WO2020145396A1 - Wearable device - Google Patents

Wearable device Download PDF

Info

Publication number
WO2020145396A1
WO2020145396A1 PCT/JP2020/000729 JP2020000729W WO2020145396A1 WO 2020145396 A1 WO2020145396 A1 WO 2020145396A1 JP 2020000729 W JP2020000729 W JP 2020000729W WO 2020145396 A1 WO2020145396 A1 WO 2020145396A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
wearable device
thermoelectric
conversion element
band
Prior art date
Application number
PCT/JP2020/000729
Other languages
French (fr)
Japanese (ja)
Inventor
悠真 岩崎
石田 真彦
明宏 桐原
亮人 澤田
康智 大森
寺島 浩一
染谷 浩子
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2020565230A priority Critical patent/JP7310832B2/en
Publication of WO2020145396A1 publication Critical patent/WO2020145396A1/en

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C10/00Arrangements of electric power supplies in time pieces
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G17/00Structural details; Housings
    • GPHYSICS
    • G04HOROLOGY
    • G04GELECTRONIC TIME-PIECES
    • G04G19/00Electric power supply circuits specially adapted for use in electronic time-pieces
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • the present invention relates to a wearable device equipped with a thermoelectric conversion element.
  • thermoelectric conversion is increasing as one of the heat management technologies for a sustainable society.
  • Heat is a general energy source that can be recovered in various situations such as body temperature, solar heat, and industrial waste heat. Therefore, expectations for thermoelectric conversion are expected to further increase in various applications such as high efficiency of energy use, power supply to mobile terminals and sensors, and visualization of heat flow by heat flow sensing.
  • Patent Document 1 discloses a thermal sensor using spintronics technology that utilizes spin currents of electrons and charges in a solid.
  • the thermal sensor of Patent Document 1 includes a detection film that generates heat due to incidence or adhesion of a detection target, a magnetic film that generates a spin current in a direction in which a temperature gradient occurs due to heat generated by the detection film, and a magnetic film.
  • An electrode that converts the generated spin current into an electric current.
  • thermoelectric generator member that generates electric power based on a temperature difference between a heat source and a heat radiation destination, and a variable resistor that is provided in a heat transfer path between the heat source and the heat radiation destination and that changes the thermal resistance of the heat transfer path.
  • a variable resistance part moving mechanism for moving the variable resistance part. According to the thermoelectric generator of Patent Document 2, a decrease in power generation efficiency is suppressed when the device is attached to a living body, so that a desired amount of power generation can be secured.
  • Patent Document 3 discloses a thermoelectric wristwatch equipped with a thermoelectric element.
  • the thermoelectric wristwatch of Patent Document 3 includes a metal case, a back cover, a heat insulator, a dial, a movement, a thermoelectric element, an upper heat transfer plate, and a lower heat transfer plate.
  • the thermoelectric element has a structure in which pillars of p-type thermoelectric semiconductor and pillars of n-type thermoelectric semiconductor are alternately arranged, and end faces of adjacent pillars are electrically connected by wiring electrodes.
  • the thermal sensor of Patent Document 1 it is possible to generate power using the spin current.
  • the thermal sensor of Patent Document 1 has a problem that it is difficult to obtain a sufficient amount of power generation.
  • thermoelectric generator of Patent Document 2 has a problem that it is not possible to obtain sufficient thermoelectric conversion efficiency because the thermoelectric generator cannot be upsized.
  • thermoelectric wristwatch of Patent Document 3 since the temperature difference between the thermoelectric elements is increased, the thermoelectric conversion efficiency is improved.
  • the thermoelectric element of the thermoelectric wristwatch of Patent Document 3 the pillar of the p-type thermoelectric semiconductor and the pillar of the n-type thermoelectric semiconductor are cascade-joined, and the pillar of the p-type thermoelectric semiconductor and the pillar of the n-type thermoelectric semiconductor are connected. There is a gap between them. Therefore, the ratio of the thermoelectric semiconductor in the entire thermoelectric element is limited, and there is a problem that the thermoelectric conversion efficiency is small for the size.
  • the object of the present invention is to solve the above-mentioned problems, to provide a sufficient amount of power generation, and to provide a wearable device equipped with a thermoelectric conversion element having high thermoelectric conversion efficiency.
  • a wearable device includes a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current, an object that receives electric power generated by the thermoelectric conversion element, and a peripheral portion of the object. And a band arranged according to the present invention.
  • a wearable device connects a plurality of bulk-type thermoelectric converters that convert a spin current generated by a temperature gradient to an electric current, and connects adjacent bulk-type thermoelectric converters, and also electrically connects them.
  • the structure includes a plurality of connecting members and an object that receives electric power generated by a thermoelectric conversion element configured by a plurality of bulk-type thermoelectric converters, and is formed by a structure in which the plurality of bulk-type thermoelectric converters are connected by the connecting members.
  • a band that extends around the object is arranged.
  • a wearable device includes a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current, a mounting portion that mounts an object that receives electric power generated by the thermoelectric conversion element, and the periphery of the mounting portion. And a band arranged so as to extend in the section.
  • thermoelectric conversion element having high thermoelectric conversion efficiency it is possible to provide a wearable device in which a sufficient amount of power generation can be obtained and a thermoelectric conversion element having high thermoelectric conversion efficiency is mounted.
  • the wearable device of this embodiment has a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current.
  • the thermoelectric conversion element mounted on the wearable device of the present embodiment includes a thin film type thermoelectric conversion body (hereinafter, also referred to as a thin film type thermoelectric conversion body).
  • the wearable device of the present embodiment is attached to a position where the thermoelectric conversion element can receive the heat generated by the human body.
  • the wearable device of the present embodiment is assumed to be worn on the wrist, but may be attached to a place other than the wrist as long as the thermoelectric conversion element can receive the heat generated by the human body.
  • the side close to the human body is regarded as the lower side and the outer side as the upper side. Further, in the present embodiment, it is assumed that the side close to the human body has a high temperature and the outside has a low temperature, but the side close to the human body may have a low temperature and the outside may have a high temperature.
  • FIG. 1 to 3 are conceptual diagrams for explaining an example of the configuration of the wearable device 1 of this embodiment.
  • FIG. 1 is a side view of the wearable device 1.
  • FIG. 2 is a bottom view of the wearable device 1.
  • FIG. 3 is a top view of the wearable device 1.
  • the wearable device 1 includes a thermoelectric conversion element 11, an object 15, and a band 17.
  • the thermoelectric conversion element 11 is located closer to the human body than the object 15.
  • the thermoelectric conversion element 11 includes a thin film type thermoelectric conversion body that converts a spin current generated by a temperature gradient into an electric current.
  • Spin current is a flow of electron spin angular momentum.
  • the thermoelectric conversion element 11 uses a spin Seebeck effect and an inverse spin Hall effect together to convert a temperature gradient into electricity via spin.
  • the spin Seebeck effect is a phenomenon in which a spin current is induced in a direction parallel to the temperature gradient when a temperature gradient is applied to the magnetic substance. According to the spin Seebeck effect, thermal spin current conversion occurs in which heat is converted into a spin current.
  • the spin Seebeck effect is exhibited at the interface between a magnetic film such as a nickel-iron (NiFe) film which is a ferromagnetic material, a magnetic insulator such as yttrium iron garnet (Y 3 Fe 5 O 12 ) and a metal film.
  • the inverse spin Hall effect is a phenomenon in which an electromotive force is generated when a spin current flows.
  • the inverse spin Hall effect is remarkably exhibited in a substance having a large spin-orbit interaction, such as platinum (Pt) and palladium (Pd).
  • the spin current induced by the temperature gradient by the spin Seebeck effect can be converted into an electric field (current, voltage) by the inverse spin Hall effect.
  • thermoelectric conversion element 11 is arranged on the lower surface of the object 15.
  • the thermoelectric conversion element 11 is connected to the target object 15 via a terminal (not shown) so that power can be supplied.
  • the thermoelectric conversion element 11 generates power according to the temperature gradient between the human body side and the outside while the wearable device 1 is attached to the human body.
  • the thermoelectric conversion element 11 supplies electric power generated by the temperature gradient to the object 15 via a terminal (not shown).
  • the object 15 is arranged on the upper surface of the thermoelectric conversion element 11.
  • the target object 15 is connected to the thermoelectric conversion element 11 so as to be able to receive power via a terminal (not shown).
  • the target object 15 receives the electric power supplied from the thermoelectric conversion element 11.
  • the object 15 is a device with low power consumption such as a clock.
  • the object 15 may be a device such as an RF (Radio Frequency) tag in which identification information is embedded or a thermometer. Note that the object 15 may be any device as long as it can move with the electric power supplied from the thermoelectric conversion element 11.
  • the band 17 is a band-like member, which is a component for mounting the wearable device 1 on a human body.
  • the band 17 is arranged to extend around the peripheral portion of the object 15.
  • the band 17 is composed of two parts arranged to extend around the peripheral portion of the object 15.
  • the band 17 is configured such that, when the band 17 is wrapped around a part of the human body, the thermoelectric conversion element 11 is arranged closer to the human body than the object 15. 1 to 3, fasteners and holes for mounting the band 17 on the human body are omitted.
