WO2020147853A1 - 一种具有降噪设计的无线能量传输装置 - Google Patents

一种具有降噪设计的无线能量传输装置 Download PDF

Info

Publication number
WO2020147853A1
WO2020147853A1 PCT/CN2020/072926 CN2020072926W WO2020147853A1 WO 2020147853 A1 WO2020147853 A1 WO 2020147853A1 CN 2020072926 W CN2020072926 W CN 2020072926W WO 2020147853 A1 WO2020147853 A1 WO 2020147853A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
frequency
wireless energy
energy transmission
eddy current
Prior art date
Application number
PCT/CN2020/072926
Other languages
English (en)
French (fr)
Inventor
邢益涛
Original Assignee
邢益涛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邢益涛 filed Critical 邢益涛
Priority to EP20740849.3A priority Critical patent/EP3916957A4/en
Publication of WO2020147853A1 publication Critical patent/WO2020147853A1/zh
Priority to US17/379,029 priority patent/US11750035B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • H04B5/263Multiple coils at either side

Definitions

  • the utility model relates to the technical field of wireless transmission, in particular to a wireless energy transmission device with a noise reduction design.
  • the EMC suppression achieved by designing the mechanical structure of a high-frequency power cable and changing the AC conduction bandwidth, and the stability of the circuit board through the design EMC suppression is achieved by a stable potential eddy current damper that is electrically connected to the electrical plane and installed next to the wireless energy transmission coil group.
  • wireless energy transmission technology The technology without electrical connection between the power supply and the electrical appliances.
  • This technology provides people with a lot of convenience and more safety.
  • the current technical implementation of wireless energy transmission devices generally adopts the conversion of direct current to higher frequency alternating current, and the alternating current is used to drive the wireless energy output coil and transmit alternating electromagnetic energy to the wireless charging input coil, and then the induced AC power is converted into DC power, such as a wireless charging device for handheld devices disclosed in the application number CN200510030239.4, and a wireless charging transmitter, receiver and wireless charging device disclosed in CN201110020352.X;
  • the patent number 201410004299.8 further discloses that the solution has a very serious problem of electromagnetic interference.
  • the first reason is that the wireless charging transmitter circuit module and the transmitter coil are electrically connected through the high-frequency AC transmission line, and the The high-frequency AC transmission line has a long length, and the wireless charging transmitter circuit module and the transmitter coil are isolated from DC, so that the transmitter coil forms a high frequency and low resistance relative to the wireless charging transmitter circuit module. High frequency AC load. Therefore, when the wireless charging transmitter circuit module generates the AC power required for wireless charging with wide spectrum characteristics and transmits it to the transmitter coil, the energy of the higher frequency part, that is, the frequency multiplication part of the AC fundamental frequency, will not be suppressed.
  • the wireless charging transmitter circuit module is often directly connected to a DC power supply or a power frequency adapter, and the power devices in the wireless charging transmitter circuit module are turned on and off because of electromagnetic interference.
  • the signal is transmitted to the front-end power supply without being filtered, causing serious signal pollution.
  • Patent No. 201410004299.8 only proposes to add a shielding layer to the high-frequency AC transmission line, and to electrically connect the shielding layer to the shielding network of the wireless charging transmitter circuit module and the transmitter coil, but
  • the specific embodiment, shielding purpose and effect of the shielding network are not disclosed; therefore, the patent number 201410004299.8 does not provide an effective solution to overcome and suppress electromagnetic interference, and there are serious electromagnetic interference problems in actual products.
  • electromagnetic interference is mainly caused by "lower frequency multiplier power current interference” It is composed of two parts: “Transient switching current interference of relatively high-frequency power conversion circuit”. Therefore, the targeted addition of electromagnetic signal filters, electromagnetic noise suppression circuits, and potential stabilization modules can effectively suppress electromagnetic interference.
  • the current market There is no product or solution to solve this problem.
  • the present invention provides a wireless energy transmission device with noise reduction design.
  • a wireless energy transmission device with noise reduction design the wireless energy transmission device includes a power conversion circuit board and a wireless energy transmission coil group, the power conversion circuit board passes through a high-frequency power cable Connecting the wireless energy transmission coil group;
  • the wireless energy transmission device further includes a stable electric potential eddy current damper, the stable electric potential eddy current damper is close to the wireless energy transmission coil group, and the stable electric potential eddy current damper communicates with the power conversion circuit board through a conductor. Resistance to fixed electrical plane connection.
  • the high-frequency power cable includes one or more basic units for low-loss transmission of high-frequency alternating current, and the space of the basic units constitutes an inductance-capacitance low-pass filter.
  • the basic unit includes at least one forward high-frequency low-loss wire and at least one reverse high-frequency low-loss wire, and the forward high-frequency low-loss wire and the reverse high-frequency low-loss wire are mutually connected.
  • the spatial structure of includes parallel, twisted, twisted, braided and/or spiral relationships;
  • the forward high frequency low loss wire and the reverse high frequency low loss wire are respectively connected in series with the wireless energy transmission coil group;
  • the number of the forward high-frequency low-loss wires is different from the number of the reverse high-frequency low-loss wires, and the forward high-frequency low-loss wires are in close contact with the reverse high-frequency low-loss wires ,
  • the interaction forms a capacitance
  • the basic unit itself constitutes a distributed inductance-capacitor filter for suppressing electromagnetic interference.
  • the basic unit includes at least one forward high-frequency low-loss wire, a soft magnetic material, and at least one reverse high-frequency low-loss wire, the forward high-frequency low-loss wire, the soft magnetic material, and the
  • the spatial structure between the reverse high frequency and low loss wires includes parallel, twisted, twisted, braided and/or spiral relationship;
  • the forward high-frequency low-loss wire and the reverse high-frequency low-loss wire are respectively connected in series with the wireless energy transmission coil group;
  • the forward high-frequency low-loss wire and the reverse high-frequency low-loss wire are in close contact with each other to form a capacitance
  • the basic unit itself constitutes a distributed inductance-capacitor filter for suppressing electromagnetic interference.
  • the soft magnetic material has conductive properties.
  • the basic unit includes a forward high-frequency low-loss wire, a conductive material, and a reverse high-frequency low-loss wire.
  • the forward high-frequency low-loss wire, the conductive material, and the reverse high-frequency low-loss wire are mutually connected.
  • the interspace structure is parallel, twisted, wound, braided and/or spiral;
  • the forward high frequency low loss wire and the reverse high frequency low loss wire are respectively connected in series with the wireless energy transmission coil group;
  • the forward high-frequency low-loss wire and the reverse high-frequency low-loss wire are in close contact and interact to form a capacitor, and the conductive material is used to increase the capacitance of the capacitor;
  • the basic unit itself constitutes a distributed inductance-capacitor filter.
  • the conductive material has soft magnetic properties.
  • the wireless energy transmission coil set includes a coil and a magnetic material with an alternating magnetic field for guiding wireless charging
  • the coil, the magnetic conductive material, and the stable electric potential eddy current damper are arranged in close proximity to each other.
  • a magnetic conductive material is arranged above the stable electric potential eddy current damper, and the coil is arranged above the magnetic conductive material, and the three coaxial lines are arranged adjacently;
  • the stable electric potential eddy current damper adopts a fan-shaped structure with the same axis as the coil, and the coil is arranged under the stable electric potential eddy current damper, and a magnetic material is arranged under the coil, and the three coaxial lines are adjacent Close to setting
  • the stable electric potential eddy current damper adopts a fan-shaped structure with the same axis as the coil, and the coil is arranged above the stable electric potential eddy current damper, and a magnetic conductive material is arranged below the stable electric potential eddy current damper.
  • the axes are arranged next to each other;
  • the stable potential eddy current damper is a long-line conductor material with a cross section, and the stable potential eddy current damper is wound or closely attached to the side of the wire wound into the coil. And the magnetic conductive material is arranged next to the coil;
  • the wireless energy transmission device further includes at least one filter circuit board,
  • the filter circuit board is electrically connected to the power conversion circuit board, the wireless energy transmission coil group, and the high-frequency power cable, and has the function of filtering high-frequency noise of wireless charging to suppress electromagnetic interference;
  • the filter circuit board may be electrically connected between the power conversion circuit board and the high-frequency power cable;
  • the filter circuit board may be electrically connected between several sections of adjacent high-frequency power cables;
  • the filter circuit board may be electrically connected between the wireless energy transmission coil group and the high-frequency power cable.
  • the coil includes at least one sub-coil, and the power conversion circuit board has a bridge circuit;
  • the sub-coil has two lead wires for electrically connecting the bridge circuit
  • the output terminal of the bridge circuit and the sub-coil are electrically connected in series through a capacitor
  • One lead of the sub-coil is electrically connected with a group of bridge circuits, and the other lead on the outside of the sub-coil projected along the axis is connected to the capacitor.
  • the wireless energy transmission device with noise reduction design of the utility model on the one hand, by adopting a high-frequency AC cable with a special structure, it is possible to improve the switching edge frequency and frequency multiplication of the power conversion circuit.
  • the transmission impedance suppresses the interference signal of the switching edge frequency and frequency multiplication of the power conversion circuit; on the other hand, it provides a stable electric potential eddy current damper which is electrically connected to the AC low-resistance fixed electric plane of the power conversion circuit for the wireless energy transmission coil group.
  • the electric potential of the wireless energy transmission coil group and the suppression of the alternating current that doubles the operating frequency of the power transmission circuit greatly reduces the related electromagnetic interference. From these two aspects, the purpose of increasing high-frequency AC impedance in a large range and reducing electromagnetic interference interference signals is jointly achieved, thereby solving the electromagnetic interference problem.
