing Transporter (Actuator) 60 foreign matter removing device 81 roll cleaning member (contact member, cleaning member) Reference Signs List 82 rotation shaft 82a protrusion 83 elastic support 84 nanopillar structure 85 pillar 92 pencil cleaning member (contact member, cleaning member) 92a Contact surface (tip surface of protrusion) 93 Contact part (projection part) 111 Bevel cleaning member (contact member) 250 scrubber (foreign matter removal device) 256 scrubber lifting mechanism (actuator) 261 Cleaning tape (contact member) W substrate (work) X1 foreign material X2 foreign material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

Provided is a foreign matter removal device that removes foreign matter adhered to a work, the foreign matter removal device having a nanopillar structure that has a plurality of nano-sized pillars, and an actuator that brings the nanopillar structure and the work into contact or proximity with one another.

Description

異物除去装置、基板洗浄装置、基板処理装置、及び洗浄部材Foreign substance removing device, substrate cleaning device, substrate processing device, and cleaning member
 本発明は、異物除去装置、基板洗浄装置、基板処理装置、及び洗浄部材に関する。
 本願は、2019年1月16日に、日本に出願された特願2019-005255号に基づき優先権を主張し、これらの内容をここに援用する。
The present invention relates to a foreign matter removing device, a substrate cleaning device, a substrate processing device, and a cleaning member.
The present application claims priority based on Japanese Patent Application No. 2019-005255 filed in Japan on January 16, 2019, the contents of which are incorporated herein by reference.
 従来から、シリコンウェハ等の基板の表面を平坦に化学機械研磨処理(CMP:Chemical Mechanical Polishing)する基板研磨装置が知られている。このような基板研磨装置は、基板を研磨する基板研磨装置と、研磨された基板を洗浄・乾燥する基板洗浄装置と、を備える。研磨された基板には、CMPに使用されたスラリの残渣や金属研磨屑等が微小パーティクル(異物)として付着しているため、基板洗浄装置において微小パーティクルを除去している。 Conventionally, there is known a substrate polishing apparatus that flattens the surface of a substrate such as a silicon wafer by chemical mechanical polishing (CMP: Chemical Mechanical Polishing). Such a substrate polishing apparatus includes a substrate polishing apparatus for polishing a substrate and a substrate cleaning apparatus for cleaning/drying the polished substrate. Since the residue of the slurry used for CMP, metal polishing dust, and the like adhere to the polished substrate as fine particles (foreign matter), the substrate cleaning apparatus removes the fine particles.
 下記特許文献1には、サブミクロンレベルの微小パーティクルに対して効果的な洗浄を行うべく、被洗浄物との接触面に平均細孔サイズで10~200μmの微細な孔を有するポリウレタンを主成分とする洗浄部材を、被洗浄物に当接させてスクラブ洗浄する洗浄方法が開示されている。 In Patent Document 1 below, in order to effectively wash fine particles of submicron level, a main component is polyurethane having fine pores with an average pore size of 10 to 200 μm on the contact surface with the object to be cleaned. There is disclosed a cleaning method in which the cleaning member is brought into contact with an object to be cleaned and scrubbed.
日本国特開平8-71511号公報Japanese Patent Laid-Open No. 8-71511
 近年、半導体デバイスの高集積化がますます進み、基板上の回路配線がナノレベルまで微細化してきている。また、ナノインプリント技術を使ったパターンニング装置では、押型と基板の間、及び基板と基板の間で汚れが転写することを避けるために、基板の表面に存在する異物を除去することが必要である。このため、従来のサブミクロンレベルより小さい、ナノレベルの微小パーティクルに対しても効果的な除去を行える技術が近年より求められている。
 上記要請は、半導体製造装置で扱う基板に限らず、広く、高度の清浄度が要求されるワークにおいても同様に存在する。
In recent years, semiconductor devices have been highly integrated, and circuit wiring on a substrate has been miniaturized to a nano level. Further, in a patterning device using the nanoimprint technology, it is necessary to remove foreign matters existing on the surface of the substrate in order to avoid transfer of dirt between the die and the substrate and between the substrates. .. Therefore, in recent years, there has been a demand for a technique capable of effectively removing fine particles of nano level, which is smaller than the conventional sub-micron level.
The above-mentioned request is not limited to the substrates handled by the semiconductor manufacturing apparatus, but is widely applicable to workpieces that require a high degree of cleanliness.
 本発明は、上記事情に鑑みてなされたものであり、ワークに付着した微小の異物を効果的に除去できる異物除去装置、基板洗浄装置、基板処理装置、及び洗浄部材を提供する。 The present invention has been made in view of the above circumstances, and provides a foreign matter removing device, a substrate cleaning device, a substrate processing device, and a cleaning member that can effectively remove minute foreign substances attached to a work.
 本発明の第1態様は、ワークに付着している異物を除去する異物除去装置であって、ナノサイズのピラーを複数有するナノピラー構造体と、前記ナノピラー構造体と前記ワークを接触または近接させるアクチュエータと、を有する。
 本発明の第2態様は、上記第1態様の異物除去装置において、前記ナノピラー構造体を弾性的に支持する弾性支持体を有してもよい。
A first aspect of the present invention is a foreign matter removing apparatus for removing foreign matter adhering to a work, comprising: a nanopillar structure having a plurality of nanosized pillars; and an actuator for bringing the nanopillar structure and the work into contact with or in proximity to each other. And.
A second aspect of the present invention is the foreign matter removing apparatus of the first aspect, which may further include an elastic support that elastically supports the nanopillar structure.
 本発明の第3態様は、基板を洗浄する基板洗浄装置であって、前記基板に付着している異物を除去する異物除去装置として、上記第1態様または第2態様の異物除去装置を備える。
 本発明の第4態様は、上記第3態様の基板洗浄装置において、前記基板を乾式洗浄する乾式洗浄部を備え、前記乾式洗浄部が、前記異物除去装置を有していてもよい。
 本発明の第5態様は、上記第3態様または第4態様の基板洗浄装置において、前記基板を順に洗浄する複数の洗浄部を備え、前記複数の洗浄部のうちの少なくともひとつが、前記異物除去装置を有していてもよい。
 本発明の第6態様は、上記第3~第5態様のいずれか一態様の基板洗浄装置において、前記異物除去装置は、前記基板に接触する接触部材を有し、前記接触部材の前記基板との接触面に、前記ナノピラー構造体を有してもよい。
 本発明の第7態様は、上記第6態様の基板洗浄装置において、前記接触部材は、前記基板に接触しつつ相対的に回転してもよい。
A third aspect of the present invention is a substrate cleaning apparatus for cleaning a substrate, comprising the foreign matter removing apparatus according to the first aspect or the second aspect as a foreign matter removing apparatus for removing foreign matter adhering to the substrate.
According to a fourth aspect of the present invention, in the substrate cleaning apparatus of the third aspect, a dry cleaning unit for dry cleaning the substrate may be provided, and the dry cleaning unit may have the foreign matter removing device.
A fifth aspect of the present invention is the substrate cleaning apparatus according to the third aspect or the fourth aspect, including a plurality of cleaning units for sequentially cleaning the substrate, wherein at least one of the plurality of cleaning units removes the foreign matter. It may have a device.
A sixth aspect of the present invention is the substrate cleaning apparatus according to any one of the third to fifth aspects, wherein the foreign matter removing apparatus has a contact member that comes into contact with the substrate, and the substrate is the contact member. The contact surface may have the nanopillar structure.
In a seventh aspect of the present invention, in the substrate cleaning apparatus of the sixth aspect, the contact member may rotate relatively while being in contact with the substrate.
 本発明の第8態様は、基板処理装置であって、基板を研磨する基板研磨装置と、前記基板を洗浄する基板洗浄装置と、を備え、前記基板洗浄装置として、上記第3~第7態様のいずれか一態様の基板洗浄装置を備える。 An eighth aspect of the present invention is a substrate processing apparatus, comprising: a substrate polishing apparatus for polishing a substrate; and a substrate cleaning apparatus for cleaning the substrate, wherein the substrate cleaning apparatus has the above third to seventh aspects. The substrate cleaning apparatus according to any one of the above.
 本発明の第9態様は、基板処理装置であって、基板をめっきするめっき装置と、前記基板を洗浄する基板洗浄装置と、を備え、前記基板洗浄装置として、上記第3~第7態様のいずれか一態様の基板洗浄装置を備える。 A ninth aspect of the present invention is a substrate processing apparatus, comprising a plating apparatus for plating a substrate and a substrate cleaning apparatus for cleaning the substrate, wherein the substrate cleaning apparatus is the above third to seventh aspects. The substrate cleaning apparatus according to any one aspect is provided.
 本発明の第10態様は、ワークを洗浄する洗浄部材であって、前記ワークを洗浄する際に前記ワークと接触する突部と、前記突部の先端面に設けられた、ナノサイズのピラーを複数有するナノピラー構造体と、前記先端面以外の前記突部の周縁表面の少なくとも一部を被覆するスキン層と、を有する。 A tenth aspect of the present invention is a cleaning member for cleaning a work, comprising a protrusion that comes into contact with the work when cleaning the work, and a nano-sized pillar provided on a tip surface of the protrusion. It has a plurality of nano pillar structures, and a skin layer which covers at least one copy of the peripheral surface of the above-mentioned projection other than the above-mentioned tip surface.
 上記本発明の態様によれば、ワークに付着した微小の異物を効果的に除去できる。 According to the above aspect of the present invention, minute foreign matter attached to the work can be effectively removed.
一実施形態に係る基板処理装置の全体構成を示す平面図である。It is a top view showing the whole substrate processing device composition concerning one embodiment. 一実施形態に係る洗浄部の構成を示す斜視図である。It is a perspective view which shows the structure of the washing|cleaning part which concerns on one Embodiment. 一実施形態に係るロール洗浄部材を示す断面構成図である。It is a cross-sectional block diagram which shows the roll cleaning member which concerns on one Embodiment. 図3に示す領域Aを示す拡大図である。It is an enlarged view which shows the area|region A shown in FIG. 一実施形態に係るナノピラー構造体の製造方法の一例を示す工程図である。FIG. 4 is a process chart showing an example of a method for manufacturing a nanopillar structure according to one embodiment. 一実施形態に係るナノピラー構造体の製造工程で用いた中性粒子ビームエッチング装置を示す構成図である。It is a block diagram which shows the neutral particle beam etching apparatus used in the manufacturing process of the nano pillar structure which concerns on one Embodiment. 一実施形態に係る基板に付着している異物をナノピラー構造体によって除去する様子を示す説明図である。It is explanatory drawing which shows a mode that the foreign material adhering to the board|substrate which concerns on one Embodiment is removed by a nanopillar structure. 一実施形態に係る基板の洗浄フローを示す図である。It is a figure which shows the washing|cleaning flow of the board|substrate which concerns on one Embodiment. 一実施形態の変形例に係る異物除去装置の構成を示す斜視図である。It is a perspective view which shows the structure of the foreign material removal apparatus which concerns on the modification of one Embodiment. 図9に示す異物除去装置が備えるペンシル洗浄部材の断面図である。It is sectional drawing of the pencil cleaning member with which the foreign material removal apparatus shown in FIG. 9 is equipped. 一実施形態の変形例に係る異物除去装置の構成を示す斜視図である。It is a perspective view which shows the structure of the foreign material removal apparatus which concerns on the modification of one Embodiment. 一実施形態の変形例に係る異物除去装置の構成を示す平面図である。It is a top view which shows the structure of the foreign material removal apparatus which concerns on the modification of one Embodiment. 一実施形態の変形例に係る基板処理装置の構成を示す側面図である。It is a side view which shows the structure of the substrate processing apparatus which concerns on the modification of one Embodiment. 図13に示すスクラバーに備えられたテープカートリッジを示す断面図である。It is sectional drawing which shows the tape cartridge with which the scrubber shown in FIG. 13 was equipped.
 以下、本発明の一実施形態について図面を参照して説明する。以下に示す実施形態は、発明の趣旨をより良く理解させるために、例を挙げて説明するものであり、特に指定のない限り、本発明を限定するものではない。 An embodiment of the present invention will be described below with reference to the drawings. The following embodiments are described by way of examples in order to better understand the gist of the invention, and do not limit the invention unless otherwise specified.
 図1は、一実施形態に係る基板処理装置1の全体構成を示す平面図である。
 図1に示す基板処理装置1は、シリコンウェハ等の基板(ワーク)Wの表面を平坦に研磨する化学機械研磨(CMP)装置である。基板処理装置1は、矩形箱状のハウジング2を備える。ハウジング2は、平面視で略長方形に形成されている。
FIG. 1 is a plan view showing the overall configuration of a substrate processing apparatus 1 according to an embodiment.
The substrate processing apparatus 1 shown in FIG. 1 is a chemical mechanical polishing (CMP) apparatus for flatly polishing the surface of a substrate (work) W such as a silicon wafer. The substrate processing apparatus 1 includes a rectangular box-shaped housing 2. The housing 2 is formed in a substantially rectangular shape in a plan view.
 なお、処理対象である基板Wとしては、半導体ウェハ、ガラス基板(液晶表示装置用、プラズマディスプレイ用)、光ディスク用基板、光磁気ディスク用基板、磁気ディスク用基板、プリント配線基板、メモリー回路用基板、ロジック回路用基板、及びイメージセンサ用基板(例えばCMOSセンサー用基板)などの各種デバイスが含まれる。また、形状としては円形状に限らず、例えば矩形状であってもよい。また、円形の場合の半導体ウェハの大きさとしては、例えば、直径100mm、150mm、200mm、300mm、及び450mmのウェハが含まれる。 The substrates W to be processed are semiconductor wafers, glass substrates (for liquid crystal display devices, plasma displays), optical disc substrates, magneto-optical disc substrates, magnetic disc substrates, printed wiring boards, memory circuit substrates. , A logic circuit substrate, and an image sensor substrate (for example, a CMOS sensor substrate). Further, the shape is not limited to a circular shape, and may be, for example, a rectangular shape. The size of the semiconductor wafer in the case of a circle includes, for example, wafers having a diameter of 100 mm, 150 mm, 200 mm, 300 mm, and 450 mm.
 ハウジング2は、その中央に長手方向に延在する基板搬送路3を備える。基板搬送路3の長手方向の一端部には、ロード/アンロード部10が配設されている。基板搬送路3の幅方向(平面視で長手方向と直交する方向)の一方側には、基板研磨装置20が配設され、他方側には、基板洗浄装置30が配設されている。基板搬送路3には、基板Wを搬送する基板搬送装置40が設けられている。また、基板処理装置1は、ロード/アンロード部10、基板研磨装置20、基板洗浄装置30、及び基板搬送装置40の動作を統括的に制御する制御装置(制御盤)50を備える。 The housing 2 has a substrate transfer path 3 extending in the longitudinal direction at the center thereof. A load/unload unit 10 is arranged at one end of the substrate transport path 3 in the longitudinal direction. A substrate polishing device 20 is provided on one side of the substrate transport path 3 in the width direction (direction orthogonal to the longitudinal direction in plan view), and a substrate cleaning device 30 is provided on the other side. A substrate transfer device 40 that transfers the substrate W is provided in the substrate transfer path 3. The substrate processing apparatus 1 also includes a control device (control panel) 50 that comprehensively controls the operations of the load/unload unit 10, the substrate polishing device 20, the substrate cleaning device 30, and the substrate transfer device 40.
