WO2020147099A1 - 一种智能电子设备的水下操控系统及其操控方法 - Google Patents

一种智能电子设备的水下操控系统及其操控方法 Download PDF

Info

Publication number
WO2020147099A1
WO2020147099A1 PCT/CN2019/072284 CN2019072284W WO2020147099A1 WO 2020147099 A1 WO2020147099 A1 WO 2020147099A1 CN 2019072284 W CN2019072284 W CN 2019072284W WO 2020147099 A1 WO2020147099 A1 WO 2020147099A1
Authority
WO
WIPO (PCT)
Prior art keywords
hand
sound signal
electronic device
underwater
movement trajectory
Prior art date
Application number
PCT/CN2019/072284
Other languages
English (en)
French (fr)
Inventor
伍楷舜
陈孟奇
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2019/072284 priority Critical patent/WO2020147099A1/zh
Publication of WO2020147099A1 publication Critical patent/WO2020147099A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer

Definitions

  • the present invention relates to the field of information interaction, in particular to an underwater control system of intelligent electronic equipment and a control method thereof.
  • Sonar is the transliteration of the English abbreviation "SONAR". Its full Chinese name is: Sound Navigation and Ranging. "Sound Navigation And Range” is a kind of use of the propagation characteristics of sound waves under water, through electro-acoustic conversion and information processing, to complete water A system for detecting and communicating tasks. It has two types, active and passive, and belongs to the category of acoustic positioning. Today's electronic devices such as smart phones basically have multiple speakers or microphones. These two components are the most basic parts of a sonar system.
  • the sound signal propagation in water has the following advantages: the sound attenuation in liquid is weak, the propagation speed is fast, and it can be spread well underwater; most smart electronic devices have speakers and microphones that generate sending and receiving sounds, and existing waterproof equipment
  • the system of the present invention can be used without modification; the general smart electronic device can send the sound to the speaker within 22KHz, and the sampling rate of the microphone is within 48Khz, which basically meets the requirements of constructing a sonar system for tracking hand movements in water. need.
  • the present invention proposes an underwater control system for intelligent electronic equipment and a control method thereof, which can send specific sound signals in the water through a speaker, and the microphone receives the reflected sound signals.
  • the phase difference of the sound signal reflected by the hand is calculated, and the distance between the hand and the speaker and the microphone is calculated to locate and track the position of the hand underwater.
  • An underwater control system for intelligent electronic equipment characterized in that it includes:
  • Transmitter used to transmit sound signals in the water
  • the receiving end is used to receive the reflected sound signal
  • the displacement judgment module based on the reflected sound signal information received by the receiving end, recognizes the path reflected from the moving hand among the multiple paths reflected by the sound signal, and judges whether the hand moves;
  • the measurement module once the judgment module determines that the hand is moving, it processes the signal from the frequency domain and time domain to obtain the movement trajectory of the hand;
  • the gesture judgment and operation mapping module constructs specific gestures with the movement trajectory of the hand, or maps the movement trajectory of the hand to the corresponding cursor on the screen to interact with the smart electronic device.
  • the transmitting end is at least one speaker provided by the smart electronic device
  • the receiving end is two or more microphones provided by the smart electronic device.
  • it also includes a correction module to correct the movement trajectory of the hand.
  • the sound signal sent by the transmitting end is a sine and cosine signal of any frequency, or an orthogonal sequence signal used by a communication system.
  • the receiving end module processes the received data while receiving the reflected sound signal, and customizes the length of each processed data.
  • the displacement judgment module judges whether the hand is moving, and if the hand is moving, it can start to track the movement trajectory of the hand.
  • the measurement module calculates the distance from the speaker to the hand and the hand to the microphone by using the Cross-Correlation algorithm on the received sound signal.
  • the gesture judgment and operation mapping module sets a specific gesture action.
  • the hand performs the gesture action, it indicates a specific operation, or tracks the movement track of the hand, and the corresponding track is displayed on the screen of the electronic device with a cursor.
  • An underwater operation method of intelligent electronic equipment includes the following steps:
  • the smart electronic device is submerged in the water, its speaker acts as the transmitter and starts to send a customized sound signal, and its microphone acts as the receiver to start recording;
  • the measurement module uses the Cross-Correlation algorithm and the CFAR algorithm to calculate the time point when the speaker starts to send the sound signal, and the measurement module records the sound signal and processed data for a fixed period of time from this time point;
  • the measurement module uses the sliding correlation algorithm to calculate the distance from the speaker to the hand and the hand to the microphone;
  • S4 Use two or more microphones to establish a coordinate system, and calculate the specific position of the hand in the above coordinate system;
  • the gesture judgment and operation mapping module constructs a specific gesture with the movement trajectory of the hand, or maps the movement trajectory of the hand to a corresponding cursor on the screen, so as to interact with the smart electronic device.
  • the Cross-Correlation algorithm performs real-time segmentation processing on the real-time recorded sound, and then the CFAR algorithm acts on each segment of the sound data after the above segmentation processing to obtain the time point of each segment of the sound data reaching the microphone.
  • the present invention Compared with the prior art, the present invention has the following beneficial technical effects: the present invention uses the characteristics of weak attenuation and fast propagation speed of sound signals in water, and measures the trajectory of hand movement by comparing the phase changes of the sound signals at different times; Construct a two-dimensional model, use the distance change of two or more dimensions to track the change of the position of the hand and finger, and then manipulate the electronic device in the water. Therefore, the present invention does not need to modify the hardware of the device itself to control electronic devices such as smart phones and cameras with waterproof function underwater, so as to solve the problem that the waterproof smart phones on the market have fewer physical buttons underwater and the touch screen cannot be used. .