  • Figure 1 is a schematic diagram of the overall structure of the first embodiment of the utility model
  • Figure 2 is a schematic diagram of the overall structure of the second embodiment of the utility model
  • FIG. 3 is a schematic diagram of a cross-sectional structure of the basic unit of the high-frequency power cable according to the third embodiment of the present invention.
  • Fig. 4-A is a schematic cross-sectional structure diagram of the basic unit of the high-frequency power cable according to the fourth embodiment of the utility model;
  • Figure 4-B is a schematic cross-sectional structure diagram of the basic unit of the high-frequency power cable according to the fourth embodiment of the utility model;
  • Fig. 5-A is a schematic cross-sectional structure diagram of the basic unit of the high-frequency power cable according to the fifth embodiment of the utility model;
  • Figure 5-B is a schematic cross-sectional structure diagram of the basic unit of the high-frequency power cable according to the fifth embodiment of the utility model;
  • Figure 5-C is a schematic cross-sectional structure diagram of the basic unit of the high-frequency power cable according to the fifth embodiment of the utility model;
  • FIG. 6 is a schematic diagram of the overall structure of the stable potential eddy current damper according to the sixth embodiment of the utility model
  • Fig. 7 is a schematic diagram of the overall structure of the stable potential eddy current damper according to the seventh embodiment of the utility model
  • FIG. 8 is a schematic diagram of the overall structure of the stable potential eddy current damper according to the eighth embodiment of the utility model
  • Fig. 9 is a schematic diagram of the overall structure of the stable potential eddy current damper according to the ninth embodiment of the utility model.
  • Figure 10 is the electrical connection of the coil according to the tenth embodiment of the utility model
  • Figure 11 is a comparison diagram of spectrograms before and after using the noise reduction design of the present invention.
  • the wireless energy transmission device includes a power conversion circuit board 101, a wireless The energy transmission coil group, the high frequency power cable 102, the conductor 103, and the stable potential eddy current damper 105.
  • the power conversion circuit board 101 is provided with an AC low-resistance fixed electrical plane 119, and the wireless energy transmission coil group is used to convert high-frequency AC power used for wireless charging with a high-frequency alternating magnetic field.
  • the wireless energy The transmission coil group includes a coil 104;
  • the stable potential eddy current damper 105 is electrically connected to the AC low-resistance fixed electric plane 119 of the power conversion circuit board 101 through the conductor 103; in this embodiment, the AC low-resistance fixed electric plane 119 may be a ground plane , Other stable electrical planes, or ground planes or other stable electrical planes connected through circuits with extremely low AC impedance;
  • the conductor 103 is connected to the power conversion circuit board 101, and can be directly electrically connected to a fixed electrical plane, or electrically connected to a fixed electrical plane through a circuit, because the conductor 103 and The AC impedance between the connected "fixed electrical planes" is extremely low, so the high frequency AC frequency band of EMC noise is equivalent to directly connecting to the fixed electrical plane.
  • electromagnetic interference noise is generated.
  • the electromagnetic interference noise is divided into the frequency-doubled electrical noise of the fundamental frequency with a lower frequency, and the power components on the power conversion circuit board 101 with a higher frequency. Transient switching current electrical noise during switching.
  • a magnetic conductive material 117 is installed beside the coil 104 to realize that the magnetic conductive material 117 guides the magnetic field generated by the coil 104.
  • FIG. 2 it is a schematic diagram of the overall structure of the second embodiment of the present invention.
  • This embodiment provides a wireless energy transmission device with a noise reduction design.
  • the wireless energy transmission device includes a power conversion circuit board 101 and a coil. 104.
  • the first filter circuit 106, the second filter circuit 107, and the third filter circuit 108 are electrically connected to the power conversion circuit board 101 and the coil 104 through the high frequency power cable 102.
  • the stable electric potential eddy current damper 105 is electrically connected to the AC low-resistance fixed electric plane 119 of the power conversion circuit board 101 through the conductor 103; in this embodiment, the AC low-resistance fixed electric plane 119 may be a ground plane or other stable electric planes. , Or through a ground plane or other stable electrical plane connected to a circuit with extremely low AC impedance.
  • the functions of the first filter circuit 106, the second filter circuit 107, and the third filter circuit 108 are to filter and suppress various electrical noise interference signals.
  • a magnetic conductive material 117 is installed beside the coil 104 to guide the magnetic field generated by the coil 104.
  • the third embodiment of the present invention provides a schematic cross-sectional structure diagram of the basic unit of a high-frequency power cable 102.
  • This embodiment is mostly the same as the above-mentioned embodiment, except that the implementation is
  • a cross-sectional structure of a basic unit of a high-frequency power cable 102 is provided.
  • the high-frequency power cable 102 is composed of one or more basic units for low-loss transmission of high-frequency alternating current.
  • the basic unit is composed of N-way positive It consists of a high-frequency low-loss wire 110 and an M-way reverse high-frequency low-loss wire 109. N is not equal to M.
  • the reverse high-frequency low-loss wires 109 are symmetrically arranged on the left and right sides of the forward high-frequency low-loss wire 110, so that the high-frequency power cable 102 has capacitance and inductance, and has a certain cutoff.
  • the spatial structure of the forward high-frequency low-loss wire and the reverse high-frequency low-loss wire provided by this embodiment includes distribution on a horizontal plane, which can enhance inductance. Further improve the performance of suppressing electromagnetic interference.
  • the fourth embodiment of the present invention provides a schematic cross-sectional structure diagram of a basic unit of a high-frequency power cable 102.
  • This embodiment is mostly the same as the above-mentioned embodiment, except that:
  • This embodiment provides a cross-sectional structure of a basic unit of a high-frequency power cable 102.
  • the high-frequency power cable 102 is composed of one or more basic units for low-loss transmission of high-frequency alternating current.
  • the basic units have positive
  • the high-frequency low-loss wire 110, the soft magnetic material 112 and the reverse high-frequency low-loss wire 109 are composed of three parts.
  • the soft magnetic material 112 is arranged between the forward high-frequency low-loss wire 110 and the reverse high-frequency low-loss wire 109, so that the high-frequency power cable 102 has capacitance and inductance. And the soft magnetic material 112 can greatly increase the inductance of the high-frequency power cable 102, thus forming a capacitor-inductance filter with a lower cut-off frequency to further suppress electromagnetic interference.
  • the soft magnetic material 112 is a material with conductive properties, which can significantly increase the capacitance of the high-frequency power cable 102, thereby further reducing the cut-off frequency and improving the suppression of electromagnetic interference. effect.
  • the soft magnetic material 112 with conductive properties can be used as a conductor 103 for electrically connecting the stable potential eddy current damper 105 and the power conversion circuit board 101. Since the magnetic induction intensity 111 is related to the shape and relative permeability of the soft magnetic material;
  • the soft magnetic material 112 completely wraps the outside of the forward high-frequency low-loss wire and the reverse high-frequency low-loss wire.
  • This embodiment designs the space structure of the soft magnetic material to enhance inductance and further improve suppression Electromagnetic interference performance.
  • the fifth embodiment of the present invention provides a schematic cross-sectional structure diagram of a basic unit of a high-frequency power cable 102.
  • This embodiment is mostly the same as the foregoing embodiment, except that The difference is that this embodiment provides a cross-sectional structure of a basic unit of a high-frequency power cable 102, which is composed of one or more basic units for low-loss transmission of high-frequency alternating current.
  • the basic unit is composed of three parts: forward high frequency low loss wire 110, conductive material 113 and reverse high frequency low loss wire 109;
  • the conductive material 113 is located at the same side position of the forward high-frequency low-loss wire 110 and the reverse high-frequency low-loss wire 109;
  • the conductive material 113 is located at opposite sides of the forward high-frequency low-loss wire 110 and the reverse high-frequency low-loss wire 109;
  • the conductive material 113 is located at an outer position opposite to the forward high-frequency low-loss wire 110 and the reverse high-frequency low-loss wire 109.
  • the above-mentioned conductive material 113 is in the relative position of the forward high-frequency low-loss wire 110 and the reverse high-frequency low-loss wire 109, so that the high-frequency power cable 102 has capacitance and inductance, and the conductive material 113 improves The capacitance of the high-frequency power cable 102 is reduced, so a capacitor-inductance filter with a lower cut-off frequency is formed to further suppress electromagnetic interference.
  • the conductive material 113 has soft magnetic properties, the conductive material 113 can be used as a conductor 103 for electrically connecting the stable potential eddy current damper 105 and the power conversion circuit board 101.
  • the inductance of the high-frequency power cable 102 will be greatly increased, and the cut-off frequency of the capacitor-inductance filter will be further reduced to further suppress electromagnetic interference.
  • the sixth embodiment of the present invention provides a stable potential eddy current damper 105.
  • the stable potential eddy current damper is applied to the above-mentioned embodiments.
  • the stable potential eddy current damper 105 is made of conductive material.
  • a magnetic conductive material 117 is arranged above the stable potential eddy current damper 105, and the coil 104 is arranged above the magnetic conductive material 117, and the three coaxial lines are arranged adjacently;
  • the maximum projection length D of the stable potential eddy current damper 105 along the axis of the coil 104 is greater than or equal to 1/8 of the maximum projection length d of the coil 104, and the distance between the geometric center of the stable potential eddy current damper 105 and the axis of the coil 104 is s ⁇ the coil 104 Maximum projection length d;
  • the stable potential eddy current damper 105 is designed to hardly induce the shape or size of the fundamental frequency alternating current, so as to avoid absorbing the energy of the fundamental frequency alternating current and generating heat.
  • the higher frequency part of the alternating current is often a frequency multiplier of the basic frequency of the high frequency alternating current for wireless energy transmission.
  • the fundamental frequency of the high-frequency alternating current of the wireless energy transmission is generally referred to as the fundamental frequency for short.
  • the wide-band alternating current 118 is input to the coil 104, the higher frequency part of the alternating current will generate an eddy current positively related to the frequency in the stable potential eddy current damper 105, and then the stable potential eddy current damper 105 An eddy current 114 is generated on 105 and then a reverse alternating magnetic field is generated to suppress the higher frequency part of the current in the alternating current, thereby achieving the effect of reducing the higher frequency current and suppressing electromagnetic interference.