 ロード/アンロード部10は、基板Wを収容するフロントロード部11を備える。フロントロード部11は、ハウジング2の長手方向の一方側の側面に複数設けられている。複数のフロントロード部11は、ハウジング2の幅方向に配列されている。フロントロード部11は、例えば、オープンカセット、SMIF(Standard Manufacturing Interface)ポッド、またはFOUP(Front Opening Unified Pod)を搭載する。SMIF、FOUPは、内部に基板Wのカセットを収納し、隔壁で覆った密閉容器であり、外部空間とは独立した環境を保つことができる。 The loading/unloading unit 10 includes a front loading unit 11 that accommodates the substrate W. A plurality of front load parts 11 are provided on one side surface of the housing 2 in the longitudinal direction. The plurality of front load portions 11 are arranged in the width direction of the housing 2. The front loading unit 11 is equipped with, for example, an open cassette, a SMIF (Standard Manufacturing Interface) pod, or a FOUP (Front Opening Unified Pod). The SMIF and FOUP are hermetically sealed containers in which the cassette of the substrate W is housed and covered with a partition wall, and can maintain an environment independent of the external space.
 また、ロード/アンロード部10は、フロントロード部11から基板Wを出し入れする2台の搬送ロボット12と、各搬送ロボット12をフロントロード部11の並びに沿って走行させる走行機構13と、を備える。各搬送ロボット12は、上下に2つのハンドを備えており、基板Wの処理前、処理後で使い分けている。例えば、フロントロード部11に基板Wを戻すときは上部のハンドを使用し、フロントロード部11から処理前の基板Wを取り出すときは下部のハンドを使用する。 Further, the loading/unloading unit 10 includes two transfer robots 12 for loading/unloading the substrate W into/from the front loading unit 11, and a traveling mechanism 13 for causing the transfer robots 12 to travel along the alignment of the front loading unit 11. .. Each of the transfer robots 12 is provided with two upper and lower hands, and is used properly before and after processing the substrate W. For example, the upper hand is used to return the substrate W to the front load unit 11, and the lower hand is used to take out the unprocessed substrate W from the front load unit 11.
 基板研磨装置20は、基板Wの研磨(平坦化)する複数の研磨部21(21A,21B,21C,21D)を備える。複数の研磨部21は、基板搬送路3の長手方向に配列されている。研磨部21は、研磨面を有する研磨パッド22を回転させる研磨テーブル23と、基板Wを保持しかつ基板Wを研磨テーブル23上の研磨パッド22に押圧しながら研磨するトップリング24と、研磨パッド22に研磨液やドレッシング液(例えば、純水)を供給する研磨液供給ノズル25と、研磨パッド22の研磨面のドレッシングを行うドレッサ26と、液体(例えば純水)と気体(例えば窒素ガス)の混合流体または液体(例えば純水)を霧状にして研磨面に噴射するアトマイザ27と、を備える。 The substrate polishing apparatus 20 includes a plurality of polishing units 21 (21A, 21B, 21C, 21D) for polishing (flattening) the substrate W. The plurality of polishing parts 21 are arranged in the longitudinal direction of the substrate transport path 3. The polishing unit 21 includes a polishing table 23 that rotates a polishing pad 22 having a polishing surface, a top ring 24 that holds a substrate W and polishes the substrate W while pressing the substrate W against the polishing pad 22 on the polishing table 23, and a polishing pad. A polishing liquid supply nozzle 25 for supplying a polishing liquid or a dressing liquid (for example, pure water) to 22, a dresser 26 for dressing the polishing surface of the polishing pad 22, a liquid (for example, pure water) and a gas (for example, nitrogen gas). And an atomizer 27 for atomizing the mixed fluid or liquid (for example, pure water) of the above to the polishing surface.
 研磨部21では、研磨液供給ノズル25から研磨液を研磨パッド22上に供給しながら、トップリング24により基板Wを研磨パッド22に押し付け、さらにトップリング24と研磨テーブル23とを相対移動させることにより、基板Wを研磨してその表面を平坦にする。ドレッサ26は、研磨パッド22に接触する先端の回転部にダイヤモンド粒子やセラミック粒子などの硬質な粒子が固定され、回転部を回転しつつ揺動することにより、研磨パッド22の研磨面全体を均一にドレッシングし、平坦な研磨面を形成する。アトマイザ27は、研磨パッド22の研磨面に残留する研磨屑や砥粒などを高圧の流体により洗い流すことで、研磨面の浄化と、機械的接触であるドレッサ26による研磨面の目立て作業、すなわち研磨面の再生を達成する。 In the polishing section 21, while the polishing liquid is supplied from the polishing liquid supply nozzle 25 onto the polishing pad 22, the substrate W is pressed against the polishing pad 22 by the top ring 24, and the top ring 24 and the polishing table 23 are relatively moved. Thus, the substrate W is polished to make its surface flat. In the dresser 26, hard particles such as diamond particles and ceramic particles are fixed to a rotating portion at a tip end that contacts the polishing pad 22, and the rotating portion is swung while rotating to uniformly cover the entire polishing surface of the polishing pad 22. To form a flat polished surface. The atomizer 27 cleans the polishing surface and polishing grains remaining on the polishing surface of the polishing pad 22 with a high-pressure fluid, and cleans the polishing surface and sharpens the polishing surface by the dresser 26, which is a mechanical contact, that is, polishing. Achieve face regeneration.
 基板洗浄装置30は、基板Wの洗浄を行う複数の洗浄部31(31A,31B)と、洗浄した基板Wを乾燥させる乾燥部32と、を備える。複数の洗浄部31及び乾燥部32は、基板搬送路3の長手方向に配列されている。洗浄部31Aと洗浄部31Bとの間には、第1搬送室33が設けられている。第1搬送室33には、基板搬送装置40、洗浄部31A、及び洗浄部31Bの間で基板Wを搬送する搬送ロボット35が設けられている。また、洗浄部31Bと乾燥部32との間には、第2搬送室34が設けられている。第2搬送室34には、洗浄部31Bと乾燥部32との間で基板Wを搬送する搬送ロボット36が設けられている。 The substrate cleaning apparatus 30 includes a plurality of cleaning units 31 (31A, 31B) for cleaning the substrate W, and a drying unit 32 for drying the cleaned substrate W. The plurality of cleaning units 31 and the drying units 32 are arranged in the longitudinal direction of the substrate transport path 3. A first transfer chamber 33 is provided between the cleaning unit 31A and the cleaning unit 31B. The first transfer chamber 33 is provided with a transfer robot 35 that transfers the substrate W between the substrate transfer device 40, the cleaning unit 31A, and the cleaning unit 31B. A second transfer chamber 34 is provided between the cleaning unit 31B and the drying unit 32. The second transfer chamber 34 is provided with a transfer robot 36 that transfers the substrate W between the cleaning unit 31B and the drying unit 32.
 洗浄部31Aは、例えば、ロール型の洗浄部材(表面がPVA(ポリビニルアルコール)製スポンジあるいはウレタン製スポンジ)を備えたモジュール(以下、ロール型の洗浄モジュールという)を備え、基板Wを一次洗浄する。また、洗浄部31Bも、ロール型の洗浄モジュールを備え、基板Wを二次洗浄する。なお、洗浄部31A及び洗浄部31Bは、同一の洗浄モジュールであっても、あるいは異なる洗浄モジュールであってもよい。例えば、ペンシル型の洗浄部材を備えた洗浄モジュール、気体とガスを噴出する2流体ジェット型の2流体ジェットノズルを備えた洗浄モジュール、洗浄ノズルから吐出される洗浄液がミスト状となるように構成されたモジュール(例えば、日本国特開2018-101790号公報の図8参照)等であってもよい。 The cleaning unit 31A includes, for example, a module including a roll-type cleaning member (a surface-made PVA (polyvinyl alcohol) sponge or urethane sponge) (hereinafter referred to as a roll-type cleaning module), and primarily cleans the substrate W. .. The cleaning unit 31B also includes a roll-type cleaning module and secondarily cleans the substrate W. The cleaning unit 31A and the cleaning unit 31B may be the same cleaning module or different cleaning modules. For example, a cleaning module including a pencil-type cleaning member, a cleaning module including a two-fluid jet type two-fluid jet nozzle that ejects gas and gas, and a cleaning liquid discharged from the cleaning nozzle are formed into a mist. Module (for example, refer to FIG. 8 of Japanese Patent Laid-Open No. 2018-101790).
 乾燥部32は、例えば、ロタゴニ乾燥(IPA(Iso-Propyl Alcohol)乾燥)を行う乾燥モジュールを備える。乾燥後は、乾燥部32とロード/アンロード部10との間の隔壁に設けられたシャッタ1aが開かれ、搬送ロボット12によって乾燥部32から基板Wが取り出される。 The drying unit 32 includes, for example, a drying module that performs Rotagoni drying (IPA (Iso-Propyl Alcohol) drying). After the drying, the shutter 1a provided on the partition wall between the drying unit 32 and the loading/unloading unit 10 is opened, and the substrate W is taken out from the drying unit 32 by the transfer robot 12.
 なお、本実施形態で言う「洗浄」には、薬液や純水などの液体を使用する通常の洗浄(本実施形態では湿式洗浄と言う)のみならず、洗浄時に液体を使用しない洗浄(乾式洗浄と言う)を含んでいる。洗浄部31A及び洗浄部31Bは、その両方が湿式洗浄部であってもよいし、乾式洗浄部であってもよい。また、洗浄部31A及び洗浄部31Bのうちの一方が湿式洗浄部で、他方が乾式洗浄部であってもよい。なお、乾式洗浄する前に、湿式洗浄した場合には、その基板Wを乾かすために、上述した乾燥部32を配置してもよい。
 すなわち、乾式洗浄部は、乾燥部32の後に配置されていてもよい。
The “cleaning” referred to in the present embodiment includes not only normal cleaning using a liquid such as a chemical solution or pure water (referred to as wet cleaning in the present embodiment) but also cleaning not using a liquid at the time of cleaning (dry cleaning). Say) is included. Both of the cleaning unit 31A and the cleaning unit 31B may be a wet cleaning unit or a dry cleaning unit. Further, one of the cleaning unit 31A and the cleaning unit 31B may be a wet cleaning unit and the other may be a dry cleaning unit. When the wet cleaning is performed before the dry cleaning, the above-described drying unit 32 may be arranged to dry the substrate W.
That is, the dry cleaning unit may be arranged after the drying unit 32.
 基板搬送装置40は、リフター41と、第1リニアトランスポータ42と、第2リニアトランスポータ43と、スイングトランスポータ44と、を備える。基板搬送路3には、ロード/アンロード部10側から順番に第1搬送位置TP1、第2搬送位置TP2、第3搬送位置TP3、第4搬送位置TP4、第5搬送位置TP5、第6搬送位置TP6、第7搬送位置TP7が設定されている。 The substrate transfer device 40 includes a lifter 41, a first linear transporter 42, a second linear transporter 43, and a swing transporter 44. In the substrate transfer path 3, the first transfer position TP1, the second transfer position TP2, the third transfer position TP3, the fourth transfer position TP4, the fifth transfer position TP5, and the sixth transfer position are sequentially transferred from the load/unload unit 10 side. The position TP6 and the seventh transport position TP7 are set.
 リフター41は、第1搬送位置TP1で基板Wを上下に搬送する機構である。リフター41は、第1搬送位置TP1において、ロード/アンロード部10の搬送ロボット12から基板Wを受け取る。また、リフター41は、搬送ロボット12から受け取った基板Wを第1リニアトランスポータ42に受け渡す。第1搬送位置TP1とロード/アンロード部10との間の隔壁には、シャッタ1bが設けられており、基板Wの搬送時にはシャッタ1bが開かれて搬送ロボット12からリフター41に基板Wが受け渡される。 The lifter 41 is a mechanism that vertically transfers the substrate W at the first transfer position TP1. The lifter 41 receives the substrate W from the transfer robot 12 of the load/unload unit 10 at the first transfer position TP1. Further, the lifter 41 transfers the substrate W received from the transfer robot 12 to the first linear transporter 42. A shutter 1b is provided on a partition wall between the first transfer position TP1 and the loading/unloading section 10. When the substrate W is transferred, the shutter 1b is opened and the transfer robot 12 receives the substrate W on the lifter 41. Passed.
 第1リニアトランスポータ42は、第1搬送位置TP1、第2搬送位置TP2、第3搬送位置TP3、第4搬送位置TP4の間で基板Wを搬送する機構である。第1リニアトランスポータ42は、複数の搬送ハンド45(45A,45B,45C,45D)と、各搬送ハンド45を複数の高さで水平方向に移動させるリニアガイド機構46と、を備える。
 搬送ハンド45Aは、リニアガイド機構46によって、第1搬送位置TP1から第4搬送位置TP4の間を移動する。搬送ハンド45Aは、リフター41から基板Wを受け取り、第2リニアトランスポータ43に受け渡すパスハンドである。
The first linear transporter 42 is a mechanism that transports the substrate W among the first transport position TP1, the second transport position TP2, the third transport position TP3, and the fourth transport position TP4. The first linear transporter 42 includes a plurality of transfer hands 45 (45A, 45B, 45C, 45D) and a linear guide mechanism 46 that horizontally moves each transfer hand 45 at a plurality of heights.
The transport hand 45A is moved by the linear guide mechanism 46 between the first transport position TP1 and the fourth transport position TP4. The transport hand 45A is a pass hand that receives the substrate W from the lifter 41 and transfers it to the second linear transporter 43.
 搬送ハンド45Bは、リニアガイド機構46によって、第1搬送位置TP1と第2搬送位置TP2との間を移動する。搬送ハンド45Bは、第1搬送位置TP1でリフター41から基板Wを受け取り、第2搬送位置TP2で研磨部21Aに基板Wを受け渡す。搬送ハンド45Bには、昇降駆動部が設けられており、基板Wを研磨部21Aのトップリング24に受け渡すときは上昇し、トップリング24に基板Wを受け渡した後は下降する。
 なお、搬送ハンド45C及び搬送ハンド45Dにも、同様の昇降駆動部が設けられている。
The transport hand 45B is moved between the first transport position TP1 and the second transport position TP2 by the linear guide mechanism 46. The transport hand 45B receives the substrate W from the lifter 41 at the first transport position TP1 and transfers the substrate W to the polishing section 21A at the second transport position TP2. The transfer hand 45B is provided with an elevating/lowering drive unit, and moves up when the substrate W is transferred to the top ring 24 of the polishing unit 21A, and descends after transferring the substrate W to the top ring 24.
The transport hand 45C and the transport hand 45D are also provided with the same lifting drive unit.
 搬送ハンド45Cは、リニアガイド機構46によって、第1搬送位置TP1と第3搬送位置TP3との間を移動する。搬送ハンド45Cは、第1搬送位置TP1でリフター41から基板Wを受け取り、第3搬送位置TP3で研磨部21Bに基板Wを受け渡す。また、搬送ハンド45Cは、第2搬送位置TP2で研磨部21Aのトップリング24から基板Wを受け取り、第3搬送位置TP3で研磨部21Bに基板Wを受け渡すアクセスハンドとしても機能する。 The transport hand 45C is moved between the first transport position TP1 and the third transport position TP3 by the linear guide mechanism 46. The transport hand 45C receives the substrate W from the lifter 41 at the first transport position TP1 and transfers the substrate W to the polishing section 21B at the third transport position TP3. The transport hand 45C also functions as an access hand that receives the substrate W from the top ring 24 of the polishing section 21A at the second transport position TP2 and transfers the substrate W to the polishing section 21B at the third transport position TP3.
 搬送ハンド45Dは、リニアガイド機構46によって、第2搬送位置TP2と第4搬送位置TP4との間を移動する。搬送ハンド45Dは、第2搬送位置TP2または第3搬送位置TP3で、研磨部21Aまたは研磨部21Bのトップリング24から基板Wを受け取り、第4搬送位置TP4でスイングトランスポータ44に基板Wを受け渡すアクセスハンドとして機能する。 The transfer hand 45D is moved between the second transfer position TP2 and the fourth transfer position TP4 by the linear guide mechanism 46. The transport hand 45D receives the substrate W from the top ring 24 of the polishing section 21A or the polishing section 21B at the second transport position TP2 or the third transport position TP3, and receives the substrate W at the swing transporter 44 at the fourth transport position TP4. Functions as an access hand to pass.
