WO2024049050A1 - Reception device and method for receiving mimo-ofdm signal - Google Patents

Reception device and method for receiving mimo-ofdm signal Download PDF

Info

Publication number
WO2024049050A1
WO2024049050A1 PCT/KR2023/011945 KR2023011945W WO2024049050A1 WO 2024049050 A1 WO2024049050 A1 WO 2024049050A1 KR 2023011945 W KR2023011945 W KR 2023011945W WO 2024049050 A1 WO2024049050 A1 WO 2024049050A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
ofdm symbol
channel estimation
channel estimate
ofdm
Prior art date
Application number
PCT/KR2023/011945
Other languages
French (fr)
Korean (ko)
Inventor
전요셉
하성영
양경철
Original Assignee
삼성전자주식회사
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220111431A external-priority patent/KR20240030845A/en
Application filed by 삼성전자주식회사, 포항공과대학교 산학협력단 filed Critical 삼성전자주식회사
Publication of WO2024049050A1 publication Critical patent/WO2024049050A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • One embodiment relates to a receiving device for receiving a MIMO-OFDM signal and a method of operating the same.
  • MIMO communication system is a technology that can increase the transmission speed and communication stability of wireless communication and can be used as a core technology in various wireless communication systems. To ensure high communication stability in a MIMO communication system, the receiver must accurately know MIMO channel information.
  • a method for a receiver to acquire MIMO channel information includes an RS-based channel estimation method using a reference signal (RS).
  • the transmitter can use some of the radio resources to transmit an RS that the receiver already knows to the receiver, and the receiver can estimate the MIMO channel using the RS received from the transmitter.
  • the accuracy of MIMO channel information that can be obtained through an RS-based channel estimation method can be improved as the amount of RS increases.
  • a MIMO-OFDM communication system utilizing Orthogonal Frequency Division Multiplexing (OFDM) or Orthogonal Frequency Division Multiple Access (OFDMA), it includes multiple subcarriers and OFDM symbols. Accurate MIMO channel estimation must be made for a resource block (RB).
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • RS may be limitedly allocated to some subcarriers and OFDM symbols within the RB. Because of this, when the RS-based channel estimation method is applied to the existing MIMO-OFDM communication system, there may be a limit to the accuracy of channel information that the receiver can obtain. In addition, when the channel changes over time due to changes in the wireless environment, different channels may be formed for each OFDM symbol in the RB, which may reduce the channel estimation accuracy of the existing RS-based channel estimation method.
  • One embodiment may provide a receiving device that can achieve high accuracy of channel estimation when the channel changes over time by utilizing limited RS.
  • a reception method of a reception device includes determining a channel estimation order of OFDM symbols through which data symbols are transmitted; determining a channel estimate for a first OFDM symbol in a first channel estimation order among the OFDM symbols using at least one of RS-based channel estimation information and channel estimation information determined before the first channel estimation order; detecting first data symbols from a received signal in the first OFDM symbol using the determined channel prediction value; determining a first channel estimate for the first OFDM symbol based on the detected first data symbols; determining a second channel estimate for the first OFDM symbol based on the determined first channel estimate and the determined channel estimate; determining whether the first channel estimation order is the last channel estimation order; and when the first channel estimation order is not the last channel estimation order, performing channel estimation on a second OFDM symbol in the next channel estimation order.
  • a receiving device includes a plurality of antennas; an RF communication circuit that receives an RF signal from a transmitting device through the antennas and converts the received RF signal into a baseband signal; And it may include a processor connected to the RF communication circuit.
  • the processor may determine a channel estimation order of OFDM symbols through which data symbols are transmitted.
  • the processor may determine a channel estimate value for a first OFDM symbol in a first channel estimation order among the OFDM symbols using at least one of RS-based channel estimation information or channel estimation information determined before the first channel estimation order. there is.
  • the processor may obtain a received signal in the first OFDM symbol based on the converted baseband signal.
  • the processor may detect first data symbols from the obtained received signal using the determined channel prediction value.
  • the processor may determine a first channel estimate for the first OFDM symbol based on the detected first data symbols.
  • the processor may determine a second channel estimate for the first OFDM symbol based on the determined first channel estimate and the determined channel estimate.
  • the processor may determine whether the first channel estimation order is the last channel estimation order. If the first channel estimation order is not the last channel estimation order, the processor may perform channel estimation on the second OFDM symbol in the next channel estimation order.
  • detected data symbols can be used for channel estimation and symbol detection can be performed sequentially according to the position of the reference signal, thereby improving reception performance and achieving a low frame error rate.
  • FIG. 1 is a configuration diagram of a multiple input/output antenna communication system according to an embodiment.
  • Figure 2 is a block diagram illustrating an example of the configuration of a base station in a wireless communication system according to an embodiment.
  • FIG. 3 is a block diagram illustrating an example of the configuration of a UE in a wireless communication system according to an embodiment.
  • Figure 4 is a diagram explaining a demodulation block according to an embodiment.
  • FIG. 5 is a diagram illustrating an example of a receiving device according to an embodiment.
  • FIG. 6 is a diagram illustrating an example of a channel estimation order according to an embodiment.
  • Figure 7 is a flowchart explaining a receiving method of a receiving device according to an embodiment.
  • Figures 8 to 10 are diagrams illustrating the frame error rate versus signal-to-noise ratio that various reception methods can achieve.
  • Figure 11 is a block diagram illustrating an example of the configuration of a receiving device according to an embodiment.
  • first or second may be used to describe various components, but these terms should be interpreted only for the purpose of distinguishing one component from another component.
  • a first component may be named a second component, and similarly, the second component may also be named a first component.
  • FIG. 1 is a configuration diagram of a multiple input/output antenna communication system according to an embodiment.
  • Figure 1 illustrates a receiving device 110 and a transmitting device 120 as some of the nodes that use a wireless channel in a wireless communication system. Although Figure 1 shows only one receiving device 110 and one transmitting device 120, a wireless communication system may include multiple receiving devices and multiple transmitting devices.
  • the receiving device 110 may correspond to a base station and the transmitting device 120 may correspond to a user equipment (UE). Alternatively, the receiving device 110 may correspond to a UE and the transmitting device 120 may correspond to a base station.
  • UE user equipment
  • the receiving device 110 may correspond to a UE and the transmitting device 120 may correspond to a base station.
  • a base station may be a network infrastructure that provides wireless access to UEs.
  • a base station may have coverage defined as a certain geographic area based on the distance over which it can transmit signals.
  • the base station is “access point (AP)”, “eNB (eNodeB)”, “5G node (5th generation node)”, “gNB (next generation nodeB)”, “wireless point ( It may be referred to as “wireless point”, “transmission/reception point (TRP)” or other terms with equivalent technical meaning.
  • Each of the UEs is a device used by a user and can communicate with a base station through a wireless channel.
  • At least one of the UEs may operate without user involvement. At least one of the UEs is a device that performs machine type communication (MTC) and may not be carried by the user.
  • MTC machine type communication
  • Each of the UEs is a “terminal”, “mobile station”, “subscriber station”, “remote terminal”, “wireless terminal”, or “user device”. It may be referred to as “user device” or another term with equivalent technical meaning.
  • a base station can receive uplink (UL) signals from UEs through a plurality of antennas.
  • the base station may transmit downlink (DL) signals to UEs through a plurality of antennas.
  • the wireless communication system uses orthogonal frequency division multiplexing (OFDM) or orthogonal frequency division multiple access (OFDMA). ) can be used.
  • OFDM orthogonal frequency division multiplexing
  • OFDMA orthogonal frequency division multiple access
  • the receiving device 110 is It may include two receiving antenna ports, and the transmitting device 120 is It may include two transmit antenna ports.
  • the transmitting device 120 of the OFDM symbol The data symbol transmitted through the th subcarrier can be expressed as Equation 1 below.
  • Is It may indicate a symbol constellation that the transmitting device 120 and the receiving device 110 share in advance.
  • the transmitting device 120 may transmit a radio frequency (RF) signal to the receiving device 110 through a plurality of antennas.
  • the receiving device 110 may receive an RF signal from the transmitting device 120 through a plurality of antennas.
  • the receiving device 110 may convert the received RF signal into a baseband signal and obtain a received signal by processing the baseband signal.
  • Processing of the baseband signal may include, for example, at least one of cyclic prefix (CP) removal, serial/parallel conversion, or fast Fourier transform (FFT) (or discrete Fourier transform (DFT)), or parallel/serial conversion. It may include a combination of .
  • CP cyclic prefix
  • FFT fast Fourier transform
  • DFT discrete Fourier transform
  • Equation 2 the receiving device 110 of the OFDM symbol Received signal observed through the second subcarrier ( ) can be expressed as Equation 2 below.
  • Is of the OFDM symbol It can represent the frequency domain channel matrix formed for the th subcarrier
  • Is of the OFDM symbol It can represent a noise signal observed on the th subcarrier.
  • Figure 2 is a block diagram illustrating the configuration of a base station in a wireless communication system according to an embodiment.
  • Unit refers to a unit that processes at least one function or operation, and may be implemented as hardware, software, or a combination of hardware and software.
  • the base station 200 may include a wireless communication unit 210, a backhaul communication unit 220, a storage unit 230, and a control unit 240.
  • the base station 200 can communicate with UEs.
  • the wireless communication unit 210 may perform operations for transmitting and receiving signals through a wireless channel.
  • the wireless communication unit 210 may perform a conversion operation between a baseband signal and a bit string according to the physical layer standard of the system. For example, when transmitting data, the wireless communication unit 210 may generate complex symbols by encoding and modulating the transmission bit string. When receiving data, the wireless communication unit 210 can restore the received bit stream by demodulating and decoding the baseband signal.
  • the wireless communication unit 210 may up convert a baseband signal into an RF signal and transmit it through antennas.
  • the wireless communication unit 210 may down convert RF band signals received through antennas into baseband signals.
  • the wireless communication unit 210 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), etc.
  • the wireless communication unit 210 may include multiple transmission and reception paths.
  • the wireless communication unit 210 may include a communication module (or packaged module) including at least one antenna array composed of a plurality of antenna elements.
  • the wireless communication unit 210 may be composed of a digital unit and an analog unit (e.g., a radio frequency integrated circuit (RFIC)), and the analog unit may be used for operating power, operating frequency, etc. Accordingly, it may be composed of multiple sub-units.
  • a digital unit may be implemented with at least one processor (eg, digital signal processor (DSP)).
  • DSP digital signal processor
  • the wireless communication unit 210 can transmit and receive signals as described above. Accordingly, all or part of the wireless communication unit 210 may be referred to as a “transmitter,” “receiver,” or “transceiver.” Additionally, in the following description, transmission and reception performed through a wireless channel may be used to mean that the processing as described above is performed by the wireless communication unit 210.
  • the backhaul communication unit 220 may provide an interface for communicating with other nodes in the network.
  • the backhaul communication unit 220 can convert a bit string transmitted from the base station 200 to another node (e.g., another access node, another base station, upper node, core network, etc.) into a physical signal, and the other node The physical signal received from can be converted into a bit string.
  • another node e.g., another access node, another base station, upper node, core network, etc.
  • the storage unit 230 may store data such as basic programs, application programs, and setting information for operation of the base station 200.
  • the storage unit 230 may be comprised of volatile memory, non-volatile memory, or a combination of volatile memory and non-volatile memory.
  • the storage unit 230 may provide stored data upon request from the control unit 240.
  • the control unit 240 can control the overall operations of the base station 200.
  • the control unit 240 may transmit and receive signals through the wireless communication unit 210 or the backhaul communication unit 220.
  • the control unit 240 can write data to and read data from the storage unit 230.
  • the control unit 240 can perform protocol stack functions required by communication standards. In another example, the protocol stack may be included in the wireless communication unit 210.
  • the control unit 240 may include at least one processor as a hardware component for performing the above functions.
  • Figure 3 is a block diagram explaining the configuration of a UE in a wireless communication system according to an embodiment.
  • the UE 300 may include a communication unit 310, a storage unit 320, and a control unit 330.
  • the communication unit 310 may perform operations for transmitting and receiving signals through a wireless channel. For example, the communication unit 310 may perform a conversion function between a baseband signal and a bit string according to the physical layer standard of the system. For example, when transmitting data, the communication unit 310 may generate complex symbols by encoding and modulating the transmission bit string. When receiving data, the communication unit 310 can restore the received bit stream by demodulating and decoding the baseband signal.
  • the communication unit 310 may up-convert the baseband signal into an RF band signal and transmit it to the base station 200 through one or more antennas.
  • the communication unit 310 may down-convert an RF band signal received through one or more antennas into a baseband signal.
  • the communication unit 310 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, etc.
  • the communication unit 310 may include multiple transmission and reception paths.
  • the communication unit 310 may include at least one antenna array composed of multiple antenna elements.
  • an antenna element may be referred to as an antenna, and an antenna array composed of multiple antenna elements may be understood as including multiple antennas.
  • the communication unit 310 may be composed of a digital circuit and an analog circuit (eg, RFIC).
  • analog circuit eg, RFIC
  • digital circuits and analog circuits can be implemented in one package.
  • the communication unit 310 may include multiple RF chains.
  • the communication unit 310 may perform beamforming.
  • the communication unit 310 can transmit and receive signals as described above. Accordingly, all or part of the communication unit 310 may be referred to as a “transmitter,” “receiver,” or “transceiver.” Additionally, in the following description, transmission and reception performed through a wireless channel are used to mean that the processing as described above is performed by the communication unit 310.
  • the storage unit 320 may store data such as basic programs, application programs, and setting information for operation of the UE 300.
  • the storage unit 320 may be comprised of volatile memory, non-volatile memory, or a combination of volatile memory and non-volatile memory.
  • the storage unit 320 provides stored data upon request from the control unit 330.
  • the controller 330 may control the overall operations of the UE 300.
  • the control unit 330 may transmit and receive signals through the communication unit 310.
  • the control unit 330 can write data to and read data from the storage unit 320.
  • the control unit 330 can perform protocol stack functions required by communication standards.
  • the control unit 330 may include at least one processor or microprocessor to perform the above functions, or may be implemented as part of a processor.
  • a portion of the communication unit 310 and the control unit 330 may be referred to as a communication processor (CP).
  • CP communication processor
  • Figure 4 is a diagram explaining a demodulation block according to an embodiment.
  • a demodulation block 410 may be the minimum unit to which the reception method of the reception device 110 is applied.
  • the demodulation block 410 is with adjacent subcarriers It may include adjacent OFDM symbols 420-1 to 420-14.
  • the demodulation block 410 may be, for example, a resource block (RB) of the 5G NR communication standard. In this case, demodulation block 410 may include 12 subcarriers and 14 OFDM symbols.
  • the demodulation block 410 is not limited to RB and may be a unit smaller than RB or may be a unit combining several RBs. Depending on the embodiment, the demodulation block 410 may be a unit that is adaptively set according to the time-domain correlation and frequency-domain correlation of the channel.
  • demodulation block 410 Among the OFDM symbols (420-1 to 420-14) A reference signal (RS) or a demodulation reference signal (DMRS) known to both the transmitting device 120 and the receiving device 110 is provided through the OFDM symbols 420-3 and 420-12. can be transmitted.
  • RS may be transmitted through the 3rd OFDM symbol 420-3 and the 12th OFDM symbol 420-13.
  • Data symbols containing transmission data may be transmitted through OFDM symbols 420-1, 420-2, 420-4 to 420-11, 420-13, and 420-14.
  • the RS is transmitted within the demodulation block 410.
  • the OFDM symbol indices are It can be.
  • data symbols are transmitted
  • the OFDM symbol indices are It can be.
  • the adjacent subcarrier indices are It can be.
  • the receiving device 110 may perform channel estimation on the demodulation block 410.
  • FIG. 5 is a diagram illustrating an example of a receiving device according to an embodiment.
  • the receiving device 500 (e.g., the receiving device 110 of FIG. 1) includes an RS-based channel estimator 505, an order determiner 510, and a channel predictor 520. , a symbol detector 530, a detected symbol (DS)-based channel estimator 540, a linear combiner 550, and a memory 560.
  • the base station 200 of FIG. 2 or the UE 300 of FIG. 3 may operate as the reception device 500.
  • RS-based channel estimator 505 orderer 510, channel predictor 520, symbol detector 530, DS-based channel estimator 540, and linear combiner 550 are processors of receiving device 500. It can be implemented by .
  • the RS-based channel estimator 505 is a demodulation block (e.g., demodulation block 410 in FIG. 4).
  • Channel estimate for the OFDM symbol ( )(below, " (referred to as the “RS-based channel estimate” of the OFDM symbol) may be determined.
  • the RS-based channel estimator 505 may determine of the OFDM symbol
  • the average of the frequency domain channel estimates for the subcarriers is It can be determined by the RS-based channel estimate of the th OFDM symbol.
  • RS-based channel estimator 505 provides RS-based channel estimation information (e.g., RS-based channel estimate and symbol index information ( )) can be transmitted to the channel predictor 520.
  • RS-based channel estimation information e.g., RS-based channel estimate and symbol index information ( )
  • the order determiner 510 determines the channel estimation order of OFDM symbols (e.g., N OFDM symbols in FIG. 4) through which data symbols are transmitted among the OFDM symbols of the demodulation block (e.g., demodulation block 410 in FIG. 4). You can decide. In one embodiment, the order determiner 510 may determine the channel estimation order of OFDM symbols through which data symbols are transmitted using the positions of OFDM symbols through which RS is transmitted and the positions of OFDM symbols through which data symbols are transmitted.
  • OFDM symbols e.g., N OFDM symbols in FIG. 4
  • RS may be transmitted through the 3rd OFDM symbol 420-3 and the 12th OFDM symbol 420-12.
  • the order determiner 510 estimates the channel as the first one of the 2nd OFDM symbol 420-2 and the 4th OFDM symbol 420-4, which are closest to the 3rd OFDM symbol 420-3. can be determined as the OFDM symbol on which to perform channel estimation, and the other can be determined as the second OFDM symbol on which to perform channel estimation.
  • the order determiner 510 selects one of the 11th OFDM symbol (420-11) and the 13th OFDM symbol (420-13), which are closest to the 12th OFDM symbol (420-12), as the third OFDM symbol to perform channel estimation.
  • the order determiner 510 selects the 1st OFDM symbol 420-1 and the 5th OFDM symbol 420-5 that are different from the position (or index) (i.e., 3) of the 3rd OFDM symbol 420-3 by 2. One of them can be determined as the fifth OFDM symbol on which to perform channel estimation, and the other one can be determined as the sixth OFDM symbol on which channel estimation will be performed.
  • the order determiner 510 selects the 10th OFDM symbol (420-10) and the 14th OFDM symbol (420-14) that differ by 2 from the position (or index) (i.e., 12) of the 12th OFDM symbol (420-12).
  • the order determiner 510 can determine the channel estimate order of OFDM symbols 420-1, 420-2, 420-4 to 420-11, 420-13, and 420-14 through which data symbols are transmitted. there is.
  • the index of the OFDM symbol on which channel estimation is performed is It is defined as here, It can be.
  • Table 1 below shows an example of the channel estimation order of OFDM symbols 420-1, 420-2, 420-4 to 420-11, 420-13, and 420-14 through which data symbols are transmitted.
  • the channel estimation order of the OFDM symbol (420-2) is 1st.
  • the channel estimation order of the OFDM symbol (420-4) is 2nd.
  • the channel estimation order of the OFDM symbol (420-11) is 3rd.
  • the channel estimation order of the OFDM symbol (420-13) is 4th.
  • the channel estimation order of the OFDM symbol (420-1) is 5th.
  • the channel estimation order of the OFDM symbol (420-5) is 6th.
  • the channel estimation order of the OFDM symbol (420-10) is 7th.
  • the channel estimation order of OFDM symbol (420-14) is 8th.
  • the channel estimation order of the OFDM symbol (420-6) is 9th.
  • the channel estimation order of the OFDM symbol (420-9) is 10th.
  • the channel estimation order of the OFDM symbol (420-7) is 11th.
  • the channel estimation order of the OFDM symbol (420-8) is 12th.
  • the order determiner 510 provides channel estimate order information of OFDM symbols through which data symbols are transmitted ( ) (e.g. 2, 4, 11, 13, ..., 8) can be transmitted to the channel predictor 520.
  • Memory 560 contains channel estimation information from the previous order, e.g. ) may be stored.
  • the previous order's channel estimate information is, for example, the previous order's linear combination-based channel estimates ( ) and symbol index information ( ) may include.
  • Channel predictor 520 may provide RS-based channel estimation information, e.g. ) and channel estimation information stored in memory 560 (e.g. ) using OFDM symbol of the th channel estimation order (i.e. OFDM symbol ) Channel forecast for ( ) can be determined.
  • RS-based channel estimation information e.g.
  • channel estimation information stored in memory 560 e.g.
  • OFDM symbol of the th channel estimation order i.e. OFDM symbol
  • Channel forecast for ( ) can be determined.
  • channel predictor 520 generates RS-based channel estimates ( ) and channel estimates based on a linear combination of the previous sequence ( ) by applying a time domain interpolation technique to can be decided.
  • the channel predictor 520 determines the OFDM symbol indices through which the RS was transmitted ( ) and OFDM symbol indices on which channel estimation (or symbol detection) was performed ( ) OFDM symbol You can find the closest index to can be decided. For example, it may currently be the 4th channel estimation order. OFDM symbols according to Table 1 above Since is the 13th OFDM symbol 420-13, the channel predictor 520 uses the OFDM symbol indexes on which the RS was transmitted (e.g., 3 and 12) and the OFDM symbol indexes on which channel estimation (or symbol detection) was performed (e.g., : OFDM symbols among 2, 4, 11) You can find the closest index 12 to index 13.
  • the channel predictor 520 uses the OFDM symbols 420-3 and 420-12 on which RS has been transmitted and the OFDM symbols 420-2, on which channel estimation (e.g., linear combination-based channel estimation) has already been performed.
  • the channel predictor 520 is a channel estimate based on a linear combination of OFDM symbols 420-12 ( ) OFDM symbol Channel prediction value ( ) can be determined.
  • Channel predictor 520 is an OFDM symbol Channel forecast for ( ) can be transmitted to the symbol detector 530 and the linear combiner 550.
  • the symbol detector 530 is an OFDM symbol Channel forecast for ( ) using OFDM symbol
  • the received signals ( ) can detect data symbols from. receiving signal
  • the data symbols detected from It can be expressed as
  • the symbol detector 530 may detect data symbols through a maximum likelihood detection method.
  • Data symbols detected through the maximum likelihood detection method can be expressed in Equation 3 below.
  • the symbol detector 530 may detect data symbols through a linear detection method (eg, zero-forcing). Zero forcing is It can be used when Data symbols detected through zero forcing can be expressed in Equation 4 below.
  • the elements of the detected data symbol may not be represented as one of the elements of the symbol constellation.
  • the symbol detector 530 may correspond to the detected data symbol with the closest element among the elements of the symbol constellation.
  • DS-based channel estimator 540 receives received signals ( ) and detected data symbols ( ) using OFDM symbol A DS-based channel estimate (or first channel estimate) for can be determined. OFDM symbol The DS-based channel estimate for is It can be expressed as
  • the DS-based channel estimator 540 calculates the OFDM symbol through the least square method.
  • a DS-based channel estimate for can be determined.
  • the DS-based channel estimate determined through the least squares method can be expressed as Equation 5 below.
  • Equation 5 above can represent the received signal matrix, may represent the detected data symbol matrix, can represent the Hermitian operation, can represent an inverse matrix operation.
  • the DS-based channel estimator 540 calculates OFDM symbols through a linear least mean square error method.
  • a DS-based channel estimate for can be determined.
  • the DS-based channel estimate determined through the linear least mean square error method can be expressed as Equation 6 below.
  • Is It can represent the covariance matrix of the channel formed from each transmit antenna port to each receive antenna port, can represent the variance of the noise signal, Is It can represent a dimensional identity matrix.
  • the method by which the DS-based channel estimator 540 determines the DS-based channel estimate is not limited to the least squares method and the linear least mean square error method described above.
  • Linear combiner 550 is an OFDM symbol Channel forecast for ( ) and OFDM symbols DS-based channel estimates for ( ) is linearly combined to create an OFDM symbol A linear combination-based channel estimate (or second channel estimate) may be determined. OFDM symbol The linear combination-based channel estimate for can be expressed as Equation 7 below.
  • Equation 7 is the OFDM symbol used for channel estimation of and It can represent the combination ratio between and can be determined as a value between 0 and 1.
  • Linear combiner 550 provides optimal can be decided.
  • the linear combiner 550 determines the optimal value through mean square error (MSE).
  • MSE mean square error
  • Equation 8 is the OFDM symbol DS-based channel estimates for ( ) can represent the mean square error of is the OFDM symbol Channel forecast for ( ) can represent the mean square error.
  • the linear combiner 550 determines the optimal When using, the channel estimate determined through linear combination ( ) can be determined through Equation 9 below.
  • DS-based channel estimator 540 may vary depending on whether the DS-based channel estimator 540 uses the least squares method or the linear least mean square error method.
  • the linear combiner 550 uses Equation 10 below: can be decided.
  • the linear combiner 550 uses Equation 11 below: can be decided.
  • linear combiner 550 is can be calculated.
  • Linear combiner 550 provides RS-based channel estimates ( ) and channel estimates based on a linear combination of the previous sequence ( )) By applying a time-domain interpolation technique to the calculated mean square errors, can be decided.
  • the linear combiner 550 uses the OFDM symbol indices through which RS is transmitted ( ) and the OFDM symbol index of the previous order ( ) OFDM symbol The OFDM symbol index closest to can be determined.
  • the linear combiner 550 calculates the mean square error for the determined OFDM symbol index. can be decided. For example, it may currently be the 4th channel estimation order. OFDM symbol according to Table 1 above may be the 13th OFDM symbol (420-13).
  • the linear combiner 550 selects an OFDM symbol from among OFDM symbol indices (e.g., 3 and 12) on which RS is transmitted and OFDM symbol indices (e.g., 2, 4, and 11) for which linear combination-based channel estimation has already been performed. You can find the closest index 12 to index 13.
  • the linear combiner 550 selects the OFDM symbols (420-3, 420-12) on which RS has been transmitted and the OFDM symbols (420-2, 420-4, 420-11) on which channel estimation has already been performed. symbol You can find the OFDM symbol (420-12) at the closest position. Linear combiner 550 calculates the mean square error of the channel estimates for OFDM symbols 420-12. can be decided.
  • Linear combiner 550 is an OFDM symbol A linear combination-based channel estimate for ( ) and index ( ) can be stored in the memory 560. In other words, the linear combiner 550 provides a channel estimate ( ) and index ( ) to the channel estimation information from the previous sequence, e.g. ) by including channel estimation information (e.g. ) can be updated. Channel estimation information updated in memory 560 ( ) can be stored.
  • the receiving device 500 may further include a channel decoder.
  • the receiving device 500 may complete channel estimation for each OFDM symbol through which data symbols are transmitted.
  • the symbol detector 530 detects data symbols from the received signals of each of the OFDM symbols through which data symbols are transmitted ( ) can be transmitted to the channel decoder for decoding.
  • the symbol detection unit 530 detects data symbols ( ) can be transmitted to the channel decoder.
  • FIG. 6 is a diagram illustrating an example of a channel estimation order according to an embodiment.
  • the receiving device 500 receives the OFDM symbol through which RS is transmitted.
  • Channel estimate for e.g., OFDM symbol 420-3 in FIG. 4
  • OFDM symbol on which RS is transmitted A channel estimate may be determined for (e.g., OFDM symbol 420-12 in FIG. 4).
  • the receiving device 500 can determine the channel estimation order of OFDM symbols through which data symbols are transmitted. According to the determined channel estimation order, the receiving device 500 may determine a linear combination-based channel estimate for each OFDM symbol through which data symbols are transmitted.
  • the receiving device 500 receives an OFDM symbol A linear combination-based channel estimate for (e.g., OFDM symbol 420-2 in FIG. 4) can be determined first.
  • the receiving device 500 uses an OFDM symbol A linear combination-based channel estimate for (e.g., OFDM symbol 420-4 in FIG. 4) may be determined second.
  • the receiving device 500 uses an OFDM symbol A linear combination-based channel estimate for (e.g., OFDM symbol 420-11 in FIG. 4) may be determined thirdly.
  • the receiving device 500 uses an OFDM symbol OFDM symbol A linear combination-based channel estimate for each can be sequentially determined.
  • the receiving device 500 uses an OFDM symbol A linear combination-based channel estimate for (e.g., OFDM symbol 420-8 in FIG. 4) may be determined last.
  • Figure 7 is a flowchart explaining a receiving method of a receiving device according to an embodiment.
  • the receiving device 500 may determine the channel estimation order of OFDM symbols through which data symbols are transmitted and may initialize the index.
  • the receiving device 500 is You can initialize the index by doing .
  • the receiving device 500 receives an OFDM symbol.
  • the channel prediction value for can be determined. Therefore, in operation 720, the receiving device 500 receives the OFDM symbol.
  • Channel forecast for ( ) can be determined. for example, In this case, the linear combination-based channel estimation information of the previous order may not be stored in the memory 560.
  • the receiving device 500 selects an OFDM symbol among OFDM symbols through which RS is transmitted in the RS-based channel estimation information. (e.g., the index of the OFDM symbol closest to the second OFDM symbol (420-2)) can be found.
  • OFDM symbol The index of may be 2, and the index of the OFDM symbol 420-3 in FIG. 4 among the OFDM symbols through which RS is transmitted is 3.
  • OFDM symbol (420-3) is the OFDM symbol It may be closest to .
  • the receiving device 500 converts the channel estimate for the OFDM symbol 420-3 into an OFDM symbol.
  • Channel forecast for ( ) can be determined.
  • the receiving device 500 receives an OFDM symbol.
  • Channel forecast for ( ) OFDM symbol based on Data symbols for can be detected.
  • the receiving device 500 receives the OFDM symbol through Equation 3 above or Equation 4 above. Data symbols for can be detected.
  • the receiving device 500 receives the detected data symbol ( ) OFDM symbol based on A DS-based channel estimate of can be determined. For example, the receiving device 500 receives the OFDM symbol through Equation 5 or Equation 6 above. A DS-based channel estimate of can be determined.
  • receiving device 500 receives an OFDM symbol.
  • the channel estimate for can be linearly combined with the DS-based channel estimate.
  • the receiving device 500 receives the OFDM symbol through Equation 7 above.
  • the receiving device 500 uses an OFDM symbol Linear combined channel estimates for ( ) and symbol index ( ) can be stored in the memory 560.
  • receiving device 500 go You can determine whether it is smaller than .
  • the receiving device 500 uses an OFDM symbol Operations 720 to 760 may be performed.
  • the receiving device 500 receives an OFDM symbol.
  • the channel prediction value for can be determined.
  • the receiving device 500 may receive RS-based channel estimates ( ) and a channel estimate based on a linear combination of the previous sequence ( ) by applying a time domain interpolation technique to can be decided.
  • the receiving device 500 receives the OFDM symbol indexes through which the RS was transmitted ( ) and the OFDM symbol index on which channel estimation (or symbol detection) was performed ( ) OFDM symbol You can find the closest index to can be decided.
  • the receiving device 500 receives an OFDM symbol.
  • Channel forecast for ( ) OFDM symbol based on Data symbols for can be detected.
  • the receiving device 500 receives the OFDM symbol through Equation 3 above or Equation 4 above. Data symbols for can be detected.
  • the receiving device 500 receives the detected data symbols ( ) OFDM symbol based on A DS-based channel estimate of can be determined. For example, the receiving device 500 receives the OFDM symbol through Equation 5 or Equation 6 above. A DS-based channel estimate of can be determined.
  • receiving device 500 receives an OFDM symbol.
  • the channel estimate for can be linearly combined with the DS-based channel estimate.
  • the receiving device 500 receives the OFDM symbol through Equation 7 above.
  • the receiving device 500 uses an OFDM symbol Linear combined channel estimates for ( ) and symbol index ( ) can be stored in the memory 560.
  • receiving device 500 go You can determine whether it is smaller than .
  • the receiving device 500 is go is less than, so in operation 770 can be updated.
  • the receiving device 500 uses an OFDM symbol Operations 720 to 770 may be repeatedly performed. By repeatedly performing operations 720 to 770, an OFDM symbol The channel estimation order for may arrive.
  • the receiving device 500 receives an OFDM symbol.
  • the channel prediction value for can be determined.
  • the receiving device 500 may receive RS-based channel estimates ( ) and channel estimates based on a linear combination of the previous sequence ( ) by applying a time domain interpolation technique to can be decided.
  • the receiving device 500 receives the OFDM symbol indexes through which the RS was transmitted ( ) and OFDM symbol indices on which channel estimation (or symbol detection) was performed ( ) OFDM symbol You can find the closest index to can be decided.
  • the receiving device 500 receives an OFDM symbol.
  • Channel forecast for ( ) OFDM symbol based on Data symbols for can be detected.
  • the receiving device 500 receives the OFDM symbol through Equation 3 above or Equation 4 above. Data symbols for can be detected.
  • the receiving device 500 receives the detected data symbols ( ) OFDM symbol based on A DS-based channel estimate of can be determined. For example, the receiving device 500 receives the OFDM symbol through Equation 5 or Equation 6 above. A DS-based channel estimate of can be determined.
  • receiving device 500 receives an OFDM symbol.
  • the channel estimate for can be linearly combined with the DS-based channel estimate.
  • the receiving device 500 receives the OFDM symbol through Equation 7 above.
  • receiving device 500 go You can determine whether it is smaller than . Is Therefore, the receiving device 500 may end the channel estimation operation for each OFDM symbol through which data symbols are transmitted.
  • the receiving device 500 uses an OFDM symbol OFDM symbol Data symbols for each ( ), the decoding operation can be performed based on.
  • FIGS. 1 to 6 may be applied to the reception method of FIG. 7 .
  • Figures 8 to 10 are diagrams illustrating the frame error rate versus signal-to-noise ratio that various reception methods can achieve.
  • the existing method may represent a reception method using existing RS-based channel estimation
  • the embodiment may represent a reception method of the receiving device 500.
  • the modulation method may be 4-quadrature amplitude modulation (QAM).
  • Each of the reception methods of FIGS. 8 and 9 can use the least squares method for channel estimation, and the linear least mean square error method for data symbol detection. Available.
  • the channel may change over time as shown in Equation 12 below.
  • equation 12 above may represent the time domain correlation coefficient between the current channel and the previous channel, may represent a complex Gaussian random matrix with the same variance as the channel.
  • the reception method of the reception device 500 can achieve a lower frame error rate than the existing method in an environment where channels change over time.
  • the reception method of the moving reception device 500 can achieve a lower frame error rate than the existing method.
  • Figure 10 shows the frame error rate versus signal-to-noise ratio that can be achieved by reception methods for various numbers of antennas.
  • channel estimation and symbol detection for each of the reception methods may use the least squares method.
  • the modulation method may be 4-QAM.
  • the channel may not change over time.
  • the embodiment can achieve lower frame error rates than existing methods for various antenna numbers. and
  • the reception method of the reception device 500 can achieve a lower frame error rate than the existing method.
  • Figure 11 is a block diagram illustrating an example of the configuration of a receiving device according to an embodiment.
  • the receiving device 1100 (e.g., the receiving device 110 of FIG. 1 and the receiving device 500 of FIG. 5) according to an embodiment includes antennas 1110 and an RF communication circuit 1120. , a processor 1130, and a memory 1140 (eg, memory 560 in FIG. 5).
  • the base station 200 of FIG. 2 or the UE 300 of FIG. 3 may operate as the reception device 1100.
  • the RF communication circuit 1120 may receive an RF signal from a transmitting device (eg, the transmitting device 120 of FIG. 1) through the antennas 1110.
  • a transmitting device eg, the transmitting device 120 of FIG. 1
  • the RF communication circuit 1120 may convert the received RF signal into a baseband signal.
  • the RF communication circuit 1120 may transmit a baseband signal to the processor 1130.
  • the processor 1130 may be connected to the RF communication circuit 1120.
  • Processor 1130 includes RS-based channel estimator 505, orderer 510, channel predictor 520, symbol detector 530, DS-based channel estimator 540, and linear combiner 550 of FIG. 5. can be implemented.
  • the processor 1130 may determine the channel estimation order of OFDM symbols through which data symbols are transmitted. For example, the processor 1130 may use the positions of one or more OFDM symbols through which RS is transmitted and the positions of each OFDM symbol through which data symbols are transmitted, to determine the channel estimation order of OFDM symbols through which data symbols are transmitted. . The processor 1130 determines the index (or position) of the first OFDM symbol among the OFDM symbols through which data symbols are transmitted (e.g., ) is closest to the index (or position) of the OFDM symbol through which the RS is transmitted, the channel estimation order of the first OFDM symbol can be determined as the first channel estimation order.
  • the channel estimation order of the first OFDM symbol is referred to as the first channel estimation order.
  • the processor 1130 selects the first OFDM symbol in the first channel estimation order among OFDM symbols through which data symbols are transmitted (e.g., OFDM symbol ) channel estimates, e.g. ) to RS-based channel estimation information, e.g. ) or channel estimation information determined prior to the first channel estimation sequence (e.g. ) can be determined using at least one of: Channel estimation information, e.g. ) may be stored in the memory 1140.
  • the processor 1130 may determine a channel estimate for the first OFDM symbol by performing interpolation (e.g., time domain interpolation) on the RS-based channel estimation information and the channel estimation information determined before the first channel estimation sequence. .
  • interpolation e.g., time domain interpolation
  • the processor 1130 includes the index of the OFDM symbol through which the RS was transmitted and channel estimation information (e.g. ), the index closest to the index of the first OFDM symbol can be found among the OFDM symbol indexes included in ).
  • the processor 1130 may determine the channel estimate for the OFDM symbol of the found index as the channel estimate for the first OFDM symbol.
  • the processor 1130 may receive a received signal in the first OFDM symbol based on the baseband signal (e.g., ) can be obtained. For example, the processor 1130 processes the baseband signal (e.g., serial/parallel conversion, FFT, etc.) to obtain a received signal in the first OFDM symbol (e.g., ) can be obtained.
  • the baseband signal e.g., serial/parallel conversion, FFT, etc.
  • Processor 1130 may store the determined channel estimate, e.g. ) to receive signals (e.g. ) from the first data symbols (e.g. ) can be detected. For example, the processor 1130 generates first data symbols (e.g., Equation 3 above or Equation 4 above). ) can be detected.
  • first data symbols e.g., Equation 3 above or Equation 4 above.
  • the processor 1130 generates a first channel estimate for the first OFDM symbol based on the detected first data symbols (e.g., ) can be determined. For example, processor 1130 may generate a received signal matrix for the received signal, e.g. ), a data symbol matrix (e.g., ), and the Hermitian matrix of the data symbol matrix, e.g. ) can be used to determine the first channel estimate. The processor 1130 generates a first channel estimate (e.g., for the first OFDM symbol) through Equation 5 or Equation 6 above. ) can be determined.
  • Processor 1130 generates a second channel estimate for the first OFDM symbol based on the first channel estimate and the channel estimate (e.g., ) can be determined. For example, the processor 1130 may determine the second channel estimate by linearly combining the first channel estimate and the channel estimate. The processor 1130 may determine the second channel estimate through Equation 7 above.
  • the processor 1130 may determine whether the first channel estimation order is the last channel estimation order.
  • the processor 1130 uses the second channel estimate as channel estimation information (e.g., ), the channel estimation information can be updated.
  • Memory 1140 may store updated channel estimate information, e.g. ) can be saved.
  • the processor 1130 may perform channel estimation on the second OFDM symbol having a channel estimation order next to the first channel estimation order. For example, processor 1130 may provide RS-based channel estimate information or updated channel estimate information, e.g. ) can be used to determine the channel prediction value for the second OFDM symbol.
  • the processor 1130 may detect second data symbols from the received signal in the second OFDM symbol using the channel prediction value for the second OFDM symbol.
  • the processor 1130 may determine a first channel estimate for the second OFDM symbol based on the detected second data symbols.
  • the processor 1130 may determine a second channel estimate for the second OFDM symbol based on the first channel estimate for the second OFDM symbol and the channel estimate for the second OFDM symbol.
  • the processor 1130 detects data symbols (e.g., received signals from each of the OFDM symbols through which data symbols are transmitted). ), decoding can be performed based on .
  • data symbols e.g., received signals from each of the OFDM symbols through which data symbols are transmitted.
  • FIGS. 1 to 10 may be applied to the receiving device 1100 of FIG. 11 .
  • a reception method of a receiving device includes determining a channel estimation order of OFDM symbols through which data symbols are transmitted, determining a channel estimate for a first OFDM symbol in a first channel estimation order among the OFDM symbols based on a reference signal. An operation of determining using at least one of channel estimation information or channel estimation information determined before the first channel estimation sequence, detecting first data symbols from a received signal in the first OFDM symbol using the determined channel prediction value. An operation of determining a first channel estimate for the first OFDM symbol based on the detected first data symbols, a first channel estimate for the first OFDM symbol based on the determined first channel estimate and the determined channel prediction value.
  • Determining a two-channel estimate determining whether the first channel estimation order is the last channel estimation order, and if the first channel estimation order is not the last channel estimation order, a second of the next channel estimation order
  • An operation of performing channel estimation on OFDM symbols may be included.
  • the operation of determining the channel estimation order may include determining the channel estimation order of the OFDM symbols using the positions of one or more OFDM symbols through which the reference signal is transmitted and the positions of each of the OFDM symbols.
  • the operation of determining the channel estimation order includes determining the first channel estimation order as the first channel estimation order when the index of the first OFDM symbol among the OFDM symbols is closest to the index of the OFDM symbol through which the reference signal is transmitted. It may include actions such as:
  • the operation of determining the channel prediction value may include determining the channel prediction value by performing interpolation on the reference signal-based channel estimation information and the channel estimation information.
  • the operation of determining the channel prediction value includes: finding an index closest to the index of the first OFDM symbol among the index of the OFDM symbol through which the reference signal is transmitted and the OFDM symbol index included in the channel estimation information; and determining a channel estimate for the OFDM symbol of the found index as the channel prediction value.
  • the operation of determining the first channel estimate is performed by using a received signal matrix for the received signal, a data symbol matrix for the detected first data symbols, and a Hermitian matrix of the data symbol matrix.
  • the operation may include determining a channel estimate.
  • Determining the second channel estimate may include determining the second channel estimate by linearly combining the determined first channel estimate and the determined channel estimate.
  • the receiving method of the receiving device may further include performing decoding based on data symbols detected from received signals of each of the OFDM symbols when the first channel estimation order is the last channel estimation order.
  • the receiving method of the receiving device may further include updating the channel estimation information by including the determined second channel estimate in the channel estimation information.
  • the operation of performing the channel estimation for the second OFDM symbol includes determining a channel prediction value for the second OFDM symbol using at least one of the reference signal-based channel estimation information or the updated channel estimation information, Detecting second data symbols from a received signal in the second OFDM symbol using a channel prediction value for the second OFDM symbol, determining a first channel for the second OFDM symbol based on the detected second data symbols. It may include determining an estimate, and determining a second channel estimate for the second OFDM symbol based on a first channel estimate for the second OFDM symbol and a channel estimate for the second OFDM symbol. there is.
  • the embodiments described above may be implemented with hardware components, software components, and/or a combination of hardware components and software components.
  • the devices, methods, and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, and a field programmable gate (FPGA).
  • ALU arithmetic logic unit
  • FPGA field programmable gate
  • It may be implemented using a general-purpose computer or a special-purpose computer, such as an array, programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions.
  • the processing device may execute an operating system (OS) and software applications running on the operating system. Additionally, a processing device may access, store, manipulate, process, and generate data in response to the execution of software.
  • OS operating system
  • a processing device may access, store, manipulate, process, and generate data in response to the execution of software.
  • a single processing device may be described as being used; however, those skilled in the art will understand that a processing device includes multiple processing elements and/or multiple types of processing elements. It can be seen that it may include.
  • a processing device may include multiple processors or one processor and one controller. Additionally, other processing configurations, such as parallel processors, are possible.
  • Software may include a computer program, code, instructions, or a combination of one or more of these, which may configure a processing unit to operate as desired, or may be processed independently or collectively. You can command the device.
  • Software and/or data may be used on any type of machine, component, physical device, virtual equipment, computer storage medium or device to be interpreted by or to provide instructions or data to a processing device. , or may be permanently or temporarily embodied in a transmitted signal wave.
  • Software may be distributed over networked computer systems and stored or executed in a distributed manner.
  • Software and data may be stored on a computer-readable recording medium.
  • the method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer-readable medium.
  • a computer-readable medium may store program instructions, data files, data structures, etc., singly or in combination, and the program instructions recorded on the medium may be specially designed and constructed for the embodiment or may be known and available to those skilled in the art of computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks.
  • Examples of program instructions include machine language code, such as that produced by a compiler, as well as high-level language code that can be executed by a computer using an interpreter, etc.
  • the hardware devices described above may be configured to operate as one or multiple software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)