  • the wearable device 1 can be worn on the human body by winding the band 17 around the wrist or the like.
  • a temperature gradient is generated between the human body side of the thermoelectric conversion element 11 and the side opposite to the human body (also referred to as the outer side), and the spin current generated by the temperature gradient causes the temperature gradient. Electricity is generated. If the current generated by the electromotive force is supplied to the object 15, the object 15 can be driven.
  • the wearable device 1 may be configured to be worn on the head, neck, shoulders, arms, fingers, legs, chest, waist, etc., instead of the wrist, and the wearing position is not limited.
  • FIG. 4 is a conceptual diagram for explaining an example of the configuration of the thermoelectric conversion element 11.
  • FIG. 5 is a conceptual diagram for explaining thermoelectric conversion in the thin film type thermoelectric converter included in the thermoelectric conversion element 11.
  • the configuration of the thermoelectric conversion element 11 shown in FIGS. 4 and 5 is conceptual, and does not accurately represent the size, positional relationship, arrangement state, etc. of the electromotive layer 111 and the magnetic layer 112.
  • the thermoelectric conversion element 11 is demonstrated as what is comprised by a thin film type thermoelectric conversion body.
  • thermoelectric conversion element 11 has a structure in which an electromotive layer 111 and a magnetic layer 112 are laminated.
  • the magnetic layer 112 has a magnetization direction M in the minus x direction in the figure.
  • the thermal spin current Js is generated in the magnetic layer 112.
  • the thermal spin current Js generates a pure spin current Jp in the electromotive layer 111 through a process called spin injection near the interface between the magnetic layer 112 and the electromotive layer 111.
  • a pure spin current Jp is generated when the conduction electron e having a spin moves near the spin injection interface of the electromotive force layer 111 by the spin injection.
  • the pure spin current Jp the same amount of conduction electrons e having up spin and down spin flow in opposite directions.
  • spin angular momentum flows because the signs of spins are different from each other.
  • the state in which this spin injection phenomenon can occur is also called magnetically coupled.
  • the spin injection phenomenon occurs not only when the magnetic layer 112 and the electromotive layer 111 are in contact with each other, but also when the magnetic layer 112 and the electromotive layer 111 are not in contact with each other but are close enough to transmit spin angular momentum. .. That is, even if there is a gap between the magnetic layer 112 and the electromotive layer 111, they are magnetically coupled when the spin injection phenomenon can occur.
  • the electromotive layer 111 is made of a material having a large spin-orbit interaction
  • conduction electrons e move inside the electromotive layer 111 due to the inverse spin Hall effect.
  • the conduction electron e moves in the direction (y direction) orthogonal to the spin current direction (z direction) and the magnetization direction (x direction).
  • the current I flows in either the positive y direction or the negative y direction depending on the property of the material of the electromotive layer 111.
  • the electromotive force generated in the thermoelectric conversion element 11 depends on the magnitude of the spin current generated in the magnetic layer 112, the injection efficiency of the spin current at the interface between the magnetic layer 112 and the electromotive layer 111, and the electromotive layer. It is a size obtained by multiplying the thermoelectric conversion efficiency by the inverse spin Hall effect in 111.
  • thermoelectric conversion element 11 included in the thermoelectric conversion element 11.
  • thermoelectric conversion may be performed using the abnormal Nernst effect.
  • the wearable device of the present embodiment the thermoelectric conversion element that converts the spin current generated by the temperature gradient into the current, the object that receives the power generated by the thermoelectric conversion element, and the peripheral portion of the object. And a band arranged to extend.
  • the thermoelectric conversion element is arranged on one surface of the object.
  • the thermoelectric conversion element includes a thin-film thermoelectric conversion body including an electromotive body and a magnetic body arranged in contact with the electromotive body.
  • the thin-film thermoelectric converter has a structure in which a magnetic body and an electromotive body are laminated, and generates power according to a temperature gradient caused by the surface temperature of the human body and the temperature of the outside air.
  • the wearable device of the present embodiment is equipped with a thermoelectric conversion element that thermoelectrically generates power by spin thermoelectric conversion using a spin current with little energy dissipation. Since the spin current has little energy dissipation, highly efficient thermoelectric conversion can be realized.
  • thermoelectric conversion element mounted on the wearable device of the present embodiment does not have a void generated between the pillar of the p-type thermoelectric semiconductor and the pillar of the n-type thermoelectric semiconductor unlike the semiconductor thermoelectric conversion element, the thermoelectric conversion element has a large volume. The upper limit of the thermoelectric conversion efficiency is high.
  • thermoelectric conversion element having high thermoelectric conversion efficiency
  • thermoelectric conversion element including a bulk-type thermoelectric conversion body (hereinafter, also referred to as bulk-type thermoelectric conversion body) is mounted.
  • FIG. 6 is a side view for explaining an example of the configuration of the wearable device 2 of this embodiment. A top view and a bottom view of the wearable device 2 are omitted.
  • the wearable device 2 includes a thermoelectric conversion element 21, an object 25, and a band 27.
  • the wearable device 2 is different from the wearable device 1 according to the first embodiment in the configuration of the thermoelectric conversion element 21. In the following, differences from the wearable device 1 will be mainly described.
  • the thermoelectric conversion element 21 includes a bulk type thermoelectric conversion body that converts a spin current generated by a temperature gradient into an electric current.
  • the thermoelectric conversion element 21 includes a plurality of thermoelectric conversion unit structures composed of magnetic fine particles containing a magnetic material that exhibits the spin Seebeck effect, and an electromotive body that coats the magnetic fine particles.
  • the plurality of thermoelectric conversion unit structures form an aggregate that is in contact with each other via the electromotive body.
  • the thermoelectric conversion element 21 is arranged on the lower surface of the object 25.
  • the thermoelectric conversion element 21 is connected to the object 25 via a terminal (not shown) so as to be able to supply power.
  • the thermoelectric conversion element 21 generates power according to the temperature gradient between the human body side and the outside while the wearable device 2 is attached to the human body.
  • the thermoelectric conversion element 21 supplies the power generated by the temperature gradient to the object 25 via a terminal (not shown). Since the object 25 and the band 27 are similar to those of the wearable device 1, the description thereof will be omitted.
  • the wearable device 2 can be worn on the human body by winding the band 27 around the wrist or the like.
  • a temperature gradient is generated between the human body side of the thermoelectric conversion element 21 and the side opposite to the human body, and electromotive force is generated by the spin current generated by the temperature gradient. If the current generated by the electromotive force is fed to the object 25, the object 15 can be driven.
  • FIG. 7 is a conceptual diagram showing a perspective view of the thermoelectric conversion element 21 and an enlarged view of a part of the cross section of the thermoelectric conversion element 21.
  • FIG. 8 is a conceptual diagram for explaining the spin current, the magnetization, and the current generated in the magnetic fine particles 210 and the electromotive body 220 that form the thermoelectric conversion unit structure 200.
  • the configuration of the thermoelectric conversion element 21 shown in FIGS. 7 and 8 is conceptual, and does not accurately represent the size, positional relationship, arrangement state, etc. of the thermoelectric conversion unit structure 200.
  • the bulk type thermoelectric conversion body included in the thermoelectric conversion element 21 is composed of an assembly of a plurality of thermoelectric conversion unit structures 200.
  • the thermoelectric conversion unit structure 200 has a structure in which magnetic fine particles 210 made of fine magnetic particles are coated with an electromotive body 220.
  • the electric power generated by thermoelectric conversion has the property of being proportional to the volume of the element. Therefore, in order to obtain large electric power, the plurality of thermoelectric conversion unit structures 200 are configured as an aggregate.
  • the magnetic fine particles 210 are covered with the electromotive body 220.
  • the magnetic fine particles 210 are magnetic bodies having a shape such as a sphere, an ellipsoid, a cone, a frustum, a column, or a polyhedron.
  • the magnetic fine particles 210 are not limited to the above-described shape, and may be in the shape of fragments, or an amorphous shape of a substance solidified, precipitated, or aggregated in the liquid phase or the gas phase.
  • the magnetic material forming the magnetic fine particles 210 may include a structure having a structure in which the spin current is less likely to be dissipated.
  • the magnetic fine particles 210 preferably have high crystallinity, and are preferably single crystals.
  • the particle size of the magnetic fine particles 210 be as large as the diffusion length of the thermal magnon in the magnetic material forming the magnetic fine particles 210. Further, the maximum diameter of the magnetic fine particles 210 is preferably smaller than the diffusion length of thermal magnon in the magnetic material.
  • a garnet-based magnetic insulator crystal such as yttrium iron garnet (YIG:Y 3 Fe 5 O 12 ) is used as the magnetic fine particles 210.
  • the thermal magnon diffusion length of the magnetic fine particles 210 is estimated to be about 50 nm (nanometer) to 10 ⁇ m (micrometer). It is estimated that the thermal magnon diffusion length of the garnet-based magnetic insulator crystal reaches 100 ⁇ m depending on the crystal growth method. Considering these points, when using a garnet-based magnetic insulator crystal, the particle size of the magnetic fine particles 210 is preferably 1 to 10 ⁇ m on average, and about 100 ⁇ m at the maximum.