 スイングトランスポータ44は、第4搬送位置TP4と第5搬送位置TP5との間を移動可能なハンドを有しており、第1リニアトランスポータ42から第2リニアトランスポータ43へ基板Wを受け渡す。また、スイングトランスポータ44は、基板研磨装置20で研磨された基板Wを、基板洗浄装置30に受け渡す。スイングトランスポータ44の側方には、基板Wの仮置き台47が設けられている。スイングトランスポータ44は、第4搬送位置TP4または第5搬送位置TP5で受け取った基板Wを上下反転して仮置き台47に載置する。仮置き台47に載置された基板Wは、基板洗浄装置30の搬送ロボット35によって第1搬送室33に搬送される。 The swing transporter 44 has a hand that can move between the fourth transport position TP4 and the fifth transport position TP5, and transfers the substrate W from the first linear transporter 42 to the second linear transporter 43. .. The swing transporter 44 also transfers the substrate W polished by the substrate polishing apparatus 20 to the substrate cleaning apparatus 30. On the side of the swing transporter 44, a temporary placing table 47 for the substrate W is provided. The swing transporter 44 vertically inverts the substrate W received at the fourth transfer position TP4 or the fifth transfer position TP5 and places it on the temporary placing table 47. The substrate W placed on the temporary placing table 47 is transferred to the first transfer chamber 33 by the transfer robot 35 of the substrate cleaning apparatus 30.
 第2リニアトランスポータ43は、第5搬送位置TP5、第6搬送位置TP6、第7搬送位置TP7の間で基板Wを搬送する機構である。第2リニアトランスポータ43は、複数の搬送ハンド48(48A,48B,48C)と、各搬送ハンド45を複数の高さで水平方向に移動させるリニアガイド機構49と、を備える。搬送ハンド48Aは、リニアガイド機構49によって、第5搬送位置TP5から第6搬送位置TP6の間を移動する。搬送ハンド45Aは、スイングトランスポータ44から基板Wを受け取り、それを研磨部21Cに受け渡すアクセスハンドとして機能する。 The second linear transporter 43 is a mechanism that transports the substrate W between the fifth transport position TP5, the sixth transport position TP6, and the seventh transport position TP7. The second linear transporter 43 includes a plurality of transport hands 48 (48A, 48B, 48C) and a linear guide mechanism 49 that horizontally moves each of the transport hands 45 at a plurality of heights. The transport hand 48A is moved between the fifth transport position TP5 and the sixth transport position TP6 by the linear guide mechanism 49. The transfer hand 45A functions as an access hand that receives the substrate W from the swing transporter 44 and transfers it to the polishing section 21C.
 搬送ハンド48Bは、第6搬送位置TP6と第7搬送位置TP7との間を移動する。搬送ハンド48Bは、研磨部21Cから基板Wを受け取り、それを研磨部21Dに受け渡すアクセスハンドとして機能する。搬送ハンド48Cは、第7搬送位置TP7と第5搬送位置TP5との間を移動する。搬送ハンド48Cは、第6搬送位置TP6または第7搬送位置TP7で、研磨部21Cまたは研磨部21Dのトップリング24から基板Wを受け取り、第5搬送位置TP5でスイングトランスポータ44に基板Wを受け渡すアクセスハンドとして機能する。なお、説明は省略するが、搬送ハンド48の基板Wの受け渡し時の動作は、上述した第1リニアトランスポータ42の動作と同様である。 The transfer hand 48B moves between the sixth transfer position TP6 and the seventh transfer position TP7. The transfer hand 48B functions as an access hand that receives the substrate W from the polishing section 21C and transfers it to the polishing section 21D. The transport hand 48C moves between the seventh transport position TP7 and the fifth transport position TP5. The transfer hand 48C receives the substrate W from the top ring 24 of the polishing section 21C or the polishing section 21D at the sixth transfer position TP6 or the seventh transfer position TP7, and receives the substrate W at the swing transporter 44 at the fifth transfer position TP5. Functions as an access hand to pass. Although not described, the operation of the transfer hand 48 at the time of delivering the substrate W is the same as the operation of the first linear transporter 42 described above.
 図2は、一実施形態に係る洗浄部31の構成を示す斜視図である。
 洗浄部31は、例えば、図2に示すような異物除去装置(洗浄モジュール)60を備える。異物除去装置60は、基板Wを回転させる回転機構80と、基板Wに周面を接触させて回転するロール洗浄部材(接触部材、洗浄部材)81と、を備える。回転機構80は、基板Wの外周を保持して鉛直方向に延びる軸回りに回転する複数の保持ローラ80aを備える。複数の保持ローラ80aは、モータ等の電気駆動部と接続されて水平回転する。また、複数の保持ローラ80aは、エアシリンダ等のエア駆動部によって上下に移動可能な構成を有する。
FIG. 2 is a perspective view showing the configuration of the cleaning unit 31 according to the embodiment.
The cleaning unit 31 includes, for example, a foreign matter removing device (cleaning module) 60 as shown in FIG. The foreign matter removing device 60 includes a rotating mechanism 80 that rotates the substrate W, and a roll cleaning member (contact member, cleaning member) 81 that rotates while making the peripheral surface contact with the substrate W. The rotation mechanism 80 includes a plurality of holding rollers 80a that hold the outer periphery of the substrate W and rotate about an axis extending in the vertical direction. The plurality of holding rollers 80a are connected to an electric drive unit such as a motor and rotate horizontally. Further, the plurality of holding rollers 80a have a configuration that can be moved up and down by an air drive unit such as an air cylinder.
 ロール洗浄部材81は、基板Wの上面(研磨面)W1と接触する上部ロール洗浄部材81aと、基板Wの下面W2に接触する下部ロール洗浄部材81bと、を備える。上部ロール洗浄部材81a及び下部ロール洗浄部材81bは、モータ等の電気駆動部と接続されて回転する。また、上部ロール洗浄部材81aは、エアシリンダ等のエア駆動部(アクチュエータ)によって上下に移動可能である。なお、下部ロール洗浄部材81bは、一定の高さで保持されている。 The roll cleaning member 81 includes an upper roll cleaning member 81a that contacts the upper surface (polishing surface) W1 of the substrate W and a lower roll cleaning member 81b that contacts the lower surface W2 of the substrate W. The upper roll cleaning member 81a and the lower roll cleaning member 81b are connected to an electric drive unit such as a motor and rotate. The upper roll cleaning member 81a can be moved up and down by an air drive unit (actuator) such as an air cylinder. The lower roll cleaning member 81b is held at a constant height.
 基板Wをセットする際には、先ず、上部ロール洗浄部材81a及び複数の保持ローラ80aを上昇させる。次に、上昇した複数の保持ローラ80aに基板Wを水平姿勢で保持させ、その後、基板Wの下面W2が下部ロール洗浄部材81bに接触するまで下降させる。最後に、上部ロール洗浄部材81aを下降させ、基板Wの上面W1に接触させる。 When setting the substrate W, first, the upper roll cleaning member 81a and the plurality of holding rollers 80a are raised. Next, the raised holding rollers 80a hold the substrate W in a horizontal posture, and then lower the substrate W until the lower surface W2 of the substrate W contacts the lower roll cleaning member 81b. Finally, the upper roll cleaning member 81a is lowered and brought into contact with the upper surface W1 of the substrate W.
 このように基板Wをセットしたら、基板Wを保持ローラ80aによって自転させつつ、一対のロール洗浄部材81を回転させることで、基板Wの上面W1及び下面W2に付着した異物(微小パーティクル)を除去する。なお、湿式洗浄の場合は、図示しないノズルから薬液と純水の少なくともいずれか一方を基板Wの上面W1に向けて供給し、基板Wを一対のロール洗浄部材81でスクラブ洗浄するとよい。薬液としては、SC1(アンモニア/過酸化水素混合水溶液)等を用いることができる。 After setting the substrate W in this manner, the pair of roll cleaning members 81 are rotated while rotating the substrate W by the holding roller 80a to remove foreign matters (fine particles) attached to the upper surface W1 and the lower surface W2 of the substrate W. To do. In the case of wet cleaning, at least one of a chemical solution and pure water may be supplied toward the upper surface W1 of the substrate W from a nozzle (not shown), and the substrate W may be scrub-cleaned by the pair of roll cleaning members 81. As the chemical solution, SC1 (ammonia/hydrogen peroxide mixed aqueous solution) or the like can be used.
 図3は、一実施形態に係るロール洗浄部材81を示す断面構成図である。図4は、図3に示す領域Aを示す拡大図である。
 図3に示すように、ロール洗浄部材81は、回転軸82と、弾性支持体83と、ナノピラー構造体84と、を備えている。回転軸82は、水平方向(図3において紙面垂直方向)に延び、その両端が図示しない軸受などに支持されている。弾性支持体83は、円筒状に形成され、回転軸82によって水平に支持されている。弾性支持体83の材質としては、例えば、多孔質のPVA製スポンジ、発泡ウレタン、ゴムやエラストマー等の弾性体を用いることができる。
FIG. 3 is a cross-sectional configuration diagram showing the roll cleaning member 81 according to the embodiment. FIG. 4 is an enlarged view showing the area A shown in FIG.
As shown in FIG. 3, the roll cleaning member 81 includes a rotating shaft 82, an elastic support 83, and a nanopillar structure 84. The rotating shaft 82 extends in the horizontal direction (the direction perpendicular to the plane of FIG. 3), and both ends thereof are supported by bearings (not shown) or the like. The elastic support body 83 is formed in a cylindrical shape and is horizontally supported by the rotating shaft 82. As the material of the elastic support body 83, for example, an elastic body such as a porous PVA sponge, urethane foam, rubber or elastomer can be used.
 ナノピラー構造体84は、ロール洗浄部材81の周面に形成され、弾性支持体83によって弾性的に支持されている。すなわち、ナノピラー構造体84は、弾性支持体83の弾性変形によって、ロール洗浄部材81の径方向に変位可能である。ナノピラー構造体84は、図4に示すように、ナノサイズのピラー(柱状体)85を複数有している。ピラー85は、ベース86の表面87に二次元的に配置されている。なお、ピラー85が立設するベース86は、弾性支持体83と一体であってもよいし、弾性支持体83と別体であってもよい。ベース86が弾性支持体83と別体である場合、ベース86は、弾性支持体83の周面に巻き付け可能なシート体であると尚よい。 The nanopillar structure 84 is formed on the peripheral surface of the roll cleaning member 81, and is elastically supported by the elastic support 83. That is, the nanopillar structure 84 can be displaced in the radial direction of the roll cleaning member 81 by elastic deformation of the elastic support 83. As shown in FIG. 4, the nanopillar structure 84 has a plurality of nanosize pillars (columnar bodies) 85. The pillars 85 are two-dimensionally arranged on the surface 87 of the base 86. The base 86 on which the pillar 85 is erected may be integral with the elastic support body 83 or may be a separate body from the elastic support body 83. When the base 86 is a separate body from the elastic support body 83, the base 86 is more preferably a sheet body that can be wound around the peripheral surface of the elastic support body 83.
 ピラー85は、ナノサイズの略円柱状ないし略円錐台状に形成されている。すなわち、ナノピラー構造体84とは、ナノメータオーダーの大きさを有する断面を備えた略円柱ないし略円錐台の柱状体が、ベース86の表面87に亘って複数突設された構造を意味する。 Pillar 85 is formed in a nano-sized substantially cylindrical or truncated cone shape. That is, the nanopillar structure 84 means a structure in which a plurality of columnar bodies having a substantially cylindrical shape or a truncated cone shape having a cross section having a size on the order of nanometers are provided so as to project over the surface 87 of the base 86.
 以下、ピラー85の寸法を例示すると、ピラー85の直径Dは、100nm(ナノメートル)以下であって、好ましくは、4nm~20nm程である。また、ピラー85の高さHは、100nm以下であって、好ましくは、10nm~100nm程である。また、隣り合うピラー85の隙間Sは、100nm以下であって、好ましくは、6nm~50nm程である。 Exemplifying the dimensions of the pillar 85 below, the diameter D of the pillar 85 is 100 nm (nanometers) or less, preferably about 4 nm to 20 nm. The height H of the pillar 85 is 100 nm or less, preferably about 10 nm to 100 nm. The gap S between the adjacent pillars 85 is 100 nm or less, preferably about 6 nm to 50 nm.
 このようなピラー85は、Si(シリコン)やカーボン(グラフェン)など、無機/有機いずれの基材(ベース86)に対しても形成可能である。例えば、ベース86が有機基材の場合、表面87にSiをスパッタしてから、以下の説明(Siウェハ基材の場合)と同様にして製造することができる。 Such a pillar 85 can be formed on an inorganic/organic base material (base 86) such as Si (silicon) or carbon (graphene). For example, when the base 86 is an organic base material, it can be manufactured in the same manner as the following description (in the case of a Si wafer base material) after sputtering Si on the surface 87.
 図5の(a)~(d)は、一実施形態に係るナノピラー構造体84の製造方法の一例を示す工程図である。
 ここで説明する製造方法では、先ず、図5(a)に示すように、ベース86として、無機基材のSiウェハ基材を用意する。なお、ベース86が有機基材の場合、上述したように有機基材のベース86の表面88にSiをスパッタするとよい。このようなベース86を用意したら、ベース86の表面88(ピラー85形成前)に酸化膜(SiO)を形成する。
5A to 5D are process diagrams showing an example of a method for manufacturing the nanopillar structure 84 according to one embodiment.
In the manufacturing method described here, first, as shown in FIG. 5A, a Si wafer base material of an inorganic base material is prepared as the base 86. In addition, when the base 86 is an organic base material, Si may be sputtered on the surface 88 of the base 86 of the organic base material as described above. After such a base 86 is prepared, an oxide film (SiO 2 ) is formed on the surface 88 of the base 86 (before the pillar 85 is formed).
 次に、図5(b)に示すように、酸化膜を形成したベース86の表面に、金属核101をたんぱく質102に内包したフェリチン100を二次元配置する。フェリチン100は、リステリアフェリチン、バイオバイオコンジュゲートとも呼ばれている。フェリチン100は、鉄コアとも呼ばれる酸化鉄(Fe)からなる金属核101が、ポルフィリンという環状の化合物の中心に結合しているヘム基を含むたんぱく質102に内包された構造を有する。フェリチン100は、金属核101内に、例えば4500原子もの鉄イオン(Fe3+)を含有しうる物質であり、また、24個のポリペプチドサブユニットを含む約480kDaの複合体たんぱく質である。 Next, as shown in FIG. 5B, the ferritin 100 having the metal core 101 encapsulated in the protein 102 is two-dimensionally arranged on the surface of the base 86 on which the oxide film is formed. Ferritin 100 is also called Listeria ferritin, a biobioconjugate. Ferritin 100 has a structure in which a metal nucleus 101 made of iron oxide (Fe 2 O 3 ) also called an iron core is contained in a protein 102 containing a heme group bonded to the center of a cyclic compound called porphyrin. Ferritin 100 is a substance that can contain, for example, 4500 atoms of iron ions (Fe3+) in the metal nucleus 101, and is a complex protein of about 480 kDa containing 24 polypeptide subunits.
 次に、図5(c)に示すように、フェリチン100のたんぱく質102を酸素雰囲気中でアニールして除去する。これにより、ベース86の表面88の酸化膜上には、酸化鉄コアからなる金属核101が残され、金属核101が二次元に配列された状態となる。これら金属核101が、次の工程のエッチング用マスクである。 Next, as shown in FIG. 5C, the protein 102 of the ferritin 100 is annealed and removed in an oxygen atmosphere. As a result, the metal nuclei 101 made of the iron oxide core are left on the oxide film on the surface 88 of the base 86, and the metal nuclei 101 are two-dimensionally arranged. These metal nuclei 101 are a mask for etching in the next step.
 次に、図5(d)に示すように、金属核101をマスクとしたNFガス/水素ラジカル処理で、マスクから露出したベース86の表面88の酸化膜(SiO)を除去すると共に、さらに金属核101とその下の酸化膜をマスクにし、異方性(垂直)の中性粒子ビーム(NB)エッチングを行う。本工程で、マスクの周囲が表面87(ピラー85形成後)までエッチングされることで、マスクの形状がピラー85としてベース86に転写される。 Next, as shown in FIG. 5D, the oxide film (SiO 2 ) on the surface 88 of the base 86 exposed from the mask is removed by NF 3 gas/hydrogen radical treatment using the metal nuclei 101 as a mask. Further, anisotropic (vertical) neutral particle beam (NB) etching is performed using the metal nuclei 101 and the oxide film thereunder as a mask. In this process, the periphery of the mask is etched to the surface 87 (after the pillar 85 is formed), so that the shape of the mask is transferred to the base 86 as the pillar 85.