  • the coil 104 Since the power conversion circuit board 101 and the coil 104 are isolated from DC to AC, and the higher the frequency, the smaller the on-resistance. Therefore, compared with the power conversion circuit board 101 connected to a stable power supply, the coil 104 has a potential It is floating and is a high-frequency load circuit with very low impedance. Therefore, when the coil 104 inputs the AC power 118 of a wide frequency band, the coil 104 will allow the higher frequency part of the current in the AC power to conduct, thereby causing serious electromagnetic interference.
  • the AC low-resistance fixed electric plane 119 can be a ground plane, other stable electric planes, or through an AC impedance pole Ground plane or other stable electrical plane for low circuit access. Therefore, by controlling the coil 104 at a stable potential, the high-frequency impedance of the coil 104 can be greatly increased, so that the higher frequency current in the alternating current can be greatly suppressed, thereby effectively reducing electromagnetic interference.
  • the seventh embodiment of the present invention provides a stable potential eddy current damper 105, which is applied to the above-mentioned embodiments, and the stable potential eddy current damper 105 is a conductive material
  • the stable potential eddy current damper 105 adopts a fan-shaped structure with the same axis as the coil 104, and the coil 104 is arranged below the stable potential eddy current damper 105, and a magnetic material is arranged below the coil 104 117.
  • the three coaxial lines are arranged next to each other;
  • the stable potential eddy current damper 105 is designed to hardly induce the shape or size of the fundamental frequency alternating current, so as to avoid absorbing the energy of the fundamental frequency alternating current and generating heat.
  • the higher frequency part of the alternating current is often a frequency multiplier of the basic frequency of the high frequency alternating current for wireless energy transmission.
  • the fundamental frequency of the high-frequency alternating current of the wireless energy transmission is generally referred to as the fundamental frequency for short.
  • the wide-band alternating current 118 is input to the coil 104, the higher frequency part of the alternating current will generate an eddy current positively related to the frequency in the stable potential eddy current damper 105, and then the stable potential eddy current damper 105 An eddy current 114 is generated on 105 and then a reverse alternating magnetic field is generated to suppress the higher frequency part of the current in the alternating current, thereby achieving the effect of reducing the higher frequency current and suppressing electromagnetic interference.
  • the power conversion circuit board 101 and the coil 104 are isolated from DC to AC, and the higher the frequency, the smaller the conduction impedance. Therefore, compared with the power conversion circuit board 101 connected to a stable power supply, the potential of the coil 104 is floating It is a high-frequency load circuit with extremely low impedance. Therefore, when the coil 104 inputs the AC power 118 of a wide frequency band, the coil 104 will allow the higher frequency part of the current in the AC power to conduct, thereby causing serious electromagnetic interference.
  • the coil 104 By electrically connecting the stable potential eddy current damper 105 to the AC low-resistance fixed electrical plane 119 of the power conversion circuit, the coil 104 can be controlled at a stable potential, which greatly increases the high-frequency impedance of the coil 104. It can greatly suppress the higher frequency part of the current in the alternating current, thus effectively reducing the electromagnetic interference.
  • the AC low-resistance fixed electrical plane 119 may be a ground plane, other stable electrical planes, or a ground plane connected through a circuit with extremely low AC impedance or other stable electrical planes.
  • the eighth embodiment of the present invention provides a stable potential eddy current damper 105, which is applied to the above embodiments, and the stable potential eddy current damper 105 is a conductive material
  • the stable potential eddy current damper 105 adopts a fan-shaped structure with the same axis as the coil 104, and the coil 104 is arranged above the stable potential eddy current damper 105, and below the stable potential eddy current damper 105 Set the magnetic conductive material 117, and the three coaxial lines are arranged next to each other;
  • the maximum projection length D of the stable potential eddy current damper 105 along the coil axis ⁇ 1/8 of the maximum projection length d of the coil 104, and the stable potential eddy current damper 105 is fixed between the coil 104 and the magnetic conductive material 117, And the distance between the geometric center of the stable potential eddy current damper 105 and the axis of the coil 104 s ⁇ the maximum projection length d of the coil 104;
  • the stable potential eddy current damper 105 is designed to hardly induce the shape or size of the fundamental frequency alternating current, so as to avoid absorbing the energy of the fundamental frequency alternating current and generating heat.
  • the stable potential eddy current damper 105 is installed between the coil 104 and the magnetic conductive material 117.
  • the higher frequency part of the alternating current is often a frequency multiplication part of the basic frequency of the high frequency alternating current for wireless energy transmission.
  • the fundamental frequency of the high-frequency alternating current of the wireless energy transmission is generally referred to as the fundamental frequency for short.
  • the higher frequency part of the alternating current will generate an eddy current positively correlated with the frequency in the stable potential eddy current damper 105, and then the stable potential eddy current damper 105
  • the eddy current 114 is generated on the upper side and then a reverse alternating magnetic field is generated to suppress the higher frequency part of the current in the alternating current, thereby achieving the effect of reducing the higher frequency current and suppressing electromagnetic interference.
  • the power conversion circuit board 101 and the coil 104 are isolated from DC to AC, and the higher the frequency, the smaller the conduction impedance. Therefore, compared with the power conversion circuit board 101 connected to a stable power supply, the potential of the coil 104 is floating It is a high-frequency load circuit with extremely low impedance. Therefore, when the coil 104 inputs the AC power 118 of a wide frequency band, the coil 104 will allow the higher frequency part of the current in the AC power to conduct, thereby causing serious electromagnetic interference.
  • the AC low-resistance fixed electric plane 119 can be a ground plane, other stable electric planes, or through an AC impedance pole Ground plane or other stable electrical plane for low circuit access. Therefore, by controlling the coil 104 at a stable potential, the high-frequency impedance of the coil 104 can be greatly increased, so that the higher frequency part of the current in the alternating current can be greatly suppressed, thereby effectively reducing electromagnetic interference.
  • the ninth embodiment of the present invention provides a stable potential eddy current damper 105.
  • the stable potential eddy current damper is applied to the above-mentioned embodiment.
  • the stable potential eddy current damper 105 has a certain horizontal A long-line conductor material with a cross-section is wound or closely attached to the side of the wire wound into the coil 104, and the magnetic conductive material 117 is arranged closely under the electric potential eddy current damper 105 and the coil 104;
  • the length of the stable potential eddy current damper 105 is ⁇ 1/8 of the wire length of the coil 104.
  • the higher frequency part of the alternating current will generate an eddy current positively correlated with the frequency in the stable potential eddy current damper 105, and then the stable potential eddy current damper 105
  • the eddy current 114 is generated on the upper side and then a reverse alternating magnetic field is generated to suppress the higher frequency part of the current in the alternating current, thereby achieving the effect of reducing the higher frequency current and suppressing electromagnetic interference.
  • the power conversion circuit board 101 and the coil 104 are isolated from DC to AC, and the higher the frequency, the smaller the on-resistance is. Therefore, it is relatively different from the power conversion circuit board 101 and the coil 104 connected to a stable power supply.
  • the potential of is floating, and it is a high-frequency load circuit with very low impedance.
  • the higher frequency part of the alternating current is often a frequency multiplication part of the basic frequency of the high frequency alternating current for wireless energy transmission.
  • the fundamental frequency of the high-frequency alternating current of the wireless energy transmission is generally referred to as the fundamental frequency for short.
  • the AC low-resistance fixed electric plane 119 can be a ground plane, other stable electric planes, or through an extremely low AC impedance The ground plane or other stable electrical plane where the circuit is connected. Therefore, by controlling the coil 104 at a stable electric potential, the high-frequency impedance of the coil 104 is greatly increased, so that the higher frequency current in the alternating current can be greatly suppressed, thereby effectively reducing electromagnetic interference.
  • FIG. 10 shows the tenth embodiment of the present invention.
  • the tenth embodiment provides an electrical connection method for the coil 104.
  • the electrical connection of the coil 104 is applied to the above embodiment.
  • the wireless charging AC generation circuit on the power conversion circuit board 101 is generally implemented by a bridge circuit 120.
  • a capacitor 121 is connected in series between the bridge circuit 120 and the coil 104.
  • the coil 104 has two or more lead connections, and any two leads can form a sub-coil, and one lead of the sub-coil is electrically connected to a set of bridge circuits 120. And another lead on the outside of each group of sub-coils projected along the axis is connected to the capacitor 121 to achieve a better electromagnetic interference suppression effect.
  • the utility model adopts a high-frequency AC cable with a special structure to increase the transmission impedance of the switching edge frequency and frequency multiplication of the power conversion circuit, and suppress the interference signal of the switching edge frequency and frequency multiplication of the power conversion circuit;
  • the wireless energy transmission coil group provides a stable electric potential eddy current damper that is electrically connected to the AC low-resistance fixed electric plane of the power conversion circuit for the wireless energy transmission coil group, which stabilizes the electric potential of the wireless energy transmission coil group and suppresses the frequency multiplication of the power transmission circuit.
  • the AC current greatly reduces the related electromagnetic interference. From these two aspects, the purpose of increasing high-frequency AC impedance in a large range and reducing electromagnetic interference interference signals is jointly achieved, thereby solving the electromagnetic interference problem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Filters And Equalizers (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种具有降噪设计的无线能量传输装置,属于无线能量传输技术领域,所述无线能量传输装置包括稳定电势涡流阻尼器(105),所述稳定电势涡流阻尼器(105)靠近无线能量传输线圈组,并所述稳定电势涡流阻尼器(105)通过导体(103)与功率转换电路板(101)的交流低阻固定电平面(119)连接。通过采用特殊结构的高频交流电缆(102),实现提高功率转换电路开关边沿频率与倍频的传输阻抗,抑制了功率转换电路开关边沿频率与倍频的干扰信号;提供稳定电势涡流阻尼器,稳定了无线能量传输线圈组的电势位,以及抑制功率传输电路工作频率倍频的交流电流,大幅度降低了相关的电磁干扰。在很大范围内提升高频交流阻抗,降低电磁干扰信号,从而解决了电磁干扰问题。

