WO2020147534A1 - 胎儿血氧饱和度的检测方法及装置、计算机可读存储介质以及计算机设备 - Google Patents

胎儿血氧饱和度的检测方法及装置、计算机可读存储介质以及计算机设备 Download PDF

Info

Publication number
WO2020147534A1
WO2020147534A1 PCT/CN2019/128320 CN2019128320W WO2020147534A1 WO 2020147534 A1 WO2020147534 A1 WO 2020147534A1 CN 2019128320 W CN2019128320 W CN 2019128320W WO 2020147534 A1 WO2020147534 A1 WO 2020147534A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection light
signal
fetus
detection
wavelength
Prior art date
Application number
PCT/CN2019/128320
Other languages
English (en)
French (fr)
Inventor
张珣
韩阳
李广飞
杜辉
梁思阳
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/768,367 priority Critical patent/US11375906B2/en
Publication of WO2020147534A1 publication Critical patent/WO2020147534A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1464Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters specially adapted for foetal tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02411Detecting, measuring or recording pulse rate or heart rate of foetuses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/7214Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using signal cancellation, e.g. based on input of two identical physiological sensors spaced apart, or based on two signals derived from the same sensor, for different optical wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/02Foetus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal

Definitions

  • the embodiments of the present disclosure relate to the field of detection technology, in particular to a method and device for detecting fetal blood oxygen saturation, a computer-readable storage medium, and computer equipment.
  • the embodiments of the present disclosure provide a method and device for detecting fetal blood oxygen saturation, a computer-readable storage medium, and computer equipment, so as to improve the accuracy of the detected fetal blood oxygen saturation.
  • At least one embodiment of the present disclosure provides a method for detecting fetal blood oxygen saturation, including:
  • At least two detection lights of different wavelengths are used to irradiate the fetus in the abdomen of the pregnant pregnant woman in time sharing and obtain the first photoplethysmography signal corresponding to the abdomen under the irradiation of each detection light; and time sharing to eliminate Irradiating the detection part outside the abdomen of the pregnant woman under examination, and acquiring the second photoplethysmography signal corresponding to the detection part under the irradiation of each detection light;
  • the blood oxygen saturation of the fetus is determined.
  • the first photoplethysmography signal and the second photoplethysmography signal corresponding to the detection light of each wavelength are
  • the signal, which determines the target photoplethysmography signal of the fetus corresponding to the detection light of each wavelength includes:
  • the first photoplethysmography signal and the second photoplethysmography signal corresponding to each detection light determine the target frequency domain signal of the fetus corresponding to each detection light; and according to a preset Rules to determine the corresponding heart rate of the fetus;
  • a target photoplethysmography signal of the fetus corresponding to each detection light is determined.
  • the determining the heart rate corresponding to the fetus according to a preset rule includes:
  • the determining the target photoplethysmography signal of the fetus corresponding to each detection light according to the determined heart rate corresponding to the fetus and each of the target frequency domain signals includes:
  • the target photoplethysmography signal of the fetus corresponding to each detection light is determined.
  • the determining that the fetus corresponds to the detection light according to the target frequency domain signal of each detection light corresponding to the fetus Heart rate including:
  • the heart rate of the fetus corresponding to each detection light is determined according to the signals after frequency-time conversion processing, auto-correlation processing, and time-frequency conversion processing are performed on the target frequency domain signal corresponding to each detection light in sequence.
  • the determining the heart rate corresponding to the fetus according to a preset rule includes:
  • the heart rate corresponding to the fetus is determined according to the heart rate of the examined pregnant woman and the pre-stored correspondence table of the heart rate of the pregnant woman and the heart rate of the fetus.
  • the first photoplethysmography signal and the second photoplethysmography signal corresponding to each detection light Signal determining the target frequency domain signal of the fetus corresponding to each detection light, including:
  • the first photoplethysmography signal and the second photoplethysmography signal corresponding to the detection light are subjected to time-frequency conversion processing to determine the first photoplethysmography signal A first frequency domain signal corresponding to the signal and a second frequency domain signal corresponding to the second photoplethysmography signal;
  • For each detection light use the second frequency domain signal as the noise signal of the first frequency domain signal, and perform denoising processing on the first frequency domain signal to obtain the target frequency corresponding to the detection light Domain signal.
  • the wavelength of the detection light is two; and the determined target photoplethysmography signal is used to determine the
  • the blood oxygen saturation of the fetus includes: according to the determined target photoplethysmography signals, the following formula is used to determine the blood oxygen saturation SpO 2 of the fetus:
  • ⁇ 1 represents the first wavelength of the two wavelengths
  • ⁇ 2 represents the second wavelength of the two wavelengths
  • Represents the amplitude of the target photoplethysmography signal corresponding to the first wavelength detection light Represents the minimum value of the target photoplethysmography signal corresponding to the first wavelength detection light
  • Represents the amplitude of the target photoplethysmography signal corresponding to the second wavelength detection light Represents the minimum value of the target photoplethysmography signal corresponding to the second wavelength detection light.
  • At least one embodiment of the present disclosure further provides a device for detecting fetal blood oxygen saturation
  • the device for detecting fetal blood oxygen saturation includes: a first detecting part, a second detecting part, and a signal processing part;
  • the first detection unit includes: at least two first light sources and a first photovolume detector; wherein, each of the first light sources is configured to emit detection light of one wavelength, and the detection light emitted by each of the first light sources is The wavelength of the light is different; the first photovolume detector is configured to receive the light reflected by the fetus by the detection light;
  • the second detection unit includes: at least two of the first light source and a second photovolume detector; the second photovolume detector is configured to receive the detection light and undergo detection except for the abdomen of the pregnant woman Light transmitted by the site;
  • the signal processing unit includes: a first signal processing unit, a second signal processing unit, a third signal processing unit, and a blood oxygen saturation determination unit; wherein,
  • the first signal processing unit is configured to time-sharingly control each of the first light sources in the first detection unit to emit detection light to illuminate the fetus in the abdomen of the pregnant woman to be examined; according to the first photovolume detector Receiving the light reflected by the fetus from each of the detection lights, and acquiring the corresponding first photoplethysmography signal of the abdomen under the illumination of each of the detection lights;
  • the second signal processing unit is configured to time-sharingly control each of the first light sources in the second detection unit to emit detection light to illuminate the detection part;
  • the detection light is divided by the light transmitted by the detection part, and the second photoplethysmography signal corresponding to the detection part under the irradiation of each detection light is obtained;
  • the third signal processing unit is configured to determine, according to the first photoplethysmography signal and the second photoplethysmography signal corresponding to the detection light of each wavelength, the detection light of the fetus corresponding to each wavelength Target photoplethysmography signal;
  • the blood oxygen saturation determination unit is configured to determine the blood oxygen saturation of the fetus according to each determined target photoplethysmography signal.
  • At least one embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method for detecting fetal blood oxygen saturation described in any one of the above are implemented .
  • At least one embodiment of the present disclosure further provides a computer device that includes a memory, a processor, and a computer program stored on the memory and capable of running on the processor, and the processor executes the computer The procedure realizes the steps of any one of the above-mentioned methods for detecting fetal blood oxygen saturation.
  • the method and device for detecting fetal blood oxygen saturation use detection lights of at least two different wavelengths to irradiate the fetus in the pregnant woman’s abdomen in time sharing and obtain the abdomen under each detection light.
  • the corresponding first photoplethysmography signal use detection lights of at least two different wavelengths to irradiate the fetus in the pregnant woman’s abdomen in time sharing and obtain the abdomen under each detection light.
  • the corresponding first photoplethysmography signal used to measure the fetal blood oxygen saturation.
  • the first photoplethysmography signal that carries both the heart rate information of the pregnant woman and the heart rate information of the fetus can be obtained in a non-invasive human body, and by using At least two detection lights with different wavelengths are used to irradiate the detection parts except the abdomen of the pregnant woman in time sharing and obtain the second photoplethysmography signal corresponding to the detection parts under the irradiation of each detection light, so that the detection light is irradiated Since the detection site of the pregnant woman is not the abdomen of the pregnant woman, the second photoplethysmography signal with the heart rate information of the pregnant woman can be obtained in a non-invasive human body, so as to detect according to each wavelength
  • the first photoplethysmography signal and the second photoplethysmography signal corresponding to the light can determine the target photoplethysmography signal corresponding to each wavelength of the detection
  • FIG. 1 is a schematic diagram of the signal of photoplethysmography (PPG);
  • FIG. 2 is a schematic diagram of PPG signal transmission and reception
  • FIG. 3 is a flowchart of a method for detecting fetal blood oxygen saturation provided by an embodiment of the disclosure
  • FIG. 5 is a schematic diagram of the placement of the detection device during detection provided by an embodiment of the disclosure.
  • the pulse blood oxygen saturation level of the fetus in the late pregnancy is an important physiological indicator to measure the life state of the fetus.
  • the basic principle of fetal pulse oximetry monitoring is the same as that of adult pulse oximetry.
  • Oxygen is the foundation of human life.
  • the contraction and relaxation of the heart makes the body's blood flow pulsating through the lungs.
  • a certain amount of reduced hemoglobin (HbR) combines with oxygen taken in the lungs to form oxyhemoglobin (HbO 2 ).
  • HbR reduced hemoglobin
  • HbO 2 oxyhemoglobin
  • the blood is transported through the arteries to the capillaries, and then oxygen is released in the capillaries to maintain the metabolism of tissue cells.
  • Blood oxygen saturation is the percentage of the volume of oxygen-bound oxyhemoglobin (HbO 2 ) in the blood that accounts for the total volume of hemoglobin (Hb) that can be bound, that is, the concentration of blood oxygen in the blood, which is the respiratory cycle Important physiological parameters.
  • PPG photoplethysmography
  • the method for detecting fetal blood oxygen saturation includes the following steps:
  • the first PPG signal of the pregnant woman’s abdomen illuminated by red light at 940 nm and the second PPG signal of the pregnant woman’s finger illuminated by infrared light at 940 nm can be obtained.
  • the first wavelength may also be 940 nm, for example, and the second wavelength may also be 660 nm, for example, which is not limited here.
  • S302 According to the first photoplethysmography signal and the second photoplethysmography signal corresponding to the detection light of each wavelength, determine the target photoplethysmography signal of the fetus corresponding to the detection light of each wavelength.
  • the method for detecting fetal blood oxygen saturation uses detection lights of at least two different wavelengths to irradiate the fetus in the abdomen of the pregnant woman to be examined in a time-sharing manner, and obtain the corresponding information of the abdomen under the irradiation of each detection light.
  • the first photoplethysmography signal so that the detection light is used to irradiate the fetus in the abdomen of the pregnant woman to be tested, and the first photoplethysmographic pulse that carries both the heart rate information of the pregnant woman and the heart rate information of the fetus can be obtained in a non-invasive way. Trace the signal.
  • the detection parts other than the abdomen of the pregnant woman are time-sharing irradiated and the second photoplethysmography signal corresponding to the detection part under the irradiation of each detection light is obtained.
  • the detection light is used to illuminate the detection part of the pregnant woman to be examined. Since the detection part is not the abdomen of the pregnant woman, the second photoplethysmography signal with the heart rate information of the pregnant woman can be obtained in a non-invasive human body.
  • volume pulsation signals including:
  • the first photoplethysmography signal ie, the first PPG signal
  • the second photoplethysmography signal ie, the second PPG signal
  • the target photoplethysmography signal (ie target PPG signal) of the fetus corresponding to each detection light is determined, so that the target PPG signal can be obtained according to the fetal heart rate.
  • the target frequency domain signal of each detection light corresponding to the fetus can be determined according to the first PPG signal and the second PPG signal corresponding to each detection light.
  • the first PPG signal and the second PPG signal corresponding to the detection light of the first wavelength are used to determine the target frequency domain signal of the detection light of the first wavelength corresponding to the fetus.
  • the first PPG signal and the second PPG signal corresponding to the detection light of the second wavelength are used to determine the target frequency domain signal of the fetus corresponding to the detection light of the second wavelength, and then the heart rate corresponding to the fetus is determined according to a preset rule.
  • the target frequency domain signal of the fetus corresponding to each detection light is determined, including :
  • the first photoplethysmography signal and the second photoplethysmography signal corresponding to the detection light are subjected to time-frequency conversion processing to determine the first frequency domain signal and the second photoplethysmography signal corresponding to the first photoplethysmography signal. 2.
  • the second frequency domain signal is used as the noise signal of the first frequency domain signal, and the first frequency domain signal is denoised to obtain the target frequency domain signal corresponding to the detection light, so that the target frequency domain
  • the signal is the signal after the heart rate information of the pregnant woman is removed.
  • determining the heart rate corresponding to the fetus according to the preset rule includes: determining the heart rate of the fetus corresponding to each detection light according to the target frequency domain signal of each detection light corresponding to the fetus. Further, the heart rate of the fetus corresponding to each detection light can be determined based on the signals after frequency-time conversion processing, auto-correlation processing, and time-frequency conversion processing are performed on the target frequency domain signal corresponding to each detection light in sequence. For example, frequency-time conversion processing, auto-correlation processing, and time-frequency conversion processing are performed on the target frequency domain signal of the detection light of the fetus corresponding to the first wavelength.
