WO2020145592A1 - Synchronization method and apparatus for millimeter wave vehicle-to-vehicle communication - Google Patents

Synchronization method and apparatus for millimeter wave vehicle-to-vehicle communication Download PDF

Info

Publication number
WO2020145592A1
WO2020145592A1 PCT/KR2020/000178 KR2020000178W WO2020145592A1 WO 2020145592 A1 WO2020145592 A1 WO 2020145592A1 KR 2020000178 W KR2020000178 W KR 2020000178W WO 2020145592 A1 WO2020145592 A1 WO 2020145592A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
synchronization signal
pss
base station
synchronization
Prior art date
Application number
PCT/KR2020/000178
Other languages
French (fr)
Korean (ko)
Inventor
조용수
박수호
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Publication of WO2020145592A1 publication Critical patent/WO2020145592A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay

Definitions

  • the present invention relates to a synchronization method and apparatus for communication between millimeter wave vehicles.
  • V2I Vehicle to Infrastructure
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • a synchronization signal used in NR is called an SS/PBCH block, and is also called a Synchronization Signal Block (SSB), which means a synchronization signal block.
  • SSB Synchronization Signal Block
  • the SS/PBCH block is a 4-symbol length synchronization signal composed of a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a physical broadcast channel (PBCH), and a demodulation reference signal (DMRS).
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • DMRS demodulation reference signal
  • V2I a method in which a vehicle communicates with a base station, there is no problem in synchronizing with an NR SS/PBCH block used by the base station.
  • V2V which means inter-vehicle communication
  • a vehicle that transmits a synchronous signal can be regarded as a small base station, and problems may occur if the NR SS/PBCH block is used as it is in the small base station.
  • the present invention is to propose a synchronization method and apparatus for inter-vehicle communication between millimeter-waves that can quickly reduce the delay time by quickly dividing the source of the signal received during the initial access procedure.
  • a synchronization device in the vehicle communication environment in the millimeter wave vehicle communication environment, the processor; And a memory connected to the processor, wherein the memory acquires physical layer information of the base station through a base station synchronization signal including an NR New Radio Primary Synchronization Signal (PSS) and performs an initial access procedure with the base station.
  • PSS NR New Radio Primary Synchronization Signal
  • V PSS Vehicle Primary Synchronization Signal timing of the vehicle synchronization signal within the synchronization signal burst set period in which the base station synchronization signal is transmitted according to the completion of the initial access procedure with the base station, estimates the V PSS of the vehicle synchronization signal One that is generated by the base station synchronization signal and the time domain to be distinguished from each other, and transmits the vehicle synchronization signal including the generated V PSS to another vehicle so that synchronization between vehicles is performed.
  • An inter-vehicle synchronization device including the above program instructions is provided.
  • the V PSS may be generated by taking a conjugate complex number in the NR PSS.
  • the vehicle synchronization signal is transmitted by the number of beams of the vehicle, and the vehicle synchronization signal block index identifying the beam may be cyclically shifted in the time domain and included in the V PSS.
  • the program commands may determine whether the inter-vehicle communication environment is a sparse vehicle communication environment, and when the inter-vehicle communication environment is a interspersed communication environment, the V PSS may be generated using a cover code.
  • Whether the communication environment is interspersed is determined based on whether a maximum value of a difference in propagation delay between vehicles is greater than a preset threshold, and the preset threshold is a minimum time difference between detection timings that may occur in one symbol and OFDM It may be determined by at least one of the time period occupied by the CP (Cyclic Prefix).
  • the minimum time difference between detection timings that can occur in one symbol is one as the OFDM symbol length, the ratio at which detection timings can be shifted within one symbol when the number of RF chains is maximum, and the number of RF chains increases.
  • V PSS in the symbol may be determined by at least one of the ratio.
  • the base station synchronization signal includes the NR PSS, a Secondary Synchronization Signal (SSS), a Physical Broadcast Channel (PBCH), and a Demodulation Reference Signal (DMRS), and the vehicle synchronization signals include the V PSS and the V Vehicle Secondary Synchronization Signal (SSS). ).
  • the program instructions receive a first vehicle synchronization signal of another vehicle received at the estimated V PSS timing to search for V PSS and V SSS, and the first vehicle ID and the first vehicle synchronization in the searched V PSS. Estimate the block index of the signal, the received beam ID of the first vehicle signal, estimate the second vehicle ID from the searched V SSS, and estimate the cell ID of the other vehicle through the first and second vehicle IDs can do.
  • a base station information acquisition unit that acquires physical layer information of the base station through a base station synchronization signal including an NR New Radio Primary Synchronization Signal (PSS) ;
  • PSS New Radio Primary Synchronization Signal
  • a V PSS generation unit generating the V PSS of the vehicle synchronization signal so as to be distinguished from the correlation between the base station synchronization signal and the time domain, and transmitting the vehicle synchronization signal including the generated V PSS to another vehicle.
  • An inter-vehicle synchronization device for performing inter-vehicle synchronization is provided.
  • a method for synchronizing vehicles in a millimeter wave vehicle communication environment comprising: obtaining physical layer information of the base station through a base station synchronization signal including an NR New Radio Primary Synchronization Signal (PSS); Estimating V PSS (Vehicle Primary Synchronization Signal) timing of a vehicle synchronization signal within a synchronization signal burst set period in which the base station synchronization signal is transmitted according to completion of an initial access procedure with the base station; Generating a V PSS of the vehicle synchronization signal to be distinguished from a correlation between the base station synchronization signal and the time domain; And transmitting the vehicle synchronization signal including the generated V PSS to another vehicle to perform vehicle-to-vehicle synchronization.
  • PSS New Radio Primary Synchronization Signal
  • the present invention it is possible to reduce the re-discovery process of the synchronization signal as much as possible by quickly distinguishing the source of the received signal during the initial access procedure. .
  • the V SS block of the vehicle is composed of 2 symbols differently from the NR SS/PBCH block of the base station, so that even if a handover situation occurs due to the rapid movement of the vehicle, there is an advantage of being able to synchronize more quickly. .
  • FIG. 1 is a view showing the configuration of a millimeter wave inter-vehicle synchronization device according to an embodiment of the present invention.
  • FIG. 2 illustrates propagation delay occurring in a V2X communication environment.
  • FIG 3 shows a synchronization signal arrangement in the time domain according to the present embodiment.
  • Figure 4 illustrates a V SS block transfer according to the number of RF chain N RF.
  • FIG. 5 shows an NR SS/PBCH block time frequency structure.
  • V SS block time frequency structure shows a V SS block time frequency structure.
  • 7A and 7B show correlation characteristics between NR PSS and V PSS.
  • V PSS used in a close vehicle communication environment shows V PSS used in a close vehicle communication environment. It shows the correlation between.
  • V PSSs used in a scattered vehicle communication environment. It shows the correlation between.
  • V PSS 10A and 10B are V PSS according to the present embodiment. It shows the correlation between.
  • 11 is a flowchart illustrating an initial access procedure for obtaining information of an adjacent base station and information about an adjacent vehicle for V2X communication.
  • FIG. 13 is a diagram for explaining a V PSS search process in a scattered vehicle communication environment.
  • 14A and 14B are diagrams showing correlations between V PSSs having the same in a scattered communication environment.
  • 15A and 15B are different in a scattered communication environment. It is a diagram showing the correlation between V PSS with.
  • the present invention proposes a vehicle synchronization signal and synchronization procedure of a millimeter wave (mmWave) inter-vehicle communication system in order to achieve V2V synchronization with a small latency in the initial access procedure of V2X.
  • V2X communication is constructed by utilizing the system of NR in line with the development direction of New Radio (NR), which is currently being developed for 5G mmWave communication.
  • NR New Radio
  • FIG. 1 is a view showing the configuration of a millimeter wave inter-vehicle synchronization device according to an embodiment of the present invention.
  • FIG. 1 illustrates a computing device installed in a vehicle, and may include a processor 100 and a memory 102.
  • the processor 100 may include a central processing unit (CPU) capable of executing a computer program or other virtual machines.
  • CPU central processing unit
  • the memory 102 may include a non-volatile storage device such as a fixed hard drive or a removable storage device.
  • the removable storage device may include a compact flash unit, a USB memory stick, and the like.
  • the memory 102 may also include volatile memory, such as various random access memories.
  • Program instructions executable by the processor 100 are stored in the memory 102.
  • the program instructions according to this embodiment acquire physical layer information of the base station through a base station synchronization signal including an NR New Radio Primary Synchronization Signal (PSS) and perform an initial access procedure with the base station.
  • a base station synchronization signal including an NR New Radio Primary Synchronization Signal (PSS)
  • the program instructions estimate the V PSS (Vehicle Primary Synchronization Signal) timing of the vehicle synchronization signal within a synchronization signal burst set period in which the base station synchronization signal is transmitted upon completion of the initial access procedure with the base station.
  • V PSS Vehicle Primary Synchronization Signal
  • the V SS block which is a vehicle synchronization signal, is composed of 2 symbols of V PSS and V SSS, unlike the NR SS/PBCH block of the base station, and the V SS block is included in the data field of the existing NR specification.
  • the V PSS is generated by taking a conjugate complex number of the NR PSS so that the V PSS of the vehicle synchronization signal can be distinguished from the correlation between the NR PSS of the base station synchronization signal and the time domain. This will be described in detail below.
  • the program instructions transmit the vehicle synchronization signal including the generated V PSS to another vehicle to perform synchronization between vehicles.
  • the inter-vehicle communication environment transmits a vehicle synchronization signal through a plurality of beams, and the vehicle synchronization signal block index for beam identification of the vehicle is cyclically shifted in the time domain and included in the V PSS.
  • the inter-vehicle communication environment is divided into a close vehicle communication environment and a scattered vehicle communication environment, and in a scattered communication environment, a cover code is applied to V PSS to prevent errors.
  • the threshold for whether the inter-vehicle communication environment is close will be described below.
  • the base station information acquisition unit acquires physical layer information of the base station through a base station synchronization signal including an NR New Radio Primary Synchronization Signal (PSS), and the base station synchronization signal upon completion of an initial access procedure with the base station.
  • PSS NR New Radio Primary Synchronization Signal
  • a timing estimator for estimating V PSS (Vehicle Primary Synchronization Signal) timing of a vehicle synchronization signal and a V PSS of a vehicle synchronization signal within a synchronization signal burst set period in which the transmission is performed can be distinguished from the correlation between the base station synchronization signal and the time domain.
  • V PSS generation unit to be generated is provided in a separate chip format, they may be included in the scope of the present invention to perform synchronization between vehicles under the control of the processor.
  • Vehicles requiring initial access preferentially obtain physical layer information through a search process for an adjacent base station and perform synchronization using a base station synchronization signal. At this time, other vehicles that have already completed the initial access procedure around the base station transmit a vehicle synchronization signal including physical layer information of each vehicle based on the base station synchronization signal transmission time.
  • the V2X vehicle having an initial connection first synchronizes with the base station using the synchronization signal of the base station to obtain information, and then obtains information of the vehicle through a search process for surrounding vehicles using the synchronization signal of the adjacent vehicle.
  • the size of the cell operated by the base station is very important.
  • the present invention proposes different synchronization signals to prepare for both of the above cases and describes the operation method thereof.
  • FIG. 2 illustrates propagation delay occurring in a V2X communication environment.
  • Figure 2 Is the propagation delay time for the signal from the transmitter to reach the receiver.
  • the base station signal It is received with a delay.
  • the synchronization signal of the second vehicle (Vehicle 1) transmitted based on the synchronization signal of the base station delayed by the first vehicle It is received with a delay.
  • Difference in propagation delay between signals transmitted from the surroundings occurs to the first vehicle for which the initial access procedure is to be performed.
  • Difference in propagation delay between vehicles Define. Maximum difference in propagation delay between vehicles that can occur in the cell Is a predetermined threshold Dense vehicle environment when smaller, When larger, it is defined as a sparse vehicle communication environment.
  • the vehicle synchronization signal is defined as a V (Vehicle) SS block.
  • Each vehicle does not use the synchronization signal used in the NR, and allows the vehicle (receiver) to perform the initial access procedure to distinguish the initial access procedure from the adjacent base station and the vehicle by using a different synchronization signal.
  • the receiver can reduce the number of repetitions of an initial search procedure for finding a base station or a vehicle, and can synchronize only with a synchronization signal of a desired search target.
  • the presence or absence of an adjacent base station is also quickly determined so that the receiver can immediately recognize whether it is an environment capable of performing V2I or an environment capable of performing only V2V.
  • the SS/PBCH block is set to transmit once during a predetermined time called an SS burst set periodicity. That is, during the SS burst set periodicity, a portion in which SS blocks are transmitted and a portion in which they are not transmitted are divided. Therefore, the vehicle synchronization signal is intended to be transmitted by avoiding the position of the NR synchronization signal. Since receiving the NR sync signal is very important in the V2X initial access procedure, the vehicle sync signal is transmitted using a different position to avoid interference with the position of the NR sync signal.
  • FIG 3 shows a synchronization signal arrangement in the time domain according to the present embodiment.
  • all SS blocks are transmitted within 5 ms, which is a half frame, and the SS burst set is no longer transmitted within the SS burst set periodicity.
  • a vehicle SS burst set (vehicle sync signal) is transmitted after a half period of burst periodicity.
  • the NR SS block (base station synchronization signal) and V SS block (vehicle synchronization signal) are allocated to different beams and transmitted. Maximum number of beams at NR As many as NR SS/PBCH blocks are transmitted.
  • the SS/PBCH block index starts from 0 in the order of each SS/PBCH block. Up to -1 is allocated.
  • V SS block is also the maximum number of beams in the vehicle. As many as the index is 0 Up to -1 is allocated. V SS block index Expressed as
  • the V SS block consists of 2 symbols. Unlike the NR SS/PBCH block, which is composed of 4 symbols in total, the V SS block shortens two symbols occupied by the PBCH and DMRS to obtain faster initial synchronization. Therefore, in order to load the SS/PBCH block index provided by the existing PBCH and DMRS in a vehicle synchronization signal composed of 2 symbols, a method of transmitting the index information to the V PSS is proposed.
  • FIG. 4 shows the number of RF chains V SS block transmission according to FIG.
  • the maximum number of RF chains that can be possessed in the V2X communication antenna of the vehicle is maximum. You can choose up to one. Therefore, the number of RF chains selected by the vehicle Depending on the V SS block can be transmitted at the same time as shown in FIG.
  • Figure 4 When is 8, it shows the transmission of the V SS block.
  • V SS block index according to the transmission scheme of FIG. 4 Can be expressed as the following equation.
  • Equation 1 As you can see from Equation 1, As the number of increases, the number of V SS blocks that can be transmitted in one symbol position increases. Indicating the index of the symbol position Is, to distinguish the index of each RF chain that sends the V SS block to be.
  • FIG. 5 shows an NR SS/PBCH block time frequency structure.
  • the NR SS/PBCH block is composed of four symbols contiguous in the time domain and 240 consecutive subcarriers in the frequency domain.
  • NR PSS is located in the first symbol, and NR SSS is present in the third symbol.
  • NR PBCH and NR DMRS wrap the NR SSS from the second to the fourth.
  • the NR PSS consists of m-sequences, and the NR SSS consists of a gold sequence of two m-sequences combined.
  • NR DMRS is also a gold sequence
  • NR PBCH is composed of data created by applying a polar coding technique.
  • NR PSS and NR SSS have a total of 127 lengths ranging from 56 to 182 based on subcarrier indexes sequentially defined in the frequency domain.
  • NR PBCH and NR DMRS have 240 lengths from subcarrier indices 0 to 239 in the time domain symbols 1 and 3, and occupy subcarrier indices from 0 to 47 and 192 to 239 in the second symbol.
  • NR physical layer cell ID (base station cell ID) is It can be represented by, and can have 1008 independent IDs from 0 to 1007.
  • the Wow It can be divided into two IDs, and the relationship is as follows.
  • the first base station ID Is defined as the second base station ID.
  • NR PSS It is a signal that contains information.
  • NR SSS NR PBCH and NR DMRS respectively contain 3 bits MSB (Most Significant Bit) and 3 bits LSB (Least Significant Bit) of the SS/PBCH index. Accordingly, if all of NR PSS, NR SSS, NR PBCH, and NR DMRS are searched, the cell ID and SS/PBCH block index of the corresponding NR base station can be determined.
  • V SS block time frequency structure shows a V SS block time frequency structure.
  • the V SS block is composed of two symbols contiguous in the time domain and 240 consecutive subcarriers in the frequency domain.
  • subcarrier resources such as the NR SS/PBCH block
  • 56 to 182 subcarrier indexes among the 240 subcarriers are used.
  • V PSS is located in the first symbol and V SSS is located in the second symbol.
  • Vehicle physical layer cell ID Can be represented by, NR physical layer cell ID Likewise, you can have 1008 independent IDs from 0 to 1007. Degree Wow Can be divided into two IDs.
  • the first vehicle ID Is defined as the second vehicle ID.
  • the V SS block index is carried on each V SS block and transmitted.
  • the search process of the DMRS and the search process of the PBCH must be performed independently, and the overhead occupied by the process is large.
  • the SS/PBCH block of NR occupies 4 symbols.
  • this overhead is not desirable in a V2X communication environment that wants to reduce latency as much as possible.
  • the present invention proposes a method using V PSS to transmit a V SS block index according to a V2X communication environment.
  • V PSS Voice over Sense Multiple Access
  • the V PSS defined in the time domain is converted into a signal in the frequency domain as shown in Equation 5, and is mapped and transmitted from subcarrier indexes 56 to 182 as shown in FIG. 6.
  • Time domain V PSS in Equation 4 The time domain NR PSS By taking a complex number of digits, they can be distinguished in correlation between each other in the time domain.
  • V SSS to V SS block index It uses a cyclic shift in the time domain to load. To indicate the degree of cyclic shift Is defined as follows.
  • Equation 4 Is defined as the cover code,
  • the detection timing error is prevented from occurring due to the cyclic shift in the time domain.
  • the degree of shift is not so large that it can be neglected in the search process, so the cover code Do not use That is, V PSS in a close vehicle communication environment can be redefined as follows.
  • cover codes are used in the present invention. It is proposed to use m-sequence (Maximum length sequence) as.
  • V PSS in a scattered vehicle communication environment can be redefined as follows.
  • V PSS is set to be distinguished from NR PSS in the time domain correlation detection process. Also, unlike NR PSS, since V PSS adds V SS block index information, a correlation characteristic changes according to the information.
  • 7A and 7B show correlation characteristics between NR PSS and V PSS.
  • V PSS used in a close vehicle communication environment When the correlation between the two is confirmed, it is as shown in FIGS. 8A and 8B.
  • V PSS used in scattered vehicle communication environments When the correlation between the two is confirmed, it is shown in FIGS. 9A and 9B.
  • 9A and 9B show V PSS used in a scattered vehicle environment. It shows the correlation between.
  • Equation (9) Means a cyclic downshift matrix.
  • V SS block index of cyclic downshift matrix It means that it is cyclically shifted in the time domain.
  • Cyclic downshift matrix of Each element of The definition is as follows.
  • Equation (9) Is the phase rotation matrix, Is used to represent the phase rotation in the time domain. size of The definition of is as follows.
  • Equation (9) Means IDFT matrix, and size DFT matrix
  • Equation 9 The parts of are arranged in the reverse order in the frequency domain by the conjugate plural number property among the properties of the DFT.
  • the characteristics are expressed as follows.
  • Equation 9 the correlation using Equation (9) will be summarized by Equation, and is expressed as follows to simplify Equation (9).
  • Equation 15 is developed by using the following several characteristics.
  • Equation 15 Becomes 1 and can be ignored. And, as shown in Equation 15 in Ramen Is considered 1 and can be ignored. if so The Can be expressed like
  • Equation (15) On condition Seems to add two m-sequences with different shift values. This is a sequence having the same m-sequence but different shift values due to the shift-and-add characteristic of the m-sequence. Because Is an IDFT of a specific m-sequence. Therefore, a specific m-sequence plus two m-sequences is a signal in the frequency domain. If you define The It's like getting
  • the DFT of the auto-correlation of the m-sequence is to be solved using the point that PSD (Power Spectral Density).
  • PSD Power Spectral Density
  • Equation 20 provides a signal in a specific m-sequence frequency domain.
  • the absolute value of the time domain is
  • Equation 20 To Because it can be thought of as the same value, The absolute value of Equation 20 under the condition of When , When You can confirm that
  • 10A and 10B are diagrams for comparing the mathematical results obtained from Equation 22 with the simulation results.
  • Figure 10a Indicates the situation. If it is, it can be confirmed that the value is 1. Also When, that is, when the time lag exists, there are some values due to the limitations of the simulation tool, but it can be confirmed that the value is almost zero.
  • Figure 10b Indicates the situation. If it is, the value is 0.007874 Is the same as If it is, the value is 0.08908 You can see that it matches
  • 11 is a flowchart illustrating an initial access procedure for obtaining information of an adjacent base station and information about an adjacent vehicle for V2X communication.
  • essential information to be obtained while performing an initial access procedure are cell ID, synchronization signal index, and received beam ID information.
  • the basic preparation for wireless communication is complete.
  • the base station exists in the V2X environment.
  • the NR PSS of the base station is searched first.
  • the vehicle utilizes all of its received beams, while different signals are received through each beam.
  • the correlation signal is compared with the reference signal generated by.
  • the time position of the NR PSS received based on the highest result value through the correlation signal characteristic Estimate the beam ID of the receiver.
  • the NR SS/PBCH index can be obtained through the discovery process of DMRS and PBCH.
  • the timing of the V PSS can be estimated using the estimated NR information. Vehicles adjacent to the base station that have already undergone initial synchronization transmit the V SS burst set from half of the SS burst set periodicity based on the start position of the NR SS burst set. Accordingly, the timing of the NR PSS and the information of the SS/PBCH block index make it possible to estimate the V PSS location.
  • V SSS Using the estimated position V SSS And V SS block index , It is possible to estimate the vehicle reception beam ID. Then using V SSS Estimating Wow Combined with the vehicle cell ID Can be estimated.
  • the V2X communication vehicle ends the initial access procedure by determining the neighbor base station, the neighbor vehicle cell ID, the received beam ID, and the SS block index.
  • Equation 23 is
  • Equation 23 The reason defined as Equation 23 is as follows.
  • a vehicle that performs an initial access procedure first undergoes a synchronization process after searching for information of the base station, and estimates the synchronization signal timing of another vehicle based on the timing.
  • this Smaller means that there is no problem in searching for the vehicle's synchronization signals in the correct symbol unit, and the V SS block index is also provided through time domain correlation inside the symbol. It means that it can operate without error in searching for.
  • the close vehicle communication environment means'the maximum value of the difference in propagation delay between vehicles. 'this It means when it is smaller. This means that other V SS block index detection that can be detected in one symbol is an environment that is not affected by a difference in propagation delay between vehicles.
  • the delay of the signal itself is small, it is possible to estimate the symbol unit timing of V PSS using information obtained from NR. Maximum number of beams the vehicle can send And the number of RF chains Depending on the It is possible to estimate as many as V PSS symbols.
  • V PSS symbol index shown in equation (1) Depending on the symbol signal received Can be expressed as
  • V PSS received signal at the estimated position in a close vehicle communication environment
  • equation (7) The information of the V PSS is searched through the cyclic correlation between them.
  • the equation is as follows.
  • the reference signal The Phosphorus signal is used. As described in Figure 8, Depending on the By using as many parallel movements Is to estimate.
  • Equation (25) Wow Through the Can be calculated. certain Which can appear in The number of It is a dog. Therefore, the time lag of the correlation obtained through Equation 25 May appear depending on the value of Estimated some of the candidates It can be understood through Figure 12 whether to adopt as.
  • two V SS block indexes at one V PSS symbol position Can have If the propagation delay difference between vehicles Without this, When There will be a maximum at the phosphorus position. Likewise When There will be a maximum at the phosphorus position. But the difference in propagation delay between vehicles Is the basis for There may be a maximum at a later time.
  • the scattered vehicle communication environment means that the maximum value of the difference in propagation delay between vehicles. 'this It means when it is bigger. This is the difference in propagation delay between vehicles when a signal is searched like a close vehicle communication environment. By It is very likely that the estimation is not correct. Therefore, in a scattered vehicle communication environment, as in Equation (8), Cover code to remove shift effect of time domain by To utilize.
  • the reference signal used in the scattered communication environment can be defined as follows.
  • the reference signal in a scattered environment is as long as Equation (26). Is the number of samples of one symbol length see As long as The reference signal of Equation 26 is made based on a signal defined in a close environment.
  • the general correlation between the received signal and the reference signal is the cover code sent by the transmitting end Can not eliminate the influence of. Therefore, in a scattered communication environment, the total sum is not performed immediately after the multiplication between the components of the received signal and the reference signal. Cover code to match the corresponding position After multiplying by, the total sum is performed for each cover code length.
  • FIG. 13 is a diagram for explaining a V PSS search process in a scattered vehicle communication environment.
  • each V SS block index Add a cover code to the location. This has the effect of removing the cover code that the existing received signal had in the time domain.
  • the received beam ID and V SS block index that collect the different correlation values thus obtained and make the maximum value among them , Estimating the information of V PSS search is completed. This is expressed as follows.
  • 14A and 14B are diagrams showing correlations between V PSSs having the same in a scattered communication environment.
  • the two graphs of FIGS. 14A and 14B have their maximum values at different X-axis values.
  • the above simulation is a sample lag V PSS was set to exist at the phosphorus point.
  • X axis sample lag Is the movement of the reference signal based on the sample of the received signal, so even if V PSSs in the same position are searched, the V PSS blocks index If is different, the maximum correlation can be obtained at different locations. Therefore, the estimated V SS block index And estimated estimated sample time lag According to the following equation, timing information of the actual V PSS Can be estimated.
  • 15A and 15B are different in a scattered communication environment. It is a diagram showing the correlation between V PSS with.
  • V SS block index Regardless of When correlated with different signals, there are no peaks, so You can see that you can distinguish.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A synchronization method and apparatus for millimeter wave vehicle-to-vehicle communication are disclosed. According to the present invention, provided is a vehicle-to-vehicle synchronization device comprising a processor and a memory connected to the processor, wherein the memory includes one or more program commands, executed by the processor, so as to perform an initial access procedure with a base station by acquiring physical layer information about the base station through a base station synchronization signal including a new radio primary synchronization signal (NR PSS), estimate vehicle primary synchronization signal (V PSS) timing of a vehicle synchronization signal within a synchronization signal burst set period in which the base station synchronization signal is transmitted according to the completion of the initial access procedure with the base station, generate a V PSS of the vehicle synchronization signal so that same can be separated from a correlation between the vehicle synchronization signal and a time domain, and perform vehicle-to-vehicle synchronization by transmitting the vehicle synchronization signal including the generated V PSS to the other vehicle.