 最後に、金属核101をHCl(塩酸)のウェットエッチングで除去する。なお、金属核101の下の酸化膜は、NF処理等で除去することができる。このようにして、図4に示すような、ナノサイズのピラー85が二次元配列されたナノピラー構造体84を作製することができる。なお、ピラー85の隙間Sは、図5(b)に示すたんぱく質102に適当な分子量のPEG(ポリエチレングリコール)を装飾することで制御可能である。 Finally, the metal nuclei 101 are removed by wet etching with HCl (hydrochloric acid). Note that the oxide film below the metal nucleus 101 can be removed by NF 3 treatment or the like. In this way, the nanopillar structure 84 in which the nanosize pillars 85 are two-dimensionally arranged can be manufactured as shown in FIG. The gap S of the pillar 85 can be controlled by decorating the protein 102 shown in FIG. 5B with PEG (polyethylene glycol) having an appropriate molecular weight.
 図6は、一実施形態に係るナノピラー構造体84の製造工程で用いた中性粒子ビームエッチング装置200を示す構成図である。
 図6に示すように中性粒子ビームエッチング装置200は、ベース(基材)86を支持する支持台201と、ベース86に中性粒子ビームを照射する中性粒子ビーム照射装置202と、を有している。
FIG. 6 is a configuration diagram showing the neutral particle beam etching apparatus 200 used in the manufacturing process of the nanopillar structure 84 according to one embodiment.
As shown in FIG. 6, the neutral particle beam etching apparatus 200 includes a support base 201 that supports a base (base material) 86, and a neutral particle beam irradiation apparatus 202 that irradiates the base 86 with a neutral particle beam. doing.
 中性粒子ビーム照射装置202は、ビーム生成部203と、オリフィス板204と、を有する。ビーム生成部203は、SF,CHF,CF,Cl,Ar,O,N,C等のガスを導入すると共に、プラズマ化する。オリフィス板204は、プラズマ化により発生したイオンを加速すると共に中性化し、中性化した中性粒子ビームをベース86に照射する。 The neutral particle beam irradiation device 202 includes a beam generation unit 203 and an orifice plate 204. The beam generation unit 203 introduces gases such as SF 6 , CHF 3 , CF 4 , Cl 2 , Ar, O 2 , N 2 , and C 4 F 8 and turns them into plasma. The orifice plate 204 accelerates and neutralizes the ions generated by plasmaization, and irradiates the neutralized neutral particle beam to the base 86.
 オリフィス板204は、複数の開口部204aを有し、ビーム生成部203と支持台201との間に配置されている。オリフィス板204は、表面が誘電膜で覆われた電極であり、イオンを加速させて、開口部204aに導く。イオンは、開口部204aの周壁において中性化されるか、開口部204aの内部に残留しているガスとの電荷交換によって中性化されるか、あるいは、オリフィス板204の誘電膜に帯電した電子と再結合することによって中性化され、中性粒子ビームとなる。 The orifice plate 204 has a plurality of openings 204a and is arranged between the beam generator 203 and the support base 201. The orifice plate 204 is an electrode whose surface is covered with a dielectric film, accelerates ions, and guides them to the opening 204a. The ions are neutralized at the peripheral wall of the opening 204a, neutralized by charge exchange with the gas remaining inside the opening 204a, or charged on the dielectric film of the orifice plate 204. It is neutralized by recombining with the electron and becomes a neutral particle beam.
 オリフィス板204の通過中に中性化された中性粒子ビームは、開口部204aから直進して支持台201に載置されたベース86に照射され、中性粒子ビームによってベース86のエッチング処理を行うことが可能となる。オリフィス板204は、イオンを中性化するだけではなく、プラズマから発生する放射光がベース86に照射されるのを防止する。これにより、ベース86に損傷を与えるような紫外線などの影響を低減することができる。また、ガラスやセラミック材料等の絶縁物の加工に際しては、表面にチャージアップが生じるが、このように中性化された中性粒子を照射することによりチャージアップ量を小さく保ちながら、高精度のエッチングが可能となる。 The neutral particle beam that has been neutralized while passing through the orifice plate 204 goes straight through the opening 204a and is applied to the base 86 placed on the support 201, and the etching of the base 86 is performed by the neutral particle beam. It becomes possible to do it. The orifice plate 204 not only neutralizes the ions, but also prevents the radiation light generated from the plasma from irradiating the base 86. As a result, it is possible to reduce the influence of ultraviolet rays or the like that damages the base 86. Further, when an insulator such as glass or ceramic material is processed, charge-up occurs on the surface. However, by irradiating the neutralized particles thus neutralized, the charge-up amount can be kept small and high accuracy can be obtained. Etching is possible.
 なお、ナノピラー構造体84の形成工程においては、ベース86の材質に応じて、上述した手法以外のドライエッチング方法も使用できる。例えば、米国特許第8906244号明細書に示されたような電子線リソグラフィ技術を用いてドライエッチングを行う方法などを用いてもよい。あるいは、例えば、日本国特表2015-531816号公報や日本国特開2018-161714号公報に示されたような、ベース層上にナノピラーが配列しているハイブリッドナノ構造体を製造する方法などを用いてナノピラー構造体84を形成してもよい。 In the process of forming the nanopillar structure 84, a dry etching method other than the above-described method can be used depending on the material of the base 86. For example, a method of performing dry etching using an electron beam lithography technique as shown in US Pat. No. 8,906,244 may be used. Alternatively, for example, a method for producing a hybrid nanostructure in which nanopillars are arranged on a base layer, as shown in Japanese Patent Publication No. 2015-531816 or Japanese Unexamined Patent Publication No. 2018-161714, is used. It may be used to form the nanopillar structure 84.
 図7の(a)~(c)は、一実施形態に係る基板Wに付着している異物X1,X2をナノピラー構造体84によって除去する様子を示す説明図である。
 図7(a)は、基板Wの上面W1に、ナノサイズの異物X1,X2が付着している様子を示している。例えば、異物X1は有機物、異物X2は無機物をイメージしている。基板Wの上面(研磨面)W1に、例えば、ナノサイズの異物X1,X2が付着していると、ナノサイズの回路配線ではショートなどの各種不具合の原因になる可能性があるため、異物X1,X2を可能な限り除去する必要がある。
FIGS. 7A to 7C are explanatory views showing how the foreign matter X1 and X2 attached to the substrate W according to the embodiment are removed by the nanopillar structure 84. As shown in FIG.
FIG. 7A shows that the nano-sized foreign matters X1 and X2 are attached to the upper surface W1 of the substrate W. For example, the foreign material X1 is an organic material, and the foreign material X2 is an inorganic material. If, for example, nano-sized foreign matters X1 and X2 are attached to the upper surface (polishing surface) W1 of the substrate W, it may cause various problems such as a short circuit in the nano-sized circuit wiring. , X2 should be removed as much as possible.
 異物除去装置60は、洗浄部31において、図7(b)に示すように、ナノピラー構造体84を有するロール洗浄部材81を、基板Wの上面W1に近づけていく。ナノピラー構造体84は、基板Wの上面W1に接触または近接することで、基板Wの上面W1に付着している異物X1,X2を捕集する。具体的には、ナノピラー構造体84が基板Wの上面W1に接触すると、ピラー85のナノサイズの隙間に異物X1,X2が入り込み捕集される。また、例えば、ナノピラー構造体84が基板Wの上面W1に接触ないし接触する手前まで近接すると、分子間力等が発生し、ピラー85に異物X1,X2が吸着され捕集される。 In the cleaning unit 31, the foreign matter removing apparatus 60 brings the roll cleaning member 81 having the nanopillar structure 84 closer to the upper surface W1 of the substrate W in the cleaning unit 31, as shown in FIG. 7B. The nanopillar structure 84 collects the foreign substances X1 and X2 attached to the upper surface W1 of the substrate W by contacting or approaching the upper surface W1 of the substrate W. Specifically, when the nanopillar structure 84 comes into contact with the upper surface W1 of the substrate W, the foreign matters X1 and X2 enter and are collected in the nanosize gaps of the pillar 85. Further, for example, when the nanopillar structure 84 comes into contact with or comes close to the upper surface W1 of the substrate W, an intermolecular force or the like is generated, and the foreign substances X1 and X2 are adsorbed and collected by the pillar 85.
 また、ロール洗浄部材81が基板Wの上面W1に接触し回転すると、上面W1に付着している異物X1,X2が、ピラー85によって刷毛のように掻き出されて除去される。また、ナノピラー構造体84が摩擦帯電等した場合、ピラー85等に異物X1,X2を静電吸着することもできる。
 以上のように、基板Wに付着している異物X1,X2をナノピラー構造体84によって除去したら、図7(c)に示すように、ロール洗浄部材81を基板Wから離間させる。
When the roll cleaning member 81 comes into contact with the upper surface W1 of the substrate W and rotates, the foreign substances X1 and X2 attached to the upper surface W1 are scraped out by the pillars 85 and removed like brushes. Further, when the nanopillar structure 84 is triboelectrically charged, the foreign substances X1 and X2 can be electrostatically attracted to the pillar 85 and the like.
After the foreign matters X1 and X2 attached to the substrate W are removed by the nanopillar structure 84 as described above, the roll cleaning member 81 is separated from the substrate W as shown in FIG. 7C.
 上述したように、ナノピラー構造体84による異物除去原理は、ナノピラー構造体84と異物との間に働く分子間力等による作用が働くこと、ナノピラー構造体84が基板Wに接触して相対的に摺動させた場合には、摺動により異物が基板Wから除去されるといった物理的除去作用が働くこと、及び、さらに薬液等の液体存在下で洗浄する場合には異物に薬液が化学的に作用するリフトオフ効果等が複合的に働くことで、これらにより異物を除去し得る。 また、湿式洗浄の場合は、一旦基板W上からリフトオフさせた異物を純水あるいは洗浄液で表面上をすすぐことで、より効果的に異物を除去し得る。 As described above, the principle of removing foreign matter by the nanopillar structure 84 is that the intermolecular force acting between the nanopillar structure 84 and the foreign matter acts, and the nanopillar structure 84 comes into contact with the substrate W relatively. When it is slid, a physical removal action is performed such that foreign matter is removed from the substrate W by sliding, and when cleaning is performed in the presence of a liquid such as a chemical solution, the chemical solution chemically reacts with the foreign matter. The lift-off effect and the like that act in combination act in a composite manner, whereby foreign substances can be removed by these. Further, in the case of wet cleaning, the foreign matter can be removed more effectively by rinsing the foreign matter once lifted off from the substrate W with pure water or a cleaning liquid.
 なお、コバルトを含む基板研磨処理プロセスの場合には特に、銅よりもコバルトは標準電極電位が低く、銅よりも腐食されやすいため、露出時間がわずかであっても保護層が除去され、金属表面が露出することで悪影響を受けることが考えられる。そのため、基板Wを化学機械研磨した後、(A)基板W上の金属に対して電子供与性を有する還元剤、(B)溶存酸素を還元する脱酸素剤、(C)防食剤の少なくともいずれか一つを含有する洗浄液で基板Wを洗浄する際に、上述したナノピラー構造体84を用いて基板Wに付着した微小の異物を除去しつつ、ロール洗浄部材81の基板に対する押圧力を抑制して腐食をより確実に防止するようにするとよい。 In the case of a substrate polishing treatment process containing cobalt, cobalt has a lower standard electrode potential than copper and is more easily corroded than copper. It can be adversely affected by exposure. Therefore, after the chemical mechanical polishing of the substrate W, at least one of (A) a reducing agent having an electron donating property to the metal on the substrate W, (B) a deoxidizing agent for reducing dissolved oxygen, and (C) an anticorrosive agent. When cleaning the substrate W with a cleaning liquid containing one of them, the nano-pillar structure 84 described above is used to remove minute foreign matter adhering to the substrate W while suppressing the pressing force of the roll cleaning member 81 on the substrate. It is better to prevent corrosion more reliably.
 このように、上述した本実施形態の異物除去装置60によれば、ナノサイズのピラー85を複数有するナノピラー構造体84を、基板Wに接触または近接させ、該基板Wに付着している異物X1,X2を除去する。このような構成によれば、ナノピラー構造体84によって基板Wを洗浄するため、基板Wに付着したナノレベルの異物X1,X2を効果的に除去できる。 As described above, according to the foreign matter removing apparatus 60 of the present embodiment described above, the nanopillar structure 84 having a plurality of nanosize pillars 85 is brought into contact with or close to the substrate W, and the foreign matter X1 attached to the substrate W. , X2 are removed. According to such a configuration, since the substrate W is cleaned by the nanopillar structure 84, the nano-level foreign substances X1 and X2 attached to the substrate W can be effectively removed.
 本実施形態では、ナノピラー構造体84を弾性的に支持する弾性支持体83を有している。このため、ナノピラー構造体84は、ロール洗浄部材81の径方向に変位可能であり、ロール洗浄部材81の姿勢をナノレベルで調整/制御しなくても、ナノピラー構造体84を基板Wに密着させることができる。このため、基板Wに付着しているナノレベルの異物X1,X2を効果的に除去できる。 In the present embodiment, the elastic support 83 that elastically supports the nanopillar structure 84 is provided. Therefore, the nanopillar structure 84 can be displaced in the radial direction of the roll cleaning member 81, and the nanopillar structure 84 is brought into close contact with the substrate W without adjusting/controlling the posture of the roll cleaning member 81 at the nano level. be able to. Therefore, the nano-level foreign substances X1 and X2 attached to the substrate W can be effectively removed.
 なお、弾性支持体83に代えて、あるいは、これとともに、図示しないアクチュエータによりナノピラー構造体84を基板Wに対して近接・離間させるようにしながら、ナノピラー構造体84を支持することもできる。あるいは、弾性支持体83の例としては、エアバッグの様な伸縮自在で可撓性を有する構造体も使用できる。また、弾性支持体83は、ナノピラー構造体84を形成した基材(ベース86)の材質によっては、基材自体の弾性だけで代用することも可能である。つまり、弾性支持体83は、ナノピラー構造体84を形成した基材(ベース86)であってもよい。 The nanopillar structure 84 may be supported while the nanopillar structure 84 is moved toward or away from the substrate W by an actuator (not shown) instead of or together with the elastic support 83. Alternatively, as an example of the elastic support member 83, a stretchable and flexible structure such as an airbag can be used. Further, the elastic support body 83 can be substituted by the elasticity of the base material itself depending on the material of the base material (base 86) on which the nanopillar structure 84 is formed. That is, the elastic support body 83 may be a base material (base 86) on which the nanopillar structure 84 is formed.
 このような異物除去装置60は、基板洗浄装置30(図1参照)において基板Wを乾式洗浄する乾式洗浄部に設けるとよい。これにより、ナノピラー構造体84と基板Wとの間に、洗浄液(液体)が介在しないため、異物X1,X2がナノピラー構造体84の隙間に入り込み易くなり、また、ナノピラー構造体84が異物X1,X2を捕集する分子間力等も発生し易くなる。さらに、液体を使わないため、腐食も生じ難くなる。
 加えて、このナノピラー構造体84は、基板Wに近接すれば、接触せずとも異物を除去できる半物理的な洗浄が可能である。そのため、従来のいわゆる2流体ジェット洗浄のような、非接触での洗浄と比較して基板Wに対するダメージを低減できる。また、このような半物理的な洗浄によって、プロセスや条件による基板Wのパターン倒れといった懸念も解消することが可能となる。
Such a foreign matter removing device 60 may be provided in a dry cleaning unit for dry cleaning the substrate W in the substrate cleaning device 30 (see FIG. 1). Accordingly, since the cleaning liquid (liquid) is not present between the nanopillar structure 84 and the substrate W, the foreign substances X1 and X2 easily enter the gap of the nanopillar structure 84, and the nanopillar structure 84 causes the foreign substance X1 to enter. Intermolecular force or the like that collects X2 also easily occurs. Furthermore, since no liquid is used, corrosion is less likely to occur.
In addition, if the nanopillar structure 84 is close to the substrate W, it is possible to perform semi-physical cleaning capable of removing foreign matter without contact. Therefore, damage to the substrate W can be reduced as compared with non-contact cleaning such as conventional so-called two-fluid jet cleaning. In addition, such semi-physical cleaning can eliminate the concern that the pattern of the substrate W may collapse due to the process or conditions.