Description

一种具有降噪设计的无线能量传输装置 技术领域
本实用新型涉及无线传输技术领域,具体涉及一种具有降噪设计的无线能量传输装置,通过设计高频功率电缆的机械结构改变交流导通带宽实现的EMC抑制,以及通过设计与电路板的稳定电平面电连接的并且安装在无线能量传输线圈组旁边的稳定电势涡流阻尼器实现的EMC抑制。
背景技术
随着人们生活水平的提高,电俨然已经变成人们生活中难以缺少的东西。而电源与电器之间没有电气连接的技术被称为无线能量传输技术,此项技术为人们提供了很多的便利,也给了人们更多的安全。但是目前的无线能量传输装置的技术实现,一般采用将直流电转为较高频率的交流电,用所述交流电驱动无线能量输出线圈并传递交变电磁能给无线充电输入线圈,然后再将感应到的交流电转成直流电,如申请号为CN200510030239.4公开的手持设备的无线充电装置、及CN201110020352.X公开的一种无线充电发射端、接收端和无线充电装置;
但是,在将直流转换为交流过程中,会产生大量的热量,而现有技术专利号201410004299.8公开了一种新型无线充电传输装置,具体公开通过将功率转换电路与发射线圈,通过高频交流电缆隔离开,实现发热的电路板远离无线充电区域的目的,从而大幅度降低无线充 电区域的热量与温度升高幅度,进一步达到大比例减少无线充电发射区域的厚度的有益效果。
进一步地,专利号201410004299.8进一步公开了方案存在电磁干扰十分严重的问题,第一个原因是所述无线充电发射电路模块与所述发射线圈是通过所述高频交流输电线电连接,而所述高频交流输电线长度较长,以及所述无线充电发射电路模与所述发射线圈之间是隔离直流的,以至于所述发射线圈相对于所述无线充电发射电路模块形成了高频低阻的高频交流负载。因此当所述无线充电发射电路模块产生具有宽频谱特性的无线充电所需的交流电并传递给所述发射线圈时,较高频率部分也就是交流电基频的倍频部分的能量并不会被抑制,进而产生了严重的电磁干扰;第二个原因是所述无线充电发射电路模块往往直接连接到直流电源或者工频适配器上,所述无线充电发射电路模块内功率器件开通关闭是产生的电磁干扰信号没有经过滤波就传输给了前端的电源,产生了严重的信号污染。
而专利号201410004299.8公开的技术方案仅提出在所述高频交流输电线上加入屏蔽层,以及将所述屏蔽层电连接在所述无线充电发射电路模块与所述发射线圈的屏蔽网络上,但是并没有揭示所述屏蔽网络的具体实施例和屏蔽目的以及效果;因此专利号201410004299.8并没有给出克服与抑制电磁干扰的有效解决方案,进而在实际产品中存在严重的电磁干扰问题。
根据实验研究表明,在无线充电发射电路模块与发射线圈形成空间分离,再通过高频交流输电线进行电连接的技术方案中,电磁干扰 主要由“较为低频的基频的倍频的功率电流干扰”与“较为高频的功率转换电路的瞬态开关电流干扰”两部分组成,因此针对性增加电磁信号滤波器、电磁噪声抑制电路、电势稳定模块,是可以有效抑制电磁干扰的,而目前市面上还没有出现解决此类问题的产品,或方案。
实用新型内容
为了有效解决上述问题,本实用新型提供一种具有降噪设计的无线能量传输装置。
本实用新型的具体技术方案如下:一种具有降噪设计的无线能量传输装置,所述无线能量传输装置包括功率转换电路板及无线能量传输线圈组,所述功率转换电路板通过高频功率电缆连接所述无线能量传输线圈组;
所述无线能量传输装置还包括稳定电势涡流阻尼器,所述稳定电势涡流阻尼器靠近所述无线能量传输线圈组,并所述稳定电势涡流阻尼器通过导体与所述功率转换电路板的交流低阻固定电平面连接。
进一步地,所述高频功率电缆包括一个或多个用于低损耗传递高频交流电的基本单元,所述基本单元的空间构成了电感-电容低通滤波器。
进一步地,所述基本单元包括至少一路正向高频低损耗电线及至少一路反向高频低损耗电线,所述正向高频低损耗电线与所述反向高频低损耗电线相互之间的空间结构包括平行、绞合、缠绕、编织和/或螺旋关系;
所述正向高频低损耗电线与反向高频低损耗电线分别与所述无 线能量传输线圈组串联连接;
所述正向高频低损耗电线的路数与所述反向高频低损耗电线的路数不同,所述正向高频低损耗电线与所述反向高频低损耗电线处于紧贴状态,相互作用形成电容;
所述基本单元自身构成分布式电感-电容滤波器,以用于抑制电磁干扰。
进一步地,所述基本单元包括至少一路正向高频低损耗电线、软磁材料及至少一路反向高频低损耗电线,所述正向高频低损耗电线、所述软磁材料与所述反向高频低损耗电线相互之间的空间结构包括平行、绞合、缠绕、编织和/或螺旋关系;
所述正向高频低损耗电线与反向高频低损耗电线分别与所述无线能量传输线圈组串联连接;
所述正向高频低损耗电线与所述反向高频低损耗电线处于紧贴状态,相互作用形成电容;
所述基本单元自身构成分布式电感-电容滤波器,以用于抑制电磁干扰。
进一步地,所述的软磁材料具有导电特性。
进一步地,所述基本单元包括正向高频低损耗电线、导电材料以及反向高频低损耗电线组成,所述正向高频低损耗电线、导电材料与反向高频低损耗电线相互之间的空间结构为平行、绞合、缠绕、编织和/或螺旋关系;
所述正向高频低损耗电线与反向高频低损耗电线分别与所述无 线能量传输线圈组串联连接;
所述正向高频低损耗电线与反向高频低损耗电线处于紧贴状态,相互作用形成电容,所述导电材料用于增加电容的容值;
所述基本单元自身构成分布式电感-电容滤波器。
进一步地,所述导电材料具有软磁特性。
进一步地,所述无线能量传输线圈组包括线圈、及具有引导无线充电交变磁场的导磁材料;
所述线圈、导磁材料、及稳定电势涡流阻尼器,三者相邻紧靠设置。
进一步地,所述稳定电势涡流阻尼器上方设置导磁材料,并在所述导磁材料上方设置所述线圈,三者同轴线相邻紧靠设置;
所述稳定电势涡流阻尼器沿着线圈轴线的最大投影长度D≥线圈最大投影长度d的1/8,所述稳定电势涡流阻尼器的几何中心距离线圈轴线距离s≤线圈最大投影长度d。
进一步地,所述稳定电势涡流阻尼器采用与线圈相同轴心的扇形结构,并所述稳定电势涡流阻尼器下方设置所述线圈,所述线圈下方设置导磁材料,三者同轴线相邻紧靠设置;
所述稳定电势涡流阻尼器沿着线圈轴线的最大投影长度D≥线圈最大投影长度d的1/8,所述稳定电势涡流阻尼器的几何中心距离线圈轴线距离s≤线圈最大投影长度d。
进一步地,所述稳定电势涡流阻尼器采用与线圈相同轴心的扇形结构,并所述稳定电势涡流阻尼器上方设置所述线圈,所述稳定电势 涡流阻尼器下方设置导磁材料,三者同轴线相邻紧靠设置;
所述稳定电势涡流阻尼器沿着线圈轴线的最大投影长度D≥线圈最大投影长度d的1/8,所述稳定电势涡流阻尼器的几何中心距离线圈轴线距离s≤线圈最大投影长度d。
进一步地,所述稳定电势涡流阻尼器为具有横截面的长线型导体材料,所述稳定电势涡流阻尼器缠绕或者紧贴在绕成所述线圈的导线侧边,在所述电势涡流阻尼器、及所述线圈下紧靠设置所述导磁材料;
所述稳定电势涡流阻尼器长度L≥线圈的导线长度的1/8。
进一步地,所述无线能量传输装置还包括至少一路滤波电路板,
所述滤波电路板与所述功率转换电路板、无线能量传输线圈组、高频功率电缆实现电连接,具有滤除无线充电高频噪声的功能,以抑制电磁干扰;
所述滤波电路板可以电连接在所述功率转换电路板与所述高频功率电缆之间;
所述滤波电路板可以电连接在若干段相邻的所述高频功率电缆之间;
所述滤波电路板可以电连接在所述无线能量传输线圈组与所述高频功率电缆之间。
进一步地,所述线圈包括至少一个子线圈,所述功率转换电路板上具有桥式电路;
所述子线圈具有两根引线,用于电连接所述桥式电路;
所述桥式电路的输出端与子线圈通过电容实现串联电连接;
所述子线圈的一根引线与一组桥式电路电连接,并另一根在子线圈沿着轴线投影的靠外侧的引线,与所述电容相连。
本实用新型的有益之处:应用本实用新型所述一种具有降噪设计的无线能量传输装置,一方面通过采用特殊结构的高频交流电缆,实现提高功率转换电路开关边沿频率与倍频的传输阻抗,抑制了功率转换电路开关边沿频率与倍频的干扰信号;另一方面为无线能量传输线圈组提供与功率转换电路的交流低阻固定电平面电连接的稳定电势涡流阻尼器,稳定了无线能量传输线圈组的电势位,以及抑制功率传输电路工作频率倍频的交流电流,大幅度降低了相关的电磁干扰。从这两个方面,共同达到在很大范围内提升高频交流阻抗,降低电磁干扰干扰信号的目的,从而解决了电磁干扰问题。
附图说明
图1为本实用新型第一实施例的整体结构示意图;
图2为本实用新型第二实施例的整体结构示意图;
图3为本实用新型第三实施例所述高频功率电缆的基本单元的横截面结构示意图;
图4-A为本实用新型第四实施例所述高频功率电缆的基本单元的横截面结构示意图;