Description

밀리미터파 차량간 통신을 위한 동기화 방법 및 장치Synchronization method and device for communication between millimeter wave vehicles
본 발명은 밀리미터파 차량간 통신을 위한 동기화 방법 및 장치에 관한 것이다. The present invention relates to a synchronization method and apparatus for communication between millimeter wave vehicles.
최근 자율주행자동차에 필요한 차량 통신을 위하여 Vehicle to Infrastructure (V2I)와 Vehicle to Vehicle (V2V), 통칭하여 Vehicle to Everything (V2X) 기술 개발이 이루어지고 있다.Recently, Vehicle to Infrastructure (V2I), Vehicle to Vehicle (V2V), and Vehicle to Everything (V2X) technologies are being developed for vehicle communication required for autonomous vehicles.
현재 3GPP 5G 통신을 위해 개발되고 있는 New Radio(NR)의 규격에 따르면, NR에서 사용하는 동기 신호를 SS/PBCH 블록이라고 부르며, 동기 신호 블록을 의미하는 SSB(Synchronization Signal Block)라고도 부른다. According to the standard of New Radio (NR) currently being developed for 3GPP 5G communication, a synchronization signal used in NR is called an SS/PBCH block, and is also called a Synchronization Signal Block (SSB), which means a synchronization signal block.
SS/PBCH 블록은 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal), PBCH(Physical Broadcast Channel), DMRS(Demodulation Reference Signal)로 이루어진 4심볼 길이의 동기 신호이다.The SS/PBCH block is a 4-symbol length synchronization signal composed of a primary synchronization signal (PSS), a secondary synchronization signal (SSS), a physical broadcast channel (PBCH), and a demodulation reference signal (DMRS).
차량이 기지국과 통신을 하는 방식인 V2I에서는 기지국에서 사용하는 NR SS/PBCH 블록으로 동기를 맞추는 것에 문제가 없다. 하지만 차량간 통신을 의미하는 V2V에서는 동기 신호를 전송하는 차량을 소형 기지국이라고 간주할 수 있고, 소형 기지국에서 그대로 NR SS/PBCH 블록을 사용한다면 문제가 발생할 수 있다. In V2I, a method in which a vehicle communicates with a base station, there is no problem in synchronizing with an NR SS/PBCH block used by the base station. However, in V2V, which means inter-vehicle communication, a vehicle that transmits a synchronous signal can be regarded as a small base station, and problems may occur if the NR SS/PBCH block is used as it is in the small base station.
왜냐하면, 초기 접속 절차를 수행하고자 하는 차량은 기지국에서 사용하는 동기 신호와 다른 인접 차량에서 사용하는 동기 신호를 구분하지 못하고, 주변에서 수신되는 무수히 많은 동기 신호들에 대해 모든 탐색 과정을 거쳐야하기 때문이다. This is because a vehicle that wants to perform an initial access procedure cannot distinguish between a synchronization signal used by a base station and a synchronization signal used by another neighboring vehicle, and has to go through all the search processes for a myriad of synchronization signals received in the vicinity. .
이 경우에 초기 접속 절차를 이루고자 하는 차량은 기지국에 동기를 맞추고 싶더라도 다른 인접 차량에서 온 동기 신호에 동기를 맞추게 될 가능성이 높아지고 원하는 통신 방식을 선택하지 못하게 된다.In this case, even if the vehicle wishing to perform the initial access procedure synchronizes with the base station, the likelihood of synchronizing with the synchronization signal from another adjacent vehicle increases and it is impossible to select a desired communication method.
상기한 종래기술의 문제점을 해결하기 위해, 본 발명은 초기 접속 절차 과정에서 수신된 신호의 출처를 빠르게 구분하여 지연 시간을 줄일 수 있는 밀리미터파 차량간 통신을 위한 동기화 방법 및 장치를 제안하고자 한다. In order to solve the above-mentioned problems of the prior art, the present invention is to propose a synchronization method and apparatus for inter-vehicle communication between millimeter-waves that can quickly reduce the delay time by quickly dividing the source of the signal received during the initial access procedure.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따르면, 밀리미터파 차량 통신 환경에서 차량간 동기화 장치로서, 프로세서; 및 상기 프로세서에 연결되는 메모리를 포함하되, 상기 메모리는, NR PSS(New Radio Primary Synchronization Signal)를 포함하는 기지국 동기 신호를 통해 상기 기지국의 물리 계층 정보를 획득하여 기지국과의 초기 접속 절차를 수행하고, 상기 기지국과의 초기 접속 절차 완료에 따라 상기 기지국 동기 신호가 전송되는 동기 신호 버스트 셋 주기 내에서 차량 동기 신호의 V PSS(Vehicle Primary Synchronization Signal) 타이밍을 추정하고, 상기 차량 동기 신호의 V PSS를 상기 기지국 동기 신호와 시간 영역의 상관 관계에서 구분될 수 있도록 생성하고, 상기 생성된 V PSS를 포함하는 상기 차량 동기 신호를 다른 차량에 전송하여 차량간 동기화가 수행되도록, 상기 프로세서에 의해 실행되는 하나 이상의 프로그램 명령어들을 포함하는 차량간 동기화 장치가 제공된다. In order to achieve the above object, according to an embodiment of the present invention, in the vehicle communication environment in the millimeter wave vehicle communication environment, a synchronization device, the processor; And a memory connected to the processor, wherein the memory acquires physical layer information of the base station through a base station synchronization signal including an NR New Radio Primary Synchronization Signal (PSS) and performs an initial access procedure with the base station. , V PSS (Vehicle Primary Synchronization Signal) timing of the vehicle synchronization signal within the synchronization signal burst set period in which the base station synchronization signal is transmitted according to the completion of the initial access procedure with the base station, estimates the V PSS of the vehicle synchronization signal One that is generated by the base station synchronization signal and the time domain to be distinguished from each other, and transmits the vehicle synchronization signal including the generated V PSS to another vehicle so that synchronization between vehicles is performed. An inter-vehicle synchronization device including the above program instructions is provided.
상기 V PSS는 상기 NR PSS에 켤레 복소수를 취하여 생성될 수 있다. The V PSS may be generated by taking a conjugate complex number in the NR PSS.
상기 차량 동기 신호는 차량의 빔 개수만큼 전송되고, 상기 빔을 식별하는 차량 동기 신호 블록 인덱스는 시간 영역에서 순환 시프트되어 상기 V PSS에 포함될 수 있다. The vehicle synchronization signal is transmitted by the number of beams of the vehicle, and the vehicle synchronization signal block index identifying the beam may be cyclically shifted in the time domain and included in the V PSS.
상기 프로그램 명령어들은, 상기 차량간 통신 환경이 산재한(sparse) 차량 통신 환경인지 여부를 판단하고, 상기 차량간 통신 환경이 산재한 통신 환경인 경우, 커버 코드를 이용하여 상기 V PSS를 생성할 수 있다.The program commands may determine whether the inter-vehicle communication environment is a sparse vehicle communication environment, and when the inter-vehicle communication environment is a interspersed communication environment, the V PSS may be generated using a cover code.
상기 산재한 통신 환경인지 여부는, 차량간 전파 지연 차이의 최대값이 미리 설정된 임계치보다 큰 지 여부를 통해 판단되며, 상기 미리 설정된 임계치는, 하나의 심볼에서 발생할 수 있는 검출 타이밍 간의 최소 시간 차이 및 OFDM의 CP(Cyclic Prefix)가 차지하는 시간 주기 중 적어도 하나에 의해 결정될 수 있다. Whether the communication environment is interspersed is determined based on whether a maximum value of a difference in propagation delay between vehicles is greater than a preset threshold, and the preset threshold is a minimum time difference between detection timings that may occur in one symbol and OFDM It may be determined by at least one of the time period occupied by the CP (Cyclic Prefix).
상기 하나의 심볼에서 발생할 수 있는 검출 타이밍 간의 최소 시간 차이는 OFDM 심볼 길이, RF chain의 개수가 최대일 때 하나의 심볼 내에서 검출 타이밍이 시프트 될 수 있는 비율 및 RF chain 개수가 증가함에 따라 하나의 심볼 내에 V PSS가 들어가는 비율 중 적어도 하나에 의해 결정될 수 있다. The minimum time difference between detection timings that can occur in one symbol is one as the OFDM symbol length, the ratio at which detection timings can be shifted within one symbol when the number of RF chains is maximum, and the number of RF chains increases. V PSS in the symbol may be determined by at least one of the ratio.
상기 기지국 동기 신호는 상기 NR PSS과, SSS(Secondary Synchronization Signal), PBCH(Physical Broadcast Channel) 및 DMRS(Demodulation Reference Signal)를 포함하고, 상기 차량 동기 신호는 상기 V PSS와 V SSS(Vehicle Secondary Synchronization Signal)를 포함할 수 있다. The base station synchronization signal includes the NR PSS, a Secondary Synchronization Signal (SSS), a Physical Broadcast Channel (PBCH), and a Demodulation Reference Signal (DMRS), and the vehicle synchronization signals include the V PSS and the V Vehicle Secondary Synchronization Signal (SSS). ).
상기 프로그램 명령어들은, 상기 추정된 V PSS 타이밍에 수신된 다른 차량의 제1 차량 동기 신호를 수신하여 V PSS 및 V SSS를 탐색하고, 상기 탐색된 V PSS에서 제1 차량 아이디, 상기 제1 차량 동기 신호의 블록 인덱스, 상기 제1 차량 신호의 수신 빔 아이디를 추정하고, 상기 탐색된 V SSS에서 제2 차량 아이디를 추정하고, 상기 제1 및 제2 차량 아이디를 통해 상기 다른 차량의 셀 아이디를 추정할 수 있다.The program instructions receive a first vehicle synchronization signal of another vehicle received at the estimated V PSS timing to search for V PSS and V SSS, and the first vehicle ID and the first vehicle synchronization in the searched V PSS. Estimate the block index of the signal, the received beam ID of the first vehicle signal, estimate the second vehicle ID from the searched V SSS, and estimate the cell ID of the other vehicle through the first and second vehicle IDs can do.
본 발명의 다른 측면에 따르면, 밀리미터파 차량 통신 환경에서 차량간 동기화 장치로서, NR PSS(New Radio Primary Synchronization Signal)를 포함하는 기지국 동기 신호를 통해 상기 기지국의 물리 계층 정보를 획득하는 기지국 정보 획득부; 상기 기지국과의 초기 접속 절차 완료에 따라 상기 기지국 동기 신호가 전송되는 동기 신호 버스트 셋 주기 내에서 차량 동기 신호의 V PSS(Vehicle Primary Synchronization Signal) 타이밍을 추정하는 타이밍 추정부; 및 상기 차량 동기 신호의 V PSS를 상기 기지국 동기 신호와 시간 영역의 상관 관계에서 구분될 수 있도록 생성하는 V PSS 생성부를 포함하되, 상기 생성된 V PSS를 포함하는 차량 동기 신호를 다른 차량에 전송하여 차량간 동기화를 수행하는 차량간 동기화 장치가 제공된다. According to another aspect of the present invention, as a vehicle-to-vehicle synchronization device in a millimeter-wave vehicle communication environment, a base station information acquisition unit that acquires physical layer information of the base station through a base station synchronization signal including an NR New Radio Primary Synchronization Signal (PSS) ; A timing estimator for estimating V PSS (Vehicle Primary Synchronization Signal) timing of a vehicle synchronization signal within a synchronization signal burst set period in which the base station synchronization signal is transmitted according to completion of an initial access procedure with the base station; And a V PSS generation unit generating the V PSS of the vehicle synchronization signal so as to be distinguished from the correlation between the base station synchronization signal and the time domain, and transmitting the vehicle synchronization signal including the generated V PSS to another vehicle. An inter-vehicle synchronization device for performing inter-vehicle synchronization is provided.
본 발명의 또 다른 측면에 따르면, 밀리미터파 차량 통신 환경에서 차량간 동기화 방법으로서, NR PSS(New Radio Primary Synchronization Signal)를 포함하는 기지국 동기 신호를 통해 상기 기지국의 물리 계층 정보를 획득하는 단계; 상기 기지국과의 초기 접속 절차 완료에 따라 상기 기지국 동기 신호가 전송되는 동기 신호 버스트 셋 주기 내에서 차량 동기 신호의 V PSS(Vehicle Primary Synchronization Signal) 타이밍을 추정하는 단계; 상기 차량 동기 신호의 V PSS를 상기 기지국 동기 신호와 시간 영역의 상관 관계에서 구분될 수 있도록 생성하는 단계; 및 상기 생성된 V PSS를 포함하는 차량 동기 신호를 다른 차량에 전송하여 차량간 동기화를 수행하는 단계를 포함하는 차량간 동기화 방법이 제공된다.According to another aspect of the present invention, a method for synchronizing vehicles in a millimeter wave vehicle communication environment, comprising: obtaining physical layer information of the base station through a base station synchronization signal including an NR New Radio Primary Synchronization Signal (PSS); Estimating V PSS (Vehicle Primary Synchronization Signal) timing of a vehicle synchronization signal within a synchronization signal burst set period in which the base station synchronization signal is transmitted according to completion of an initial access procedure with the base station; Generating a V PSS of the vehicle synchronization signal to be distinguished from a correlation between the base station synchronization signal and the time domain; And transmitting the vehicle synchronization signal including the generated V PSS to another vehicle to perform vehicle-to-vehicle synchronization.
본 발명에 따르면, 초기 접속 절차 과정에서 수신된 신호의 출처를 빠르게 구분하여 동기 신호의 재탐색 과정을 최대한 줄일 수 있다. .According to the present invention, it is possible to reduce the re-discovery process of the synchronization signal as much as possible by quickly distinguishing the source of the received signal during the initial access procedure. .
또한, 본 발명에 따르면, 차량의 V SS 블록이 기지국의 NR SS/PBCH 블록과는 다르게 2 심볼로 이루어져있어 차량의 빠른 이동에 의해 핸드 오버 상황이 발생하더라도 더 빠르게 동기를 맞출 수 있는 장점이 있다. In addition, according to the present invention, the V SS block of the vehicle is composed of 2 symbols differently from the NR SS/PBCH block of the base station, so that even if a handover situation occurs due to the rapid movement of the vehicle, there is an advantage of being able to synchronize more quickly. .
마지막으로 NR PSS의 탐색 과정을 거치는 것만으로도 주변 환경에서 기지국이 존재하는지 여부를 바로 확인할 수 있고, 기지국이 존재하지 않는 상황이라면 차량들은 서로 사이드 링크를 활용하여 V2V 통신을 수행할 수 있다.Finally, it is possible to immediately check whether the base stations exist in the surrounding environment by simply going through the discovery process of the NR PSS, and if the base stations do not exist, the vehicles can perform V2V communication by using a side link to each other.
도 1은 본 발명의 바람직한 일 실시예에 따른 밀리미터파 차량간 동기화 장치의 구성을 도시한 도면이다. 1 is a view showing the configuration of a millimeter wave inter-vehicle synchronization device according to an embodiment of the present invention.
도 2는 V2X 통신 환경에서 발생하는 전파 지연을 나타낸 것이다. 2 illustrates propagation delay occurring in a V2X communication environment.
도 3은 본 실시예에 따른 시간 영역에서의 동기 신호 배치를 나타낸 것이다.3 shows a synchronization signal arrangement in the time domain according to the present embodiment.
도 4는 RF chain 개수 NRF에 따른 V SS 블록 전송을 도시한 것이다. Figure 4 illustrates a V SS block transfer according to the number of RF chain N RF.
도 5는 NR SS/PBCH 블록 시간 주파수 구조를 도시한 것이다. 5 shows an NR SS/PBCH block time frequency structure.
도 6은 V SS 블록 시간 주파수 구조를 도시한 것이다. 6 shows a V SS block time frequency structure.
도 7a 및 7b는 NR PSS와 V PSS간의 상관 관계 특성을 도시한 것이다. 7A and 7B show correlation characteristics between NR PSS and V PSS.
도 8a 및 8b는 밀접한 차량 통신 환경에서 사용하는 V PSS
Figure PCTKR2020000178-appb-I000001
간의 상관 관계를 도시한 것이다.
8A and 8B show V PSS used in a close vehicle communication environment.
Figure PCTKR2020000178-appb-I000001
It shows the correlation between.
도 9a 및 9b는 산재한 차량 통신 환경에서 사용하는 V PSS
Figure PCTKR2020000178-appb-I000002
간의 상관 관계를 도시한 것이다.
9A and 9B are V PSSs used in a scattered vehicle communication environment.
Figure PCTKR2020000178-appb-I000002
It shows the correlation between.
도 10a 및 10b는 본 실시예에 따른 V PSS
Figure PCTKR2020000178-appb-I000003
간의 상관 관계를 도시한 것이다.
10A and 10B are V PSS according to the present embodiment.
Figure PCTKR2020000178-appb-I000003
It shows the correlation between.
도 11은 V2X 통신을 위해 인접 기지국의 정보와 인접 차량에 대한 정보를 얻기 위한 초기 접속 절차에 대한 순서도를 도시한 도면이다. 11 is a flowchart illustrating an initial access procedure for obtaining information of an adjacent base station and information about an adjacent vehicle for V2X communication.
도 12는 시간 영역 V PSS 상관 특성을 도시한 것이다. 12 shows a time domain V PSS correlation characteristic.
도 13은 산재한 차량 통신 환경에서의 V PSS 탐색 과정을 설명하기 위한 도면이다. 13 is a diagram for explaining a V PSS search process in a scattered vehicle communication environment.
도 14a 및 14b는 산재한 통신 환경에서 같은 을 가진 V PSS 간의 상관 관계를 도시한 도면이다.14A and 14B are diagrams showing correlations between V PSSs having the same in a scattered communication environment.
도 15a 및 15b는 산재한 통신 환경에서 다른
Figure PCTKR2020000178-appb-I000004
을 가진 V PSS 간의 상관 관계를 도시한 도면이다.
15A and 15B are different in a scattered communication environment.
Figure PCTKR2020000178-appb-I000004
It is a diagram showing the correlation between V PSS with.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.The present invention can be applied to various changes and can have various embodiments, and specific embodiments will be illustrated in the drawings and described in detail.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
본 발명에서는 V2X의 초기 접속 절차에서 적은 지연 시간(latency)으로 V2V 동기화를 이루기 위하여, 밀리미터파(mmWave) 차량간 통신 시스템의 차량 동기 신호와 동기화 절차를 제안한다. 현재 5G mmWave 통신을 목표로 개발되고 있는 New Radio (NR) 개발 방향에 맞춰 NR의 시스템을 활용하여 V2X 통신을 구성한다.The present invention proposes a vehicle synchronization signal and synchronization procedure of a millimeter wave (mmWave) inter-vehicle communication system in order to achieve V2V synchronization with a small latency in the initial access procedure of V2X. V2X communication is constructed by utilizing the system of NR in line with the development direction of New Radio (NR), which is currently being developed for 5G mmWave communication.
밀리미터파 차량간 통신 환경에서 발생할 수 있는 조건들을 고려하여 빔 포밍 기술을 적용하며, 지연 시간을 고려하여 기지국의 셀 반경에 따라 환경을 나누어 각기 특성에 맞는 동기 신호를 사용할 수 있도록 제안한다.It is proposed to apply the beamforming technology in consideration of the conditions that may occur in the millimeter wave inter-vehicle communication environment, and to divide the environment according to the cell radius of the base station in consideration of the delay time to use a synchronization signal suitable for each characteristic.
도 1은 본 발명의 바람직한 일 실시예에 따른 밀리미터파 차량간 동기화 장치의 구성을 도시한 도면이다. 1 is a view showing the configuration of a millimeter wave inter-vehicle synchronization device according to an embodiment of the present invention.