Abstract

A reception device is disclosed. One embodiment may comprise: determining a channel estimation sequence of OFDM symbols in which data symbols are transmitted; determining a channel prediction value for a first OFDM symbol in a first channel estimation sequence among the OFDM symbols using at least one of reference signal-based channel estimation information and channel estimation information determined before the first channel estimation sequence; detecting first data symbols from a received signal at the first OFDM symbol using the determined channel prediction value; determining a first channel estimate value for the first OFDM symbol on the basis of the detected first data symbols; determining a second channel estimate value for the first OFDM symbol on the basis of the determined first channel estimate value and the determined channel prediction value; determining whether the first channel estimation sequence is the last channel estimation sequence; and if the first channel estimation sequence is not the last channel estimation sequence, performing channel estimation for a second OFDM symbol in the next channel estimation sequence.

Description

MIMO-OFDM 신호를 수신하는 수신 장치 및 방법Receiving device and method for receiving MIMO-OFDM signals
일 실시 예는 MIMO-OFDM 신호를 수신하는 수신 장치 및 이의 동작 방법에 관한 것이다.One embodiment relates to a receiving device for receiving a MIMO-OFDM signal and a method of operating the same.
다중 입출력(MIMO: Multiple-Input Multiple-Output) 통신 시스템은 무선 통신의 전송 속도 및 통신 안정성을 높일 수 있는 기술로서 다양한 무선 통신 시스템의 핵심 기술로 활용될 수 있다. MIMO 통신 시스템에서 높은 통신 안정성을 확보하기 위해서 수신기는 MIMO 채널 정보를 정확하게 알고 있어야 한다. Multiple-Input Multiple-Output (MIMO) communication system is a technology that can increase the transmission speed and communication stability of wireless communication and can be used as a core technology in various wireless communication systems. To ensure high communication stability in a MIMO communication system, the receiver must accurately know MIMO channel information.
수신기가 MIMO 채널 정보를 획득하기 위한 방법에 레퍼런스 신호(RS: Reference Signal)를 활용한 RS-기반 채널 추정 방법이 있다. RS-기반 채널 추정 방법에서 송신기는 무선 자원 중 일부를 활용해 수신기가 이미 알고 있는 RS를 수신기로 전송할 수 있고, 수신기는 송신기로부터 수신한 RS를 이용하여 MIMO 채널을 추정할 수 있다. 일반적으로 RS-기반 채널 추정 방법을 통해 얻을 수 있는 MIMO 채널 정보의 정확도는 RS의 양이 증가할수록 향상될 수 있다.A method for a receiver to acquire MIMO channel information includes an RS-based channel estimation method using a reference signal (RS). In the RS-based channel estimation method, the transmitter can use some of the radio resources to transmit an RS that the receiver already knows to the receiver, and the receiver can estimate the MIMO channel using the RS received from the transmitter. In general, the accuracy of MIMO channel information that can be obtained through an RS-based channel estimation method can be improved as the amount of RS increases.
직교 주파수 분할 다중화(OFDM: Orthogonal Frequency Division Multiplexing) 또는 직교 주파수 분할 다중 접속(OFDMA: Orthogonal Frequency Division Multiple Access)을 활용하는 MIMO-OFDM 통신 시스템의 경우 여러 개의 부반송파(subcarrier)들 및 OFDM 심볼들을 포함하는 자원 블록(RB: Resource Block)에 대해 정확한 MIMO 채널 추정이 이루어져야 한다. In the case of a MIMO-OFDM communication system utilizing Orthogonal Frequency Division Multiplexing (OFDM) or Orthogonal Frequency Division Multiple Access (OFDMA), it includes multiple subcarriers and OFDM symbols. Accurate MIMO channel estimation must be made for a resource block (RB).
기존의 MIMO-OFDM 통신 시스템에서 RS는 RB 내의 일부 부반송파 및 OFDM 심볼에 제한적으로 할당될 수 있다. 이로 인해, 기존의 MIMO-OFDM 통신 시스템에 RS-기반 채널 추정 방법이 적용될 경우 수신기가 얻을 수 있는 채널 정보의 정확도에는 한계가 있을 수 있다. 또한, 무선 환경의 변화로 인해 채널이 시간에 따라 변하는 경우, RB 내의 OFDM 심볼 별로 다른 채널이 형성될 수 있고, 이로 인해, 기존의 RS-기반 채널 추정 방법의 채널 추정 정확도는 감소할 수 있다. In the existing MIMO-OFDM communication system, RS may be limitedly allocated to some subcarriers and OFDM symbols within the RB. Because of this, when the RS-based channel estimation method is applied to the existing MIMO-OFDM communication system, there may be a limit to the accuracy of channel information that the receiver can obtain. In addition, when the channel changes over time due to changes in the wireless environment, different channels may be formed for each OFDM symbol in the RB, which may reduce the channel estimation accuracy of the existing RS-based channel estimation method.
일 실시 예는 제한적인 RS를 활용하여 시간에 따라 채널이 변화하는 경우 채널 추정의 높은 정확도를 달성할 수 있는 수신 장치를 제공할 수 있다.One embodiment may provide a receiving device that can achieve high accuracy of channel estimation when the channel changes over time by utilizing limited RS.
일 실시 예에 따른 수신 장치의 수신 방법은 데이터 심볼들이 전송되는 OFDM 심볼들의 채널 추정 순서를 결정하는 동작; 상기 OFDM 심볼들 중 제1 채널 추정 순서의 제1 OFDM 심볼에 대한 채널 예측치를 RS-기반 채널 추정 정보 또는 상기 제1 채널 추정 순서 이전에 결정된 채널 추정 정보 중 적어도 하나를 이용하여 결정하는 동작; 상기 결정된 채널 예측치를 이용하여 상기 제1 OFDM 심볼에서의 수신 신호로부터 제1 데이터 심볼들을 검출하는 동작; 상기 검출된 제1 데이터 심볼들을 기초로 상기 제1 OFDM 심볼에 대한 제1 채널 추정치를 결정하는 동작; 상기 결정된 제1 채널 추정치와 상기 결정된 채널 예측치를 기초로 상기 제1 OFDM 심볼에 대한 제2 채널 추정치를 결정하는 동작; 상기 제1 채널 추정 순서가 마지막 채널 추정 순서인지 여부를 판단하는 동작; 및 상기 제1 채널 추정 순서가 상기 마지막 채널 추정 순서가 아닌 경우, 다음 채널 추정 순서의 제2 OFDM 심볼에 대해 채널 추정을 수행하는 동작을 포함할 수 있다.A reception method of a reception device according to an embodiment includes determining a channel estimation order of OFDM symbols through which data symbols are transmitted; determining a channel estimate for a first OFDM symbol in a first channel estimation order among the OFDM symbols using at least one of RS-based channel estimation information and channel estimation information determined before the first channel estimation order; detecting first data symbols from a received signal in the first OFDM symbol using the determined channel prediction value; determining a first channel estimate for the first OFDM symbol based on the detected first data symbols; determining a second channel estimate for the first OFDM symbol based on the determined first channel estimate and the determined channel estimate; determining whether the first channel estimation order is the last channel estimation order; and when the first channel estimation order is not the last channel estimation order, performing channel estimation on a second OFDM symbol in the next channel estimation order.
일 실시 예에 따른 수신 장치는 복수의 안테나들; 상기 안테나들을 통해 송신 장치로부터 RF 신호를 수신하고, 상기 수신된 RF 신호를 기저대역 신호로 변환하는 RF 통신 회로; 및 상기 RF 통신 회로와 연결되는 프로세서를 포함할 수 있다. 상기 프로세서는 데이터 심볼들이 전송되는 OFDM 심볼들의 채널 추정 순서를 결정할 수 있다. 상기 프로세서는 상기 OFDM 심볼들 중 제1 채널 추정 순서의 제1 OFDM 심볼에 대한 채널 예측치를 RS-기반 채널 추정 정보 또는 상기 제1 채널 추정 순서 이전에 결정된 채널 추정 정보 중 적어도 하나를 이용하여 결정할 수 있다. 상기 프로세서는 상기 변환된 기저대역 신호를 기초로 상기 제1 OFDM 심볼에서의 수신 신호를 획득할 수 있다. 상기 프로세서는 상기 결정된 채널 예측치를 이용하여 상기 획득된 수신 신호로부터 제1 데이터 심볼들을 검출할 수 있다. 상기 프로세서는 상기 검출된 제1 데이터 심볼들을 기초로 상기 제1 OFDM 심볼에 대한 제1 채널 추정치를 결정할 수 있다. 상기 프로세서는 상기 결정된 제1 채널 추정치와 상기 결정된 채널 예측치를 기초로 상기 제1 OFDM 심볼에 대한 제2 채널 추정치를 결정할 수 있다. 상기 프로세서는 상기 제1 채널 추정 순서가 마지막 채널 추정 순서인지 여부를 판단할 수 있다. 상기 프로세서는 상기 제1 채널 추정 순서가 상기 마지막 채널 추정 순서가 아닌 경우, 다음 채널 추정 순서의 제2 OFDM 심볼에 대해 채널 추정을 수행할 수 있다.A receiving device according to an embodiment includes a plurality of antennas; an RF communication circuit that receives an RF signal from a transmitting device through the antennas and converts the received RF signal into a baseband signal; And it may include a processor connected to the RF communication circuit. The processor may determine a channel estimation order of OFDM symbols through which data symbols are transmitted. The processor may determine a channel estimate value for a first OFDM symbol in a first channel estimation order among the OFDM symbols using at least one of RS-based channel estimation information or channel estimation information determined before the first channel estimation order. there is. The processor may obtain a received signal in the first OFDM symbol based on the converted baseband signal. The processor may detect first data symbols from the obtained received signal using the determined channel prediction value. The processor may determine a first channel estimate for the first OFDM symbol based on the detected first data symbols. The processor may determine a second channel estimate for the first OFDM symbol based on the determined first channel estimate and the determined channel estimate. The processor may determine whether the first channel estimation order is the last channel estimation order. If the first channel estimation order is not the last channel estimation order, the processor may perform channel estimation on the second OFDM symbol in the next channel estimation order.
일 실시 예는 검출된 데이터 심볼들을 채널 추정에 활용할 수 있고 기준 신호의 위치에 따라 순차적으로 심볼 검출을 수행할 수 있어, 수신 성능을 향상시킬 수 있고, 낮은 프레임 오류율을 달성할 수 있다.In one embodiment, detected data symbols can be used for channel estimation and symbol detection can be performed sequentially according to the position of the reference signal, thereby improving reception performance and achieving a low frame error rate.
도 1은 일 실시 예에 따른 다중 입출력 안테나 통신 시스템의 구성도이다.1 is a configuration diagram of a multiple input/output antenna communication system according to an embodiment.
도 2는 일 실시 예에 따른 무선 통신 시스템에서 기지국의 구성의 예시를 설명하는 블록도이다.Figure 2 is a block diagram illustrating an example of the configuration of a base station in a wireless communication system according to an embodiment.
도 3은 일 실시 예에 따른 무선 통신 시스템에서 UE의 구성의 예시를 설명하는 블록도이다.FIG. 3 is a block diagram illustrating an example of the configuration of a UE in a wireless communication system according to an embodiment.
도 4는 일 실시 예에 따른 복조 블록을 설명하는 도면이다.Figure 4 is a diagram explaining a demodulation block according to an embodiment.
도 5는 일 실시 예에 따른 수신 장치의 예시를 설명하는 도면이다.FIG. 5 is a diagram illustrating an example of a receiving device according to an embodiment.
도 6은 일 실시 예에 따른 채널 추정 순서의 예시를 설명하는 도면이다.FIG. 6 is a diagram illustrating an example of a channel estimation order according to an embodiment.
도 7은 일 실시 예에 따른 수신 장치의 수신 방법을 설명하는 흐름도이다.Figure 7 is a flowchart explaining a receiving method of a receiving device according to an embodiment.
도 8은 내지 도 10은 다양한 수신 방법들이 달성할 수 있는 신호 대 잡음비 대비 프레임 오류율을 설명하는 도면이다.Figures 8 to 10 are diagrams illustrating the frame error rate versus signal-to-noise ratio that various reception methods can achieve.
도 11은 일 실시 예에 따른 수신 장치의 구성의 예시를 설명하는 블록도이다.Figure 11 is a block diagram illustrating an example of the configuration of a receiving device according to an embodiment.
실시예들에 대한 특정한 구조적 또는 기능적 설명들은 단지 예시를 위한 목적으로 개시된 것으로서, 다양한 형태로 변경되어 구현될 수 있다. 따라서, 실제 구현되는 형태는 개시된 특정 실시예로만 한정되는 것이 아니며, 본 명세서의 범위는 실시예들로 설명한 기술적 사상에 포함되는 변경, 균등물, 또는 대체물을 포함한다.Specific structural or functional descriptions of the embodiments are disclosed for illustrative purposes only and may be changed and implemented in various forms. Accordingly, the actual implementation form is not limited to the specific disclosed embodiments, and the scope of the present specification includes changes, equivalents, or substitutes included in the technical idea described in the embodiments.
제1 또는 제2 등의 용어를 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이런 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 해석되어야 한다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.Terms such as first or second may be used to describe various components, but these terms should be interpreted only for the purpose of distinguishing one component from another component. For example, a first component may be named a second component, and similarly, the second component may also be named a first component.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다.When a component is referred to as being “connected” to another component, it should be understood that it may be directly connected or connected to the other component, but that other components may exist in between.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설명된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함으로 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Singular expressions include plural expressions unless the context clearly dictates otherwise. In this specification, terms such as “comprise” or “have” are intended to designate the presence of the described features, numbers, steps, operations, components, parts, or combinations thereof, and are intended to indicate the presence of one or more other features or numbers, It should be understood that this does not exclude in advance the possibility of the presence or addition of steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 해당 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person of ordinary skill in the art. Terms as defined in commonly used dictionaries should be interpreted as having meanings consistent with the meanings they have in the context of the related technology, and unless clearly defined in this specification, should not be interpreted in an idealized or overly formal sense. No.
이하, 실시예들을 첨부된 도면들을 참조하여 상세하게 설명한다. 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조 부호를 부여하고, 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments will be described in detail with reference to the attached drawings. In the description with reference to the accompanying drawings, identical components will be assigned the same reference numerals regardless of the reference numerals, and overlapping descriptions thereof will be omitted.
도 1은 일 실시 예에 따른 다중 입출력 안테나 통신 시스템의 구성도이다.1 is a configuration diagram of a multiple input/output antenna communication system according to an embodiment.
도 1은 무선 통신 시스템에서 무선 채널을 이용하는 노드(node)들의 일부로서, 수신 장치(110) 및 송신 장치(120)를 예시한다. 도 1은 하나의 수신 장치(110)와 하나의 송신 장치(120)만을 도시하나, 무선 통신 시스템은 복수의 수신 장치들과 복수의 송신 장치들을 포함할 수 있다.Figure 1 illustrates a receiving device 110 and a transmitting device 120 as some of the nodes that use a wireless channel in a wireless communication system. Although Figure 1 shows only one receiving device 110 and one transmitting device 120, a wireless communication system may include multiple receiving devices and multiple transmitting devices.
수신 장치(110)는 기지국에 해당할 수 있고 송신 장치(120)는 UE(user equipment)에 해당할 수 있다. 또는 수신 장치(110)는 UE에 해당할 수 있고 송신 장치(120)는 기지국에 해당할 수 있다.The receiving device 110 may correspond to a base station and the transmitting device 120 may correspond to a user equipment (UE). Alternatively, the receiving device 110 may correspond to a UE and the transmitting device 120 may correspond to a base station.
기지국은 UE들에게 무선 접속을 제공하는 네트워크 인프라스트럭쳐(infrastructure)일 수 있다. 기지국은 신호를 송신할 수 있는 거리에 기초하여 일정한 지리적 영역으로 정의되는 커버리지(coverage)를 가질 수 있다. 기지국은 "액세스 포인트(AP: access point)", "이노드비(eNB: eNodeB)", "5G 노드(5th generation node)", "지노드비(gNB: next generation nodeB)", "무선 포인트(wireless point)", "송수신 포인트(TRP: transmission/reception point)" 또는 이와 동등한 기술적 의미를 가지는 다른 용어로 지칭될 수 있다.A base station may be a network infrastructure that provides wireless access to UEs. A base station may have coverage defined as a certain geographic area based on the distance over which it can transmit signals. The base station is “access point (AP)”, “eNB (eNodeB)”, “5G node (5th generation node)”, “gNB (next generation nodeB)”, “wireless point ( It may be referred to as “wireless point”, “transmission/reception point (TRP)” or other terms with equivalent technical meaning.
UE들 각각은 사용자에 의해 사용되는 장치로서, 기지국과 무선 채널을 통해 통신을 수행할 수 있다. Each of the UEs is a device used by a user and can communicate with a base station through a wireless channel.
UE들 중 적어도 하나는 사용자의 관여 없이 운영될 수 있다. UE들 중 적어도 하나는 기계 타입 통신(machine type communication: MTC)을 수행하는 장치로서, 사용자에 의해 휴대 되지 않을 수 있다. UE들 각각은 "단말(terminal)", "이동국(mobile station)", "가입자국(subscriber station)", "원격 단말(remote terminal)", "무선 단말(wireless terminal)", 또는 "사용자 장치(user device)" 또는 이와 동등한 기술적 의미를 가지는 다른 용어로 지칭될 수 있다. At least one of the UEs may operate without user involvement. At least one of the UEs is a device that performs machine type communication (MTC) and may not be carried by the user. Each of the UEs is a “terminal”, “mobile station”, “subscriber station”, “remote terminal”, “wireless terminal”, or “user device”. It may be referred to as “user device” or another term with equivalent technical meaning.
기지국은 복수의 안테나들을 통해 UE들로부터 상향링크(UL: uplink) 신호들을 수신할 수 있다. 기지국은 복수의 안테나들을 통해 UE들로 하향링크(DL: downlink) 신호들을 전송할 수 있다. A base station can receive uplink (UL) signals from UEs through a plurality of antennas. The base station may transmit downlink (DL) signals to UEs through a plurality of antennas.
무선 통신 시스템 내의 자원을 효율적으로 사용하면서 송신되는 신호들 간의 간섭을 감소시키기 위해 무선 통신 시스템은 직교 주파수 분할 다중화(OFDM: orthogonal frequency division multiplexing) 또는 직교 주파수 분할 다중 접속(OFDMA: orthogonal frequency division multiple Access)을 활용할 수 있다. In order to efficiently use resources within the wireless communication system and reduce interference between transmitted signals, the wireless communication system uses orthogonal frequency division multiplexing (OFDM) or orthogonal frequency division multiple access (OFDMA). ) can be used.
수신 장치(110)는
Figure PCTKR2023011945-appb-img-000001
개의 수신 안테나 포트를 포함할 수 있고, 송신 장치(120)는
Figure PCTKR2023011945-appb-img-000002
개의 송신 안테나 포트를 포함할 수 있다.
The receiving device 110 is
Figure PCTKR2023011945-appb-img-000001
It may include two receiving antenna ports, and the transmitting device 120 is
Figure PCTKR2023011945-appb-img-000002
It may include two transmit antenna ports.
송신 장치(120)가
Figure PCTKR2023011945-appb-img-000003
번째 OFDM 심볼의
Figure PCTKR2023011945-appb-img-000004
번째 부반송파(subcarrier)를 통해 전송하는 데이터 심볼은 아래 수학식 1로 표현될 수 있다.
The transmitting device 120
Figure PCTKR2023011945-appb-img-000003
of the OFDM symbol
Figure PCTKR2023011945-appb-img-000004
The data symbol transmitted through the th subcarrier can be expressed as Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2023011945-appb-img-000005
Figure PCTKR2023011945-appb-img-000005
위 수학식 1에서,
Figure PCTKR2023011945-appb-img-000006
송신 장치(120)와 수신 장치(110)가 미리 공유하고 있는 심볼 성상도(constellation)를 나타낼 수 있다.
In equation 1 above,
Figure PCTKR2023011945-appb-img-000006
Is It may indicate a symbol constellation that the transmitting device 120 and the receiving device 110 share in advance.
송신 장치(120)는 복수의 안테나들을 통해 RF(radio frequency) 신호를 수신 장치(110)로 전송할 수 있다. 수신 장치(110)는 복수의 안테나들을 통해 송신 장치(120)로부터 RF 신호를 수신할 수 있다. 수신 장치(110)는 수신된 RF 신호를 기저대역(baseband) 신호로 변환할 수 있고, 기저대역 신호를 처리하여 수신 신호를 획득할 수 있다. 기저대역 신호의 처리는, 예를 들어, CP(cyclic prefix) 제거, 직렬/병렬 변환, 또는 FFT(fast Fourier transform))(또는 DFT(discrete Fourier transform)), 병렬/직렬 변환 중 적어도 하나 또는 이들의 조합을 포함할 수 있다. The transmitting device 120 may transmit a radio frequency (RF) signal to the receiving device 110 through a plurality of antennas. The receiving device 110 may receive an RF signal from the transmitting device 120 through a plurality of antennas. The receiving device 110 may convert the received RF signal into a baseband signal and obtain a received signal by processing the baseband signal. Processing of the baseband signal may include, for example, at least one of cyclic prefix (CP) removal, serial/parallel conversion, or fast Fourier transform (FFT) (or discrete Fourier transform (DFT)), or parallel/serial conversion. It may include a combination of .
Figure PCTKR2023011945-appb-img-000007
번째 OFDM 심볼의
Figure PCTKR2023011945-appb-img-000008
번째 부반송파에서의 수신 신호(
Figure PCTKR2023011945-appb-img-000009
)는 아래 수학식 2로 표현될 수 있다. 달리 표현하면, 수신 장치(110)가
Figure PCTKR2023011945-appb-img-000010
번째 OFDM 심볼의
Figure PCTKR2023011945-appb-img-000011
번째 부반송파를 통해 관찰하는 수신 신호(
Figure PCTKR2023011945-appb-img-000012
)는 아래 수학식 2로 표현될 수 있다.
Figure PCTKR2023011945-appb-img-000007
of the OFDM symbol
Figure PCTKR2023011945-appb-img-000008
Received signal on the th subcarrier (
Figure PCTKR2023011945-appb-img-000009
) can be expressed as Equation 2 below. In other words, the receiving device 110
Figure PCTKR2023011945-appb-img-000010
of the OFDM symbol
Figure PCTKR2023011945-appb-img-000011
Received signal observed through the second subcarrier (
Figure PCTKR2023011945-appb-img-000012
) can be expressed as Equation 2 below.
[수학식 2][Equation 2]
Figure PCTKR2023011945-appb-img-000013
Figure PCTKR2023011945-appb-img-000013
위 수학식 2에서,
Figure PCTKR2023011945-appb-img-000014
Figure PCTKR2023011945-appb-img-000015
번째 OFDM 심볼의
Figure PCTKR2023011945-appb-img-000016
번째 부반송파에 대해 형성되는 주파수 영역 채널 행렬을 나타낼 수 있고,
Figure PCTKR2023011945-appb-img-000017
Figure PCTKR2023011945-appb-img-000018
번째 OFDM 심볼의
Figure PCTKR2023011945-appb-img-000019
번째 부반송파에서 관찰되는 잡음 신호를 나타낼 수 있다.
In Equation 2 above,
Figure PCTKR2023011945-appb-img-000014
Is
Figure PCTKR2023011945-appb-img-000015
of the OFDM symbol
Figure PCTKR2023011945-appb-img-000016
It can represent the frequency domain channel matrix formed for the th subcarrier,
Figure PCTKR2023011945-appb-img-000017
Is
Figure PCTKR2023011945-appb-img-000018
of the OFDM symbol
Figure PCTKR2023011945-appb-img-000019
It can represent a noise signal observed on the th subcarrier.
도 2는 일 실시 예에 따른 무선 통신 시스템에서 기지국의 구성을 설명하는 블록도이다.Figure 2 is a block diagram illustrating the configuration of a base station in a wireless communication system according to an embodiment.
이하 사용되는 "~부", "~기" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.Terms such as “unit” and “unit” used hereinafter refer to a unit that processes at least one function or operation, and may be implemented as hardware, software, or a combination of hardware and software.
기지국(200)은 무선 통신부(210), 백홀 통신부(220), 저장부(230), 및 제어부(240)를 포함할 수 있다. 기지국(200)은 UE들과 통신할 수 있다. The base station 200 may include a wireless communication unit 210, a backhaul communication unit 220, a storage unit 230, and a control unit 240. The base station 200 can communicate with UEs.
무선 통신부(210)는 무선 채널을 통해 신호를 송수신하기 위한 동작들을 수행할 수 있다. 무선 통신부(210)는 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 동작을 수행할 수 있다. 예를 들어, 데이터 송신 시, 무선 통신부(210)는 송신 비트열을 부호화 및 변조함으로써 복소 심볼들을 생성할 수 있다. 데이터 수신시, 무선통신부(210)는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다.The wireless communication unit 210 may perform operations for transmitting and receiving signals through a wireless channel. The wireless communication unit 210 may perform a conversion operation between a baseband signal and a bit string according to the physical layer standard of the system. For example, when transmitting data, the wireless communication unit 210 may generate complex symbols by encoding and modulating the transmission bit string. When receiving data, the wireless communication unit 210 can restore the received bit stream by demodulating and decoding the baseband signal.
무선 통신부(210)는 기저대역 신호를 RF신호로 상향 변환(up converting)한 후 안테나들을 통해 송신할 수 있다. 무선 통신부(210)는 안테나들을 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환(down converting)할 수 있다. 이를 위해, 무선 통신부(210)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 무선 통신부(210)는 다수의 송수신 경로(path)들을 포함할 수 있다.The wireless communication unit 210 may up convert a baseband signal into an RF signal and transmit it through antennas. The wireless communication unit 210 may down convert RF band signals received through antennas into baseband signals. To this end, the wireless communication unit 210 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), etc. The wireless communication unit 210 may include multiple transmission and reception paths.