  • FIG. 1 is a schematic diagram of the control system of the present invention.
  • FIG. 2 is a flowchart of the underwater manipulation method of the present invention.
  • the underwater control system and method based on sonar technology of the present invention are applicable to any intelligent electronic equipment with waterproof function and with functions of playing and recording sound.
  • smart electronic devices with waterproof function are located underwater, specifically electronic devices such as smart phones, tablet computers, and underwater cameras.
  • the smart electronic device has two or more microphones and one or more speakers.
  • the loudspeaker serves as the transmitter to send sound signals
  • two or more microphones serve as the receiver to receive the sound signals reflected by the hand.
  • the two microphone receiving ends of the smart electronic device are located at different positions, and the distance between the two microphones is known.
  • the smart electronic device is placed underwater, the speaker emits radar sound signals in the water that can be used for distance measurement, such as frequency modulated pulses, phase-coded pulses, etc.
  • the sound signals emitted by the speaker are sine and cosine signals of any frequency, or a communication system
  • the orthogonal sequence signal used used.
  • Two microphones receive the reflected sound signal, and process the received data at the same time, and customize the length of each processing data.
  • the displacement judgment module based on the phase difference of the sound signal information received from the two microphones and the distance between the two microphones, and recognizes the reflection from the moving hand from the multiple paths of the sound signal reflection Path and determine whether the hand moves. If the hand moves, you can start positioning the position of the hand.
  • the displacement judgment module includes two parts, one is to judge the starting point of the received signal, and the other is to judge whether the hand is moving.
  • Determining the starting point of the received signal includes: when the microphone receives the first segment of the signal emitted from the speaker, use the original signal to perform Cross-Correlation on this segment of the signal.
  • the Cross-Correlation algorithm is as follows:
  • f is the received signal in the first segment
  • g is the meta signal
  • N is the length of the meta signal.
  • the length of the horizontal axis of each extreme point corresponds to a reflection of the transmitted signal The time spent on the path. Since the direct line of sight does not undergo any reflection to cause signal attenuation, the horizontal axis corresponding to the largest peak point is the time it takes for the transmitted signal to pass through the line of sight. Since the distance from the microphone to the speaker is fixed and known, it is only necessary to know the position of the peak point of the maximum value of the first segment of the signal after the Cross-Correlation algorithm is used to know the position of the signal starting point.
  • Judging whether the hand is moving includes: As mentioned above in the Cross-Correlation algorithm, if the hand is not moving, because the surrounding objects are stationary, that is, at the moments N and N+1, the distance between the object and the transmitting and receiving end is unchanged. The result of the Cross-Correlation algorithm The positions of the extreme points at N and N+1 are the same, and the results at the two times are subtracted. In theory, a sequence with a length of N and all zeros will actually be very small. At this time, the energy of this sequence is calculated, and the result is a value close to zero.
  • the measurement module once the judgment module determines that the hand is moving, it processes the signal in the frequency domain and time domain to obtain the movement trajectory of the hand, and calculates the speaker to the hand by using a sliding correlation method (Cross-Correlation) on the received sound signal
  • a sliding correlation method Cross-Correlation
  • the distance from the microphone to the microphone, the specific algorithm is the same as the above-mentioned judgment of whether the hand is moving, the energy of the Cross-Correlation algorithm result is greater than the threshold, and the cross-correlation result subtracted at two moments or the horizontal axis position of the peak value is always calculated. It is the distance from the speaker to the position of the speaker.
  • the rectangular coordinate system can be established according to the positions of the speakers and the microphone, and the distance between the two microphones can be used to calculate the hand in the rectangular coordinate system. s position.
  • the real-time movement trajectory of the hand is obtained by calculating the position of the hand in the rectangular coordinate system at each moment.
  • the gesture judgment and operation mapping module sets a specific gesture posture, and constructs a specific gesture with the movement trajectory of the hand.
  • the hand When the hand performs the action, it indicates a specific operation; or tracks the movement trajectory of the hand and maps the movement trajectory of the hand
  • the cursor displays the corresponding track on the screen of the electronic device, thereby interacting with the smart electronic device.
  • Each gesture corresponds to a unique movement trajectory, so the trajectory can be used to determine which gesture the user is doing.
  • the underwater operation method of the intelligent electronic device of the present invention includes the following steps:
  • S1 The smart electronic device is submerged in the water, the speaker acts as the transmitter and starts to send a customized sound signal, and its microphone acts as the receiver to start recording;
  • the measurement module uses the sliding correlation algorithm to calculate the distance from the speaker to the finger to the microphone;
  • S4 Use two or more microphones to establish a coordinate system, and calculate the specific position of the hand in the above coordinate system;
  • the gesture judgment and operation mapping module constructs a specific gesture with the movement trajectory of the hand, or maps the movement trajectory of the hand to a corresponding cursor on the screen, so as to interact with the smart electronic device.