도 1은 차량에 설치된 컴퓨팅 장치를 도시한 것으로서, 프로세서(100) 및 메모리(102)를 포함할 수 있다. 1 illustrates a computing device installed in a vehicle, and may include a processor 100 and a memory 102.
프로세서(100)는 컴퓨터 프로그램을 실행할 수 있는 CPU(central processing unit)나 그밖에 가상 머신 등을 포함할 수 있다. The processor 100 may include a central processing unit (CPU) capable of executing a computer program or other virtual machines.
메모리(102)는 고정식 하드 드라이브나 착탈식 저장 장치와 같은 불휘발성 저장 장치를 포함할 수 있다. 착탈식 저장 장치는 컴팩트 플래시 유닛, USB 메모리 스틱 등을 포함할 수 있다. 메모리(102)는 각종 랜덤 액세스 메모리와 같은 휘발성 메모리도 포함할 수 있다.The memory 102 may include a non-volatile storage device such as a fixed hard drive or a removable storage device. The removable storage device may include a compact flash unit, a USB memory stick, and the like. The memory 102 may also include volatile memory, such as various random access memories.
이와 같은 메모리(102)에는 프로세서(100)에 의해 실행 가능한 프로그램 명령어들이 저장된다. Program instructions executable by the processor 100 are stored in the memory 102.
본 실시예에 따른 프로그램 명령어들은, NR PSS(New Radio Primary Synchronization Signal)를 포함하는 기지국 동기 신호를 통해 기지국의 물리 계층 정보를 획득하여 기지국과의 초기 접속 절차를 수행한다.The program instructions according to this embodiment acquire physical layer information of the base station through a base station synchronization signal including an NR New Radio Primary Synchronization Signal (PSS) and perform an initial access procedure with the base station.
또한, 프로그램 명령어들은 기지국과의 초기 접속 절차 완료에 따라 기지국 동기 신호가 전송되는 동기 신호 버스트 셋 주기 내에서 차량 동기 신호의 V PSS(Vehicle Primary Synchronization Signal) 타이밍을 추정한다. In addition, the program instructions estimate the V PSS (Vehicle Primary Synchronization Signal) timing of the vehicle synchronization signal within a synchronization signal burst set period in which the base station synchronization signal is transmitted upon completion of the initial access procedure with the base station.
본 실시예에서는 차량 동기 신호인 V SS 블록을 기지국의 NR SS/PBCH 블록과는 다르게 V PSS와 V SSS의 2 심볼로 구성하고, V SS 블록을 기존 NR 스펙의 데이터 필드에 포함시킨다. In this embodiment, the V SS block, which is a vehicle synchronization signal, is composed of 2 symbols of V PSS and V SSS, unlike the NR SS/PBCH block of the base station, and the V SS block is included in the data field of the existing NR specification.
본 실시예에 따르면, 차량 동기 신호의 V PSS를 기지국 동기 신호의 NR PSS와 시간 영역의 상관 관계에서 구분될 수 있도록 NR PSS에 켤레 복소수를 취하여 V PSS를 생성한다. 이에 대해서는 이하에 상술될 것이다. According to this embodiment, the V PSS is generated by taking a conjugate complex number of the NR PSS so that the V PSS of the vehicle synchronization signal can be distinguished from the correlation between the NR PSS of the base station synchronization signal and the time domain. This will be described in detail below.
이후, 프로그램 명령어들은 상기 생성된 V PSS를 포함하는 차량 동기 신호를 다른 차량에 전송하도록 하여 차량간 동기화를 수행한다. Thereafter, the program instructions transmit the vehicle synchronization signal including the generated V PSS to another vehicle to perform synchronization between vehicles.
본 실시예에 따른 차량간 통신 환경은 복수의 빔을 통해 차량 동기 신호를 전송하며, 차량의 빔 식별을 위한 차량 동기 신호 블록 인덱스는 시간 영역에서 순환 시프트 되어 V PSS에 포함된다. The inter-vehicle communication environment according to the present embodiment transmits a vehicle synchronization signal through a plurality of beams, and the vehicle synchronization signal block index for beam identification of the vehicle is cyclically shifted in the time domain and included in the V PSS.
또한, 차량간 통신 환경은 밀접한 차량 통신 환경과 산재한 차량 통신 환경으로 구분되고, 특히 산재한 통신 환경에서는 오류 방지를 위해 V PSS에 커버 코드가 적용된다. 차량간 통신 환경이 밀접한지 여부에 대한 임계치에 대해서는 이하에서 상술될 것이다. In addition, the inter-vehicle communication environment is divided into a close vehicle communication environment and a scattered vehicle communication environment, and in a scattered communication environment, a cover code is applied to V PSS to prevent errors. The threshold for whether the inter-vehicle communication environment is close will be described below.
상기에서는 프로세서(100)에 연결된 메모리(102)에 저장된 프로그램 명령어들이 초기 접속 절차를 통해 차량간 동기화하는 것으로 설명하였다. In the above, it has been described that program instructions stored in the memory 102 connected to the processor 100 are synchronized between vehicles through an initial access procedure.
그러나, 이에 한정됨이 없이 NR PSS(New Radio Primary Synchronization Signal)를 포함하는 기지국 동기 신호를 통해 상기 기지국의 물리 계층 정보를 획득하는 기지국 정보 획득부, 기지국과의 초기 접속 절차 완료에 따라 상기 기지국 동기 신호가 전송되는 동기 신호 버스트 셋 주기 내에서 차량 동기 신호의 V PSS(Vehicle Primary Synchronization Signal) 타이밍을 추정하는 타이밍 추정부 및 차량 동기 신호의 V PSS를 상기 기지국 동기 신호와 시간 영역의 상관 관계에서 구분될 수 있도록 생성하는 V PSS 생성부가 별도의 칩 형식으로 제공되고, 이들이 프로세서의 제어에 따라 차량간 동기화를 수행하는 것도 본 발명의 범주에 포함될 수 있다. However, without being limited thereto, the base station information acquisition unit acquires physical layer information of the base station through a base station synchronization signal including an NR New Radio Primary Synchronization Signal (PSS), and the base station synchronization signal upon completion of an initial access procedure with the base station. A timing estimator for estimating V PSS (Vehicle Primary Synchronization Signal) timing of a vehicle synchronization signal and a V PSS of a vehicle synchronization signal within a synchronization signal burst set period in which the transmission is performed can be distinguished from the correlation between the base station synchronization signal and the time domain. V PSS generation unit to be generated is provided in a separate chip format, they may be included in the scope of the present invention to perform synchronization between vehicles under the control of the processor.
이하에서는 도면을 참조하여 본 발명에서의 가정, 데이터 구조, 상관 관계 등에 대해 상세하게 설명한다. Hereinafter, assumptions, data structures, correlations, and the like in the present invention will be described in detail with reference to the drawings.
본 발명에서 가정하는 환경들은 다음과 같다. The environments assumed in the present invention are as follows.
초기 접속이 필요한 차량은 우선적으로 인접 기지국에 대한 탐색 과정을 통해 물리 계층 정보를 얻고 기지국 동기 신호를 이용하여 동기화를 진행한다. 이때 기지국 주변에서 이미 초기 접속 절차를 마친 다른 차량들은 기지국 동기 신호 전송 시간을 기반으로 각 차량의 물리 계층 정보가 담긴 차량 동기 신호를 전송한다. Vehicles requiring initial access preferentially obtain physical layer information through a search process for an adjacent base station and perform synchronization using a base station synchronization signal. At this time, other vehicles that have already completed the initial access procedure around the base station transmit a vehicle synchronization signal including physical layer information of each vehicle based on the base station synchronization signal transmission time.
즉, 초기 접속을 하는 V2X 차량은 우선 기지국의 동기 신호를 이용하여 기지국에 동기를 맞추고 정보를 얻은 다음, 인접 차량의 동기 신호를 이용하여 주변 차량에 대해 탐색 과정을 거쳐 차량의 정보들을 얻는다. That is, the V2X vehicle having an initial connection first synchronizes with the base station using the synchronization signal of the base station to obtain information, and then obtains information of the vehicle through a search process for surrounding vehicles using the synchronization signal of the adjacent vehicle.
본 발명에 있어서, 기지국에 인접한 모든 차량들의 동기 신호는 기지국에서 전송하는 동기 신호의 타이밍을 기반으로 전송되기 때문에 기지국이 운용하는 셀의 크기가 매우 중요하다. In the present invention, since the synchronization signals of all vehicles adjacent to the base station are transmitted based on the timing of the synchronization signal transmitted from the base station, the size of the cell operated by the base station is very important.
V2X가 운용되는 기지국의 셀의 크기가 작으면 셀 안에서 전송되는 신호의 전파 지연(propagation delay)이 작기 때문에 모든 차량은 무시할만큼의 작은 지연 차이를 가지고 신호를 수신하게 된다. 하지만 기지국이 운용하는 셀의 크기가 크면 기지국에서 전송한 신호가 각 차량에 다른 전파 지연 시간을 가지고 도달하게 되고 이에 동기를 맞춘 차량들은 서로 다른 시간을 기준으로 자신들의 동기 신호를 전송하게 된다. 따라서 본 발명은 위 두가지 경우를 모두 대비하기 위해 서로 다른 동기 신호를 제안하고 그 운용 방법에 대해서 서술하고자 한다.If the size of the cell of the base station in which the V2X is operated is small, since propagation delay of a signal transmitted within the cell is small, all vehicles receive a signal with a negligibly small difference in delay. However, if the size of the cell operated by the base station is large, the signal transmitted from the base station arrives at each vehicle with a different propagation delay time, and the synchronized vehicles transmit their synchronization signals based on different times. Therefore, the present invention proposes different synchronization signals to prepare for both of the above cases and describes the operation method thereof.
도 2는 V2X 통신 환경에서 발생하는 전파 지연을 나타낸 것이다. 2 illustrates propagation delay occurring in a V2X communication environment.
도 2에서
Figure PCTKR2020000178-appb-I000005
는 송신기에서 보낸 신호가 수신기까지 도달하는데 걸리는 전파 지연 시간을 의미한다. 제1 차량(Vehicle 0)이 초기 접속 절차를 진행할 때 기지국 신호는
Figure PCTKR2020000178-appb-I000006
만큼 지연되어 수신된다. 또한
Figure PCTKR2020000178-appb-I000007
만큼 지연된 기지국의 동기 신호를 기준으로 전송된 제2 차량(Vehicle 1)의 동기 신호는 제1 차량에게
Figure PCTKR2020000178-appb-I000008
만큼 지연되어 수신된다.
In Figure 2
Figure PCTKR2020000178-appb-I000005
Is the propagation delay time for the signal from the transmitter to reach the receiver. When the first vehicle (Vehicle 0) performs an initial access procedure, the base station signal
Figure PCTKR2020000178-appb-I000006
It is received with a delay. Also
Figure PCTKR2020000178-appb-I000007
The synchronization signal of the second vehicle (Vehicle 1) transmitted based on the synchronization signal of the base station delayed by the first vehicle
Figure PCTKR2020000178-appb-I000008
It is received with a delay.
따라서 초기 접속 절차를 하고자 하는 제1 차량에게 주변에서 전송하는 신호 간의 전파 지연 차이가 발생한다. 이를 차량간 전파 지연 차이
Figure PCTKR2020000178-appb-I000009
라 정의한다. 해당 셀에서 발생할 수 있는 차량간 전파 지연 차이의 최대값
Figure PCTKR2020000178-appb-I000010
가 소정 임계치
Figure PCTKR2020000178-appb-I000011
보다 작을 때 밀접한(dense) 차량 환경으로,
Figure PCTKR2020000178-appb-I000012
보다 클 때, 산재한(sparce) 차량 통신 환경으로 정의한다.
Therefore, a difference in propagation delay between signals transmitted from the surroundings occurs to the first vehicle for which the initial access procedure is to be performed. Difference in propagation delay between vehicles
Figure PCTKR2020000178-appb-I000009
Define. Maximum difference in propagation delay between vehicles that can occur in the cell
Figure PCTKR2020000178-appb-I000010
Is a predetermined threshold
Figure PCTKR2020000178-appb-I000011
Dense vehicle environment when smaller,
Figure PCTKR2020000178-appb-I000012
When larger, it is defined as a sparse vehicle communication environment.
Figure PCTKR2020000178-appb-I000013
의 조건은 이하에서 다시 자세히 설명될 것이다.
Figure PCTKR2020000178-appb-I000013
The conditions of will be described in detail again below.
전술한 바와 같이, 초기 접속 절차를 이루고자 하는 차량이 기지국에 동기를 맞추고 싶더라도 다른 인접 차량의 동기 신호에 동기화할 가능성이 높아진다. As described above, even if a vehicle that wants to perform an initial access procedure wants to synchronize with a base station, the possibility of synchronizing with a synchronization signal of another adjacent vehicle increases.
이를 해결하기 위해, 본 실시예에서는 차량 동기 신호를 V(Vehicle) SS 블록이라 정의한다. To solve this, in this embodiment, the vehicle synchronization signal is defined as a V (Vehicle) SS block.
각 차량은 NR에서 사용하는 동기 신호를 사용하지 않고, 다른 동기 신호를 사용함에 따라 초기 접속 절차를 하고자 하는 차량(수신기)가 인접 기지국과 차량에 대해 초기 접속 절차를 구분할 수 있도록 한다. Each vehicle does not use the synchronization signal used in the NR, and allows the vehicle (receiver) to perform the initial access procedure to distinguish the initial access procedure from the adjacent base station and the vehicle by using a different synchronization signal.
이를 통해 수신기는 기지국이나 차량을 찾기 위한 초기 탐색 절차 반복 횟수를 줄일 수 있고, 원하는 탐색 대상의 동기 신호에만 동기화를 진행할 수 있다. Through this, the receiver can reduce the number of repetitions of an initial search procedure for finding a base station or a vehicle, and can synchronize only with a synchronization signal of a desired search target.
또한, 인접 기지국의 존재 유무 또한 빠르게 판단하여 수신기가 V2I를 진행할 수 있는 환경인지, 또는 V2V만을 진행할 수 있는 환경인지를 바로 인식할 수 있도록 한다. In addition, the presence or absence of an adjacent base station is also quickly determined so that the receiver can immediately recognize whether it is an environment capable of performing V2I or an environment capable of performing only V2V.
SS/PBCH 블록은 동기 신호 버스트 셋 주기(SS burst set periodicity) 라는 일정 시간 동안 한번 전송하도록 설정되어 있다. 즉, SS burst set periodicity 동안 SS 블록들이 전송되는 부분과 전송되지 않는 부분이 나눠진다. 따라서 차량 동기 신호는 NR 동기 신호의 위치를 피하여 전송하고자 한다. NR 동기 신호를 받는 것이 V2X 초기 접속 절차에서 매우 중요한 일이므로, NR의 동기 신호 위치에 간섭을 피하기 위해 다른 위치를 활용하여 차량 동기 신호를 전송한다.The SS/PBCH block is set to transmit once during a predetermined time called an SS burst set periodicity. That is, during the SS burst set periodicity, a portion in which SS blocks are transmitted and a portion in which they are not transmitted are divided. Therefore, the vehicle synchronization signal is intended to be transmitted by avoiding the position of the NR synchronization signal. Since receiving the NR sync signal is very important in the V2X initial access procedure, the vehicle sync signal is transmitted using a different position to avoid interference with the position of the NR sync signal.
도 3은 본 실시예에 따른 시간 영역에서의 동기 신호 배치를 나타낸 것이다.3 shows a synchronization signal arrangement in the time domain according to the present embodiment.
도 3은 초기 접속 절차 과정에서 수신할 수 있는 신호를 시간 순서로 나타낸 것이다. 3 shows signals that can be received in an initial access procedure in chronological order.
도 3을 참조하면, NR SS Burst Set(기지국 동기 신호)은 절반 프레임(half frame)인 5ms 이내에 모든 SS 블록이 전송되고 SS burst set periodicity 이내에는 더 이상 SS burst set이 전송되지 않는다. Referring to FIG. 3, in the NR SS Burst Set (base station synchronization signal), all SS blocks are transmitted within 5 ms, which is a half frame, and the SS burst set is no longer transmitted within the SS burst set periodicity.
따라서, NR의 동기 신호에 간섭을 피하기 위해 burst periodicity의 반주기 시간 이후 차량 SS burst set(차량 동기 신호)을 전송한다. NR SS 블록(기지국 동기 신호) 및 V SS 블록(차량 동기 신호)은 서로 다른 빔에 할당되어 전송된다. NR에서의 최대 빔 개수
Figure PCTKR2020000178-appb-I000014
만큼 NR SS/PBCH 블록이 전송된다.
Therefore, to avoid interference with the NR sync signal, a vehicle SS burst set (vehicle sync signal) is transmitted after a half period of burst periodicity. The NR SS block (base station synchronization signal) and V SS block (vehicle synchronization signal) are allocated to different beams and transmitted. Maximum number of beams at NR
Figure PCTKR2020000178-appb-I000014
As many as NR SS/PBCH blocks are transmitted.
따라서 각 SS/PBCH 블록의 순서대로 SS/PBCH 블록 인덱스가 0부터
Figure PCTKR2020000178-appb-I000015
-1까지 할당된다.
Therefore, the SS/PBCH block index starts from 0 in the order of each SS/PBCH block.
Figure PCTKR2020000178-appb-I000015
Up to -1 is allocated.
또한, V SS 블록도 차량의 최대 빔 개수
Figure PCTKR2020000178-appb-I000016
만큼 전송되며 그 인덱스는 0부터
Figure PCTKR2020000178-appb-I000017
-1까지 할당된다. V SS 블록 인덱스를
Figure PCTKR2020000178-appb-I000018
로 표현한다.
In addition, the V SS block is also the maximum number of beams in the vehicle.
Figure PCTKR2020000178-appb-I000016
As many as the index is 0
Figure PCTKR2020000178-appb-I000017
Up to -1 is allocated. V SS block index
Figure PCTKR2020000178-appb-I000018
Expressed as
V SS 블록은 2 심볼로 구성된다. V SS 블록은 전체가 4 심볼로 이루어진 NR SS/PBCH 블록과는 다르게 PBCH와 DMRS가 차지하고 있는 2개의 심볼을 단축시켜 보다 빠른 초기 동기를 얻고자 한다. 따라서 기존 PBCH와 DMRS가 제공하고 있는 SS/PBCH 블록 인덱스를 2 심볼로 이루어진 차량 동기 신호에 싣기 위해 V PSS에 그 인덱스 정보를 실어보내는 방법을 제안하고자 한다.The V SS block consists of 2 symbols. Unlike the NR SS/PBCH block, which is composed of 4 symbols in total, the V SS block shortens two symbols occupied by the PBCH and DMRS to obtain faster initial synchronization. Therefore, in order to load the SS/PBCH block index provided by the existing PBCH and DMRS in a vehicle synchronization signal composed of 2 symbols, a method of transmitting the index information to the V PSS is proposed.
도 4는 RF chain 개수
Figure PCTKR2020000178-appb-I000019
에 따른 V SS 블록 전송을 도시한 것이다.
4 shows the number of RF chains
Figure PCTKR2020000178-appb-I000019
V SS block transmission according to FIG.
본 실시예에 따르면 차량의 V2X 통신 안테나에서 가질 수 있는 RF chain의 개수를 최대
Figure PCTKR2020000178-appb-I000020
개까지 선택할 수 있다. 따라서 차량이 선택한 RF chain 개수
Figure PCTKR2020000178-appb-I000021
에 따라 V SS 블록은 도 4와 같이 동시에 전송될 수 있다.
According to this embodiment, the maximum number of RF chains that can be possessed in the V2X communication antenna of the vehicle is maximum.
Figure PCTKR2020000178-appb-I000020
You can choose up to one. Therefore, the number of RF chains selected by the vehicle
Figure PCTKR2020000178-appb-I000021
Depending on the V SS block can be transmitted at the same time as shown in FIG.
도 4는
Figure PCTKR2020000178-appb-I000022
가 8일때 V SS 블록의 전송을 도시한 것이다.
Figure 4
Figure PCTKR2020000178-appb-I000022
When is 8, it shows the transmission of the V SS block.
도 4의 전송 방식에 따라 V SS 블록 인덱스
Figure PCTKR2020000178-appb-I000023