 また、異物除去装置60は、例えば基板Wを湿式洗浄する基板洗浄装置30において基板Wを順に洗浄する複数の洗浄部31のうちの少なくともひとつ、例えば、最後の洗浄部31(図1に示す洗浄部31B)に設けるとより効果的である。例えば、基板Wを一次洗浄する洗浄部31Aでは、サブミクロンレベル以上の異物を除去(粗洗浄)し、次に基板Wを二次洗浄する洗浄部31Bでは、上述したナノピラー構造体84によってナノレベルの異物を除去(仕上げ洗浄)することで、基板Wを効率よく洗浄することができる。
 具体的には、図8に示すような洗浄フローを例示することができる。先ず、基板洗浄装置30に基板Wを搬入し(ステップS1)、次に、上述した回転機構80などに基板Wを保持(セット)する(ステップS2)。そして、上述したロール洗浄部材81(ナノピラー構造体84を有さない)によるブラシ洗浄(粗洗浄)を行い(ステップS3)、図示しないノズルから供給する液体によって基板Wをリンス処理する(ステップS4)。次に、図1に示す乾燥部32などに基板Wを搬入して、基板Wを乾燥させた後(ステップS5)、上述したナノピラー構造体84を有するロール洗浄部材81(図2、図3参照)による異物除去(仕上げ洗浄)を行う(ステップS6)。その後、基板Wの保持を開放し(ステップS7)、基板洗浄装置30から基板Wを搬出する(ステップS8)。
Further, the foreign matter removing device 60 includes, for example, at least one of the plurality of cleaning units 31 that sequentially cleans the substrate W in the substrate cleaning device 30 that wet-cleans the substrate W, for example, the final cleaning unit 31 (the cleaning illustrated in FIG. 1). It is more effective if it is provided in the portion 31B). For example, in the cleaning unit 31A for the primary cleaning of the substrate W, foreign substances of submicron level or higher are removed (rough cleaning), and in the cleaning unit 31B for the secondary cleaning of the substrate W, the nano-pillar structure 84 is used for the nano-level structure. By removing the foreign matter (finish cleaning), the substrate W can be efficiently cleaned.
Specifically, a cleaning flow as shown in FIG. 8 can be exemplified. First, the substrate W is loaded into the substrate cleaning device 30 (step S1), and then the substrate W is held (set) in the rotating mechanism 80 described above (step S2). Then, brush cleaning (coarse cleaning) is performed by the roll cleaning member 81 (without the nanopillar structure 84) described above (step S3), and the substrate W is rinsed with the liquid supplied from the nozzle (not shown) (step S4). .. Next, after the substrate W is loaded into the drying unit 32 or the like shown in FIG. 1 and the substrate W is dried (step S5), the roll cleaning member 81 having the nanopillar structure 84 described above (see FIGS. 2 and 3). Foreign matter removal (finish cleaning) is performed (step S6). After that, the holding of the substrate W is released (step S7), and the substrate W is unloaded from the substrate cleaning device 30 (step S8).
 以上、本発明の好ましい実施形態を記載し説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、及びその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、特許請求の範囲によって制限されている。 While the preferred embodiments of the invention have been described and described above, it should be understood that these are exemplary of the invention and should not be considered limiting. Additions, omissions, substitutions, and other changes can be made without departing from the scope of the invention. Therefore, the present invention should not be considered limited by the foregoing description, but rather by the claims.
 例えば、図9~図14に示すような形態を採用してもよい。なお、以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。 For example, the forms shown in FIGS. 9 to 14 may be adopted. In the following description, configurations that are the same as or equivalent to those of the above-described embodiment will be assigned the same reference numerals, and description thereof will be simplified or omitted.
 図9は、一実施形態の変形例に係る異物除去装置60の構成を示す斜視図である。
 異物除去装置60は、図9に示すように、ペンシル洗浄部材(接触部材、洗浄部材)92を備えている。異物除去装置60は、基板Wを回転させる回転機構90と、基板Wにペンシル洗浄部材92を接触させて回転するペンシル洗浄機構(アクチュエータ)91と、を備える。回転機構90は、基板Wの外周を保持する複数のチャック90a1と、基板Wを鉛直方向に延びる軸回りに回転させる回転ステージ90aと、を備える。回転ステージ90aは、基板Wの下面W2側で、モータ等の電気駆動部と接続されて水平回転する。
FIG. 9 is a perspective view showing a configuration of a foreign matter removing device 60 according to a modified example of the embodiment.
As shown in FIG. 9, the foreign matter removing device 60 includes a pencil cleaning member (contact member, cleaning member) 92. The foreign matter removing device 60 includes a rotating mechanism 90 that rotates the substrate W, and a pencil cleaning mechanism (actuator) 91 that rotates by bringing the pencil cleaning member 92 into contact with the substrate W. The rotating mechanism 90 includes a plurality of chucks 90a1 that hold the outer periphery of the substrate W, and a rotating stage 90a that rotates the substrate W around an axis extending in the vertical direction. The rotary stage 90a is connected to an electric drive unit such as a motor on the lower surface W2 side of the substrate W and horizontally rotates.
 ペンシル洗浄機構91は、ペンシル洗浄部材92と、ペンシル洗浄部材92を保持するアーム91bと、を備える。ペンシル洗浄部材92は、基板Wと接触する接触面92aにナノピラー構造体84を有する接触部93と、接触部93に接続されアーム91bの先端部に装着される装着部94とを有する。接触部93は、PVA(ポリビニルアルコール)製スポンジあるいはウレタン製スポンジ等の円柱状の弾性支持体であるとよい。ペンシル洗浄部材92は、アーム91bの内部に配置されたモータ等の電気駆動部によって、鉛直方向に延びる軸回りに回転する。 The pencil cleaning mechanism 91 includes a pencil cleaning member 92 and an arm 91b that holds the pencil cleaning member 92. The pencil cleaning member 92 has a contact portion 93 having a nanopillar structure 84 on a contact surface 92a which comes into contact with the substrate W, and a mounting portion 94 which is connected to the contact portion 93 and mounted on the tip of the arm 91b. The contact portion 93 is preferably a columnar elastic support member such as a PVA (polyvinyl alcohol) sponge or a urethane sponge. The pencil cleaning member 92 is rotated around an axis extending in the vertical direction by an electric drive unit such as a motor arranged inside the arm 91b.
 アーム91bは、基板Wの上方に配置される。アーム91bの基端部には旋回軸91cが連結されている。旋回軸91cには、アーム91bを旋回させるモータ等の電気駆動部が接続されている。アーム91bは、旋回軸91cを中心に、基板Wと平行な平面内で旋回するようになっている。すなわち、アーム91bの旋回によって、これに支持されたペンシル洗浄部材92が基板Wの半径方向に移動し、基板Wの上面W1を洗浄する。これにより、基板Wの上面W1に付着しているナノレベルの異物を効果的に除去できる。 The arm 91b is arranged above the substrate W. A swivel shaft 91c is connected to the base end of the arm 91b. An electric drive unit such as a motor for turning the arm 91b is connected to the turning shaft 91c. The arm 91b is configured to rotate about a rotation axis 91c in a plane parallel to the substrate W. That is, by rotating the arm 91b, the pencil cleaning member 92 supported by the arm 91b moves in the radial direction of the substrate W and cleans the upper surface W1 of the substrate W. As a result, the nano-level foreign matter attached to the upper surface W1 of the substrate W can be effectively removed.
 図10は、図9に示す異物除去装置60が備えるペンシル洗浄部材92の断面図である。
 図10に示すように、ペンシル洗浄部材92は、基板Wを洗浄する際に基板Wと接触する接触部(突部)93を有し、基板Wとの接触面(突部の先端面)92aに、上述したナノピラー構造体84を有すると共に、接触面92a以外の接触部93の周縁表面(周面)の少なくとも一部がスキン層95によって覆われている。図10に示すスキン層95は、接触部93の周面において、接触面92aと反対の基端側から先端側の途中までを覆うと共に、基端側では装着部94の周面まで覆っている。
FIG. 10 is a cross-sectional view of the pencil cleaning member 92 included in the foreign matter removing device 60 shown in FIG.
As shown in FIG. 10, the pencil cleaning member 92 has a contact portion (projection) 93 that contacts the substrate W when cleaning the substrate W, and a contact surface (tip surface of the projection) 92 a with the substrate W. In addition to having the nanopillar structure 84 described above, at least a part of the peripheral surface (peripheral surface) of the contact portion 93 other than the contact surface 92a is covered with the skin layer 95. The skin layer 95 shown in FIG. 10 covers the peripheral surface of the contact portion 93 from the base end side opposite to the contact surface 92a to the middle of the tip side, and also covers the peripheral surface of the mounting portion 94 on the base end side. ..
 上記構成によれば、ナノピラー構造体84によってペンシル洗浄部材92の内部に捕捉したナノレベルの異物(微小パーティクル)が、基板Wに再付着することを防止できる。
つまり、接触部93の周縁表面がスキン層95で覆われることで、接触部93の周縁表面に衝突した洗浄液が接触部93の内部に入り込まず、捕捉した微小パーティクルを排出し難くし、基板Wへの再付着を防止できる。また、スキン層95によって、洗浄液に含まれたパーティクルが接触部93の周縁表面から内部に入り込むことも防止できる。従って、基板Wに対する洗浄・乾燥時の基板W上のパターン倒壊などをより有効に防止しつつ洗浄することが可能となる。
According to the above configuration, it is possible to prevent the nano-level foreign matter (fine particles) captured inside the pencil cleaning member 92 by the nanopillar structure 84 from reattaching to the substrate W.
That is, since the peripheral surface of the contact portion 93 is covered with the skin layer 95, the cleaning liquid that has collided with the peripheral surface of the contact portion 93 does not enter the inside of the contact portion 93, and it is difficult to discharge the captured fine particles, and the substrate W Can be prevented from being redeposited. Further, the skin layer 95 can prevent particles contained in the cleaning liquid from entering the inside of the contact portion 93 from the peripheral surface. Therefore, it is possible to more effectively prevent the pattern collapse on the substrate W during the cleaning/drying of the substrate W while performing the cleaning.
 なお、上述したスキン層95は、ペンシル洗浄部材92だけでなく、上述したロール洗浄部材81にも設けるこができる。図11は、一実施形態の変形例に係る異物除去装置60の構成を示す斜視図である。図11に示す異物除去装置60は、周面に複数の突部82aを有するロール洗浄部材81を備える。このような構成において、突部82aの先端面に、上述したナノピラー構造体84を設け、先端面以外の突部82aの周縁表面(周面)に上述したスキン層95を設ければ、上述した作用効果と同様の作用効果が得られる。 The skin layer 95 described above can be provided not only on the pencil cleaning member 92 but also on the roll cleaning member 81 described above. FIG. 11 is a perspective view showing a configuration of a foreign matter removing device 60 according to a modified example of the embodiment. The foreign matter removing device 60 shown in FIG. 11 includes a roll cleaning member 81 having a plurality of protrusions 82a on its peripheral surface. In such a configuration, if the nanopillar structure 84 described above is provided on the tip end surface of the protrusion 82a and the skin layer 95 described above is provided on the peripheral surface (peripheral surface) of the protrusion 82a other than the tip end surface, then The same effect as the effect is obtained.
 図12は、一実施形態の変形例に係る異物除去装置60の構成を示す平面図である。
 異物除去装置60は、図12に示すように、ベベル洗浄部材(接触部材)111を備えている。異物除去装置60は、基板Wを回転させる図示しない回転機構と、基板Wの周縁部(ベベル部)W3にベベル洗浄部材111を接触させて回転するベベル洗浄機構110と、を備える。
FIG. 12 is a plan view showing the configuration of the foreign matter removing device 60 according to the modified example of the embodiment.
The foreign matter removing device 60 includes a bevel cleaning member (contact member) 111, as shown in FIG. The foreign matter removing device 60 includes a rotation mechanism (not shown) that rotates the substrate W, and a bevel cleaning mechanism 110 that rotates by contacting the bevel cleaning member 111 to the peripheral edge (bevel portion) W3 of the substrate W.
 ベベル洗浄機構110は、ベルト状のベベル洗浄部材111と、ベベル洗浄部材111が巻き掛けられた回転体112と、を備える。ベベル洗浄部材111は、基板Wと接触する接触面111aにナノピラー構造体84を有している。回転体112は、周面がPVAスポンジ(弾性支持体)等から形成され、ベベル洗浄部材111を弾性的に支持している。回転体112は、基板Wの回転方向と反対方向にベベル洗浄部材111を回走させる。これにより、基板Wの周縁部W3が洗浄され、周縁部W3に付着しているナノレベルの異物を効果的に除去できる。 The bevel cleaning mechanism 110 includes a belt-shaped bevel cleaning member 111 and a rotating body 112 around which the bevel cleaning member 111 is wound. The bevel cleaning member 111 has a nanopillar structure 84 on a contact surface 111a that contacts the substrate W. The rotating body 112 has a peripheral surface formed of PVA sponge (elastic support) or the like, and elastically supports the bevel cleaning member 111. The rotating body 112 rotates the bevel cleaning member 111 in the direction opposite to the rotating direction of the substrate W. As a result, the peripheral edge W3 of the substrate W is cleaned, and the nano-level foreign matter adhering to the peripheral edge W3 can be effectively removed.
 図13は、一実施形態の変形例に係る基板処理装置の構成を示す側面図である。
 図13に示す基板処理装置は、基板Wを水平に保持し、その軸心を中心として回転させる中空状の基板回転機構210と、基板回転機構210に保持された基板Wの上面をスクラブ(擦り洗い)して基板Wの上面から異物や傷を除去するスクラバー(処理ヘッド、異物除去装置)250と、基板Wの下面を流体圧により非接触で支持する静圧支持機構290とを備えている。
FIG. 13 is a side view showing the configuration of the substrate processing apparatus according to the modified example of the embodiment.
The substrate processing apparatus shown in FIG. 13 holds a substrate W horizontally and rotates a hollow substrate rotating mechanism 210 that rotates about its axis, and scrubs (rubs) the upper surface of the substrate W held by the substrate rotating mechanism 210. A scrubber (processing head, foreign matter removing device) 250 that removes foreign matters and scratches from the upper surface of the substrate W by washing) and a static pressure support mechanism 290 that supports the lower surface of the substrate W by fluid pressure in a non-contact manner. ..
 スクラバー250は、基板回転機構210に保持されている基板Wの上方に配置されており、静圧支持機構290は、基板回転機構210に保持されている基板Wの下方に配置されている。さらに、静圧支持機構290は、基板回転機構210の内側空間内に配置されている。基板回転機構210、スクラバー250、及び静圧支持機構290は、隔壁206によって囲まれている。 The scrubber 250 is arranged above the substrate W held by the substrate rotating mechanism 210, and the static pressure support mechanism 290 is arranged below the substrate W held by the substrate rotating mechanism 210. Further, the static pressure support mechanism 290 is arranged in the inner space of the substrate rotation mechanism 210. The substrate rotation mechanism 210, the scrubber 250, and the static pressure support mechanism 290 are surrounded by the partition wall 206.
 隔壁206には、クリーンエア取入口206a、排気ダクト209が形成されており、排気機構208が設置されている。排気機構208は、ファン208Aと、フィルター208Bとを備えている。
 上記一実施態様における基板処理装置における基板Wの表面処理(スクラブ処理)、洗浄、乾燥は、隔壁206の内部空間の処理室207で連続して実施されてもよい。
A clean air intake 206a and an exhaust duct 209 are formed in the partition wall 206, and an exhaust mechanism 208 is installed. The exhaust mechanism 208 includes a fan 208A and a filter 208B.
