WO2020147580A1 - 光源参数测量方法、装置、照明系统和终端设备 - Google Patents
光源参数测量方法、装置、照明系统和终端设备 Download PDFInfo
- Publication number
- WO2020147580A1 WO2020147580A1 PCT/CN2019/130412 CN2019130412W WO2020147580A1 WO 2020147580 A1 WO2020147580 A1 WO 2020147580A1 CN 2019130412 W CN2019130412 W CN 2019130412W WO 2020147580 A1 WO2020147580 A1 WO 2020147580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light source
- color
- measured
- module
- value
- Prior art date
Links
- 238000000691 measurement method Methods 0.000 title abstract description 7
- 238000005286 illumination Methods 0.000 title abstract description 4
- 238000009877 rendering Methods 0.000 claims abstract description 62
- 230000004044 response Effects 0.000 claims abstract description 45
- 238000005259 measurement Methods 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000007781 pre-processing Methods 0.000 claims abstract description 20
- 238000010606 normalization Methods 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims abstract description 15
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 238000010276 construction Methods 0.000 claims description 15
- 238000004891 communication Methods 0.000 claims description 12
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000012549 training Methods 0.000 claims description 8
- 230000003595 spectral effect Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 description 8
- 230000004907 flux Effects 0.000 description 6
- 238000013145 classification model Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000003062 neural network model Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000007637 random forest analysis Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
- H05B47/11—Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/20—Controlling the colour of the light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/44—Electric circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/462—Computing operations in or between colour spaces; Colour management systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/46—Measurement of colour; Colour measuring devices, e.g. colorimeters
- G01J3/50—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
- G01J3/505—Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors measuring the colour produced by lighting fixtures other than screens, monitors, displays or CRTs
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B47/00—Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
- H05B47/10—Controlling the light source
- H05B47/105—Controlling the light source in response to determined parameters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/40—Control techniques providing energy savings, e.g. smart controller or presence detection
Definitions
- the embodiments of the present invention relate to the field of light source parameter measurement, and in particular, to a light source parameter measurement method, device, lighting system, and terminal equipment.
- a spectrometer In the fields of smart lighting, smart lighting, etc., in order to realize smart lighting, it is usually necessary to measure the light source parameters of the lighting equipment, such as color parameters, color rendering index, etc. In related technologies, a spectrometer is usually used for measurement. Although the spectrometer can accurately measure the light source parameters of the light source, the spectrometer has the problem of troublesome measurement due to the complicated measurement principle; and the spectrometer is large in size and expensive, so it is not suitable for large-scale application in intelligent lighting. Therefore, it is necessary to provide a simple technical solution for light source parameter measurement.
- An embodiment of the present invention provides a method for measuring light source parameters, including: collecting signal values of a color sensor for the light source to be measured, the color sensor including at least 6 response channels; preprocessing the collected signal values, the preprocessing Including normalization processing and normalization processing; construct model features according to the preprocessed signal value, and determine the light source type of the light source to be measured according to the model features; input the model feature and the determined light source type
- the color rendering index prediction model obtains the color rendering index of the light source to be measured.
- the embodiment of the present invention also provides a light source parameter measurement device, which includes a color sensor, a signal preprocessing module, a feature construction module, a light source type classification module, and a color rendering index prediction module.
- the color sensor The signal value of the light source, the color sensor includes at least 6 response channels; the signal preprocessing module is used to preprocess the signal value output by the color sensor, and the preprocessing includes normalization and normalization.
- the feature construction module is used to construct model features based on the preprocessed signal value;
- the light source type classification module is used to determine the light source type of the light source to be measured based on the model features;
- the color rendering index prediction The module is used to input the model characteristics and the determined light source type into the color rendering index prediction model to obtain the color rendering index of the light source to be measured.
- the embodiment of the present invention also provides a lighting system, including the light source parameter measurement device as described in the above aspects, and also includes a lighting system communication module, a control terminal, and lighting equipment; wherein, the control terminal is used to pass the lighting
- the system communication module obtains the light source parameter of the light source parameter measuring device for the lighting device; controls the lighting device and/or displays the light source parameter according to the light source parameter.
- An embodiment of the present invention also provides a terminal device, including the light source parameter measurement device as described in the foregoing aspects.
- FIG. 1 is a schematic flowchart of a method for measuring light source parameters according to an embodiment of the present invention
- FIG. 2 is a schematic diagram of a partial structure of a light source parameter measurement device provided by an embodiment of the present invention
- Fig. 3 is a schematic diagram of a specific structure of a light source parameter measuring device provided by an embodiment of the present invention.
- an embodiment of the present invention provides a method for measuring light source parameters, and the method includes the following steps:
- S102 Collect the signal value of the color sensor for the light source to be measured.
- the above-mentioned color sensor includes at least 6 response channels, and the wavelengths corresponding to the plurality of response channels (ie, the above-mentioned at least 6) response channels are uniformly distributed in the wavelength range of visible light (380-780 nm).
- the uniform distribution mentioned here can be uniform in a non-strict sense.
- the color sensor includes 6 response channels, and the corresponding wavelengths of these 6 response channels are 450nm, 500nm, 550nm, 570nm, respectively. , 600nm, 650nm.
- the above-mentioned color sensor has at least one response channel in the first wavelength range, the second wavelength range, and the third wavelength range, respectively; wherein, the first wavelength is The value range is 435-455 nm, the value range of the second wavelength is 545-565 nm, the value range of the third wavelength is 590-610 nm, and the unit is nm.
- the above-mentioned color sensor has at least one response channel at 445nm, 555nm, 600nm wavelength position or side wavelength position (peak wavelength position difference ⁇ 10nm, further wavelength position difference ⁇ 5nm), that is, at 445nm wavelength
- the at least six response channels are narrow-band response channels, and the half widths of the at least six response channels are all less than or equal to a preset value.
- the half-width of the response spectrum corresponding to each response channel of the above-mentioned color sensor is less than or equal to 50.0nm, that is, the color sensor with narrow-band response is adopted in the present invention, which can more accurately measure the light source to be measured. Light source parameters.
- the number of response channels of the color sensor is 6-18, which is 6-18.
- the wavelengths corresponding to the response channels are uniformly distributed within the wavelength range of visible light.
- the above-mentioned preprocessing process includes normalization processing and normalization processing.
- the signal value collected by the color sensor is ⁇ T 1 , T 2 , T 3 ,..., T i ⁇ , where i represents the maximum value of the sequence number of the response channel of the color sensor.
- the normalization method of the N-th order norm can be used, that is, firstly, the scaling factor F is obtained by using the following formula,
- ⁇ is the average and ⁇ is the standard deviation.
- ⁇ and ⁇ can be obtained in advance based on a large number of relevant sample sets.
- the signal value of the above-mentioned color sensor for multiple reference light sources can be obtained in advance; then, the signal value of each reference light source is normalized by the above-mentioned normalization processing method; in this way, According to the normalized signal values of the multiple reference light sources, the average value ⁇ and the standard deviation ⁇ can be calculated.
- normalization processing and normalization processing are performed on the collected signal values, thereby facilitating model feature construction in subsequent steps and determining the light source type of the light source to be measured.
- S106 Construct a model feature according to the preprocessed signal value, and determine the light source type of the light source to be measured according to the constructed model feature.
- the model feature constructed above matches the preset color rendering index prediction model.