를 다음 식과 같이 나타낼 수 있다.
V SS block index according to the transmission scheme of FIG. 4
Figure PCTKR2020000178-appb-I000023
Can be expressed as the following equation.
Figure PCTKR2020000178-appb-M000001
Figure PCTKR2020000178-appb-M000001
수학식 1에서 볼 수 있듯이,
Figure PCTKR2020000178-appb-I000024
의 수가 증가할수록 하나의 심볼 위치에서 보낼 수 있는 V SS 블록의 수가 증가한다. 해당 심볼 위치의 인덱스를 나타내는 것이
Figure PCTKR2020000178-appb-I000025
이고, 그 V SS 블록을 보내는 각 RF chain의 인덱스를 구분하는 것이
Figure PCTKR2020000178-appb-I000026
이다.
As you can see from Equation 1,
Figure PCTKR2020000178-appb-I000024
As the number of increases, the number of V SS blocks that can be transmitted in one symbol position increases. Indicating the index of the symbol position
Figure PCTKR2020000178-appb-I000025
Is, to distinguish the index of each RF chain that sends the V SS block
Figure PCTKR2020000178-appb-I000026
to be.
도 5는 NR SS/PBCH 블록 시간 주파수 구조를 도시한 것이다. 5 shows an NR SS/PBCH block time frequency structure.
도 5를 참조하면, NR SS/PBCH 블록은 시간영역에서 연속된 4개의 심볼, 주파수 영역에서 240개의 연속된 부반송파로 구성된다. Referring to FIG. 5, the NR SS/PBCH block is composed of four symbols contiguous in the time domain and 240 consecutive subcarriers in the frequency domain.
그 중 첫번째 심볼에 NR PSS가 위치하고, 세번째 심볼에 NR SSS가 존재한다. 그리고 NR PBCH와 NR DMRS가 두번째부터 네번째까지 NR SSS를 감싸고 있는 형태를 가진다. Among them, NR PSS is located in the first symbol, and NR SSS is present in the third symbol. In addition, NR PBCH and NR DMRS wrap the NR SSS from the second to the fourth.
NR PSS는 m-시퀀스로 구성되고, NR SSS는 두 개의 m-시퀀스가 합쳐진 골드 시퀀스로 이루어진다. The NR PSS consists of m-sequences, and the NR SSS consists of a gold sequence of two m-sequences combined.
NR DMRS 또한 골드 시퀀스이고, NR PBCH는 polar coding 기법이 적용되어 만들어진 데이터로 구성된다. 그리고 NR PSS와 NR SSS는 주파수 영역에서 순차적으로 정의된 부반송파 인덱스 기준 56부터 182까지의 총 127개 길이를 가진다. 그리고 NR PBCH와 NR DMRS는 시간 영역 1번, 3번 심볼에서는 부반송파 인덱스 0부터 239까지 240개의 길이를 가지고, 2번 심볼에서는 0부터 47까지, 192부터 239까지의 부반송파 인덱스를 차지한다.NR DMRS is also a gold sequence, and NR PBCH is composed of data created by applying a polar coding technique. In addition, NR PSS and NR SSS have a total of 127 lengths ranging from 56 to 182 based on subcarrier indexes sequentially defined in the frequency domain. In addition, NR PBCH and NR DMRS have 240 lengths from subcarrier indices 0 to 239 in the time domain symbols 1 and 3, and occupy subcarrier indices from 0 to 47 and 192 to 239 in the second symbol.
NR 물리계층 셀 ID(기지국 셀 아이디)는
Figure PCTKR2020000178-appb-I000027
로 표시할 수 있으며, 0부터 1007까지의 1008개의 독립적인 ID를 가질 수 있다.
Figure PCTKR2020000178-appb-I000028
Figure PCTKR2020000178-appb-I000029
Figure PCTKR2020000178-appb-I000030
라는 두 개의 ID로 나눌 수 있으며, 그 관계식은 다음과 같다.
NR physical layer cell ID (base station cell ID) is
Figure PCTKR2020000178-appb-I000027
It can be represented by, and can have 1008 independent IDs from 0 to 1007.
Figure PCTKR2020000178-appb-I000028
The
Figure PCTKR2020000178-appb-I000029
Wow
Figure PCTKR2020000178-appb-I000030
It can be divided into two IDs, and the relationship is as follows.
본 명세서에서는 편의상
Figure PCTKR2020000178-appb-I000031
를 제1 기지국 아이디,
Figure PCTKR2020000178-appb-I000032
를 제2 기지국 아이디로 정의한다.
For convenience in this specification
Figure PCTKR2020000178-appb-I000031
The first base station ID,
Figure PCTKR2020000178-appb-I000032
Is defined as the second base station ID.
Figure PCTKR2020000178-appb-M000002
Figure PCTKR2020000178-appb-M000002
이 중에서 NR PSS는
Figure PCTKR2020000178-appb-I000033
의 정보를 담고 있는 신호이다. NR SSS는
Figure PCTKR2020000178-appb-I000034
의 정보를 담고 있고 NR PBCH와 NR DMRS는 각각 SS/PBCH 인덱스의 3 bits MSB (Most Significant Bit), 3 bits LSB (Least Significant Bit)을 담고 있다. 따라서 NR PSS, NR SSS, NR PBCH, NR DMRS 모두를 탐색하면 그 해당 NR 기지국의 셀 ID와 SS/PBCH block 인덱스를 파악할 수 있다.
Of these, NR PSS
Figure PCTKR2020000178-appb-I000033
It is a signal that contains information. NR SSS
Figure PCTKR2020000178-appb-I000034
NR PBCH and NR DMRS respectively contain 3 bits MSB (Most Significant Bit) and 3 bits LSB (Least Significant Bit) of the SS/PBCH index. Accordingly, if all of NR PSS, NR SSS, NR PBCH, and NR DMRS are searched, the cell ID and SS/PBCH block index of the corresponding NR base station can be determined.
도 6은 V SS 블록 시간 주파수 구조를 도시한 것이다. 6 shows a V SS block time frequency structure.
도 6에 도시된 바와 같이, V SS 블록은 시간 영역에서 연속된 2개의 심볼, 주파수 영역에서 240개의 연속된 부반송파로 이루어진다. NR SS/PBCH 블록과 같은 부반송파 자원을 사용하기 위해 240개의 부반송파 중에 가운데 56부터 182가지의 부반송파 인덱스를 사용한다. As shown in FIG. 6, the V SS block is composed of two symbols contiguous in the time domain and 240 consecutive subcarriers in the frequency domain. In order to use subcarrier resources such as the NR SS/PBCH block, 56 to 182 subcarrier indexes among the 240 subcarriers are used.
그 중 첫번째 심볼에 V PSS가 위치하고 두번째 심볼에 V SSS가 위치한다. Among them, V PSS is located in the first symbol and V SSS is located in the second symbol.
차량 물리계층 셀 ID는
Figure PCTKR2020000178-appb-I000035
로 표시할 수 있으며, NR 물리계층 셀 ID
Figure PCTKR2020000178-appb-I000036
처럼 0부터 1007까지의 1008개의 독립적인 ID를 가질 수 있다.
Figure PCTKR2020000178-appb-I000037
Figure PCTKR2020000178-appb-I000038
Figure PCTKR2020000178-appb-I000039
라는 두 개의 ID로 나눌 수 있다.
Vehicle physical layer cell ID
Figure PCTKR2020000178-appb-I000035
Can be represented by, NR physical layer cell ID
Figure PCTKR2020000178-appb-I000036
Likewise, you can have 1008 independent IDs from 0 to 1007.
Figure PCTKR2020000178-appb-I000037
Degree
Figure PCTKR2020000178-appb-I000038
Wow
Figure PCTKR2020000178-appb-I000039
Can be divided into two IDs.
본 명세서에서는 편의상
Figure PCTKR2020000178-appb-I000040
를 제1 차량 아이디,
Figure PCTKR2020000178-appb-I000041
를 제2 차량 아이디로 정의한다.
For convenience in this specification
Figure PCTKR2020000178-appb-I000040
The first vehicle ID,
Figure PCTKR2020000178-appb-I000041
Is defined as the second vehicle ID.
그 관계식은 다음과 같다. The relationship is as follows.
Figure PCTKR2020000178-appb-M000003
Figure PCTKR2020000178-appb-M000003
NR PBCH와 NR DMRS에서 전송하던 SS/PBCH 블록 인덱스처럼 V SS 블록 인덱스도 각 V SS 블록에 실어 전송한다. NR의 SS/PBCH 블록 인덱스를 탐색하는 과정은 DMRS의 탐색 과정과 PBCH의 탐색 과정이 독립적으로 이루어져야 하고, 그 프로세스가 차지하는 오버헤드가 크다. Like the SS/PBCH block index transmitted by the NR PBCH and NR DMRS, the V SS block index is carried on each V SS block and transmitted. In the process of searching for the NR SS/PBCH block index, the search process of the DMRS and the search process of the PBCH must be performed independently, and the overhead occupied by the process is large.
또한, NR의 SS/PBCH 블록은 4개의 심볼을 차지하고 있다. 하지만 최대한 지연 시간을 줄이고자 하는 V2X 통신 환경에서는 이러한 오버헤드가 바람직하지 않다.In addition, the SS/PBCH block of NR occupies 4 symbols. However, this overhead is not desirable in a V2X communication environment that wants to reduce latency as much as possible.
이에 본 발명에서는 V2X 통신 환경에 맞게 V SS 블록 인덱스를 전송하기 위해 V PSS를 이용하는 방법을 제안한다. Accordingly, the present invention proposes a method using V PSS to transmit a V SS block index according to a V2X communication environment.
기존 NR의 동기 신호는 4개의 심볼을 차지하고 있으나, DMRS와 PBCH의 별도의 탐색 과정에 따른 오버헤드를 줄이기 위해 V PSS에 V SS 블록 인덱스 정보를 함께 실어 전송한다. NR PSS와 다르게 V PSS는
Figure PCTKR2020000178-appb-I000042
Figure PCTKR2020000178-appb-I000043
의 정보를 함께 담고 있으며, 그 식은 다음과 같이 표현할 수 있다.
Although the synchronization signal of the existing NR occupies 4 symbols, V SSS block index information is transmitted to the V PSS together to reduce the overhead due to the separate discovery process of DMRS and PBCH. Unlike NR PSS, V PSS
Figure PCTKR2020000178-appb-I000042
Wow
Figure PCTKR2020000178-appb-I000043
It contains the information of, and the expression can be expressed as follows.
Figure PCTKR2020000178-appb-M000004
Figure PCTKR2020000178-appb-M000004
Figure PCTKR2020000178-appb-M000005
Figure PCTKR2020000178-appb-M000005
그리고, 수학식 5와 같이 V PSS 주파수 영역 신호
Figure PCTKR2020000178-appb-I000044
는 시간 영역 신호인
Figure PCTKR2020000178-appb-I000045
를 DFT 함으로써 얻을 수 있다. 시간 영역에서 정의한 V PSS를 수학식 5와 같이 주파수 영역의 신호로 변환하고 도 6에서처럼 부반송파 인덱스 56부터 182까지 맵핑하여 전송한다.
And, as in Equation 5, V PSS frequency domain signal
Figure PCTKR2020000178-appb-I000044
Is the time domain signal
Figure PCTKR2020000178-appb-I000045
Can be obtained by DFT. The V PSS defined in the time domain is converted into a signal in the frequency domain as shown in Equation 5, and is mapped and transmitted from subcarrier indexes 56 to 182 as shown in FIG. 6.
수학식 4의 시간 영역 V PSS
Figure PCTKR2020000178-appb-I000046
는 시간 영역 NR PSS
Figure PCTKR2020000178-appb-I000047
에 켤레 복소수를 취해줌으로써 서로 시간 영역에서 이루어지는 상관 관계에 있어서 구분될 수 있도록 한다.
Time domain V PSS in Equation 4
Figure PCTKR2020000178-appb-I000046
The time domain NR PSS
Figure PCTKR2020000178-appb-I000047
By taking a complex number of digits, they can be distinguished in correlation between each other in the time domain.
그리고 NR PSS의
Figure PCTKR2020000178-appb-I000048
처럼
Figure PCTKR2020000178-appb-I000049
는 서로 다른 위상 회전 정도로 구분한다. 추가로 V PSS에서 V SS 블록 인덱스
Figure PCTKR2020000178-appb-I000050
를 싣기 위해 시간 영역에서의 순환 시프트를 활용한다. 순환 시프트의 정도를 나타내는 것이
Figure PCTKR2020000178-appb-I000051
이며 다음과 같이 정의한다.
And NR PSS
Figure PCTKR2020000178-appb-I000048
like
Figure PCTKR2020000178-appb-I000049
Distinguish between different phase rotation degrees. V SSS to V SS block index
Figure PCTKR2020000178-appb-I000050
It uses a cyclic shift in the time domain to load. To indicate the degree of cyclic shift
Figure PCTKR2020000178-appb-I000051
Is defined as follows.
Figure PCTKR2020000178-appb-M000006
Figure PCTKR2020000178-appb-M000006
시간 영역에서
Figure PCTKR2020000178-appb-I000052
에 의한
Figure PCTKR2020000178-appb-I000053
만큼의 평행 이동은 그만큼 시간 영역에서의 검출 타이밍 또한 시프트 됨을 의미한다. 하나의 심볼 위치인
Figure PCTKR2020000178-appb-I000054
에서 동시에 전송될 수 있는 V SS 블록 인덱스는
Figure PCTKR2020000178-appb-I000055
개이다.
In the time domain
Figure PCTKR2020000178-appb-I000052
On by
Figure PCTKR2020000178-appb-I000053
This parallel shift means that the detection timing in the time domain is also shifted. One symbol position
Figure PCTKR2020000178-appb-I000054
V SS block index that can be simultaneously transmitted in
Figure PCTKR2020000178-appb-I000055
It is a dog.
수학식 4에 나타난
Figure PCTKR2020000178-appb-I000056
는 커버 코드라고 정의하며,
Figure PCTKR2020000178-appb-I000057
에 의한 시간 영역 순환 시프트에 따라 검출 타이밍 오류가 발생하는 것을 방지한다. 밀접한 차량 통신 환경에서는 시프트의 정도가 크기 않아 탐색 과정에서 무시할 수 있는 정도이기 때문에 커버 코드
Figure PCTKR2020000178-appb-I000058
을 사용하지 않는다. 즉 밀접한 차량 통신 환경에서의 V PSS는 다음과 같이 재정의할 수 있다.
Equation 4
Figure PCTKR2020000178-appb-I000056
Is defined as the cover code,
Figure PCTKR2020000178-appb-I000057
The detection timing error is prevented from occurring due to the cyclic shift in the time domain. In a close vehicle communication environment, the degree of shift is not so large that it can be neglected in the search process, so the cover code
Figure PCTKR2020000178-appb-I000058
Do not use That is, V PSS in a close vehicle communication environment can be redefined as follows.
Figure PCTKR2020000178-appb-M000007
Figure PCTKR2020000178-appb-M000007
그러나 산재한 차량 통신 환경에서는 시간 영역의 시프트에 의해 서로 다른
Figure PCTKR2020000178-appb-I000059
를 전혀 구분하지 못하게 되므로 커버 코드가 필요하다.
However, in a scattered vehicle communication environment, the time domain shifts
Figure PCTKR2020000178-appb-I000059
It does not distinguish at all, so a cover code is required.
이 과정에서 커버 코드를 적용하고 제거하는 오버헤드를 최소화하기 위해 본 발명에서는 커버 코드
Figure PCTKR2020000178-appb-I000060
로서 m-시퀀스(Maximum length sequence)를 사용하는 것을 제안한다.
In order to minimize the overhead of applying and removing cover codes in the process, the cover codes are used in the present invention.
Figure PCTKR2020000178-appb-I000060
It is proposed to use m-sequence (Maximum length sequence) as.
m-시퀀스는 바이너리(binary) 시퀀스이기 때문에 어떤 신호에 m-시퀀스를 곱한다는 것은 부호 변환만 하면 되는 것을 의미한다. 다른 일반적인 복소수로 이루어진 nonbinary 시퀀스를 곱하는 것에 비해 계산 과정에서 발생하는 오버헤드가 상당히 작아진다. 또한, m-시퀀스를 제거하는 것 또한 m-시퀀스를 한번 더 이용해 부호 변환만을 하면 되기 때문에 간단하다. 따라서 산재한 차량 통신 환경에서의 V PSS를 다음과 같이 재정의할 수 있다. Since m-sequence is a binary sequence, multiplying a signal by m-sequence means that only sign conversion is required. Compared to multiplying nonbinary sequences of other common complex numbers, the overhead incurred in the calculation process is considerably smaller. In addition, removing the m-sequence is also simple because the m-sequence only needs to be coded once more. Therefore, V PSS in a scattered vehicle communication environment can be redefined as follows.
Figure PCTKR2020000178-appb-M000008
Figure PCTKR2020000178-appb-M000008
본 발명에서는 시간 영역 상관 관계 검출 과정에서 V PSS를 NR PSS와 구분될 수 있도록 설정하였다. 또한 NR PSS와는 다르게 V PSS는 V SS 블록 인덱스 정보를 추가하기 때문에, 그 정보에 따라 상관 관계 특성이 변한다. In the present invention, V PSS is set to be distinguished from NR PSS in the time domain correlation detection process. Also, unlike NR PSS, since V PSS adds V SS block index information, a correlation characteristic changes according to the information.
이하에서는 앞서 제안한 V PSS의 다양한 상관 관계 특성을 파악하고자 한다. 파악한 상관 관계 특성을 이용하여 이후 신호를 수신했을 때 어떻게 V PSS의 정보들을 탐색할 수 있는지 가늠할 수 있다. 이하에서는 time lag
Figure PCTKR2020000178-appb-I000061
일 때 그 최대값이 1이 되도록 설정한 순환 상관 관계 특성을 확인할 것이다.
Hereinafter, various correlation characteristics of the previously proposed V PSS will be grasped. Using the detected correlation characteristic, it is possible to estimate how V PSS information can be searched when a signal is subsequently received. In the following, time lag
Figure PCTKR2020000178-appb-I000061
In this case, the cyclic correlation property set so that the maximum value is 1 will be checked.
도 7a 및 도 7b는 NR PSS와 V PSS간의 상관 관계 특성을 도시한 것이다. 7A and 7B show correlation characteristics between NR PSS and V PSS.
상관 관계의 최대값이 1로 정규화되어 있는 상관 관계에서 그 결과값이 대부분 0.2 이하에 머무른다. 따라서 시간 영역에서의 상관 관계에서 NR PSS와 V PSS간의 유사성이 적다는 것을 알 수 있다. In the correlation where the maximum value of the correlation is normalized to 1, the result value is mostly 0.2 or less. Therefore, it can be seen that there is little similarity between NR PSS and V PSS in the correlation in the time domain.
그리고, 밀접한 차량 통신 환경에서 사용하는 V PSS
Figure PCTKR2020000178-appb-I000062
간의 상관 관계를 확인하면 도 8a 및 8b와 같다.
In addition, V PSS used in a close vehicle communication environment
Figure PCTKR2020000178-appb-I000062
When the correlation between the two is confirmed, it is as shown in FIGS. 8A and 8B.
도 8a 및 8b에서
Figure PCTKR2020000178-appb-I000063
Figure PCTKR2020000178-appb-I000064
간의 상관 관계에서 같은
Figure PCTKR2020000178-appb-I000065
를 가지는 V PSS끼리 NR PSS에서와 동일하게 디렉 델타 함수 형태를 가지는 것을 확인할 수 있다. 다만 V SS 블록 인덱스
Figure PCTKR2020000178-appb-I000066
의 크기에 따라 상관 관계의 최대값이
Figure PCTKR2020000178-appb-I000067
만큼 시프트된다. 또한, NR PSS에서의 상관 관계와 유사하게 서로 다른
Figure PCTKR2020000178-appb-I000068
를 가지는 V PSS 간의 상관 관계는 time lag
Figure PCTKR2020000178-appb-I000069
을 제외하고 일정한 값을 가진다. 이 또한 V SS 블록 인덱스
Figure PCTKR2020000178-appb-I000070
의 크기에 따라
Figure PCTKR2020000178-appb-I000071
만큼 시프트된다.
In Figures 8a and 8b
Figure PCTKR2020000178-appb-I000063
Wow
Figure PCTKR2020000178-appb-I000064
The same in the correlation between
Figure PCTKR2020000178-appb-I000065
It can be seen that V PSSs having a have a direct delta function form as in NR PSS. However, V SS block index
Figure PCTKR2020000178-appb-I000066
The maximum value of the correlation is
Figure PCTKR2020000178-appb-I000067
Shifted by Also, similar to the correlation in NR PSS,
Figure PCTKR2020000178-appb-I000068
The correlation between V PSSs having a time lag
Figure PCTKR2020000178-appb-I000069
It has a certain value except. This is also the V SS block index
Figure PCTKR2020000178-appb-I000070
According to the size of
Figure PCTKR2020000178-appb-I000071
Shifted by
산재한 차량 통신 환경에서 사용하는 V PSS
Figure PCTKR2020000178-appb-I000072
간의 상관 관계를 확인하면 도 9a 및 9b와 같다.
V PSS used in scattered vehicle communication environments
Figure PCTKR2020000178-appb-I000072
When the correlation between the two is confirmed, it is shown in FIGS. 9A and 9B.
도 9a 및 9b는 산재한 차량 환경에서 사용하는 V PSS
Figure PCTKR2020000178-appb-I000073
간의 상관 관계를 도시한 것이다.
9A and 9B show V PSS used in a scattered vehicle environment.
Figure PCTKR2020000178-appb-I000073
It shows the correlation between.
Figure PCTKR2020000178-appb-I000074
Figure PCTKR2020000178-appb-I000075
와는 다르게 커버 코드
Figure PCTKR2020000178-appb-I000076
이 곱해져 있는 형태이다.
Figure PCTKR2020000178-appb-I000074
The
Figure PCTKR2020000178-appb-I000075
Unlike the cover code
Figure PCTKR2020000178-appb-I000076
This is multiplied form.
따라서
Figure PCTKR2020000178-appb-I000077
에서 나타나는 시간 영역에서의 시프트의 효과가 제거된 것을 확인할 수 있다. 그러나 커버 코드의 영향으로 서로
Figure PCTKR2020000178-appb-I000078
Figure PCTKR2020000178-appb-I000079
가 하나라도 다른 정보를 가진
Figure PCTKR2020000178-appb-I000080
간의 상관 관계에서는 피크가 존재하지 않는 것을 확인할 수 있다. 이러한 특성은 V PSS에서 검출할 때 생성해야 하는 기준 신호의 수를 증가시키는 것처럼 보일 수 있다. 하지만 이후 탐색 과정을 서술하는 부분에서 기준 신호의 수를 기존과 동일하게 가져가면서도 커버 코드를 제거하는 방법을 확인할 수 있다.