무선 통신부(210)는 다수의 안테나 요소들(antenna elements)로 구성된 적어도 하나의 안테나 어레이(antenna array)를 포함하는 통신 모듈(또는, 패키지형 모듈)을 포함할 수 있다.The wireless communication unit 210 may include a communication module (or packaged module) including at least one antenna array composed of a plurality of antenna elements.
무선 통신부(210)는 하드웨어의 측면에서, 디지털 유닛(digital unit) 및 아날로그 유닛(analog unit)(예: RFIC(radio frequency integrated circuit))으로 구성될 수 있으며, 아날로그 유닛은 동작 전력, 동작 주파수 등에 따라 다수의 서브 유닛(sub-unit)들로 구성될 수 있다. 디지털 유닛은 적어도 하나의 프로세서(예: DSP(digital signal processor))로 구현될 수 있다.In terms of hardware, the wireless communication unit 210 may be composed of a digital unit and an analog unit (e.g., a radio frequency integrated circuit (RFIC)), and the analog unit may be used for operating power, operating frequency, etc. Accordingly, it may be composed of multiple sub-units. A digital unit may be implemented with at least one processor (eg, digital signal processor (DSP)).
무선 통신부(210)는 전술한 바와 같이 신호를 송신 및 수신할 수 있다. 이에 따라, 무선 통신부(210)의 전부 또는 일부는 "송신기(transmitter)", "수신기(receiver)" 또는 "송수신기(transceiver)"로 지칭될 수 있다. 또한, 이하 설명에서, 무선 채널을 통해 수행되는 송신 및 수신은 무선 통신부(210)에 의해 상술한 바와 같은 처리가 수행되는 것을 포함하는 의미로 사용될 수 있다.The wireless communication unit 210 can transmit and receive signals as described above. Accordingly, all or part of the wireless communication unit 210 may be referred to as a “transmitter,” “receiver,” or “transceiver.” Additionally, in the following description, transmission and reception performed through a wireless channel may be used to mean that the processing as described above is performed by the wireless communication unit 210.
백홀(backhaul) 통신부(220)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공할 수 있다. 예를 들어, 백홀 통신부(220)는 기지국(200)에서 다른 노드(예: 다른 접속 노드, 다른 기지국, 상위 노드, 코어망 등)으로 송신되는 비트열을 물리적 신호로 변환할 수 있고, 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환할 수 있다.The backhaul communication unit 220 may provide an interface for communicating with other nodes in the network. For example, the backhaul communication unit 220 can convert a bit string transmitted from the base station 200 to another node (e.g., another access node, another base station, upper node, core network, etc.) into a physical signal, and the other node The physical signal received from can be converted into a bit string.
저장부(230)는 기지국(200)의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 저장부(230)는 휘발성 메모리, 비휘발성 메모리 또는 휘발성 메모리와 비휘발성 메모리의 조합으로 구성될 수 있다. 저장부(230)는 제어부(240)의 요청에 따라 저장된 데이터를 제공할 수 있다.The storage unit 230 may store data such as basic programs, application programs, and setting information for operation of the base station 200. The storage unit 230 may be comprised of volatile memory, non-volatile memory, or a combination of volatile memory and non-volatile memory. The storage unit 230 may provide stored data upon request from the control unit 240.
제어부(240)는 기지국(200)의 전반적인 동작들을 제어할 수 있다. 예를 들어, 제어부(240)는 무선 통신부(210)를 통해 또는 백홀 통신부(220)을 통해 신호를 송신 및 수신할 수 있다. 제어부(240)는 저장부(230)에 데이터를 기록할 수 있고, 읽을 수 있다. 제어부(240)는 통신 규격에서 요구하는 프로토콜 스택(protocol stack)의 기능들을 수행할 수 있다. 다른 예에서, 프로토콜 스택은 무선 통신부(210)에 포함될 수 있다. 제어부(240)는 상기의 기능들을 수행하기 위한 하드웨어 구성요소로서 적어도 하나의 프로세서를 포함할 수 있다.The control unit 240 can control the overall operations of the base station 200. For example, the control unit 240 may transmit and receive signals through the wireless communication unit 210 or the backhaul communication unit 220. The control unit 240 can write data to and read data from the storage unit 230. The control unit 240 can perform protocol stack functions required by communication standards. In another example, the protocol stack may be included in the wireless communication unit 210. The control unit 240 may include at least one processor as a hardware component for performing the above functions.
도 3은 일 실시 예에 따른 무선 통신 시스템에서 UE의 구성을 설명하는 블록도이다. Figure 3 is a block diagram explaining the configuration of a UE in a wireless communication system according to an embodiment.
도 3을 참조하면, UE(300)는 통신부(310), 저장부(320), 및 제어부(330)를 포함할 수 있다. Referring to FIG. 3, the UE 300 may include a communication unit 310, a storage unit 320, and a control unit 330.
통신부(310)는 무선 채널을 통해 신호를 송수신하기 위한 동작들을 수행할 수 있다. 예를 들어, 통신부(310)는 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행할 수 있다. 예를 들어, 데이터 송신 시, 통신부(310)는 송신 비트열을 부호화 및 변조함으로써 복소 심볼들을 생성할 수 있다. 데이터 수신 시, 통신부(310)는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원할 수 있다.The communication unit 310 may perform operations for transmitting and receiving signals through a wireless channel. For example, the communication unit 310 may perform a conversion function between a baseband signal and a bit string according to the physical layer standard of the system. For example, when transmitting data, the communication unit 310 may generate complex symbols by encoding and modulating the transmission bit string. When receiving data, the communication unit 310 can restore the received bit stream by demodulating and decoding the baseband signal.
통신부(310)는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 하나 이상의 안테나를 통해 기지국(200)으로 송신할 수 있다. 통신부(310)는 하나 이상의 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환할 수 있다. 예를 들어, 통신부(310)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다.The communication unit 310 may up-convert the baseband signal into an RF band signal and transmit it to the base station 200 through one or more antennas. The communication unit 310 may down-convert an RF band signal received through one or more antennas into a baseband signal. For example, the communication unit 310 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, etc.
통신부(310)는 다수의 송수신 경로들을 포함할 수 있다. 통신부(310)는 다수의 안테나 요소들로 구성된 적어도 하나의 안테나 어레이를 포함할 수 있다. 예를 들어, 안테나 요소는 안테나로 지칭될 수 있고, 다수의 안테나 요소들로 구성된 안테나 어레이는 다수의 안테나들을 포함하는 것으로 이해될 수 있다.The communication unit 310 may include multiple transmission and reception paths. The communication unit 310 may include at least one antenna array composed of multiple antenna elements. For example, an antenna element may be referred to as an antenna, and an antenna array composed of multiple antenna elements may be understood as including multiple antennas.
통신부(310)는 하드웨어의 측면에서, 디지털 회로 및 아날로그 회로(예: RFIC)로 구성될 수 있다. 예를 들어, 디지털 회로 및 아날로그 회로는 하나의 패키지로 구현될 수 있다. 통신부(310)는 다수의 RF 체인들을 포함할 수 있다. 통신부(310)는 빔포밍을 수행할 수 있다.In terms of hardware, the communication unit 310 may be composed of a digital circuit and an analog circuit (eg, RFIC). For example, digital circuits and analog circuits can be implemented in one package. The communication unit 310 may include multiple RF chains. The communication unit 310 may perform beamforming.
통신부(310)는 전술한 바와 같이 신호를 송신 및 수신할 수 있다. 이에 따라, 통신부(310)의 전부 또는 일부는 "송신기", "수신기" 또는 "송수신기"로 지칭될 수 있다. 또한, 이하 설명에서 무선 채널을 통해 수행되는 송신 및 수신은 통신부(310)에 의해 상술한 바와 같은 처리가 수행되는 것을 포함하는 의미로 사용된다.The communication unit 310 can transmit and receive signals as described above. Accordingly, all or part of the communication unit 310 may be referred to as a “transmitter,” “receiver,” or “transceiver.” Additionally, in the following description, transmission and reception performed through a wireless channel are used to mean that the processing as described above is performed by the communication unit 310.
저장부(320)는 UE(300)의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 저장부(320)는 휘발성 메모리, 비휘발성 메모리 또는 휘발성 메모리와 비휘발성 메모리의 조합으로 구성될 수 있다. 저장부(320)는 제어부(330)의 요청에 따라 저장된 데이터를 제공한다.The storage unit 320 may store data such as basic programs, application programs, and setting information for operation of the UE 300. The storage unit 320 may be comprised of volatile memory, non-volatile memory, or a combination of volatile memory and non-volatile memory. The storage unit 320 provides stored data upon request from the control unit 330.
제어부(330)는 UE(300)의 전반적인 동작들을 제어할 수 있다. 예를 들어, 제어부(330)는 통신부(310)를 통해 신호를 송신 및 수신할 수 있다. 제어부(330)는 저장부(320)에 데이터를 기록할 수 있고, 읽을 수 있다. 제어부(330)는 통신 규격에서 요구하는 프로토콜 스택의 기능들을 수행할 수 있다. 제어부(330)는 상기의 기능들을 수행하기 위한 적어도 하나의 프로세서 또는 마이크로(micro) 프로세서를 포함하거나, 또는, 프로세서의 일부로 구현될 수 있다. 예를 들어, 통신부(310)의 일부 및 제어부(330)는 CP(communication processor)라 지칭될 수 있다.The controller 330 may control the overall operations of the UE 300. For example, the control unit 330 may transmit and receive signals through the communication unit 310. The control unit 330 can write data to and read data from the storage unit 320. The control unit 330 can perform protocol stack functions required by communication standards. The control unit 330 may include at least one processor or microprocessor to perform the above functions, or may be implemented as part of a processor. For example, a portion of the communication unit 310 and the control unit 330 may be referred to as a communication processor (CP).
도 4는 일 실시 예에 따른 복조 블록을 설명하는 도면이다.Figure 4 is a diagram explaining a demodulation block according to an embodiment.
도 4를 참조하면, 일 실시 예에 따른 복조 블록(demodulation block)(410)은 수신 장치(110)의 수신 방법이 적용되는 최소 단위일 수 있다.Referring to FIG. 4, a demodulation block 410 according to an embodiment may be the minimum unit to which the reception method of the reception device 110 is applied.
복조 블록(410)은
Figure PCTKR2023011945-appb-img-000020
개의 인접한 부반송파들과
Figure PCTKR2023011945-appb-img-000021
개의 인접한 OFDM 심볼들(420-1 내지 420-14)을 포함할 수 있다. 복조 블록(410)은 예를 들어 5G NR 통신 표준의 자원 블록(RB: resource block)일 수 있다. 이 경우, 복조 블록(410)은 12개의 부반송파들과 14개의 OFDM 심볼들을 포함할 수 있다. 복조 블록(410)은 RB로 제한되는 것은 아니며 RB 보다 작은 단위일 수 있고, 여러 RB들을 합한 단위일 수 있다. 실시 예에 따라, 복조 블록(410)은 채널의 시간 영역 상관도 및 주파수 영역 상관도에 따라 적응적으로 설정되는 단위일 수 있다.
The demodulation block 410 is
Figure PCTKR2023011945-appb-img-000020
with adjacent subcarriers
Figure PCTKR2023011945-appb-img-000021
It may include adjacent OFDM symbols 420-1 to 420-14. The demodulation block 410 may be, for example, a resource block (RB) of the 5G NR communication standard. In this case, demodulation block 410 may include 12 subcarriers and 14 OFDM symbols. The demodulation block 410 is not limited to RB and may be a unit smaller than RB or may be a unit combining several RBs. Depending on the embodiment, the demodulation block 410 may be a unit that is adaptively set according to the time-domain correlation and frequency-domain correlation of the channel.
복조 블록(410)의
Figure PCTKR2023011945-appb-img-000022
개의 OFDM 심볼들(420-1 내지 420-14) 중
Figure PCTKR2023011945-appb-img-000023
개의 OFDM 심볼들(420-3, 420-12)을 통해 송신 장치(120)와 수신 장치(110)가 모두 알고 있는 기준 신호(RS: reference signal) 또는 복조 기준 신호(DMRS: demodulation reference signal)가 전송될 수 있다. 도 4에 도시된 복조 블록(410)의 경우, 예를 들어, 3번째 OFDM 심볼(420-3)과 12번째 OFDM 심볼(420-13)을 통해 RS가 전송될 수 있다.
Figure PCTKR2023011945-appb-img-000024
개의 OFDM 심볼들(420-1, 420-2, 420-4 내지 420-11, 420-13, 420-14)을 통해 송신 데이터를 포함하고 데이터 심볼들이 전송될 수 있다.
of demodulation block 410
Figure PCTKR2023011945-appb-img-000022
Among the OFDM symbols (420-1 to 420-14)
Figure PCTKR2023011945-appb-img-000023
A reference signal (RS) or a demodulation reference signal (DMRS) known to both the transmitting device 120 and the receiving device 110 is provided through the OFDM symbols 420-3 and 420-12. can be transmitted. In the case of the demodulation block 410 shown in FIG. 4, for example, RS may be transmitted through the 3rd OFDM symbol 420-3 and the 12th OFDM symbol 420-13.
Figure PCTKR2023011945-appb-img-000024
Data symbols containing transmission data may be transmitted through OFDM symbols 420-1, 420-2, 420-4 to 420-11, 420-13, and 420-14.
복조 블록(410)내에서 RS가 전송되는
Figure PCTKR2023011945-appb-img-000025
개의 OFDM 심볼 인덱스들은
Figure PCTKR2023011945-appb-img-000026
일 수 있다. 데이터 심볼들이 전송되는
Figure PCTKR2023011945-appb-img-000027
개의 OFDM 심볼 인덱스들은
Figure PCTKR2023011945-appb-img-000028
일 수 있다. 또한, 복조 블록(410)내의
Figure PCTKR2023011945-appb-img-000029
개의 인접한 부반송파 인덱스들은
Figure PCTKR2023011945-appb-img-000030
일 수 있다.
RS is transmitted within the demodulation block 410.
Figure PCTKR2023011945-appb-img-000025
The OFDM symbol indices are
Figure PCTKR2023011945-appb-img-000026
It can be. data symbols are transmitted
Figure PCTKR2023011945-appb-img-000027
The OFDM symbol indices are
Figure PCTKR2023011945-appb-img-000028
It can be. Additionally, in the demodulation block 410
Figure PCTKR2023011945-appb-img-000029
The adjacent subcarrier indices are
Figure PCTKR2023011945-appb-img-000030
It can be.
수신 장치(110)는 복조 블록(410)에 대해 채널 추정을 수행할 수 있다.The receiving device 110 may perform channel estimation on the demodulation block 410.
도 5는 일 실시 예에 따른 수신 장치의 예시를 설명하는 도면이다.FIG. 5 is a diagram illustrating an example of a receiving device according to an embodiment.
도 5를 참조하면, 수신 장치(500)(예: 도 1의 수신 장치(110))는 RS-기반 채널 추정기(estimator)(505), 순서 결정기(510), 채널 예측기(predictor)(520), 심볼 검출기(detector)(530), DS(detected symbol) 기반 채널 추정기(540), 선형 조합기(linear combiner)(550), 및 메모리(560)를 포함할 수 있다.Referring to FIG. 5, the receiving device 500 (e.g., the receiving device 110 of FIG. 1) includes an RS-based channel estimator 505, an order determiner 510, and a channel predictor 520. , a symbol detector 530, a detected symbol (DS)-based channel estimator 540, a linear combiner 550, and a memory 560.
도 2의 기지국(200) 또는 도 3의 UE(300)는 수신 장치(500)로 동작할 수 있다.The base station 200 of FIG. 2 or the UE 300 of FIG. 3 may operate as the reception device 500.
RS-기반 채널 추정기(505), 순서 결정기(510), 채널 예측기(520), 심볼 검출기(530), DS-기반 채널 추정기(540), 및 선형 조합기(550)는 수신 장치(500)의 프로세서에 의해 구현될 수 있다.RS-based channel estimator 505, orderer 510, channel predictor 520, symbol detector 530, DS-based channel estimator 540, and linear combiner 550 are processors of receiving device 500. It can be implemented by .
RS-기반 채널 추정기(505)는 복조 블록(예: 도 4의 복조 블록(410))의
Figure PCTKR2023011945-appb-img-000031
번째 OFDM 심볼에 대한 채널 추정치(
Figure PCTKR2023011945-appb-img-000032
)(이하, "
Figure PCTKR2023011945-appb-img-000033
번째 OFDM 심볼의 RS-기반 채널 추정치"라 지칭함)를 결정할 수 있다. 예를 들어, RS-기반 채널 추정기(505)는
Figure PCTKR2023011945-appb-img-000034
번째 OFDM 심볼의
Figure PCTKR2023011945-appb-img-000035
개 부반송파들에 대한 주파수 영역 채널 추정치들의 평균값을
Figure PCTKR2023011945-appb-img-000036
번째 OFDM 심볼의 RS-기반 채널 추정치로 결정할 수 있다.
The RS-based channel estimator 505 is a demodulation block (e.g., demodulation block 410 in FIG. 4).
Figure PCTKR2023011945-appb-img-000031
Channel estimate for the OFDM symbol (
Figure PCTKR2023011945-appb-img-000032
)(below, "
Figure PCTKR2023011945-appb-img-000033
(referred to as the “RS-based channel estimate” of the OFDM symbol) may be determined. For example, the RS-based channel estimator 505 may determine
Figure PCTKR2023011945-appb-img-000034
of the OFDM symbol
Figure PCTKR2023011945-appb-img-000035
The average of the frequency domain channel estimates for the subcarriers is
Figure PCTKR2023011945-appb-img-000036
It can be determined by the RS-based channel estimate of the th OFDM symbol.
RS-기반 채널 추정기(505)는 RS-기반 채널 추정 정보(예: RS-기반 채널 추정치와 심볼 인덱스 정보(
Figure PCTKR2023011945-appb-img-000037
))를 채널 예측기(520)로 전달할 수 있다.
RS-based channel estimator 505 provides RS-based channel estimation information (e.g., RS-based channel estimate and symbol index information (
Figure PCTKR2023011945-appb-img-000037
)) can be transmitted to the channel predictor 520.
순서 결정기(510)는 복조 블록(예: 도 4의 복조 블록(410))의 OFDM 심볼들 중 데이터 심볼들이 전송되는 OFDM 심볼들(예: 도 4의 N개의 OFDM 심볼들)의 채널 추정 순서를 결정할 수 있다. 일 실시 예에 있어서, 순서 결정기(510)는 RS가 전송되는 OFDM 심볼들의 위치와 데이터 심볼들이 전송되는 OFDM 심볼들의 위치를 이용하여 데이터 심볼들이 전송되는 OFDM 심볼들의 채널 추정 순서를 결정할 수 있다. The order determiner 510 determines the channel estimation order of OFDM symbols (e.g., N OFDM symbols in FIG. 4) through which data symbols are transmitted among the OFDM symbols of the demodulation block (e.g., demodulation block 410 in FIG. 4). You can decide. In one embodiment, the order determiner 510 may determine the channel estimation order of OFDM symbols through which data symbols are transmitted using the positions of OFDM symbols through which RS is transmitted and the positions of OFDM symbols through which data symbols are transmitted.
예를 들어, 도 4에 도시된 복조 블록(410)에서 3번째 OFDM 심볼(420-3)과 12번째 OFDM 심볼(420-12)을 통해 RS가 전송될 수 있다. 복조 블록(410)에서 순서 결정기(510)는 3번째 OFDM 심볼(420-3)과 가장 가까운 2번째 OFDM 심볼(420-2)과 4번째 OFDM 심볼(420-4) 중 하나를 첫번째로 채널 추정을 수행할 OFDM 심볼로 결정할 수 있고, 다른 하나를 두번째로 채널 추정을 수행할 OFDM 심볼로 결정할 수 있다. 순서 결정기(510)는 12번째 OFDM 심볼(420-12)과 가장 가까운 11번째 OFDM 심볼(420-11)과 13번째 OFDM 심볼(420-13) 중 하나를 세번째로 채널 추정을 수행할 OFDM 심볼로 결정할 수 있고, 다른 하나를 네번째로 채널 추정을 수행할 OFDM 심볼로 결정할 수 있다. 순서 결정기(510)는 3번째 OFDM 심볼(420-3)의 위치(또는 인덱스)(즉, 3)와 2만큼 차이나는 1번째 OFDM 심볼(420-1)과 5번째 OFDM 심볼(420-5) 중 하나를 다섯 번째로 채널 추정을 수행할 OFDM 심볼로 결정할 수 있고 다른 하나를 여섯 번째로 채널 추정을 수행할 OFDM 심볼로 결정할 수 있다. 순서 결정기(510)는 12번째 OFDM 심볼(420-12)의 위치(또는 인덱스)(즉, 12)와 2만큼 차이나는 10번째 OFDM 심볼(420-10)과 14번째 OFDM 심볼(420-14) 중 하나를 일곱 번째로 채널 추정을 수행할 OFDM 심볼로 결정할 수 있고 다른 하나를 여덟 번째로 채널 추정을 수행할 OFDM 심볼로 결정할 수 있다. 이러한 방식으로, 순서 결정기(510)는 데이터 심볼들이 전송되는 OFDM 심볼들(420-1, 420-2, 420-4 내지 420-11, 420-13, 420-14)의 채널 추정 순서를 결정할 수 있다. For example, in the demodulation block 410 shown in FIG. 4, RS may be transmitted through the 3rd OFDM symbol 420-3 and the 12th OFDM symbol 420-12. In the demodulation block 410, the order determiner 510 estimates the channel as the first one of the 2nd OFDM symbol 420-2 and the 4th OFDM symbol 420-4, which are closest to the 3rd OFDM symbol 420-3. can be determined as the OFDM symbol on which to perform channel estimation, and the other can be determined as the second OFDM symbol on which to perform channel estimation. The order determiner 510 selects one of the 11th OFDM symbol (420-11) and the 13th OFDM symbol (420-13), which are closest to the 12th OFDM symbol (420-12), as the third OFDM symbol to perform channel estimation. can be determined, and another one can be determined as the fourth OFDM symbol to perform channel estimation. The order determiner 510 selects the 1st OFDM symbol 420-1 and the 5th OFDM symbol 420-5 that are different from the position (or index) (i.e., 3) of the 3rd OFDM symbol 420-3 by 2. One of them can be determined as the fifth OFDM symbol on which to perform channel estimation, and the other one can be determined as the sixth OFDM symbol on which channel estimation will be performed. The order determiner 510 selects the 10th OFDM symbol (420-10) and the 14th OFDM symbol (420-14) that differ by 2 from the position (or index) (i.e., 12) of the 12th OFDM symbol (420-12). One of them can be determined as the seventh OFDM symbol to perform channel estimation, and the other can be determined as the eighth OFDM symbol to perform channel estimation. In this way, the order determiner 510 can determine the channel estimate order of OFDM symbols 420-1, 420-2, 420-4 to 420-11, 420-13, and 420-14 through which data symbols are transmitted. there is.
Figure PCTKR2023011945-appb-img-000038
번째로 채널 추정이 수행되는 OFDM 심볼의 인덱스를
Figure PCTKR2023011945-appb-img-000039
로 정의한다. 여기서,
Figure PCTKR2023011945-appb-img-000040
일 수 있다.
Figure PCTKR2023011945-appb-img-000038
Second, the index of the OFDM symbol on which channel estimation is performed is
Figure PCTKR2023011945-appb-img-000039
It is defined as here,
Figure PCTKR2023011945-appb-img-000040
It can be.
아래 표 1은 데이터 심볼들이 전송되는 OFDM 심볼들(420-1, 420-2, 420-4 내지 420-11, 420-13, 420-14)의 채널 추정 순서의 예시를 보여준다.Table 1 below shows an example of the channel estimation order of OFDM symbols 420-1, 420-2, 420-4 to 420-11, 420-13, and 420-14 through which data symbols are transmitted.
Figure PCTKR2023011945-appb-img-000041
번째로 채널 추정이 수행되는 OFDM 심볼의 인덱스(
Figure PCTKR2023011945-appb-img-000042
)
Figure PCTKR2023011945-appb-img-000041
Index of the OFDM symbol on which channel estimation is performed (
Figure PCTKR2023011945-appb-img-000042
)
설명explanation
Figure PCTKR2023011945-appb-img-000043
Figure PCTKR2023011945-appb-img-000043
OFDM 심볼(420-2)의 채널 추정 순서가 1번째The channel estimation order of the OFDM symbol (420-2) is 1st.
Figure PCTKR2023011945-appb-img-000044
Figure PCTKR2023011945-appb-img-000044
OFDM 심볼(420-4)의 채널 추정 순서가 2번째The channel estimation order of the OFDM symbol (420-4) is 2nd.
Figure PCTKR2023011945-appb-img-000045
Figure PCTKR2023011945-appb-img-000045
OFDM 심볼(420-11)의 채널 추정 순서가 3번째The channel estimation order of the OFDM symbol (420-11) is 3rd.
Figure PCTKR2023011945-appb-img-000046
Figure PCTKR2023011945-appb-img-000046
OFDM 심볼(420-13)의 채널 추정 순서가 4번째The channel estimation order of the OFDM symbol (420-13) is 4th.
Figure PCTKR2023011945-appb-img-000047
Figure PCTKR2023011945-appb-img-000047
OFDM 심볼(420-1)의 채널 추정 순서가 5번째The channel estimation order of the OFDM symbol (420-1) is 5th.
Figure PCTKR2023011945-appb-img-000048
Figure PCTKR2023011945-appb-img-000048
OFDM 심볼(420-5)의 채널 추정 순서가 6번째The channel estimation order of the OFDM symbol (420-5) is 6th.
Figure PCTKR2023011945-appb-img-000049
Figure PCTKR2023011945-appb-img-000049
OFDM 심볼(420-10)의 채널 추정 순서가 7번째The channel estimation order of the OFDM symbol (420-10) is 7th.
Figure PCTKR2023011945-appb-img-000050
Figure PCTKR2023011945-appb-img-000050
OFDM 심볼(420-14)의 채널 추정 순서가 8번째The channel estimation order of OFDM symbol (420-14) is 8th.
Figure PCTKR2023011945-appb-img-000051
Figure PCTKR2023011945-appb-img-000051
OFDM 심볼(420-6)의 채널 추정 순서가 9번째The channel estimation order of the OFDM symbol (420-6) is 9th.
Figure PCTKR2023011945-appb-img-000052
Figure PCTKR2023011945-appb-img-000052
OFDM 심볼(420-9)의 채널 추정 순서가 10번째The channel estimation order of the OFDM symbol (420-9) is 10th.
Figure PCTKR2023011945-appb-img-000053
Figure PCTKR2023011945-appb-img-000053
OFDM 심볼(420-7)의 채널 추정 순서가 11번째The channel estimation order of the OFDM symbol (420-7) is 11th.
Figure PCTKR2023011945-appb-img-000054
Figure PCTKR2023011945-appb-img-000054
OFDM 심볼(420-8)의 채널 추정 순서가 12번째The channel estimation order of the OFDM symbol (420-8) is 12th.
순서 결정기(510)는 데이터 심볼들이 전송되는 OFDM 심볼들의 채널 추정 순서 정보(
Figure PCTKR2023011945-appb-img-000055
)(예: 2, 4, 11, 13, …, 8)를 채널 예측기(520)로 전달할 수 있다.
The order determiner 510 provides channel estimate order information of OFDM symbols through which data symbols are transmitted (
Figure PCTKR2023011945-appb-img-000055
) (e.g. 2, 4, 11, 13, …, 8) can be transmitted to the channel predictor 520.
예를 들어,
Figure PCTKR2023011945-appb-img-000056
번째 채널 추정 순서일 수 있다. 메모리(560)에 이전 순서의 채널 추정 정보(예:
Figure PCTKR2023011945-appb-img-000057
)가 저장되어 있을 수 있다. 이전 순서의 채널 추정 정보는, 예를 들어, 이전 순서의 선형 조합 기반 채널 추정치들(
Figure PCTKR2023011945-appb-img-000058
)과 심볼 인덱스 정보(
Figure PCTKR2023011945-appb-img-000059
)를 포함할 수 있다.
for example,
Figure PCTKR2023011945-appb-img-000056
It may be the th channel estimation order. Memory 560 contains channel estimation information from the previous order, e.g.