- model training may be performed on the signal values of the multiple reference light sources and the color rendering index of the multiple reference light sources according to the color sensor to generate the color rendering index prediction model.
- the color rendering index prediction model can be used to predict the color rendering index of the light source to be measured.
- the color rendering index of the multiple reference light sources can be obtained by a spectrometer. Although the process of measuring the color rendering index by the spectrometer is complicated, the measurement accuracy of the color rendering index can be guaranteed. In the modeling of the color rendering index prediction model, the accurate color rendering index is obtained by the spectrometer, which further improves the accuracy of the prediction of the model training.
- the aforementioned color rendering index prediction model may adopt a neural network model, a regression tree model, a generalized linear regression model, etc., or a combination and stack of the above models.
- model features required by the color rendering index prediction model feature construction is performed on the signal value preprocessed in step S104, and the model features matched by the color rendering index prediction model are constructed.
- the constructed model features can include linear features, nonlinear features, and combined features based on the above two features.
- the model features constructed above match the model features required by the preset color rendering index prediction model, that is, the step constructs The characteristics of the model match the aforementioned preset color rendering index prediction model.
- the following feature construction formula can be used to perform feature construction operations on the multiple signal values preprocessed in step S104:
- f(x), g(x), and h(x) represent linear feature construction function, nonlinear feature construction function, and combined feature construction function, respectively.
- the light source type Y of the light source to be tested can also be determined according to the constructed model features, where the light source type Y includes but not limited to light emitting diodes (LED), compact fluorescent lamps or fluorescent lamps (CFL), high pressure gas discharge lamp (HID), natural light, etc.
- LED light emitting diodes
- CFL compact fluorescent lamps or fluorescent lamps
- HID high pressure gas discharge lamp
- a light source type classification model may be used to determine the light source type Y of the light source to be measured, where the light source type classification model may be a neural network model, a support vector machine model (SVM), a decision tree model, a random forest model, etc., or Combination and stacking of the above models.
- the modeling process of the light source type classification model is similar to the modeling process of the aforementioned color rendering index prediction model, and will not be repeated here.
- the color rendering index prediction model is provided with different weighting coefficients for different types of light sources, so as to improve the prediction accuracy of the color rendering index prediction model.
- S108 Input the model characteristics and the light source type into the color rendering index prediction model to obtain the color rendering index of the light source to be measured.
- the light source parameter measurement method collects the signal value of the color sensor for the light source to be measured, preprocesses the collected signal value and constructs the model feature, determines the light source type of the light source to be measured according to the model feature, and constructs
- the color rendering index of the light source to be measured can be obtained by inputting the model characteristics and the determined light source type into the color rendering index prediction model. Compared with the method of measuring the color rendering index of the spectrometer in the prior art, only the color sensor and the constructed display are needed. Color index prediction model, the measurement process of color rendering index is simple.
- step S102 after collecting the signal value of the color sensor for the light source to be measured in step S102, it may further include the following steps: according to the collected signal value and the preset The conversion coefficient is used to obtain the tristimulus value of the light source to be measured; according to the obtained tristimulus value, at least one of the color coordinates, color temperature and illuminance of the light source to be measured is obtained.
- the tristimulus of the light source to be measured can be obtained based on the following formula value:
- X, Y, Z respectively represent the tristimulus value of the light source to be measured;
- [K sensor ] is the conversion coefficient, which can be a matrix coefficient.
- the following formulas can be used to obtain the color coordinates of the light source to be measured.
- x and y respectively represent the abscissa and ordinate values of the color coordinates (x, y);
- X, Y, and Z respectively represent the tristimulus values of the light source to be measured.
- the following formula can also be used to obtain the color temperature CCT of the light source to be measured.
- variable n can be calculated based on the abscissa and ordinate values of the color coordinate of the light source to be measured:
- n x-0.3320/0.1858-y
- the following formula may be used to obtain the illuminance of the light source to be measured.
- K illuminance is a constant
- Y is the green primary color stimulus in the tristimulus value of the light source to be measured.
- the K illuminance can be tested and compared with a standard spectral illuminance meter and the light source parameter measurement device provided in the embodiment of the present invention (introduced in the subsequent embodiments) at the same position of the reference light source:
- illuminance std is the illuminance value of the standard spectral illuminance meter for the reference light source
- Y std is the illuminance value of the light source parameter measurement device provided by the embodiment of the present invention for the reference light source.
- the conversion coefficient [K sensor ] is needed to calculate the tristimulus value of the light source to be measured. In one embodiment, before the above multiple embodiments, the following steps may be further included:
- the conversion coefficient [K sensor ] is calculated.
- LED lamps with different color temperatures including but not limited to LED lamps with different color temperatures, fluorescent lamps with different color temperatures, incandescent lamps with different color temperatures, and ceramic metal halide lamps CDM with different color temperatures.
- the number of reference lamps ⁇ n*the number of response channels of the color sensor, n ⁇ 1, and n is not limited to an integer; the luminous flux range of the above-mentioned reference lamp may be 100-4000lm, or the illumination range may be 100-4000lx.
- At least one reference lamp is included in different luminous flux ranges or illuminance ranges.
- the luminous fluxes of the plurality of reference lamps are uniformly distributed within the luminous flux range, or the illuminance ranges of the plurality of reference lamps are uniformly distributed within the illuminance range.
- the embodiment of the present invention provides The light source parameter measuring device (introduced in the subsequent embodiments) is placed on the inner section of the integrating sphere, and the receiving direction is directly on the center of the integrating sphere.
- the integrating sphere is a cavity sphere whose inner wall is coated with a white diffuse reflection material, also called a photometric sphere, a luminous sphere, etc. The light of the integrating sphere is reflected multiple times by the inner wall coating to form a uniform illumination on the inner wall.
- M and N refer to the following formulas respectively:
- the above embodiments obtain the conversion coefficient [K sensor ] through calculation, and use [K sensor ] to calculate the color coordinate, color temperature, and illuminance of the light source to be measured. Because a large number of reference lamps are used when calculating the conversion coefficient, and the A spectrometer with higher measurement accuracy improves the accuracy of the obtained conversion coefficient [K sensor ], so that the color coordinates, color temperature and illuminance of the light source to be measured based on the conversion coefficient [K sensor ] have higher accuracy.
- the embodiment of the present invention also provides a light source parameter measurement device, which includes a color sensor 302 and a micro-control unit MCU303, such as As shown in FIG. 2, the MCU 303 includes a signal preprocessing module 201, a feature construction module 202, a light source type classification module 203, and a color rendering index prediction module 204.
- the color sensor 302 can be used to output the light source to be tested.
- the color sensor includes at least 6 response channels; the signal preprocessing module 201 can be used to preprocess the signal value output by the color sensor 302, and the preprocessing includes normalization and Normalization processing; the feature construction module 202 can be used to construct model features based on the preprocessed signal value; the light source type classification module 203 can be used to determine the light source type of the light source to be tested based on the model features; The color rendering index prediction module 204 may be used to input the model characteristics and the determined light source type into the color rendering index prediction model to obtain the color rendering index of the light source to be measured.
- the above-mentioned signal preprocessing module 201, feature construction module 202, light source type classification module 203, and color rendering index prediction module 204 may also be integrated in a terminal device, such as a mobile phone, and It is not integrated in the MCU of the embodiment of the present invention.