therefore
Figure PCTKR2020000178-appb-I000077
It can be seen that the effect of the shift in the time domain appearing in is removed. However, under the influence of the cover code,
Figure PCTKR2020000178-appb-I000078
Wow
Figure PCTKR2020000178-appb-I000079
Have any other information
Figure PCTKR2020000178-appb-I000080
It can be confirmed that there is no peak in the correlation between. This characteristic may appear to increase the number of reference signals that must be generated when detecting in V PSS. However, in the description of the search process, it is possible to confirm a method of removing the cover code while taking the number of reference signals the same as before.
이하에서는 앞서 수학식 7에서 정의한 V PSS의 상관 관계에 대하여 수학적인 해석을 설명한다. 수식 유도를 하기 위해 수학식 7에서 정의한 V PSS의 표현을 벡터의 형태로 변환하면 다음과 같이 정리할 수 있다.Hereinafter, a mathematical analysis of the correlation of V PSS defined in Equation 7 will be described. To derive the equation, convert the expression of V PSS defined in Equation 7 into the form of a vector, and can be summarized as follows.
Figure PCTKR2020000178-appb-M000009
Figure PCTKR2020000178-appb-M000009
수학식 9의
Figure PCTKR2020000178-appb-I000081
는 순환 하향 시프트 행렬을 의미한다. 순환 하향 시프트 행렬을 V SS 블록 인덱스
Figure PCTKR2020000178-appb-I000082
에 따라 시간 영역에서 순환 시프트되는 것을 의미한다.
Equation (9)
Figure PCTKR2020000178-appb-I000081
Means a cyclic downshift matrix. V SS block index of cyclic downshift matrix
Figure PCTKR2020000178-appb-I000082
It means that it is cyclically shifted in the time domain.
크기
Figure PCTKR2020000178-appb-I000083
의 순환 하향 시프트 행렬
Figure PCTKR2020000178-appb-I000084
의 각 원소를
Figure PCTKR2020000178-appb-I000085
로 표현한다면 그 정의는 다음과 같다.
size
Figure PCTKR2020000178-appb-I000083
Cyclic downshift matrix of
Figure PCTKR2020000178-appb-I000084
Each element of
Figure PCTKR2020000178-appb-I000085
The definition is as follows.
Figure PCTKR2020000178-appb-M000010
Figure PCTKR2020000178-appb-M000010
수학식 9의
Figure PCTKR2020000178-appb-I000086
는 위상 회전 행렬이며,
Figure PCTKR2020000178-appb-I000087
에 따라 시간 영역에서의 위상 회전을 표현하기 위해 사용된다. 크기
Figure PCTKR2020000178-appb-I000088
Figure PCTKR2020000178-appb-I000089
에 대한 정의는 다음과 같다.
Equation (9)
Figure PCTKR2020000178-appb-I000086
Is the phase rotation matrix,
Figure PCTKR2020000178-appb-I000087
Is used to represent the phase rotation in the time domain. size
Figure PCTKR2020000178-appb-I000088
of
Figure PCTKR2020000178-appb-I000089
The definition of is as follows.
Figure PCTKR2020000178-appb-M000011
Figure PCTKR2020000178-appb-M000011
수학식 9의
Figure PCTKR2020000178-appb-I000090
는 IDFT 행렬을 의미하며, 크기
Figure PCTKR2020000178-appb-I000091
의 DFT 행렬
Equation (9)
Figure PCTKR2020000178-appb-I000090
Means IDFT matrix, and size
Figure PCTKR2020000178-appb-I000091
DFT matrix
Figure PCTKR2020000178-appb-I000092
은 다음과 같이 정의한다.
Figure PCTKR2020000178-appb-I000092
Is defined as follows.
Figure PCTKR2020000178-appb-M000012
Figure PCTKR2020000178-appb-M000012
그리고 수학식 9에서
Figure PCTKR2020000178-appb-I000093
의 부분은 DFT의 특성 중 켤레 복수수 특성에 의해 주파수 영역에서 역방향의 순서로 배열된다. 그 특성은 다음과 같이 표현된다.
And in Equation 9
Figure PCTKR2020000178-appb-I000093
The parts of are arranged in the reverse order in the frequency domain by the conjugate plural number property among the properties of the DFT. The characteristics are expressed as follows.
Figure PCTKR2020000178-appb-M000013
Figure PCTKR2020000178-appb-M000013
NR PSS의 주파수 영역 성분은 m-시퀀스이기 때문에 실수 성분만 존재해 수학식 9에는 주파수 영역의 켤레 복소수를 표시하지 않았다. Since the frequency domain component of the NR PSS is m-sequence, only the real component exists, so that the complex conjugate of the frequency domain is not shown in Equation (9).
이하에서는 수학식 9를 이용한 상관 관계를 수식으로 정리할 것이며, 수학식 9를 간략화하기 위해 다음과 같이 표현한다. Hereinafter, the correlation using Equation (9) will be summarized by Equation, and is expressed as follows to simplify Equation (9).
Figure PCTKR2020000178-appb-M000014
Figure PCTKR2020000178-appb-M000014
간략하게 표현된 수학식 14를 이용하여 구하고자 하는 상관 관계를 다음과 같이 정리할 수 있다. The correlation to be obtained can be summarized as follows by using Equation (14).
Figure PCTKR2020000178-appb-M000015
Figure PCTKR2020000178-appb-M000015
수학식 15는 다음의 몇 가지 특성들을 이용하여 수식을 전개하였다. Equation 15 is developed by using the following several characteristics.
Figure PCTKR2020000178-appb-M000016
Figure PCTKR2020000178-appb-M000016
Figure PCTKR2020000178-appb-M000017
Figure PCTKR2020000178-appb-M000017
Figure PCTKR2020000178-appb-M000018
Figure PCTKR2020000178-appb-M000018
상관 관계 분석을 할 때 절대값을 활용하기 때문에 수학식 15의
Figure PCTKR2020000178-appb-I000094
은 1처럼 되어 무시할 수 있다. 그리고, 수학식 15에서 보여지는
Figure PCTKR2020000178-appb-I000095
에서
Figure PCTKR2020000178-appb-I000096
라면
Figure PCTKR2020000178-appb-I000097
는 1로 간주되어 무시할 수 있다. 그렇다면
Figure PCTKR2020000178-appb-I000098
Figure PCTKR2020000178-appb-I000099
처럼 표현할 수 있다.
Since the absolute value is used in the correlation analysis, the equation (15)
Figure PCTKR2020000178-appb-I000094
Becomes 1 and can be ignored. And, as shown in Equation 15
Figure PCTKR2020000178-appb-I000095
in
Figure PCTKR2020000178-appb-I000096
Ramen
Figure PCTKR2020000178-appb-I000097
Is considered 1 and can be ignored. if so
Figure PCTKR2020000178-appb-I000098
The
Figure PCTKR2020000178-appb-I000099
Can be expressed like
여기서,
Figure PCTKR2020000178-appb-I000100
이면
Figure PCTKR2020000178-appb-I000101
이기 때문에 결과적으로
Figure PCTKR2020000178-appb-I000102
처럼 생각할 수 있다. 즉,
Figure PCTKR2020000178-appb-I000103
Figure PCTKR2020000178-appb-I000104
인 조건에서는
Figure PCTKR2020000178-appb-I000105
임을 확인할 수 있다. 반면
Figure PCTKR2020000178-appb-I000106
인 상황에서
Figure PCTKR2020000178-appb-I000107
이면
Figure PCTKR2020000178-appb-I000108
Figure PCTKR2020000178-appb-I000109
처럼 표현할 수 있고,
Figure PCTKR2020000178-appb-I000110
인 조건에서
Figure PCTKR2020000178-appb-I000111
임을 계산할 수 있다. 따라서
Figure PCTKR2020000178-appb-I000112
Figure PCTKR2020000178-appb-I000113
인 조건에서는
Figure PCTKR2020000178-appb-I000114
임을 확인할 수 있다.
here,
Figure PCTKR2020000178-appb-I000100
Back side
Figure PCTKR2020000178-appb-I000101
As a result,
Figure PCTKR2020000178-appb-I000102
You can think like In other words,
Figure PCTKR2020000178-appb-I000103
Wow
Figure PCTKR2020000178-appb-I000104
In the condition of being
Figure PCTKR2020000178-appb-I000105
You can confirm that On the other hand
Figure PCTKR2020000178-appb-I000106
In a situation
Figure PCTKR2020000178-appb-I000107
Back side
Figure PCTKR2020000178-appb-I000108
The
Figure PCTKR2020000178-appb-I000109
Can be expressed like,
Figure PCTKR2020000178-appb-I000110
In the condition of being
Figure PCTKR2020000178-appb-I000111
Can be calculated. therefore
Figure PCTKR2020000178-appb-I000112
Wow
Figure PCTKR2020000178-appb-I000113
In the condition of being
Figure PCTKR2020000178-appb-I000114
You can confirm that
수학식 15의
Figure PCTKR2020000178-appb-I000115
조건에서는
Figure PCTKR2020000178-appb-I000116
은 서로 다른 시프트 값을 가진 두 m-시퀀스를 더한 것으로 보인다. 이는 m-시퀀스의 shift-and-add 특성에 의해 같은 m-시퀀스이지만 다른 시프트 값을 갖는 시퀀스가 된다. 때문에
Figure PCTKR2020000178-appb-I000117
는 특정 m-시퀀스를 IDFT한 형태이다. 따라서 두 m-시퀀스가 더해진 특정 m-시퀀스를 주파수 영역의 신호
Figure PCTKR2020000178-appb-I000118
라 정의한다면
Figure PCTKR2020000178-appb-I000119
Figure PCTKR2020000178-appb-I000120
을 구하는 것과 같다.
Equation (15)
Figure PCTKR2020000178-appb-I000115
On condition
Figure PCTKR2020000178-appb-I000116
Seems to add two m-sequences with different shift values. This is a sequence having the same m-sequence but different shift values due to the shift-and-add characteristic of the m-sequence. Because
Figure PCTKR2020000178-appb-I000117
Is an IDFT of a specific m-sequence. Therefore, a specific m-sequence plus two m-sequences is a signal in the frequency domain.
Figure PCTKR2020000178-appb-I000118
If you define
Figure PCTKR2020000178-appb-I000119
The
Figure PCTKR2020000178-appb-I000120
It's like getting
따라서 m-시퀀스를 IDFT하는 방정식을 해결하기 위해, m-시퀀스의 자기 상관 관계의 DFT는 PSD(Power Spectral Density)라는 점을 이용하여 해결하고자 한다. m-시퀀스의 PSD는 다음과 같이 정의되어 있다Therefore, in order to solve the equation that IDFTs the m-sequence, the DFT of the auto-correlation of the m-sequence is to be solved using the point that PSD (Power Spectral Density). The m-sequence PSD is defined as
Figure PCTKR2020000178-appb-M000019
Figure PCTKR2020000178-appb-M000019
따라서 m-시퀀스의 PSD를 유도하는 과정을 살펴보면 다음과 같다.Therefore, the process of deriving the m-sequence PSD is as follows.
Figure PCTKR2020000178-appb-M000020
Figure PCTKR2020000178-appb-M000020
수학식 20을 통해 특정 m-시퀀스 주파수 영역의 신호를
Figure PCTKR2020000178-appb-I000121
라 정의했을 때, 시간 영역의 절대값은 다음과 같다는 것을 알 수 있다.
Equation 20 provides a signal in a specific m-sequence frequency domain.
Figure PCTKR2020000178-appb-I000121
When defined as, we can see that the absolute value of the time domain is
Figure PCTKR2020000178-appb-M000021
Figure PCTKR2020000178-appb-M000021
따라서 수학식 20에서
Figure PCTKR2020000178-appb-I000122
Figure PCTKR2020000178-appb-I000123
과 같은 값으로 생각할 수 있기 때문에,
Figure PCTKR2020000178-appb-I000124
의 조건에서 수학식 20의 절대값은
Figure PCTKR2020000178-appb-I000125
일 때에는
Figure PCTKR2020000178-appb-I000126
,
Figure PCTKR2020000178-appb-I000127
일 때에는
Figure PCTKR2020000178-appb-I000128
임을 확인할 수 있다.
Therefore, in Equation 20
Figure PCTKR2020000178-appb-I000122
To
Figure PCTKR2020000178-appb-I000123
Because it can be thought of as the same value,
Figure PCTKR2020000178-appb-I000124
The absolute value of Equation 20 under the condition of
Figure PCTKR2020000178-appb-I000125
When
Figure PCTKR2020000178-appb-I000126
,
Figure PCTKR2020000178-appb-I000127
When
Figure PCTKR2020000178-appb-I000128
You can confirm that
지금까지의 결과를 종합해보면 수학식 20을 통해 구한 두
Figure PCTKR2020000178-appb-I000129
의 상관 관계의 절대값은 다음과 같이 정리할 수 있다.
Summarizing the results so far, the two obtained through Equation 20
Figure PCTKR2020000178-appb-I000129
The absolute value of the correlation of can be summarized as follows.
Figure PCTKR2020000178-appb-M000022
Figure PCTKR2020000178-appb-M000022
수학식 22에서 얻은 수식적인 결과와 모의 실험 결과와 비교하기 위한 도면은 도 10a 및 10b와 같다. 10A and 10B are diagrams for comparing the mathematical results obtained from Equation 22 with the simulation results.
도 10a는
Figure PCTKR2020000178-appb-I000130
인 상황을 나타낸다.
Figure PCTKR2020000178-appb-I000131
일 때에는 그 값이 1인 것을 확인할 수 있다. 또한
Figure PCTKR2020000178-appb-I000132
일 때, 즉 time lag가 존재할 때에는 모의 실험 툴의 한계에 의해 약간의 값이 존재하지만 그 값이 거의 0에 가까운 것을 확인할 수 있다.
Figure 10a
Figure PCTKR2020000178-appb-I000130
Indicates the situation.
Figure PCTKR2020000178-appb-I000131
If it is, it can be confirmed that the value is 1. Also
Figure PCTKR2020000178-appb-I000132
When, that is, when the time lag exists, there are some values due to the limitations of the simulation tool, but it can be confirmed that the value is almost zero.
도 10b는
Figure PCTKR2020000178-appb-I000133
인 상황을 나타낸다.
Figure PCTKR2020000178-appb-I000134
일 때에는 그 값이 0.007874로
Figure PCTKR2020000178-appb-I000135
과 동일함을 알 수 있고,
Figure PCTKR2020000178-appb-I000136
일 때에는 그 값이 0.08908로
Figure PCTKR2020000178-appb-I000137
과 일치하는 것을 확인할 수 있다.
Figure 10b
Figure PCTKR2020000178-appb-I000133
Indicates the situation.
Figure PCTKR2020000178-appb-I000134
If it is, the value is 0.007874
Figure PCTKR2020000178-appb-I000135
Is the same as
Figure PCTKR2020000178-appb-I000136
If it is, the value is 0.08908
Figure PCTKR2020000178-appb-I000137
You can see that it matches
도 11은 V2X 통신을 위해 인접 기지국의 정보와 인접 차량에 대한 정보를 얻기 위한 초기 접속 절차에 대한 순서도를 도시한 도면이다. 11 is a flowchart illustrating an initial access procedure for obtaining information of an adjacent base station and information about an adjacent vehicle for V2X communication.
도 11을 참조하면, 초기 접속 절차를 수행하면서 필수적으로 얻어야 하는 정보들은 셀 ID, 동기 신호 인덱스, 수신 빔 ID 정보들이다. 이 모든 정보들을 얻었을때 비로소 무선 통신을 위한 기본 준비가 완료된다. 본 발명에서 V2X 환경은 기지국이 존재하는 것으로 가정한다. Referring to FIG. 11, essential information to be obtained while performing an initial access procedure are cell ID, synchronization signal index, and received beam ID information. When all of this information is obtained, the basic preparation for wireless communication is complete. In the present invention, it is assumed that the base station exists in the V2X environment.
우선적으로 NR 통신 규격을 사용하는 기지국의 필수 정보들을 얻어야 한다. 초기 접속 절차를 시작하면 가장 먼저 기지국의 NR PSS를 탐색한다. 차량(수신기)은 자신의 수신 빔을 모두 활용하면서 각 빔을 통해 들어온 신호를 서로 다른
Figure PCTKR2020000178-appb-I000138
로 생성된 기준 신호와 상관 특성을 비교한다. 상관 신호 특성을 통해 가장 결과값이 높은 것을 기준으로 수신한 NR PSS의 시간 위치와
Figure PCTKR2020000178-appb-I000139
, 수신기의 빔 ID를 추정한다.
First, essential information of a base station using the NR communication standard must be obtained. When the initial access procedure starts, the NR PSS of the base station is searched first. The vehicle (receiver) utilizes all of its received beams, while different signals are received through each beam.
Figure PCTKR2020000178-appb-I000138
The correlation signal is compared with the reference signal generated by. The time position of the NR PSS received based on the highest result value through the correlation signal characteristic
Figure PCTKR2020000178-appb-I000139
, Estimate the beam ID of the receiver.
위의 과정을 거친 후 SSS를 통해 추정된
Figure PCTKR2020000178-appb-I000140
와 PSS를 통해 추정된
Figure PCTKR2020000178-appb-I000141
을 조합하여 셀 ID
Figure PCTKR2020000178-appb-I000142
를 추정할 수 있다. 또한 DMRS와 PBCH의 탐색 과정을 거치면서 NR SS/PBCH 인덱스도 얻을 수 있다. 이렇게 추정된 NR의 정보들을 이용하여 V PSS의 타이밍을 추정할 수 있다. 이미 초기 동기가 끝난 기지국 인접 차량들은 NR SS burst set 시작 위치를 기준으로 SS burst set periodicity의 절반 이후부터 V SS burst set을 전송한다. 이에, NR PSS의 타이밍과 SS/PBCH 블록 인덱스의 정보는 V PSS 위치를 추정할 수 있게 해준다.
Estimated through SSS after the above process
Figure PCTKR2020000178-appb-I000140
And estimated through PSS
Figure PCTKR2020000178-appb-I000141
Cell ID by combining
Figure PCTKR2020000178-appb-I000142
Can be estimated. In addition, the NR SS/PBCH index can be obtained through the discovery process of DMRS and PBCH. The timing of the V PSS can be estimated using the estimated NR information. Vehicles adjacent to the base station that have already undergone initial synchronization transmit the V SS burst set from half of the SS burst set periodicity based on the start position of the NR SS burst set. Accordingly, the timing of the NR PSS and the information of the SS/PBCH block index make it possible to estimate the V PSS location.
위치가 추정된 V SSS를 이용하여
Figure PCTKR2020000178-appb-I000143
와 V SS 블록 인덱스
Figure PCTKR2020000178-appb-I000144
, 차량 수신 빔 ID를 추정할 수 있다. 이후 V SSS를 이용하여
Figure PCTKR2020000178-appb-I000145
를 추정하면
Figure PCTKR2020000178-appb-I000146
Figure PCTKR2020000178-appb-I000147
를 조합하여 차량 셀 ID인
Figure PCTKR2020000178-appb-I000148
을 추정할 수 있다. 이로써 V2X 통신 차량은 인접 기지국과 인접 차량 셀 ID, 수신 빔 ID, 그리고 SS 블록 인덱스를 파악하는 것으로 초기 접속 절차를 종료한다.
Using the estimated position V SSS
Figure PCTKR2020000178-appb-I000143
And V SS block index
Figure PCTKR2020000178-appb-I000144
, It is possible to estimate the vehicle reception beam ID. Then using V SSS
Figure PCTKR2020000178-appb-I000145
Estimating
Figure PCTKR2020000178-appb-I000146
Wow
Figure PCTKR2020000178-appb-I000147
Combined with the vehicle cell ID
Figure PCTKR2020000178-appb-I000148
Can be estimated. Thus, the V2X communication vehicle ends the initial access procedure by determining the neighbor base station, the neighbor vehicle cell ID, the received beam ID, and the SS block index.
앞서 설명했던
Figure PCTKR2020000178-appb-I000149
는 다음과 같이 주어진다.
I explained earlier
Figure PCTKR2020000178-appb-I000149
Is given as follows.
Figure PCTKR2020000178-appb-M000023
Figure PCTKR2020000178-appb-M000023
수학식 23은
Figure PCTKR2020000178-appb-I000150
Figure PCTKR2020000178-appb-I000151
중에서 최소값이
Figure PCTKR2020000178-appb-I000152
임을 의미한다.
Equation 23 is
Figure PCTKR2020000178-appb-I000150
Wow
Figure PCTKR2020000178-appb-I000151
The minimum value
Figure PCTKR2020000178-appb-I000152
It means
Figure PCTKR2020000178-appb-I000153
는 하나의 심볼에서 발생할 수 있는 검출 타이밍 간의 최소 시간 차이를 나타낸다.
Figure PCTKR2020000178-appb-I000154
는 ODFM 심볼 길이를 의미하고,
Figure PCTKR2020000178-appb-I000155
는 RF chain의 개수가 최대일 대 하나의 심볼 내에서 검출 타이밍이 시프트될 수 있는 비율이다.
Figure PCTKR2020000178-appb-I000153
Indicates a minimum time difference between detection timings that can occur in one symbol.
Figure PCTKR2020000178-appb-I000154
Denotes the ODFM symbol length,
Figure PCTKR2020000178-appb-I000155
Is a ratio in which the detection timing can be shifted within one symbol when the number of RF chains is the maximum.
또한,
Figure PCTKR2020000178-appb-I000156
는 RF chain의 개수
Figure PCTKR2020000178-appb-I000157
가 증가함에 따라 하나의 심볼 내에 많은 V PSS가 들어가는 것을 의미한다. 또한,
Figure PCTKR2020000178-appb-I000158
는 CP(Cyclic Prefix)가 차지하는 시간 주기를 의미한다.
Also,
Figure PCTKR2020000178-appb-I000156