Abstract

本发明公开了一种智能电子设备的水下操控系统,其包括:发射端,用于在水中发射声音信号;接收端,用于接收反射回来的声音信号;位移判断模块,根据所述接收端接收到的反射回的声音信号信息,并从声音信号反射回的多条路径中识别从移动的手部反射回的路径,并判断手部是否有移动;测量模块,一旦判断模块判断出手部有移动,从频域和时域上对信号进行处理得出手部的移动轨迹;手势判断及操作映射模块,用手部的移动轨迹构建特定的手势,或者映射手部的移动轨迹到屏幕上对应的光标,从而与智能电子设备进行交互。还相应公开了操控方法。本发明在不需要改动设备本身的硬件的条件下,在水下实现对具有防水功能的智能手机、相机等电子设备的操控。

Description

一种智能电子设备的水下操控系统及其操控方法 技术领域
本发明涉及信息交互领域,尤其涉及一种智能电子设备的水下操控系统及其操控方法。
背景技术
如今,各种各样的电子设备已经成为了现代人生活中的一部分,如智能手机、平板电脑、运动相机等。为了吸引消费者,这些电子设备提供的功能也越来越多,甚至在某些场景下能够替代专业的设备。为了能应对更加多样复杂的环境,具备防水功能的电子设备也越来越多,成为未来电子设备最基本的功能之一。特别是具备了防水功能的智能手机等多功能终端,甚至可以替代在之前的专业使设备。例如使用具备了防水功能的智能手机进行水下拍照和水下录像。然而受限于成本,以及设备本身所使用的元器件的限制,大部分的防水的设备物理按键稀少,触控屏幕因其本身的电子特性并不能在水下使用,为防水设备增加物理按键会大幅增加制造难度进而增加制造成本。因此,现在具备防水功能的电子设备在水下不能很好的交互。
声纳是英文缩写“SONAR”的音译,其中文全称为:声音导航与测距,“Sound Navigation And Ranging”是一种利用声波在水下的传播特性,通过电声转换和信息处理,完成水下探测和通讯任务的系统。它有主动式和被动式两种类型,属于声学定位的范畴。现在的智能手机等电子设备,基本上具备多个扬声器或者麦克风,这两个元器件是组成声纳系统最基本的部分。声音信号在水中传播具备以下优势:声音在液体中的衰减弱,传播速度快,可以在水下很好的传播;大部分智能电子设备具备产生发送和接收声音的扬声器和麦克风,现存的防水设备可以无经改动即可使用本发明所述的系统;一般智能电子设备能够给扬声器能够发送的声音在22KHz以内,麦克风的采样率在48Khz以内,基本满足构建水中跟踪手部运动的声纳系统的需要。
发明内容
针对上述技术问题,本发明提出了一种智能电子设备的水下操控系统及其操控方法,可以通过扬声器在水中发送特定声音信号,麦克风接收反射回来的声音信号,通过计算手部移动时,从手部反射回的声音信号的相位差,计算手部到扬声器和麦克风的距离,进而定位和跟踪在水下手部的位置,具体采用了如下技术方案:
种智能电子设备的水下操控系统,其特征在于,其包括:
发射端,用于在水中发射声音信号;
接收端,用于接收反射回来的声音信号;
位移判断模块,根据所述接收端接收到的反射回的声音信号信息,并从声音信号反射回的多条路径中识别从移动的手部反射回的路径,并判断手部是否有移动;
测量模块,一旦判断模块判断出手部有移动,从频域和时域上对信号进行处理得出手部的移动轨迹;
手势判断及操作映射模块,用手部的移动轨迹构建特定的手势,或者映射手部的移动轨迹到屏幕上对 应的光标,从而与智能电子设备进行交互。
进一步,所述发射端为智能电子设备具备的至少一个扬声器,所述接收端为智能电子设备具备的两个或多个麦克风。