- the light source parameter measurement device collects the signal value of the color sensor for the light source to be measured, preprocesses the collected signal value and constructs the model feature, determines the light source type of the light source to be measured according to the model feature, and constructs
- the color rendering index of the light source to be measured can be obtained by inputting the model characteristics and the determined light source type into the color rendering index prediction model. Compared with the method of measuring the color rendering index of the spectrometer in the prior art, only the color sensor and the constructed display are needed. Color index prediction model, the measurement process of color rendering index is simple.
- the MCU303 further includes a color parameter measurement module (not shown), which is used to obtain the tristimulus of the light source to be measured according to the collected signal value and a preset conversion coefficient. Value; According to the tristimulus value, at least one of the color coordinates, color temperature and illuminance of the light source to be measured is obtained.
- a color parameter measurement module (not shown), which is used to obtain the tristimulus of the light source to be measured according to the collected signal value and a preset conversion coefficient. Value; According to the tristimulus value, at least one of the color coordinates, color temperature and illuminance of the light source to be measured is obtained.
- the color parameter measurement module is further configured to use the signal value of the color sensor with respect to the plurality of first reference light sources, and the three parameters of the spectrometer for the plurality of first reference light sources. Stimulus value, the conversion coefficient is calculated.
- the MCU 303 further includes a model training module (not shown), which is used to determine the signal values of the multiple second reference light sources according to the color sensor and the multiple second reference light sources. Model training is performed on the color rendering index of the two reference light sources, and the color rendering index prediction model 204 is generated.
- the number of the at least six response channels is 6-18; the wavelengths corresponding to the at least six response channels are uniformly distributed within the wavelength range of visible light.
- the color sensor 302 is a narrowband color sensor.
- the color sensor has at least one response channel in each of the first wavelength range, the second wavelength range, and the third wavelength range; wherein, The first wavelength ranges from 435 to 455 nm, the second wavelength ranges from 545 to 565 nm, and the third wavelength ranges from 590 to 610 nm.
- FIG. 3 it further includes: at least one of a lens 301, a communication module, and a housing (see the outermost frame line in FIG. 3, not labeled); wherein, The lens is used to perform uniform light processing on the light source to be measured; and the communication module is used to receive control instructions for performing light source parameter measurement; and the color sensor, signal preprocessing module, and feature building module , The light source type classification module and the color rendering index prediction module are all contained in the casing.
- it further includes: a deviation calculation module (not shown) for determining the deviation value of the light source parameter obtained by the device.
- it further includes: an illuminance coefficient determination module (not shown), which is used to calculate for the third reference light source based on the illuminance value of the standard spectral illuminance meter and the illuminance value of the device The illuminance coefficient of the device, and the illuminance coefficient is used to determine the illuminance of the light source to be measured.
- an illuminance coefficient determination module (not shown), which is used to calculate for the third reference light source based on the illuminance value of the standard spectral illuminance meter and the illuminance value of the device The illuminance coefficient of the device, and the illuminance coefficient is used to determine the illuminance of the light source to be measured.
- the light source parameter measurement device can refer to the flow of the light source parameter measurement method corresponding to the embodiment of the present invention, and each unit/module in the light source parameter measurement device and the above-mentioned other operations and/or functions are respectively to achieve the above For the sake of brevity, the corresponding process in the method for measuring the parameters of the light source will not be repeated here.
- the light source parameter measurement device provided in each of the foregoing embodiments may further include a communication module, for example, a Bluetooth module or a wifi module.
- a communication module for example, a Bluetooth module or a wifi module.
- the light source parameter measurement device provided by each of the above embodiments can be used alone as a measurement device to measure the light source parameters of the light source to be measured; it can also be controlled and measured by the mobile phone/iPad APP; it can also be integrated into the lighting system as a component in.
- the embodiment of the present invention also provides a lighting system (not shown), which includes a lighting device and the light source parameter measurement device as described in each of the above embodiments, and may also include a lighting system communication module, a control terminal, and the like.
- the lighting device may be a decorative lamp, a pendant lamp, a bulb lamp, a candle bulb lamp, a G bulb lamp or a down lamp.
- the communication module may be a module that communicates in a wired manner, or may be a wireless module such as Bluetooth and zigbee.
- the control terminal can be used to obtain the light source parameters of the light source parameter measuring device for the lighting equipment through the lighting system communication module, and then switch the lighting of the lighting device according to the light source parameters, adjust the brightness, etc., to achieve intelligence ⁇ lighting.
- the control terminal may be a mobile phone, etc., and may also be used to display the light source parameters in real time.
- the lighting system provided by the embodiments of the present invention can achieve the same or equivalent technical effects of the foregoing embodiments, and details are not described herein again.
- the embodiment of the present invention also provides a terminal device (not shown), which includes the light source parameter measurement device described in each of the foregoing embodiments.
- the terminal device can be a mobile phone, a PC, etc., and for the color sensor in the light source parameter measurement device mentioned above, it and the terminal device can be designed in a separate or integrated design.
- the terminal device provided by the embodiment of the present invention can achieve the same or equivalent technical effects of the foregoing embodiments, and details are not described herein again.
- the color sensor includes 6 response channels, and the peak positions of the 6 response curves are respectively 450nm, 500nm, 550nm, 570nm, 600nm, 650nm; 6 responses
- the channel half-widths are 40.8nm, 41.0nm, 42.2nm, 43.8nm, 30.0nm, 42.0nm, all of which do not exceed 50nm.
- the illuminance constant K illuminance of the light source parameter measuring device provided by the embodiment of the present invention is obtained as:
- the light source parameters are:
- Color coordinates x, y (0.3811, 0.3808); color temperature 4012K; illuminance 120.8lx; color rendering index CRI is 84.1.
- the light source parameters of the light source are:
- Color coordinates x, y (0.3843, 0.3834); color temperature 3946K; illuminance 117.6lx, color rendering index CRI is 83.6.