Figure PCTKR2023011945-appb-img-000057
) may be stored. The previous order's channel estimate information is, for example, the previous order's linear combination-based channel estimates (
Figure PCTKR2023011945-appb-img-000058
) and symbol index information (
Figure PCTKR2023011945-appb-img-000059
) may include.
채널 예측기(520)는 RS-기반 채널 추정 정보(예:
Figure PCTKR2023011945-appb-img-000060
)와 메모리(560)에 저장된 채널 추정 정보(예:
Figure PCTKR2023011945-appb-img-000061
)를 이용하여
Figure PCTKR2023011945-appb-img-000062
번째 채널 추정 순서의 OFDM 심볼(즉, OFDM 심볼
Figure PCTKR2023011945-appb-img-000063
)에 대한 채널 예측치(
Figure PCTKR2023011945-appb-img-000064
)를 결정할 수 있다.
Channel predictor 520 may provide RS-based channel estimation information, e.g.
Figure PCTKR2023011945-appb-img-000060
) and channel estimation information stored in memory 560 (e.g.
Figure PCTKR2023011945-appb-img-000061
) using
Figure PCTKR2023011945-appb-img-000062
OFDM symbol of the th channel estimation order (i.e. OFDM symbol
Figure PCTKR2023011945-appb-img-000063
) Channel forecast for (
Figure PCTKR2023011945-appb-img-000064
) can be determined.
일 실시 예에 있어서, 채널 예측기(520)는 RS-기반 채널 추정치들(
Figure PCTKR2023011945-appb-img-000065
)과 이전 순서의 선형 조합 기반 채널 추정치들(
Figure PCTKR2023011945-appb-img-000066
)에 대해 시간 영역 보간 기법을 적용하여
Figure PCTKR2023011945-appb-img-000067
를 결정할 수 있다.
In one embodiment, channel predictor 520 generates RS-based channel estimates (
Figure PCTKR2023011945-appb-img-000065
) and channel estimates based on a linear combination of the previous sequence (
Figure PCTKR2023011945-appb-img-000066
) by applying a time domain interpolation technique to
Figure PCTKR2023011945-appb-img-000067
can be decided.
일 실시 예에 있어서, 채널 예측기(520)는 RS가 전송된 OFDM 심볼 인덱스들(
Figure PCTKR2023011945-appb-img-000068
)과 채널 추정(또는 심볼 검출)이 수행된 OFDM 심볼 인덱스들(
Figure PCTKR2023011945-appb-img-000069
) 중 OFDM 심볼
Figure PCTKR2023011945-appb-img-000070
와 가장 가까운 인덱스를 찾을 수 있고, 찾은 인덱스에 대한 채널 추정치를
Figure PCTKR2023011945-appb-img-000071
로 결정할 수 있다. 예를 들어, 현재 4번째 채널 추정 순서일 수 있다. 위 표 1에 따라 OFDM 심볼
Figure PCTKR2023011945-appb-img-000072
는 13번째 OFDM 심볼(420-13)이므로, 채널 예측기(520)는 RS가 전송된 OFDM 심볼 인덱스들(예: 3과 12)과 채널 추정(또는 심볼 검출)이 수행된 OFDM 심볼 인덱스들(예: 2, 4, 11) 중 OFDM 심볼
Figure PCTKR2023011945-appb-img-000073
의 인덱스 13과 가장 가까운 인덱스 12를 찾을 수 있다. 다시 말해, 채널 예측기(520)는 RS가 전송된 OFDM 심볼들(420-3, 420-12)과 채널 추정(예: 선형 조합 기반의 채널 추정)이 이미 수행된 OFDM 심볼들(420-2, 420-4, 420-11) 중 OFDM 심볼
Figure PCTKR2023011945-appb-img-000074
와 가장 가까운 위치의 OFDM 심볼(420-12)을 찾을 수 있다. 채널 예측기(520)는 OFDM 심볼(420-12)의 선형 조합 기반의 채널 추정치(
Figure PCTKR2023011945-appb-img-000075
)를 OFDM 심볼
Figure PCTKR2023011945-appb-img-000076
의 채널 예측치(
Figure PCTKR2023011945-appb-img-000077
)로 결정할 수 있다.
In one embodiment, the channel predictor 520 determines the OFDM symbol indices through which the RS was transmitted (
Figure PCTKR2023011945-appb-img-000068
) and OFDM symbol indices on which channel estimation (or symbol detection) was performed (
Figure PCTKR2023011945-appb-img-000069
) OFDM symbol
Figure PCTKR2023011945-appb-img-000070
You can find the closest index to
Figure PCTKR2023011945-appb-img-000071
can be decided. For example, it may currently be the 4th channel estimation order. OFDM symbols according to Table 1 above
Figure PCTKR2023011945-appb-img-000072
Since is the 13th OFDM symbol 420-13, the channel predictor 520 uses the OFDM symbol indexes on which the RS was transmitted (e.g., 3 and 12) and the OFDM symbol indexes on which channel estimation (or symbol detection) was performed (e.g., : OFDM symbols among 2, 4, 11)
Figure PCTKR2023011945-appb-img-000073
You can find the closest index 12 to index 13. In other words, the channel predictor 520 uses the OFDM symbols 420-3 and 420-12 on which RS has been transmitted and the OFDM symbols 420-2, on which channel estimation (e.g., linear combination-based channel estimation) has already been performed. 420-4, 420-11) OFDM symbol
Figure PCTKR2023011945-appb-img-000074
You can find the OFDM symbol (420-12) at the closest position. The channel predictor 520 is a channel estimate based on a linear combination of OFDM symbols 420-12 (
Figure PCTKR2023011945-appb-img-000075
) OFDM symbol
Figure PCTKR2023011945-appb-img-000076
Channel prediction value (
Figure PCTKR2023011945-appb-img-000077
) can be determined.
채널 예측기(520)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000078
에 대한 채널 예측치(
Figure PCTKR2023011945-appb-img-000079
)를 심볼 검출기(530)와 선형 조합기(550)로 전달할 수 있다.
Channel predictor 520 is an OFDM symbol
Figure PCTKR2023011945-appb-img-000078
Channel forecast for (
Figure PCTKR2023011945-appb-img-000079
) can be transmitted to the symbol detector 530 and the linear combiner 550.
심볼 검출기(530)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000080
에 대한 채널 예측치(
Figure PCTKR2023011945-appb-img-000081
)를 이용하여 OFDM 심볼
Figure PCTKR2023011945-appb-img-000082
의 수신 신호들(
Figure PCTKR2023011945-appb-img-000083
)로부터 데이터 심볼들을 검출할 수 있다. 수신 신호
Figure PCTKR2023011945-appb-img-000084
로부터 검출된 데이터 심볼은
Figure PCTKR2023011945-appb-img-000085
로 표현될 수 있다.
The symbol detector 530 is an OFDM symbol
Figure PCTKR2023011945-appb-img-000080
Channel forecast for (
Figure PCTKR2023011945-appb-img-000081
) using OFDM symbol
Figure PCTKR2023011945-appb-img-000082
The received signals (
Figure PCTKR2023011945-appb-img-000083
) can detect data symbols from. receiving signal
Figure PCTKR2023011945-appb-img-000084
The data symbols detected from
Figure PCTKR2023011945-appb-img-000085
It can be expressed as
일 실시 예에 있어서, 심볼 검출기(530)는 최대우도(maximum likelihood) 검출 방식을 통해 데이터 심볼들을 검출할 수 있다. 최대우도 검출 방식을 통해 검출된 데이터 심볼들은 아래 수학식 3으로 표현될 수 있다.In one embodiment, the symbol detector 530 may detect data symbols through a maximum likelihood detection method. Data symbols detected through the maximum likelihood detection method can be expressed in Equation 3 below.
[수학식 3][Equation 3]
Figure PCTKR2023011945-appb-img-000086
Figure PCTKR2023011945-appb-img-000086
일 실시 예에 있어서, 심볼 검출기(530)는 선형 검출 방식(예: 제로 포싱((zero-forcing)))을 통해 데이터 심볼들을 검출할 수 있다. 제로 포싱은
Figure PCTKR2023011945-appb-img-000087
일 때 이용될 수 있다. 제로 포싱을 통해 검출된 데이터 심볼들은 아래 수학식 4로 표현될 수 있다.
In one embodiment, the symbol detector 530 may detect data symbols through a linear detection method (eg, zero-forcing). Zero forcing is
Figure PCTKR2023011945-appb-img-000087
It can be used when Data symbols detected through zero forcing can be expressed in Equation 4 below.
[수학식 4][Equation 4]
Figure PCTKR2023011945-appb-img-000088
Figure PCTKR2023011945-appb-img-000088
실시 예에 따라, 검출된 데이터 심볼의 원소들은 심볼 성상도의 원소들 중 하나로 표현되지 않을 수 있다. 이 경우, 심볼 검출기(530)는 검출된 데이터 심볼을 심볼 성상도의 원소들 중 가장 인접한 원소로 대응시킬 수 있다.Depending on the embodiment, the elements of the detected data symbol may not be represented as one of the elements of the symbol constellation. In this case, the symbol detector 530 may correspond to the detected data symbol with the closest element among the elements of the symbol constellation.
DS-기반 채널 추정기(540)는 수신 신호들(
Figure PCTKR2023011945-appb-img-000089
)과 검출된 데이터 심볼들(
Figure PCTKR2023011945-appb-img-000090
)을 이용하여 OFDM 심볼
Figure PCTKR2023011945-appb-img-000091
에 대한 DS-기반 채널 추정치(또는 제1 채널 추정치)를 결정할 수 있다. OFDM 심볼
Figure PCTKR2023011945-appb-img-000092
에 대한 DS-기반 채널 추정치는
Figure PCTKR2023011945-appb-img-000093
로 표현될 수 있다.
DS-based channel estimator 540 receives received signals (
Figure PCTKR2023011945-appb-img-000089
) and detected data symbols (
Figure PCTKR2023011945-appb-img-000090
) using OFDM symbol
Figure PCTKR2023011945-appb-img-000091
A DS-based channel estimate (or first channel estimate) for can be determined. OFDM symbol
Figure PCTKR2023011945-appb-img-000092
The DS-based channel estimate for is
Figure PCTKR2023011945-appb-img-000093
It can be expressed as
일 실시 예에 있어서, DS-기반 채널 추정기(540)는 최소 제곱 방법(least square method)을 통해 OFDM 심볼
Figure PCTKR2023011945-appb-img-000094
에 대한 DS-기반 채널 추정치를 결정할 수 있다. 최소 제곱 방법을 통해 결정된 DS-기반 채널 추정치는 아래 수학식 5로 표현될 수 있다.
In one embodiment, the DS-based channel estimator 540 calculates the OFDM symbol through the least square method.
Figure PCTKR2023011945-appb-img-000094
A DS-based channel estimate for can be determined. The DS-based channel estimate determined through the least squares method can be expressed as Equation 5 below.
[수학식 5][Equation 5]
Figure PCTKR2023011945-appb-img-000095
Figure PCTKR2023011945-appb-img-000095
위 수학식 5에서,
Figure PCTKR2023011945-appb-img-000096
는 수신 신호 행렬을 나타낼 수 있고,
Figure PCTKR2023011945-appb-img-000097
는 검출된 데이터 심볼 행렬을 나타낼 수 있으며,
Figure PCTKR2023011945-appb-img-000098
는 에르미트(Hermitian) 연산을 나타낼 수 있고,
Figure PCTKR2023011945-appb-img-000099
는 역행렬 연산을 나타낼 수 있다.
In Equation 5 above,
Figure PCTKR2023011945-appb-img-000096
can represent the received signal matrix,
Figure PCTKR2023011945-appb-img-000097
may represent the detected data symbol matrix,
Figure PCTKR2023011945-appb-img-000098
can represent the Hermitian operation,
Figure PCTKR2023011945-appb-img-000099
can represent an inverse matrix operation.
일 실시 예에 있어서, DS-기반 채널 추정기(540)는 선형 최소 평균 제곱 오차 방법(linear least mean square error method)을 통해 OFDM 심볼
Figure PCTKR2023011945-appb-img-000100
에 대한 DS-기반 채널 추정치를 결정할 수 있다. 선형 최소 평균 제곱 오차 방법을 통해 결정된 DS-기반 채널 추정치는 아래 수학식 6으로 표현될 수 있다.
In one embodiment, the DS-based channel estimator 540 calculates OFDM symbols through a linear least mean square error method.
Figure PCTKR2023011945-appb-img-000100
A DS-based channel estimate for can be determined. The DS-based channel estimate determined through the linear least mean square error method can be expressed as Equation 6 below.
[수학식 6][Equation 6]
Figure PCTKR2023011945-appb-img-000101
Figure PCTKR2023011945-appb-img-000101
위 수학식 6에서,
Figure PCTKR2023011945-appb-img-000102
Figure PCTKR2023011945-appb-img-000103
개의 송신 안테나 포트로부터 각 수신 안테나 포트로 형성되는 채널의 공분산 행렬을 나타낼 수 있고,
Figure PCTKR2023011945-appb-img-000104
는 잡음 신호의 분산값을 나타낼 수 있으며,
Figure PCTKR2023011945-appb-img-000105
Figure PCTKR2023011945-appb-img-000106
차원의 단위 행렬을 나타낼 수 있다.
In Equation 6 above,
Figure PCTKR2023011945-appb-img-000102
Is
Figure PCTKR2023011945-appb-img-000103
It can represent the covariance matrix of the channel formed from each transmit antenna port to each receive antenna port,
Figure PCTKR2023011945-appb-img-000104
can represent the variance of the noise signal,
Figure PCTKR2023011945-appb-img-000105
Is
Figure PCTKR2023011945-appb-img-000106
It can represent a dimensional identity matrix.
DS-기반 채널 추정기(540)가 DS-기반 채널 추정치를 결정하는 방법은 전술한 최소 제곱 방법과 선형 최소 평균 제곱 오차 방법으로 제한되지 않는다.The method by which the DS-based channel estimator 540 determines the DS-based channel estimate is not limited to the least squares method and the linear least mean square error method described above.
선형 조합기(550)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000107
에 대한 채널 예측치(
Figure PCTKR2023011945-appb-img-000108
)와 OFDM 심볼
Figure PCTKR2023011945-appb-img-000109
에 대한 DS-기반 채널 추정치(
Figure PCTKR2023011945-appb-img-000110
)를 선형 조합하여 OFDM 심볼
Figure PCTKR2023011945-appb-img-000111
에 대한 선형 조합 기반 채널 추정치(또는 제2 채널 추정치)를 결정할 수 있다. OFDM 심볼
Figure PCTKR2023011945-appb-img-000112
에 대한 선형 조합 기반 채널 추정치는 아래 수학식 7로 표현될 수 있다.
Linear combiner 550 is an OFDM symbol
Figure PCTKR2023011945-appb-img-000107
Channel forecast for (
Figure PCTKR2023011945-appb-img-000108
) and OFDM symbols
Figure PCTKR2023011945-appb-img-000109
DS-based channel estimates for (
Figure PCTKR2023011945-appb-img-000110
) is linearly combined to create an OFDM symbol
Figure PCTKR2023011945-appb-img-000111
A linear combination-based channel estimate (or second channel estimate) may be determined. OFDM symbol
Figure PCTKR2023011945-appb-img-000112
The linear combination-based channel estimate for can be expressed as Equation 7 below.
[수학식 7][Equation 7]
Figure PCTKR2023011945-appb-img-000113
Figure PCTKR2023011945-appb-img-000113
위 수학식 7에서,
Figure PCTKR2023011945-appb-img-000114
는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000115
의 채널 추정에 사용되는
Figure PCTKR2023011945-appb-img-000116
Figure PCTKR2023011945-appb-img-000117
사이의 조합 비(combination ratio)를 나타낼 수 있고, 0에서 1사이의 값으로 결정될 수 있다.
In Equation 7 above,
Figure PCTKR2023011945-appb-img-000114
is the OFDM symbol
Figure PCTKR2023011945-appb-img-000115
used for channel estimation of
Figure PCTKR2023011945-appb-img-000116
and
Figure PCTKR2023011945-appb-img-000117
It can represent the combination ratio between and can be determined as a value between 0 and 1.
선형 조합기(550)는 최적의
Figure PCTKR2023011945-appb-img-000118
를 결정할 수 있다.
Linear combiner 550 provides optimal
Figure PCTKR2023011945-appb-img-000118
can be decided.
일 실시 예에 있어서, 선형 조합기(550)는 평균 제곱 오차(MSE: mean square error)를 통해 최적의
Figure PCTKR2023011945-appb-img-000119
를 결정할 수 있다. 이 경우,
Figure PCTKR2023011945-appb-img-000120
는 아래 수학식 8로 표현될 수 있다.
In one embodiment, the linear combiner 550 determines the optimal value through mean square error (MSE).
Figure PCTKR2023011945-appb-img-000119
can be decided. in this case,
Figure PCTKR2023011945-appb-img-000120
Can be expressed as Equation 8 below.
[수학식 8][Equation 8]
Figure PCTKR2023011945-appb-img-000121
Figure PCTKR2023011945-appb-img-000121
위 수학식 8에서,
Figure PCTKR2023011945-appb-img-000122
는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000123
에 대한 DS-기반 채널 추정치(
Figure PCTKR2023011945-appb-img-000124
)의 평균 제곱 오차를 나타낼 수 있고,
Figure PCTKR2023011945-appb-img-000125
는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000126
에 대한 채널 예측치(
Figure PCTKR2023011945-appb-img-000127
)의 평균 제곱 오차를 나타낼 수 있다.
In Equation 8 above,
Figure PCTKR2023011945-appb-img-000122
is the OFDM symbol
Figure PCTKR2023011945-appb-img-000123
DS-based channel estimates for (
Figure PCTKR2023011945-appb-img-000124
) can represent the mean square error of
Figure PCTKR2023011945-appb-img-000125
is the OFDM symbol
Figure PCTKR2023011945-appb-img-000126
Channel forecast for (
Figure PCTKR2023011945-appb-img-000127
) can represent the mean square error.
선형 조합기(550)가 위 수학식 8을 통해 결정된 최적의
Figure PCTKR2023011945-appb-img-000128
를 이용할 경우, 선형 조합을 통해 결정된 채널 추정치(
Figure PCTKR2023011945-appb-img-000129
)의 평균 제곱 오차를 아래 수학식 9를 통해 결정할 수 있다.
The linear combiner 550 determines the optimal
Figure PCTKR2023011945-appb-img-000128
When using, the channel estimate determined through linear combination (
Figure PCTKR2023011945-appb-img-000129
) can be determined through Equation 9 below.
[수학식 9][Equation 9]
Figure PCTKR2023011945-appb-img-000130
Figure PCTKR2023011945-appb-img-000130
일 실시 예에 있어서,
Figure PCTKR2023011945-appb-img-000131
는 DS-기반 채널 추정기(540)가 최소 제곱 방법 또는 선형 최소 평균 제곱 오차 방법을 이용했는지에 따라 달라질 수 있다.
In one embodiment,
Figure PCTKR2023011945-appb-img-000131
may vary depending on whether the DS-based channel estimator 540 uses the least squares method or the linear least mean square error method.
선형 조합기(550)는 DS-기반 채널 추정기(540)가 최소 제곱 방법을 이용한 경우, 아래 수학식 10을 통해
Figure PCTKR2023011945-appb-img-000132
를 결정할 수 있다.
When the DS-based channel estimator 540 uses the least squares method, the linear combiner 550 uses Equation 10 below:
Figure PCTKR2023011945-appb-img-000132
can be decided.
[수학식 10][Equation 10]
Figure PCTKR2023011945-appb-img-000133
Figure PCTKR2023011945-appb-img-000133
선형 조합기(550)는 DS-기반 채널 추정기(540)가 선형 최소 평균 제곱 오차 방법을 이용한 경우, 아래 수학식 11을 통해
Figure PCTKR2023011945-appb-img-000134
를 결정할 수 있다.
When the DS-based channel estimator 540 uses the linear least mean square error method, the linear combiner 550 uses Equation 11 below:
Figure PCTKR2023011945-appb-img-000134
can be decided.
[수학식 11][Equation 11]
Figure PCTKR2023011945-appb-img-000135
Figure PCTKR2023011945-appb-img-000135
일 실시 예에 있어서, 선형 조합기(550)는
Figure PCTKR2023011945-appb-img-000136
를 계산할 수 있다.
In one embodiment, linear combiner 550 is
Figure PCTKR2023011945-appb-img-000136
can be calculated.
선형 조합기(550)는 RS-기반 채널 추정치들(
Figure PCTKR2023011945-appb-img-000137
)과 이전 순서의 선형 조합 기반 채널 추정치들(
Figure PCTKR2023011945-appb-img-000138
))에 대해 계산된 평균 제곱 오차들에 시간 영역 보간 기법을 적용하여
Figure PCTKR2023011945-appb-img-000139
를 결정할 수 있다.
Linear combiner 550 provides RS-based channel estimates (
Figure PCTKR2023011945-appb-img-000137
) and channel estimates based on a linear combination of the previous sequence (
Figure PCTKR2023011945-appb-img-000138
)) By applying a time-domain interpolation technique to the calculated mean square errors,
Figure PCTKR2023011945-appb-img-000139
can be decided.
선형 조합기(550)는 RS가 전송되는 OFDM 심볼 인덱스들(
Figure PCTKR2023011945-appb-img-000140
)과 이전 순서의 OFDM 심볼 인덱스(
Figure PCTKR2023011945-appb-img-000141
) 중 OFDM 심볼
Figure PCTKR2023011945-appb-img-000142
와 가장 가까운 OFDM 심볼 인덱스를 결정할 수 있다. 선형 조합기(550)는 결정된 OFDM 심볼 인덱스에 대한 평균 제곱 오차를
Figure PCTKR2023011945-appb-img-000143
로 결정할 수 있다. 예를 들어, 현재 4번째 채널 추정 순서일 수 있다. 위 표 1에 따라 OFDM 심볼
Figure PCTKR2023011945-appb-img-000144
은 13번째 OFDM 심볼(420-13)일 수 있다. 선형 조합기(550)는 RS가 전송되는 OFDM 심볼 인덱스들(예: 3과 12)과 선형 조합 기반 채널 추정이 이미 수행된 OFDM 심볼 인덱스(예: 2, 4, 11) 중에서 OFDM 심볼
Figure PCTKR2023011945-appb-img-000145
의 인덱스 13과 가장 가까운 인덱스 12를 찾을 수 있다. 다시 말해, 선형 조합기(550)는 RS가 전송된 OFDM 심볼들(420-3, 420-12)과 채널 추정이 이미 수행된 OFDM 심볼들(420-2, 420-4, 420-11) 중 OFDM 심볼
Figure PCTKR2023011945-appb-img-000146
와 가장 가까운 위치의 OFDM 심볼(420-12)을 찾을 수 있다. 선형 조합기(550)는 OFDM 심볼(420-12)에 대한 채널 추정치의 평균 제곱 오차를
Figure PCTKR2023011945-appb-img-000147
로 결정할 수 있다.
The linear combiner 550 uses the OFDM symbol indices through which RS is transmitted (
Figure PCTKR2023011945-appb-img-000140
) and the OFDM symbol index of the previous order (
Figure PCTKR2023011945-appb-img-000141
) OFDM symbol
Figure PCTKR2023011945-appb-img-000142
The OFDM symbol index closest to can be determined. The linear combiner 550 calculates the mean square error for the determined OFDM symbol index.
Figure PCTKR2023011945-appb-img-000143
can be decided. For example, it may currently be the 4th channel estimation order. OFDM symbol according to Table 1 above
Figure PCTKR2023011945-appb-img-000144
may be the 13th OFDM symbol (420-13). The linear combiner 550 selects an OFDM symbol from among OFDM symbol indices (e.g., 3 and 12) on which RS is transmitted and OFDM symbol indices (e.g., 2, 4, and 11) for which linear combination-based channel estimation has already been performed.
Figure PCTKR2023011945-appb-img-000145
You can find the closest index 12 to index 13. In other words, the linear combiner 550 selects the OFDM symbols (420-3, 420-12) on which RS has been transmitted and the OFDM symbols (420-2, 420-4, 420-11) on which channel estimation has already been performed. symbol
Figure PCTKR2023011945-appb-img-000146
You can find the OFDM symbol (420-12) at the closest position. Linear combiner 550 calculates the mean square error of the channel estimates for OFDM symbols 420-12.
Figure PCTKR2023011945-appb-img-000147
can be decided.
선형 조합기(550)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000148
에 대한 선형 조합 기반 채널 추정치(
Figure PCTKR2023011945-appb-img-000149
)와 인덱스(
Figure PCTKR2023011945-appb-img-000150
)를 메모리(560)에 저장할 수 있다. 달리 표현하면, 선형 조합기(550)는 채널 추정치(
Figure PCTKR2023011945-appb-img-000151
)와 인덱스(
Figure PCTKR2023011945-appb-img-000152
)를 이전 순서의 채널 추정 정보(예:
Figure PCTKR2023011945-appb-img-000153
)에 포함시킴으로써 채널 추정 정보(예:
Figure PCTKR2023011945-appb-img-000154
)를 업데이트할 수 있다. 메모리(560)에 업데이트된 채널 추정 정보(
Figure PCTKR2023011945-appb-img-000155
)가 저장될 수 있다.
Linear combiner 550 is an OFDM symbol
Figure PCTKR2023011945-appb-img-000148
A linear combination-based channel estimate for (
Figure PCTKR2023011945-appb-img-000149
) and index (
Figure PCTKR2023011945-appb-img-000150
) can be stored in the memory 560. In other words, the linear combiner 550 provides a channel estimate (
Figure PCTKR2023011945-appb-img-000151
) and index (
Figure PCTKR2023011945-appb-img-000152
) to the channel estimation information from the previous sequence, e.g.
Figure PCTKR2023011945-appb-img-000153
) by including channel estimation information (e.g.
Figure PCTKR2023011945-appb-img-000154
) can be updated. Channel estimation information updated in memory 560 (
Figure PCTKR2023011945-appb-img-000155
) can be stored.
도 5에 도시되지 않았으나, 수신 장치(500)는 채널 복호기를 더 포함할 수 있다. 수신 장치(500)는 데이터 심볼들이 전송되는 OFDM 심볼들 각각에 대한 채널 추정을 완료할 수 있다. 데이터 심볼들이 전송되는 OFDM 심볼들에 대한 채널 추정이 완료된 경우, 예를 들어, 심볼 검출부(530)는 데이터 심볼들이 전송되는 OFDM 심볼들 각각의 수신 신호들로부터 검출된 데이터 심볼들(
Figure PCTKR2023011945-appb-img-000156
)을 복호를 위해 채널 복호기에 전달할 수 있다. 다른 예로, 심볼 검출부(530)는 검출된 데이터 심볼들(
Figure PCTKR2023011945-appb-img-000157
)에 해당하는 로그-우도비(log-likelihood ratio)를 채널 복호기에 전달할 수 있다.
Although not shown in FIG. 5, the receiving device 500 may further include a channel decoder. The receiving device 500 may complete channel estimation for each OFDM symbol through which data symbols are transmitted. When channel estimation for OFDM symbols through which data symbols are transmitted is completed, for example, the symbol detector 530 detects data symbols from the received signals of each of the OFDM symbols through which data symbols are transmitted (
Figure PCTKR2023011945-appb-img-000156
) can be transmitted to the channel decoder for decoding. As another example, the symbol detection unit 530 detects data symbols (
Figure PCTKR2023011945-appb-img-000157
) can be transmitted to the channel decoder.
도 6은 일 실시 예에 따른 채널 추정 순서의 예시를 설명하는 도면이다.FIG. 6 is a diagram illustrating an example of a channel estimation order according to an embodiment.
도 6을 참조하면, 수신 장치(500)는 RS가 전송되는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000158
(예: 도 4의 OFDM 심볼(420-3))에 대한 채널 추정치와 RS가 전송되는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000159
(예: 도 4의 OFDM 심볼(420-12))에 대한 채널 추정치를 결정할 수 있다.
Referring to FIG. 6, the receiving device 500 receives the OFDM symbol through which RS is transmitted.
Figure PCTKR2023011945-appb-img-000158
Channel estimate for (e.g., OFDM symbol 420-3 in FIG. 4) and OFDM symbol on which RS is transmitted
Figure PCTKR2023011945-appb-img-000159
A channel estimate may be determined for (e.g., OFDM symbol 420-12 in FIG. 4).
위에서 설명한 것과 같이, 수신 장치(500)는 데이터 심볼들이 전송되는 OFDM 심볼들의 채널 추정 순서를 결정할 수 있다. 결정된 채널 추정 순서에 따라, 수신 장치(500)는 데이터 심볼들이 전송되는 OFDM 심볼들 각각의 선형 조합 기반 채널 추정치를 결정할 수 있다.As described above, the receiving device 500 can determine the channel estimation order of OFDM symbols through which data symbols are transmitted. According to the determined channel estimation order, the receiving device 500 may determine a linear combination-based channel estimate for each OFDM symbol through which data symbols are transmitted.
도 6에 도시된 예에서, 수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000160
(예: 도 4의 OFDM 심볼(420-2))에 대한 선형 조합 기반 채널 추정치를 가장 먼저 결정할 수 있다.
In the example shown in FIG. 6, the receiving device 500 receives an OFDM symbol
Figure PCTKR2023011945-appb-img-000160
A linear combination-based channel estimate for (e.g., OFDM symbol 420-2 in FIG. 4) can be determined first.