图4-B为本实用新型第四实施例所述高频功率电缆的基本单元的横截面结构示意图;
图5-A为本实用新型第五实施例所述高频功率电缆的基本单元的横截面结构示意图;
图5-B为本实用新型第五实施例所述高频功率电缆的基本单元的横截面结构示意图;
图5-C为本实用新型第五实施例所述高频功率电缆的基本单元的横截面结构示意图;
图6为本实用新型第六实施例所述稳定电势涡流阻尼器整体结构示意图;
图7为本实用新型第七实施例所述稳定电势涡流阻尼器整体结构示意图;
图8为本实用新型第八实施例所述稳定电势涡流阻尼器整体结构示意图;
图9为本实用新型第九实施例所述稳定电势涡流阻尼器整体结构示意图;
图10为本实用新型第十实施例所述线圈电连接方式;
图11为使用本实用新型降噪设计前后的频谱图对比图。
具体实施方式
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细描述。应当理解,此处所描述的具体实施例仅仅用于解释本实用新型,并不用于限定本实用新型。
相反,本实用新型涵盖任何由权利要求定义的在本实用新型的精髓和范围上做的替代、修改、等效方法以及方案。进一步,为了使公众对本实用新型有更好的了解,在下文对本实用新型的细节描述中, 详尽描述了一些特定的细节部分。对本领域技术人员来说没有这些细节部分的描述也可以完全理解本实用新型。
如图1所示,为本实用新型第一实施例的整体结构示意图,该实施例提供了一种具有降噪设计的无线能量传输装置,所述无线能量传输装置包括功率转换电路板101、无线能量传输线圈组、高频功率电缆102、导体103以及稳定电势涡流阻尼器105。其中,所述功率转换电路板101上设置有交流低阻固定电平面119,所述无线能量传输线圈组用于将无线充电所用的高频交流电与高频交变磁场进行转换,所述无线能量传输线圈组包含有线圈104;
所述稳定电势涡流阻尼器105通过所述导体103与功率转换电路板101的交流低阻固定电平面119实现电连接;在本实施例中,所述交流低阻固定电平面119可以是地平面、其他稳定电平面、或通过对于交流阻抗极低的电路接入的地平面或其他稳定电平面;
进一步地,所述导体103采用接入所述功率转换电路板101,可以采用直接电连接接到一个固定的电平面,或者通过一个电路电连接接到固定的电平面,由于所述导体103与连接的“固定的电平面”之间的交流阻抗是极低的,因此在EMC噪声的高频交流电频段就相当于直接接到固定电平面了。
所述功率转换电路板101在工作时,会产生电磁干扰噪声,所述电磁干扰噪声分为频率较低的基频的倍频电噪声,以及频率较高的功率转换电路板101上功率元器件开关时产生的瞬态开关电流电噪声。
在所述线圈104旁侧安装导磁材料117,实现所述导磁材料117 引导线圈104产生的磁场。
如图2所示,为本实用新型第二实施例的整体结构示意图,该实施例提供了一种具有降噪设计的无线能量传输装置,所述无线能量传输装置包括功率转换电路板101、线圈104、高频功率电缆102、导体103、稳定电势涡流阻尼器105、以及第一滤波电路106、第二滤波电路107、第三滤波电路108。其中,第一滤波电路106、第二滤波电路107、第三滤波电路108通过高频功率电缆102与功率转换电路板101、线圈104电连接。
稳定电势涡流阻尼器105通过导体103与功率转换电路板101的交流低阻固定电平面119电连接;在本实施例中,所述交流低阻固定电平面119可以是地平面、其他稳定电平面、或通过对于交流阻抗极低的电路接入的地平面或其他稳定电平面。所述第一滤波电路106、第二滤波电路107、第三滤波电路108的作用是滤除和抑制各种电噪声的干扰信号。在本实施例中,所述线圈104旁边会安装导磁材料117用于引导线圈104产生的磁场。
如图3所示,为本实用新型第三实施例提供一种高频功率电缆102的基本单元的横截面结构示意图,该实施例与上述实施例大部分相同,唯不同之处在于,该实施例提供一种高频功率电缆102的基本单元的横截面结构,所述高频功率电缆102由一个或多个用于低损耗传递高频交流电的基本单元组成,所述基本单元由N路正向高频低损耗电线110以及M路反向高频低损耗电线109组成,N不等于M。
在本实施例中,所述正向高频低损耗电线110的左右两侧对称设 置所述反向高频低损耗电线109,使得所述高频功率电缆102具有电容和电感,形成具有一定截止频率的电容-电感滤波器,从而抑制高频部分的电磁干扰。
由于磁感应强度111与线圈对的空间排布有关,因此该实施例提供的正向高频低损耗电线与反向高频低损耗电线的空间结构,包括分布在一个水平面上,是可以增强电感,进一步提高抑制电磁干扰性能的。
如图4-A所示,为本实用新型第四实施例提供一种高频功率电缆102的基本单元的横截面结构示意图,该实施例与上述实施例大部分相同,唯不同之处在于,该实施例提供一种高频功率电缆102的基本单元的横截面结构,所述高频功率电缆102由一个或多个用于低损耗传递高频交流电的基本单元组成,所述基本单元有正向高频低损耗电线110、软磁材料112和反向高频低损耗电线109三部分组成。
在本实施例中,在所述正向高频低损耗电线110与所述反向高频低损耗电线109之间设置所述软磁材料112,使得所述高频功率电缆102具有电容和电感,并且软磁材料112能大幅度增加高频功率电缆102的电感,因此形成截止频率更低的电容-电感滤波器,以进一步抑制电磁干扰。
如图4-B所示,在另一实施例中,所述软磁材料112为具有导电特性的材料,可明显增加高频功率电缆102的电容,从而进一步降低截止频率,提升抑制电磁干扰的效果。
将具有导电特性的所述软磁材料112可以作为电连接稳定电势 涡流阻尼器105与功率转换电路板101的导体103。由于磁感应强度111与软磁材料的形状、相对磁导率都有关系;
在本实施例中,所述软磁材料112完全包裹正向高频低损耗电线与反向高频低损耗电线的外部,该实施例设计软磁材料的空间结构,可增强电感,进一步提高抑制电磁干扰性能。
如图5-A到图5-C所示,为本实用新型第五实施例提供一种高频功率电缆102的基本单元的横截面结构示意图,该实施例与上述实施例大部分相同,唯不同之处在于,该实施例提供一种高频功率电缆102的基本单元的横截面结构,所述高频功率电缆102由一个或多个用于低损耗传递高频交流电的基本单元组成,所述基本单元有正向高频低损耗电线110、导电材料113和反向高频低损耗电线109三部分组成;
如图5-A所示,所述导电材料113位于正向高频低损耗电线110与反向高频低损耗电线109的同一侧位置处;
如图5-B所示,所述导电材料113位于正向高频低损耗电线110与反向高频低损耗电线109的相对两侧位置处;
如图5-C所示,所述导电材料113位于正向高频低损耗电线110与反向高频低损耗电线109相对的外侧位置处。
上述所述导电材料113处于所述正向高频低损耗电线110与反向高频低损耗电线109的相对位置都使得所述高频功率电缆102具有电容和电感,并且所述导电材料113提高了高频功率电缆102的电容,因此形成截止频率更低的电容-电感滤波器,以进一步抑制电磁干扰。
若所述导电材料113具有软磁特性,所述导电材料113可以作为电连接稳定电势涡流阻尼器105与功率转换电路板101的导体103。将大幅增加高频功率电缆102的电感,进一步降低电容-电感滤波器的截止频率,以再进一步抑制电磁干扰。
如图6所示,为本实用新型第六实施例提供一种稳定电势涡流阻尼器105,所述稳定电势涡流阻尼器应用于上述实施例中,所述稳定电势涡流阻尼器105采用导体材料,在本实施例中,所述稳定电势涡流阻尼器105上方设置导磁材料117,并在所述导磁材料117上方设置所述线圈104,三者同轴线相邻紧靠设置;
所述稳定电势涡流阻尼器105沿着线圈104轴线的最大投影长度D≥线圈104最大投影长度d的1/8,所述稳定电势涡流阻尼器105的几何中心距离线圈104轴线距离s≤线圈104最大投影长度d;
与此同时,所述稳定电势涡流阻尼器105设计为几乎不感应基频交流电流的形状或者尺寸,避免吸收基频交流电流的能量而产生热量。
在本实施例中,所述交流电中较高频率的部分往往是无线能量传输的高频交流电的基本频率的倍频部分。所述无线能量传输的高频交流电的基本频率一般简称为基频。而当给线圈104输入宽频段的交流电118,那么所述交流电中较高频率的部分就会在所述稳定电势涡流阻尼器105中产生与频率成正相关的涡流电流,进而在稳定电势涡流阻尼器105上产生涡流114再进而产生反向交变磁场,抑制所述交流电中较高频的部分电流,从而实现降低较高频率电流的效果,以抑制电磁干扰。
