WO2020148029A1 - Rotor bearing system for a turbomachine - Google Patents

Rotor bearing system for a turbomachine Download PDF

Info

Publication number
WO2020148029A1
WO2020148029A1 PCT/EP2019/084622 EP2019084622W WO2020148029A1 WO 2020148029 A1 WO2020148029 A1 WO 2020148029A1 EP 2019084622 W EP2019084622 W EP 2019084622W WO 2020148029 A1 WO2020148029 A1 WO 2020148029A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
film
bearing system
axial
air bearing
Prior art date
Application number
PCT/EP2019/084622
Other languages
German (de)
French (fr)
Inventor
Felix WIEDMANN
Felix FOERSTER
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2020148029A1 publication Critical patent/WO2020148029A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/042Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • F01D25/22Lubricating arrangements using working-fluid or other gaseous fluid as lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing
    • F04D29/0513Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1005Construction relative to lubrication with gas, e.g. air, as lubricant
    • F16C33/101Details of the bearing surface, e.g. means to generate pressure such as lobes or wedges
    • F16C33/1015Pressure generating grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/52Axial thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/50Bearings
    • F05D2240/53Hydrodynamic or hydrostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/60Shaping by removing material, e.g. machining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Definitions

  • the present invention relates to a rotor bearing system for a turbomachine.
  • the axial air bearings essentially comprise a cover film, a spring film and a thrust washer, on which the spring film and the cover film are arranged.
  • a rotor rotates and, due to its drag flow and the ramp geometry of the axial air bearing, builds up a gas film between the rotor and the cover film, which carries the axial forces of the rotor.
  • the spring film has the task of compensating for misalignment and conicity between the housing and the rotor and at the same time generating an air gap geometry that is favorable for the construction of the gas film. This is through the
  • Stiffness distribution achieved in the spring film which is adjusted by the geometry of the springs formed by the spring film and the film thickness.
  • Thrust washer and a first hump of the spring film has a curved convex shape.
  • the background of the invention is that rotor bearing systems which have an axial film-air bearing generally have a low load capacity.
  • Axial film-air bearings which have a higher load capacity are usually complex and therefore expensive to manufacture. It is therefore the object of the present invention to provide a rotor bearing system with an axial film-air bearing which has a higher load capacity and which is also economically producible.
  • the invention specifies a rotor bearing system for a turbomachine.
  • the rotor bearing system according to the invention comprises at least one axial film-air bearing with at least one cover film, which is provided axially spaced from a support means and with at least one spring film, which is arranged between the cover film and the support means, and a rotor, which is on the cover film of the axial film-air bearing and is rotatable relative to the axial film-air bearing, material recess areas being arranged in a gap between the rotor and the axial film-air bearing, via which an increase in pressure between the rotor and the axial film-air - Bearings can be generated.
  • a support means in the sense of the invention means a component which forms a fixed support for the spring foil. This can be, for example, a disc or part of a housing. When not in operation, the rotor lies directly against the cover film at at least one point.
  • Material recess areas are completely in contact, not possible even when not in operation, so that there is a gap between the rotor and the cover film. This gap increases in operation due to a gas film generated between the rotor and the cover film, so that the rotor is completely detached from the cover film.
  • the material recess areas are arranged in this gap.
  • a material recess area is understood to mean an area in which part of the original material has been removed.
  • the invention has the advantage that an increased load-bearing capacity is generated by the material recess areas. Bearings with such a high load capacity are regularly sensitive to tolerances. This means that the components rotating relative to one another must be aligned particularly precisely with respect to one another.
  • the axial foil-air bearing has the advantage that it is relative
  • Material recess areas are at least partially ramp-shaped.
  • a height adjustment which extends over an area is referred to as ramp-shaped in the sense of the invention. With such ramps, flow losses in the gap can be reduced. Also are
  • Material recess areas compared to adjacent areas, levels. Levels in the sense of the invention are understood to mean sudden changes in height. With such steps, material is preferably removed uniformly only in one area. In contrast to a ramp-shaped design, stages are easier and therefore more economical to produce. With the steps, a pressure increase between the rotor and the axial film-air bearing can be effectively achieved.
  • the steps are preferably designed as Rayleigh steps.
  • the Rayleigh steps are a specific shape of the steps with which a high effect is achieved with regard to the improvement in the load capacity.