The surface treatment (scrub treatment), cleaning, and drying of the substrate W in the substrate processing apparatus according to the above-described embodiment may be continuously performed in the processing chamber 207 in the internal space of the partition wall 206.
 基板回転機構210は、基板Wの周縁部を把持する複数のチャック211と、これらチャック211を介して基板Wを回転させる中空モータ212とを備えている。中空モータ212の固定子は、円筒状の静止部材214に固定されている。また、中空モータ212の回転子は、回転基台216に固定されている。回転基台216には、上述したチャック211と、回転カバー225が設けられている。チャック211は、リフト機構230に接続されている。 The substrate rotating mechanism 210 includes a plurality of chucks 211 that grip the peripheral edge of the substrate W, and a hollow motor 212 that rotates the substrate W via the chucks 211. The stator of the hollow motor 212 is fixed to a cylindrical stationary member 214. Further, the rotor of the hollow motor 212 is fixed to the rotation base 216. The above-mentioned chuck 211 and the rotation cover 225 are provided on the rotation base 216. The chuck 211 is connected to the lift mechanism 230.
 基板Wの上方には、基板Wの上面に洗浄液として純水を供給する洗浄液供給ノズル227が配置されている。洗浄液供給ノズル227は、図示しない洗浄液供給源に接続され、洗浄液供給ノズル227を通じて基板Wの上面に純水が供給される。基板Wに供給された純水は、回転する基板Wから遠心力により振り落とされ、さらに回転カバー225の内周面に捕らえられ、図示しない液体排出孔から排出される。なお、基板Wの上方には、二流体ジェットノズル300が配置される。 Above the substrate W, a cleaning liquid supply nozzle 227 that supplies pure water as a cleaning liquid to the upper surface of the substrate W is arranged. The cleaning liquid supply nozzle 227 is connected to a cleaning liquid supply source (not shown), and pure water is supplied to the upper surface of the substrate W through the cleaning liquid supply nozzle 227. The pure water supplied to the substrate W is shaken off from the rotating substrate W by centrifugal force, further captured by the inner peripheral surface of the rotation cover 225, and discharged from a liquid discharge hole (not shown). A two-fluid jet nozzle 300 is arranged above the substrate W.
 静圧支持機構290は、基板Wの下方に配置された支持ステージ291と、支持ステージ291を昇降させるステージ昇降機構298と、支持ステージ291を回転させるステージ回転機構299とを備えている。 The static pressure support mechanism 290 includes a support stage 291 arranged below the substrate W, a stage elevating mechanism 298 that elevates and lowers the support stage 291, and a stage rotating mechanism 299 that rotates the support stage 291.
 スクラバー250は、基板Wの上側に配置されている。スクラバー250は、スクラバーシャフト251を介して揺動アーム253の一端に連結されており、揺動アーム253の他端は揺動軸254に固定されている。揺動軸254は、軸回転機構255に連結されている。軸回転機構255により揺動軸254が駆動されると、スクラバー250が基板W上の位置と基板W上から退避する位置との間を移動する。揺動軸254には、スクラバー250を上下方向に移動させるスクラバー昇降機構(アクチュエータ)256がさらに連結されている。 The scrubber 250 is arranged above the substrate W. The scrubber 250 is connected to one end of a swing arm 253 via a scrubber shaft 251, and the other end of the swing arm 253 is fixed to a swing shaft 254. The swing shaft 254 is connected to the shaft rotation mechanism 255. When the swing shaft 254 is driven by the shaft rotating mechanism 255, the scrubber 250 moves between a position on the substrate W and a position retracted from the substrate W. A scrubber lifting mechanism (actuator) 256 for moving the scrubber 250 in the vertical direction is further connected to the swing shaft 254.
 スクラバー250によるスクラブ処理の際には、基板Wの上側を向いた裏面に純水、界面活性剤水溶液、アルカリ性または酸性の洗浄液を供給する。なお、洗浄液は、スクラバー250が基板Wに当接していないときに基板Wの裏面に供給しても差し支えない。 During scrubbing with the scrubber 250, pure water, a surfactant aqueous solution, and an alkaline or acidic cleaning liquid are supplied to the back surface of the substrate W facing upward. The cleaning liquid may be supplied to the back surface of the substrate W when the scrubber 250 is not in contact with the substrate W.
 図14は、図13に示すスクラバー250に備えられたテープカートリッジ260を示す断面図である。
 図14に示すように、テープカートリッジ260は、洗浄テープ(接触部材)261と、洗浄テープ261を基板Wに対して押し付ける押圧部材262と、押圧部材262をウェハに向かって付勢する付勢機構263と、洗浄テープ261を繰り出すテープ繰り出しリール264と、処理に使用された洗浄テープ261を巻き取るテープ巻き取りリール265とを備えている。なお、符号271は、洗浄テープ261の巻き取りのエンドマークを検出するエンドマーク検知センサを示す。
FIG. 14 is a cross-sectional view showing the tape cartridge 260 provided in the scrubber 250 shown in FIG.
As shown in FIG. 14, the tape cartridge 260 includes a cleaning tape (contact member) 261, a pressing member 262 that presses the cleaning tape 261 against the substrate W, and a biasing mechanism that biases the pressing member 262 toward the wafer. 263, a tape feeding reel 264 for feeding the cleaning tape 261, and a tape take-up reel 265 for winding the cleaning tape 261 used for the processing. Note that reference numeral 271 indicates an end mark detection sensor that detects an end mark of winding the cleaning tape 261.
 洗浄テープ261は、テープ繰り出しリール264から、押圧部材262を経由して、テープ巻き取りリール265に送られる。複数の押圧部材262は、スクラバー250の半径方向に沿って延びており、かつスクラバー250の周方向において等間隔に配置されている。従って、各洗浄テープ261の基板Wとの接触面(基板接触面)は、スクラバー250の半径方向に延びている。図14に示す例では、付勢機構263としてばねが使用されている。 The cleaning tape 261 is sent from the tape delivery reel 264 to the tape take-up reel 265 via the pressing member 262. The plurality of pressing members 262 extend in the radial direction of the scrubber 250 and are arranged at equal intervals in the circumferential direction of the scrubber 250. Therefore, the contact surface (substrate contact surface) of each cleaning tape 261 with the substrate W extends in the radial direction of the scrubber 250. In the example shown in FIG. 14, a spring is used as the biasing mechanism 263.
 このような洗浄テープ261の基板Wとの接触面に、上述したナノピラー構造体84を設けてもよい。本構成によれば、基板Wの裏面全面における異物の除去率を高め、100nm以上のサイズの異物だけでなくナノレベルの異物をもより効果的に除去できるだけでなく、基板Wの表面傷をもより適切に除去することができる。 The nanopillar structure 84 described above may be provided on the contact surface of the cleaning tape 261 with the substrate W. According to this configuration, the removal rate of foreign matter on the entire back surface of the substrate W is increased, and not only the foreign matter having a size of 100 nm or more but also the nanoscale foreign matter can be removed more effectively. It can be removed more appropriately.
 例えば、上述した図2に示す回転機構80に代えて、本出願人の国際公開第2018/003718号明細書に示されるような基板Wを磁気的に浮上されながら回転保持する機構を使用した場合であってもよい。この機構に、ナノピラー構造体84を有するロール洗浄部材81を組み合わせれば、保持された基板Wに対する押圧力をある程度低減させながらであっても実用に耐え得るレベルで異物を除去・洗浄することができる。
 他の実施態様としては、ベルヌーイチャック等の方法で基板Wの裏面側から減圧吸引しながら基板Wを所定の位置に保持・固定するように構成する形態であってもよい。
For example, instead of the rotating mechanism 80 shown in FIG. 2 described above, a mechanism for rotating and holding the substrate W while being magnetically levitated, as shown in International Publication No. 2018/003718 of the present applicant, is used. May be If this mechanism is combined with a roll cleaning member 81 having a nanopillar structure 84, foreign matter can be removed and cleaned at a level that can be practically used even while the pressing force on the held substrate W is reduced to some extent. it can.
As another embodiment, a configuration may be adopted in which the substrate W is held and fixed at a predetermined position while vacuum suction is performed from the back surface side of the substrate W by a method such as Bernoulli chuck.
 例えば、上記実施形態では、基板に接触する接触部材(ロール洗浄部材81、ペンシル洗浄部材92、ベベル洗浄部材111)を回転させて異物を除去する形態について例示したが、接触部材を回転させずに基板に近づけるだけで異物を除去する形態であってもよい。例えば、図1に示す仮置き台47などに、上述したナノピラー構造体を有する支持板を設置し、支持板に載置された基板Wから異物を除去する形態であってもよい。この場合のアクチュエータは、例えば、図1に示すスイングトランスポータ44である。
 なお、異物除去の形態は上記形態に限らず、例えば、ナノピラー構造体84を有するシートを基板(ワーク)Wに押し付ける、若しくは本シートで基板(ワーク)Wを拭き取ることでも異物除去効果は発現できる。この場合のアクチュエータは、例えば、多関節のロボットアームを例示できる。
For example, in the above embodiment, the contact member (the roll cleaning member 81, the pencil cleaning member 92, the bevel cleaning member 111) that contacts the substrate is rotated to remove foreign matter, but the contact member is not rotated. The foreign matter may be removed only by bringing it closer to the substrate. For example, a configuration may be adopted in which a support plate having the above-mentioned nanopillar structure is installed on the temporary placing table 47 shown in FIG. 1 and the foreign matter is removed from the substrate W placed on the support plate. The actuator in this case is, for example, the swing transporter 44 shown in FIG.
The form of foreign matter removal is not limited to the above-described form, and the foreign matter removal effect can be exhibited by pressing the sheet having the nanopillar structure 84 against the substrate (work) W or wiping the substrate (work) W with this sheet. .. The actuator in this case may be, for example, a multi-joint robot arm.
 例えば、上記実施形態では、基板Wを平置き(水平姿勢)にして異物を除去する形態について例示したが、例えば、基板Wを縦置き(鉛直姿勢)にして異物を除去する形態であってもよい。 For example, in the above-described embodiment, the example in which the substrate W is placed horizontally (horizontal posture) and the foreign matter is removed is illustrated. However, for example, the substrate W may be placed vertically (vertical posture) to remove the foreign matter. Good.
 例えば、上記実施形態では、本発明の異物除去装置を基板洗浄装置に適用し、そのような基板洗浄装置をCMPの基板処理装置に設置した構成を例示した。しかし、異物除去装置は、基板の洗浄に使用される基板洗浄装置単体であってもよく、CMP装置以外の装置(例えば、裏面研磨装置、ベベル研磨装置、エッチング装置、あるいはめっき装置)の洗浄部等にも適用することができる。
 例えば、基板めっき装置としては、日本国特許第6157694号公報に記載された電解めっき装置を例示できる。本例の装置は、めっき処理した基板を洗浄する基板洗浄装置を有している。基板洗浄装置において、例えば、第1洗浄ユニット、第2洗浄ユニット、及び乾燥ユニットを経た後に、上述した異物除去装置60を使用してもよい。
For example, in the above embodiment, the foreign matter removing device of the present invention is applied to a substrate cleaning device, and such a substrate cleaning device is installed in a CMP substrate processing device. However, the foreign matter removing device may be a single substrate cleaning device used for cleaning the substrate, or a cleaning unit of a device other than the CMP device (for example, a back surface polishing device, a bevel polishing device, an etching device, or a plating device). Etc. can also be applied.
For example, as the substrate plating apparatus, the electrolytic plating apparatus described in Japanese Patent No. 61576964 can be exemplified. The apparatus of this example has a substrate cleaning device for cleaning the plated substrate. In the substrate cleaning apparatus, for example, the foreign matter removing apparatus 60 described above may be used after passing through the first cleaning unit, the second cleaning unit, and the drying unit.
 さらに、本発明は、広く、高度の清浄度が要求されるワークの異物除去全般に適用できる。
 例えば、製薬分野では、医薬品製造における品質確保のために医薬品製造設備を洗浄した後、前製品薬物の汚染や異物混入を防止するべく、残留物の評価試験を行う洗浄バリデーションと称される評価が行われている。しかし、被分析対象物から残留物をスワブ材で拭き取って、その後、水に抽出して測定する一連の分析工程で分析誤差等が生じてしまう場合がある。
 このため、このような医薬品製造工程で用いられる製造工具等の被分析対象物の残留物をスワブ材でふきとって、その後水に抽出して測定するにあたり、スワブ材の表面にナノサイズのピラーを複数有するナノピラー構造体を有するようにしてもよい。すなわち、遮蔽構造を有するチャンバー内にワークを保持する保持機構と、ワークに付着している異物を除去するナノサイズのピラーを複数有するナノピラー構造体を有するスワブ材と、スワブ材とワークを接触または近接させるアクチュエータと、チャンバー内で異物を除去したスワブ材をタンク内にある水中に浸漬させて溶出物を抽出してサンプリングするサンプリング装置とを設けた装置としてもよい。こうした構成により、燃焼分析法によらずともスワブ材から異物をより確実に除去しサンプリングできるため、燃焼分析法を使用できない場合であっても、より確実に分析誤差等の発生を防止した分析方法を提供でき、医薬品製造工程を確実に実施できる。
Further, the present invention can be widely applied to removal of foreign matter from a work, which requires a wide range of cleanliness.
For example, in the pharmaceutical field, there is an evaluation called cleaning validation, in which after a drug manufacturing facility is washed to ensure quality in drug manufacturing, a residue evaluation test is conducted to prevent contamination of the predecessor drug and contamination by foreign substances. Has been done. However, an analysis error may occur in a series of analysis steps in which the residue is wiped from the object to be analyzed with a swab material and then extracted into water for measurement.
Therefore, wipe the residue of the analyte such as manufacturing tools used in the pharmaceutical manufacturing process with a swab material, and then extract it into water and measure it with nano-sized pillars on the surface of the swab material. You may make it have a nanopillar structure which has two or more. That is, a holding mechanism for holding a work in a chamber having a shielding structure, a swab material having a nanopillar structure having a plurality of nano-sized pillars for removing foreign matter adhering to the work, and the swab material and the work are contacted or An apparatus may be provided which includes an actuator to be brought close to it, and a sampling device for immersing the swab material from which foreign matter has been removed in the chamber in water in the tank to extract and sample the eluate. With this configuration, foreign matter can be more reliably removed from the swab material and sampled without using the combustion analysis method, so even if the combustion analysis method cannot be used, an analysis method that more reliably prevents the occurrence of analysis errors, etc. Can be provided, and the pharmaceutical manufacturing process can be reliably performed.
1 基板処理装置
20 基板研磨装置
30 基板洗浄装置
31 洗浄部
44 スイングトランスポータ(アクチュエータ)
60 異物除去装置
81 ロール洗浄部材(接触部材、洗浄部材)
82 回転軸
82a 突部
83 弾性支持体
84 ナノピラー構造体
85 ピラー
92 ペンシル洗浄部材(接触部材、洗浄部材)
92a 接触面(突部の先端面)
93 接触部(突部)
111 ベベル洗浄部材(接触部材)
250 スクラバー(異物除去装置)
256 スクラバー昇降機構(アクチュエータ)
261 洗浄テープ(接触部材)
W 基板(ワーク)
X1 異物
X2 異物
1 Substrate Processing Device 20 Substrate Polishing Device 30 Substrate Cleaning Device 31 Cleaning Section 44 Swing Transporter (Actuator)
60 foreign matter removing device 81 roll cleaning member (contact member, cleaning member)
Reference Signs List 82 rotation shaft 82a protrusion 83 elastic support 84 nanopillar structure 85 pillar 92 pencil cleaning member (contact member, cleaning member)
92a Contact surface (tip surface of protrusion)
93 Contact part (projection part)
111 Bevel cleaning member (contact member)
250 scrubber (foreign matter removal device)
256 scrubber lifting mechanism (actuator)
261 Cleaning tape (contact member)
W substrate (work)
X1 foreign material X2 foreign material