  • the electromotive body 220 covers the magnetic fine particles 210.
  • the electromotive body 220 includes a material such as a metal, a semiconductor, an oxide conductor, or an organic conductor.
  • the electromotive body 220 preferably contains a metal material having a large spin-orbit interaction.
  • the electromotive body 220 preferably includes a metal material having a spin Hall angle defined by the ratio of spin Hall conductivity to electric conductivity of 0.001 or more.
  • the electromotive body 220 is made of any one of gold (Au), platinum (Pt), palladium (Pd), nickel (Ni), iron (Fe), tungsten (W), and tantalum (Ta). It is preferable that the configuration includes one or more.
  • the thickness of the electromotive body 220 is preferably set based on the diffusion length of the spin current in the metal material forming the electromotive body 220. If the thickness of the electromotive body 220 is smaller than the diffusion length, the spin current cannot be sufficiently converted into a current. On the other hand, when the thickness of the electromotive body 220 becomes larger than the diffusion length, the amount of generated current saturates, while the internal resistance of the electromotive body increases. That is, if the thickness of the electromotive body 220 is larger or smaller than the diffusion length, the amount of electric power that can be taken out decreases. It is preferable that the thickness is about the diffusion length of the spin current. For example, the thickness of the electromotive body 220 is preferably several nm to several 100 nm.
  • FIG. 8 shows a uniform temperature gradient dT in the z direction (vertical direction of the paper) with respect to the thermoelectric conversion unit structure 200 including the magnetic fine particles 210 having the magnetization direction M in the x direction (direction perpendicular to the paper). Is an example in which is applied.
  • the direction of the spin current Js (plus z direction) and the direction of the magnetization direction M (minus x direction) do not change, and therefore the same direction as the upper current It ( The lower current Ib flows in the negative y direction).
  • the upper current It and the lower current Ib may flow in the positive y direction, but in the following, both the upper current It and the lower current Ib flow in the negative y direction. It will be described as a thing.
  • thermoelectric conversion unit structure 200 when the entire thermoelectric conversion unit structure 200 has a uniform temperature gradient dT toward the negative z direction, an electromotive force is generated inside the electromotive body 220 of the thermoelectric conversion unit structure 200 toward the negative y direction. Occurs.
  • the maximum circumference when the thermoelectric conversion unit structure 200 is cut along a plane parallel to the xy plane is called the equator.
  • the equator of the thermoelectric conversion unit structure 200 is represented by the line EE.
  • spin injection does not occur because the spin current Js is parallel to the interface between the magnetic fine particles 210 and the electromotive body 220. Therefore, on the equator of the thermoelectric conversion unit structure 200, the electromotive force due to the spin Seebeck effect and the inverse spin Hall effect becomes zero.
  • thermoelectric conversion unit structure 200 when the thermoelectric conversion unit structure 200 exists alone, the electromotive force generated in the regions of the upper hemisphere and the lower hemisphere and directed in the negative y direction is short-circuited via the path on the equator (also referred to as a short-circuit path). As a result, the total electromotive force is reduced. However, the width of the short circuit path is extremely narrow and converges to zero, so that the impedance becomes infinite. Therefore, the effect of reducing the electromotive force is limited, and the electromotive force in the negative y direction never actually becomes zero.
  • thermoelectric conversion element 21 is a bulk type thermoelectric conversion body configured by an assembly of a plurality of thermoelectric conversion unit structures 200. Adjacent thermoelectric conversion unit structures 200 are in contact with each other.
  • a temperature gradient is applied in the minus z direction in a state where two thermoelectric conversion unit structures 200 that are stacked in the z axis direction and are adjacent to each other are both magnetized in the minus x direction.
  • both the heat flow and the spin flow pass through the contact interface between the two thermoelectric conversion unit structures 200 and flow from one thermoelectric conversion unit structure 200 toward the other thermoelectric conversion unit structure 200.
  • thermoelectric conversion unit structures 200 At the contact interface between the two thermoelectric conversion unit structures 200, an electromotive force in the negative y direction is generated by both the spin current flowing from one thermoelectric conversion unit structure 200 and the spin current flowing out to the other thermoelectric conversion unit structure 200. To do. In an ideal situation, the output power per unit area at the contact interface between the two thermoelectric conversion unit structures 200 is twice as high as that at the portion other than the contact interface. Moreover, when the area where the thermoelectric conversion unit structures 200 contact each other is limited to a part, the heat flow concentrates in the area where the solids contact each other. Therefore, at the contact interface between the two thermoelectric conversion unit structures 200, the output power per unit area increases due to the synergistic effect of the increase in the output power per unit area and the concentration of the heat flow.
  • thermoelectromotive force generated at other than the contact interface is extremely small.
  • the thermoelectromotive force generated at the contact interface between the two thermoelectric conversion unit structures 200 may be short-circuited.
  • thermoelectric conversion element 21 constitutes a network in which the surfaces of the electromotive bodies 220 of the plurality of thermoelectric conversion unit structures 200 are electrically connected to each other.
  • the magnetic material forming each of the plurality of magnetic fine particles 210 included in the thermoelectric conversion element 21 is magnetized in the minus x direction. At this time, if both the heat flow and the spin flow are flowing in the plus z direction, electromotive force in the minus y direction is generated in the electromotive body 220 connected in a network.
  • thermoelectric conversion unit structures 200 When a plurality of thermoelectric conversion unit structures 200 are closely adjacent to each other at random, electromotive forces generated in adjacent thermoelectric conversion unit structures 200 are overlapped with each other even in a short circuit path on the equator of the thermoelectric conversion unit structures 200. Therefore, the area where the electromotive force is zero on the surface of the electromotive body 220 is reduced to a negligible level.
  • thermoelectric conversion unit structure 200 and the conductive binder may be combined so that the thermoelectric conversion unit structures 200 can be electrically and more closely connected to each other.
  • a conductive binder a conductive material such as foil made of metal or conductive polymer, nanowire, microwire, nanoparticle, or microparticle can be used.
  • a material having a shape on the order of nanometers or micrometers can be used.
  • thermoelectric conversion element 21 may be a block-shaped bulk thermoelectric conversion body made of a material exhibiting an abnormal Nernst effect.
  • the bulk-type thermoelectric converter has a larger thickness than the thin-film type thermoelectric converter, so that a larger temperature gradient can be obtained. Therefore, if the bulk type thermoelectric converter is used, the output can be increased as compared with the thin film type thermoelectric converter.
  • the wearable device of the present embodiment the thermoelectric conversion element that converts the spin current generated by the temperature gradient into the current, the object that receives the power generated by the thermoelectric conversion element, and the peripheral portion of the object. And a band arranged to extend.
  • the thermoelectric conversion element is arranged on one surface of the object.
  • the thermoelectric conversion element includes a bulk-type thermoelectric conversion body in which an aggregate of thermoelectric conversion unit structures composed of magnetic fine particles and an electromotive body covering the surface of the magnetic fine particles is formed in a bulk shape.
  • the bulk-type thermoelectric converter generates power according to the temperature gradient caused by the surface temperature of the human body and the temperature of the outside air. Since the bulk type thermoelectric converter can be made thicker than the thin film type thermoelectric converter, the temperature gradient in the thickness direction becomes large. Therefore, according to the present embodiment, the power generation amount of the thermoelectric conversion element can be improved as compared with the first embodiment.
  • thermoelectric conversion element including a thin film thermoelectric conversion body is arranged in a band.
  • FIG. 9 is a side view for explaining an example of the configuration of the wearable device 3 of this embodiment.
  • the wearable device 3 includes a thermoelectric conversion element 31, an object 35, and a band 37.
  • the wearable device 3 is different from the wearable device 1 of the first embodiment in the position where the thermoelectric conversion element 31 is arranged. In the following, differences from the wearable device 1 will be mainly described.
  • the thermoelectric conversion element 31 is composed of a thin film type thermoelectric conversion body that converts a spin current generated by a temperature gradient into an electric current.
  • the thermoelectric conversion element 31 is flexible because it is composed of a thin film type thermoelectric conversion body. When the band 37 is bent, the thermoelectric conversion element 31 deforms along with the deformation of the band 37.
  • thermoelectric conversion element 31 is arranged on the lower surface of the band 37.
  • the thermoelectric conversion element 31 is connected to the target object 35 via a terminal (not shown) so that power can be supplied.
  • the thermoelectric conversion element 31 generates electric power according to the temperature gradient between the human body side and the outside while the wearable device 3 is attached to the human body.
  • the thermoelectric conversion element 31 supplies electric power generated by the temperature gradient to the object 35 via a terminal (not shown).
  • the band 37 is a band-shaped body for mounting the wearable device 3 on a human body.
  • the band 37 is arranged to extend around the peripheral portion of the object 35.
  • the band 37 is composed of two parts arranged to extend around the peripheral portion of the object 35.
  • the thermoelectric conversion element 31 is arranged on the lower surface of the band 37.
  • the band 37 is configured such that the thermoelectric conversion element 31 is arranged on the side closer to the human body when the band 37 is wound around a part of the human body.
  • fasteners and holes for attaching the band 37 to the human body are omitted.
  • the material of the band 37 is not particularly limited, but a material having high thermal conductivity is preferable in order to increase the temperature gradient from the human body side to the outside.