  • the material recess areas are formed by the rotor. In comparison to material recess areas on the cover film, this has the advantage that the height of the material recesses essentially does not change due to the wear of the cover film. The effect of the material recess areas can thereby be permanently ensured. In addition, a longer durability of such a rotor bearing system can be achieved.
  • the material recess areas are advantageously formed on the part of the cover film. Due to the material recess areas, no embossing steps stiffening the cover film are necessary, so that the cover film can be better adapted to different operating conditions.
  • the invention is further enhanced by a method of making the
  • Rotor bearing system according to the invention solved for a turbomachine.
  • the method comprises at least the step that
  • Material recess areas, in a gap between the rotor and the axial film-air bearing, are formed by a material removal step.
  • a material removal step is understood to mean any processing step in which part of the original material is removed. As a result, the material recess areas can be formed without reshaping or embossing. Such a material removal step simplifies the manufacture of such a rotor bearing system and thus leads to one
  • At least one is preferably used as the material removal step
  • An etching processing step has the advantage that material can be selectively removed and thus the
  • Material recess areas can be manufactured with high precision in any desired shape. Such a processing step is also quick and economical.
  • At least one laser processing step is used as the material removal step.
  • a laser processing step has the advantage that it is cost-effective even with small quantities.
  • this processing step is very precise and extremely flexible in the form to be achieved.
  • the invention is achieved by a fuel cell system which comprises the rotor bearing system according to the invention. The advantages mentioned for the rotor bearing system are achieved with such a fuel cell system.
  • Figure 1 sectional view of a first embodiment of the
  • FIG. 1 top view of a cover sheet of the rotor bearing system according to the first
  • Figure 3 is a sectional view of a second embodiment of the
  • FIG. 4 top view of a rotor of the rotor bearing system according to the second
  • FIG. 1 shows a sectional view of a first exemplary embodiment of a rotor bearing system 10 according to the invention.
  • the rotor bearing system 10 comprises an axial film-air bearing 14 which has a support means 18 which in this exemplary embodiment is fixedly connected to a housing 22.
  • a cover film 26 is axially spaced from the support means 18 in some areas.
  • the cover film 26 is connected to the support means 18 at a radial outer end.
  • a spring film 30 is arranged between the cover film 26 and the support means 18, which in this exemplary embodiment is formed by a wavy structure. Axial forces can be absorbed via the spring film 30.
  • the rotor bearing system 10 additionally comprises a rotor 34, which is arranged rotatable about a central axis 38 with respect to the axial film-air bearing 14.
  • the rotor 34 lies against the cover film 26 of the axial film-air bearing 14.
  • In this figure shows a gap 42 formed by a drag flow between rotor 34 and cover film 26. The axial forces of the rotor 34 are borne by the gas film present in the gap 42.
  • the cover film 26 has in the first embodiment
  • Material recess areas 46 have been formed by a material removal step, such as, for example, etching or laser processing. This means that a depression is formed in the cover film 26 in this material recess area 46.
  • a pressure increase between the rotor 34 and the axial film-air bearing 14 can be generated via the material recess areas 46, so that a higher axial load can be borne by the rotor bearing system 10.
  • Figure 2 shows a plan view of the cover sheet 26 of the rotor bearing system 10 according to the first embodiment.
  • the cover sheet 26 has in this
  • Embodiment a retaining ring 50, via which the cover sheet 26 can be connected to the support means 18.
  • An inner part of the cover film 26 is connected to the retaining ring 50 via retaining webs 54.
  • Material recess areas 46 and areas 58 without material recesses are alternately arranged on the cover film 26 in the circumferential direction. In this case, steps 62 are arranged between the material recess areas 46 and the areas 58 without material recesses
  • Embodiment are designed as Rayleigh steps. This
  • Material recess areas 46 can be by means of a
  • Material removal step can be easily formed. Instead of the steps 62, a transition between the material recess areas 46 and the area 58 can be made in an embodiment not shown
  • FIG. 3 shows a sectional view of a second exemplary embodiment of the rotor bearing system 10 according to the invention.
  • This exemplary embodiment differs from the exemplary embodiment in FIG. 1 in that the material recess regions 46 are arranged in a part of the rotor 34 which bears against the cover film 26 instead of in the cover film 26. Since the rotor 34 has a greater hardness than the cover film 26, this has the advantage that a Height h of the material recess areas 46 is not reduced by wear of the cover film 26. The function of the material recess areas 46 can thereby be permanently ensured.
  • Figure 4 shows a plan view of the rotor 34 of the rotor bearing system 10 according to the second embodiment. In this figure, as in FIG. 2, the material recess areas 46 are designed with Rayleigh steps. These material recess areas 46 can be by means of a
  • Material removal step can be easily formed. Ramps can also be formed here instead of steps 62.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Support Of The Bearing (AREA)