Is the number of RF chains
Figure PCTKR2020000178-appb-I000157
As it increases, it means that many V PSSs are included in one symbol. Also,
Figure PCTKR2020000178-appb-I000158
Is a period of time occupied by CP (Cyclic Prefix).
Figure PCTKR2020000178-appb-I000159
를 수학식 23과 같이 정의한 이유는 다음과 같다.
Figure PCTKR2020000178-appb-I000159
The reason defined as Equation 23 is as follows.
본 발명에서 초기 접속 절차를 진행하는 차량을 우선 기지국의 정보 탐색 이후 동기화 과정을 거치고, 그 타이밍을 기준으로 다른 차량의 동기 신호 타이밍을 추정한다. 이 과정에서
Figure PCTKR2020000178-appb-I000160
Figure PCTKR2020000178-appb-I000161
보다 작다는 것은 차량의 동기 신호들을 정확한 심볼 단위로 탐색하는 것에 문제가 없고, 또한 그 심볼 내부에서 시간 영역 상관 관계를 통해 V SS 블록 인덱스
Figure PCTKR2020000178-appb-I000162
를 탐색하는데 오류 없이 동작할 수 있음을 의미한다.
In the present invention, a vehicle that performs an initial access procedure first undergoes a synchronization process after searching for information of the base station, and estimates the synchronization signal timing of another vehicle based on the timing. In this process
Figure PCTKR2020000178-appb-I000160
this
Figure PCTKR2020000178-appb-I000161
Smaller means that there is no problem in searching for the vehicle's synchronization signals in the correct symbol unit, and the V SS block index is also provided through time domain correlation inside the symbol.
Figure PCTKR2020000178-appb-I000162
It means that it can operate without error in searching for.
반면에
Figure PCTKR2020000178-appb-I000163
Figure PCTKR2020000178-appb-I000164
보다 크다면 심볼 단위의 추정이 어렵기 때문에 차량 동기 신호의 대략적인 타이밍 추정만이 가능하다. 이러한 이유 때문에 V PSS를 탐색하는 과정은
Figure PCTKR2020000178-appb-I000165
의 값을 기준으로 그 셀에서 발생할 수 있는 차량간 전파 지연 차이의 최대값
Figure PCTKR2020000178-appb-I000166
이 더 큰지 작은지 구분할 필요가 있다.
On the other hand
Figure PCTKR2020000178-appb-I000163
this
Figure PCTKR2020000178-appb-I000164
If it is larger, it is difficult to estimate the symbol unit, so only the rough timing estimation of the vehicle synchronization signal is possible. For this reason, the process of exploring V PSS
Figure PCTKR2020000178-appb-I000165
The maximum value of the difference in propagation delay between vehicles that can occur in the cell based on the value of
Figure PCTKR2020000178-appb-I000166
It is necessary to distinguish whether it is larger or smaller.
이하에서는 밀접하거나 산재한 통신 환경에 따라 어떠한 탐색 과정을 거치는지 설명하고 그 결과를 비교한다.The following describes what search process is performed according to the close or scattered communication environment and compares the results.
밀접한 차량 통신 환경이라는 것은 '차량간 전파 지연 차이의 최대값
Figure PCTKR2020000178-appb-I000167
'이
Figure PCTKR2020000178-appb-I000168
보다 작을 때를 의미한다. 이는 하나의 심볼내에서 검출될 수 있는 다른 V SS 블록 인덱스 검출이 차량간 전파 지연 차이에 의해 영향을 받지 않는 환경이라는 의미이다. 또한 그 신호 자체의 지연도 작기 때문에 NR에서 얻은 정보를 이용하여 V PSS의 심볼 단위의 타이밍 추정이 가능하다. 차량이 보낼 수 있는 최대 빔 개수
Figure PCTKR2020000178-appb-I000169
와 RF chain 개수
Figure PCTKR2020000178-appb-I000170
에 따라
Figure PCTKR2020000178-appb-I000171
개 만큼의 V PSS 심볼을 추정할 수 있다.
The close vehicle communication environment means'the maximum value of the difference in propagation delay between vehicles.
Figure PCTKR2020000178-appb-I000167
'this
Figure PCTKR2020000178-appb-I000168
It means when it is smaller. This means that other V SS block index detection that can be detected in one symbol is an environment that is not affected by a difference in propagation delay between vehicles. In addition, since the delay of the signal itself is small, it is possible to estimate the symbol unit timing of V PSS using information obtained from NR. Maximum number of beams the vehicle can send
Figure PCTKR2020000178-appb-I000169
And the number of RF chains
Figure PCTKR2020000178-appb-I000170
Depending on the
Figure PCTKR2020000178-appb-I000171
It is possible to estimate as many as V PSS symbols.
수학식 1에서 나타난 V PSS 심볼 인덱스
Figure PCTKR2020000178-appb-I000172
에 따라 심볼 단위의 수신 신호는
Figure PCTKR2020000178-appb-I000173
로 표현할 수 있다.
V PSS symbol index shown in equation (1)
Figure PCTKR2020000178-appb-I000172
Depending on the symbol signal received
Figure PCTKR2020000178-appb-I000173
Can be expressed as
밀접한 차량 통신 환경에서는 추정된 위치의 V PSS 수신 신호
Figure PCTKR2020000178-appb-I000174
와 수학식 7의
Figure PCTKR2020000178-appb-I000175
간의 순환 상관 관계를 통해 V PSS의 정보를 탐색한다. 그 식은 다음과 같다.
V PSS received signal at the estimated position in a close vehicle communication environment
Figure PCTKR2020000178-appb-I000174
And equation (7)
Figure PCTKR2020000178-appb-I000175
The information of the V PSS is searched through the cyclic correlation between them. The equation is as follows.
Figure PCTKR2020000178-appb-M000024
Figure PCTKR2020000178-appb-M000024
수학식 24에 나타난 바와 같이, 기준 신호
Figure PCTKR2020000178-appb-I000176
Figure PCTKR2020000178-appb-I000177
인 신호를 사용한다. 이는 도 8에서 설명한 바와 같이,
Figure PCTKR2020000178-appb-I000178
에 따라
Figure PCTKR2020000178-appb-I000179
만큼의 평행이동 됨을 이용하여
Figure PCTKR2020000178-appb-I000180
를 추정하기 위함이다.
As shown in Equation 24, the reference signal
Figure PCTKR2020000178-appb-I000176
The
Figure PCTKR2020000178-appb-I000177
Phosphorus signal is used. As described in Figure 8,
Figure PCTKR2020000178-appb-I000178
Depending on the
Figure PCTKR2020000178-appb-I000179
By using as many parallel movements
Figure PCTKR2020000178-appb-I000180
Is to estimate.
수학식 24의 결과 중에서 최대값을 갖게 하는 조건들을 탐색하면 V PSS 탐색 과정에서 얻고자 하는 정보들을 얻을 수 있다. By searching conditions that have the maximum value among the results of Equation (24), information to be obtained in the V PSS search process can be obtained.
Figure PCTKR2020000178-appb-M000025
Figure PCTKR2020000178-appb-M000025
수학식 25에서 얻을 수 있는
Figure PCTKR2020000178-appb-I000181
Figure PCTKR2020000178-appb-I000182
를 통해
Figure PCTKR2020000178-appb-I000183
를 계산할 수 있다. 특정
Figure PCTKR2020000178-appb-I000184
에서 나타날 수 있는
Figure PCTKR2020000178-appb-I000185
의 개수는
Figure PCTKR2020000178-appb-I000186
개이다. 따라서 수학식 25를 통해 얻은 상관 관계의 time lag
Figure PCTKR2020000178-appb-I000187
의 값에 따라서 나타날 수 있는
Figure PCTKR2020000178-appb-I000188
개의 후보 중 어떤 것을 추정된
Figure PCTKR2020000178-appb-I000189
로 채택할 것인지 도 12를 통해 이해할 수 있다.
Equation (25)
Figure PCTKR2020000178-appb-I000181
Wow
Figure PCTKR2020000178-appb-I000182
Through the
Figure PCTKR2020000178-appb-I000183
Can be calculated. certain
Figure PCTKR2020000178-appb-I000184
Which can appear in
Figure PCTKR2020000178-appb-I000185
The number of
Figure PCTKR2020000178-appb-I000186
It is a dog. Therefore, the time lag of the correlation obtained through Equation 25
Figure PCTKR2020000178-appb-I000187
May appear depending on the value of
Figure PCTKR2020000178-appb-I000188
Estimated some of the candidates
Figure PCTKR2020000178-appb-I000189
It can be understood through Figure 12 whether to adopt as.
예를 들어 도 4에서
Figure PCTKR2020000178-appb-I000190
,
Figure PCTKR2020000178-appb-I000191
,
Figure PCTKR2020000178-appb-I000192
일 때, 도 12와 같이 하나의 V PSS 심볼 위치에서 두 개의 V SS 블록 인덱스
Figure PCTKR2020000178-appb-I000193
를 가질 수 있다. 만약 차량간 전파 지연 차이
Figure PCTKR2020000178-appb-I000194
이 전혀 없다면,
Figure PCTKR2020000178-appb-I000195
일 때에는
Figure PCTKR2020000178-appb-I000196
인 위치에서 최대값이 존재할 것이다. 마찬가지로
Figure PCTKR2020000178-appb-I000197
일 때에는
Figure PCTKR2020000178-appb-I000198
인 위치에서 최대값이 존재할 것이다. 하지만 차량간 전파 지연 차이
Figure PCTKR2020000178-appb-I000199
가 존재한다면 기준이 되는
Figure PCTKR2020000178-appb-I000200
보다 더 이후의 시간에서 최대값이 존재할 수 있다.
For example, in FIG. 4
Figure PCTKR2020000178-appb-I000190
,
Figure PCTKR2020000178-appb-I000191
,
Figure PCTKR2020000178-appb-I000192
In case, as shown in FIG. 12, two V SS block indexes at one V PSS symbol position
Figure PCTKR2020000178-appb-I000193
Can have If the propagation delay difference between vehicles
Figure PCTKR2020000178-appb-I000194
Without this,
Figure PCTKR2020000178-appb-I000195
When
Figure PCTKR2020000178-appb-I000196
There will be a maximum at the phosphorus position. Likewise
Figure PCTKR2020000178-appb-I000197
When
Figure PCTKR2020000178-appb-I000198
There will be a maximum at the phosphorus position. But the difference in propagation delay between vehicles
Figure PCTKR2020000178-appb-I000199
Is the basis for
Figure PCTKR2020000178-appb-I000200
There may be a maximum at a later time.
따라서 신호의 지연 시간을 고려해 도 12에 도시된 바와 같이 범위를 설정하여, 수학식 24의 상관 관계 최대값이 해당 범위에 들어오면 그에 따라 V SS 블록 인덱스
Figure PCTKR2020000178-appb-I000201
를 추정하도록 한다.
Therefore, considering the delay time of the signal, a range is set as shown in FIG. 12, and when the correlation maximum value of Equation 24 falls within the corresponding range, the V SS block index accordingly
Figure PCTKR2020000178-appb-I000201
To estimate.
산재한 차량 통신 환경이라는 것은 '차량간 전파 지연 차이의 최대값
Figure PCTKR2020000178-appb-I000202
'이
Figure PCTKR2020000178-appb-I000203
보다 클 때를 의미한다. 이는 밀접한 차량 통신 환경처럼 신호를 탐색하면 차량간 전파 지연 차이
Figure PCTKR2020000178-appb-I000204
에 의해
Figure PCTKR2020000178-appb-I000205
추정이 제대로 되지 않을 가능성이 높다. 따라서 산재한 차량 통신 환경에서는 수학식 8에서처럼
Figure PCTKR2020000178-appb-I000206
에 의한 시간 영역의 시프트 효과를 제거하는 커버 코드
Figure PCTKR2020000178-appb-I000207
을 활용한다.
The scattered vehicle communication environment means that the maximum value of the difference in propagation delay between vehicles.
Figure PCTKR2020000178-appb-I000202
'this
Figure PCTKR2020000178-appb-I000203
It means when it is bigger. This is the difference in propagation delay between vehicles when a signal is searched like a close vehicle communication environment.
Figure PCTKR2020000178-appb-I000204
By
Figure PCTKR2020000178-appb-I000205
It is very likely that the estimation is not correct. Therefore, in a scattered vehicle communication environment, as in Equation (8),
Figure PCTKR2020000178-appb-I000206
Cover code to remove shift effect of time domain by
Figure PCTKR2020000178-appb-I000207
To utilize.
산재한 차량 통신 환경에서는 V PSS를 심볼 단위로 추정하는 것이 어렵다. NR에서 얻은 정보들을 기반으로 V PSS가 존재할 수 있는 후보 시간을 설정한다. 이 후보 시간은 여러 심볼에 걸쳐 이루어져 있기 때문에 밀접한 통신 환경에서 사용하던 하나의 심볼 간의 순환 상관 관계 탐색은 수행할 수 없다. 이 때 산재한 통신 환경에서 사용하는 기준 신호는 다음과 같이 정의할 수 있다.In a scattered vehicle communication environment, it is difficult to estimate V PSS in units of symbols. Based on the information obtained from NR, a candidate time for which V PSS can exist is set. Since the candidate time spans multiple symbols, it is impossible to perform cyclic correlation search between symbols used in a close communication environment. In this case, the reference signal used in the scattered communication environment can be defined as follows.
Figure PCTKR2020000178-appb-M000026
Figure PCTKR2020000178-appb-M000026
산재한 환경에서의 기준 신호는 수학식 26처럼 길이가
Figure PCTKR2020000178-appb-I000208
로 하나의 심볼 길이의 샘플 수인
Figure PCTKR2020000178-appb-I000209
보다
Figure PCTKR2020000178-appb-I000210
만큼 길다. 수학식 26의 기준 신호는 밀접한 환경에서 정의한 신호를 기준으로 만들어진다. 수신 신호와 기준 신호의 일반적인 상관 관계로는 송신단에서 추가하여 보낸 커버 코드
Figure PCTKR2020000178-appb-I000211
의 영향을 제거할 수 없다. 따라서 산재한 통신 환경에서는 수신 신호와 기준 신호와의 성분간 곱셈 연산 이후 바로 전체 합을 실시하지 않고, 각
Figure PCTKR2020000178-appb-I000212
에 해당하는 위치에 맞게 커버 코드
Figure PCTKR2020000178-appb-I000213
을 곱한 이후 각 커버 코드의 길이마다 전체 합을 진행한다.
The reference signal in a scattered environment is as long as Equation (26).
Figure PCTKR2020000178-appb-I000208
Is the number of samples of one symbol length
Figure PCTKR2020000178-appb-I000209
see
Figure PCTKR2020000178-appb-I000210
As long as The reference signal of Equation 26 is made based on a signal defined in a close environment. The general correlation between the received signal and the reference signal is the cover code sent by the transmitting end
Figure PCTKR2020000178-appb-I000211
Can not eliminate the influence of. Therefore, in a scattered communication environment, the total sum is not performed immediately after the multiplication between the components of the received signal and the reference signal.
Figure PCTKR2020000178-appb-I000212
Cover code to match the corresponding position
Figure PCTKR2020000178-appb-I000213
After multiplying by, the total sum is performed for each cover code length.
도 13은 산재한 차량 통신 환경에서의 V PSS 탐색 과정을 설명하기 위한 도면이다. 13 is a diagram for explaining a V PSS search process in a scattered vehicle communication environment.
기존의 상관 관계를 계산할 때처럼 수신한 신호와 기존 신호의 켤레 복소수를 각각 곱해서 모든 원소들을 합치지 않고, 켤레 복소수된 기존 신호와 수신 신호의 곱 이후, 각 V SS block 인덱스
Figure PCTKR2020000178-appb-I000214
위치에 커버 코드를 더한다. 이로써 기존 수신 신호가 시간 영역에서 가지고 있던 커버 코드를 제거하는 효과가 있다. 그렇게 얻어진 서로 다른 상관 관계 값들을 모아 그 중 최대값을 만드는 수신 빔 ID, V SS block 인덱스
Figure PCTKR2020000178-appb-I000215
,
Figure PCTKR2020000178-appb-I000216
의 정보들을 추정하면 V PSS의 탐색이 완료된다. 이는 식으로 다음과 같이 표현된다.
As in the case of calculating the existing correlation, after multiplying the received signal and the conjugate complex number of the existing signal, and not summing all the elements, after multiplying the conjugate complex existing signal and the received signal, each V SS block index
Figure PCTKR2020000178-appb-I000214
Add a cover code to the location. This has the effect of removing the cover code that the existing received signal had in the time domain. The received beam ID and V SS block index that collect the different correlation values thus obtained and make the maximum value among them
Figure PCTKR2020000178-appb-I000215
,
Figure PCTKR2020000178-appb-I000216
Estimating the information of V PSS search is completed. This is expressed as follows.
Figure PCTKR2020000178-appb-M000027
Figure PCTKR2020000178-appb-M000027
위 서술한 탐색 과정을 통해 탐색한 모의 실험 결과를 다음에서 설명하도록 한다. 수행하는 상관 관계는 최대값이 1이 되도록 일반화하기 위해 채널과 빔 포밍의 영향을 제거하고 노이즈도 제거한 수신 신호를 사용한다.The simulation results searched through the search process described above will be described below. In order to generalize the correlation so that the maximum value is 1, a received signal is used that removes the effects of channel and beamforming and removes noise.
도 14a 및 14b는 산재한 통신 환경에서 같은 을 가진 V PSS 간의 상관 관계를 도시한 도면이다. 14A and 14B are diagrams showing correlations between V PSSs having the same in a scattered communication environment.
도 14a 및 14b의 두 그래프는 서로 다른 X축의 값에서 그 최대값을 가진다. 위 모의 실험은 Sample lag
Figure PCTKR2020000178-appb-I000217
인 지점에 V PSS가 존재하도록 설정하였다. X축의 Sample lag
Figure PCTKR2020000178-appb-I000218
는 수신 신호의 샘플을 기준으로 기준 신호의 이동을 의미하기 때문에 같은 위치에 있는 V PSS를 탐색하더라도 그 V PSS가 서로 V SS block 인덱스
Figure PCTKR2020000178-appb-I000219
가 다르다면 다른 위치에서 상관 관계 최대값을 얻을 수 있다. 따라서 추정된 V SS 블록 인덱스
Figure PCTKR2020000178-appb-I000220
와 추정된 추정된 샘플 time lag
Figure PCTKR2020000178-appb-I000221
에 따라 다음 식과 같이 실제 V PSS의 타이밍 정보
Figure PCTKR2020000178-appb-I000222
를 추정할 수 있다.
The two graphs of FIGS. 14A and 14B have their maximum values at different X-axis values. The above simulation is a sample lag
Figure PCTKR2020000178-appb-I000217
V PSS was set to exist at the phosphorus point. X axis sample lag
Figure PCTKR2020000178-appb-I000218
Is the movement of the reference signal based on the sample of the received signal, so even if V PSSs in the same position are searched, the V PSS blocks index
Figure PCTKR2020000178-appb-I000219
If is different, the maximum correlation can be obtained at different locations. Therefore, the estimated V SS block index
Figure PCTKR2020000178-appb-I000220
And estimated estimated sample time lag
Figure PCTKR2020000178-appb-I000221
According to the following equation, timing information of the actual V PSS
Figure PCTKR2020000178-appb-I000222
Can be estimated.
Figure PCTKR2020000178-appb-M000028
Figure PCTKR2020000178-appb-M000028
도 15a 및 15b는 산재한 통신 환경에서 다른
Figure PCTKR2020000178-appb-I000223
을 가진 V PSS 간의 상관 관계를 도시한 도면이다.
15A and 15B are different in a scattered communication environment.
Figure PCTKR2020000178-appb-I000223
It is a diagram showing the correlation between V PSS with.
도 15a 및 15b에서는 서로 다른
Figure PCTKR2020000178-appb-I000224
을 가지는 신호들에 대한 상관 관계를 보여준다. V SS 블록 인덱스
Figure PCTKR2020000178-appb-I000225
와는 무관하게 서로
Figure PCTKR2020000178-appb-I000226
가 다른 신호들에 대해 상관 관계를 취했을 때, 어떠한 peak도 존재하지 않기 때문에 서로 다른
Figure PCTKR2020000178-appb-I000227
을 구분할 수 있다는 것을 확인할 수 있다.
15A and 15B are different
Figure PCTKR2020000178-appb-I000224
Shows the correlation for signals with. V SS block index
Figure PCTKR2020000178-appb-I000225
Regardless of
Figure PCTKR2020000178-appb-I000226
When correlated with different signals, there are no peaks, so
Figure PCTKR2020000178-appb-I000227
You can see that you can distinguish.
상기한 본 발명의 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.The above-described embodiments of the present invention have been disclosed for purposes of illustration, and those skilled in the art having various knowledge of the present invention will be able to make various modifications, changes, and additions within the spirit and scope of the present invention. It should be regarded as belonging to the following claims.