由于功率转换电路板101与线圈104之间是隔离直流导通交流的,并且频率越高导通阻抗越小,因此相对与接入到稳定电源的功率转换电路板101,所述线圈104的电势是浮动的,并且是一个阻抗极低的高频负载电路。因此当线圈104输入宽频段的交流电118时,线圈104会允许交流电中较高频率部分电流进行导通,进而产生严重的电磁干扰。
而通过将稳定电势涡流阻尼器105电连接到功率转换电路的交流低阻固定电平面119上,所述交流低阻固定电平面119可以是地平面、其他稳定电平面、或通过对于交流阻抗极低的电路接入的地平面或其他稳定电平面。因此将所述线圈104控制在稳定的电势位上的,大幅度提高线圈104的高频阻抗,这样就可以大幅度抑制交流电中较高频率的部分电流,因此有效降低电磁干扰。
如图7所示,为本实用新型第七实施例提供一种稳定电势涡流阻尼器105,所述稳定电势涡流阻尼器应用于上述实施例中,所述稳定电势涡流阻尼器105为导体材料,在本实施例中,所述稳定电势涡流阻尼器105采用与线圈104相同轴心的扇形结构,并所述稳定电势涡流阻尼器105下方设置所述线圈104,所述线圈104下方设置导磁材料117,三者同轴线相邻紧靠设置;
所述稳定电势涡流阻尼器105沿着线圈轴线的最大投影长度D≥线圈104最大投影长度d的1/8,并且以及所述稳定电势涡流阻尼器105的几何中心距离线圈104轴线距离s≤线圈104最大投影长度d;
与此同时所述稳定电势涡流阻尼器105被设计成几乎不感应基 频交流电流的形状或者尺寸,避免吸收基频交流电流的能量而产生热量。
在本实施例中,所述交流电中较高频率的部分往往是无线能量传输的高频交流电的基本频率的倍频部分。所述无线能量传输的高频交流电的基本频率一般简称为基频。而当给线圈104输入宽频段的交流电118,那么所述交流电中较高频率的部分就会在所述稳定电势涡流阻尼器105中产生与频率成正相关的涡流电流,进而在稳定电势涡流阻尼器105上产生涡流114再进而产生反向交变磁场,抑制所述交流电中较高频的部分电流,从而实现降低较高频率电流的效果,以抑制电磁干扰。
由于功率转换电路板101与线圈104之间是隔离直流导通交流的,并且频率越高导通阻抗越小,因此相对与接入到稳定电源的功率转换电路板101,线圈104的电势是浮动的,并且是一个阻抗极低的高频负载电路。因此当线圈104输入宽频段的交流电118时,线圈104会允许交流电中较高频率部分电流进行导通,进而产生严重的电磁干扰。
而通过将稳定电势涡流阻尼器105电连接到功率转换电路的交流低阻固定电平面119上,可以将线圈104控制在稳定的电势位上的,大幅度提高线圈104的高频阻抗,这样就可以大幅度抑制交流电中较高频率的部分电流,因此有效降低电磁干扰。所述交流低阻固定电平面119可以是地平面、其他稳定电平面、或通过对于交流阻抗极低的电路接入的地平面或其他稳定电平面。
如图8所示,为本实用新型第八实施例提供一种稳定电势涡流阻 尼器105,所述稳定电势涡流阻尼器应用于上述实施例中,所述稳定电势涡流阻尼器105为导体材料,在本实施例中,所述稳定电势涡流阻尼器105采用与线圈104相同轴心的扇形结构,并所述稳定电势涡流阻尼器105上方设置所述线圈104,所述稳定电势涡流阻尼器105下方设置导磁材料117,三者同轴线相邻紧靠设置;
所述稳定电势涡流阻尼器105沿着线圈轴线的最大投影长度D≥线圈104最大投影长度d的1/8,并且所述稳定电势涡流阻尼器105固定在线圈104与导磁材料117之间,以及所述稳定电势涡流阻尼器105的几何中心距离线圈104轴线距离s≤线圈104最大投影长度d;
与此同时,所述稳定电势涡流阻尼器105被设计成几乎不感应基频交流电流的形状或者尺寸,避免吸收基频交流电流的能量而产生热量。
在本实施例中,所述稳定电势涡流阻尼器105安装在线圈104与导磁材料117之间。所述交流电中较高频率的部分往往是无线能量传输的高频交流电的基本频率的倍频部分。所述无线能量传输的高频交流电的基本频率一般简称为基频。当给线圈104输入宽频段的交流电118,那么所述交流电中较高频率的部分就会在所述稳定电势涡流阻尼器105中产生与频率成正相关的涡流电流,进而在稳定电势涡流阻尼器105上产生涡流114再进而产生反向交变磁场,抑制所述交流电中较高频的部分电流,从而实现降低较高频率电流的效果,以抑制电磁干扰。
由于功率转换电路板101与线圈104之间是隔离直流导通交流的, 并且频率越高导通阻抗越小,因此相对与接入到稳定电源的功率转换电路板101,线圈104的电势是浮动的,并且是一个阻抗极低的高频负载电路。因此当线圈104输入宽频段的交流电118时,线圈104会允许交流电中较高频率部分电流进行导通,进而产生严重的电磁干扰。
而通过将稳定电势涡流阻尼器105电连接到功率转换电路的交流低阻固定电平面119上,所述交流低阻固定电平面119可以是地平面、其他稳定电平面、或通过对于交流阻抗极低的电路接入的地平面或其他稳定电平面。因此将线圈104控制在稳定的电势位上的,大幅度提高线圈104的高频阻抗,这样就可以大幅度抑制交流电中较高频率的部分电流,因此有效降低电磁干扰。
如图9所示,为本实用新型第九实施例提供一种稳定电势涡流阻尼器105,所述稳定电势涡流阻尼器应用于上述实施例中,所述稳定电势涡流阻尼器105为具有一定横截面的长线型导体材料,缠绕或者紧贴在绕成所述线圈104的导线侧边,在所述电势涡流阻尼器105、及所述线圈104下紧靠设置所述导磁材料117;
并且所述稳定电势涡流阻尼器105长度≥线圈104的导线长度的1/8。当给线圈104输入宽频段的交流电118,那么所述交流电中较高频率的部分就会在所述稳定电势涡流阻尼器105中产生与频率成正相关的涡流电流,进而在稳定电势涡流阻尼器105上产生涡流114再进而产生反向交变磁场,抑制所述交流电中较高频的部分电流,从而实现降低较高频率电流的效果,以抑制电磁干扰。
与此同时,由于功率转换电路板101与线圈104之间是隔离直流 导通交流的,并且频率越高导通阻抗越小,因此相对与接入到稳定电源的功率转换电路板101,线圈104的电势是浮动的,并且是一个阻抗极低的高频负载电路。
本实施例中,所述交流电中较高频率的部分往往是无线能量传输的高频交流电的基本频率的倍频部分。所述无线能量传输的高频交流电的基本频率一般简称为基频。而当线圈104输入宽频段的交流电118时,线圈104会允许交流电中较高频率部分电流进行导通,进而产生严重的电磁干扰。通过将稳定电势涡流阻尼器105电连接到功率转换电路的交流低阻固定电平面119上,所述交流低阻固定电平面119可以是地平面、其他稳定电平面、或通过对于交流阻抗极低的电路接入的地平面或其他稳定电平面。因此将线圈104控制在稳定的电势位上的,大幅度提高线圈104的高频阻抗,这样就可以大幅度抑制交流电中较高频率的部分电流,因此有效降低电磁干扰。
如图10为本实用新型第十实施例,所述第十实施例提供一种线圈104电连接方式。所述线圈104电连接方式应用于上述实施例中,所述功率转换电路板101上的无线充电交流电产生电路,一般采用桥式电路120实现,同时为了避免线圈104快速饱和而导通直流,因此会在桥式电路120与线圈104之间串联电容121。
所述线圈104具有两根或以上的引线接头,并且任意两根引线都可以组成一个子线圈,所述子线圈的一根引线与一组桥式电路120电连接。并另一根在每组子线圈上,沿着轴线投影的靠外侧的引线,与所述电容121相连,实现较优的电磁干扰抑制效果。
如图11所示,为使用本实用新型降噪设计前后的频谱图对比,只有全频域噪声信号强度线115上任一频率的噪声信号幅值低于允许的阈值线116,才符合低噪声的标准。在加入降噪设计前,在很多频率的位置都出现了噪声信号幅值高于阈值线116的现象,这是不满足低噪声标准的。在加入本实用新型的降噪设计后,所有频率的噪声信号强度都低于阈值线116,就满足了低噪声标准。
因此本实用新型一方面通过采用特殊结构的高频交流电缆,实现提高功率转换电路开关边沿频率与倍频的传输阻抗,抑制了功率转换电路开关边沿频率与倍频的干扰信号;
另一方面为无线能量传输线圈组提供与功率转换电路的交流低阻固定电平面电连接的稳定电势涡流阻尼器,稳定了无线能量传输线圈组的电势位,以及抑制功率传输电路工作频率倍频的交流电流,大幅度降低了相关的电磁干扰。从这两个方面,共同达到在很大范围内提升高频交流阻抗,降低电磁干扰干扰信号的目的,从而解决了电磁干扰问题。
对于本领域的普通技术人员而言,根据本实用新型的教导,在不脱离本实用新型的原理与精神的情况下,对实施方式所进行的改变、修改、替换和变形仍落入本实用新型的保护范围之内。