Abstract

The present invention relates to a rotor bearing system (10) for a turbomachine. The rotor bearing system (10) comprises at least one axial film-air bearing (14) having at least one cover film (26), which is axially spaced apart from a supporting means (18), and having at least one spring film (30), which is arranged between the cover film (26) and the supporting means (18), and a rotor (34), which contacts the cover film (26) of the axial film-air bearing (14) and is rotatable with respect to the axial film-air bearing (14), wherein material recess regions (46) are arranged in a gap (42) between the rotor (34) and the axial film-air bearing (14), via which regions a pressure increase can be generated between the rotor (34) and the axial film-air bearing (14).

Description

Beschreibung description
Titel: Title:
Rotorlagersystem für eine Turbomaschine Rotor bearing system for a turbo machine
Die vorliegende Erfindung betrifft ein Rotorlagersystem für eine Turbomaschine. The present invention relates to a rotor bearing system for a turbomachine.
Bei Strömungsmaschinen insbesondere bei Verdichter/Kompressoren für Brennstoffzellensysteme wird vielfach ein Luftlager eingesetzt. Die axialen Luftlager umfassen dabei im Wesentlichen eine Deckfolie, eine Federfolie und eine Druckscheibe, auf welcher die Federfolie und die Deckfolie angeordnet sind. Beim klassischen axialen Luftlager dreht sich ein Rotor und baut durch seine Schleppströmung und die Rampengeometrie des axialen Luftlagers einen Gasfilm zwischen Rotor und Deckfolie auf, der die Axialkräfte des Rotors trägt. Die Federfolie hat die Aufgabe Schiefstellung und Konizitäten zwischen Gehäuse und Rotor auszugleichen und gleichzeitig eine für den Aufbau des Gasfilmes günstige Luftspaltgeometrie zu erzeugen. Diese wird durch die An air bearing is frequently used in turbomachines, in particular in the case of compressors / compressors for fuel cell systems. The axial air bearings essentially comprise a cover film, a spring film and a thrust washer, on which the spring film and the cover film are arranged. In the classic axial air bearing, a rotor rotates and, due to its drag flow and the ramp geometry of the axial air bearing, builds up a gas film between the rotor and the cover film, which carries the axial forces of the rotor. The spring film has the task of compensating for misalignment and conicity between the housing and the rotor and at the same time generating an air gap geometry that is favorable for the construction of the gas film. This is through the
Steifigkeitsverteilung in der Federfolie erreicht, welche durch die Geometrie der durch die Federfolie gebildeten Federn und die Foliendicke eingestellt wird. Stiffness distribution achieved in the spring film, which is adjusted by the geometry of the springs formed by the spring film and the film thickness.
Stand der Technik State of the art
Aus der US 2012/0207414 Al ist ein Folienlager bekannt, bei welchem die Deckfolie in einem Bereich zwischen einer Verbindungsstelle mit der From US 2012/0207414 A1 a film storage is known in which the cover film is in a region between a connection point with the
Druckscheibe und einem ersten Buckel der Federfolie einen kurvenförmigen konvexen Verlauf aufweist. Thrust washer and a first hump of the spring film has a curved convex shape.
Der Hintergrund der Erfindung liegt darin, dass Rotorlagersysteme, welche ein axiales Folien-Luft-Lager aufweisen in der Regel eine niedrige Tragkraft aufweisen. Axiale Folien-Luft-Lager welche eine höhere Tragkraft aufweisen sind zudem meist aufwändig und damit teuer in der Herstellung. Es ist daher die Aufgabe der vorliegenden Erfindung ein Rotorlagersystem mit einem axialen Folien-Luft-Lager anzugeben, welches eine höhere Tragkraft aufweist und welches zudem wirtschaftlich herstellbar ist. The background of the invention is that rotor bearing systems which have an axial film-air bearing generally have a low load capacity. Axial film-air bearings which have a higher load capacity are usually complex and therefore expensive to manufacture. It is therefore the object of the present invention to provide a rotor bearing system with an axial film-air bearing which has a higher load capacity and which is also economically producible.
Offenbarung der Erfindung Disclosure of the invention
Die Aufgabe wird durch ein Rotorlagersystem für eine Turbomaschine mit den Merkmalen nach Anspruch 1 gelöst. Die jeweils rückbezogenen abhängigen Ansprüche geben vorteilhafte Weiterbildungen der Erfindung wieder. The object is achieved by a rotor bearing system for a turbomachine with the features according to claim 1. The dependent claims, which refer back in each case, represent advantageous developments of the invention.
Die Erfindung gibt ein Rotorlagersystem für eine Turbomaschine an. Das erfindungsgemäße Rotorlagersystem umfasst dabei wenigstens ein axiales Folien-Luft-Lager mit wenigstens einer Deckfolie, die axial beabstandet zu einem Auflagemittel vorgesehen ist und mit wenigstens einer Federfolie, die zwischen der Deckfolie und dem Auflagemittel angeordnet ist, und einen Rotor, welcher an der Deckfolie des axialen Folien-Luft-Lagers anliegt und zu dem axialen Folien- Luft-Lager drehbar ist, wobei in einem Spalt zwischen dem Rotor und dem axialen Folien-Luft-Lager Materialausnehmungsbereiche angeordnet sind, über welche eine Druckerhöhung zwischen Rotor und axialen Folien-Luft-Lager erzeugbar ist. The invention specifies a rotor bearing system for a turbomachine. The rotor bearing system according to the invention comprises at least one axial film-air bearing with at least one cover film, which is provided axially spaced from a support means and with at least one spring film, which is arranged between the cover film and the support means, and a rotor, which is on the cover film of the axial film-air bearing and is rotatable relative to the axial film-air bearing, material recess areas being arranged in a gap between the rotor and the axial film-air bearing, via which an increase in pressure between the rotor and the axial film-air - Bearings can be generated.