수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000161
(예: 도 4의 OFDM 심볼(420-4))에 대한 선형 조합 기반 채널 추정치를 두번째로 결정할 수 있다.
The receiving device 500 uses an OFDM symbol
Figure PCTKR2023011945-appb-img-000161
A linear combination-based channel estimate for (e.g., OFDM symbol 420-4 in FIG. 4) may be determined second.
수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000162
(예: 도 4의 OFDM 심볼(420-11))에 대한 선형 조합 기반 채널 추정치를 세번째로 결정할 수 있다.
The receiving device 500 uses an OFDM symbol
Figure PCTKR2023011945-appb-img-000162
A linear combination-based channel estimate for (e.g., OFDM symbol 420-11 in FIG. 4) may be determined thirdly.
수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000163
내지 OFDM 심볼
Figure PCTKR2023011945-appb-img-000164
각각에 대한 선형 조합 기반 채널 추정치를 순차적으로 결정할 수 있다.
The receiving device 500 uses an OFDM symbol
Figure PCTKR2023011945-appb-img-000163
OFDM symbol
Figure PCTKR2023011945-appb-img-000164
A linear combination-based channel estimate for each can be sequentially determined.
수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000165
(예: 도 4의 OFDM 심볼(420-8))에 대한 선형 조합 기반 채널 추정치를 마지막에 결정할 수 있다.
The receiving device 500 uses an OFDM symbol
Figure PCTKR2023011945-appb-img-000165
A linear combination-based channel estimate for (e.g., OFDM symbol 420-8 in FIG. 4) may be determined last.
도 7은 일 실시 예에 따른 수신 장치의 수신 방법을 설명하는 흐름도이다.Figure 7 is a flowchart explaining a receiving method of a receiving device according to an embodiment.
도 7을 참조하면, 동작 710에서 수신 장치(500)는 데이터 심볼들이 전송되는 OFDM 심볼들의 채널 추정 순서를 결정할 수 있고, 인덱스를 초기화할 수 있다. 수신 장치(500)는
Figure PCTKR2023011945-appb-img-000166
로 함으로써 인덱스를 초기화할 수 있다.
Referring to FIG. 7, in operation 710, the receiving device 500 may determine the channel estimation order of OFDM symbols through which data symbols are transmitted and may initialize the index. The receiving device 500 is
Figure PCTKR2023011945-appb-img-000166
You can initialize the index by doing .
동작 720에서, 수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000167
에 대한 채널 예측치를 결정할 수 있다.
Figure PCTKR2023011945-appb-img-000168
이므로, 동작 720에서 수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000169
에 대한 채널 예측치(
Figure PCTKR2023011945-appb-img-000170
)를 결정할 수 있다. 예를 들어,
Figure PCTKR2023011945-appb-img-000171
일 때, 이전 순서의 선형 조합 기반 채널 추정 정보는 메모리(560)저장되어 있지 않을 수 있다. 수신 장치(500)는 RS-기반 채널 추정 정보에서, RS가 전송되는 OFDM 심볼들 중 OFDM 심볼
Figure PCTKR2023011945-appb-img-000172
(예: 2번째 OFDM 심볼(420-2))와 가장 가까운 OFDM 심볼의 인덱스를 찾을 수 있다. OFDM 심볼
Figure PCTKR2023011945-appb-img-000173
의 인덱스는 2일 수 있고, RS가 전송되는 OFDM 심볼들 중 도 4의 OFDM 심볼(420-3)의 인덱스가 3이다. OFDM 심볼(420-3)이 OFDM 심볼
Figure PCTKR2023011945-appb-img-000174
과 가장 가까울 수 있다. 수신 장치(500)는 OFDM 심볼(420-3)에 대한 채널 추정치를 OFDM 심볼
Figure PCTKR2023011945-appb-img-000175
에 대한 채널 예측치(
Figure PCTKR2023011945-appb-img-000176
)로 결정할 수 있다.
In operation 720, the receiving device 500 receives an OFDM symbol.
Figure PCTKR2023011945-appb-img-000167
The channel prediction value for can be determined.
Figure PCTKR2023011945-appb-img-000168
Therefore, in operation 720, the receiving device 500 receives the OFDM symbol.
Figure PCTKR2023011945-appb-img-000169
Channel forecast for (
Figure PCTKR2023011945-appb-img-000170
) can be determined. for example,
Figure PCTKR2023011945-appb-img-000171
In this case, the linear combination-based channel estimation information of the previous order may not be stored in the memory 560. The receiving device 500 selects an OFDM symbol among OFDM symbols through which RS is transmitted in the RS-based channel estimation information.
Figure PCTKR2023011945-appb-img-000172
(e.g., the index of the OFDM symbol closest to the second OFDM symbol (420-2)) can be found. OFDM symbol
Figure PCTKR2023011945-appb-img-000173
The index of may be 2, and the index of the OFDM symbol 420-3 in FIG. 4 among the OFDM symbols through which RS is transmitted is 3. OFDM symbol (420-3) is the OFDM symbol
Figure PCTKR2023011945-appb-img-000174
It may be closest to . The receiving device 500 converts the channel estimate for the OFDM symbol 420-3 into an OFDM symbol.
Figure PCTKR2023011945-appb-img-000175
Channel forecast for (
Figure PCTKR2023011945-appb-img-000176
) can be determined.
동작 730에서, 수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000177
에 대한 채널 예측치(
Figure PCTKR2023011945-appb-img-000178
)를 기반으로 OFDM 심볼
Figure PCTKR2023011945-appb-img-000179
에 대한 데이터 심볼을 검출할 수 있다. 예를 들어, 수신 장치(500)는 위 수학식 3 또는 위 수학식 4를 통해 OFDM 심볼
Figure PCTKR2023011945-appb-img-000180
에 대한 데이터 심볼들을 검출할 수 있다.
In operation 730, the receiving device 500 receives an OFDM symbol.
Figure PCTKR2023011945-appb-img-000177
Channel forecast for (
Figure PCTKR2023011945-appb-img-000178
) OFDM symbol based on
Figure PCTKR2023011945-appb-img-000179
Data symbols for can be detected. For example, the receiving device 500 receives the OFDM symbol through Equation 3 above or Equation 4 above.
Figure PCTKR2023011945-appb-img-000180
Data symbols for can be detected.
동작 740에서, 수신 장치(500)는 검출된 데이터 심볼(
Figure PCTKR2023011945-appb-img-000181
)을 기반으로 OFDM 심볼
Figure PCTKR2023011945-appb-img-000182
의 DS-기반 채널 추정치를 결정할 수 있다. 예를 들어, 수신 장치(500)는 위 수학식 5 또는 위 수학식 6을 통해 OFDM 심볼
Figure PCTKR2023011945-appb-img-000183
의 DS-기반 채널 추정치를 결정할 수 있다.
In operation 740, the receiving device 500 receives the detected data symbol (
Figure PCTKR2023011945-appb-img-000181
) OFDM symbol based on
Figure PCTKR2023011945-appb-img-000182
A DS-based channel estimate of can be determined. For example, the receiving device 500 receives the OFDM symbol through Equation 5 or Equation 6 above.
Figure PCTKR2023011945-appb-img-000183
A DS-based channel estimate of can be determined.
동작 750에서, 수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000184
에 대한 채널 예측치와 DS-기반 채널 추정치를 선형 결합할 수 있다. 예를 들어, 수신 장치(500)는 위 수학식 7을 통해 OFDM 심볼
Figure PCTKR2023011945-appb-img-000185
에 대한 채널 예측치와 DS-기반 채널 추정치를 선형 결합하여, OFDM 심볼
Figure PCTKR2023011945-appb-img-000186
에 대한 선형 결합 채널 예측치(
Figure PCTKR2023011945-appb-img-000187
)를 결정할 수 있다.
In operation 750, receiving device 500 receives an OFDM symbol.
Figure PCTKR2023011945-appb-img-000184
The channel estimate for can be linearly combined with the DS-based channel estimate. For example, the receiving device 500 receives the OFDM symbol through Equation 7 above.
Figure PCTKR2023011945-appb-img-000185
By linearly combining the channel estimate and the DS-based channel estimate for
Figure PCTKR2023011945-appb-img-000186
Linear combined channel estimates for (
Figure PCTKR2023011945-appb-img-000187
) can be determined.
수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000188
에 대한 선형 결합 채널 예측치(
Figure PCTKR2023011945-appb-img-000189
)와 심볼 인덱스(
Figure PCTKR2023011945-appb-img-000190
)를 메모리(560)에 저장할 수 있다.
The receiving device 500 uses an OFDM symbol
Figure PCTKR2023011945-appb-img-000188
Linear combined channel estimates for (
Figure PCTKR2023011945-appb-img-000189
) and symbol index (
Figure PCTKR2023011945-appb-img-000190
) can be stored in the memory 560.
동작 760에서, 수신 장치(500)는
Figure PCTKR2023011945-appb-img-000191
Figure PCTKR2023011945-appb-img-000192
보다 작은 지 여부를 판단할 수 있다. 위에서 설명하였지만,
Figure PCTKR2023011945-appb-img-000193
은 데이터 심볼들이 전송되는 OFDM 심볼들의 개수를 나타낼 수 있다.
In operation 760, receiving device 500
Figure PCTKR2023011945-appb-img-000191
go
Figure PCTKR2023011945-appb-img-000192
You can determine whether it is smaller than . As explained above,
Figure PCTKR2023011945-appb-img-000193
may represent the number of OFDM symbols through which data symbols are transmitted.
수신 장치(500)는
Figure PCTKR2023011945-appb-img-000194
Figure PCTKR2023011945-appb-img-000195
보다 작으므로, 동작 770에서
Figure PCTKR2023011945-appb-img-000196
를 업데이트할 수 있다.
Figure PCTKR2023011945-appb-img-000197
의 업데이트에 따라
Figure PCTKR2023011945-appb-img-000198
= 2 가 될 수 있다.
The receiving device 500 is
Figure PCTKR2023011945-appb-img-000194
go
Figure PCTKR2023011945-appb-img-000195
is less than, so in operation 770
Figure PCTKR2023011945-appb-img-000196
can be updated.
Figure PCTKR2023011945-appb-img-000197
According to the update of
Figure PCTKR2023011945-appb-img-000198
= can be 2.
수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000199
에 대해 동작 720 내지 동작 760을 수행할 수 있다.
The receiving device 500 uses an OFDM symbol
Figure PCTKR2023011945-appb-img-000199
Operations 720 to 760 may be performed.
동작 720에서, 수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000200
에 대한 채널 예측치를 결정할 수 있다. 일례로, 수신 장치(500)는 RS-기반 채널 추정치들(
Figure PCTKR2023011945-appb-img-000201
)과 이전 순서의 선형 조합 기반 채널 추정치(
Figure PCTKR2023011945-appb-img-000202
)에 대해 시간 영역 보간 기법을 적용하여
Figure PCTKR2023011945-appb-img-000203
를 결정할 수 있다. 다른 일례로, 수신 장치(500)는 RS가 전송된 OFDM 심볼 인덱스들(
Figure PCTKR2023011945-appb-img-000204
)과 채널 추정(또는 심볼 검출)이 수행된 OFDM 심볼 인덱스(
Figure PCTKR2023011945-appb-img-000205
) 중 OFDM 심볼
Figure PCTKR2023011945-appb-img-000206
과 가장 가까운 인덱스를 찾을 수 있고, 찾은 인덱스에 대한 채널 추정치를
Figure PCTKR2023011945-appb-img-000207
로 결정할 수 있다.
In operation 720, the receiving device 500 receives an OFDM symbol.
Figure PCTKR2023011945-appb-img-000200
The channel prediction value for can be determined. As an example, the receiving device 500 may receive RS-based channel estimates (
Figure PCTKR2023011945-appb-img-000201
) and a channel estimate based on a linear combination of the previous sequence (
Figure PCTKR2023011945-appb-img-000202
) by applying a time domain interpolation technique to
Figure PCTKR2023011945-appb-img-000203
can be decided. As another example, the receiving device 500 receives the OFDM symbol indexes through which the RS was transmitted (
Figure PCTKR2023011945-appb-img-000204
) and the OFDM symbol index on which channel estimation (or symbol detection) was performed (
Figure PCTKR2023011945-appb-img-000205
) OFDM symbol
Figure PCTKR2023011945-appb-img-000206
You can find the closest index to
Figure PCTKR2023011945-appb-img-000207
can be decided.
동작 730에서, 수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000208
에 대한 채널 예측치(
Figure PCTKR2023011945-appb-img-000209
)를 기반으로 OFDM 심볼
Figure PCTKR2023011945-appb-img-000210
에 대한 데이터 심볼들을 검출할 수 있다. 예를 들어, 수신 장치(500)는 위 수학식 3 또는 위 수학식 4를 통해 OFDM 심볼
Figure PCTKR2023011945-appb-img-000211
에 대한 데이터 심볼들을 검출할 수 있다.
In operation 730, the receiving device 500 receives an OFDM symbol.
Figure PCTKR2023011945-appb-img-000208
Channel forecast for (
Figure PCTKR2023011945-appb-img-000209
) OFDM symbol based on
Figure PCTKR2023011945-appb-img-000210
Data symbols for can be detected. For example, the receiving device 500 receives the OFDM symbol through Equation 3 above or Equation 4 above.
Figure PCTKR2023011945-appb-img-000211
Data symbols for can be detected.
동작 740에서, 수신 장치(500)는 검출된 데이터 심볼들(
Figure PCTKR2023011945-appb-img-000212
)을 기반으로 OFDM 심볼
Figure PCTKR2023011945-appb-img-000213
의 DS-기반 채널 추정치를 결정할 수 있다. 예를 들어, 수신 장치(500)는 위 수학식 5 또는 위 수학식 6을 통해 OFDM 심볼
Figure PCTKR2023011945-appb-img-000214
의 DS-기반 채널 추정치를 결정할 수 있다.
In operation 740, the receiving device 500 receives the detected data symbols (
Figure PCTKR2023011945-appb-img-000212
) OFDM symbol based on
Figure PCTKR2023011945-appb-img-000213
A DS-based channel estimate of can be determined. For example, the receiving device 500 receives the OFDM symbol through Equation 5 or Equation 6 above.
Figure PCTKR2023011945-appb-img-000214
A DS-based channel estimate of can be determined.
동작 750에서, 수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000215
에 대한 채널 예측치와 DS-기반 채널 추정치를 선형 결합할 수 있다. 예를 들어, 수신 장치(500)는 위 수학식 7을 통해 OFDM 심볼
Figure PCTKR2023011945-appb-img-000216
에 대한 채널 예측치와 DS-기반 채널 추정치를 선형 결합하여, OFDM 심볼
Figure PCTKR2023011945-appb-img-000217
에 대한 선형 결합 채널 예측치(
Figure PCTKR2023011945-appb-img-000218
)를 결정할 수 있다.
In operation 750, receiving device 500 receives an OFDM symbol.
Figure PCTKR2023011945-appb-img-000215
The channel estimate for can be linearly combined with the DS-based channel estimate. For example, the receiving device 500 receives the OFDM symbol through Equation 7 above.
Figure PCTKR2023011945-appb-img-000216
By linearly combining the channel estimate and the DS-based channel estimate for
Figure PCTKR2023011945-appb-img-000217
Linear combined channel estimates for (
Figure PCTKR2023011945-appb-img-000218
) can be determined.
수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000219
에 대한 선형 결합 채널 예측치(
Figure PCTKR2023011945-appb-img-000220
)와 심볼 인덱스(
Figure PCTKR2023011945-appb-img-000221
)를 메모리(560)에 저장할 수 있다.
The receiving device 500 uses an OFDM symbol
Figure PCTKR2023011945-appb-img-000219
Linear combined channel estimates for (
Figure PCTKR2023011945-appb-img-000220
) and symbol index (
Figure PCTKR2023011945-appb-img-000221
) can be stored in the memory 560.
동작 760에서, 수신 장치(500)는
Figure PCTKR2023011945-appb-img-000222
Figure PCTKR2023011945-appb-img-000223
보다 작은 지 여부를 판단할 수 있다.
In operation 760, receiving device 500
Figure PCTKR2023011945-appb-img-000222
go
Figure PCTKR2023011945-appb-img-000223
You can determine whether it is smaller than .
수신 장치(500)는
Figure PCTKR2023011945-appb-img-000224
Figure PCTKR2023011945-appb-img-000225
보다 작으므로, 동작 770에서
Figure PCTKR2023011945-appb-img-000226
를 업데이트할 수 있다.
The receiving device 500 is
Figure PCTKR2023011945-appb-img-000224
go
Figure PCTKR2023011945-appb-img-000225
is less than, so in operation 770
Figure PCTKR2023011945-appb-img-000226
can be updated.
수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000227
에 대해 동작 720 내지 동작 770을 반복 수행할 수 있다. 동작 720 내지 동작 770의 반복 수행에 의해, OFDM 심볼
Figure PCTKR2023011945-appb-img-000228
에 대한 채널 추정 순서가 도래할 수 있다.
The receiving device 500 uses an OFDM symbol
Figure PCTKR2023011945-appb-img-000227
Operations 720 to 770 may be repeatedly performed. By repeatedly performing operations 720 to 770, an OFDM symbol
Figure PCTKR2023011945-appb-img-000228
The channel estimation order for may arrive.
동작 720에서, 수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000229
에 대한 채널 예측치를 결정할 수 있다. 일례로, 수신 장치(500)는 RS-기반 채널 추정치들(
Figure PCTKR2023011945-appb-img-000230
)과 이전 순서의 선형 조합 기반 채널 추정치들(
Figure PCTKR2023011945-appb-img-000231
)에 대해 시간 영역 보간 기법을 적용하여
Figure PCTKR2023011945-appb-img-000232
를 결정할 수 있다. 다른 일례로, 수신 장치(500)는 RS가 전송된 OFDM 심볼 인덱스들(
Figure PCTKR2023011945-appb-img-000233
)과 채널 추정(또는 심볼 검출)이 수행된 OFDM 심볼 인덱스들(
Figure PCTKR2023011945-appb-img-000234
) 중 OFDM 심볼
Figure PCTKR2023011945-appb-img-000235
과 가장 가까운 인덱스를 찾을 수 있고, 찾은 인덱스에 대한 채널 추정치를
Figure PCTKR2023011945-appb-img-000236
로 결정할 수 있다.
In operation 720, the receiving device 500 receives an OFDM symbol.
Figure PCTKR2023011945-appb-img-000229
The channel prediction value for can be determined. As an example, the receiving device 500 may receive RS-based channel estimates (
Figure PCTKR2023011945-appb-img-000230
) and channel estimates based on a linear combination of the previous sequence (
Figure PCTKR2023011945-appb-img-000231
) by applying a time domain interpolation technique to
Figure PCTKR2023011945-appb-img-000232
can be decided. As another example, the receiving device 500 receives the OFDM symbol indexes through which the RS was transmitted (
Figure PCTKR2023011945-appb-img-000233
) and OFDM symbol indices on which channel estimation (or symbol detection) was performed (
Figure PCTKR2023011945-appb-img-000234
) OFDM symbol
Figure PCTKR2023011945-appb-img-000235
You can find the closest index to
Figure PCTKR2023011945-appb-img-000236
can be decided.
동작 730에서, 수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000237
에 대한 채널 예측치(
Figure PCTKR2023011945-appb-img-000238
)를 기반으로 OFDM 심볼
Figure PCTKR2023011945-appb-img-000239
에 대한 데이터 심볼들을 검출할 수 있다. 예를 들어, 수신 장치(500)는 위 수학식 3 또는 위 수학식 4를 통해 OFDM 심볼
Figure PCTKR2023011945-appb-img-000240
에 대한 데이터 심볼들을 검출할 수 있다.
In operation 730, the receiving device 500 receives an OFDM symbol.
Figure PCTKR2023011945-appb-img-000237
Channel forecast for (
Figure PCTKR2023011945-appb-img-000238
) OFDM symbol based on
Figure PCTKR2023011945-appb-img-000239
Data symbols for can be detected. For example, the receiving device 500 receives the OFDM symbol through Equation 3 above or Equation 4 above.
Figure PCTKR2023011945-appb-img-000240
Data symbols for can be detected.
동작 740에서, 수신 장치(500)는 검출된 데이터 심볼들(
Figure PCTKR2023011945-appb-img-000241
)을 기반으로 OFDM 심볼
Figure PCTKR2023011945-appb-img-000242
의 DS-기반 채널 추정치를 결정할 수 있다. 예를 들어, 수신 장치(500)는 위 수학식 5 또는 위 수학식 6을 통해 OFDM 심볼
Figure PCTKR2023011945-appb-img-000243
의 DS-기반 채널 추정치를 결정할 수 있다.
In operation 740, the receiving device 500 receives the detected data symbols (
Figure PCTKR2023011945-appb-img-000241
) OFDM symbol based on
Figure PCTKR2023011945-appb-img-000242
A DS-based channel estimate of can be determined. For example, the receiving device 500 receives the OFDM symbol through Equation 5 or Equation 6 above.
Figure PCTKR2023011945-appb-img-000243
A DS-based channel estimate of can be determined.
동작 750에서, 수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000244
에 대한 채널 예측치와 DS-기반 채널 추정치를 선형 결합할 수 있다. 예를 들어, 수신 장치(500)는 위 수학식 7을 통해 OFDM 심볼
Figure PCTKR2023011945-appb-img-000245
에 대한 채널 예측치와 DS-기반 채널 추정치를 선형 결합하여, OFDM 심볼
Figure PCTKR2023011945-appb-img-000246
에 대한 선형 결합 채널 예측치(
Figure PCTKR2023011945-appb-img-000247
)를 결정할 수 있다.
In operation 750, receiving device 500 receives an OFDM symbol.
Figure PCTKR2023011945-appb-img-000244
The channel estimate for can be linearly combined with the DS-based channel estimate. For example, the receiving device 500 receives the OFDM symbol through Equation 7 above.
Figure PCTKR2023011945-appb-img-000245
By linearly combining the channel estimate and the DS-based channel estimate for
Figure PCTKR2023011945-appb-img-000246
Linear combined channel estimates for (
Figure PCTKR2023011945-appb-img-000247
) can be determined.
동작 760에서, 수신 장치(500)는
Figure PCTKR2023011945-appb-img-000248
Figure PCTKR2023011945-appb-img-000249
보다 작은지 여부를 판단할 수 있다.
Figure PCTKR2023011945-appb-img-000250
Figure PCTKR2023011945-appb-img-000251
에 해당하므로, 수신 장치(500)는 데이터 심볼들이 전송되는 OFDM 심볼들 각각에 대한 채널 추정 동작을 종료할 수 있다.
In operation 760, receiving device 500
Figure PCTKR2023011945-appb-img-000248
go
Figure PCTKR2023011945-appb-img-000249
You can determine whether it is smaller than .
Figure PCTKR2023011945-appb-img-000250
Is
Figure PCTKR2023011945-appb-img-000251
Therefore, the receiving device 500 may end the channel estimation operation for each OFDM symbol through which data symbols are transmitted.
수신 장치(500)는 OFDM 심볼
Figure PCTKR2023011945-appb-img-000252
내지 OFDM 심볼
Figure PCTKR2023011945-appb-img-000253
각각에 대한 데이터 심볼들(
Figure PCTKR2023011945-appb-img-000254
)을 기초로 복호 동작을 수행할 수 있다.
The receiving device 500 uses an OFDM symbol
Figure PCTKR2023011945-appb-img-000252
OFDM symbol
Figure PCTKR2023011945-appb-img-000253
Data symbols for each (
Figure PCTKR2023011945-appb-img-000254
), the decoding operation can be performed based on.
도 1 내지 도 6을 통해 설명된 실시 예는 도 7의 수신 방법에 적용될 수 있다.The embodiments described with reference to FIGS. 1 to 6 may be applied to the reception method of FIG. 7 .
도 8은 내지 도 10은 다양한 수신 방법들이 달성할 수 있는 신호 대 잡음비 대비 프레임 오류율을 설명하는 도면이다.Figures 8 to 10 are diagrams illustrating the frame error rate versus signal-to-noise ratio that various reception methods can achieve.
도 8 내지 도 10에 도시된 예에서, 기존 방법은 기존의 RS-기반 채널 추정을 이용하는 수신 방법을 나타낼 수 있고, 실시예는 수신 장치(500)의 수신 방법을 나타낼 수 있다. In the examples shown in FIGS. 8 to 10, the existing method may represent a reception method using existing RS-based channel estimation, and the embodiment may represent a reception method of the receiving device 500.
도 8과 도 9에 도시된 예에서,
Figure PCTKR2023011945-appb-img-000255
일 수 있고, 변조 방식은 4-직교 진폭 변조(QAM: Quadrature Amplitude Modulation)일 수 있다.
In the examples shown in Figures 8 and 9,
Figure PCTKR2023011945-appb-img-000255
It may be, and the modulation method may be 4-quadrature amplitude modulation (QAM).
도 8과 도 9 각각의 수신 방법들(기존 방법, 실시예, 완벽한 채널 정보일 때의 수신 방법) 각각의 채널 추정은 최소 제곱 방법을 이용할 수 있고, 데이터 심볼 검출은 선형 최소 평균 제곱 오차 방법을 이용할 수 있다. Each of the reception methods of FIGS. 8 and 9 (existing method, embodiment, reception method with perfect channel information) can use the least squares method for channel estimation, and the linear least mean square error method for data symbol detection. Available.
도 8과 도 9에 도시된 예에서, 채널은 시간에 따라 아래 수학식 12와 같이 변할 수 있다.In the examples shown in FIGS. 8 and 9, the channel may change over time as shown in Equation 12 below.
[수학식 12][Equation 12]
Figure PCTKR2023011945-appb-img-000256
Figure PCTKR2023011945-appb-img-000256
위 수학식 12에서,
Figure PCTKR2023011945-appb-img-000257
는 현재 채널과 이전 채널 사이의 시간 영역 상관 계수(time domain correlation coefficient)를 나타낼 수 있고,
Figure PCTKR2023011945-appb-img-000258
는 채널과 동일한 분산을 가지는 복소(complex) 가우시안 랜덤 행렬을 나타낼 수 있다.
In equation 12 above,
Figure PCTKR2023011945-appb-img-000257
may represent the time domain correlation coefficient between the current channel and the previous channel,
Figure PCTKR2023011945-appb-img-000258
may represent a complex Gaussian random matrix with the same variance as the channel.
도 8에 도시된 예에서
Figure PCTKR2023011945-appb-img-000259
= 0.9530일 수 있고, 도 9에 도시된 예에서
Figure PCTKR2023011945-appb-img-000260
=0.9924일 수 있다. 반송 주파수(carrier frequency)가 3.5 GHz이고, OFDM 심볼 주기가 71.35㎲인 경우, 상관 계수(
Figure PCTKR2023011945-appb-img-000261
= 0.9530)는 수신 장치(500)의 이동 속도가 300km/h인 케이스에 해당할 수 있고, 상관 계수(
Figure PCTKR2023011945-appb-img-000262
=0.9924)는 수신 장치(500)의 이동 속도가 120km/h인 케이스에 해당할 수 있다.
In the example shown in Figure 8
Figure PCTKR2023011945-appb-img-000259
= 0.9530, in the example shown in Figure 9
Figure PCTKR2023011945-appb-img-000260
= could be 0.9924. When the carrier frequency is 3.5 GHz and the OFDM symbol period is 71.35 ㎲, the correlation coefficient (
Figure PCTKR2023011945-appb-img-000261
= 0.9530) may correspond to the case where the moving speed of the receiving device 500 is 300 km/h, and the correlation coefficient (
Figure PCTKR2023011945-appb-img-000262
=0.9924) may correspond to a case where the moving speed of the receiving device 500 is 120 km/h.
도 8과 도 9에 도시된 예에서, 수신 장치(500)의 수신 방법은 시간에 따라 채널이 변화하는 환경에서 기존 방법보다 더 낮은 프레임 오류율을 달성할 수 있다. 이동 중인 수신 장치(500)의 수신 방법은 기존 방법보다 더 낮은 프레임 오류율을 달성할 수 있다. In the examples shown in FIGS. 8 and 9, the reception method of the reception device 500 can achieve a lower frame error rate than the existing method in an environment where channels change over time. The reception method of the moving reception device 500 can achieve a lower frame error rate than the existing method.
도 10에 다양한 안테나 수에 대해서 수신 방법들이 달성할 수 있는 신호 대 잡음비 대비 프레임 오류율이 도시된다. Figure 10 shows the frame error rate versus signal-to-noise ratio that can be achieved by reception methods for various numbers of antennas.
도 10에 도시된 예에서, 수신 방법들(기존 방법, 실시예, 완벽한 채널 정보일 때의 수신 방법) 각각의 채널 추정과 심볼 검출은 최소 제곱 방법을 이용할 수 있다. In the example shown in FIG. 10, channel estimation and symbol detection for each of the reception methods (existing method, embodiment, reception method with perfect channel information) may use the least squares method.