  • frequency-time conversion processing, auto-correlation processing, and time-frequency conversion processing signals Determine the heart rate of the fetus corresponding to the detection light of the first wavelength. Perform frequency-time conversion processing, auto-correlation processing, and time-frequency conversion processing on the target frequency domain signal of the detection light corresponding to the second wavelength of the fetus, and determine the fetus based on the signals after the frequency-time conversion processing, auto-correlation processing, and time-frequency conversion processing. The heart rate of the detection light corresponding to the second wavelength.
  • determining the target photoplethysmography signal of the fetus corresponding to each detection light according to the determined heart rate of the fetus and each target frequency domain signal includes: determining the target frequency domain signal of the fetus corresponding to each detection light's heart rate The fetus corresponds to the target photoplethysmography signal of each detection light.
  • the method of detecting blood oxygen saturation using the principle that the absorption of light by arterial blood varies with arterial pulsation is based on the absorbance A of blood.
  • the formula for the absorbance A corresponding to the detection light of a certain wavelength satisfies:
  • I 0 represents the light intensity of the light emitted by the light-emitting diode 210
  • I represents the light intensity of the light received by the photovolume detector 230
  • d represents the path factor of light propagation
  • 1 ⁇ m ⁇ M the path factor of light propagation
  • m is an integer
  • ⁇ m represents the absorption coefficient of the m-th light-absorbing substance
  • C m represents the concentration of the m-th light-absorbing substance.
  • an artery has a pulsating part and a stationary part, and the fluctuating part of the artery affects the intensity of the incident light.
  • the photovolume detector detects the PPG signal corresponding to ⁇ i , then, the amount of change in the absorbance of the artery under dilation and contraction.
  • ⁇ L represents the parameter
  • Represents the concentration of oxygenated hemoglobin in the artery Represents the absorption coefficient of reduced hemoglobin corresponding to the wavelength ⁇ i in the artery
  • C RHb represents the concentration of reduced hemoglobin in the artery.
  • determining the blood oxygen saturation of the fetus according to the determined target photoplethysmography signals includes: according to the determined target photoplethysmography signals, the following formula is used Determine the blood oxygen saturation SpO 2 of the fetus;
  • ⁇ 1 represents the first wavelength of the two wavelengths
  • ⁇ 2 represents the second wavelength of the two wavelengths
  • Represents the amplitude of the target photoplethysmography signal corresponding to the detection light of the first wavelength Represents the minimum value of the target photoplethysmography signal corresponding to the first wavelength detection light
  • Represents the amplitude between the maximum value and the minimum value of the target photoplethysmography signal corresponding to the second wavelength detection light Represents the minimum value of the target photoplethysmography signal corresponding to the second wavelength detection light.
  • the first PPG signal S1_1 carries both the heart rate information of the pregnant woman and the heart rate information of the fetus.
  • the detection light of the second wavelength ⁇ 2 is used to irradiate the fetus in the abdomen of the pregnant woman to be examined, and the first PPG signal S1_2 corresponding to the abdomen under the detection light of the second wavelength ⁇ 2 is obtained.
  • the first PPG signal S1_2 carries both the heart rate information of the pregnant woman and the heart rate information of the fetus.
  • the detection light of the second wavelength ⁇ 2 is used to irradiate the detection part, and the second PPG signal S2_2 corresponding to the detection part under the detection light of the second wavelength ⁇ 2 is obtained, so that the second PPG signal S2_2 is only Carry the heart rate information of the pregnant woman under examination.
  • the PPG signal obtained by detection is a time-domain signal
  • the first PPG signal S1_1 corresponding to the detection light of the first wavelength ⁇ 1 is subjected to time-frequency conversion processing (for example, it can be FFT (Fast Fourier Transformation, Fast Fourier Transformation). Transform)) to transform the first PPG signal S1_1 in the form of a time domain signal into a signal in the form of a frequency domain signal, that is, the first frequency domain signal P1_1.
  • time-frequency conversion processing for example, it can be FFT (Fast Fourier Transformation, Fast Fourier Transformation). Transform)
  • the first PPG signal S1_2 corresponding to the detection light of the second wavelength ⁇ 2 is subjected to time-frequency conversion processing, so that the first PPG signal S1_2 in the form of a time-domain signal is transformed into a signal in the form of a frequency-domain signal, that is, the first frequency Domain signal P1_2.
  • the second PPG signal S2_1 in the form of a time domain signal is transformed into a signal in the form of a frequency domain signal, that is, the second frequency domain signal P2_1 .
  • the second PPG signal S2_2 corresponding to the detection light of the second wavelength ⁇ 2 is subjected to time-frequency conversion processing, so that the second PPG signal S2_2 in the form of a time domain signal is converted into a signal in the form of a frequency domain signal, that is, the second Frequency domain signal P2_2.
  • the second frequency domain signal P2_1 as a noise signal of a first frequency domain signal P1_1, P1_1 first frequency domain signal to perform noise processing, to obtain a first wavelength [lambda] 1
  • the target frequency domain signal M0_1 corresponding to the detection light.
  • the target frequency domain signal M0_2 time-frequency conversion processing to a target frequency domain signals converted to the target M0_2 MS0_2 time domain signal, after the time domain signal of the target self MS0_2 Correlation processing to further highlight the periodicity of the signal, that is, the fetal heartbeat cycle, while suppressing the influence of random noise or artifacts on signal quality.
  • time-frequency conversion processing is performed on the auto-correlation processed signal to obtain the target frequency domain signal M0_2' in the form of a frequency domain signal.
  • the heart rate of the fetus corresponding to the detection light of the second wavelength ⁇ 2 can be determined by screening the peak points.
  • the value corresponding to the heart rate is selected in the target frequency domain signal M0_2 to depict the target PPG signal S3_2 corresponding to the fetus.
  • the maximum, minimum, and amplitude of the corresponding heart rate is selected from the target frequency domain signal M0_2 only according to the heart rate corresponding to the fetus to determine the target PPG signal S3_2, which is not limited here.
  • An embodiment of the present disclosure is modified for the above-mentioned implementation of determining the heart rate corresponding to the fetus according to a preset rule. The following only describes the differences from the foregoing embodiment, and the similarities are not repeated here.
  • the heart rate corresponding to the fetus is determined according to the heart rate of the pregnant woman to be tested and the correspondence table of the heart rate of the pregnant woman and the heart rate of the fetus stored in advance.
  • the method of determining the pre-stored correspondence table of the heart rate of the pregnant woman and the heart rate of the fetus may include:
  • the corresponding table of the heart rate of the pregnant woman and the heart rate of the fetus is determined.
  • the corresponding relationship table between the heart rate of the pregnant woman and the heart rate of the fetus includes the heart rate of multiple pregnant women and the heart rate of the fetus corresponding to the heart rate of each pregnant woman.
  • the first PPG signal S1_1 carries both the heart rate information of the pregnant woman and the heart rate information of the fetus.
  • the detection light of the second wavelength ⁇ 2 is used to irradiate the fetus in the abdomen of the pregnant woman to be examined, and the first PPG signal S1_2 corresponding to the abdomen under the detection light of the second wavelength ⁇ 2 is obtained.
  • the first PPG signal S1_2 carries both the heart rate information of the pregnant woman and the heart rate information of the fetus.
  • the detection light of the second wavelength ⁇ 2 is used to irradiate the detection part, and the second PPG signal S2_2 corresponding to the detection part under the detection light of the second wavelength ⁇ 2 is obtained, so that the second PPG signal S2_2 is only Carry the heart rate information of the pregnant woman under examination.
  • the PPG signal obtained by detection is a time-domain signal
  • the first PPG signal S1_1 corresponding to the detection light of the first wavelength ⁇ 1 is subjected to time-frequency conversion processing (for example, it can be FFT (Fast Fourier Transformation, Fast Fourier Transformation). Transform)) to transform the first PPG signal S1_1 in the form of a time domain signal into a signal in the form of a frequency domain signal, that is, the first frequency domain signal P1_1.
  • time-frequency conversion processing for example, it can be FFT (Fast Fourier Transformation, Fast Fourier Transformation). Transform)
  • the second PPG signal S2_1 in the form of a time domain signal is transformed into a signal in the form of a frequency domain signal, that is, the second frequency domain signal P2_1 .
  • the second PPG signal S2_2 corresponding to the detection light of the second wavelength ⁇ 2 is subjected to time-frequency conversion processing, so that the second PPG signal S2_2 in the form of a time-domain signal is transformed into a signal in the form of a frequency-domain signal, that is, the second frequency Domain signal P2_2.
  • the second frequency domain signal P2_1 as a noise signal of a first frequency domain signal P1_1, P1_1 first frequency domain signal to perform noise processing, to obtain a first wavelength [lambda] 1
  • the target frequency domain signal M0_1 corresponding to the detection light.
  • the second detection light wavelength [lambda] 2 of the second frequency domain signal as a first frequency-domain signal P2_2 noise signal P1_2, P1_2 first frequency domain signal to perform noise processing, to obtain a second wavelength [lambda] 2
  • the target frequency domain signal M0_2 corresponding to the detection light.
  • the heart rate information of the pregnant woman under test carried in the first frequency domain signal P1_2 can be removed, so that the target frequency domain signal M0_2 can be understood as the fetal heart rate and its multiplier and background interference.
  • the detection light of the first wavelength can also be selected to determine the heart rate of the pregnant woman to be examined according to the second PPG signal S2_2 corresponding to the detection light.
  • the heart rate corresponding to the fetus can be determined according to the determined heart rate of the pregnant woman to be examined and the correspondence table of the heart rate of the pregnant woman and the heart rate of the fetus stored in advance.
  • the value corresponding to the heart rate is selected in the target frequency domain signal M0_2 to depict the target PPG signal S3_2 corresponding to the fetus.
  • the maximum, minimum, and amplitude of the corresponding heart rate is selected from the target frequency domain signal M0_2 only according to the heart rate corresponding to the fetus to determine the target PPG signal S3_2, which is not limited here.
  • step (1) and step (3) can be performed simultaneously, and step (2) and Step (4) can be performed simultaneously, or step (1) and step (4) can be performed simultaneously, and step (2) and step (3) can be performed simultaneously.
  • This can be designed and determined according to the actual application environment, and is not limited here.
  • step (7) before step (5) (6). It is designed and determined according to the actual application environment, which is not limited here.
  • the embodiments of the present disclosure also provide a device for detecting fetal blood oxygen saturation.
  • the device for detecting fetal blood oxygen saturation includes: a first detection unit 110, a second detection Section 120 and signal processing section 130; wherein, the first detection section 110 includes: at least two first light sources (two first light sources 141 and 142 are taken as an example in FIG.
  • each A first light source is configured to emit detection light of one wavelength, and the wavelength of the detection light emitted by each first light source is different; the first photovolume detector 111 is configured to receive light reflected by the fetus; wherein, the first light source 141 may be a light emitting diode emitting detection light of a first wavelength, and the first light source 142 may be a light emitting diode emitting detection light of a second wavelength.
  • the second detection unit 120 includes: at least two first light sources (two first light sources 141 and 142 are taken as an example in FIG. 4) and a second photovolume detector 121; the second photovolume detector is configured to receive detection light and remove The light transmitted through the detection area outside of the pregnant woman's abdomen.
  • the signal processing unit 130 includes: a first signal processing unit 131, a second signal processing unit 132, a third signal processing unit 133, and a blood oxygen saturation determination unit 134; wherein the first signal processing unit 131 is configured to control the first
  • Each first light source in the detection unit 110 emits detection light to illuminate the fetus in the abdomen of the pregnant woman to be examined; according to the light reflected by the fetus from the detection light received by the first photovolume detector 111, the detection light in the abdomen is obtained
  • the corresponding first photoplethysmography signal ie, the first PPG signal under irradiation.
  • the second signal processing unit 132 is configured to time-sharingly control the first light sources in the second detection unit 120 to emit detection light and irradiate the detection part; the detection light received by the second photovolume detector 121 is divided by the detection part to pass through , To obtain the second photoplethysmography signal (ie, the first PPG signal) corresponding to the detection part under the irradiation of each detection light;
  • the third signal processing unit 133 is configured to determine the target photoplethysmography signal of the fetus corresponding to the detection light of each wavelength according to the first photoplethysmography signal and the second photoplethysmography signal corresponding to the detection light of each wavelength;
  • the blood oxygen saturation determination unit 134 is configured to determine the blood oxygen saturation of the fetus based on the determined target photoplethysmography signals.
  • the principle of the fetal blood oxygen saturation detection device to solve the problem is similar to the aforementioned fetal blood oxygen saturation detection method, so the implementation of the fetal blood oxygen saturation detection device can refer to the aforementioned detection method of fetal blood oxygen saturation The implementation of the repetition will not be repeated here.
  • the second signal processing unit may be arranged in the second detection part, of course, it may also be arranged outside the second detection part, which is not limited herein.
  • the embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, any of the above-mentioned fetuses provided by the embodiments of the present disclosure are implemented.
  • the steps of the blood oxygen saturation detection method may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Pediatric Medicine (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Signal Processing (AREA)
  • Pulmonology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种胎儿血氧饱和度的检测方法及装置,通过采用至少两种不同波长的检测光,分时对受检孕妇腹中的胎儿进行照射并获取腹部在各检测光照射下对应的第一光电容积脉搏描记信号,以及分时对受检孕妇的腹部之外的检测部位进行照射并获取检测部位在各检测光照射下对应的第二光电容积脉搏描记信号。根据每一波长的检测光对应的第一光电容积脉搏描记信号和第二光电容积脉搏描记信号,确定胎儿对应每一波长的检测光的目标光电容积脉搏描记信号;根据确定出的各目标光电容积脉搏描记信号确定胎儿的血氧饱和度,从而提高监测胎儿的血氧饱和度的准确性。