Claims (14)

  1. 一种具有降噪设计的无线能量传输装置,所述无线能量传输装置包括功率转换电路板及无线能量传输线圈组,所述功率转换电路板通过高频功率电缆连接所述无线能量传输线圈组,其特征在于,
    所述无线能量传输装置还包括稳定电势涡流阻尼器,所述稳定电势涡流阻尼器靠近所述无线能量传输线圈组,并所述稳定电势涡流阻尼器通过导体与所述功率转换电路板的交流低阻固定电平面连接。
  2. 根据权利要求1所述一种具有降噪设计的无线能量传输装置,其特征在于,所述高频功率电缆包括一个或多个用于低损耗传递高频交流电的基本单元,所述基本单元的空间构成了电感-电容低通滤波器。
  3. 根据权利要求2所述一种具有降噪设计的无线能量传输装置,其特征在于,所述基本单元包括至少一路正向高频低损耗电线及至少一路反向高频低损耗电线,所述正向高频低损耗电线与所述反向高频低损耗电线相互之间的空间结构包括平行、绞合、缠绕、编织和/或螺旋关系;
    所述正向高频低损耗电线与反向高频低损耗电线分别与所述无线能量传输线圈组串联连接;
    所述正向高频低损耗电线的路数与所述反向高频低损耗电线的路数不同,所述正向高频低损耗电线与所述反向高频低损耗电线处于紧贴状态,相互作用形成电容;
    所述基本单元自身构成分布式电感-电容滤波器,以用于抑制电 磁干扰。
  4. 根据权利要求2所述一种具有降噪设计的无线能量传输装置,其特征在于,所述基本单元包括至少一路正向高频低损耗电线、软磁材料及至少一路反向高频低损耗电线,所述正向高频低损耗电线、所述软磁材料与所述反向高频低损耗电线相互之间的空间结构包括平行、绞合、缠绕、编织和/或螺旋关系;
    所述正向高频低损耗电线与反向高频低损耗电线分别与所述无线能量传输线圈组串联连接;
    所述正向高频低损耗电线与所述反向高频低损耗电线处于紧贴状态,相互作用形成电容;
    所述基本单元自身构成分布式电感-电容滤波器,以用于抑制电磁干扰。
  5. 根据权利要求4所述一种具有降噪设计的无线能量传输装置,其特征在于,所述的软磁材料具有导电特性。
  6. 根据权利要求2所述一种具有降噪设计的无线能量传输装置,其特征在于,所述基本单元包括正向高频低损耗电线、导电材料以及反向高频低损耗电线组成,所述正向高频低损耗电线、导电材料与反向高频低损耗电线相互之间的空间结构为平行、绞合、缠绕、编织和/或螺旋关系;
    所述正向高频低损耗电线与反向高频低损耗电线分别与所述无线能量传输线圈组串联连接;
    所述正向高频低损耗电线与反向高频低损耗电线处于紧贴状态, 相互作用形成电容,所述导电材料用于增加电容的容值;
    所述基本单元自身构成分布式电感-电容滤波器。
  7. 根据权利要求6所述一种具有降噪设计的无线能量传输装置,其特征在于,所述导电材料具有软磁特性。
  8. 根据权利要求1所述一种具有降噪设计的无线能量传输装置,其特征在于,所述无线能量传输线圈组包括线圈、及具有引导无线充电交变磁场的导磁材料;
    所述线圈、导磁材料、及稳定电势涡流阻尼器,三者相邻紧靠设置。
  9. 根据权利要求8所述一种具有降噪设计的无线能量传输装置,其特征在于,所述稳定电势涡流阻尼器上方设置导磁材料,并在所述导磁材料上方设置所述线圈,三者同轴线相邻紧靠设置;
    所述稳定电势涡流阻尼器沿着线圈轴线的最大投影长度D≥线圈最大投影长度d的1/8,所述稳定电势涡流阻尼器的几何中心距离线圈轴线距离s≤线圈最大投影长度d。
  10. 根据权利要求8所述一种具有降噪设计的无线能量传输装置,其特征在于,所述稳定电势涡流阻尼器采用与线圈相同轴心的扇形结构,并所述稳定电势涡流阻尼器下方设置所述线圈,所述线圈下方设置导磁材料,三者同轴线相邻紧靠设置;
    所述稳定电势涡流阻尼器沿着线圈轴线的最大投影长度D≥线圈最大投影长度d的1/8,所述稳定电势涡流阻尼器的几何中心距离线圈轴线距离s≤线圈最大投影长度d。
  11. 根据权利要求8所述一种具有降噪设计的无线能量传输装置,其特征在于,所述稳定电势涡流阻尼器采用与线圈相同轴心的扇形结构,并所述稳定电势涡流阻尼器上方设置所述线圈,所述稳定电势涡流阻尼器下方设置导磁材料,三者同轴线相邻紧靠设置;
    所述稳定电势涡流阻尼器沿着线圈轴线的最大投影长度D≥线圈最大投影长度d的1/8,所述稳定电势涡流阻尼器的几何中心距离线圈轴线距离s≤线圈最大投影长度d。
  12. 根据权利要求8所述一种具有降噪设计的无线能量传输装置,其特征在于,所述稳定电势涡流阻尼器为具有横截面的长线型导体材料,所述稳定电势涡流阻尼器缠绕或者紧贴在绕成所述线圈的导线侧边,在所述电势涡流阻尼器、及所述线圈下紧靠设置所述导磁材料;
    所述稳定电势涡流阻尼器长度L≥线圈的导线长度的1/8。
  13. 根据权利要求1-12任意之一所述一种具有降噪设计的无线能量传输装置,其特征在于,所述无线能量传输装置还包括至少一路滤波电路板,
    所述滤波电路板与所述功率转换电路板、无线能量传输线圈组、高频功率电缆实现电连接,具有滤除无线充电高频噪声的功能,以抑制电磁干扰;
    所述滤波电路板可以电连接在所述功率转换电路板与所述高频功率电缆之间;
    所述滤波电路板可以电连接在若干段相邻的所述高频功率电缆之间;
    所述滤波电路板可以电连接在所述无线能量传输线圈组与所述高频功率电缆之间。
  14. 根据权利要求1-12任意之一所述一种具有降噪设计的无线能量传输装置,其特征在于,所述线圈包括至少一个子线圈,所述功率转换电路板上具有桥式电路;
    所述子线圈具有两根引线,用于电连接所述桥式电路;
    所述桥式电路的输出端与子线圈通过电容实现串联电连接;
    所述子线圈的一根引线与一组桥式电路电连接,并另一根在子线圈沿着轴线投影的靠外侧的引线,与所述电容相连。
PCT/CN2020/072926 2018-12-03 2020-01-19 一种具有降噪设计的无线能量传输装置 WO2020147853A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20740849.3A EP3916957A4 (en) 2018-12-03 2020-01-19 WIRELESS POWER TRANSMITTER WITH NOISE REDUCING CONSTRUCTION
US17/379,029 US11750035B2 (en) 2018-12-03 2021-07-19 Wireless power transfer device with electromagnetic interference (EMI) suppression