  • the wearable device 3 can be worn on the human body by winding the band 37 around the wrist or the like.
  • a temperature gradient is generated between the human body side of the thermoelectric conversion element 31 and the side opposite to the human body, and electromotive force is generated by the spin current generated by the temperature gradient.
  • the target object 35 By feeding the current generated by the electromotive force to the target object 35, the target object 35 can be driven.
  • FIG. 10 shows a variation (wearable device 3-2) of the wearable device 3 of this embodiment.
  • the wearable device 3-2 is provided with a pair of bands 37, one end of which is connected to the object 35 and the other end of which is provided with a fastener 36.
  • the fastener 36 is provided at the other end of at least one of the pair of bands 37.
  • FIG. 10 shows the fastener 36 in a closed state. When the fastener 36 is opened, the wearable device 3-2 has the same shape as the wearable device 3 in FIG.
  • the thermoelectric conversion element 31 is arranged on the surface of the pair of bands 37 that is in contact with the human body.
  • the thermoelectric conversion elements 31 arranged in the pair of bands 37 are connected to the target object 35 via terminals (not shown) so that power can be supplied.
  • the fastener 36 electrically connects the thermoelectric conversion elements 31 arranged on the pair of bands 37.
  • the wearable device 3-2 of FIG. 10 has a structure in which a circuit for supplying power from the thermoelectric conversion element 31 to the object 35 is opened when the fastener 36 is opened.
  • the thermoelectric conversion elements 31 arranged in the two parts forming the band 37 are electrically connected via the fastener 36, and the object 35.
  • the structure shall be such that sufficient power and voltage are available to operate the.
  • the fastener 36 is not particularly limited in its material as long as it is electrically conductive.
  • the fastener 36 may be entirely conductive, or may be partially conductive.
  • the wearable device 3-2 With the configuration like the wearable device 3-2 (FIG. 10), sufficient power and voltage are supplied from the thermoelectric conversion element 31 to the object 35 only while the fastener 36 is closed. Therefore, the wearable device 3-2 does not operate in a state where the wearable device 3-2 is not attached to the human body, and does not malfunction due to the application of an unexpected temperature gradient.
  • the wearable device 3-2 can also be applied to the application of detecting that the wearable device 3-2 is worn on the human body.
  • a fastener 36 may be arranged at each of the other ends of the pair of bands 37 and the fasteners 36 may be connected to each other. Good.
  • FIG. 11 shows another variation (wearable device 3-3) of the wearable device 3 of this embodiment.
  • the wearable device 3-3 has a configuration in which the thermoelectric conversion element 31 including a thin film type thermoelectric conversion body is arranged on the lower surface of the band 37, and the bulk type thermoelectric conversion element 32 is arranged on the lower surface of the object 35.
  • the thermoelectric conversion element 31 and the thermoelectric conversion element 32 are electrically connected in the vicinity of the object 35.
  • the connection may be made in consideration of the direction of current flow.
  • the wearable device 3-3 has a configuration in which the wearable device 2 of the second embodiment and the wearable device 3 of the present embodiment are combined.
  • the wearable device 3-3 has the bulk type thermoelectric conversion element 32 arranged on the lower surface of the object 35 in addition to the thin film type thermoelectric conversion element 31 arranged on the lower surface of the band 37. In comparison, the output of the thermoelectric conversion element can be increased.
  • FIG. 12 shows another variation (wearable device 3-4) of the wearable device 3 of this embodiment.
  • the wearable device 3-4 has a configuration in which the thermoelectric conversion element 31 is arranged on the lower surface of the band 37 composed of two parts. Since the band 37 is composed of two parts, the wearable device 3-4 has a pair of thermoelectric conversion elements 31. One end of each of the pair of thermoelectric conversion elements 31 is electrically connected to the object 35 by a terminal (not shown). The other end of each of the pair of thermoelectric conversion elements 31 is electrically connected to the other end of the pair of thermoelectric conversion elements 31 via the folded electrode 34 and the conductive member 33.
  • the material of the folding electrode 34 is not limited as long as it is a conductive material.
  • the folded electrode 34 may include a spin thermoelectric material having a sign opposite to that of the thermoelectric conversion element 31. If the folded electrode 34 contains a spin thermoelectric material having a sign opposite to that of the thermoelectric conversion element 31, the wearable device 3-4 can generate a larger amount of electric power. In addition, in order to improve power generation efficiency and wearability, it is preferable that the thermoelectric conversion element 31 and the folded electrode 34 are flush with each other on the human body side. Further, the wearable device 3 (FIG. 9), the wearable device 3-2 (FIG. 10), the wearable device 3-3 (FIG. 11), and the wearable device 3-4 (FIG. 12) may be arbitrarily combined.
  • the wearable device of this embodiment has a configuration in which the thermoelectric conversion element configured by the thin film type thermoelectric conversion body is arranged on the lower surface of the band.
  • the thermoelectric conversion element is arranged on one surface of each of the bands.
  • the area of the thermoelectric conversion element can be set larger than that of the first embodiment. That is, according to the present embodiment, the amount of power generated by the thermoelectric conversion element can be improved, so that an object that consumes more power than the first embodiment can be mounted.
  • thermoelectric conversion element is arranged on one surface of the band, and the thin film thermoelectric conversion element arranged on one surface of the object is electrically connected to the thin film thermoelectric conversion body arranged on the band.
  • a bulk type thermoelectric converter e.g., the thermoelectric conversion element is configured by a thin film type thermoelectric conversion body arranged on one surface of the band, and a conductive member electrically connecting both ends of the thin film type thermoelectric conversion body arranged on the band.
  • the conductive member includes a thermoelectric conversion material in which an electric current flows in a direction opposite to the thin film type thermoelectric converter when a temperature gradient is applied in the same direction as the thin film type thermoelectric converter arranged in the band.
  • the wearable device of the present embodiment is provided with a pair of bands in which one end is connected to an object and the other end is provided with a fastener, and the fastener is a thin-film thermoelectric conversion device arranged in the pair of bands. Connect your body electrically.
  • thermoelectric conversion element including a bulk type thermoelectric conversion body is arranged in a band.
  • FIG. 13 is a side view for explaining an example of the configuration of the wearable device 4 of this embodiment.
  • the wearable device 4 includes a thermoelectric converter 41, a conductive member 42, an object 45, and a band 47.
  • the wearable device 4 is different from the wearable device 2 of the second embodiment in the position where the thermoelectric converter 41 is arranged. In the following, differences from the wearable device 2 will be mainly described.
  • the thermoelectric converter 41 is a bulk-type thermoelectric converter that converts a spin current generated by a temperature gradient into an electric current. Since the thermoelectric converter 41 is a bulk type, it is not flexible. Therefore, the block of the plurality of thermoelectric converters 41 is electrically connected by the conductive member 42.
  • the conductive member 42 is made of a material that is deformed as the band 47 is deformed when the band 47 is bent.
  • the plurality of thermoelectric converters 41 are arranged on the lower surface of the band 47.
  • the plurality of thermoelectric converters 41 are connected in series by a bendable conductive member 42.
  • the thermoelectric converter 41 arranged closest to the target object 45 is connected to the target object 45 via a terminal (not shown) so that power can be supplied.
  • the thermoelectric converter 41 generates power according to the temperature gradient between the human body and the outside while the wearable device 4 is attached to the human body.
  • the thermoelectric converter 41 supplies electric power generated by the temperature gradient to the object 45 via a terminal (not shown).
  • the thermoelectric converter 41 and the conductive member 42 are illustrated so as to form irregularities on the human body side. However, in order to improve power generation efficiency and wearability, the thermoelectric converter 41 and the conductive member 42 should be flush with the human body side. Is preferable.
  • the band 47 is a strip-shaped body for mounting the wearable device 4 on the human body.
  • the band 47 is arranged to extend around the peripheral portion of the object 45.
  • the band 47 is composed of two parts arranged to extend around the peripheral portion of the object 45.
  • blocks of the plurality of thermoelectric converters 41 connected by the conductive member 42 are arranged on the lower surface of the band 47.
  • the band 47 is configured such that when the band 47 is wound around a part of the human body, the thermoelectric conversion body 41 is arranged on the side closer to the human body.
  • fasteners and holes for attaching the band 47 to the human body are omitted.
  • the material of the band 47 is not particularly limited, but a material having high thermal conductivity is preferable in order to increase the temperature gradient from the human body side to the outside.
  • the wearable device 4 can be worn on the human body by winding the band 47 around the wrist or the like.
  • a temperature gradient is generated between the human body side of the thermoelectric converter 41 and the side opposite to the human body, and electromotive force is generated by the spin current generated by the temperature gradient.
  • the target object 45 By feeding the current generated by the electromotive force to the target object 45, the target object 45 can be driven.
  • FIG. 14 shows a variation (wearable device 4-2) of the wearable device 4 of this embodiment.
  • the wearable device 4-2 has a configuration in which a plurality of bulk type thermoelectric converters 41 and a plurality of thin film type thermoelectric converters 43 are arranged on the lower surface of the band 47.
  • the plurality of bulk-type thermoelectric converters 41 are electrically connected via thin-film thermoelectric converters 43.