도 10에 도시된 예에서,
Figure PCTKR2023011945-appb-img-000263
일 수 있고, 변조 방식은 4-QAM일 수 있다. 도 10에 도시된 예에서, 채널은 시간에 따라 변하지 않을 수 있다.
In the example shown in Figure 10,
Figure PCTKR2023011945-appb-img-000263
It may be, and the modulation method may be 4-QAM. In the example shown in Figure 10, the channel may not change over time.
도 10에 도시된 예에서, 실시 예는 다양한 안테나 수에 대해서 기존 방법 보다 낮은 프레임 오류율을 달성할 수 있다.
Figure PCTKR2023011945-appb-img-000264
Figure PCTKR2023011945-appb-img-000265
에서, 수신 장치(500)의 수신 방법은 기존 방법보다 낮은 프레임 오류율을 달성할 수 있다.
In the example shown in FIG. 10, the embodiment can achieve lower frame error rates than existing methods for various antenna numbers.
Figure PCTKR2023011945-appb-img-000264
and
Figure PCTKR2023011945-appb-img-000265
In , the reception method of the reception device 500 can achieve a lower frame error rate than the existing method.
도 11은 일 실시 예에 따른 수신 장치의 구성의 예시를 설명하는 블록도이다.Figure 11 is a block diagram illustrating an example of the configuration of a receiving device according to an embodiment.
도 11을 참조하면, 일 실시 예에 따른 수신 장치(1100)(예: 도 1의 수신 장치(110), 도 5의 수신 장치(500))는 안테나들(1110), RF 통신 회로(1120), 프로세서(1130), 및 메모리(1140)(예: 도 5의 메모리(560))를 포함할 수 있다.Referring to FIG. 11, the receiving device 1100 (e.g., the receiving device 110 of FIG. 1 and the receiving device 500 of FIG. 5) according to an embodiment includes antennas 1110 and an RF communication circuit 1120. , a processor 1130, and a memory 1140 (eg, memory 560 in FIG. 5).
도 2의 기지국(200) 또는 도 3의 UE(300)는 수신 장치(1100)로 동작할 수 있다.The base station 200 of FIG. 2 or the UE 300 of FIG. 3 may operate as the reception device 1100.
RF 통신 회로(1120)는 안테나들(1110)을 통해 송신 장치(예: 도 1의 송신 장치(120))로부터 RF 신호를 수신할 수 있다.The RF communication circuit 1120 may receive an RF signal from a transmitting device (eg, the transmitting device 120 of FIG. 1) through the antennas 1110.
RF 통신 회로(1120)는 수신된 RF 신호를 기저대역 신호로 변환할 수 있다. The RF communication circuit 1120 may convert the received RF signal into a baseband signal.
RF 통신 회로(1120)는 기저대역 신호를 프로세서(1130)로 전달할 수 있다.The RF communication circuit 1120 may transmit a baseband signal to the processor 1130.
프로세서(1130)는 RF 통신 회로(1120)와 연결될 수 있다.The processor 1130 may be connected to the RF communication circuit 1120.
프로세서(1130)는 도 5의 RS-기반 채널 추정기(505), 순서 결정기(510), 채널 예측기(520), 심볼 검출기(530), DS-기반 채널 추정기(540), 및 선형 조합기(550)를 구현할 수 있다. Processor 1130 includes RS-based channel estimator 505, orderer 510, channel predictor 520, symbol detector 530, DS-based channel estimator 540, and linear combiner 550 of FIG. 5. can be implemented.
프로세서(1130)는 데이터 심볼들이 전송되는 OFDM 심볼들의 채널 추정 순서를 결정할 수 있다. 예를 들어, 프로세서(1130)는 RS 가 전송되는 하나 이상의 OFDM 심볼의 위치와 데이터 심볼들이 전송되는 OFDM 심볼들 각각의 위치를 이용하여, 데이터 심볼들이 전송되는 OFDM 심볼들의 채널 추정 순서를 결정할 수 있다. 프로세서(1130)는 데이터 심볼들이 전송되는 OFDM 심볼들 중 제1 OFDM 심볼의 인덱스(또는 위치)(예:
Figure PCTKR2023011945-appb-img-000266
)가 RS가 전송되는 OFDM 심볼의 인덱스(또는 위치)와 가장 가까운 경우, 제1 OFDM 심볼의 채널 추정 순서를 첫번째 채널 추정 순서로 결정할 수 있다.
The processor 1130 may determine the channel estimation order of OFDM symbols through which data symbols are transmitted. For example, the processor 1130 may use the positions of one or more OFDM symbols through which RS is transmitted and the positions of each OFDM symbol through which data symbols are transmitted, to determine the channel estimation order of OFDM symbols through which data symbols are transmitted. . The processor 1130 determines the index (or position) of the first OFDM symbol among the OFDM symbols through which data symbols are transmitted (e.g.,
Figure PCTKR2023011945-appb-img-000266
) is closest to the index (or position) of the OFDM symbol through which the RS is transmitted, the channel estimation order of the first OFDM symbol can be determined as the first channel estimation order.
제1 OFDM 심볼의 채널 추정 순서를 제1 채널 추정 순서라 지칭한다.The channel estimation order of the first OFDM symbol is referred to as the first channel estimation order.
프로세서(1130)는 데이터 심볼들이 전송되는 OFDM 심볼들 중 제1 채널 추정 순서의 제1 OFDM 심볼(예: OFDM 심볼
Figure PCTKR2023011945-appb-img-000267
)에 대한 채널 예측치(예:
Figure PCTKR2023011945-appb-img-000268
)를 RS-기반 채널 추정 정보(예:
Figure PCTKR2023011945-appb-img-000269
) 또는 제1 채널 추정 순서 이전에 결정된 채널 추정 정보(예:
Figure PCTKR2023011945-appb-img-000270
) 중 적어도 하나를 이용하여 결정할 수 있다. 채널 추정 정보(예:
Figure PCTKR2023011945-appb-img-000271
)는 메모리(1140)에 저장되어 있을 수 있다.
The processor 1130 selects the first OFDM symbol in the first channel estimation order among OFDM symbols through which data symbols are transmitted (e.g., OFDM symbol
Figure PCTKR2023011945-appb-img-000267
) channel estimates, e.g.
Figure PCTKR2023011945-appb-img-000268
) to RS-based channel estimation information, e.g.
Figure PCTKR2023011945-appb-img-000269
) or channel estimation information determined prior to the first channel estimation sequence (e.g.
Figure PCTKR2023011945-appb-img-000270
) can be determined using at least one of: Channel estimation information, e.g.
Figure PCTKR2023011945-appb-img-000271
) may be stored in the memory 1140.
일례로, 프로세서(1130)는 RS-기반 채널 추정 정보와 제1 채널 추정 순서 이전에 결정된 채널 추정 정보에 보간(예: 시간 영역 보간)을 수행하여 제1 OFDM 심볼에 대한 채널 예측치를 결정할 수 있다. For example, the processor 1130 may determine a channel estimate for the first OFDM symbol by performing interpolation (e.g., time domain interpolation) on the RS-based channel estimation information and the channel estimation information determined before the first channel estimation sequence. .
다른 일례로, 프로세서(1130)는 RS가 전송된 OFDM 심볼의 인덱스와 채널 추정 정보(예:
Figure PCTKR2023011945-appb-img-000272
)에 포함된 OFDM 심볼 인덱스 중 제1 OFDM 심볼의 인덱스와 가장 가까운 인덱스를 찾을 수 있다. 프로세서(1130)는 찾은 인덱스의 OFDM 심볼에 대한 채널 추정치를 제1 OFDM 심볼에 대한 채널 예측치로 결정할 수 있다.
In another example, the processor 1130 includes the index of the OFDM symbol through which the RS was transmitted and channel estimation information (e.g.
Figure PCTKR2023011945-appb-img-000272
), the index closest to the index of the first OFDM symbol can be found among the OFDM symbol indexes included in ). The processor 1130 may determine the channel estimate for the OFDM symbol of the found index as the channel estimate for the first OFDM symbol.
프로세서(1130)는 기저대역 신호를 기초로 제1 OFDM 심볼에서의 수신 신호(예:
Figure PCTKR2023011945-appb-img-000273
)를 획득할 수 있다. 예를 들어, 프로세서(1130)는 기저대역 신호를 처리(예: 직렬/병렬 변환, FFT 등)하여 제1 OFDM 심볼에서의 수신 신호(예:
Figure PCTKR2023011945-appb-img-000274
)를 획득할 수 있다.
The processor 1130 may receive a received signal in the first OFDM symbol based on the baseband signal (e.g.,
Figure PCTKR2023011945-appb-img-000273
) can be obtained. For example, the processor 1130 processes the baseband signal (e.g., serial/parallel conversion, FFT, etc.) to obtain a received signal in the first OFDM symbol (e.g.,
Figure PCTKR2023011945-appb-img-000274
) can be obtained.
프로세서(1130)는 결정된 채널 예측치(예:
Figure PCTKR2023011945-appb-img-000275
)를 이용하여 수신 신호(예:
Figure PCTKR2023011945-appb-img-000276
)로부터 제1 데이터 심볼들(예:
Figure PCTKR2023011945-appb-img-000277
)을 검출할 수 있다. 예를 들어, 프로세서(1130)는 위 수학식 3 또는 위 수학식 4를 통해 제1 데이터 심볼들(예:
Figure PCTKR2023011945-appb-img-000278
)을 검출할 수 있다.
Processor 1130 may store the determined channel estimate, e.g.
Figure PCTKR2023011945-appb-img-000275
) to receive signals (e.g.
Figure PCTKR2023011945-appb-img-000276
) from the first data symbols (e.g.
Figure PCTKR2023011945-appb-img-000277
) can be detected. For example, the processor 1130 generates first data symbols (e.g., Equation 3 above or Equation 4 above).
Figure PCTKR2023011945-appb-img-000278
) can be detected.
프로세서(1130)는 검출된 제1 데이터 심볼들을 기초로 제1 OFDM 심볼에 대한 제1 채널 추정치(예:
Figure PCTKR2023011945-appb-img-000279
)를 결정할 수 있다. 예를 들어, 프로세서(1130)는 수신 신호에 대한 수신 신호 행렬(예:
Figure PCTKR2023011945-appb-img-000280
), 검출된 제1 데이터 심볼들에 데이터 심볼 행렬(예:
Figure PCTKR2023011945-appb-img-000281
), 및 데이터 심볼 행렬의 에르미트 행렬(예:
Figure PCTKR2023011945-appb-img-000282
)을 이용하여 제1 채널 추정치를 결정할 수 있다. 프로세서(1130)는 위 수학식 5 또는 위 수학식 6을 통해 제1 OFDM 심볼에 대한 제1 채널 추정치(예:
Figure PCTKR2023011945-appb-img-000283
)를 결정할 수 있다.
The processor 1130 generates a first channel estimate for the first OFDM symbol based on the detected first data symbols (e.g.,
Figure PCTKR2023011945-appb-img-000279
) can be determined. For example, processor 1130 may generate a received signal matrix for the received signal, e.g.
Figure PCTKR2023011945-appb-img-000280
), a data symbol matrix (e.g.,
Figure PCTKR2023011945-appb-img-000281
), and the Hermitian matrix of the data symbol matrix, e.g.
Figure PCTKR2023011945-appb-img-000282
) can be used to determine the first channel estimate. The processor 1130 generates a first channel estimate (e.g., for the first OFDM symbol) through Equation 5 or Equation 6 above.
Figure PCTKR2023011945-appb-img-000283
) can be determined.
프로세서(1130)는 제1 채널 추정치와 채널 예측치를 기초로 제1 OFDM 심볼에 대한 제2 채널 추정치(예:
Figure PCTKR2023011945-appb-img-000284
)를 결정할 수 있다. 예를 들어, 프로세서(1130)는 제1 채널 추정치와 채널 예측치를 선형 조합하여 제2 채널 추정치를 결정할 수 있다. 프로세서(1130)는 위 수학식 7을 통해 제2 채널 추정치를 결정할 수 있다.
Processor 1130 generates a second channel estimate for the first OFDM symbol based on the first channel estimate and the channel estimate (e.g.,
Figure PCTKR2023011945-appb-img-000284
) can be determined. For example, the processor 1130 may determine the second channel estimate by linearly combining the first channel estimate and the channel estimate. The processor 1130 may determine the second channel estimate through Equation 7 above.
프로세서(1130)는 제1 채널 추정 순서가 마지막 채널 추정 순서인지 여부를 판단할 수 있다.The processor 1130 may determine whether the first channel estimation order is the last channel estimation order.
프로세서(1130)는 제1 채널 추정 순서가 마지막 채널 추정 순서가 아닌 경우, 제2 채널 추정치를 채널 추정 정보(예:
Figure PCTKR2023011945-appb-img-000285
)에 포함시켜 채널 추정 정보를 업데이트할 수 있다. 메모리(1140)는 업데이트된 채널 추정 정보(예:
Figure PCTKR2023011945-appb-img-000286
)를 저장할 수 있다.
If the first channel estimation order is not the last channel estimation order, the processor 1130 uses the second channel estimate as channel estimation information (e.g.,
Figure PCTKR2023011945-appb-img-000285
), the channel estimation information can be updated. Memory 1140 may store updated channel estimate information, e.g.
Figure PCTKR2023011945-appb-img-000286
) can be saved.
프로세서(1130)는 제1 채널 추정 순서가 마지막 채널 추정 순서가 아닌 경우, 제1 채널 추정 순서의 다음 채널 추정 순서를 갖는 제2 OFDM 심볼에 대해 채널 추정을 수행할 수 있다. 예를 들어, 프로세서(1130)는 RS-기반 채널 추정 정보 또는 업데이트된 채널 추정 정보(예:
Figure PCTKR2023011945-appb-img-000287
) 중 적어도 하나를 이용하여 제2 OFDM 심볼에 대한 채널 예측치를 결정할 수 있다. 프로세서(1130)는 제2 OFDM 심볼에 대한 채널 예측치를 이용하여 제2 OFDM 심볼에서의 수신 신호로부터 제2 데이터 심볼들을 검출할 수 있다. 프로세서(1130)는 검출된 제2 데이터 심볼들을 기초로 제2 OFDM 심볼에 대한 제1 채널 추정치를 결정할 수 있다. 프로세서(1130)는 제2 OFDM 심볼에 대한 제1 채널 추정치와 제2 OFDM 심볼에 대한 채널 예측치를 기초로 제2 OFDM 심볼에 대한 제2 채널 추정치를 결정할 수 있다.
If the first channel estimation order is not the last channel estimation order, the processor 1130 may perform channel estimation on the second OFDM symbol having a channel estimation order next to the first channel estimation order. For example, processor 1130 may provide RS-based channel estimate information or updated channel estimate information, e.g.
Figure PCTKR2023011945-appb-img-000287
) can be used to determine the channel prediction value for the second OFDM symbol. The processor 1130 may detect second data symbols from the received signal in the second OFDM symbol using the channel prediction value for the second OFDM symbol. The processor 1130 may determine a first channel estimate for the second OFDM symbol based on the detected second data symbols. The processor 1130 may determine a second channel estimate for the second OFDM symbol based on the first channel estimate for the second OFDM symbol and the channel estimate for the second OFDM symbol.
프로세서(1130)는 제1 채널 추정 순서가 마지막 채널 추정 순서인 경우, 데이터 심볼들이 전송된 OFDM 심볼들 각각의 수신 신호로부터 검출된 데이터 심볼들(예:
Figure PCTKR2023011945-appb-img-000288
)을 기초로 복호를 수행할 수 있다.
When the first channel estimation order is the last channel estimation order, the processor 1130 detects data symbols (e.g., received signals from each of the OFDM symbols through which data symbols are transmitted).
Figure PCTKR2023011945-appb-img-000288
), decoding can be performed based on .
도 1 내지 도 10을 통해 설명된 실시 예는 도 11의 수신 장치(1100)에 적용될 수 있다.The embodiments described with reference to FIGS. 1 to 10 may be applied to the receiving device 1100 of FIG. 11 .
일 실시 예에 따른 수신 장치의 수신 방법은 데이터 심볼들이 전송되는 OFDM 심볼들의 채널 추정 순서를 결정하는 동작, 상기 OFDM 심볼들 중 제1 채널 추정 순서의 제1 OFDM 심볼에 대한 채널 예측치를 레퍼런스 신호 기반 채널 추정 정보 또는 상기 제1 채널 추정 순서 이전에 결정된 채널 추정 정보 중 적어도 하나를 이용하여 결정하는 동작, 상기 결정된 채널 예측치를 이용하여 상기 제1 OFDM 심볼에서의 수신 신호로부터 제1 데이터 심볼들을 검출하는 동작, 상기 검출된 제1 데이터 심볼들을 기초로 상기 제1 OFDM 심볼에 대한 제1 채널 추정치를 결정하는 동작, 상기 결정된 제1 채널 추정치와 상기 결정된 채널 예측치를 기초로 상기 제1 OFDM 심볼에 대한 제2 채널 추정치를 결정하는 동작, 상기 제1 채널 추정 순서가 마지막 채널 추정 순서인지 여부를 판단하는 동작, 및 상기 제1 채널 추정 순서가 상기 마지막 채널 추정 순서가 아닌 경우, 다음 채널 추정 순서의 제2 OFDM 심볼에 대해 채널 추정을 수행하는 동작을 포함할 수 있다.A reception method of a receiving device according to an embodiment includes determining a channel estimation order of OFDM symbols through which data symbols are transmitted, determining a channel estimate for a first OFDM symbol in a first channel estimation order among the OFDM symbols based on a reference signal. An operation of determining using at least one of channel estimation information or channel estimation information determined before the first channel estimation sequence, detecting first data symbols from a received signal in the first OFDM symbol using the determined channel prediction value. An operation of determining a first channel estimate for the first OFDM symbol based on the detected first data symbols, a first channel estimate for the first OFDM symbol based on the determined first channel estimate and the determined channel prediction value. Determining a two-channel estimate, determining whether the first channel estimation order is the last channel estimation order, and if the first channel estimation order is not the last channel estimation order, a second of the next channel estimation order An operation of performing channel estimation on OFDM symbols may be included.
상기 채널 추정 순서를 결정하는 동작은 상기 레퍼런스 신호가 전송되는 하나 이상의 OFDM 심볼의 위치와 상기 OFDM 심볼들 각각의 위치를 이용하여 상기 OFDM 심볼들의 채널 추정 순서를 결정하는 동작을 포함할 수 있다.The operation of determining the channel estimation order may include determining the channel estimation order of the OFDM symbols using the positions of one or more OFDM symbols through which the reference signal is transmitted and the positions of each of the OFDM symbols.
상기 채널 추정 순서를 결정하는 동작은 상기 OFDM 심볼들 중 상기 제1 OFDM 심볼의 인덱스가 상기 레퍼런스 신호가 전송되는 OFDM 심볼의 인덱스와 가장 가까운 경우, 상기 제1 채널 추정 순서를 첫번째 채널 추정 순서로 결정하는 동작을 포함할 수 있다.The operation of determining the channel estimation order includes determining the first channel estimation order as the first channel estimation order when the index of the first OFDM symbol among the OFDM symbols is closest to the index of the OFDM symbol through which the reference signal is transmitted. It may include actions such as:
상기 채널 예측치를 결정하는 동작은 상기 레퍼런스 신호 기반 채널 추정 정보와 상기 채널 추정 정보에 보간을 수행하여 상기 채널 예측치를 결정하는 동작을 포함할 수 있다.The operation of determining the channel prediction value may include determining the channel prediction value by performing interpolation on the reference signal-based channel estimation information and the channel estimation information.
상기 채널 예측치를 결정하는 동작은 상기 레퍼런스 신호가 전송된 OFDM 심볼의 인덱스와 상기 채널 추정 정보에 포함된 OFDM 심볼 인덱스 중 상기 제1 OFDM 심볼의 인덱스와 가장 가까운 인덱스를 찾는 동작; 및 상기 찾은 인덱스의 OFDM 심볼에 대한 채널 추정치를 상기 채널 예측치로 결정하는 동작을 포함할 수 있다.The operation of determining the channel prediction value includes: finding an index closest to the index of the first OFDM symbol among the index of the OFDM symbol through which the reference signal is transmitted and the OFDM symbol index included in the channel estimation information; and determining a channel estimate for the OFDM symbol of the found index as the channel prediction value.
상기 제1 채널 추정치를 결정하는 동작은 상기 수신 신호에 대한 수신 신호 행렬, 상기 검출된 제1 데이터 심볼들에 데이터 심볼 행렬, 및 상기 데이터 심볼 행렬의 에르미트(Hermitian) 행렬을 이용하여 상기 제1 채널 추정치를 결정하는 동작을 포함할 수 있다.The operation of determining the first channel estimate is performed by using a received signal matrix for the received signal, a data symbol matrix for the detected first data symbols, and a Hermitian matrix of the data symbol matrix. The operation may include determining a channel estimate.
상기 제2 채널 추정치를 결정하는 동작은 상기 결정된 제1 채널 추정치와 상기 결정된 채널 예측치를 선형 조합하여 상기 제2 채널 추정치를 결정하는 동작을 포함할 수 있다.Determining the second channel estimate may include determining the second channel estimate by linearly combining the determined first channel estimate and the determined channel estimate.
상기 수신 장치의 수신 방법은 상기 제1 채널 추정 순서가 상기 마지막 채널 추정 순서인 경우, 상기 OFDM 심볼들 각각의 수신 신호로부터 검출된 데이터 심볼들을 기초로 복호를 수행하는 동작을 더 포함할 수 있다. The receiving method of the receiving device may further include performing decoding based on data symbols detected from received signals of each of the OFDM symbols when the first channel estimation order is the last channel estimation order.
상기 수신 장치의 수신 방법은 상기 결정된 제2 채널 추정치를 상기 채널 추정 정보에 포함시켜 상기 채널 추정 정보를 업데이트하는 동작을 더 포함할 수 있다.The receiving method of the receiving device may further include updating the channel estimation information by including the determined second channel estimate in the channel estimation information.
상기 제2 OFDM 심볼에 대한 상기 채널 추정을 수행하는 동작은 상기 레퍼런스 신호 기반 채널 추정 정보 또는 상기 업데이트된 채널 추정 정보 중 적어도 하나를 이용하여 상기 제2 OFDM 심볼에 대한 채널 예측치를 결정하는 동작, 상기 제2 OFDM 심볼에 대한 채널 예측치를 이용하여 상기 제2 OFDM 심볼에서의 수신 신호로부터 제2 데이터 심볼들을 검출하는 동작, 상기 검출된 제2 데이터 심볼들을 기초로 상기 제2 OFDM 심볼에 대한 제1 채널 추정치를 결정하는 동작, 및 상기 제2 OFDM 심볼에 대한 제1 채널 추정치와 상기 제2 OFDM 심볼에 대한 채널 예측치를 기초로 상기 제2 OFDM 심볼에 대한 제2 채널 추정치를 결정하는 동작을 포함할 수 있다.The operation of performing the channel estimation for the second OFDM symbol includes determining a channel prediction value for the second OFDM symbol using at least one of the reference signal-based channel estimation information or the updated channel estimation information, Detecting second data symbols from a received signal in the second OFDM symbol using a channel prediction value for the second OFDM symbol, determining a first channel for the second OFDM symbol based on the detected second data symbols. It may include determining an estimate, and determining a second channel estimate for the second OFDM symbol based on a first channel estimate for the second OFDM symbol and a channel estimate for the second OFDM symbol. there is.
이상에서 설명된 실시예들은 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치, 방법 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPGA(field programmable gate array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 컨트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.The embodiments described above may be implemented with hardware components, software components, and/or a combination of hardware components and software components. For example, the devices, methods, and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, and a field programmable gate (FPGA). It may be implemented using a general-purpose computer or a special-purpose computer, such as an array, programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions. The processing device may execute an operating system (OS) and software applications running on the operating system. Additionally, a processing device may access, store, manipulate, process, and generate data in response to the execution of software. For ease of understanding, a single processing device may be described as being used; however, those skilled in the art will understand that a processing device includes multiple processing elements and/or multiple types of processing elements. It can be seen that it may include. For example, a processing device may include multiple processors or one processor and one controller. Additionally, other processing configurations, such as parallel processors, are possible.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.Software may include a computer program, code, instructions, or a combination of one or more of these, which may configure a processing unit to operate as desired, or may be processed independently or collectively. You can command the device. Software and/or data may be used on any type of machine, component, physical device, virtual equipment, computer storage medium or device to be interpreted by or to provide instructions or data to a processing device. , or may be permanently or temporarily embodied in a transmitted signal wave. Software may be distributed over networked computer systems and stored or executed in a distributed manner. Software and data may be stored on a computer-readable recording medium.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 저장할 수 있으며 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. The method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded on a computer-readable medium. A computer-readable medium may store program instructions, data files, data structures, etc., singly or in combination, and the program instructions recorded on the medium may be specially designed and constructed for the embodiment or may be known and available to those skilled in the art of computer software. there is. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic media such as floptical disks. -Includes optical media (magneto-optical media) and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, etc. Examples of program instructions include machine language code, such as that produced by a compiler, as well as high-level language code that can be executed by a computer using an interpreter, etc.
위에서 설명한 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 또는 복수의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.The hardware devices described above may be configured to operate as one or multiple software modules to perform the operations of the embodiments, and vice versa.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 이를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.As described above, although the embodiments have been described with limited drawings, those skilled in the art can apply various technical modifications and variations based on this. For example, the described techniques are performed in a different order than the described method, and/or components of the described system, structure, device, circuit, etc. are combined or combined in a different form than the described method, or other components are used. Alternatively, appropriate results may be achieved even if substituted or substituted by an equivalent.
그러므로, 다른 구현들, 다른 실시예들 및 청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.Therefore, other implementations, other embodiments and equivalents of the claims also fall within the scope of the following claims.