- Color deviation duv sqrt((u_sensor-u_illuminance meter) ⁇ 2+(v_sensor-v_illuminance meter) ⁇ 2), where the color coordinate value can be converted from the xy coordinate system to the uv coordinate when calculating the color deviation Department;
- Illuminance deviation abs((illuminance value_sensor-illuminance value_illuminance meter)/illuminance value_illuminance meter)%;
- Color rendering index deviation abs(CRI_sensor-CRI_illuminance meter);
- the light source parameter measurement device provided by the embodiment of the present invention is obtained: color coordinate measurement accuracy duv ⁇ 0.005; illuminance measurement accuracy ⁇ 5%; color rendering index measurement accuracy
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
本发明实施例公开了一种光源参数测量方法、装置、照明系统和终端设备,用于解决相关技术中光源参数测量麻烦的问题。该方法包括:采集颜色传感器针对待测光源的信号值,所述颜色传感器包括至少6个响应通道;对采集到的信号值进行预处理,所述预处理包括归一化处理和正态化处理;根据预处理后的信号值构建模型特征,并根据所述模型特征确定所述待测光源的光源类型;将所述模型特征和确定出的光源类型输入所述显色指数预测模型,得到所述待测光源的显色指数。
Description
本发明实施例涉光源参数测量领域,尤其涉及一种光源参数测量方法、装置、照明系统和终端设备。
在智能照明、智慧照明等领域,为了实现智能化照明,通常需要测量照明设备的光源参数,如颜色参数、显色指数等。相关技术中,通常是采用光谱仪等进行测量。虽然光谱仪能够精确测量光源的光源参数等,但是光谱仪等因测量原理复杂,存在测量麻烦的问题;且光谱仪体积大,价格昂贵,因此不适合大规模应用在智能照明中。因此,有必要提供一种简单的、用于光源参数测量的技术方案。
发明内容
本发明实施例提供一种光源参数测量方法,包括:采集颜色传感器针对待测光源的信号值,所述颜色传感器包括至少6个响应通道;对采集到的信号值进行预处理,所述预处理包括归一化处理和正态化处理;根据预处理后的信号值构建模型特征,并根据所述模型特征确定所述待测光源的光源类型;将所述模型特征和确定出的光源类型输入所述显色指数预测模型,得到所述待测光源的显色指数。
本发明实施例还提供一种光源参数测量装置,包括颜色传感器、信号预处理模块、特征构建模块、光源类型分类模块和显色指数预测模块,其中,所述颜色传感器,用于输出针对待测光源的信号值,所述颜色传感器包括至少6个响应通道;所述信号预处理模块,用于对所述颜色传感器输出的信号值进行预处理,所述预处理包括归一化处理和正态化处理;所述特征构建模块,用于根 据预处理后的信号值构建模型特征;光源类型分类模块,用于根据所述模型特征确定所述待测光源的光源类型;所述显色指数预测模块,用于将所述模型特征和确定出的光源类型输入所述显色指数预测模型,得到所述待测光源的显色指数。
本发明实施例还提供一种照明系统,包括如上述各个方面所述的光源参数测量装置,还包括照明系统通信模块、控制端和照明设备;其中,所述控制端,用于通过所述照明系统通信模块,获得所述光源参数测量装置针对所述照明设备的光源参数;根据所述光源参数对所述照明设备进行控制和/或显示所述光源参数。
本发明实施例还提供一种终端设备,包括如上述各个方面所述的光源参数测量装置。
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的光源参数测量方法流程示意图;
图2为本发明实施例提供的光源参数测量装置局部结构示意图;
图3为本发明实施例提供的光源参数测量装置具体结构示意图。
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明具体实施例及相应的附图对本发明技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供一种光源参数测量方法,所述方法包括如 下步骤:
S102:采集颜色传感器针对待测光源的信号值。
其中,上述颜色传感器包括至少6个响应通道,这多个(即上述至少6个)响应通道对应的波长在可见光的波长范围(380~780nm)内均匀分布。该处提到的均匀分布,可以是非严格意义上的均匀,例如,在一个具体的例子中,颜色传感器包括6个响应通道,这6个响应通道对应的波长分别为450nm,500nm,550nm,570nm,600nm,650nm。
在一实施方式中,上述颜色传感器分别在第一波长取值范围、第二波长取值范围和第三波长取值范围内,均至少对应有1个响应通道;其中,所述第一波长取值范围为435~455nm,所述第二波长取值范围为545~565nm,所述第三波长取值范围为590~610nm,单位均是nm。通过上述设置,能够比较准确地测量出待测光源的光源参数。
在一个具体的例子中,上述颜色传感器在445nm,555nm,600nm波长位置或傍边波长位置(峰值波长位置差≤10nm,进一步波长位置差≤5nm)均至少有一个响应通道,也即,在445nm波长位置或傍边波长位置至少有一个响应通道;在555nm波长位置或傍边波长位置至少有一个响应通道;在600nm波长位置或傍边波长位置至少有一个响应通道。
在一实施方式中,上述至少6个响应通道均为窄带响应通道,上述至少6个响应通道的半宽度均小于或等于预设值。在一个具体的例子中,上述颜色传感器的每一个响应通道对应的响应光谱的半宽度≤50.0nm,也即本发明生采用的是窄带响应的颜色传感器,能够比较准确地测量出待测光源的光源参数。
可以理解,在一定的数值范围内,颜色传感器包括的响应通道的数量越多,最终测量得到的光源参数的精度也越高。
但考虑到颜色传感器的响应通道的数量增多后,光源参数计算的复杂度也 相应增加,因此,在一个优选的实施例中,上述颜色传感器的响应通道的数量是6~18,该6~18个响应通道分别对应的波长在可见光的波长范围内均匀分布。
通过上述颜色传感器的响应通道的数量设置,不仅能够提高颜色测量得到的光源参数的精度;同时将光源参数计算的复杂度控制在合理的范围内,节约计算处理过程中所需要的资源。
S104:对采集到的信号值进行预处理。
其中,上述预处理过程包括归一化处理和正态化处理等。
在一个具体的例子中,上述颜色传感器采集到的信号值是{T
1,T
2,T
3,…,T
i},其中,i表示上述颜色传感器的响应通道的序号的最大值。
步骤S104中对采集到的信号值进行归一化处理时,可以采用N阶范数的归一化处理方式,即,首先采用如下公式得到缩放因子F,
然后,针对采集到的{T
1,T
2,T
3,…,T
i}中的每一个信号值,均采用如下公式进行缩放,从而将和光通量相关的信号值,转化成和光通量无关的数值。
T
i′=T
i/F
最后,采用如下公式,对归一化处理后的i个信号值T
i′进行正态化处理,
T
i″=(T′-μ)/σ
上述公式中,μ是平均数,σ是标准差。其中,μ和σ可以是预先根据大量的相关样本集得到。
在一个具体的例子中,可预先得到上述颜色传感器针对多个基准光源的信号值;然后,针对每一个基准光源的信号值,采用上述归一化处理方式对其进行归一化处理;这样,根据上述多个基准光源归一化处理后的信号值,即可计算得到上述平均值μ和标准差σ。
本发明实施例中,通过对采集到的信号值进行归一化处理和正态化处理等,从而便于后续步骤中的模型特征构建以及确定待测光源的光源类型等。
S106:根据预处理后的信号值构建模型特征,并根据构建出的模型特征确定待测光源的光源类型。
其中,上述构建出的模型特征和预设的显色指数预测模型相匹配。
在一实施方式中,本发明实施例执行之前,可以根据上述颜色传感器针对多个基准光源的信号值,以及上述多个基准光源的显色指数进行模型训练,生成上述显色指数预测模型,该显色指数预测模型可以用来预测待测光源的显色指数。
其中,在模型训练时,上述多个基准光源的显色指数可以是通过光谱仪得到,光谱仪测量显色指数虽然过程复杂,但是能够保证显色指数的测量精度。在显色指数预测模型的建模时,通过光谱仪得到准确地显色指数,进一步提高模型训练的预测的准确性。在一实施方式中,上述显色指数预测模型可采用神经网络模型、回归树模型、广义线性回归模型等,或是以上模型的组合和堆叠。
这样,根据显色指数预测模型所需要的模型特征,对步骤S104预处理后的信号值进行特征构建,构建出显色指数预测模型所匹配的模型特征。构建出模型特征可以包括线性特征、非线性特征以及基于上述两种特征的组合特征,上述构建出的模型特征和预设的显色指数预测模型所需要的模型特征符合,也即该步骤构建出的模型特征和上述预设的显色指数预测模型相匹配。