Claims (10)

  1.  ワークに付着している異物を除去する異物除去装置であって、
     ナノサイズのピラーを複数有するナノピラー構造体と、
     前記ナノピラー構造体と前記ワークを接触または近接させるアクチュエータと、を有する、
    異物除去装置。
    A foreign matter removing device for removing foreign matter adhering to a work,
    A nanopillar structure having a plurality of nanosize pillars,
    An actuator that brings the nanopillar structure and the workpiece into contact with or in proximity to each other,
    Foreign matter removing device.
  2.  前記ナノピラー構造体を弾性的に支持する弾性支持体を有する、請求項1に記載の異物除去装置。 The foreign matter removing device according to claim 1, further comprising an elastic support that elastically supports the nanopillar structure.
  3.  基板を洗浄する基板洗浄装置であって、
     前記基板に付着している異物を除去する異物除去装置として、請求項1または2に記載の異物除去装置を備える、
    基板洗浄装置。
    A substrate cleaning apparatus for cleaning a substrate, comprising:
    The foreign matter removing device according to claim 1 or 2 is provided as a foreign matter removing device for removing foreign matter adhering to the substrate.
    Substrate cleaning equipment.
  4.  前記基板を乾式洗浄する乾式洗浄部を備え、
     前記乾式洗浄部が、前記異物除去装置を有する、
    請求項3に記載の基板洗浄装置。
    A dry cleaning unit for dry cleaning the substrate,
    The dry cleaning unit has the foreign matter removing device,
    The substrate cleaning apparatus according to claim 3.
  5.  前記基板を順に洗浄する複数の洗浄部を備え、
     前記複数の洗浄部のうちの少なくともひとつが、前記異物除去装置を有する、
    請求項3または4に記載の基板洗浄装置。
    A plurality of cleaning units for sequentially cleaning the substrate,
    At least one of the plurality of cleaning units has the foreign matter removing device,
    The substrate cleaning apparatus according to claim 3 or 4.
  6.  前記異物除去装置は、前記基板に接触する接触部材を有し、
     前記接触部材の前記基板との接触面に、前記ナノピラー構造体を有する、
    請求項3~5のいずれか一項に記載の基板洗浄装置。
    The foreign matter removing device has a contact member that comes into contact with the substrate,
    On the contact surface of the contact member with the substrate, having the nanopillar structure,
    The substrate cleaning apparatus according to any one of claims 3 to 5.
  7.  前記接触部材は、前記基板に接触しつつ相対的に回転する、請求項6に記載の基板洗浄装置。 The substrate cleaning apparatus according to claim 6, wherein the contact member rotates relatively while contacting the substrate.
  8.  基板を研磨する基板研磨装置と、
     前記基板を洗浄する基板洗浄装置と、を備える基板処理装置であって、
     前記基板洗浄装置として、請求項3~7のいずれか一項に記載の基板洗浄装置を備える、基板処理装置。
    A substrate polishing apparatus for polishing a substrate;
    A substrate processing apparatus comprising: a substrate cleaning device for cleaning the substrate,
    A substrate processing apparatus comprising the substrate cleaning apparatus according to claim 3 as the substrate cleaning apparatus.
  9.  基板をめっきするめっき装置と、
     前記基板を洗浄する基板洗浄装置と、を備える基板処理装置であって、
     前記基板洗浄装置として、請求項3~7のいずれか一項に記載の基板洗浄装置を備える、基板処理装置。
    A plating device for plating the substrate,
    A substrate processing apparatus comprising: a substrate cleaning device for cleaning the substrate,
    A substrate processing apparatus comprising the substrate cleaning apparatus according to claim 3 as the substrate cleaning apparatus.
  10.  ワークを洗浄する洗浄部材であって、
     前記ワークを洗浄する際に前記ワークと接触する突部と、
     前記突部の先端面に設けられた、ナノサイズのピラーを複数有するナノピラー構造体と、
     前記先端面以外の前記突部の周縁表面の少なくとも一部を被覆するスキン層と、を有する、洗浄部材。
    A cleaning member for cleaning a work,
    A protrusion that comes into contact with the work when cleaning the work,
    A nanopillar structure having a plurality of nanosize pillars provided on the tip surface of the protrusion,
    And a skin layer that covers at least a part of the peripheral surface of the protrusion other than the tip surface.
PCT/JP2019/046673 2019-01-16 2019-11-28 Foreign matter removal device, substrate cleaning device, substrate treatment device, and cleaning member WO2020149027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-005255 2019-01-16
JP2019005255A JP2020113698A (en) 2019-01-16 2019-01-16 Foreign substance removing device, substrate cleaning device, substrate processing device, and cleaning member