Unter einem Auflagemittel im Sinne der Erfindung wird ein Bauteil verstanden, welches eine feste Auflage für die Federfolie bildet. Dies kann beispielsweise eine Scheibe oder ein Teil eines Gehäuses sein. In einem Nichtbetrieb liegt der Rotor direkt in wenigstens einem Punkt an der Deckfolie an. Durch die A support means in the sense of the invention means a component which forms a fixed support for the spring foil. This can be, for example, a disc or part of a housing. When not in operation, the rotor lies directly against the cover film at at least one point. Through the
Materialausnehmungsbereiche ist ein vollständiges anliegen, auch in einem Nichtbetrieb nicht möglich, so dass ein Spalt zwischen Rotor und Deckfolie vorhanden ist. Dieser Spalt vergrößert sich im Betrieb durch einen zwischen Rotor und Deckfolie erzeugten Gasfilm, so dass der Rotor vollständig von der Deckfolie gelöst ist. In diesem Spalt sind die Materialausnehmungsbereiche angeordnet. Als Materialausnehmungsbereich wird dabei ein Bereich verstanden, bei welchem ein Teil des ursprünglichen Materials entfernt wurde. Die Erfindung hat den Vorteil, dass durch die Materialausnehmungsbereiche eine erhöhte Tragkraft erzeugt wird. Lager die solch eine hohe Tragkraft aufweisen sind regelmäßig Toleranzempfindlich. Dies bedeutet, dass die sich zueinander drehenden Bauteile besonders genau zueinander ausgerichtet werden müssen. Das axiale Folien-Luft-Lager hat jedoch den Vorteil, dass es relativ Material recess areas are completely in contact, not possible even when not in operation, so that there is a gap between the rotor and the cover film. This gap increases in operation due to a gas film generated between the rotor and the cover film, so that the rotor is completely detached from the cover film. The material recess areas are arranged in this gap. A material recess area is understood to mean an area in which part of the original material has been removed. The invention has the advantage that an increased load-bearing capacity is generated by the material recess areas. Bearings with such a high load capacity are regularly sensitive to tolerances. This means that the components rotating relative to one another must be aligned particularly precisely with respect to one another. However, the axial foil-air bearing has the advantage that it is relative
toleranzunempfindlich ist. Dadurch kann ein solches Rotorlagersystem einfacher ausgerichtet werden und zudem weist es auch eine hohe Tragkraft auf. Zudem ist durch die Materialausnehmungsbereiche kein die Deckfolie versteifender Prägeschritt notwendig. Durch diese Vorteile ist ein solches Rotorlagersystem wirtschaftlich herstellbar. is insensitive to tolerances. This makes it easier to align such a rotor bearing system and it also has a high load capacity. In addition, no embossing step stiffening the cover film is necessary due to the material recess areas. Such a rotor bearing system can be produced economically by these advantages.
In einer bevorzugten Ausführung der Erfindung sind die In a preferred embodiment of the invention, the
Materialausnehmungsbereiche zumindest teilweise rampenförmig ausgebildet. Als rampenförmig im Sinne der Erfindung wird eine Höhenangleichung bezeichnet, welche sich über einen Bereich erstreckt. Mit solchen Rampen können Strömungsverluste in dem Spalt reduziert werden. Zudem sind Material recess areas are at least partially ramp-shaped. A height adjustment which extends over an area is referred to as ramp-shaped in the sense of the invention. With such ramps, flow losses in the gap can be reduced. Also are
Kerbwirkungseffekte im Gegensatz zu einer Stufe wesentlich geringer. Notch effects in comparison to a step much less.
In einer weiteren bevorzugten Ausführung der Erfindung weisen die In a further preferred embodiment of the invention, the
Materialausnehmungsbereiche, gegenüber benachbarten Bereichen, Stufen auf. Unter Stufen im Sinne der Erfindung werden sprunghafte Höhenänderungen verstanden. Bei solchen Stufen wird lediglich in einem Bereich Material vorzugsweise gleichmäßig entfernt. Dadurch sind Stufen im Gegensatz zu einer rampenförmigen Ausbildung einfacher und damit wirtschaftlicher herstellbar. Mit den Stufen kann effektiv eine Druckerhöhung zwischen Rotor und axialen Folien- Luft-Lager erzielt werden. Material recess areas, compared to adjacent areas, levels. Levels in the sense of the invention are understood to mean sudden changes in height. With such steps, material is preferably removed uniformly only in one area. In contrast to a ramp-shaped design, stages are easier and therefore more economical to produce. With the steps, a pressure increase between the rotor and the axial film-air bearing can be effectively achieved.
Vorzugsweise sind die Stufen als Rayleigh-Stufen ausgebildet. Die Rayleigh- Stufen sind dabei eine bestimmte Ausformung der Stufen, mit welcher hinsichtlich der Tragkraftverbesserung eine hohe Wirkung erzielt wird. The steps are preferably designed as Rayleigh steps. The Rayleigh steps are a specific shape of the steps with which a high effect is achieved with regard to the improvement in the load capacity.
In einer vorteilhaften Weiterbildung sind die Materialausnehmungsbereiche seitens des Rotors ausgebildet. Im Vergleich zu Materialausnehmungsbereichen an der Deckfolie hat dies den Vorteil, dass die Höhe der Materialausnehmungen sich aufgrund der sich verschleißenden Deckfolie im Wesentlichen nicht ändert. Dadurch kann der Effekt der Materialausnehmungsbereiche dauerhaft sichergestellt werden. Zudem kann dadurch eine längere Haltbarkeit eines solchen Rotorlagersystems erzielt werden. In an advantageous development, the material recess areas are formed by the rotor. In comparison to material recess areas on the cover film, this has the advantage that the height of the material recesses essentially does not change due to the wear of the cover film. The effect of the material recess areas can thereby be permanently ensured. In addition, a longer durability of such a rotor bearing system can be achieved.