  • the thermoelectric converter 43 includes a thin-film thermoelectric converter that thermoelectrically generates power by spin thermoelectric conversion using spin current. Since the thermoelectric converter 43 is a thin film type, it has flexibility. Therefore, when the band 47 is bent, the thermoelectric converter 43 deforms along with the deformation of the band 47.
  • the bulk-type thermoelectric conversion body 41 and the thin-film type thermoelectric conversion body 43 are illustrated so as to form irregularities on the human body side, but in order to improve power generation efficiency and wearability, It is preferable that the surfaces are flush with each other.
  • the wearable device has a configuration in which the bulk type thermoelectric converter is arranged on the lower surface of the band.
  • the bulk-type thermoelectric converter can be made thicker than the thin-film thermoelectric converter, so that the temperature gradient in the thickness direction becomes large. Therefore, according to this embodiment, the amount of power generation is larger than that in the first embodiment.
  • thermoelectric conversion element is composed of a plurality of bulk type thermoelectric converters arranged on one surface of the band, and a conductive member electrically connecting the plurality of bulk type thermoelectric converters arranged on the band. ..
  • the wearable device according to the present embodiment differs from the wearable device according to the first embodiment in that a band is formed by a bulk thermoelectric converter.
  • FIG. 15 and 16 are conceptual diagrams for explaining an example of the configuration of the wearable device 5 of this embodiment.
  • FIG. 15 is a top view of the wearable device 5.
  • FIG. 16 is a side view of the wearable device 5.
  • the wearable device 5 includes a thermoelectric converter 51, a connecting member 52, and an object 55.
  • the plurality of thermoelectric converters 51 and the plurality of connecting members 52 are connected to each other to form a band 57.
  • the wearable device 5 is different from the wearable device 4 of the fourth embodiment in that a band 57 is formed by connecting a plurality of thermoelectric converters 51 with a connecting member 52. In the following, differences from the wearable device 4 will be mainly described.
  • thermoelectric converter 51 is a bulk thermoelectric converter that converts a spin current generated by a temperature gradient into an electric current. Since the thermoelectric conversion body 51 is a bulk type, it has no flexibility. Therefore, the block of the plurality of thermoelectric converters 51 is electrically connected by the connecting member 52.
  • the plurality of thermoelectric converters 51 are connected by the connecting member 52 to form the band 57.
  • the plurality of thermoelectric converters 51 are connected by the connecting member 52.
  • the thermoelectric conversion body 51 arranged closest to the target object 55 is connected to the target object 55 via a terminal (not shown) so that power can be supplied.
  • the thermoelectric conversion body 51 generates power according to the temperature gradient between the human body and the outside while the wearable device 5 is attached to the human body.
  • the thermoelectric converter 51 supplies electric power generated by the temperature gradient to the object 55 via a terminal (not shown).
  • the connecting member 52 is a member that connects the thermoelectric converters 51 arranged adjacent to each other. Further, the connecting member 52 has conductivity and electrically connects the thermoelectric converters 51 arranged adjacent to each other. For example, the connecting member 52 rotatably connects the two thermoelectric converters 51 to be connected while electrically connecting the two thermoelectric converters 51. In order to prevent the exposure of the contact that electrically connects the two thermoelectric converters 51 and the connecting member 52, the contact portion may be covered with an insulating resin or the like.
  • the band 57 composed of the plurality of thermoelectric converters 51 and the plurality of connecting members 52 is a belt-like body for mounting the wearable device 5 on a human body.
  • the band 57 is composed of two parts that are arranged to extend around the peripheral portion of the object 55. 15 and 16, fasteners and holes for attaching the band 57 to the human body are omitted.
  • the wearable device 5 can be attached to the human body by winding the band 57 around the wrist or the like.
  • a temperature gradient is generated between the human body side of the thermoelectric converter 51 and the side opposite to the human body, and electromotive force is generated by the spin current generated by the temperature gradient.
  • the target object 55 By feeding the current generated by the electromotive force to the target object 55, the target object 55 can be driven.
  • the wearable device includes a plurality of bulk-type thermoelectric converters, a plurality of connecting members that electrically connect the adjacent bulk-type thermoelectric converters, and a plurality of electrically connecting members, and a thermoelectric conversion element. And an object for receiving the electric power generated in.
  • the band formed by the structure in which a plurality of bulk type thermoelectric converters are connected by the connecting member is arranged to extend to the peripheral portion of the object.
  • thermoelectric conversion is performed as compared with the first embodiment. It is possible to increase efficiency and power generation.
  • a wearable device according to a sixth embodiment of the present invention will be described with reference to the drawings.
  • the wearable device of the present embodiment is different from the wearable device of the first embodiment in that the wearable device of the first embodiment is equipped with a thermoelectric conversion element configured by alternately connecting two types of thermoelectric conversion bodies in which currents flow in different directions due to the same temperature gradient. different.
  • FIG. 17 is a side view for explaining an example of the configuration of the wearable device 6 of this embodiment.
  • the wearable device 6 includes a first thermoelectric converter 61, a second thermoelectric converter 62, a conductive member 63, an object 65, and a band 67.
  • the wearable device 6 is equipped with a thermoelectric conversion element in which the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are connected by a conductive member 63.
  • differences from the wearable device 1 will be mainly described.
  • the first thermoelectric conversion body 61 includes a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current.
  • the first thermoelectric conversion body 61 is made of a material through which an electric current flows in the opposite direction to the second thermoelectric conversion body 62 when the same temperature gradient as that of the second thermoelectric conversion body 62 is applied.
  • the first thermoelectric conversion body 61 is N type
  • the second thermoelectric conversion body 62 is P type
  • the first thermoelectric conversion body 61 is P type
  • the second thermoelectric conversion body 62 is N type. ..
  • the first thermoelectric converter 61 may be a thin film type thermoelectric converter or a bulk type thermoelectric converter.
  • the second thermoelectric conversion body 62 includes a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current.
  • the second thermoelectric conversion body 62 is made of a material through which an electric current flows in the opposite direction to the first thermoelectric conversion body 61 when the same temperature gradient as that of the first thermoelectric conversion body 61 is applied.
  • the first thermoelectric converter 61 is an N type
  • the second thermoelectric converter 62 is an N type
  • the first thermoelectric converter 61 is a P type.
  • the second thermoelectric converter 62 may be a thin film thermoelectric converter or a bulk thermoelectric converter.
  • the first thermoelectric converter 61 and the second thermoelectric converter 62 are arranged so that their longitudinal directions are substantially parallel to each other.
  • the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 that are adjacent to each other form a thermoelectric conversion unit, and are electrically connected in series by the conductive member 63.
  • the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 located at the ends of the thermoelectric conversion element are electrically connected to the object 65 via terminals not shown.
  • thermoelectric conversion element configured by the first thermoelectric conversion body 61, the second thermoelectric conversion body 62, and the conductive member 63 is arranged on the lower surface of the object 65.
  • the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 located at the ends of the thermoelectric conversion elements are connected to a target object 65 via terminals (not shown) so that power can be supplied.
  • the thermoelectric conversion element generates power according to the temperature gradient between the human body and the outside while the wearable device 6 is attached to the human body.
  • the thermoelectric conversion element supplies electric power generated by the temperature gradient to the object 65 via a terminal (not shown).
  • thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are arranged at the ends of the thermoelectric conversion elements, a pair of first thermoelectric conversion bodies 61 or a pair of second thermoelectric conversion bodies 61.
  • the thermoelectric conversion body 62 may be arranged at both ends of the thermoelectric conversion element.
  • FIG. 18 shows another variation (wearable device 6-2) of the wearable device 6 of this embodiment.
  • the wearable device 6-2 has a configuration in which a thermoelectric conversion element in which the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are connected by a conductive member 63 is arranged on the lower surface of the band 67.
  • the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are arranged such that the longitudinal direction is substantially perpendicular to the longitudinal direction of the band 67.
  • the 1st thermoelectric conversion body 61 and the 2nd thermoelectric conversion body 62 located in the terminal of a thermoelectric conversion element are electrically connected to object 65 via a terminal which is not illustrated. As shown in FIG.
  • the band 67 can be bent if the conductive member 33 is made of a flexible material. Can be made. Since the wearable device 6-2 can increase the surface area of the thermoelectric conversion element composed of the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62, it is set to a higher voltage and higher output than the wearable device 6 of FIG. it can.
  • FIG. 19 shows another variation (wearable device 6-3) of the wearable device 6 of this embodiment.
  • the wearable device 6-3 has a configuration in which a thermoelectric conversion element in which the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are connected by a conductive member 63 is arranged on the lower surface of the object 65 and the band 67.
  • the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are arranged such that the longitudinal direction thereof is substantially parallel to the longitudinal direction of the band 67.
  • the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 located at the ends of the thermoelectric conversion element are electrically connected to the object 65 via terminals not shown. As shown in FIG.
  • thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are thin films.
  • the band 67 can be bent by using a thermoelectric conversion body. Since the wearable device 6-3 can increase the surface area of the thermoelectric conversion element constituted by the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 by the amount of the lower surface of the object 65, the wearable device 6-3 of FIG. It can be set to a higher output than 2.