Description

胎儿血氧饱和度的检测方法及装置、计算机可读存储介质以及计算机设备
本申请要求于2019年1月18日递交的中国专利申请第201910048957.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及检测技术领域,特别涉及一种胎儿血氧饱和度的检测方法及装置、计算机可读存储介质以及计算机设备。
背景技术
胎儿的血氧饱和度是比较直接反映胎儿生命状态的生理指标。由于目前没有有效的非侵入人体的方式检测胎儿的血氧饱和度的仪器设备,并且胎儿心率监护仪被用于胎儿生理状态的监护,因此医护人员往往只能依靠胎儿心率监护仪器进行监护。然而,采用胎儿心率监护仪器只是一个间接的监护手段,可能会导致检测得到的胎儿的血氧饱和度不准确。
发明内容
本公开的实施例提供一种胎儿血氧饱和度的检测方法及装置、计算机可读存储介质以及计算机设备,用以提高检测得到的胎儿的血氧饱和度的准确性。
本公开至少一实施例提供一种胎儿血氧饱和度的检测方法,包括:
采用至少两种不同波长的检测光,分时对受检孕妇腹部中的胎儿进行照射并获取所述腹部在各所述检测光照射下对应的第一光电容积脉搏描记信号;以及分时对除所述受检孕妇的腹部之外的检测部位进行照射并获取所述检测部位在各所述检测光照射下对应的第二光电容积脉搏描记信号;
根据每一波长的检测光对应的所述第一光电容积脉搏描记信号和所述第二光电容积脉搏描记信号,确定所述胎儿对应每一波长的检测光的目标光电容积脉搏描记信号;
根据确定出的各所述目标光电容积脉搏描记信号,确定所述胎儿的血氧 饱和度。
例如,在本公开至少一实施例提供的胎儿血氧饱和度的检测方法中,所述根据每一波长的检测光对应的所述第一光电容积脉搏描记信号和所述第二光电容积脉搏描记信号,确定所述胎儿对应每一波长的检测光的目标光电容积脉搏描记信号,包括:
根据每一所述检测光对应的所述第一光电容积脉搏描记信号和所述第二光电容积脉搏描记信号,确定所述胎儿对应每一所述检测光的目标频域信号;以及根据预设规则确定所述胎儿对应的心率;
根据确定出的所述胎儿对应的心率和各所述目标频域信号,确定所述胎儿对应每一所述检测光的目标光电容积脉搏描记信号。
例如,在本公开至少一实施例提供的胎儿血氧饱和度的检测方法中,所述根据预设规则确定所述胎儿对应的心率,包括:
根据所述胎儿对应的每一所述检测光的目标频域信号,确定所述胎儿对应每一所述检测光的心率;
所述根据确定出的所述胎儿对应的心率和各所述目标频域信号,确定所述胎儿对应每一所述检测光的目标光电容积脉搏描记信号,包括:
根据所述胎儿对应每一所述检测光的心率和所述目标频域信号,确定所述胎儿对应每一所述检测光的目标光电容积脉搏描记信号。
例如,在本公开至少一实施例提供的胎儿血氧饱和度的检测方法中,所述根据所述胎儿对应的每一所述检测光的目标频域信号,确定所述胎儿对应所述检测光的心率,包括:
根据依次对每一所述检测光对应的所述目标频域信号进行频时转换处理、自相关处理和时频转换处理后的信号,确定所述胎儿对应每一所述检测光的心率。
例如,在本公开至少一实施例提供的胎儿血氧饱和度的检测方法中,所述根据预设规则确定所述胎儿对应的心率,包括:
选取所有所述检测光中的一个检测光,根据所述检测光对应的所述第二光电容积脉搏描记信号,确定所述受检孕妇的心率;
根据所述受检孕妇的心率以及预先存储的孕妇心率和胎儿心率的对应关系表,确定所述胎儿对应的心率。
例如,在本公开至少一实施例提供的胎儿血氧饱和度的检测方法中,所 述根据每一所述检测光对应的所述第一光电容积脉搏描记信号和所述第二光电容积脉搏描记信号,确定所述胎儿对应每一所述检测光的目标频域信号,包括:
针对每一所述检测光,分别对所述检测光对应的所述第一光电容积脉搏描记信号和所述第二光电容积脉搏描记信号进行时频转换处理,确定所述第一光电容积脉搏描记信号对应的第一频域信号以及所述第二光电容积脉搏描记信号对应的第二频域信号;
针对每一所述检测光,将所述第二频域信号作为所述第一频域信号的噪声信号,对所述第一频域信号进行去噪声处理,得到所述检测光对应的目标频域信号。
例如,在本公开至少一实施例提供的胎儿血氧饱和度的检测方法中,所述检测光的波长为两个;所述根据确定出的各所述目标光电容积脉搏描记信号,确定所述胎儿的血氧饱和度,包括:根据确定出的各所述目标光电容积脉搏描记信号,采用如下公式确定所述胎儿的血氧饱和度SpO 2
Figure PCTCN2019128320-appb-000001
Figure PCTCN2019128320-appb-000002
Figure PCTCN2019128320-appb-000003
其中,λ 1代表所述两个波长中的第一波长,λ 2代表所述两个波长中的第二波长,
Figure PCTCN2019128320-appb-000004
代表所述胎儿动脉中还原血红蛋白对应所述第一波长的检测光的吸光系数,
Figure PCTCN2019128320-appb-000005
代表所述动脉中还原血红蛋白对应所述第二波长的检测光的吸光系数,
Figure PCTCN2019128320-appb-000006
代表所述动脉中氧合血红蛋白对应所述第一波长的检测光的吸光系数;
Figure PCTCN2019128320-appb-000007
代表所述第一波长检测光对应的目标光电容积脉搏描记信号的幅值,
Figure PCTCN2019128320-appb-000008
代表所述第一波长检测光对应的目标光电容积脉搏描记信号的最小值;
Figure PCTCN2019128320-appb-000009
代表所述第二波长检测光对应的目标光电容积脉搏描记信号的幅值,
Figure PCTCN2019128320-appb-000010
代表所述第二波长检测光对应的目标光电容积脉搏描记信号的最小值。
本公开至少一实施例还提供一种胎儿血氧饱和度的检测装置,该胎儿血氧饱和度的检测装置包括:第一检测部、第二检测部以及信号处理部;
所述第一检测部包括:至少两个第一光源与第一光电容积探测器;其中, 每一所述第一光源配置为发射一种波长的检测光并且各所述第一光源发射的检测光的波长不同;所述第一光电容积探测器配置为接收所述检测光经所述胎儿反射的光;
所述第二检测部包括:至少两个所述第一光源与第二光电容积探测器;所述第二光电容积探测器配置为接收所述检测光经除受检孕妇的腹部之外的检测部位透过的光;
所述信号处理部包括:第一信号处理单元、第二信号处理单元、第三信号处理单元以及血氧饱和度确定单元;其中,
所述第一信号处理单元配置为分时控制所述第一检测部中的各所述第一光源发射检测光,对受检孕妇腹部中的胎儿进行照射;根据所述第一光电容积探测器接收的各所述检测光经所述胎儿反射的光,获取所述腹部在各所述检测光照射下对应的第一光电容积脉搏描记信号;
所述第二信号处理单元配置为分时控制所述第二检测部中的各所述第一光源发射检测光,对所述检测部位进行照射;根据所述第二光电容积探测器接收的所述检测光经除所述检测部位透过的光,获取所述检测部位在各所述检测光照射下对应的第二光电容积脉搏描记信号;
所述第三信号处理单元配置为根据每一波长的检测光对应的所述第一光电容积脉搏描记信号和所述第二光电容积脉搏描记信号,确定所述胎儿对应每一波长的检测光的目标光电容积脉搏描记信号;
所述血氧饱和度确定单元配置为根据确定出的各所述目标光电容积脉搏描记信号,确定所述胎儿的血氧饱和度。
本公开至少一实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的胎儿血氧饱和度的检测方法的步骤。
本公开至少一实施例还提供一种计算机设备,所述计算机设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述任一项所述的胎儿血氧饱和度的检测方法的步骤。
本公开的实施例具有的有益效果如下:
本公开的实施例提供的胎儿血氧饱和度的检测方法及装置,通过采用至少两种不同波长的检测光,分时对受检孕妇腹部中的胎儿进行照射并获取腹 部在各检测光照射下对应的第一光电容积脉搏描记信号。这样采用检测光照射受检孕妇腹部的胎儿时,可以采用非侵入人体的方式得到既携带有受检孕妇的心率信息又携带有胎儿的心率信息的第一光电容积脉搏描记信号,并且,通过采用至少两种不同波长的检测光,分时对除受检孕妇的腹部之外的检测部位进行照射并获取检测部位在各检测光照射下对应的第二光电容积脉搏描记信号,这样采用检测光照射受检孕妇的检测部位,由于该检测部位不是受检孕妇的腹部,可以采用非侵入人体的方式得到带有受检孕妇的心率信息的第二光电容积脉搏描记信号,从而根据每一波长的检测光对应的第一光电容积脉搏描记信号和第二光电容积脉搏描记信号,可以确定胎儿对应每一波长的检测光的目标光电容积脉搏描记信号,即目标光电容积脉搏描记信号是去除受检孕妇的心率信息干扰后的携带有胎儿心率信息的光电容积脉搏波描记法(PPG)信号,再根据确定出的各目标光电容积脉搏描记信号,即可确定出胎儿的血氧饱和度,从而提高检测胎儿的血氧饱和度的准确性。
附图说明
图1为光电容积脉搏波描记法(PPG)信号的信号示意图;
图2为PPG信号的发射和接收示意图;
图3为本公开一实施例提供的胎儿血氧饱和度的检测方法的流程图;
图4为本公开一实施例提供的胎儿血氧饱和度的检测装置的结构示意图;以及
图5为本公开的实施例提供的检测时检测装置的放置示意图。
具体实施方式