进一步,还包括校正模块,校正手部的移动轨迹。
进一步,所述发射端发的声音信号为任意频率的正余弦信号,或者为通信系统使用的正交序列信号。
进一步,所述的接收端模块接收反射声音信号的同时处理已接收到的数据,自定义每次处理数据的长度。
进一步,位移判断模块判断手部是否移动,若手部移动,则可以开始手的移动轨迹进行跟踪。
进一步,测量模块通过对接收到的声音信号采用Cross-Correlation算法计算扬声器到手部、手部到麦克风的距离。
进一步,手势判断及操作映射模块设定特定的手势动作,当手部做该手势动作时表示特定的操作,或者跟踪手部的移动轨迹,电子设备的屏幕上用光标显示对应轨迹。
一种智能电子设备的水下操控方法,包括如下步骤:
S1:智能电子设备没入水中,其扬声器作为发射端开始发送自定义的声音信号,其麦克风作为接收端开始录音;
S2:测量模块中使用Cross-Correlation算法和CFAR算法计算扬声器开始发送声音信号的时间点,测量模块从该时间点起每录固定时间段的声音信号及处理数据;
S3:测量模块利用滑动相关算法计算扬声器到手部、手部到麦克风的距离;
S4:利用两个及以上的麦克风建立坐标系,计算在手部在上述坐标系中的具体位置;
S5:手势判断及操作映射模块用手部的移动轨迹构建特定的手势,或者映射手部的移动轨迹到屏幕上对应的光标,从而与智能电子设备进行交互。
进一步,Cross-Correlation算法对实时录制的声音进行实时分段处理,然后CFAR算法作用于上述分段处理后的每段声音数据,得到上述每段声音数据到达麦克风的时间点
与现有技术相比,本发明具有以下有益的技术效果:本发明利用声音信号在水中传播衰减弱,传播速度快的特点,通过比较不同时刻的声音信号的相位变化测量手部移动的轨迹;构建二维模型,利用两个或以上维度的距离变化跟踪手部指位置的变化进而在水中操控电子设备。因此,本发明不需要改动设备本身的硬件在水下对具有防水功能的智能手机、相机等电子设备进行操控,以解决市面上防水的智能手机在水下物理按键少以及触屏不能使用的问题。
附图说明
图1为本发明的操控系统的示意图。
图2为本发明水下操控方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的基于声纳技术的水下操控系统及方法适用于任何具备防水功能、且具备播放和录制声音功能的智能电子设备。
如图1所述,具备防水功能的智能电子设备位于水下,具体为智能手机、平板电脑、水下相机等电子设备。所述智能电子设备具有两个或以上的麦克风,一个或以上的扬声器。扬声器作为发射端发送声音信号,两个或以上的麦克风作为接收端接收手部反射的声音信号。本实施例中,智能电子设备的两个麦克风接收端位于不同位置,且两者之间距离已知。将智能电子设备置于水下,扬声器在水中发射可以用于测距的雷达声音信号,例如频率调制脉冲、相位编码脉冲等,扬声器发的声音信号为任意频率的正余弦信号,或者为通信系统使用的正交序列信号。两个麦克风接收反射回来的声音信号,同时处理已接收到的数据,自定义每次处理数据的长度。位移判断模块,根据从两个麦克风接收到的反射回的声音信号信息的相位差及两个麦克风之间的距离,并从声音信号反射回的多条路径中识别从移动的手部反射回的路径,并判断手部是否有移动,若手部移动,则可以开始对手部移动的位置进行定位。
位移判断模块包括两部分,一是判断接收信号的起始点,二是判断手是否移动。
判断接收信号的起始点包括:当麦克风接收到第一段从扬声器发射出的信号时,用原始信号对这段信号进行Cross-Correlation运算,Cross-Correlation算法如下:
Figure PCTCN2019072284-appb-000001
其中f为第一段接收到的信号,g为元信号,N为元信号的长度,经过Cross-Correlation运算之后的结果中,每个极值点的横轴长度都对应发射信号进过一条反射路径所花费的时间。由于直视距没有经过任何反射导致信号衰减,所以最大的一个峰值点所对应的横轴即为发射信号经过直视距所花费的时间。又由于麦克风到扬声器的距离是固定的并且已知,所以只需要知道第一段信号经过Cross-Correlation算法后的最大值的峰值点的位置即可知道信号起始点的位置。
判断手是否移动包括:如上所述Cross-Correlation算法,若手未移动,由于周围物体都静止,即在N和N+1时刻,物体离发射和接受端的距离都不变,Cross-Correlation算法结果中N和N+1时刻的极值点位置都不变,两时刻的结果相减,理论上会得到长度为N且值全为零实际上值十分小的序列。此时计算这段序列的能量,结果为一个接近零的值。相反,若手移动,由于只有手反射的这条路径距离有变化,即N和N+1时刻Cross-Correlation算法得出的结果相减会有两个峰值,对应N和N+1时刻扬声器到手到麦克风的这段距离。最后,使用计算这段结果的能量,会大于一个阈值。所以我们可以使用这个阈值来判断手是否移动。
测量模块,一旦判断模块判断出手部有移动,从频域和时域上对信号进行处理得出手部的移动轨迹,通过对收取到的声音信号采用滑动相关的方法(Cross-Correlation)计算扬声器到手部到麦克风的距离, 具体算法同如上所述的手是否移动的判断,Cross-Correlation算法结果的能量大于阈值,一直计算两个时刻相减的Cross-Correlation结果或许峰值的横轴位置,该位置即为扬声器到手到扬声器这段位置的距离。
由于有两个或以上麦克风存在于此系统中,虽然不同设备扬声器和麦克风的位置不同,但都可以根据扬声器和麦克风的位置建立直角坐标系结合两条道麦克风的距离算出手在直角坐标系中的位置。通过计算每个时刻手在直角坐标系中的位置进而得到手的实时移动轨迹。
手势判断及操作映射模块设定特定的手势姿势,用手部的移动轨迹构建特定的手势,当手部做该动作时表示特定的操作;或者跟踪手部的移动轨迹,映射手部的移动轨迹到屏幕上对应的光标,电子设备的屏幕上用光标显示对应轨迹,从而与智能电子设备进行交互。每一种手势对应一种独一无二的移动轨迹,因此可以用轨迹来判断用户做的事哪种手势。
本发明智能电子设备的水下操控方法,包括如下步骤:
S1:智能电子设备没入水中,扬声器作为发射端开始发送自定义的声音信号,其麦克风作为接收端开始录音;
S2:在测量模块中使用滑动相关算法计算扬声器开始发送声音信号的时间点,再通过CFAR算法找到开始的时间点,测量模块从该时间点起每录固定时间段的声音信号及处理数据;
S3:测量模块利用滑动相关算法计算扬声器到手部指到麦克风的距离;
S4:利用两个及以上的麦克风建立坐标系,计算在手部在上述坐标系中的具体位置;
S5:手势判断及操作映射模块用手部的移动轨迹构建特定的手势,或者映射手部的移动轨迹到屏幕上对应的光标,从而与智能电子设备进行交互。
以上内容是结合具体/优选的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,其还可以对这些已描述的实施方式做出若干替代或变型,而这些替代或变型方式都应当视为属于本发明的保护范围。