  • FIG. 20 shows another variation (wearable device 6-4) of the wearable device 6 of this embodiment.
  • the wearable device 6-4 has a configuration in which thermoelectric conversion elements in which the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are connected by a conductive member 63 are arranged on the lower surface and the upper surface of the object 65 and the band 67.
  • the second thermoelectric converter 62 on the upper surface side and the first thermoelectric converter 61 on the lower surface side are electrically connected by a conductive member 63 installed at the other end of the band 67 whose one end is connected to the object 65.
  • the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are arranged such that the longitudinal direction thereof is substantially parallel to the longitudinal direction of the band 67.
  • the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 may be arranged side by side along the longitudinal direction of the band 67 as shown in FIG. 19, or may be attached to the entire surface of the band 67.
  • the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 located at the ends of the thermoelectric conversion element are electrically connected to the object 65 via terminals not shown.
  • FIG. 20 when the longitudinal directions of the first thermoelectric converter 61 and the second thermoelectric converter 62 are made substantially parallel to the longitudinal direction of the band 67, the first thermoelectric converter 61 and the second thermoelectric converter 62 are thin films.
  • the band 67 can be bent by using a thermoelectric conversion body.
  • the surface area of the thermoelectric conversion element formed by the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 can be increased by the amount of the upper surface of the band 67. Therefore, the wearable device 6-4 in FIG. 20 has the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 arranged on each surface of the band 67 so that the temperature gradient is not affected. The output of the thermoelectric conversion element can be made higher than that of 6-3.
  • thermoelectric conversion element of the wearable device is composed of the plurality of first thermoelectric conversion bodies and the plurality of second thermoelectric conversion bodies.
  • the plurality of second thermoelectric converters are electrically connected to the first thermoelectric converter by the conductive member, and when the same temperature gradient as that of the first thermoelectric converter is applied, a current flows in the opposite direction.
  • the first thermoelectric converter and the second thermoelectric converter are arranged so that their longitudinal directions are substantially parallel to each other.
  • the wearable device of the present embodiment is equipped with a thermoelectric conversion element having a configuration in which two types of thermoelectric conversion bodies in which currents flow in opposite directions when the same thermal gradient is applied are alternately connected. Therefore, according to the present embodiment, a plurality of thermoelectric conversion units can be connected in series, so that a higher voltage can be obtained than in the first embodiment.
  • the wearable device of this embodiment is different from the wearable device of the first embodiment in that a strip-shaped thin-film thermoelectric converter is wound around the band.
  • FIG. 21 to 22 are conceptual diagrams for explaining an example of the configuration of the wearable device 7 of the present embodiment.
  • FIG. 21 is a side view showing an example of the configuration of the wearable device 7.
  • FIG. 22 is a top view showing an example of the configuration of the wearable device 7.
  • the wearable device 7 includes a thermoelectric converter 71, an object 75, and a band 77.
  • the wearable device 7 is different from the wearable device 1 according to the first embodiment in that a strip-shaped thin film type thermoelectric conversion body 71 is wound around a band 77.
  • differences from the wearable device 1 will be mainly described.
  • the right end of the band 77 is exposed in FIG. 21, it is actually preferable to wind the thermoelectric converter 71 up to the right end of the band 77.
  • the thermoelectric converter 71 is composed of a thin film thermoelectric converter that converts a spin current generated by a temperature gradient into an electric current.
  • the thermoelectric conversion body 71 is flexible because it is a thin film type. When the band 77 is bent, the thermoelectric conversion body 71 is deformed along with the deformation of the band 77.
  • the thermoelectric converter 71 is wound around the band 77.
  • the thermoelectric converter 71 is connected to the target object 75 via a terminal (not shown) so as to be able to supply power.
  • the thermoelectric converter 71 generates power according to the temperature gradient between the human body and the outside while the wearable device 7 is attached to the human body.
  • the thermoelectric converter 71 supplies the electric power generated by the temperature gradient to the object 75 via a terminal (not shown).
  • the thermoelectric converter 71 is wound around the band 77, the human body side surface of the band 77 has a temperature gradient from the front side to the back side of the thermoelectric converter 71, whereas the outside of the band 77 has a temperature gradient.
  • thermoelectric converter 71 On the surface, there is a temperature gradient from the back side of the thermoelectric converter 71 to the front side. Therefore, the directions of the spin currents generated due to the temperature gradient are opposite between the human body side and the outer side of the band 77, and the currents that can be taken out from the terminals are offset.
  • the temperature gradient applied to the thermoelectric converter 71 on the human body side of the band 77 is larger than the temperature gradient applied to the thermoelectric converter 71 outside the band 77. Therefore, a current flows between the terminals of the thermoelectric converter 71.
  • Band 77 is a band-like body for mounting wearable device 7 on the human body.
  • the band 77 is disposed so as to extend around the target object 75.
  • the band 77 is composed of two parts that are arranged so as to extend around the peripheral portion of the object 75.
  • a thermoelectric converter 71 is wound around the band 77.
  • fasteners and holes for attaching the band 77 to a human body are omitted.
  • the thermoelectric conversion body 71 may be wound around either one of the two parts forming the band 77.
  • the wearable device 7 can be attached to the human body by winding the band 77 around the wrist or the like.
  • a temperature gradient is generated between the human body side of the thermoelectric converter 71 and the side opposite to the human body, and electromotive force is generated by the spin current generated by the temperature gradient.
  • the target object 75 By feeding the current generated by the electromotive force to the target object 75, the target object 75 can be driven.
  • the wearable device has a configuration in which the strip-shaped thin film type thermoelectric conversion element is wound around the band. According to this embodiment, the distance between both ends of the strip-shaped thin-film thermoelectric converter is longer than that in the first embodiment, and thus a higher voltage can be obtained.
  • the wearable device of this embodiment is different from the wearable device of the first embodiment in that an object can be attached and detached.
  • FIG. 23 to 27 are conceptual diagrams for explaining an example of the configuration of the wearable device 8 of the present embodiment.
  • FIG. 23 is a top view of the wearable device 8.
  • FIG. 24 is a sectional view of the wearable device 8 taken along the line AA of FIG.
  • FIG. 25 is a bottom view of the object 800 mounted on the wearable device 8.
  • FIG. 26 is a top view showing a state where the object 800 is mounted on the wearable device 8.
  • 27 is a cross-sectional view of the wearable device 8 taken along the line BB of FIG.
  • the wearable device 8 includes a thermoelectric conversion element 81, a mounting portion 82, a first feeding terminal 83, a second feeding terminal 84, and a band 87. Further, the object 800 has a first power receiving terminal 801 and a second power receiving terminal 802. In the following, when the wearable device 8 is mounted on the human body, the thermoelectric conversion element 81 is located closer to the human body than the mounting portion 82. The thermoelectric conversion element 81 may be in any of the first to seventh embodiments as long as it is electrically connected to the first power feeding terminal 83 or the second power feeding terminal 84.
  • the thermoelectric conversion element 81 includes a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current.
  • the thermoelectric conversion element 81 is arranged on the lower surface of the mounting portion 82.
  • the thermoelectric conversion element 81 is connected to the target 800 via the first power supply terminal 83 and the second power supply terminal 84 so that power can be supplied to the target 800.
  • the thermoelectric conversion element 81 generates power according to the temperature gradient between the human body and the outside while the wearable device 8 is attached to the human body.
  • the thermoelectric conversion element 81 feeds the electric power generated by the temperature gradient to the object 800 via the first feeding terminal 83 and the second feeding terminal 84.
  • the mounting portion 82 has a portion on which the target object 800 is mounted. As shown in FIG. 23, the first feeding terminal 83 and the second feeding terminal 84 are exposed in the recess of the mounting portion 82. Further, as shown in FIG. 24, the first power receiving terminal 801 and the second power receiving terminal 802 are exposed on the lower surface of the object 800. As shown in FIG. 26, the target object 800 can be mounted on the mounting portion 82 by fitting the target object 800 into the concave portion of the mounting portion 82. As shown in FIG.
  • the object 800 may be any electronic device as long as it can be driven by the electric power generated by the thermoelectric conversion element 81.
  • the object 800 is an electronic device such as a clock, an activity meter, a communication terminal, or the like.
  • the wearable device includes a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current, a mounting portion that mounts an object that receives electric power generated by the thermoelectric conversion element, and a mounted portion. And a band arranged so as to extend to a peripheral portion of the portion.
  • the thermoelectric conversion element performs thermoelectric conversion using the spin current generated by the temperature gradient. According to the present embodiment, not only power can be supplied to the mounted target object, but also the mounted target object can be replaced, so that the versatility is high.
  • thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current
  • An object for receiving the power generated by the thermoelectric conversion element A wearable device, comprising: a band extending around a peripheral portion of the object.
  • Appendix 2 The thermoelectric conversion element, The wearable device according to appendix 1, which is a thin-film thermoelectric conversion body in which an electromotive body and a magnetic body arranged in contact with the electromotive body are laminated.
  • thermoelectric conversion element The wearable device according to appendix 1, which is a bulk-type thermoelectric conversion body configured by an aggregate of thermoelectric conversion unit structures configured by magnetic fine particles and an electromotive body that covers the surface of the magnetic fine particles.