Vorteilhafterweise sind die Materialausnehmungsbereiche seitens der Deckfolie ausgebildet. Durch die Materialausnehmungsbereiche sind keine die Deckfolie versteifenden Prägeschritte notwendig, so dass die Deckfolie besser an verschiedene Betriebszustände angepasst werden kann. The material recess areas are advantageously formed on the part of the cover film. Due to the material recess areas, no embossing steps stiffening the cover film are necessary, so that the cover film can be better adapted to different operating conditions.
Die Erfindung wird zusätzlich durch ein Verfahren zum Herstellen des The invention is further enhanced by a method of making the
erfindungsgemäßen Rotorlagersystem für eine Turbomaschine gelöst. Das Verfahren umfasst dabei wenigstens den Schritt, dass die Rotor bearing system according to the invention solved for a turbomachine. The method comprises at least the step that
Materialausnehmungsbereiche, in einem Spalt zwischen dem Rotor und dem axialen Folien-Luft-Lager, durch einen Materialabtragungsschritt gebildet werden. Material recess areas, in a gap between the rotor and the axial film-air bearing, are formed by a material removal step.
Unter einem Materialabtragungsschritt wird dabei jeder Bearbeitungsschritt verstanden, bei welchem ein Teil des ursprünglichen Materials entfernt wird. Dadurch können die Materialausnehmungsbereiche ohne eine Umformung oder Prägung gebildet werden. Ein solcher Materialabtragungsschritt vereinfacht die Herstellung eines solchen Rotorlagersystem und führt damit zu einer A material removal step is understood to mean any processing step in which part of the original material is removed. As a result, the material recess areas can be formed without reshaping or embossing. Such a material removal step simplifies the manufacture of such a rotor bearing system and thus leads to one
wirtschaftlichen Herstellung. economical manufacturing.
Vorzugsweise wird als Materialabtragungsschritt wenigstens ein At least one is preferably used as the material removal step
Ätzbearbeitungsschritt verwendet. Ein Ätzbearbeitungsschritt hat den Vorteil, dass Material selektiv entfernt werden kann und somit die Etching processing step used. An etching processing step has the advantage that material can be selectively removed and thus the
Materialausnehmungsbereiche mit hoher Präzision in jeder gewünschten Form herstellbar sind. Ein solcher Bearbeitungsschritt ist zusätzlich schnell und auch wirtschaftlich. Material recess areas can be manufactured with high precision in any desired shape. Such a processing step is also quick and economical.
In einer bevorzugten Ausführung der Erfindung wird als Materialabtragungsschritt wenigstens ein Laserbearbeitungsschritt verwendet. Ein Laserbearbeitungsschritt hat den Vorteil, dass dieser bereits bei geringen Stückzahlen kosteneffizient ist. Zudem ist dieser Bearbeitungsschritt sehr präzise und äußerst flexibel in der zu erzielenden Form. Darüber hinaus wird die Erfindung durch ein Brennstoffzellensystem, welches das erfindungsgemäße Rotorlagersystem umfasst, gelöst. Mit einem solchen Brennstoffzellensystem werden die zu dem Rotorlagersystem genannten Vorteile erzielt. In a preferred embodiment of the invention, at least one laser processing step is used as the material removal step. A laser processing step has the advantage that it is cost-effective even with small quantities. In addition, this processing step is very precise and extremely flexible in the form to be achieved. In addition, the invention is achieved by a fuel cell system which comprises the rotor bearing system according to the invention. The advantages mentioned for the rotor bearing system are achieved with such a fuel cell system.
Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt: Embodiments of the invention are shown in the drawing and explained in more detail in the following description. It shows:
Figur 1 Schnittansicht eines ersten Ausführungsbeispiels des Figure 1 sectional view of a first embodiment of the
erfindungsgemäßen Rotorlagersystems, rotor bearing system according to the invention,
Figur 2 Draufsicht auf eine Deckfolie des Rotorlagersystems nach dem ersten Figure 2 top view of a cover sheet of the rotor bearing system according to the first
Ausführungsbeispiel, Embodiment,
Figur 3 Schnittansicht eines zweiten Ausführungsbeispiels des Figure 3 is a sectional view of a second embodiment of the
erfindungsgemäßen Rotorlagersystems, und rotor bearing system according to the invention, and
Figur 4 Draufsicht auf einen Rotor des Rotorlagersystems nach dem zweiten Figure 4 top view of a rotor of the rotor bearing system according to the second
Ausführungsbeispiel. Embodiment.
In Figur 1 ist eine Schnittansicht eines ersten Ausführungsbeispiels eines erfindungsgemäßen Rotorlagersystems 10. Das Rotorlagersystem 10 umfasst ein axiales Folien-Luft-Lager 14, welches ein Auflagemittel 18 aufweist, das in diesem Ausführungsbeispiel fest mit einem Gehäuse 22 verbunden ist. Zu dem Auflagemittel 18 ist bereichsweise axial beabstandet eine Deckfolie 26 angeordnet. An einem radialen äußeren Ende ist die Deckfolie 26 mit dem Auflagemittel 18 verbunden. Zwischen der Deckfolie 26 und dem Auflagemittel 18 ist eine Federfolie 30 angeordnet, welche in diesem Ausführungsbeispiel durch eine wellenförmige Struktur gebildet ist. Über die Federfolie 30 können axiale Kräfte aufgenommen werden. 1 shows a sectional view of a first exemplary embodiment of a rotor bearing system 10 according to the invention. The rotor bearing system 10 comprises an axial film-air bearing 14 which has a support means 18 which in this exemplary embodiment is fixedly connected to a housing 22. A cover film 26 is axially spaced from the support means 18 in some areas. The cover film 26 is connected to the support means 18 at a radial outer end. A spring film 30 is arranged between the cover film 26 and the support means 18, which in this exemplary embodiment is formed by a wavy structure. Axial forces can be absorbed via the spring film 30.