为了使本公开的的目的,技术方案和优点更加清楚,下面结合附图,对本公开的实施例提供的胎儿血氧饱和度的检测方法及胎儿血氧饱和度的检测装置的具体实施方式进行详细地说明。应当理解,下面所描述的实施例仅说明和解释本公开,并不用于限定本公开。并且在不冲突的情况下,本公开的实施例及各个实施例中的特征可以相互组合。需要注意的是,说明书附图中各图形的大小和形状不反映真实比例,目的只是示意说明本公开的内容,并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。
怀孕后期胎儿的脉搏血氧饱和度水平是一个衡量胎儿生命状态的重要的生理指标。胎儿脉搏血氧饱和度监测的基本原理与成人脉搏血氧饱和度检测的基本原理相同。氧是维系人类生命的基础,心脏的收缩和舒张使得人体的血液脉动地流过肺部。一定量的还原血红蛋白(HbR)与肺部中摄取的氧气结合成氧合血红蛋白(HbO 2)。这些血液通过动脉一直输送到毛细血管,然后在毛细血管中将氧释放,以维持组织细胞的新陈代谢。血氧饱和度(SpO 2)是血液中被氧结合的氧合血红蛋白(HbO 2)的容量占全部可结合的血红蛋白(Hb)容量的百分比,即血液中血氧的浓度,它是呼吸循环的重要生理参数。
在心脏搏动的周期内,外周血管中的微动脉、毛细血管和微静脉内流过的血液相应的呈搏动性变化。当心脏收缩时血液容积最大,而在心脏舒张时血液容积最小。这样可以通过光电容积脉搏波描记法(Photoplethysmography,PPG),通过光学技术获取光线在人体组织吸收变化的描记图,以得到图1所示的PPG信号。PPG工作的原理是,结合图2所示,发光二极管210将特定强度和波长的光照射在受检孕妇的皮肤表层220上,光电容积探测器230检测通过皮肤表层220后出射的光的强度,并根据检测到的光强进行描绘,以描绘出图1所示的交流形式的PPG信号。该PPG信号的产生,是由于人体心脏在每个搏动周期内将血液输送到人体各组织,探测部位皮肤表层220的动脉和小动脉的血管由于心脏的泵血,血液的灌注发生周期性的扩张、收缩变化得到。当心脏收缩血液灌注增多血管扩张时,吸收光增加,光电容积探测器230接收到的信号就变弱,反之,光电容积探测器230接收到的信号就变强。这样使得PPG信号中具有最大值I max和最小值I min
即可以采用动脉血液对光的吸收量随动脉搏动而变化的原理来无损伤检测血氧饱和度。基础研究表明,氧合血红蛋白和脱氧血红蛋白对不同波长的入射光有着不同的吸收率。当单色光垂直照射人体,动脉血液对光的吸收量将随透光区域动脉血管搏动而变化。有鉴于此,本公开的实施例提供一种胎儿血氧饱和度的检测方法,采用非侵入人体的方式检测胎儿的血氧饱和度,并提高检测到的胎儿的血氧饱和度的准确性。
如图3所示,本公开的实施例提供的胎儿血氧饱和度的检测方法,包括如下步骤:
S301、采用至少两种不同波长的检测光,分时对受检孕妇腹部中的胎儿进行照射并获取腹部在各检测光照射下对应的第一光电容积脉搏描记信号 (即第一PPG信号);以及分时对除受检孕妇的腹部之外的检测部位进行照射并获取检测部位在各检测光照射下对应的第二光电容积脉搏描记信号(即第二PPG信号)。
由于检测部位是受检孕妇除腹部之外的部位,因此相当于第二PPG信号仅携带有受检孕妇的心率信息。进一步地,为了进一步降低胎儿的心率对第二PPG信号的影响,可以选择受检孕妇中距离腹部较远的部位作为检测部位,例如,可以将手指、脚踝或脚趾作为检测部位。下面均以手指作为检测部位为例进行说明。
一般血液中在红光和红外光波段下的吸光物质为血红蛋白,因此可以将检测光的波长设置为两个。其中,这两个波长中的第一波长可以设置为红光波段的波长,例如,可以为660nm。这样可以获取受检孕妇的腹部在660nm的红光照射下的第一PPG信号,以及可以获取受检孕妇的手指在660nm的红光照射下的第二PPG信号,这两个波长中的第二波长可以设置为红外光波段的波长,例如,可以为940nm。这样可以获取受检孕妇的腹部在940nm的红光照射下的第一PPG信号,以及可以获取受检孕妇的手指在940nm的红外光照射下的第二PPG信号。当然,第一波长例如也可以为940nm,第二波长例如也可以为660nm,在此不作限定。
S302、根据每一波长的检测光对应的第一光电容积脉搏描记信号和第二光电容积脉搏描记信号,确定胎儿对应每一波长的检测光的目标光电容积脉搏描记信号。
S303、根据确定出的各目标光电容积脉搏描记信号,确定胎儿的血氧饱和度。
本公开的实施例提供的胎儿血氧饱和度的检测方法,通过采用至少两种不同波长的检测光,分时对受检孕妇腹部中的胎儿进行照射并获取腹部在各检测光照射下对应的第一光电容积脉搏描记信号,这样采用检测光照射受检孕妇腹部的胎儿,可以采用非侵入人体的方式得到既携带有受检孕妇的心率信息又携带有胎儿的心率信息的第一光电容积脉搏描记信号。并且,通过采用至少两种不同波长的检测光,分时对除受检孕妇的腹部之外的检测部位进行照射并获取检测部位在各检测光照射下对应的第二光电容积脉搏描记信号,这样采用检测光照射受检孕妇的检测部位,由于检测部位不是受检孕妇的腹部,可以采用非侵入人体的方式得到带有受检孕妇的心率信息的第二光 电容积脉搏描记信号。从而根据每一波长的检测光对应的第一光电容积脉搏描记信号和第二光电容积脉搏描记信号,可以确定胎儿对应每一波长的检测光的目标光电容积脉搏描记信号,即目标光电容积脉搏描记信号是去除受检孕妇的心率信息干扰后的携带有胎儿心率信息的PPG信号,这样再根据确定出的各目标光电容积脉搏描记信号,即可确定出胎儿的血氧饱和度,从而提高检测胎儿的血氧饱和度的准确性。
下面结合具体实施例,对本公开进行详细说明。需要说明的是,本公开的实施例是为了更好的解释本公开,但不限制本公开。
在具体实施时,在本公开的实施例中,根据每一波长的检测光对应的第一光电容积脉搏描记信号和第二光电容积脉搏描记信号,确定胎儿对应每一波长的检测光的目标光电容积脉搏描记信号,包括:
根据每一检测光对应的第一光电容积脉搏描记信号(即第一PPG信号)和第二光电容积脉搏描记信号(即第二PPG信号),确定胎儿对应每一检测光的目标频域信号;以及根据预设规则确定胎儿对应的心率;
根据确定出的胎儿对应的心率和各目标频域信号,确定胎儿对应每一检测光的目标光电容积脉搏描记信号(即目标PPG信号),这样可以根据胎儿的心率得到目标PPG信号。
在具体实施时,可以先根据每一检测光对应的第一PPG信号和第二PPG信号,确定胎儿对应每一检测光的目标频域信号。例如,通过第一波长的检测光对应的第一PPG信号和第二PPG信号,确定胎儿对应第一波长的检测光的目标频域信号。通过第二波长的检测光对应的第一PPG信号和第二PPG信号,确定胎儿对应第二波长的检测光的目标频域信号,之后,再根据预设规则确定胎儿对应的心率。
在具体实施时,在本公开的实施例中,根据每一检测光对应的第一光电容积脉搏描记信号和第二光电容积脉搏描记信号,确定胎儿对应每一检测光的目标频域信号,包括:
针对每一检测光,分别对检测光对应的第一光电容积脉搏描记信号和第二光电容积脉搏描记信号进行时频转换处理,确定第一光电容积脉搏描记信号对应的第一频域信号以及第二光电容积脉搏描记信号对应的第二频域信号;
针对每一检测光,将第二频域信号作为第一频域信号的噪声信号,对第 一频域信号进行去噪声处理,得到检测光对应的目标频域信号,这样使得到的目标频域信号是去除受检孕妇的心率信息后的信号。
在本公开的实施例中,根据预设规则确定胎儿对应的心率,包括:根据胎儿对应的每一个检测光的目标频域信号,确定胎儿对应每一检测光的心率。进一步地,可以根据依次对每一检测光对应的目标频域信号进行频时转换处理、自相关处理和时频转换处理后的信号,确定胎儿对应每一检测光的心率。例如,对胎儿对应第一波长的检测光的目标频域信号进行频时转换处理、自相关处理和时频转换处理,根据上述频时转换处理、自相关处理和时频转换处理后的信号,确定胎儿对应第一波长的检测光的心率。对胎儿对应第二波长的检测光的目标频域信号进行频时转换处理、自相关处理和时频转换处理,根据上述频时转换处理、自相关处理和时频转换处理后的信号,确定胎儿对应第二波长的检测光的心率。
例如,根据确定出的胎儿对应的心率和各目标频域信号,确定胎儿对应每一检测光的目标光电容积脉搏描记信号,包括:根据胎儿对应每一检测光的心率和目标频域信号,确定胎儿对应每一检测光的目标光电容积脉搏描记信号。
一般,采用动脉血液对光的吸收量随动脉搏动而变化的原理检测血氧饱和度的方法是基于血液的吸光度A的。结合图2所示,某一波长(以λ i为例)的检测光对应的吸光度A的公式满足:
Figure PCTCN2019128320-appb-000011
其中,I 0代表发光二极管210发出的光的光强,I代表光电容积探测器230接收到的光的光强,d代表光传播的路径因子,1≤m≤M,且m为整数,M代表吸光物质的总数,ε m代表第m吸光物质的吸光系数,C m代表第m吸光物质的浓度。
一般动脉具有搏动部分和静止部分,而其中动脉的波动部分会对入射的光的光强产生影响。在某一波长(以λ i为例)的特定光强的光照射下,光电容积探测器检测到对应λ i的PPG信号,那么,动脉舒张和收缩下的吸光度的变化量
Figure PCTCN2019128320-appb-000012
可以满足公式:
Figure PCTCN2019128320-appb-000013
其中,ΔL代表参数,
Figure PCTCN2019128320-appb-000014
代表波长λ i下动脉的最大吸光度,
Figure PCTCN2019128320-appb-000015
代表波长λ i下动脉的最小吸光度,
Figure PCTCN2019128320-appb-000016
代表动脉中氧合血红蛋白对应波长λ i的光的吸光系数,