  • Appendix 4 The thermoelectric conversion element, 4.
  • Appendix 5 The thermoelectric conversion element, 5.
  • the wearable device according to any one of appendices 1 to 4 including a thin film type thermoelectric conversion element arranged on one surface of the band.
  • thermoelectric conversion element A thin film type thermoelectric converter arranged on one surface of the band
  • the wearable device according to appendix 1 which is disposed on one surface of the object and includes a bulk-type thermoelectric converter electrically connected to the thin-film type thermoelectric converter arranged in the band.
  • thermoelectric conversion element A thin film type thermoelectric converter arranged on one surface of the band
  • the wearable device according to appendix 1 which is configured by a conductive member that electrically connects both ends of the thin-film thermoelectric converter arranged in the band.
  • the conductive member is The supplementary note 8 including a thermoelectric conversion material in which an electric current flows in a direction opposite to the thin film type thermoelectric converter when a temperature gradient is applied in the same direction as the thin film type thermoelectric converter arranged in the band. Wearable device.
  • thermoelectric conversion element A plurality of bulk type thermoelectric converters arranged on one surface of the band
  • the wearable device according to appendix 1 which is configured by a conductive member that electrically connects the plurality of bulk thermoelectric converters arranged in the band.
  • thermoelectric conversion element A plurality of bulk type thermoelectric converters arranged on one surface of the band, 2.
  • thermoelectric conversion element A plurality of first thermoelectric converters, And a plurality of second thermoelectric converters that are electrically connected to the first thermoelectric converter by a conductive member and that flow a current in the opposite direction when the same temperature gradient as the first thermoelectric converter is applied.
  • 4. The wearable device according to any one of appendices 1 to 3, wherein the first thermoelectric converter and the second thermoelectric converter are arranged such that their longitudinal directions are substantially parallel to each other.
  • the thermoelectric conversion element 2.
  • the wearable device according to appendix 1 which is formed of a thin film type thermoelectric converter formed in a band shape and wound around the band.
  • thermoelectric converters that convert the spin current generated by the temperature gradient into an electric current; While connecting the adjacent bulk type thermoelectric converters, a plurality of connecting members electrically connected, A plurality of the bulk-type thermoelectric converter, and an object for receiving the power generated by the thermoelectric conversion element, A wearable device in which a band formed by a structure in which a plurality of the bulk-type thermoelectric converters are connected by the connecting member is arranged to extend around a peripheral portion of the object.
  • thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current
  • a mounting portion on which an object to be fed with power from the thermoelectric conversion element is mounted A wearable device, comprising: a band extending around the mounting portion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Electric Clocks (AREA)
  • Electromechanical Clocks (AREA)

Abstract

In this invention, to provide a wearable device equipped with a thermoelectric conversion element having high thermoelectric conversion efficiency, a wearable device is made to comprise a thermoelectric conversion element for converting a spin current produced by a temperature gradient into a current, an object for receiving the power generated by the thermoelectric conversion element, and a band disposed at the periphery of the object so as to extend therefrom.

Description

ウェアラブルデバイスWearable device
 本発明は、熱電変換素子を搭載したウェアラブルデバイスに関する。 The present invention relates to a wearable device equipped with a thermoelectric conversion element.
 持続可能な社会に向けた熱マネジメント技術の一つとして、熱電変換への期待が高まっている。熱は、体温や太陽熱、工業排熱など様々な場面で回収できる一般的なエネルギー源である。そのため、エネルギー利用の高効率化や、携帯端末やセンサ等への給電、熱流センシングによる熱の流れの可視化といった様々な用途において、熱電変換への期待がさらに高まることが予想される。 Demand for thermoelectric conversion is increasing as one of the heat management technologies for a sustainable society. Heat is a general energy source that can be recovered in various situations such as body temperature, solar heat, and industrial waste heat. Therefore, expectations for thermoelectric conversion are expected to further increase in various applications such as high efficiency of energy use, power supply to mobile terminals and sensors, and visualization of heat flow by heat flow sensing.
 特許文献1には、固体中の電子と電荷のスピン流を利用するスピントロニクス技術を用いた熱型センサについて開示されている。特許文献1の熱型センサは、被検知対象の入射や付着によって発熱する検知膜と、検知膜で発熱した熱によって温度勾配が生ずる方向にスピン流を生成する磁性体膜と、磁性体膜で生成されたスピン流を電流へと変換する電極とを備える。 Patent Document 1 discloses a thermal sensor using spintronics technology that utilizes spin currents of electrons and charges in a solid. The thermal sensor of Patent Document 1 includes a detection film that generates heat due to incidence or adhesion of a detection target, a magnetic film that generates a spin current in a direction in which a temperature gradient occurs due to heat generated by the detection film, and a magnetic film. An electrode that converts the generated spin current into an electric current.
 特許文献2には、熱源と放熱先との温度差に基づき発電する熱発電部材と、熱源と放熱先との間の伝熱経路中に設けられ、伝熱経路の熱抵抗を変更する可変抵抗部と、可変抵抗部を移動させる可変抵抗部移動機構とを備える熱発電携帯機器について開示されている。特許文献2の熱発電携帯機器によれば、生体への装着状態において発電効率の低下が抑制されるため、所望の発電量を確保することが可能になる。 In Patent Document 2, a thermoelectric generator member that generates electric power based on a temperature difference between a heat source and a heat radiation destination, and a variable resistor that is provided in a heat transfer path between the heat source and the heat radiation destination and that changes the thermal resistance of the heat transfer path. And a variable resistance part moving mechanism for moving the variable resistance part. According to the thermoelectric generator of Patent Document 2, a decrease in power generation efficiency is suppressed when the device is attached to a living body, so that a desired amount of power generation can be secured.
 特許文献3には、熱電素子を備えた熱発電腕時計について開示されている。特許文献3の熱発電腕時計は、金属製のケース、裏蓋、熱絶縁体、文字板、ムーブメント、熱電素子、上伝熱板、および下伝熱板を備える。熱電素子は、p型熱電半導体の柱とn型熱電半導体の柱とが交互に配置され、隣り合う柱の端面が配線電極によって電気的に接続された構造を有する。 Patent Document 3 discloses a thermoelectric wristwatch equipped with a thermoelectric element. The thermoelectric wristwatch of Patent Document 3 includes a metal case, a back cover, a heat insulator, a dial, a movement, a thermoelectric element, an upper heat transfer plate, and a lower heat transfer plate. The thermoelectric element has a structure in which pillars of p-type thermoelectric semiconductor and pillars of n-type thermoelectric semiconductor are alternately arranged, and end faces of adjacent pillars are electrically connected by wiring electrodes.
国際公開第2011/118374号International Publication No. 2011/118374 特開2013-110867号公報JP, 2013-110867, A 特開2002-139583号公報JP-A-2002-139583
 特許文献1の熱型センサによれば、スピン流を利用して発電をすることができる。しかしながら、特許文献1の熱型センサでは、十分な発電量を得ることは難しいという問題点があった。 According to the thermal sensor of Patent Document 1, it is possible to generate power using the spin current. However, the thermal sensor of Patent Document 1 has a problem that it is difficult to obtain a sufficient amount of power generation.
 特許文献2の熱発電携帯機器は、熱発電部材を大型化できないため、十分な熱電変換効率を得ることができないという課題があった。 The thermoelectric generator of Patent Document 2 has a problem that it is not possible to obtain sufficient thermoelectric conversion efficiency because the thermoelectric generator cannot be upsized.
 特許文献3の熱発電腕時計においては、熱電素子の温度差が拡大するため、熱電変換効率が向上する。しかしながら、特許文献3の熱発電腕時計の熱電素子は、p型熱電半導体の柱とn型熱電半導体の柱とがカスケード接合されており、p型熱電半導体の柱とn型熱電半導体の柱との間に隙間が生じる。そのため、熱電素子全体に占める熱電半導体の割合に制限が生じ、大きさの割には熱電変換効率が小さいという問題点があった。 In the thermoelectric wristwatch of Patent Document 3, since the temperature difference between the thermoelectric elements is increased, the thermoelectric conversion efficiency is improved. However, in the thermoelectric element of the thermoelectric wristwatch of Patent Document 3, the pillar of the p-type thermoelectric semiconductor and the pillar of the n-type thermoelectric semiconductor are cascade-joined, and the pillar of the p-type thermoelectric semiconductor and the pillar of the n-type thermoelectric semiconductor are connected. There is a gap between them. Therefore, the ratio of the thermoelectric semiconductor in the entire thermoelectric element is limited, and there is a problem that the thermoelectric conversion efficiency is small for the size.
 本発明の目的は、上述した課題を解決し、十分な発電量を得ることができ、熱電変換効率の高い熱電変換素子が搭載されたウェアラブルデバイスを提供することにある。 The object of the present invention is to solve the above-mentioned problems, to provide a sufficient amount of power generation, and to provide a wearable device equipped with a thermoelectric conversion element having high thermoelectric conversion efficiency.