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201811463012 2018-12-03
CN201920087512.4U CN210041438U (zh) 2018-12-03 2019-01-19 一种具有降噪设计的无线能量传输装置
CN201920087512.4 2019-01-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/379,029 Continuation US11750035B2 (en) 2018-12-03 2021-07-19 Wireless power transfer device with electromagnetic interference (EMI) suppression

Publications (1)

Publication Number Publication Date
WO2020147853A1 true WO2020147853A1 (zh) 2020-07-23

Family

ID=66234121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072926 WO2020147853A1 (zh) 2018-12-03 2020-01-19 一种具有降噪设计的无线能量传输装置

Country Status (4)

Country Link
US (1) US11750035B2 (zh)
EP (1) EP3916957A4 (zh)
CN (2) CN210041438U (zh)
WO (1) WO2020147853A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638973A (zh) * 2018-11-30 2019-04-16 深圳市蓝禾技术有限公司 无线充电器
CN210041438U (zh) * 2018-12-03 2020-02-07 邢益涛 一种具有降噪设计的无线能量传输装置
CN111313492A (zh) * 2019-11-27 2020-06-19 邢益涛 一种模块化的无线充电系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715781A (zh) * 2014-01-06 2014-04-09 邢益涛 一种新型无线充电传输装置
US20140191568A1 (en) * 2013-01-04 2014-07-10 Mojo Mobility, Inc. System and method for powering or charging multiple receivers wirelessly with a power transmitter
WO2015197443A1 (en) * 2014-06-25 2015-12-30 Koninklijke Philips N.V. Wireless inductive power transfer
CN105448490A (zh) * 2014-12-04 2016-03-30 深圳市高瓴科技有限公司 同轴结构高效能超高频电子变压器
CN108461264A (zh) * 2018-02-09 2018-08-28 浙江大学 一种偏移容错范围大的无线电能传输松散磁耦合变压器装置及其电路
CN109698558A (zh) * 2018-12-03 2019-04-30 邢益涛 一种具有降噪设计的无线能量传输装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1941541A (zh) 2005-09-29 2007-04-04 英华达(上海)电子有限公司 手持设备的无线充电装置
JP4752879B2 (ja) * 2008-07-04 2011-08-17 パナソニック電工株式会社 平面コイル
JP5554937B2 (ja) * 2009-04-22 2014-07-23 パナソニック株式会社 非接触給電システム
CN102593957A (zh) 2011-01-18 2012-07-18 深圳市博巨兴实业发展有限公司 一种无线充电发射端、接收端和无线充电装置
US9018904B2 (en) * 2011-08-12 2015-04-28 GM Global Technology Operations LLC Wireless battery charging apparatus mounted in a vehicle designed to reduce electromagnetic interference
CN104485755B (zh) * 2014-12-04 2017-05-03 珠海许继电气有限公司 一种基于分形平面线圈的多频谐振无线电能传输系统
US10263471B2 (en) * 2015-03-29 2019-04-16 Chargedge, Inc. Multiple interleaved coil structures for wireless power transfer
CN204559381U (zh) * 2015-03-30 2015-08-12 广东美的制冷设备有限公司 具有电磁干扰抑制功能的滤波电路、开关电源及家用电器
EP3086154B1 (en) * 2015-04-24 2022-08-31 LG Innotek Co., Ltd. Lens moving apparatus and camera module and portable terminal including the same
EP3147534B1 (en) * 2015-09-23 2018-09-19 Mag Soar Sl Enhanced magnetic vibration damper with mechanical impedance matching
CN105429306B (zh) * 2015-11-24 2019-02-12 深圳市特斯拉无线设备有限公司 一种无线充电能量输出装置及其充电方法
US20170271072A1 (en) * 2016-03-15 2017-09-21 Samsung Electro-Mechanics Co., Ltd. Cover and electronic device including the same
JP6522546B2 (ja) * 2016-05-12 2019-05-29 マクセル株式会社 電力コイル
US10068704B2 (en) * 2016-06-23 2018-09-04 Qualcomm Incorporated Shielded antenna to reduce electromagnetic interference (EMI) and radio frequency (RF) interference in a wireless power transfer system
CN107781338B (zh) * 2016-08-25 2020-06-09 中国航空工业集团公司西安飞行自动控制研究所 一种励磁式电涡流阻尼器及阻尼系数连续可调的方法
JP6565943B2 (ja) * 2017-01-23 2019-08-28 トヨタ自動車株式会社 送電装置及び電力伝送システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140191568A1 (en) * 2013-01-04 2014-07-10 Mojo Mobility, Inc. System and method for powering or charging multiple receivers wirelessly with a power transmitter
CN103715781A (zh) * 2014-01-06 2014-04-09 邢益涛 一种新型无线充电传输装置
WO2015197443A1 (en) * 2014-06-25 2015-12-30 Koninklijke Philips N.V. Wireless inductive power transfer
CN105448490A (zh) * 2014-12-04 2016-03-30 深圳市高瓴科技有限公司 同轴结构高效能超高频电子变压器
CN108461264A (zh) * 2018-02-09 2018-08-28 浙江大学 一种偏移容错范围大的无线电能传输松散磁耦合变压器装置及其电路
CN109698558A (zh) * 2018-12-03 2019-04-30 邢益涛 一种具有降噪设计的无线能量传输装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916957A4

Also Published As

Publication number Publication date
US11750035B2 (en) 2023-09-05
US20210344230A1 (en) 2021-11-04
CN109698558B (zh) 2024-03-29
EP3916957A1 (en) 2021-12-01
CN210041438U (zh) 2020-02-07
EP3916957A4 (en) 2022-12-21
CN109698558A (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
WO2020147853A1 (zh) 一种具有降噪设计的无线能量传输装置
US11062837B2 (en) Planar transformer, power conversion circuit, and adapter
CN104937828B (zh) 降噪屏蔽电缆
CN202077249U (zh) 一种抗电磁干扰及保护器
JPH04229076A (ja) 放射電磁妨害を抑制した電源
CN210985938U (zh) 一种高频emc滤波电路及家用电器
CN203645532U (zh) 一种新能源汽车用高压部件电磁兼容滤波电路
WO2024082786A1 (zh) 一种无线充电器
CN211557135U (zh) 包括碳化硅充电模组的充电装置
CN103259399A (zh) 一种电源适配器电磁兼容的实现方法
CN106409485A (zh) 变压器
TWM466365U (zh) 網路訊號耦合之雜訊濾除電路
CN107800199A (zh) 一种电磁干扰抑制电路及电能发射端
TW201230672A (en) Denoising filter
CN203118703U (zh) 一种改善共模辐射干扰的共模电感
KR20140123255A (ko) 출력권선으로 결합되는 전기적 잡음을 차단하는 자기에너지전달소자 및 전원장치
CN205810511U (zh) 一种共模电感
CN102810385B (zh) 抑制过高功率传输的信号隔离变压器
CN101420842B (zh) 可降低电源线辐射的电器设备
CN202094796U (zh) 一种变频器输入电源滤波线路装置
JP2016208505A (ja) 磁気部品、および、電気回路
US20220108829A1 (en) Wire for use in transformer winding and transformer
CN103956215A (zh) 一种屏蔽电缆
CN218648632U (zh) 一种无线充电器
CN104702096B (zh) 含解耦电路的数字有源emi滤波系统及解耦电路的设计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020740849

Country of ref document: EP

Effective date: 20210819