Figure PCTCN2019128320-appb-000017
代表 动脉中氧合血红蛋白的浓度,
Figure PCTCN2019128320-appb-000018
代表动脉中还原血红蛋白对应波长λ i的光的吸光系数,C RHb代表动脉中还原血红蛋白的浓度。
Figure PCTCN2019128320-appb-000019
代表波长λ i下光电容积探测器检测到的PPG信号的最小值,
Figure PCTCN2019128320-appb-000020
代表波长λ i下光电容积探测器检测到的PPG信号的最大值,
Figure PCTCN2019128320-appb-000021
代表波长λ i下光电容积探测器检测到的PPG信号的最小值与最大值之间的幅值。
在具体实施时,在检测光的波长为两个时,即第一波长和第二波长。这样第一波长(例如λ 1)对应的吸光度的变化量
Figure PCTCN2019128320-appb-000022
可以满足公式:
Figure PCTCN2019128320-appb-000023
第二波长(例如λ 2)对应的吸光度的变化量
Figure PCTCN2019128320-appb-000024
可以满足公式:
Figure PCTCN2019128320-appb-000025
其中,第二波长选用氧合血红蛋白和还原血红蛋白的等吸光点,即
Figure PCTCN2019128320-appb-000026
并将
Figure PCTCN2019128320-appb-000027
Figure PCTCN2019128320-appb-000028
相比可得胎儿的血氧饱和度SpO 2满足的公式:
Figure PCTCN2019128320-appb-000029
其中,
Figure PCTCN2019128320-appb-000030
在具体实施时,在本公开的实施例中,根据确定出的各目标光电容积脉搏描记信号,确定胎儿的血氧饱和度,包括:根据确定出的各目标光电容积脉搏描记信号,采用如下公式确定胎儿的血氧饱和度SpO 2
Figure PCTCN2019128320-appb-000031
Figure PCTCN2019128320-appb-000032
Figure PCTCN2019128320-appb-000033
其中,λ 1代表两个波长中的第一波长,λ 2代表两个波长中的第二波长,
Figure PCTCN2019128320-appb-000034
代表胎儿动脉中还原血红蛋白对应第一波长的检测光的吸光系数,
Figure PCTCN2019128320-appb-000035
代表动脉中还原血红蛋白对应第二波长的检测光的吸光系数,
Figure PCTCN2019128320-appb-000036
代表动脉中氧合血红蛋白对应第一波长的检测光的吸光系数;
Figure PCTCN2019128320-appb-000037
代表第一波长检测光对应的目标光电容积脉搏描记信号的幅值,
Figure PCTCN2019128320-appb-000038
代表第一波长检测光对应的目标光电容积脉搏描记信号的最小值;
Figure PCTCN2019128320-appb-000039
代表第二波长检测光对应的目标 光电容积脉搏描记信号的最大值与最小值之间的幅值,
Figure PCTCN2019128320-appb-000040
代表第二波长检测光对应的目标光电容积脉搏描记信号的最小值。
下面通过具体实施例对本公开提供的检测方法进行详细说明。
本公开的实施例提供的胎儿血氧饱和度的检测方法可以包括如下步骤:
(1)采用第一波长λ 1的检测光对受检孕妇腹部中的胎儿进行照射,并获取腹部在第一波长λ 1的检测光照射下对应的第一PPG信号S1_1。该第一PPG信号S1_1既携带有受检孕妇的心率信息又携带有胎儿的心率信息。
(2)采用第二波长λ 2的检测光对受检孕妇腹部中的胎儿进行照射,并获取腹部在第二波长λ 2的检测光照射下对应的第一PPG信号S1_2。该第一PPG信号S1_2既携带有受检孕妇的心率信息又携带有胎儿的心率信息。
(3)采用第一波长λ 1的检测光对检测部位进行照射,并获取检测部位在第一波长λ 1的检测光照射下对应的第二PPG信号S2_1,以使该第二PPG信号S2_1仅携带有受检孕妇的心率信息。
(4)采用第二波长λ 2的检测光对检测部位进行照射,并获取检测部位在第二波长λ 2的检测光照射下对应的第二PPG信号S2_2,以使该第二PPG信号S2_2仅携带有受检孕妇的心率信息。
(5)一般检测得到的PPG信号为时域信号,则通过对第一波长λ 1的检测光对应的第一PPG信号S1_1进行时频转换处理(例如可以为FFT(Fast Fourier Transformation,快速傅氏变换)),以使时域信号形式的第一PPG信号S1_1转变为频域信号形式的信号,即第一频域信号P1_1。同理,通过对第二波长λ2的检测光对应的第一PPG信号S1_2进行时频转换处理,以使时域信号形式的第一PPG信号S1_2转变为频域信号形式的信号,即第一频域信号P1_2。
通过对第一波长λ1的检测光对应的第二PPG信号S2_1进行时频转换处理,以使时域信号形式的第二PPG信号S2_1转变为频域信号形式的信号,即第二频域信号P2_1。同理,通过对第二波长λ 2的检测光对应的第二PPG信号S2_2进行时频转换处理,以使时域信号形式的第二PPG信号S2_2转变为频域信号形式的信号,即第二频域信号P2_2。
(6)针对第一波长λ 1的检测光,将第二频域信号P2_1作为第一频域信号P1_1的噪声信号,对第一频域信号P1_1进行去噪声处理,得到第一波长λ 1的检测光对应的目标频域信号M0_1。这样即可以将第一频域信号P1_1中 携带的受检孕妇的心率信息进行去除,以使目标频域信号M0_1可以理解为胎儿心率及其倍频以及背景干扰。
同理,针对第二波长λ 2的检测光,将第二频域信号P2_2作为第一频域信号P1_2的噪声信号,对第一频域信号P1_2进行去噪声处理,得到第二波长λ2的检测光对应的目标频域信号M0_2。这样即可以将第一频域信号P1_2中携带的受检孕妇的心率信息进行去除,以使目标频域信号M0_2可以理解为胎儿心率及其倍频以及背景干扰。
(7)针对第一波长λ 1的检测光,对目标频域信号M0_1进行频时转换处理,以将目标频域信号M0_1转换为目标时域信号MS0_1,之后,对目标时域信号MS0_1进行自相关处理,以进一步凸显信号的周期性,即胎儿的心跳周期,同时抑制随机噪声或伪差对信号质量的影响。之后,对自相关处理后的信号进行时频转换处理,以得到频域信号形式的目标频域信号M0_1’。之后,根据目标频域信号M0_1’通过筛选峰值点即可确定胎儿对应第一波长λ1的检测光的心率。
同理,针对第二波长λ 2的检测光,对目标频域信号M0_2进行频时转换处理,以将目标频域信号M0_2转换为目标时域信号MS0_2,之后,对目标时域信号MS0_2进行自相关处理,以进一步凸显信号的周期性,即胎儿的心跳周期,同时抑制随机噪声或伪差对信号质量的影响。之后,对自相关处理后的信号进行时频转换处理,以得到频域信号形式的目标频域信号M0_2’。之后,根据目标频域信号M0_2’通过筛选峰值点即可确定胎儿对应第二波长λ 2的检测光的心率。
(8)针对第一波长λ 1的检测光,根据胎儿对应的心率,在目标频域信号M0_1中选择对应心率的值,以描绘胎儿对应的目标PPG信号S3_1。当然,也可以仅根据胎儿对应的心率,在目标频域信号M0_1中选择对应心率的最大值、最小值以及幅值,确定目标PPG信号S3_1,在此不作限定。
同理,针对第二波长λ 2的检测光,根据胎儿对应的心率,在目标频域信号M0_2中选择对应心率的值,以描绘胎儿对应的目标PPG信号S3_2。当然,也可以仅根据胎儿对应的心率,在目标频域信号M0_2中选择对应心率的最大值、最小值以及幅值,确定目标PPG信号S3_2,在此不作限定。
(9)根据确定出的目标PPG信号S3_1和目标PPG信号S3_2,采用如下公式确定胎儿的血氧饱和度SpO 2
Figure PCTCN2019128320-appb-000041
Figure PCTCN2019128320-appb-000042
需要说明的是,上述实施例中,仅是以步骤(1)-(4)的顺序进行说明,在实际应用中,可以使步骤(1)与步骤(3)同时进行,步骤(2)与步骤(4)同时进行,或者也可以使步骤(1)与步骤(4)同时进行,步骤(2)与步骤(3)同时进行,这可以根据实际应用环境来设计确定,在此不作限定。
本公开一实施例针对上述中根据预设规则确定胎儿对应的心率的实施方式进行了变形。下面仅说明与上述实施例的区别之处,其相同之处在此不作赘述。
在具体实施时,在本公开的实施例中,根据预设规则确定胎儿对应的心率,可以包括:
选取所有检测光中的一个检测光,根据检测光对应的第二光电容积脉搏描记信号,确定受检孕妇的心率;
根据受检孕妇的心率以及预先存储的孕妇心率和胎儿心率的对应关系表,确定胎儿对应的心率。
一般,胎儿心率与孕妇心率存在映射关系,在具体实施时,在本公开的实施例中,确定预先存储的孕妇心率和胎儿心率的对应关系表的方法,可以包括:
获取多个预选孕妇的心率,以及采用胎心监护仪获取各预选孕妇的胎儿的心率;
根据获取到的各预选孕妇的心率以及各预选孕妇的胎儿的心率,确定孕妇心率和胎儿心率的对应关系表。其中,孕妇心率和胎儿心率的对应关系表包括:多个孕妇心率以及与每一孕妇心率一一对应的胎儿心率。
下面通过具体实施例对本公开的实施例提供的检测方法进行详细说明。