Claims (10)

  1. 밀리미터파 차량 통신 환경에서 차량간 동기화 장치로서, As a vehicle-to-vehicle synchronization device in a millimeter wave vehicle communication environment,
    프로세서; 및Processor; And
    상기 프로세서에 연결되는 메모리를 포함하되, It includes a memory connected to the processor,
    상기 메모리는, The memory,
    NR PSS(New Radio Primary Synchronization Signal)를 포함하는 기지국 동기 신호를 통해 상기 기지국의 물리 계층 정보를 획득하여 기지국과의 초기 접속 절차를 수행하고, Acquire physical layer information of the base station through a base station synchronization signal including an NR PSS (New Radio Primary Synchronization Signal), and perform an initial access procedure with the base station,
    상기 기지국과의 초기 접속 절차 완료에 따라 상기 기지국 동기 신호가 전송되는 동기 신호 버스트 셋 주기 내에서 차량 동기 신호의 V PSS(Vehicle Primary Synchronization Signal) 타이밍을 추정하고, Estimate the V PSS (Vehicle Primary Synchronization Signal) timing of the vehicle synchronization signal within a synchronization signal burst set period in which the base station synchronization signal is transmitted according to the completion of the initial access procedure with the base station,
    상기 차량 동기 신호의 V PSS를 상기 기지국 동기 신호와 시간 영역의 상관 관계에서 구분될 수 있도록 생성하고, V PSS of the vehicle synchronization signal is generated so as to be distinguished from the correlation between the base station synchronization signal and the time domain,
    상기 생성된 V PSS를 포함하는 상기 차량 동기 신호를 다른 차량에 전송하여 차량간 동기화가 수행되도록, The vehicle synchronization signal including the generated V PSS is transmitted to another vehicle so that synchronization between vehicles is performed.
    상기 프로세서에 의해 실행되는 하나 이상의 프로그램 명령어들을 포함하는 차량간 동기화 장치.An inter-vehicle synchronization device comprising one or more program instructions executed by the processor.
  2. 제1항에 있어서, According to claim 1,
    상기 V PSS는 상기 NR PSS에 켤레 복소수를 취하여 생성되는 차량간 동기화 장치.The V PSS is a vehicle-to-vehicle synchronization device that is generated by taking a conjugate complex number in the NR PSS.
  3. 제1항에 있어서, According to claim 1,
    상기 차량 동기 신호는 차량의 빔 개수만큼 전송되고, The vehicle synchronization signal is transmitted by the number of beams of the vehicle,
    상기 빔을 식별하는 차량 동기 신호 블록 인덱스는 시간 영역에서 순환 시프트되어 상기 V PSS에 포함되는 차량간 동기화 장치. The vehicle synchronization signal block index identifying the beam is cyclically shifted in a time domain to be included in the V PSS.
  4. 제1항에 있어서, According to claim 1,
    상기 프로그램 명령어들은, The program instructions,
    상기 차량간 통신 환경이 산재한(sparse) 차량 통신 환경인지 여부를 판단하고, It is determined whether the vehicle-to-vehicle communication environment is a sparse vehicle communication environment,
    상기 차량간 통신 환경이 산재한 통신 환경인 경우, 커버 코드를 이용하여 상기 V PSS를 생성하는 차량간 동기화 장치.A vehicle-to-vehicle synchronization device that generates the V PSS using a cover code when the vehicle-to-vehicle communication environment is a scattered communication environment.
  5. 제4항에 있어서, According to claim 4,
    상기 산재한 통신 환경인지 여부는, 차량간 전파 지연 차이의 최대값이 미리 설정된 임계치보다 큰 지 여부를 통해 판단되며, Whether the communication environment is interspersed is determined through whether the maximum value of the difference in propagation delay between vehicles is greater than a preset threshold,
    상기 미리 설정된 임계치는, 하나의 심볼에서 발생할 수 있는 검출 타이밍 간의 최소 시간 차이 및 OFDM의 CP(Cyclic Prefix)가 차지하는 시간 주기 중 적어도 하나에 의해 결정되는 차량간 동기화 장치. The preset threshold is an inter-vehicle synchronization device determined by at least one of a minimum time difference between detection timings that may occur in one symbol and a time period occupied by a cyclic prefix (CP) of OFDM.
  6. 제5항에 있어서, The method of claim 5,
    상기 하나의 심볼에서 발생할 수 있는 검출 타이밍 간의 최소 시간 차이는 OFDM 심볼 길이, RF chain의 개수가 최대일 때 하나의 심볼 내에서 검출 타이밍이 시프트 될 수 있는 비율 및 RF chain 개수가 증가함에 따라 하나의 심볼 내에 V PSS가 들어가는 비율 중 적어도 하나에 의해 결정되는 차량간 동기화 장치. The minimum time difference between detection timings that can occur in one symbol is one as the OFDM symbol length, the ratio at which detection timings can be shifted within one symbol when the number of RF chains is maximum, and the number of RF chains increases. The inter-vehicle synchronization device determined by at least one of the ratios of V PSS in the symbol.
  7. 제1항에 있어서, According to claim 1,
    상기 기지국 동기 신호는 상기 NR PSS과, SSS(Secondary Synchronization Signal), PBCH(Physical Broadcast Channel) 및 DMRS(Demodulation Reference Signal)를 포함하고, The base station synchronization signal includes the NR PSS, Secondary Synchronization Signal (SSS), Physical Broadcast Channel (PBCH) and Demodulation Reference Signal (DMRS),
    상기 차량 동기 신호는 상기 V PSS와 V SSS(Vehicle Secondary Synchronization Signal)를 포함하는 차량간 동기화 장치. The vehicle synchronization signal is a vehicle synchronization device including the V PSS and V SSS (Vehicle Secondary Synchronization Signal).
  8. 제7항에 있어서, The method of claim 7,
    상기 프로그램 명령어들은, The program instructions,
    상기 추정된 V PSS 타이밍에 수신된 다른 차량의 제1 차량 동기 신호를 수신하여 V PSS 및 V SSS를 탐색하고, Search for V PSS and V SSS by receiving the first vehicle synchronization signal of another vehicle received at the estimated V PSS timing,
    상기 탐색된 V PSS에서 제1 차량 아이디, 상기 제1 차량 동기 신호의 블록 인덱스, 상기 제1 차량 신호의 수신 빔 아이디를 추정하고, In the searched V PSS, a first vehicle ID, a block index of the first vehicle synchronization signal, and a received beam ID of the first vehicle signal are estimated,
    상기 탐색된 V SSS에서 제2 차량 아이디를 추정하고, Estimating the second vehicle ID from the searched V SSS,
    상기 제1 및 제2 차량 아이디를 통해 상기 다른 차량의 셀 아이디를 추정하는 차량간 동기화 장치. A vehicle-to-vehicle synchronization device for estimating the cell ID of the other vehicle through the first and second vehicle IDs.
  9. 밀리미터파 차량 통신 환경에서 차량간 동기화 장치로서, As a vehicle-to-vehicle synchronization device in a millimeter wave vehicle communication environment,
    NR PSS(New Radio Primary Synchronization Signal)를 포함하는 기지국 동기 신호를 통해 상기 기지국의 물리 계층 정보를 획득하는 기지국 정보 획득부; A base station information acquisition unit configured to acquire physical layer information of the base station through a base station synchronization signal including an NR PSS (New Radio Primary Synchronization Signal);
    상기 기지국과의 초기 접속 절차 완료에 따라 상기 기지국 동기 신호가 전송되는 동기 신호 버스트 셋 주기 내에서 차량 동기 신호의 V PSS(Vehicle Primary Synchronization Signal) 타이밍을 추정하는 타이밍 추정부; 및A timing estimator for estimating V PSS (Vehicle Primary Synchronization Signal) timing of a vehicle synchronization signal within a synchronization signal burst set period in which the base station synchronization signal is transmitted according to completion of an initial access procedure with the base station; And
    상기 차량 동기 신호의 V PSS를 상기 기지국 동기 신호와 시간 영역의 상관 관계에서 구분될 수 있도록 생성하는 V PSS 생성부를 포함하되, It includes a V PSS generating unit for generating the V PSS of the vehicle synchronization signal to be distinguished from the correlation between the base station synchronization signal and the time domain,
    상기 생성된 V PSS를 포함하는 차량 동기 신호를 다른 차량에 전송하여 차량간 동기화를 수행하는 차량간 동기화 장치. An inter-vehicle synchronization device that performs inter-vehicle synchronization by transmitting a vehicle synchronization signal including the generated V PSS to another vehicle.
  10. 밀리미터파 차량 통신 환경에서 차량간 동기화 방법으로서, As a method for synchronization between vehicles in a millimeter wave vehicle communication environment,
    NR PSS(New Radio Primary Synchronization Signal)를 포함하는 기지국 동기 신호를 통해 상기 기지국의 물리 계층 정보를 획득하는 단계; Obtaining physical layer information of the base station through a base station synchronization signal including an NR PSS (New Radio Primary Synchronization Signal);
    상기 기지국과의 초기 접속 절차 완료에 따라 상기 기지국 동기 신호가 전송되는 동기 신호 버스트 셋 주기 내에서 차량 동기 신호의 V PSS(Vehicle Primary Synchronization Signal) 타이밍을 추정하는 단계; Estimating V PSS (Vehicle Primary Synchronization Signal) timing of a vehicle synchronization signal within a synchronization signal burst set period in which the base station synchronization signal is transmitted according to completion of an initial access procedure with the base station;
    상기 차량 동기 신호의 V PSS를 상기 기지국 동기 신호와 시간 영역의 상관 관계에서 구분될 수 있도록 생성하는 단계; 및 Generating a V PSS of the vehicle synchronization signal to be distinguished from a correlation between the base station synchronization signal and the time domain; And
    상기 생성된 V PSS를 포함하는 차량 동기 신호를 다른 차량에 전송하여 차량간 동기화를 수행하는 단계를 포함하는 차량간 동기화 방법. And transmitting the vehicle synchronization signal including the generated V PSS to another vehicle to perform vehicle-to-vehicle synchronization.
PCT/KR2020/000178 2019-01-10 2020-01-06 Synchronization method and apparatus for millimeter wave vehicle-to-vehicle communication WO2020145592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0003432 2019-01-10
KR1020190003432A KR102089206B1 (en) 2019-01-10 2019-01-10 Synchronization method and apparatus for millimeter wave vehicle communication