Claims (15)

  1. 수신 장치(110, 500, 1100)의 수신 방법에 있어서,In the receiving method of the receiving device (110, 500, 1100),
    데이터 심볼들이 전송되는 OFDM(orthogonal frequency division multiplexing) 심볼들의 채널 추정(estimation) 순서를 결정하는 동작;An operation of determining a channel estimation order of orthogonal frequency division multiplexing (OFDM) symbols through which data symbols are transmitted;
    상기 OFDM 심볼들 중 제1 채널 추정 순서의 제1 OFDM 심볼에 대한 채널 예측(prediction)치를 레퍼런스 신호 기반 채널 추정 정보 또는 상기 제1 채널 추정 순서 이전에 결정된 채널 추정 정보 중 적어도 하나를 이용하여 결정하는 동작;Determining a channel prediction value for the first OFDM symbol of the first channel estimation order among the OFDM symbols using at least one of reference signal-based channel estimation information or channel estimation information determined before the first channel estimation order. movement;
    상기 결정된 채널 예측치를 이용하여 상기 제1 OFDM 심볼에서의 수신 신호로부터 제1 데이터 심볼들을 검출하는 동작;detecting first data symbols from a received signal in the first OFDM symbol using the determined channel prediction value;
    상기 검출된 제1 데이터 심볼들을 기초로 상기 제1 OFDM 심볼에 대한 제1 채널 추정치를 결정하는 동작;determining a first channel estimate for the first OFDM symbol based on the detected first data symbols;
    상기 결정된 제1 채널 추정치와 상기 결정된 채널 예측치를 기초로 상기 제1 OFDM 심볼에 대한 제2 채널 추정치를 결정하는 동작; determining a second channel estimate for the first OFDM symbol based on the determined first channel estimate and the determined channel estimate;
    상기 제1 채널 추정 순서가 마지막 채널 추정 순서인지 여부를 판단하는 동작; 및determining whether the first channel estimation order is the last channel estimation order; and
    상기 제1 채널 추정 순서가 상기 마지막 채널 추정 순서가 아닌 경우, 다음 채널 추정 순서의 제2 OFDM 심볼에 대해 채널 추정을 수행하는 동작If the first channel estimation order is not the last channel estimation order, performing channel estimation on the second OFDM symbol in the next channel estimation order
    을 포함하는,Including,
    수신 장치의 수신 방법.Receiving method of the receiving device.
  2. 제1항에 있어서, According to paragraph 1,
    상기 채널 추정 순서를 결정하는 동작은,The operation of determining the channel estimation order is,
    상기 레퍼런스 신호가 전송되는 하나 이상의 OFDM 심볼의 위치와 상기 OFDM 심볼들 각각의 위치를 이용하여 상기 OFDM 심볼들의 채널 추정 순서를 결정하는 동작An operation of determining a channel estimation order of the OFDM symbols using the positions of one or more OFDM symbols through which the reference signal is transmitted and the positions of each of the OFDM symbols.
    을 포함하는,Including,
    수신 장치의 수신 방법.Receiving method of the receiving device.
  3. 제1항 내지 제2항 중 어느 하나에 있어서,According to any one of claims 1 and 2,
    상기 채널 추정 순서를 결정하는 동작은,The operation of determining the channel estimation order is,
    상기 OFDM 심볼들 중 상기 제1 OFDM 심볼의 인덱스가 상기 레퍼런스 신호가 전송되는 OFDM 심볼의 인덱스와 가장 가까운 경우, 상기 제1 채널 추정 순서를 첫번째 채널 추정 순서로 결정하는 동작When the index of the first OFDM symbol among the OFDM symbols is closest to the index of the OFDM symbol through which the reference signal is transmitted, determining the first channel estimation order as the first channel estimation order
    을 포함하는, Including,
    수신 장치의 수신 방법.Receiving method of the receiving device.
  4. 제1항 내지 제3항 중 어느 하나에 있어서,According to any one of claims 1 to 3,
    상기 채널 예측치를 결정하는 동작은,The operation of determining the channel prediction value is:
    상기 레퍼런스 신호 기반 채널 추정 정보와 상기 채널 추정 정보에 보간을 수행하여 상기 채널 예측치를 결정하는 동작An operation of determining the channel prediction value by performing interpolation on the reference signal-based channel estimation information and the channel estimation information.
    을 포함하는,Including,
    수신 장치의 수신 방법.Receiving method of the receiving device.
  5. 제1항 내지 제4항 중 어느 하나에 있어서, According to any one of claims 1 to 4,
    상기 채널 예측치를 결정하는 동작은,The operation of determining the channel prediction value is:
    상기 레퍼런스 신호가 전송된 OFDM 심볼의 인덱스와 상기 채널 추정 정보에 포함된 OFDM 심볼 인덱스 중 상기 제1 OFDM 심볼의 인덱스와 가장 가까운 인덱스를 찾는 동작; 및An operation of finding an index closest to the index of the first OFDM symbol among the index of the OFDM symbol through which the reference signal is transmitted and the OFDM symbol index included in the channel estimation information; and
    상기 찾은 인덱스의 OFDM 심볼에 대한 채널 추정치를 상기 채널 예측치로 결정하는 동작An operation of determining a channel estimate for an OFDM symbol of the found index as the channel estimate.
    을 포함하는,Including,
    수신 장치의 수신 방법.Receiving method of the receiving device.
  6. 제1항 내지 제5항 중 어느 하나에 있어서, According to any one of claims 1 to 5,
    상기 제1 채널 추정치를 결정하는 동작은 상기 수신 신호에 대한 수신 신호 행렬, 상기 검출된 제1 데이터 심볼들에 데이터 심볼 행렬, 및 상기 데이터 심볼 행렬의 에르미트(Hermitian) 행렬을 이용하여 상기 제1 채널 추정치를 결정하는 동작을 포함; 또는The operation of determining the first channel estimate is performed by using a received signal matrix for the received signal, a data symbol matrix for the detected first data symbols, and a Hermitian matrix of the data symbol matrix. Includes the operation of determining a channel estimate; or
    상기 제2 채널 추정치를 결정하는 동작은 상기 결정된 제1 채널 추정치와 상기 결정된 채널 예측치를 선형 조합하여 상기 제2 채널 추정치를 결정하는 동작을 포함하는,Determining the second channel estimate includes determining the second channel estimate by linearly combining the determined first channel estimate and the determined channel estimate.
    수신 장치의 수신 방법.Receiving method of the receiving device.
  7. 제1항 내지 제6항 중 어느 하나에 있어서, According to any one of claims 1 to 6,
    상기 제1 채널 추정 순서가 상기 마지막 채널 추정 순서인 경우, 상기 OFDM 심볼들 각각의 수신 신호로부터 검출된 데이터 심볼들을 기초로 복호를 수행하는 동작; 또는 When the first channel estimation order is the last channel estimation order, performing decoding based on data symbols detected from received signals of each of the OFDM symbols; or
    상기 결정된 제2 채널 추정치를 상기 채널 추정 정보에 포함시켜 상기 채널 추정 정보를 업데이트하는 동작An operation of updating the channel estimate information by including the determined second channel estimate in the channel estimate information.
    을 더 포함하는,Containing more,
    수신 장치의 수신 방법.Receiving method of the receiving device.
  8. 제7항에 있어서, In clause 7,
    상기 제2 OFDM 심볼에 대한 상기 채널 추정을 수행하는 동작은,The operation of performing the channel estimation for the second OFDM symbol is:
    상기 레퍼런스 신호 기반 채널 추정 정보 또는 상기 업데이트된 채널 추정 정보 중 적어도 하나를 이용하여 상기 제2 OFDM 심볼에 대한 채널 예측치를 결정하는 동작;determining a channel prediction value for the second OFDM symbol using at least one of the reference signal-based channel estimation information or the updated channel estimation information;
    상기 제2 OFDM 심볼에 대한 채널 예측치를 이용하여 상기 제2 OFDM 심볼에서의 수신 신호로부터 제2 데이터 심볼들을 검출하는 동작;detecting second data symbols from a received signal in the second OFDM symbol using a channel prediction value for the second OFDM symbol;
    상기 검출된 제2 데이터 심볼들을 기초로 상기 제2 OFDM 심볼에 대한 제1 채널 추정치를 결정하는 동작; 및determining a first channel estimate for the second OFDM symbol based on the detected second data symbols; and
    상기 제2 OFDM 심볼에 대한 제1 채널 추정치와 상기 제2 OFDM 심볼에 대한 채널 예측치를 기초로 상기 제2 OFDM 심볼에 대한 제2 채널 추정치를 결정하는 동작An operation of determining a second channel estimate for the second OFDM symbol based on the first channel estimate for the second OFDM symbol and the channel estimate for the second OFDM symbol.
    을 포함하는,Including,
    수신 장치의 수신 방법.Receiving method of the receiving device.
  9. 수신 장치(110, 500, 1100)에 있어서,In the receiving device (110, 500, 1100),
    복수의 안테나들(1110); A plurality of antennas 1110;
    상기 안테나들을 통해 송신 장치로부터 RF 신호를 수신하고, 상기 수신된 RF 신호를 기저대역 신호로 변환하는 RF 통신 회로(1120); 및an RF communication circuit 1120 that receives an RF signal from a transmitting device through the antennas and converts the received RF signal into a baseband signal; and
    상기 RF 통신 회로와 연결되는 프로세서(1130)Processor 1130 connected to the RF communication circuit
    를 포함하고,Including,
    상기 프로세서는,The processor,
    데이터 심볼들이 전송되는 OFDM 심볼들의 채널 추정 순서를 결정하고, 상기 OFDM 심볼들 중 제1 채널 추정 순서의 제1 OFDM 심볼에 대한 채널 예측치를 레퍼런스 신호 기반 채널 추정 정보 또는 상기 제1 채널 추정 순서 이전에 결정된 채널 추정 정보 중 적어도 하나를 이용하여 결정하며, 상기 변환된 기저대역 신호를 기초로 상기 제1 OFDM 심볼에서의 수신 신호를 획득하고, 상기 결정된 채널 예측치를 이용하여 상기 획득된 수신 신호로부터 제1 데이터 심볼들을 검출하고, 상기 검출된 제1 데이터 심볼들을 기초로 상기 제1 OFDM 심볼에 대한 제1 채널 추정치를 결정하고, 상기 결정된 제1 채널 추정치와 상기 결정된 채널 예측치를 기초로 상기 제1 OFDM 심볼에 대한 제2 채널 추정치를 결정하고, 상기 제1 채널 추정 순서가 마지막 채널 추정 순서인지 여부를 판단하고, 상기 제1 채널 추정 순서가 상기 마지막 채널 추정 순서가 아닌 경우, 다음 채널 추정 순서의 제2 OFDM 심볼에 대해 채널 추정을 수행하는,Determine the channel estimation order of OFDM symbols through which data symbols are transmitted, and determine the channel estimate for the first OFDM symbol in the first channel estimation order among the OFDM symbols using reference signal-based channel estimation information or before the first channel estimation order. A decision is made using at least one of the determined channel estimation information, a received signal in the first OFDM symbol is obtained based on the converted baseband signal, and a first received signal is obtained from the obtained received signal using the determined channel estimate value. Detect data symbols, determine a first channel estimate for the first OFDM symbol based on the detected first data symbols, and determine the first OFDM symbol based on the determined first channel estimate and the determined channel estimate. Determine a second channel estimate for, determine whether the first channel estimation order is the last channel estimation order, and if the first channel estimation order is not the last channel estimation order, the second channel estimate order for Performing channel estimation on OFDM symbols,
    수신 장치.Receiving device.
  10. 제9항에 있어서, According to clause 9,
    상기 프로세서는, The processor,
    상기 레퍼런스 신호가 전송되는 하나 이상의 OFDM 심볼의 위치와 상기 OFDM 심볼들 각각의 위치를 이용하여 상기 OFDM 심볼들의 채널 추정 순서를 결정하는,Determining a channel estimation order of the OFDM symbols using the location of one or more OFDM symbols through which the reference signal is transmitted and the location of each of the OFDM symbols,
    수신 장치.Receiving device.
  11. 제9항 내지 제10항 중 어느 하나에 있어서,According to any one of claims 9 to 10,
    상기 프로세서는, The processor,
    상기 OFDM 심볼들 중 상기 제1 OFDM 심볼의 인덱스가 상기 레퍼런스 신호가 전송되는 OFDM 심볼의 인덱스와 가장 가까운 경우, 상기 제1 채널 추정 순서를 첫번째 채널 추정 순서로 결정하는, When the index of the first OFDM symbol among the OFDM symbols is closest to the index of the OFDM symbol through which the reference signal is transmitted, determining the first channel estimation order as the first channel estimation order,
    수신 장치.Receiving device.
  12. 제9항 내지 제11항 중 어느 하나에 있어서,According to any one of claims 9 to 11,
    상기 프로세서는 상기 레퍼런스 신호 기반 채널 추정 정보와 상기 채널 추정 정보에 보간을 수행하여 상기 채널 예측치를 결정하도록 구성; 또는,The processor is configured to determine the channel prediction value by performing interpolation on the reference signal-based channel estimation information and the channel estimation information; or,
    상기 프로세서는 상기 레퍼런스 신호가 전송된 OFDM 심볼의 인덱스와 상기 채널 추정 정보에 포함된 OFDM 심볼 인덱스 중 상기 제1 OFDM 심볼의 인덱스와 가장 가까운 인덱스를 찾고, 상기 찾은 인덱스의 OFDM 심볼에 대한 채널 추정치를 상기 채널 예측치로 결정하도록 구성되는,The processor finds the index closest to the index of the first OFDM symbol among the index of the OFDM symbol through which the reference signal was transmitted and the OFDM symbol index included in the channel estimation information, and provides a channel estimate for the OFDM symbol of the found index. configured to determine with the channel prediction value,
    수신 장치.Receiving device.
  13. 제9항 내지 제12항 중 어느 하나에 있어서,According to any one of claims 9 to 12,
    상기 프로세서는 상기 수신 신호에 대한 수신 신호 행렬, 상기 검출된 제1 데이터 심볼들에 데이터 심볼 행렬, 및 상기 데이터 심볼 행렬의 에르미트(Hermitian) 행렬을 이용하여 상기 제1 채널 추정치를 결정하도록 구성; 또는the processor is configured to determine the first channel estimate using a received signal matrix for the received signal, a data symbol matrix for the detected first data symbols, and a Hermitian matrix of the data symbol matrix; or
    상기 프로세서는 상기 결정된 제1 채널 추정치와 상기 결정된 채널 예측치를 선형 조합하여 상기 제2 채널 추정치를 결정하도록 구성되는The processor is configured to determine the second channel estimate by linearly combining the determined first channel estimate and the determined channel estimate.
    수신 장치.Receiving device.
  14. 제9항 내지 제13항 중 어느 하나에 있어서,According to any one of claims 9 to 13,
    상기 프로세서는 상기 제1 채널 추정 순서가 상기 마지막 채널 추정 순서인 경우, 상기 OFDM 심볼들 각각의 수신 신호로부터 검출된 데이터 심볼들을 기초로 복호를 수행하도록 구성; 또는,The processor is configured to perform decoding based on data symbols detected from received signals of each of the OFDM symbols when the first channel estimation order is the last channel estimation order; or,
    상기 프로세서는 상기 결정된 제2 채널 추정치를 상기 채널 추정 정보에 포함시켜 상기 채널 추정 정보를 업데이트하도록 구성되는,The processor is configured to update the channel estimate information by including the determined second channel estimate in the channel estimate information,
    수신 장치.Receiving device.
  15. 제14항에 있어서, According to clause 14,
    상기 프로세서는, The processor,
    상기 레퍼런스 신호 기반 채널 추정 정보 또는 상기 업데이트된 채널 추정 정보 중 적어도 하나를 이용하여 상기 제2 OFDM 심볼에 대한 채널 예측치를 결정하고, 상기 제2 OFDM 심볼에 대한 채널 예측치를 이용하여 상기 제2 OFDM 심볼에서의 수신 신호로부터 제2 데이터 심볼들을 검출하며, 상기 검출된 제2 데이터 심볼들을 기초로 상기 제2 OFDM 심볼에 대한 제1 채널 추정치를 결정하고, 상기 제2 OFDM 심볼에 대한 제1 채널 추정치와 상기 제2 OFDM 심볼에 대한 채널 예측치를 기초로 상기 제2 OFDM 심볼에 대한 제2 채널 추정치를 결정하는,Determine a channel prediction value for the second OFDM symbol using at least one of the reference signal-based channel estimation information or the updated channel estimation information, and determine the second OFDM symbol using the channel prediction value for the second OFDM symbol. Detect second data symbols from a received signal in, determine a first channel estimate for the second OFDM symbol based on the detected second data symbols, and determine a first channel estimate for the second OFDM symbol and Determining a second channel estimate for the second OFDM symbol based on the channel estimate for the second OFDM symbol,
    수신 장치.Receiving device.
PCT/KR2023/011945 2022-08-29 2023-08-11 Reception device and method for receiving mimo-ofdm signal WO2024049050A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220108590 2022-08-29
KR10-2022-0108590 2022-08-29
KR10-2022-0111431 2022-09-02
KR1020220111431A KR20240030845A (en) 2022-08-29 2022-09-02 Method and apparatus of receiving mimo(multiple-input multiple-output)-ofdm(orthogonal frequency division multiplexing) signal