在一个具体的实施方式中,可以采用如下特征构建公式,对步骤S104预处理后的多个信号值执行特征构建的操作:
{P}=h{f(T
i″)+g(T
i″)}
经过上述公式,即可将原有的i个信号值,转换为数量为L(L>=i)的特征集{P}。上述公式中,f(x)、g(x)和h(x)分别表示线性特征构建函数、非线性特征构建函数和组合特征构建函数。
在一实施方式中,在步骤S108之前,还可以根据构建出的模型特征确定所述待测光源的光源类型Y,其中,光源类型Y包括但不限于发光二极管(LED)、紧凑型荧光灯或日光灯(CFL)、高压气体放电灯(HID)、自然光等。
该实施例具体可以采用光源类型分类模型确定待测光源的光源类型Y,其中,光源类型分类模型可以是神经网络模型、支持向量机模型(SVM)、决策树模型、随机森林模型等,或是以上模型的组合和堆叠。光源类型分类模型的建模过程和上述显色指数预测模型的建模过程类似,在此不再赘述。
该实施例中,显色指数预测模型针对不同类型的光源设置有不同的权重系数,进而能够提高显色指数预测模型的预测精度。
S108:将模型特征和光源类型输入显色指数预测模型,得到待测光源的显色指数。
本发明实施例提供的光源参数测量方法,通过采集颜色传感器针对待测光源的信号值,对采集到的信号值进行预处理后构建模型特征,根据模型特征确定待测光源的光源类型,将构建出模型特征和确定出的光源类型输入显色指数预测模型即可得到待测光源的显色指数,相对于现有技术中光谱仪测量显色指数的方法,因仅仅需要颜色传感器以及构建出的显色指数预测模型,显色指数的测量过程简单。
以上述图1所示的实施例为基础,在一实施方式中,在步骤S102中采集颜色传感器针对待测光源的信号值之后,还可以包括如下步骤:根据采集到的信号值和预设的转换系数,得到待测光源的三刺激值;根据得到的上述三刺激值,得到所述待测光源的色坐标、色温和照度中的至少一种。
具体地,若采集到的信号值是{T
1,T
2,T
3,…,T
i},其中,i表示响应通道的序号的最大值,则可以基于如下公式得到待测光源的三刺激值:
在该公式中,X,Y,Z分别表示待测光源的三刺激值;[K
sensor]是转换系数,具体可以是一矩阵系数。
具体地,在上述得到待测光源的三刺激值之后,可以分别采用如下公式得到待测光源的色坐标。
x=X/X+Y+Z
y=Y/X+Y+Z
在该处的两个公式中,x,y分别表示色坐标(x,y)的横坐标值和纵坐标值;X,Y,Z分别表示待测光源的三刺激值。
在得到待测光源的色坐标之后,还可以采用如下公式得到待测光源的色温CCT。
CCT=437n
3+3601n
2+6831n+5517
在该公式中,变量n可以基于待测光源色坐标的横坐标值和纵坐标值计算得到:
n=x-0.3320/0.1858-y
具体地,在上述得到待测光源的三刺激值之后,还可以采用如下公式得到待测光源的照度illuminance。
illuminance=K
照度×Y
在该公式中,K
照度是常量,Y是待测光源的三刺激值中的绿原色刺激量。K
照度可以是用标准光谱照度计,和本发明实施例提供的光源参数测量装置(后续实施例介绍)在基准光源相同位置上测试比对得到:
在该公式中,illuminance
std是标准光谱照度计针对上述基准光源的照度值,Y
std是 本发明实施例提供的光源参数测量装置针对上述基准光源的照度值。
在上述实施例中计算待测光源的三刺激值时需要用到转换系数[K
sensor],在一实施方式中,在上述多个实施例之前,还可以包括如下步骤:
根据上述颜色传感器针对多个基准光源的信号值,以及光谱仪针对上述多个基准光源的三刺激值,计算得到转换系数[K
sensor]。
在计算转换系数[K
sensor]时,具体可以采用如下步骤:
a)预先选取多个不同光谱的基准光源(或称作基准灯),包括但不限于不同色温的LED灯、不同色温的荧光灯、不同色温的白炽灯以及不同色温的陶瓷金卤灯CDM等。
优选地,基准灯的数量≥n*颜色传感器的响应通道数,n≥1,n不局限于整数;上述基准灯的光通量范围可以是100~4000lm,或照度范围可以是100~4000lx。
优选地,在不同的光通量范围或照度范围内,至少包括有一个基准灯。或者说,上述多个基准灯的光通量在上述光通量范围内均匀分布,或者,上述多个基准灯的照度范围在上述照度范围内均匀分布。
b)把上述多个基准灯(每次放置一个基准灯,多个基准灯依次测量)和包含颜色传感器的器件同时放置在积分球内,基准灯放置在积分球中心,本发明实施例提供的光源参数测量装置(后续实施例介绍)放置在积分球内切面,受光方向正对积分球中心。积分球是一个内壁涂有白色漫反射材料的空腔球体,又称光度球,光通球等,积分球的光经过内壁涂层多次反射,在内壁上形成均匀照度。
c)基准灯点亮稳定后,同时用光谱仪得到基准灯的基准光源的三刺激值{X
n,Y
n,Z
n};用本发明上述各个实施例提到的颜色传感器(包含在光源参数测量装置内)得到信号值{T
n1,T
n2,T
n3,...,T
ni}。其中,序号n表示第n个基准灯,i表示颜色传感器的响应通道数的序号。
d)通过如下公式计算转换系数[K
sensor]
[K
sensor]=(M′M)
-1(M′N)
其中,M和N分别参见如下公式:
上述各个实施例通过计算得到转换系数[K
sensor],并利用[K
sensor]来计算待测光源的色坐标、色温和照度等,由于在计算转换系数时采用了大量的基准灯,同时采用了测量精度较高的光谱仪,提高了得到的转换系数[K
sensor]的准确度,从而使基于该转换系数[K
sensor]得到的待测光源的色坐标、色温和照度等的精度较高。
与上述各个实施例提到的光源参数测量方法相对应,如图2和图3所示,本发明实施例还提供一种光源参数测量装置,该装置包括颜色传感器302和微控制单元MCU303,如图2所示,所述MCU 303包括信号预处理模块201、特征构建模块202、光源类型分类模块203和显色指数预测模块204,其中,所述颜色传感器302,可以用于输出针对待测光源的信号值,所述颜色传感器包括至少6个响应通道;所述信号预处理模块201,可以用于对所述颜色传感器302输出的信号值进行预处理,所述预处理包括归一化处理和正态化处理;所述特征构建模块202,可以用于根据预处理后的信号值构建模型特征;光源类型分类模块203,可以用于根据所述模型特征确定所述待测光源的光源类型;所述显色指数预测模块204,可以用于将所述模型特征和确定出的光源类型输入所述显色指数预测模型,得到所述待测光源的显色指数。
在一实施方式中,在其他的实施例中,上述信号预处理模块201、特征构建模块202、光源类型分类模块203和显色指数预测模块204还可以是集成在终端设备,如手机中,而并非是集成在本发明实施例的MCU中。
本发明实施例提供的光源参数测量装置,通过采集颜色传感器针对待测光源的信号值,对采集到的信号值进行预处理后构建模型特征,根据模型特征确定待测光源的光源类型,将构建出模型特征和确定出的光源类型输入显色指数预测模型即可得到待测光源的显色指数,相对于现有技术中光谱仪测量显色指数的方法,因仅仅需要颜色传感器以及构建出的显色指数预测模型,显色指数的测量过程简单。
在一实施方式中,作为一个实施例,所述MCU303还包括颜色参数测量模块(未图示),用于根据采集到的信号值和预设的转换系数,得到所述待测光源的三刺激值;根据所述三刺激值,得到所述待测光源的色坐标、色温和照度中的至少一种。
在一实施方式中,作为一个实施例,所述颜色参数测量模块,还用于根据所述颜色传感器针对多个第一基准光源的信号值,以及光谱仪针对所述多个第一基准光源的三刺激值,计算得到所述转换系数。
在一实施方式中,作为一个实施例,所述MCU 303还包括模型训练模块(未图示),用于根据所述颜色传感器针对多个第二基准光源的信号值,以及所述多个第二基准光源的显色指数进行模型训练,生成所述显色指数预测模型204。
在一实施方式中,作为一个实施例,所述至少6个响应通道的数量是6~18;所述至少6个响应通道对应的波长在可见光的波长范围内均匀分布。
在一实施方式中,作为一个实施例,所述颜色传感器302为窄带颜色传感器。
在一实施方式中,作为一个实施例,所述颜色传感器分别在第一波长取值 范围、第二波长取值范围和第三波长取值范围内,均至少对应有1个响应通道;其中,所述第一波长取值范围为435~455nm,所述第二波长取值范围为545~565nm,所述第三波长取值范围为590~610nm。
在一实施方式中,作为一个实施例,如图3所示,还包括:透镜301、通信模块和壳体(见图3中最外侧的框线,未标号)中的至少一种;其中,所述透镜,用于对所述待测光源进行匀光处理;以及所述通信模块,用于接收用来执行光源参数测量的控制指令;以及所述颜色传感器、信号预处理模块、特征构建模块、光源类型分类模块和显色指数预测模块均收容于所述壳体内。
在一实施方式中,作为一个实施例,还包括:偏差计算模块(未图示),用于确定所述装置得到的光源参数的偏差值。
在一实施方式中,作为一个实施例,还包括:照度系数确定模块(未图示),用于针对第三基准光源,基于标准光谱照度计的照度值和所述装置的照度值,计算得到所述装置的照度系数,所述照度系数用于确定所述待测光源的照度。
根据本发明实施例的光源参数测量装置可以参照对应本发明实施例的光源参数测量方法的流程,并且,该光源参数测量装置中的各个单元/模块和上述其他操作和/或功能分别为了实现上述光源参数测量方法中的相应流程,为了简洁,在此不再赘述。