本公开的实施例提供的胎儿血氧饱和度的检测方法可以包括如下步骤:
(1)采用第一波长λ 1的检测光对受检孕妇腹部中的胎儿进行照射,并获取腹部在第一波长λ 1的检测光照射下对应的第一PPG信号S1_1。该第一PPG信号S1_1既携带有受检孕妇的心率信息又携带有胎儿的心率信息。
(2)采用第二波长λ 2的检测光对受检孕妇腹部中的胎儿进行照射,并获取腹部在第二波长λ 2的检测光照射下对应的第一PPG信号S1_2。该第一 PPG信号S1_2既携带有受检孕妇的心率信息又携带有胎儿的心率信息。
(3)采用第一波长λ 1的检测光对检测部位进行照射,并获取检测部位在第一波长λ 1的检测光照射下对应的第二PPG信号S2_1,以使该第二PPG信号S2_1仅携带有受检孕妇的心率信息。
(4)采用第二波长λ 2的检测光对检测部位进行照射,并获取检测部位在第二波长λ 2的检测光照射下对应的第二PPG信号S2_2,以使该第二PPG信号S2_2仅携带有受检孕妇的心率信息。
(5)一般检测得到的PPG信号为时域信号,则通过对第一波长λ 1的检测光对应的第一PPG信号S1_1进行时频转换处理(例如可以为FFT(Fast Fourier Transformation,快速傅氏变换)),以使时域信号形式的第一PPG信号S1_1转变为频域信号形式的信号,即第一频域信号P1_1。同理,通过对第二波长λ 2的检测光对应的第一PPG信号S1_2进行时频转换处理,以使时域信号形式的第一PPG信号S1_2转变为频域信号形式的信号,即第一频域信号P1_2。
通过对第一波长λ1的检测光对应的第二PPG信号S2_1进行时频转换处理,以使时域信号形式的第二PPG信号S2_1转变为频域信号形式的信号,即第二频域信号P2_1。同理,通过对第二波长λ2的检测光对应的第二PPG信号S2_2进行时频转换处理,以使时域信号形式的第二PPG信号S2_2转变为频域信号形式的信号,即第二频域信号P2_2。
(6)针对第一波长λ 1的检测光,将第二频域信号P2_1作为第一频域信号P1_1的噪声信号,对第一频域信号P1_1进行去噪声处理,得到第一波长λ 1的检测光对应的目标频域信号M0_1。这样即可以将第一频域信号P1_1中携带的受检孕妇的心率信息进行去除,以使目标频域信号M0_1可以理解为胎儿心率及其倍频以及背景干扰。
同理,针对第二波长λ 2的检测光,将第二频域信号P2_2作为第一频域信号P1_2的噪声信号,对第一频域信号P1_2进行去噪声处理,得到第二波长λ 2的检测光对应的目标频域信号M0_2。这样即可以将第一频域信号P1_2中携带的受检孕妇的心率信息进行去除,以使目标频域信号M0_2可以理解为胎儿心率及其倍频以及背景干扰。
(7)选取第一波长的检测光,根据该检测光对应的第二PPG信号S2_1,确定受检孕妇的心率。当然,也可以选取第二波长的检测光,以根据该检测 光对应的第二PPG信号S2_2,确定受检孕妇的心率。
之后,根据确定出的受检孕妇的心率以及预先存储的孕妇心率和胎儿心率的对应关系表,即可确定胎儿对应的心率。
(8)针对第一波长λ 1的检测光,根据胎儿对应的心率,在目标频域信号M0_1中选择对应心率的值,以描绘胎儿对应的目标PPG信号S3_1。当然,也可以仅根据胎儿对应的心率,在目标频域信号M0_1中选择对应心率的最大值、最小值以及幅值,确定目标PPG信号S3_1,在此不作限定。
同理,针对第二波长λ 2的检测光,根据胎儿对应的心率,在目标频域信号M0_2中选择对应心率的值,以描绘胎儿对应的目标PPG信号S3_2。当然,也可以仅根据胎儿对应的心率,在目标频域信号M0_2中选择对应心率的最大值、最小值以及幅值,确定目标PPG信号S3_2,在此不作限定。
(9)根据确定出的目标PPG信号S3_1和目标PPG信号S3_2,采用如下公式确定胎儿的血氧饱和度SpO 2
Figure PCTCN2019128320-appb-000043
Figure PCTCN2019128320-appb-000044
需要说明的是,上述实施例中,仅是以步骤(1)-(4)的顺序进行说明,在实际应用中,可以使步骤(1)与步骤(3)同时进行,步骤(2)与步骤(4)同时进行,或者也可以使步骤(1)与步骤(4)同时进行,步骤(2)与步骤(3)同时进行,这可以根据实际应用环境来设计确定,在此不作限定。
需要说明的是,上述实施例中,仅是以步骤(5)-(7)的顺序进行说明,在实际应用中,也可以使步骤(7)在步骤(5)(6)之前,这可以根据实际应用环境来设计确定,在此不作限定。
基于同一发明构思,本公开的实施例还提供了一种胎儿血氧饱和度的检测装置,如图4所示,该胎儿血氧饱和度的检测装置包括:第一检测部110、第二检测部120以及信号处理部130;其中,第一检测部110包括:至少两个第一光源(图4以两个第一光源141和142为例)与第一光电容积探测器111;其中,每一第一光源配置为发射一种波长的检测光并且各第一光源发射的检测光的波长不同;第一光电容积探测器111配置为接收检测光经胎儿反射回来的光;其中,第一光源141可以为发射第一波长的检测光的发光二极管,第一光源142可以为发射第二波长的检测光的发光二极管。
第二检测部120包括:至少两个第一光源(图4以两个第一光源141和142为例)与第二光电容积探测器121;第二光电容积探测器配置为接收检测光经除受检孕妇的腹部之外的检测部位透过的光。
信号处理部130包括:第一信号处理单元131、第二信号处理单元132、第三信号处理单元133以及血氧饱和度确定单元134;其中,第一信号处理单元131配置为分时控制第一检测部110中的各第一光源发射检测光,对受检孕妇腹部中的胎儿进行照射;根据第一光电容积探测器111接收的各检测光经胎儿反射回来的光,获取腹部在各检测光照射下对应的第一光电容积脉搏描记信号(即第一PPG信号)。
第二信号处理单元132配置为分时控制第二检测部120中的各第一光源发射检测光,对检测部位进行照射;根据第二光电容积探测器121接收的检测光经除检测部位透过的光,获取检测部位在各检测光照射下对应的第二光电容积脉搏描记信号(即第一PPG信号);
第三信号处理单元133配置为根据每一波长的检测光对应的第一光电容积脉搏描记信号和第二光电容积脉搏描记信号,确定胎儿对应每一波长的检测光的目标光电容积脉搏描记信号;
血氧饱和度确定单元134配置为根据确定出的各目标光电容积脉搏描记信号,确定胎儿的血氧饱和度。
在具体实施时,在本公开的实施例中,上述各单元可以采用结合软件和硬件方面的实施例的形式。
在具体实施时,在本公开的实施例中,上述各单元可以实现本公开的实施例提供的上述任一种胎儿血氧饱和度的检测方法的步骤,具体在此不作赘述。
并且,该胎儿血氧饱和度的检测装置解决问题的原理与前述胎儿血氧饱和度的检测方法相似,因此该胎儿血氧饱和度的检测装置的实施可以参见前述胎儿血氧饱和度的检测方法的实施,重复之处在此不再赘述。
在具体实施时,在本公开的实施例中,第一信号处理单元可以设置在第一检测部中,当然,也可以设置在第一检测部外,在此不作限定。
在具体实施时,在本公开的实施例中,第二信号处理单元可以设置在第二检测部中,当然,也可以设置在第二检测部外,在此不作限定。
在具体实施时,在本公开的实施例中,如图5所示,在对胎儿血氧饱和 度进行检测时,第一检测部110可以设置在受检孕妇的人体之外,即设置在腹部上。
在具体实施时,在本公开的实施例中,如图5所示,在对胎儿血氧饱和度进行检测时,第二检测部120可以设置在受检孕妇的检测部位之外,即设置在手指上。
基于同一发明构思,本公开的实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,并且该计算机程序被处理器执行时实现本公开的实施例提供的上述任一种胎儿血氧饱和度的检测方法的步骤。具体地,本公开的实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
基于同一发明构思,本公开的实施例还提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现本公开的实施例提供的上述任一种胎儿血氧饱和度的检测方法的步骤。
本公开的实施例提供的胎儿血氧饱和度的检测方法及装置、计算机可读存储介质以及计算机设备,通过采用至少两种不同波长的检测光,分时对受检孕妇腹部中的胎儿进行照射并获取腹部在各检测光照射下对应的第一光电容积脉搏描记信号。这样采用检测光照射受检孕妇腹部的胎儿,可以采用非侵入人体方式得到既携带有受检孕妇的心率信息又携带有胎儿的心率信息的第一光电容积脉搏描记信号。并且,通过采用至少两种不同波长的检测光,分时对除受检孕妇的腹部之外的检测部位进行照射并获取检测部位在各检测光照射下对应的第二光电容积脉搏描记信号。这样采用检测光照射受检孕妇的检测部位,由于检测部位不是受检孕妇的腹部,可以采用非侵入人体方式得到带有受检孕妇的心率信息的第二光电容积脉搏描记信号。从而根据每一波长的检测光对应的第一光电容积脉搏描记信号和第二光电容积脉搏描记信号,可以确定胎儿对应每一波长的检测光的目标光电容积脉搏描记信号,即目标光电容积脉搏描记信号是去除受检孕妇的心率信息干扰后的携带有胎儿心率信息的PPG信号。这样再根据确定出的各目标光电容积脉搏描记信号,即可确定出胎儿的血氧饱和度,从而提高检测胎儿的血氧饱和度的准确性。
显然,本领域的技术人员可以对本公开的实施例进行各种改动和变型而不脱离本公开的的精神和范围。这样,倘若本公开的实施例中的这些修改和变型属于本公开的权利要求及其等同技术的范围之内,则本公开的也意图包含这些改动和变型在内。