Publications (1)

Publication Number Publication Date
WO2020145592A1 true WO2020145592A1 (en) 2020-07-16

Family

ID=69938456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000178 WO2020145592A1 (en) 2019-01-10 2020-01-06 Synchronization method and apparatus for millimeter wave vehicle-to-vehicle communication

Country Status (2)

Country Link
KR (1) KR102089206B1 (en)
WO (1) WO2020145592A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170093333A (en) * 2016-02-05 2017-08-16 주식회사 아이티엘 Method and apparatus for synchronization for vehicle-to-x communication
KR20180091320A (en) * 2017-02-06 2018-08-16 주식회사 아이티엘 Method and apparatus for frame boundary timing acquisition for nr communication system
KR20180091241A (en) * 2017-02-06 2018-08-16 주식회사 아이티엘 Method and apparatus for configurations of synchronization signal and transmitting and receiving synchronization signal for nr system
US20180242287A1 (en) * 2015-08-21 2018-08-23 Lg Electronics Inc. Method and device for transmitting/receiving signal of v2x terminal in wireless communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180082032A (en) * 2017-01-09 2018-07-18 주식회사 아이티엘 Method and apparatus for transmitting and receiving synchronization signal and configuration information for nr system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180242287A1 (en) * 2015-08-21 2018-08-23 Lg Electronics Inc. Method and device for transmitting/receiving signal of v2x terminal in wireless communication system
KR20170093333A (en) * 2016-02-05 2017-08-16 주식회사 아이티엘 Method and apparatus for synchronization for vehicle-to-x communication
KR20180091320A (en) * 2017-02-06 2018-08-16 주식회사 아이티엘 Method and apparatus for frame boundary timing acquisition for nr communication system
KR20180091241A (en) * 2017-02-06 2018-08-16 주식회사 아이티엘 Method and apparatus for configurations of synchronization signal and transmitting and receiving synchronization signal for nr system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CONVIDA WIRELESS: "Design Considerations for NR V2X Synchronization", 3GPP TSG-RAN WG1 MEETING #95 R1-1813615, vol. RAN WG1, 2 November 2018 (2018-11-02), Spokane, USA, XP051479952 *

Also Published As

Publication number Publication date
KR102089206B1 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2017171521A1 (en) Method and equipment for transmitting synchronization signal and psbch in v2x communication
WO2011139081A2 (en) Apparatus and method for transmitting and receiving of cyclic shift parameter for supporting orthogonality in mimo environment
EP3603307A1 (en) A user equipment and data transmission method thereof
WO2017192025A1 (en) Method and apparatus for transmitting harq-ack feedback information
WO2016163855A1 (en) Method for multiplexing uplink information
WO2009110739A2 (en) Method for encoding control information in a wireless communication system, and method and apparatus for transmitting and receiving the control information
WO2010079924A2 (en) System and method for initialization of a scrambling sequence for a downlink reference signal
EP3031234A1 (en) Method and apparatus for transmitting and receiving feedback information in mobile communication system based on 2 dimensional massive mimo
WO2012093904A2 (en) Interference alignment method and device in cellular network
EP2684309A2 (en) A method for indicating hybrid automatic repeat request timing relation
WO2021071215A1 (en) Method for transmitting reference signal and apparatus using the same
WO2020060126A1 (en) Method and apparatus for system information acquisition, beam failure recovery and cell reselection
WO2011099756A2 (en) Unified feedback frame for supporting a plurality of feedback modes and a multiple-input multiple-output (mimo) communication system using the unified feedback frame
WO2015064945A1 (en) A method and system using ternary sequences for simultaneous transmission to coherent and non-coherent recievers
WO2018021803A1 (en) Data transmission method and device
EP4052388A1 (en) Method and apparatus of parameter tracking for csi estimation
WO2015119448A1 (en) Method and apparatus for allocating resources in carrier aggregation system
WO2020145592A1 (en) Synchronization method and apparatus for millimeter wave vehicle-to-vehicle communication
EP2532185A2 (en) Apparatus and method for allocating channel and power in communication system
WO2017030340A1 (en) Apparatus and method for controlling channel access in wireless communication system
WO2018151356A1 (en) Multiscale curvature-based visual vector model hashing method
WO2023211257A1 (en) Methods and apparatus for round-trip-time measurement on a sl interface cross-reference to related applications and claim of priority
WO2020067691A1 (en) Method and apparatus for performing beamforming in wireless communication system
WO2022119092A2 (en) Method for estimating bit error probability using error rate ratio of frame synchronization word
WO2024049050A1 (en) Reception device and method for receiving mimo-ofdm signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738558

Country of ref document: EP

Kind code of ref document: A1