在一实施方式中,上述各个实施例提供的光源参数测量装置还可以包括有通信模块,例如,蓝牙模块或wifi模块。这样,上述各个实施例提供的光源参数测量装置可以单独作为测量装置使用,用来测量待测光源的光源参数;还可以由手机/iPad的APP进行控制和测量;也可以作为部件整合在照明系统中。
本发明实施例还提供一种照明系统(未图示),包括照明装置以及如上述各个实施例所描述的光源参数测量装置,还可以包括照明系统通信模块、控制端等。所述照明装置可以是装饰灯、吊灯、球泡灯、烛泡灯、G泡灯或筒灯等。 在该照明系统中,通信模块可以为采用有线方式进行通信的模块,也可以为蓝牙、zigbee等无线模块。控制端,可以用于通过所述照明系统通信模块,获得所述光源参数测量装置针对所述照明设备的光源参数,进而根据光源参数对照明装置的照明进行开关、调节亮度等控制,能够实现智能化照明。在一实施方式中,上述控制端可以是手机等,还可以用来实时显示上述光源参数。本发明实施例提供的照明系统能够实现上述各个实施例相同或等同的技术效果,在此不再赘述。
本发明实施例还提供一种终端设备(未图示),包括如上述各个实施例所描述的光源参数测量装置。该终端设备可以是手机、PC等,且对于前文中光源参数测量装置中的颜色传感器,其和终端设备可以使分离式设计,还可以是一体式设计。本发明实施例提供的终端设备能够实现上述各个实施例相同或等同的技术效果,在此不再赘述。
上述各个实施例介绍的是本发明实施例光源参数测量方法以及光源参数测量装置,以下结合一个实例进行介绍。
该实施实例中,本发明实施例提供的光源参数测量装置中,颜色传感器包括有6个响应通道,6个响应曲线的波峰位置分别在450nm,500nm,550nm,570nm,600nm,650nm;6个响应通道半宽度分别为40.8nm,41.0nm,42.2nm,43.8nm,30.0nm,42.0nm,均不超过50nm。
根据前文实施例介绍的转换系数[K
sensor]的测量方法,通过光谱仪以及大量的基准光源等,得到的转换系数[K
sensor]为:
通过标准光谱照度计和本发明实施例提供的光源参数测量装置,得到本发明实施例提供的光源参数测量装置的照度常量K
照度为:
K
照度=0.965
对某一款4000K的LED灯进行光源参数测量,光源参数测量装置的颜色传 感器的信号值转化后为{34,43,85,107,118,82},通过前文提到的相关公式等计算得到该光源的光源参数分别是:
色坐标x,y(0.3811,0.3808);色温4012K;照度120.8lx;显色指数CRI是84.1。
同时,采用标准照度计和光谱仪等对上述LED灯进行测量,得到该光源的光源参数分别是:
色坐标x,y(0.3843,0.3834);色温3946K;照度117.6lx,显色指数CRI是83.6。
基于如下的偏差计算公式:
颜色偏差duv=sqrt((u_sensor-u_照度计)^2+(v_sensor-v_照度计)^2),其中,在计算颜色偏差时可以将色坐标的值由xy坐标系转换到uv坐标系中;
照度偏差=abs((照度值_sensor–照度值_照度计)/照度值_照度计)%;
显色指数偏差=abs(CRI_sensor–CRI_照度计);
得到本发明实施例提供的光源参数测量装置的偏差值:
颜色偏差duv=0.0015;照度偏差=2.7%;显色指数偏差=0.5。
基于对大量的光源进行偏差计算,得到本发明实施例提供的光源参数测量装置的:色坐标测量精度duv≤0.005;照度测量精度≤5%;显色指数测量精度|dCRI|≤2.0,具备较高的测量精度。
以上仅为本发明的实施例而已,并不用于限制本发明。对于本领域技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。
Claims (19)
- 一种光源参数测量方法,其中,所述方法包括:采集颜色传感器针对待测光源的信号值,所述颜色传感器包括至少6个响应通道;对采集到的信号值进行预处理,所述预处理包括归一化处理和正态化处理;根据预处理后的信号值构建模型特征,并根据所述模型特征确定所述待测光源的光源类型;将所述模型特征和确定出的光源类型输入所述显色指数预测模型,得到所述待测光源的显色指数。
- 根据权利要求1所述的方法,其中,采集颜色传感器针对待测光源的信号值之后,所述方法还包括:根据采集到的信号值和预设的转换系数,得到所述待测光源的三刺激值;根据所述三刺激值,得到所述待测光源的色坐标、色温和照度中的至少一种。
- 根据权利要求2所述的方法,其中,得到所述待测光源的三刺激值之前,所述方法还包括:根据所述颜色传感器针对多个第一基准光源的信号值,以及光谱仪针对所述多个第一基准光源的三刺激值,计算得到所述转换系数。
- 根据权利要求1至3任一项所述的方法,其中,将所述模型特征和确定出的光源类型输入所述显色指数预测模型之前,所述方法还包括:根据所述颜色传感器针对多个第二基准光源的信号值以及所述多个第二基准光源的显色指数进行模型训练,生成所述显色指数预测模型。
- 根据权利要求4所述的方法,其中,所述至少6个响应通道的数量是6~18;所述至少6个响应通道对应的波长在可见光的波长范围内均匀分布。
- 根据权利要求5所述的方法,其中,所述至少6个响应通道均为窄带响应通道。
- 根据权利要求6所述的方法,其中,所述颜色传感器分别在第一波长取值范围、第二波长取值范围和第三波长取值范围内,均至少对应有1个响应通道;其中,所述第一波长取值范围为435~455nm,所述第二波长取值范围为545~565nm,所述第三波长取值范围为590~610nm。
- 一种光源参数测量装置,其中,包括颜色传感器、信号预处理模块、特征构建模块、光源类型分类模块和显色指数预测模块,其中,所述颜色传感器,用于输出针对待测光源的信号值,所述颜色传感器包括至少6个响应通道;所述信号预处理模块,用于对所述颜色传感器输出的信号值进行预处理,所述预处理包括归一化处理和正态化处理;所述特征构建模块,用于根据预处理后的信号值构建模型特征;所述光源类型分类模块,用于根据所述模型特征确定所述待测光源的光源类型;所述显色指数预测模块,用于将所述模型特征和确定出的光源类型输入所述显色指数预测模型,得到所述待测光源的显色指数。
- 根据权利要求8所述的装置,其中,所述装置还包括颜色参数测量模块,用于根据采集到的信号值和预设的转换系数,得到所述待测光源的三刺激值;根据所述三刺激值,得到所述待测光源的色坐标、色温和照度中的至少一种。
- 根据权利要求9所述的装置,其中,所述颜色参数测量模块,还用于根据所述颜色传感器针对多个第一基准光源的信号值,以及光谱仪针对所述多个第一基准光源的三刺激值,计算得到所述转换系数。
- 根据权利要求8至10任一项所述的装置,其中,所述装置还包括模型训练模块,用于根据所述颜色传感器针对多个第二基准光源的信号值以及所述多个第二基准光源的显色指数进行模型训练,生成所述显色指数预测模型。
- 根据权利要求11所述的装置,其中,所述至少6个响应通道的数量是6~18;所述至少6个响应通道对应的波长在可见光的波长范围内均匀分布。
- 根据权利要求12所述的装置,其中,所述颜色传感器为窄带颜色传感器。
- 根据权利要求13所述的装置,其中,所述颜色传感器分别在第一波长取值范围、第二波长取值范围和第三波长取值范围内,均至少对应有1个响应通道;其中,所述第一波长取值范围为435~455nm,所述第二波长取值范围为545~565nm,所述第三波长取值范围为590~610nm。
- 根据权利要求8所述的装置,其中,还包括:透镜、通信模块和壳体中的至少一种;其中,所述透镜,用于对所述待测光源进行匀光处理;所述通信模块,用于接收用来执行光源参数测量的控制指令;以及所述颜色传感器、信号预处理模块、特征构建模块、光源类型分类模块和显色指数预测模块均收容于所述壳体内。
- 根据权利要求8所述的装置,其中,还包括:偏差计算模块,用于确定所述装置得到的光源参数的偏差值。
- 根据权利要求9所述的装置,其中,还包括:照度系数确定模块,用于针对第三基准光源,基于标准光谱照度计的照度值和所述装置的照度值,计算得到所述装置的照度系数,所述照度系数用于确定所述待测光源的照度。
- 一种照明系统,其中,包括如权利要求8至17任一项所述的光源参数测量装置,还包括照明系统通信模块、控制端和照明设备;其中,所述控制端,用于通过所述照明系统通信模块,获得所述光源参数测量装置针对所述照明设备的光源参数;根据所述光源参数对所述照明设备进行控制和/或显示所述光源参数。
- 一种终端设备,其中,包括如权利要求8至17任一项所述的光源参数测量装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19909759.3A EP3896422A4 (en) | 2019-01-18 | 2019-12-31 | LIGHT SOURCE PARAMETER MEASUREMENT METHOD AND INSTALLATION, LIGHTING SYSTEM AND TERMINAL DEVICE |
US17/378,858 US12058794B2 (en) | 2019-01-18 | 2021-07-19 | Measurement method and device of light source parameters, illumination system and terminal apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910047279.1A CN109618479B (zh) | 2019-01-18 | 2019-01-18 | 光源参数测量方法、装置、照明系统和终端设备 |