Das Rotorlagersystem 10 umfasst zusätzlich einen Rotor 34, der um eine Mittelachse 38 drehbar zu dem axialen Folien-Luft-Lager 14 angeordnet ist. Der Rotor 34 liegt dabei an der Deckfolie 26 des axialen Folien-Luft-Lagers 14 an. In dieser Figur ist ein durch eine Schleppströmung sich ausbildender Spalt 42 zwischen Rotor 34 und Deckfolie 26, gezeigt. Über den im Spalt 42 vorliegenden Gasfilm werden die Axialkräfte des Rotors 34 getragen. The rotor bearing system 10 additionally comprises a rotor 34, which is arranged rotatable about a central axis 38 with respect to the axial film-air bearing 14. The rotor 34 lies against the cover film 26 of the axial film-air bearing 14. In this figure shows a gap 42 formed by a drag flow between rotor 34 and cover film 26. The axial forces of the rotor 34 are borne by the gas film present in the gap 42.
Die Deckfolie26 weist in dem ersten Ausführungsbeispiel The cover film 26 has in the first embodiment
Materialausnehmungsbereiche 46 auf. Diese Materialausnehmungsbereiche 46 sind in dem Ausführungsbeispiel durch einen Materialabtragungsschritt, wie beispielsweise ätzen oder eine Laserbearbeitung, gebildet worden. Dies bedeutet, dass in diesem Materialausnehmungsbereichen 46 eine Vertiefung in der Deckfolie 26 gebildet ist. Über die Materialausnehmungsbereiche 46 ist eine Druckerhöhung zwischen Rotor 34 und axialen Folien-Luft-Lager 14 erzeugbar, so dass eine höhere Axiallast durch das Rotorlagersystem 10 tragbar ist. Material recess areas 46. In the exemplary embodiment, these material recess areas 46 have been formed by a material removal step, such as, for example, etching or laser processing. This means that a depression is formed in the cover film 26 in this material recess area 46. A pressure increase between the rotor 34 and the axial film-air bearing 14 can be generated via the material recess areas 46, so that a higher axial load can be borne by the rotor bearing system 10.
Figur 2 zeigt eine Draufsicht auf die Deckfolie 26 des Rotorlagersystems 10 nach dem ersten Ausführungsbeispiel. Die Deckfolie 26 weist in diesem Figure 2 shows a plan view of the cover sheet 26 of the rotor bearing system 10 according to the first embodiment. The cover sheet 26 has in this
Ausführungsbeispiel einen Haltering 50 auf, über welchen die Deckfolie 26 mit dem Auflagemittel 18 verbindbar ist. Ein innerer Teil der Deckfolie 26 ist über Haltestege 54 mit dem Haltering 50 verbunden. Die Embodiment a retaining ring 50, via which the cover sheet 26 can be connected to the support means 18. An inner part of the cover film 26 is connected to the retaining ring 50 via retaining webs 54. The
Materialausnehmungsbereiche 46 und Bereiche 58 ohne Materialausnehmungen sind in Umfangsrichtung abwechselnd auf der Deckfolie 26 angeordnet. Dabei sind zwischen den Materialausnehmungsbereichen 46 und den Bereichen 58 ohne Materialausnehmungen Stufen 62 angeordnet, welche in diesem Material recess areas 46 and areas 58 without material recesses are alternately arranged on the cover film 26 in the circumferential direction. In this case, steps 62 are arranged between the material recess areas 46 and the areas 58 without material recesses
Ausführungsbeispiel als Rayleigh-Stufen ausgebildet sind. Diese Embodiment are designed as Rayleigh steps. This
Materialausnehmungsbereiche 46 können dabei mittels eines Material recess areas 46 can be by means of a
Materialabtragungsschritts einfach gebildet werden. Anstelle der Stufen 62 können in einem nicht gezeigten Ausführungsbeispiel ein Übergang zwischen den Materialausnehmungsbereichen 46 und den Bereich 58 ohne Material removal step can be easily formed. Instead of the steps 62, a transition between the material recess areas 46 and the area 58 can be made in an embodiment not shown
Materialausnehmungen in Form von Rampen ausgebildet sein. Material recesses in the form of ramps.
In Figur 3 ist eine Schnittansicht eines zweiten Ausführungsbeispiels des erfindungsgemäßen Rotorlagersystems 10 gezeigt. Dieses Ausführungsbeispiel unterscheidet sich von dem Ausführungsbeispiel in Figur 1 dadurch, dass die Materialausnehmungsbereiche 46 anstatt in der Deckfolie 26 in einem an der Deckfolie 26 anliegenden Teil des Rotors 34 angeordnet sind. Da der Rotor 34 eine größere Härte als die Deckfolie 26 hat, hat dies den Vorteil, dass eine Höhe h der Materialausnehmungsbereiche 46 durch eine Abnutzung der Deckfolie 26 nicht verkleinert wird. Dadurch kann dauerhaft die Funktion der Materialausnehmungsbereiche 46 sichergestellt werden. Figur 4 zeigt eine Draufsicht auf den Rotor 34 des Rotorlagersystems 10 nach dem zweiten Ausführungsbeispiel. In dieser Figur sind ebenso wie in der Figur 2 die Materialausnehmungsbereiche 46 mit Rayleigh-Stufen ausgebildet. Diese Materialausnehmungsbereiche 46 können dabei mittels eines FIG. 3 shows a sectional view of a second exemplary embodiment of the rotor bearing system 10 according to the invention. This exemplary embodiment differs from the exemplary embodiment in FIG. 1 in that the material recess regions 46 are arranged in a part of the rotor 34 which bears against the cover film 26 instead of in the cover film 26. Since the rotor 34 has a greater hardness than the cover film 26, this has the advantage that a Height h of the material recess areas 46 is not reduced by wear of the cover film 26. The function of the material recess areas 46 can thereby be permanently ensured. Figure 4 shows a plan view of the rotor 34 of the rotor bearing system 10 according to the second embodiment. In this figure, as in FIG. 2, the material recess areas 46 are designed with Rayleigh steps. These material recess areas 46 can be by means of a
Materialabtragungsschritts einfach gebildet werden. Auch hier können anstelle von Stufen 62, Rampen ausgebildet sein. Material removal step can be easily formed. Ramps can also be formed here instead of steps 62.