Claims (10)

  1. 一种智能电子设备的水下操控系统,其特征在于,其包括:
    发射端,用于在水中发射声音信号;
    接收端,用于接收反射回来的声音信号;
    位移判断模块,根据所述接收端接收到的反射回的声音信号信息,并从声音信号反射回的多条路径中识别从移动的手部反射回的路径,并判断手部是否有移动;
    测量模块,一旦判断模块判断出手部有移动,从频域和时域上对信号进行处理得出手部的移动轨迹;
    手势判断及操作映射模块,用手部的移动轨迹构建特定的手势,或者映射手部的移动轨迹到屏幕上对应的光标,从而与智能电子设备进行交互。
  2. 如权利要求1所述的水下操控系统,其特征在于:所述发射端为智能电子设备具备的至少一个扬声器,所述接收端为智能电子设备具备的两个或多个麦克风。
  3. 如权利要求1所述的水下操控系统,其特征在于:还包括校正模块,校正手部的移动轨迹。
  4. 如权利要求1所述的水下操控系统,其特征在于:所述发射端发的声音信号为任意频率的正余弦信号,或者为通信系统使用的正交序列信号。
  5. 如权利要求1所述的水下操控系统,其特征在于:所述的接收端模块接收反射声音信号的同时处理已接收到的数据,自定义每次处理数据的长度。
  6. 如权利要求1所述水下操控系统,其特征在于:位移判断模块判断手部是否移动,若手部移动,则可以开始手的移动轨迹进行跟踪。
  7. 如权利要求2所述水下操控系统,其特征在于:测量模块通过对接收到的声音信号采用Cross-Correlation算法计算扬声器到手部、手部到麦克风的距离。
  8. 如权利要求1所述水下操控系统,其特征在于:手势判断及操作映射模块设定特定的手势动作,当手部做该手势动作时表示特定的操作,或者跟踪手部的移动轨迹,电子设备的屏幕上用光标显示对应轨迹。
  9. 一种智能电子设备的水下操控方法,其特征在于,包括如下步骤:
    S1:智能电子设备没入水中,其扬声器作为发射端开始发送自定义的声音信号,其麦克风作为接收端开始录音;
    S2:测量模块中使用Cross-Correlation算法和CFAR算法计算扬声器开始发送声音信号的时间点,测量模块从该时间点起每录固定时间段的声音信号及处理数据;
    S3:测量模块利用滑动相关算法计算扬声器到手部、手部到麦克风的距离;
    S4:利用两个及以上的麦克风建立坐标系,计算在手部在上述坐标系中的具体位置;
    S5:手势判断及操作映射模块用手部的移动轨迹构建特定的手势,或者映射手部的移动轨迹到屏幕上对应的光标,从而与智能电子设备进行交互。
  10. 如权利要求9所述的方法,其特征在于:Cross-Correlation算法对实时录制的声音进行实时分段处理,然后CFAR算法作用于上述分段处理后的每段声音数据,得到上述每段声音数据到达麦克风的时间点。
PCT/CN2019/072284 2019-01-18 2019-01-18 一种智能电子设备的水下操控系统及其操控方法 WO2020147099A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072284 WO2020147099A1 (zh) 2019-01-18 2019-01-18 一种智能电子设备的水下操控系统及其操控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072284 WO2020147099A1 (zh) 2019-01-18 2019-01-18 一种智能电子设备的水下操控系统及其操控方法