Claims (10)

  1. 一种胎儿血氧饱和度的检测方法,包括:
    采用至少两种不同波长的检测光,分时对受检孕妇腹部中的胎儿进行照射并获取所述腹部在各所述检测光照射下对应的第一光电容积脉搏描记信号;以及分时对除所述受检孕妇的腹部之外的检测部位进行照射并获取所述检测部位在各所述检测光照射下对应的第二光电容积脉搏描记信号;
    根据每一波长的检测光对应的所述第一光电容积脉搏描记信号和所述第二光电容积脉搏描记信号,确定所述胎儿对应每一波长的检测光的目标光电容积脉搏描记信号;
    根据确定出的各所述目标光电容积脉搏描记信号,确定所述胎儿的血氧饱和度。
  2. 如权利要求1所述的胎儿血氧饱和度的检测方法,其中,所述根据每一波长的检测光对应的所述第一光电容积脉搏描记信号和所述第二光电容积脉搏描记信号,确定所述胎儿对应每一波长的检测光的目标光电容积脉搏描记信号,包括:
    根据每一所述检测光对应的所述第一光电容积脉搏描记信号和所述第二光电容积脉搏描记信号,确定所述胎儿对应每一所述检测光的目标频域信号;以及根据预设规则确定所述胎儿对应的心率;
    根据确定出的所述胎儿对应的心率和各所述目标频域信号,确定所述胎儿对应每一所述检测光的目标光电容积脉搏描记信号。
  3. 如权利要求2所述的胎儿血氧饱和度的检测方法,其中,所述根据预设规则确定所述胎儿对应的心率,包括:
    根据所述胎儿对应的每一所述检测光的目标频域信号,确定所述胎儿对应每一所述检测光的心率;
    所述根据确定出的所述胎儿对应的心率和各所述目标频域信号,确定所述胎儿对应每一所述检测光的目标光电容积脉搏描记信号,包括:
    根据所述胎儿对应每一所述检测光的心率和所述目标频域信号,确定所述胎儿对应每一所述检测光的目标光电容积脉搏描记信号。
  4. 如权利要求3所述的胎儿血氧饱和度的检测方法,其中,所述根据所述胎儿对应的每一所述检测光的目标频域信号,确定所述胎儿对应所述检测光的心率,包括:
    根据依次对每一所述检测光对应的所述目标频域信号进行频时转换处理、自相关处理和时频转换处理后的信号,确定所述胎儿对应每一所述检测光的心率。
  5. 如权利要求2所述的胎儿血氧饱和度的检测方法,其中,所述根据预设规则确定所述胎儿对应的心率,包括:
    选取所有所述检测光中的一个检测光,根据所述检测光对应的所述第二光电容积脉搏描记信号,确定所述受检孕妇的心率;
    根据所述受检孕妇的心率以及预先存储的孕妇心率和胎儿心率的对应关系表,确定所述胎儿对应的心率。
  6. 如权利要求2所述的胎儿血氧饱和度的检测方法,其中,所述根据每一所述检测光对应的所述第一光电容积脉搏描记信号和所述第二光电容积脉搏描记信号,确定所述胎儿对应每一所述检测光的目标频域信号,包括:
    针对每一所述检测光,分别对所述检测光对应的所述第一光电容积脉搏描记信号和所述第二光电容积脉搏描记信号进行时频转换处理,确定所述第一光电容积脉搏描记信号对应的第一频域信号以及所述第二光电容积脉搏描记信号对应的第二频域信号;
    针对每一所述检测光,将所述第二频域信号作为所述第一频域信号的噪声信号,对所述第一频域信号进行去噪声处理,得到所述检测光对应的目标频域信号。
  7. 如权利要求1-6任一项所述的胎儿血氧饱和度的检测方法,其中,所述检测光的波长为两个;所述根据确定出的各所述目标光电容积脉搏描记信号,确定所述胎儿的血氧饱和度,包括:根据确定出的各所述目标光电容积 脉搏描记信号,采用如下公式确定所述胎儿的血氧饱和度SpO 2
    Figure PCTCN2019128320-appb-100001
    Figure PCTCN2019128320-appb-100002
    Figure PCTCN2019128320-appb-100003
    其中,λ 1代表所述两个波长中的第一波长,λ 2代表所述两个波长中的第二波长,
    Figure PCTCN2019128320-appb-100004
    代表所述胎儿动脉中还原血红蛋白对应所述第一波长的检测光的吸光系数,
    Figure PCTCN2019128320-appb-100005
    代表所述动脉中还原血红蛋白对应所述第二波长的检测光的吸光系数,
    Figure PCTCN2019128320-appb-100006
    代表所述动脉中氧合血红蛋白对应所述第一波长的检测光的吸光系数;
    Figure PCTCN2019128320-appb-100007
    代表所述第一波长检测光对应的目标光电容积脉搏描记信号的幅值,
    Figure PCTCN2019128320-appb-100008
    代表所述第一波长检测光对应的目标光电容积脉搏描记信号的最小值;
    Figure PCTCN2019128320-appb-100009
    代表所述第二波长检测光对应的目标光电容积脉搏描记信号的幅值,
    Figure PCTCN2019128320-appb-100010
    代表所述第二波长检测光对应的目标光电容积脉搏描记信号的最小值。
  8. 一种胎儿血氧饱和度的检测装置,包括:第一检测部、第二检测部以及信号处理部;
    所述第一检测部包括:至少两个第一光源与第一光电容积探测器;其中,每一所述第一光源配置为发射一种波长的检测光并且各所述第一光源发射的检测光的波长不同;所述第一光电容积探测器配置为接收所述检测光经所述胎儿反射的光;
    所述第二检测部包括:至少两个所述第一光源与第二光电容积探测器;所述第二光电容积探测器配置为接收所述检测光经除受检孕妇的腹部之外的检测部位透过的光;
    所述信号处理部包括:第一信号处理单元、第二信号处理单元、第三信号处理单元以及血氧饱和度确定单元;其中,
    所述第一信号处理单元配置为分时控制所述第一检测部中的各所述第一光源发射检测光,对受检孕妇腹部中的胎儿进行照射;根据所述第一光电 容积探测器接收的各所述检测光经所述胎儿反射的光,获取所述腹部在各所述检测光照射下对应的第一光电容积脉搏描记信号;
    所述第二信号处理单元配置为分时控制所述第二检测部中的各所述第一光源发射检测光,对所述检测部位进行照射;根据所述第二光电容积探测器接收的所述检测光经除所述检测部位透过的光,获取所述检测部位在各所述检测光照射下对应的第二光电容积脉搏描记信号;
    所述第三信号处理单元配置为根据每一波长的检测光对应的所述第一光电容积脉搏描记信号和所述第二光电容积脉搏描记信号,确定所述胎儿对应每一波长的检测光的目标光电容积脉搏描记信号;
    所述血氧饱和度确定单元配置为根据确定出的各所述目标光电容积脉搏描记信号,确定所述胎儿的血氧饱和度。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1-7任一项所述的胎儿血氧饱和度的检测方法的步骤。
  10. 一种计算机设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1-7任一项所述的胎儿血氧饱和度的检测方法的步骤。
PCT/CN2019/128320 2019-01-18 2019-12-25 胎儿血氧饱和度的检测方法及装置、计算机可读存储介质以及计算机设备 WO2020147534A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/768,367 US11375906B2 (en) 2019-01-18 2019-12-25 Method and apparatus for detecting fetal blood oxygen saturation, computer-readable storage medium and computer device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910048957.6 2019-01-18
CN201910048957.6A CN109528216A (zh) 2019-01-18 2019-01-18 胎儿血氧饱和度的检测方法及装置