Claims

Ansprüche Expectations
1. Rotorlagersystem (10) für eine Turbomaschine, wobei das Rotorlagersystem (10) wenigstens umfasst: 1. rotor bearing system (10) for a turbomachine, the rotor bearing system (10) comprising at least:
ein axiales Folien-Luft-Lager (14) mit wenigstens einer Deckfolie (26), die axial beabstandet zu einem Auflagemittel (18) vorgesehen ist und mit wenigstens einer Federfolie (30), die zwischen der Deckfolie (26) und dem Auflagemittel (18) angeordnet ist, und an axial film-air bearing (14) with at least one cover film (26), which is provided axially spaced from a support means (18) and with at least one spring film (30), which is between the cover film (26) and the support means (18 ) is arranged, and
einen Rotor (34), welcher an der Deckfolie (26) des axialen Folien-Luft- Lagers (14) anliegt und zu dem axialen Folien-Luft-Lager (14) drehbar ist, dadurch gekennzeichnet, dass a rotor (34) which bears against the cover film (26) of the axial film-air bearing (14) and can be rotated to the axial film-air bearing (14), characterized in that
in einem Spalt (42) zwischen dem Rotor (34) und dem axialen Folien-Luft- Lager (14) Materialausnehmungsbereiche (46) angeordnet sind, über welche eine Druckerhöhung zwischen Rotor (34) und axialen Folien-Luft-Lager (14) erzeugbar ist. Material recess areas (46) are arranged in a gap (42) between the rotor (34) and the axial foil-air bearing (14), via which a pressure increase between the rotor (34) and the axial foil-air bearing (14) can be generated is.
2. Rotorlagersystem (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Materialausnehmungsbereiche (46) zumindest teilweise rampenförmig ausgebildet sind. 2. Rotor bearing system (10) according to claim 1, characterized in that the material recess areas (46) are at least partially ramp-shaped.
3. Rotorlagersystem (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Materialausnehmungsbereiche (46), gegenüber benachbarten Bereichen (58), Stufen (62) aufweisen. 3. The rotor bearing system (10) according to claim 1 or 2, characterized in that the material recess areas (46), in relation to adjacent areas (58), have steps (62).
4. Rotorlagersystem (10) nach Anspruch 3, dadurch gekennzeichnet, dass die Stufen (62) als Rayleigh-Stufen ausgebildet sind. 4. rotor bearing system (10) according to claim 3, characterized in that the steps (62) are designed as Rayleigh steps.
5. Rotorlagersystem (10) nach einem der vorherigen Ansprüche, dadurch 5. rotor bearing system (10) according to any one of the preceding claims, characterized
gekennzeichnet, dass die Materialausnehmungsbereiche (46) seitens des Rotors (34) ausgebildet sind. characterized in that the material recess areas (46) are formed by the rotor (34).
6. Rotorlagersystem (10) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Materialausnehmungsbereiche (46) seitens der Deckfolie (26) ausgebildet sind. 6. rotor bearing system (10) according to any one of claims 1 to 4, characterized in that the material recess areas (46) on the part of the cover film (26) are formed.
7. Verfahren zum Herstellen eines Rotorlagersystem (10) für eine 7. A method for producing a rotor bearing system (10) for a
Turbomaschine, nach einem der vorherigen Ansprüche, wobei das Verfahren wenigstens den Schritt umfasst, dass die Materialausnehmungsbereiche (46), in einem Spalt (42) zwischen dem Rotor (34) und dem axialen Folien-Luft- Lager (14), durch einen Materialabtragungsschritt gebildet werden. Turbo machine according to one of the preceding claims, wherein the method comprises at least the step that the material recess areas (46), in a gap (42) between the rotor (34) and the axial film-air bearing (14), by a material removal step be formed.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass als 8. The method according to claim 7, characterized in that as
Materialabtragungsschritt wenigstens ein Ätzbearbeitungsschritt verwendet wird. Material removal step, at least one etching processing step is used.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass als 9. The method according to claim 7 or 8, characterized in that as
Materialabtragungsschritt wenigstens ein Laserbearbeitungsschritt verwendet wird. Material removal step at least one laser processing step is used.
10. Brennstoffzellensystem umfassend ein Rotorlagersystem (10) nach einem der Ansprüche 1 bis 6. 10. Fuel cell system comprising a rotor bearing system (10) according to one of claims 1 to 6.
PCT/EP2019/084622 2019-01-14 2019-12-11 Rotor bearing system for a turbomachine WO2020148029A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019200330.3A DE102019200330A1 (en) 2019-01-14 2019-01-14 Rotor bearing system for a turbo machine
DE102019200330.3 2019-01-14