Publications (1)

Publication Number Publication Date
WO2024049050A1 true WO2024049050A1 (en) 2024-03-07

Family

ID=90098138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011945 WO2024049050A1 (en) 2022-08-29 2023-08-11 Reception device and method for receiving mimo-ofdm signal

Country Status (1)

Country Link
WO (1) WO2024049050A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748983B1 (en) * 2016-01-21 2017-06-20 연세대학교 산학협력단 Device and Method for Estimating Channel in FBMC System Having Multiple Antennas
US20180295590A1 (en) * 2017-04-10 2018-10-11 Qualcomm Incorporated Reference signal schemes in wireless communications
KR20180121406A (en) * 2017-04-28 2018-11-07 한국전자통신연구원 Method for transmitting and receiving downlink channel and reference signal in communication system
KR102191290B1 (en) * 2014-01-29 2020-12-15 삼성전자 주식회사 Method and apparatus for estimate communication channel in mobile communication system
KR102329272B1 (en) * 2017-08-04 2021-11-19 삼성전자주식회사 Apparatus and method for uplink transmissions in wireless communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102191290B1 (en) * 2014-01-29 2020-12-15 삼성전자 주식회사 Method and apparatus for estimate communication channel in mobile communication system
KR101748983B1 (en) * 2016-01-21 2017-06-20 연세대학교 산학협력단 Device and Method for Estimating Channel in FBMC System Having Multiple Antennas
US20180295590A1 (en) * 2017-04-10 2018-10-11 Qualcomm Incorporated Reference signal schemes in wireless communications
KR20180121406A (en) * 2017-04-28 2018-11-07 한국전자통신연구원 Method for transmitting and receiving downlink channel and reference signal in communication system
KR102329272B1 (en) * 2017-08-04 2021-11-19 삼성전자주식회사 Apparatus and method for uplink transmissions in wireless communication system

Similar Documents

Publication Publication Date Title
WO2017192025A1 (en) Method and apparatus for transmitting harq-ack feedback information
WO2015020464A1 (en) Method and apparatus for transmitting and receiving feedback information in mobile communication system based on 2 dimensional massive mimo
WO2016163855A1 (en) Method for multiplexing uplink information
WO2011139081A2 (en) Apparatus and method for transmitting and receiving of cyclic shift parameter for supporting orthogonality in mimo environment
WO2021049873A1 (en) Method and apparatus for port selection in wireless communication systems
WO2015115848A1 (en) Method and apparatus for estimating communication channel in mobile communication system
WO2012093904A2 (en) Interference alignment method and device in cellular network
WO2014027768A1 (en) Configuration and mapping of uplink control channel resource
WO2021071215A1 (en) Method for transmitting reference signal and apparatus using the same
WO2022186581A1 (en) Power control for pucch transmission with acknowledgement information
WO2017030340A1 (en) Apparatus and method for controlling channel access in wireless communication system
WO2021141432A1 (en) Method and apparatus of parameter tracking for csi estimation
WO2020009432A1 (en) Method and device for performing beamforming in wireless communication system
WO2021125833A1 (en) Method and apparatus for ss/pbch block patterns in higher frequency ranges
WO2023048469A1 (en) Method and apparatus for codebook based ul transmission
WO2022075826A1 (en) Method and apparatus for configuring parameters of a port selection codebook
WO2022186630A1 (en) Method and apparatus for csi reporting in distributed mimo
WO2021256897A1 (en) Method and apparatus for signal processing in a wireless communication system
WO2023239115A1 (en) Method and apparatus for supporting a discovery signal
WO2024029944A1 (en) Method and apparatus of determining bandwidth for transmission of srs resources
WO2022220623A1 (en) Apparatus and method for performing communication on basis of timing alignment error (tae) in wireless communication system
WO2024049050A1 (en) Reception device and method for receiving mimo-ofdm signal
WO2022131790A1 (en) Method and apparatus of enhancement to standalone operation
WO2024154895A1 (en) Device and method for processing signal received by reception device in wireless communication system
WO2020050653A1 (en) Method and device for generating reference signal sequence for papr reduction in mobile communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860729

Country of ref document: EP

Kind code of ref document: A1