Publications (1)

Publication Number Publication Date
WO2020147534A1 true WO2020147534A1 (zh) 2020-07-23

Family

ID=65838042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128320 WO2020147534A1 (zh) 2019-01-18 2019-12-25 胎儿血氧饱和度的检测方法及装置、计算机可读存储介质以及计算机设备

Country Status (3)

Country Link
US (1) US11375906B2 (zh)
CN (1) CN109528216A (zh)
WO (1) WO2020147534A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109528216A (zh) 2019-01-18 2019-03-29 京东方科技集团股份有限公司 胎儿血氧饱和度的检测方法及装置
CN110742621B (zh) * 2019-10-31 2022-09-13 京东方科技集团股份有限公司 一种信号处理方法及计算机设备
CN111214218B (zh) * 2020-01-13 2024-02-09 京东方科技集团股份有限公司 一种多生理参数的检测设备
CN113100759B (zh) * 2021-04-01 2022-08-09 北京雪扬科技有限公司 一种基于可穿戴设备的血氧饱和度检测方法
WO2023225684A1 (en) * 2022-05-20 2023-11-23 The Children's Hospital Of Philadelphia Method and device for measuring oxygen saturation
CN116392095A (zh) * 2023-04-19 2023-07-07 深圳市捷美瑞科技有限公司 胎儿心率信号采集方法、装置、胎心仪、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040116789A1 (en) * 2000-01-28 2004-06-17 Boas David Alan Fetal pulse oximetry
US20110218413A1 (en) * 2010-03-02 2011-09-08 Yixiang Wang Method and Apparatus for Non-invasive Fetal Oximetry
CN103381094A (zh) * 2013-05-17 2013-11-06 王义向 胎儿脉搏血氧饱和度监测系统及方法
CN104224197A (zh) * 2014-09-24 2014-12-24 天津大学 双波长光电容积脉搏波特征量的动脉血氧饱和度计算方法
CN104490389A (zh) * 2014-12-22 2015-04-08 英华达(上海)科技有限公司 一种用于侦测胎动的可穿戴装置及侦测胎动的方法
CN106859626A (zh) * 2017-02-16 2017-06-20 刘炯 一种胎心检测设备
CN108420441A (zh) * 2018-02-28 2018-08-21 北京维特兴科技有限公司 腹外无创胎儿血氧饱和度检测仪的脉冲光控系统及方法
CN109528216A (zh) * 2019-01-18 2019-03-29 京东方科技集团股份有限公司 胎儿血氧饱和度的检测方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69227545T2 (de) 1991-07-12 1999-04-29 Mark R Robinson Oximeter zur zuverlässigen klinischen Bestimmung der Blutsauerstoffsättigung in einem Fötus
CN102988036B (zh) * 2012-12-26 2014-08-06 中国科学院自动化研究所 测量脉率的方法
WO2017117280A1 (en) * 2015-12-30 2017-07-06 Raydiant Oximetry, Inc. Systems, devices, and methods for performing trans-abdominal fetal oximetry and/or trans-abdominal fetal pulse oximetry

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040116789A1 (en) * 2000-01-28 2004-06-17 Boas David Alan Fetal pulse oximetry
US20110218413A1 (en) * 2010-03-02 2011-09-08 Yixiang Wang Method and Apparatus for Non-invasive Fetal Oximetry
CN103381094A (zh) * 2013-05-17 2013-11-06 王义向 胎儿脉搏血氧饱和度监测系统及方法
CN104224197A (zh) * 2014-09-24 2014-12-24 天津大学 双波长光电容积脉搏波特征量的动脉血氧饱和度计算方法
CN104490389A (zh) * 2014-12-22 2015-04-08 英华达(上海)科技有限公司 一种用于侦测胎动的可穿戴装置及侦测胎动的方法
CN106859626A (zh) * 2017-02-16 2017-06-20 刘炯 一种胎心检测设备
CN108420441A (zh) * 2018-02-28 2018-08-21 北京维特兴科技有限公司 腹外无创胎儿血氧饱和度检测仪的脉冲光控系统及方法
CN109528216A (zh) * 2019-01-18 2019-03-29 京东方科技集团股份有限公司 胎儿血氧饱和度的检测方法及装置

Also Published As

Publication number Publication date
US20210204820A1 (en) 2021-07-08
US11375906B2 (en) 2022-07-05
CN109528216A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
WO2020147534A1 (zh) 胎儿血氧饱和度的检测方法及装置、计算机可读存储介质以及计算机设备
US9149216B2 (en) Photoplethysmography device and method
JP5096310B2 (ja) 身体の部位における血液の灌流を決定するための方法及び装置
CN103381094B (zh) 胎儿脉搏血氧饱和度监测系统及方法
US8818472B2 (en) Methods and devices for noninvasive measurement of energy absorbers in blood
CN107920786B (zh) 脉搏血氧测定
US20080167541A1 (en) Interference Suppression in Spectral Plethysmography
JP2007209782A (ja) 信号対ノイズ比改善のための信号処理方法及び装置
WO2011013132A1 (en) Photoplethysmography device and method
JP2005516642A6 (ja) 信号対ノイズ比改善のための信号処理方法及び装置
JP2013544588A (ja) invivoにおける組織酸素化の判定
JP6667456B2 (ja) 対象のヘマトクリット値を非侵襲的に決定するプロセッサ、プログラム、デバイス及び方法
WO2018094391A2 (en) Robust, clinical-grade transabdominal fetal pulse oximetry
CA2827981A1 (en) Regional saturation determination using photoacoustic technique
US20120310051A1 (en) Systems And Methods For Signal Rephasing Using The Wavelet Transform
CN110944575A (zh) 通过使用相干光源进行生物组织询问的非侵入式血液动力学评估
Al–Fahoum et al. A multiple signal classification approach for photoplethysmography signals in healthy and athletic subjects
Zahedi et al. Applicability of adaptive noise cancellation to fetal heart rate detection using photoplethysmography
CN109106376B (zh) 一种血液中总血红蛋白浓度的检测方法及装置
Johnson et al. A review of photoplethysmography-based physiological measurement and estimation, Part 2: multi-input methods
US10201314B2 (en) System and method for evaluation of circulatory function
CN110710982B (zh) 用于检测血红蛋白浓度的模型的获取方法、血红蛋白浓度的检测方法
JP6385839B2 (ja) 脈波計測装置、および脈波計測方法
RU2805810C1 (ru) Носимое устройство с функцией определения концентрации гемоглобина, способ и система для определения концентрации гемоглобина
US20240138724A1 (en) Method and apparatus for non-invasively measuring blood circulatory hemoglobin accounting for hemodynamic confounders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909824

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19909824

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.01.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19909824

Country of ref document: EP

Kind code of ref document: A1