Publications (1)

Publication Number Publication Date
WO2020148029A1 true WO2020148029A1 (en) 2020-07-23

Family

ID=69055968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/084622 WO2020148029A1 (en) 2019-01-14 2019-12-11 Rotor bearing system for a turbomachine

Country Status (2)

Country Link
DE (1) DE102019200330A1 (en)
WO (1) WO2020148029A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113569361A (en) * 2021-08-26 2021-10-29 北京动力机械研究所 Method for predicting bearing capacity of radial bump foil dynamic pressure gas bearing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022210412A1 (en) 2022-09-30 2024-04-04 Robert Bosch Gesellschaft mit beschränkter Haftung Foil axial bearing and method for mounting a foil axial bearing
DE102023201450A1 (en) 2023-02-20 2024-08-22 Robert Bosch Gesellschaft mit beschränkter Haftung Axial foil bearing
DE102023201452A1 (en) 2023-02-20 2024-08-22 Robert Bosch Gesellschaft mit beschränkter Haftung Axial foil bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155802A (en) * 2003-11-26 2005-06-16 Koyo Seiko Co Ltd Thrust dynamic bearing
JP2006183786A (en) * 2004-12-27 2006-07-13 Toyota Central Res & Dev Lab Inc Fluid thrust bearing
US7731476B2 (en) * 2007-01-30 2010-06-08 Technology Commercialization Corp. Method and device for reducing axial thrust and radial oscillations and rotary machines using same
US20120207414A1 (en) 2009-10-07 2012-08-16 Neuros Co., Ltd. Thrust Foil Air Bearing
JP2013053645A (en) * 2011-09-01 2013-03-21 Ntn Corp Thrust foil bearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155802A (en) * 2003-11-26 2005-06-16 Koyo Seiko Co Ltd Thrust dynamic bearing
JP2006183786A (en) * 2004-12-27 2006-07-13 Toyota Central Res & Dev Lab Inc Fluid thrust bearing
US7731476B2 (en) * 2007-01-30 2010-06-08 Technology Commercialization Corp. Method and device for reducing axial thrust and radial oscillations and rotary machines using same
US20120207414A1 (en) 2009-10-07 2012-08-16 Neuros Co., Ltd. Thrust Foil Air Bearing
JP2013053645A (en) * 2011-09-01 2013-03-21 Ntn Corp Thrust foil bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113569361A (en) * 2021-08-26 2021-10-29 北京动力机械研究所 Method for predicting bearing capacity of radial bump foil dynamic pressure gas bearing

Also Published As

Publication number Publication date
DE102019200330A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2020148029A1 (en) Rotor bearing system for a turbomachine
DE60121539T2 (en) Shaft seal arrangement and gas turbine
DE69827553T2 (en) Turbo molecular pump
EP2452076B1 (en) Turbomachine impeller
WO2010136018A2 (en) Clearance control system, turbomachine and method for adjusting a running clearance between a rotor and a casing of a turbomachine
DE10324621A1 (en) Electrical machine
EP3237769B1 (en) Foil bearing, method for setting a gap geometry of a foil bearing, and corresponding production method of a foil bearing
EP2683941B1 (en) Planetary transmission for wind turbine
EP1653049B1 (en) Vane ring assembly for gas turbines and method to modify the same
EP1224381B1 (en) Device for compensating axial thrust in a turbomachine
EP1666700A2 (en) Gas turbine
EP3091188B1 (en) Flow engine with a sealing arrangement
DE2522575A1 (en) DEVICE FOR RESTRICTING EXPANSION IN COMPRESSOR RUNNERS
EP2129875B1 (en) Turbo engine with active clearance control
WO2019001959A1 (en) Tilting pad bearing and method for producing a tilting pad bearing
EP2440789A1 (en) Vacuum pump
EP1848877A1 (en) Bearing arrangement in a gas turbine aircraft engine
EP1507106B1 (en) Rotary seal
EP2019188A1 (en) Rotor stage with damping element
WO2019057384A1 (en) Rotor for a turbocharger
DE102019214279A1 (en) Side channel compressor for a fuel cell system for conveying and / or compressing a gaseous medium
EP4062077B1 (en) Tilting pad bearing
EP1478080B1 (en) Turbomachine
EP2982834B1 (en) Roller bearing, in particular needle bearing, to be mounted on a rotating pin of a variable guide blade of a turbo engine
EP3999749B1 (en) Foil bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19828601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19828601

Country of ref document: EP

Kind code of ref document: A1