CN201920083562.5 | 2019-01-18 | ||
CN201920083562 | 2019-01-18 | ||
CN201910047279.1 | 2019-01-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/378,858 Continuation US12058794B2 (en) | 2019-01-18 | 2021-07-19 | Measurement method and device of light source parameters, illumination system and terminal apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020147580A1 true WO2020147580A1 (zh) | 2020-07-23 |
Family
ID=71613291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/130412 WO2020147580A1 (zh) | 2019-01-18 | 2019-12-31 | 光源参数测量方法、装置、照明系统和终端设备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12058794B2 (zh) |
EP (1) | EP3896422A4 (zh) |
WO (1) | WO2020147580A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210345469A1 (en) * | 2019-01-18 | 2021-11-04 | Opple Lighting Co., Ltd. | Measurement method and device of light source parameters, illumination system and terminal apparatus |
CN113759192A (zh) * | 2021-07-29 | 2021-12-07 | 江铃汽车股份有限公司 | 一种emc测试方法、装置、可读存储介质及车辆 |
CN114397094A (zh) * | 2022-01-26 | 2022-04-26 | 武汉大学 | 一种基于光谱重建和色貌模型的光源显色性评价方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4404552A1 (en) * | 2023-01-17 | 2024-07-24 | Beijing Xiaomi Mobile Software Co., Ltd. | Method for image processing |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012021468A1 (en) * | 2010-08-10 | 2012-02-16 | Sof-Tek Integrators, Inc. Dba Op-Test | System and method of quantifying color and intensity of light sources |
CN106596054A (zh) * | 2016-11-10 | 2017-04-26 | 华侨大学 | 一种基于颜色指数的光源显色性评价方法 |
CN106872146A (zh) * | 2017-02-24 | 2017-06-20 | 中国测试技术研究院 | 一种光源相关色温和显色指数分析方法 |
CN108738215A (zh) * | 2018-06-05 | 2018-11-02 | 信利光电股份有限公司 | 一种自动调节台灯技术参数方法、装置及台灯 |
CN109618479A (zh) * | 2019-01-18 | 2019-04-12 | 欧普照明股份有限公司 | 光源参数测量方法、装置、照明系统和终端设备 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5155558A (en) * | 1990-09-19 | 1992-10-13 | E. I. Du Pont De Nemours And Company | Method and apparatus for analyzing the appearance features of a surface |
AU656057B2 (en) * | 1992-03-27 | 1995-01-19 | Milliken & Company | Method and apparatus for reproducing blended colorants on an electronic display |
US6249348B1 (en) * | 1998-11-23 | 2001-06-19 | Lj Laboratories, L.L.C. | Integrated spectrometer assembly and methods |
US7102648B1 (en) * | 2000-04-11 | 2006-09-05 | Rah Color Technologies Llc | Methods and apparatus for calibrating a color display |
US6707929B2 (en) * | 2000-05-12 | 2004-03-16 | The Procter & Gamble Company | Method for analyzing hair and predicting achievable hair dyeing ending colors |
KR100735283B1 (ko) * | 2005-09-29 | 2007-07-03 | 삼성전자주식회사 | 영상 보상 방법 |
US9082673B2 (en) * | 2009-10-05 | 2015-07-14 | Zena Technologies, Inc. | Passivated upstanding nanostructures and methods of making the same |
US8748799B2 (en) * | 2010-12-14 | 2014-06-10 | Zena Technologies, Inc. | Full color single pixel including doublet or quadruplet si nanowires for image sensors |
US8847972B2 (en) * | 2010-01-20 | 2014-09-30 | Intellectual Ventures Fund 83 Llc | Adapting display color for low luminance conditions |
JP2012038363A (ja) * | 2010-08-03 | 2012-02-23 | Hitachi-Lg Data Storage Inc | 光ディスクおよび光ディスク装置 |
US9746370B2 (en) * | 2014-02-26 | 2017-08-29 | Sensity Systems Inc. | Method and apparatus for measuring illumination characteristics of a luminaire |
US20170085768A1 (en) * | 2014-05-20 | 2017-03-23 | Philips Lighting Holding B.V. | An image capturing system, a kit for an image capturing system, a mobile phone, use of an image capturing system and a method of configuring a color matched light source |
US9706084B2 (en) * | 2014-07-30 | 2017-07-11 | Hewlett-Packard Development Company, L.P. | Color mapping |
US20170010151A1 (en) * | 2015-07-10 | 2017-01-12 | Datacolor Holding Ag | System and method for compensating spectrophotometer thermal drift without direct temperature measurement |
KR102162339B1 (ko) * | 2016-01-18 | 2020-10-06 | 웨이브시프트 엘엘씨 | 전자 디스플레이들의 근시유발적 효과를 감소시키기 위한 방법 및 장치 |
US10176765B2 (en) * | 2016-06-30 | 2019-01-08 | Abl Ip Holding Llc | Enhancements of a transparent display to form a software configurable luminaire |