Publications (1)

Publication Number Publication Date
WO2020149027A1 true WO2020149027A1 (en) 2020-07-23

Family

ID=71613243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046673 WO2020149027A1 (en) 2019-01-16 2019-11-28 Foreign matter removal device, substrate cleaning device, substrate treatment device, and cleaning member

Country Status (2)

Country Link
JP (1) JP2020113698A (en)
WO (1) WO2020149027A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189511A (en) * 1996-12-20 1998-07-21 Sony Corp Wafer cleaning device
JP2008288517A (en) * 2007-05-21 2008-11-27 Dainippon Screen Mfg Co Ltd Brush for cleaning substrate, and substrate cleaning apparatus
JP2010109225A (en) * 2008-10-31 2010-05-13 Tokyo Electron Ltd Substrate cleaning brush, substrate processing apparatus, and substrate cleaning method
JP2017191827A (en) * 2016-04-12 2017-10-19 株式会社荏原製作所 Cleaning member and substrate cleaning device
JP2018160551A (en) * 2017-03-23 2018-10-11 株式会社荏原製作所 Cleaning apparatus and substrate processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189511A (en) * 1996-12-20 1998-07-21 Sony Corp Wafer cleaning device
JP2008288517A (en) * 2007-05-21 2008-11-27 Dainippon Screen Mfg Co Ltd Brush for cleaning substrate, and substrate cleaning apparatus
JP2010109225A (en) * 2008-10-31 2010-05-13 Tokyo Electron Ltd Substrate cleaning brush, substrate processing apparatus, and substrate cleaning method
JP2017191827A (en) * 2016-04-12 2017-10-19 株式会社荏原製作所 Cleaning member and substrate cleaning device
JP2018160551A (en) * 2017-03-23 2018-10-11 株式会社荏原製作所 Cleaning apparatus and substrate processing apparatus

Also Published As

Publication number Publication date
JP2020113698A (en) 2020-07-27

Similar Documents

Publication Publication Date Title
KR102228786B1 (en) Substrate processing apparatus
TWI556881B (en) Substrate processing apparatus and substrate processing method
KR102203498B1 (en) Methods and apparatus for post-chemical mechanical planarization substrate cleaning
US9144881B2 (en) Polishing apparatus and polishing method
CN108878314B (en) Substrate cleaning apparatus and substrate processing apparatus
US20080041420A1 (en) Substrate Cleaning Method and Computer Readable Storage Medium
US20160358768A1 (en) Method for fabricating semiconductor device
KR102537743B1 (en) Substrate cleaning apparatus, substrate processing apparatus, and self-cleaning method of cleaning tool
US20130185884A1 (en) Cleaning module and process for particle reduction
TW201425191A (en) Substrate processing apparatus
KR102135653B1 (en) Double sided buff module for post cmp cleaning
JP6420415B2 (en) Substrate processing equipment
US20170040160A1 (en) Design of disk/pad clean with wafer and wafer edge/bevel clean module for chemical mechanical polishing
JP2001070896A (en) Substrate washing device
US20240082885A1 (en) Substrate cleaning device and method of cleaning substrate
WO2020149027A1 (en) Foreign matter removal device, substrate cleaning device, substrate treatment device, and cleaning member
JP6971676B2 (en) Board processing equipment and board processing method
JP2023105856A (en) Substrate cleaning method, substrate cleaning apparatus, substrate cleaning member, and method for manufacturing substrate cleaning member
US8142258B2 (en) Method of transferring a wafer
WO2023037716A1 (en) Substrate cleaning device, substrate processing device, and maintenance method for substrate cleaning device
TWI837955B (en) Substrate processing method and substrate processing device
US20220143780A1 (en) Substrate handling in a modular polishing system with single substrate cleaning chambers
WO2022260128A1 (en) Substrate processing system, and substrate processing method
JP3762176B2 (en) Cleaning device
TW202249100A (en) Substrate processing method and substrate processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909729

Country of ref document: EP

Kind code of ref document: A1