Publications (1)

Publication Number Publication Date
WO2020147099A1 true WO2020147099A1 (zh) 2020-07-23

Family

ID=71613620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072284 WO2020147099A1 (zh) 2019-01-18 2019-01-18 一种智能电子设备的水下操控系统及其操控方法

Country Status (1)

Country Link
WO (1) WO2020147099A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105718064A (zh) * 2016-01-22 2016-06-29 南京大学 基于超声波的手势识别系统与方法
CN106446801A (zh) * 2016-09-06 2017-02-22 清华大学 基于超声主动探测的微手势识别方法及系统
CN107102737A (zh) * 2017-04-28 2017-08-29 北京理工大学 基于线性调频音频信号的非接触式手掌移动轨迹追踪方法
JP2018054514A (ja) * 2016-09-29 2018-04-05 株式会社Ihi 反射波同定方法
CN107943300A (zh) * 2017-12-07 2018-04-20 深圳大学 一种基于超声波的手势识别方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105718064A (zh) * 2016-01-22 2016-06-29 南京大学 基于超声波的手势识别系统与方法
CN106446801A (zh) * 2016-09-06 2017-02-22 清华大学 基于超声主动探测的微手势识别方法及系统
JP2018054514A (ja) * 2016-09-29 2018-04-05 株式会社Ihi 反射波同定方法
CN107102737A (zh) * 2017-04-28 2017-08-29 北京理工大学 基于线性调频音频信号的非接触式手掌移动轨迹追踪方法
CN107943300A (zh) * 2017-12-07 2018-04-20 深圳大学 一种基于超声波的手势识别方法及系统

Similar Documents

Publication Publication Date Title
Nandakumar et al. Fingerio: Using active sonar for fine-grained finger tracking
US10996742B2 (en) Input device for AR/VR applications
Hayashi et al. RadarNet: Efficient gesture recognition technique utilizing a miniature radar sensor
US10152967B2 (en) Determination of an operational directive based at least in part on a spatial audio property
KR101520554B1 (ko) 연속파 초음파 신호들을 이용한 무접촉식 감지 및 제스쳐 인식
US9779734B2 (en) Speech recognition system and method for recognizing a command to control a target
US20110181510A1 (en) Gesture Control
US20130315038A1 (en) Techniques for acoustic management of entertainment devices and systems
CN110493690A (zh) 一种声音采集方法及装置
CN104898844A (zh) 基于超声波定位的手势识别与控制装置及识别与控制方法
CN106713598B (zh) 基于指示方向的指令传输方法及装置、智能设备
WO2021017947A1 (zh) 终端控制方法、装置、移动终端及存储介质
CN109599104A (zh) 多波束选取方法及装置
CN111007462A (zh) 定位方法、定位装置、定位设备及电子设备
CN110418023B (zh) 响铃处理方法、装置、移动终端以及存储介质
CN114830681A (zh) 用于减少环境噪声补偿系统中的误差的方法
WO2022062531A1 (zh) 一种多通道音频信号获取方法、装置及系统
CN110290576A (zh) 电子设备控制方法及装置
CN109871122B (zh) 一种智能电子设备的水下操控系统及其操控方法
WO2020147099A1 (zh) 一种智能电子设备的水下操控系统及其操控方法
CN112180377B (zh) 一种非接触式的人机交互定位方法、追踪方法、终端以及可读存储介质
CN115407272A (zh) 超声信号定位方法及装置、终端、计算机可读存储介质
NO20181429A1 (en) Absorption rate detection
Jiang et al. Ctrack: acoustic device-free and collaborative hands motion tracking on smartphones
CN114943242A (zh) 事件检测方法及装置、电子设备、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/10/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19910095

Country of ref document: EP

Kind code of ref document: A1