WO2019207588A2 (en) * | 2018-04-25 | 2019-10-31 | Dentlytec G.P.L. Ltd | Properties measurement device |
JP7268678B2 (ja) * | 2018-06-20 | 2023-05-08 | コニカミノルタ株式会社 | 光学特性測定装置 |
US20220001200A1 (en) * | 2018-11-08 | 2022-01-06 | Ecosense Lighting Inc. | Switchable bioactive lighting |
EP3896422A4 (en) * | 2019-01-18 | 2022-09-14 | Opple Lighting Co., Ltd. | LIGHT SOURCE PARAMETER MEASUREMENT METHOD AND INSTALLATION, LIGHTING SYSTEM AND TERMINAL DEVICE |
WO2021058191A1 (en) * | 2019-09-25 | 2021-04-01 | Osram Gmbh | Methods of illuminating an artwork |
GB2596582B (en) * | 2020-07-02 | 2023-03-01 | Imperial College Innovations Ltd | Image capture and processing |
-
2019
- 2019-12-31 EP EP19909759.3A patent/EP3896422A4/en active Pending
- 2019-12-31 WO PCT/CN2019/130412 patent/WO2020147580A1/zh unknown
-
2021
- 2021-07-19 US US17/378,858 patent/US12058794B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012021468A1 (en) * | 2010-08-10 | 2012-02-16 | Sof-Tek Integrators, Inc. Dba Op-Test | System and method of quantifying color and intensity of light sources |
CN106596054A (zh) * | 2016-11-10 | 2017-04-26 | 华侨大学 | 一种基于颜色指数的光源显色性评价方法 |
CN106872146A (zh) * | 2017-02-24 | 2017-06-20 | 中国测试技术研究院 | 一种光源相关色温和显色指数分析方法 |
CN108738215A (zh) * | 2018-06-05 | 2018-11-02 | 信利光电股份有限公司 | 一种自动调节台灯技术参数方法、装置及台灯 |
CN109618479A (zh) * | 2019-01-18 | 2019-04-12 | 欧普照明股份有限公司 | 光源参数测量方法、装置、照明系统和终端设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3896422A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210345469A1 (en) * | 2019-01-18 | 2021-11-04 | Opple Lighting Co., Ltd. | Measurement method and device of light source parameters, illumination system and terminal apparatus |
US12058794B2 (en) * | 2019-01-18 | 2024-08-06 | Opple Lighting Co., Ltd. | Measurement method and device of light source parameters, illumination system and terminal apparatus |
CN113759192A (zh) * | 2021-07-29 | 2021-12-07 | 江铃汽车股份有限公司 | 一种emc测试方法、装置、可读存储介质及车辆 |
CN113759192B (zh) * | 2021-07-29 | 2024-04-30 | 江铃汽车股份有限公司 | 一种emc测试方法、装置、可读存储介质及车辆 |
CN114397094A (zh) * | 2022-01-26 | 2022-04-26 | 武汉大学 | 一种基于光谱重建和色貌模型的光源显色性评价方法 |
CN114397094B (zh) * | 2022-01-26 | 2023-04-25 | 武汉大学 | 一种基于光谱重建和色貌模型的光源显色性评价方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3896422A1 (en) | 2021-10-20 |
US12058794B2 (en) | 2024-08-06 |
US20210345469A1 (en) | 2021-11-04 |
EP3896422A4 (en) | 2022-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109618479B (zh) | 光源参数测量方法、装置、照明系统和终端设备 | |
WO2020147580A1 (zh) | 光源参数测量方法、装置、照明系统和终端设备 | |
US20190172415A1 (en) | Remote Color Matching Process and System | |
CN101161035A (zh) | Led组件、以及制造该led组件的方法 | |
TWI539812B (zh) | 用於電子照相機之自動白平衡方法 | |
CN105528976B (zh) | 全自动测量与校准显示屏伽玛曲线的装置与方法 | |
CN106304527B (zh) | 一种照明控制系统和照明控制方法 | |
US20090103075A1 (en) | Method For Measuring Chroma Value By a Colorimeter | |
CN115720727B (zh) | 感知上均匀的颜色调节的控制设计 | |
CN105954893A (zh) | 一种液晶光学模组的配置方法及检测装置 | |
TWI588779B (zh) | 用於電子照相機之自動白平衡系統 | |
CN117320219A (zh) | 一种无荧光粉多基色led灯照明控制方法及系统 | |
CN115597726B (zh) | 色温检测的方法、装置和电子设备 | |
CN116202741A (zh) | 一种色温箱光源的色温光谱成分复合与自动光谱匹配方法 | |
CN115968075A (zh) | 一种用于文物照明的智能照明系统及其控制方法 | |
CN109708752A (zh) | 一种天空光环境模拟中反馈校正的方法 | |
US11523482B2 (en) | Control design for perceptually uniform color tuning | |
RU91761U1 (ru) | Эталонное устройство для передачи размера единиц координат цветности самосветящихся объектов | |
Rich | A review of solid-state lighting and its impact on the marketing and production of decorative coatings | |
Ikonen | Recent advances and perspectives in photometry in the era of LED lighting | |
CN212228725U (zh) | 多光谱测试光源装置及其多光谱调节与监控装置 | |
CN110277140A (zh) | 基于火焰颜色识别燃烧当量比计算模型的建立方法、系统及装置 | |
CN114427957B (zh) | 兼顾视觉偏好与颜色分辨的光源显色性评估方法及系统 | |
WO2018148987A1 (zh) | 一种多光纤照明组合光光学参量的设定方法 | |
Petrisor et al. | Color Quality Measurements of LED Light Sources Using Image Processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19909759 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019909759 Country of ref document: EP Effective date: 20210715 |