 本発明の一態様のウェアラブルデバイスは、温度勾配で発生するスピン流を電流に変換する熱電変換素子と、熱電変換素子で発生した電力を受電する対象物と、対象物の周辺部に延在して配置されるバンドとを備える。 A wearable device according to one embodiment of the present invention includes a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current, an object that receives electric power generated by the thermoelectric conversion element, and a peripheral portion of the object. And a band arranged according to the present invention.
 本発明の一態様のウェアラブルデバイスは、温度勾配で発生するスピン流を電流に変換する複数のバルク型熱電変換体と、隣接し合うバルク型熱電変換体同士を連結するとともに、電気的に接続する複数の連結部材と、複数のバルク型熱電変換体によって構成される熱電変換素子で発生した電力を受電する対象物とを備え、複数のバルク型熱電変換体を連結部材によって連結した構造によって形成されるバンドが、対象物の周辺部に延在して配置される。 A wearable device according to one embodiment of the present invention connects a plurality of bulk-type thermoelectric converters that convert a spin current generated by a temperature gradient to an electric current, and connects adjacent bulk-type thermoelectric converters, and also electrically connects them. The structure includes a plurality of connecting members and an object that receives electric power generated by a thermoelectric conversion element configured by a plurality of bulk-type thermoelectric converters, and is formed by a structure in which the plurality of bulk-type thermoelectric converters are connected by the connecting members. A band that extends around the object is arranged.
 本発明の一態様のウェアラブルデバイスは、温度勾配で発生するスピン流を電流に変換する熱電変換素子と、熱電変換素子で発生した電力を受電する対象物を搭載する搭載部と、搭載部の周辺部に延在して配置されるバンドとを備える。 A wearable device according to one embodiment of the present invention includes a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current, a mounting portion that mounts an object that receives electric power generated by the thermoelectric conversion element, and the periphery of the mounting portion. And a band arranged so as to extend in the section.
 本発明によれば、十分な発電量を得ることができ、熱電変換効率の高い熱電変換素子が搭載されたウェアラブルデバイスを提供することが可能になる。 According to the present invention, it is possible to provide a wearable device in which a sufficient amount of power generation can be obtained and a thermoelectric conversion element having high thermoelectric conversion efficiency is mounted.
本発明の第1の実施形態に係るウェアラブルデバイスの構成の一例を示す側面図である。It is a side view which shows an example of a structure of the wearable device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るウェアラブルデバイスの構成の一例を示す下面図である。It is a bottom view showing an example of composition of a wearable device concerning a 1st embodiment of the present invention. 本発明の第1の実施形態に係るウェアラブルデバイスの構成の一例を示す上面図である。It is a top view which shows an example of a structure of the wearable device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るウェアラブルデバイスに含まれる薄膜型の熱電変換素子の構成の一例について説明するための概念図である。It is a conceptual diagram for demonstrating an example of a structure of the thin film type thermoelectric conversion element contained in the wearable device which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係るウェアラブルデバイスに含まれる薄膜型の熱電変換素子における熱電変換について説明するための概念図である。It is a conceptual diagram for demonstrating the thermoelectric conversion in the thin film type thermoelectric conversion element contained in the wearable device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係るウェアラブルデバイスの構成の一例を示す側面図である。It is a side view which shows an example of a structure of the wearable device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るウェアラブルデバイスに含まれるバルク型熱電変換体の構成の一例について説明するための概念図である。It is a conceptual diagram for demonstrating an example of a structure of the bulk type thermoelectric conversion body contained in the wearable device which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係るウェアラブルデバイスに含まれる薄膜型の熱電変換素子における熱電変換について説明するための概念図である。It is a conceptual diagram for demonstrating the thermoelectric conversion in the thin film type thermoelectric conversion element contained in the wearable device which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係るウェアラブルデバイスの構成の一例を示す側面図である。It is a side view which shows an example of a structure of the wearable device which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係るウェアラブルデバイスのバンドを閉じた状態の一例を示す側面図である。It is a side view which shows an example of the state which closed the band of the wearable device which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係るウェアラブルデバイスの構成の別の一例を示す側面図である。It is a side view which shows another example of a structure of the wearable device which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係るウェアラブルデバイスの構成の別の一例を示す下面図である。It is a bottom view which shows another example of a structure of the wearable device which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係るウェアラブルデバイスの構成の一例を示す側面図である。It is a side view which shows an example of a structure of the wearable device which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係るウェアラブルデバイスの構成の別の一例を示す側面図である。It is a side view which shows another example of a structure of the wearable device which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係るウェアラブルデバイスの構成の一例を示す上面図である。It is a top view which shows an example of a structure of the wearable device which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係るウェアラブルデバイスの構成の一例を示す側面図である。It is a side view which shows an example of a structure of the wearable device which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係るウェアラブルデバイスの構成の一例を示す下面図である。It is a bottom view which shows an example of a structure of the wearable device which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係るウェアラブルデバイスの構成の別の一例を示す下面図である。It is a bottom view which shows another example of a structure of the wearable device which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係るウェアラブルデバイスの構成の別の一例を示す下面図である。It is a bottom view which shows another example of a structure of the wearable device which concerns on the 6th Embodiment of this invention. 本発明の第6の実施形態に係るウェアラブルデバイスの構成の別の一例を示す側面図である。It is a side view which shows another example of a structure of the wearable device which concerns on the 6th Embodiment of this invention. 本発明の第7の実施形態に係るウェアラブルデバイスの構成の一例を示す側面図である。It is a side view which shows an example of a structure of the wearable device which concerns on the 7th Embodiment of this invention. 本発明の第7の実施形態に係るウェアラブルデバイスの構成の一例を示す上面図である。It is a top view which shows an example of a structure of the wearable device which concerns on the 7th Embodiment of this invention. 本発明の第8の実施形態に係るウェアラブルデバイスの構成の一例を示す上面図である。It is a top view which shows an example of a structure of the wearable device which concerns on the 8th Embodiment of this invention. 本発明の第8の実施形態に係るウェアラブルデバイスの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the wearable device which concerns on the 8th Embodiment of this invention. 本発明の第8の実施形態に係るウェアラブルデバイスに搭載される対象物の構成の一例を示す下面図である。It is a bottom view which shows an example of a structure of the target object mounted in the wearable device which concerns on the 8th Embodiment of this invention. 本発明の第8の実施形態に係るウェアラブルデバイスに対象物を搭載した状態の一例を示す上面図である。It is a top view which shows an example of the state which mounted the target object in the wearable device which concerns on the 8th Embodiment of this invention. 本発明の第8の実施形態に係るウェアラブルデバイスに対象物を搭載した状態の一例を示す断面図である。It is sectional drawing which shows an example of the state which mounted the target object in the wearable device which concerns on the 8th Embodiment of this invention.
 以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。なお、以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。また、以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。 A mode for carrying out the present invention will be described below with reference to the drawings. However, the embodiments described below have technically preferable limitations for carrying out the present invention, but the scope of the invention is not limited to the following. In all the drawings used for the description of the embodiments below, the same parts are designated by the same reference numerals unless otherwise specified. Further, in the following embodiments, repeated description of similar configurations and operations may be omitted.
 (第1の実施形態)
 まず、本発明の第1の実施形態に係るウェアラブルデバイスについて、図面を参照しながら説明する。本実施形態のウェアラブルデバイスは、温度勾配で発生するスピン流を電流に変換する熱電変換素子を有する。本実施形態のウェアラブルデバイスに搭載される熱電変換素子は、薄膜型の熱電変換体(以下、薄膜型熱電変換体とも呼ぶ)を含む。本実施形態のウェアラブルデバイスは、人体から発せられる熱を熱電変換素子が受熱できる位置に装着される。以下において、本実施形態のウェアラブルデバイスは、手首に装着されることを想定するが、人体から発せられる熱を熱電変換素子が受熱できる位置であれば手首以外の箇所に装着されてもよい。また、以下において、本実施形態のウェアラブルデバイスを人体に装着させた際に、人体に近い側を下側、外側を上側とみなす。また、本実施形態においては、人体に近い側が高温、外側が低温になる構成を想定するが、人体に近い側が低温、外側が高温になるように構成してもよい。
(First embodiment)
First, a wearable device according to a first embodiment of the present invention will be described with reference to the drawings. The wearable device of this embodiment has a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current. The thermoelectric conversion element mounted on the wearable device of the present embodiment includes a thin film type thermoelectric conversion body (hereinafter, also referred to as a thin film type thermoelectric conversion body). The wearable device of the present embodiment is attached to a position where the thermoelectric conversion element can receive the heat generated by the human body. In the following, the wearable device of the present embodiment is assumed to be worn on the wrist, but may be attached to a place other than the wrist as long as the thermoelectric conversion element can receive the heat generated by the human body. Further, in the following, when the wearable device of the present embodiment is worn on a human body, the side close to the human body is regarded as the lower side and the outer side as the upper side. Further, in the present embodiment, it is assumed that the side close to the human body has a high temperature and the outside has a low temperature, but the side close to the human body may have a low temperature and the outside may have a high temperature.
 (構成)
 図1~図3は、本実施形態のウェアラブルデバイス1の構成の一例について説明するための概念図である。図1は、ウェアラブルデバイス1の側面図である。図2は、ウェアラブルデバイス1の下面図である。図3は、ウェアラブルデバイス1の上面図である。
(Constitution)
1 to 3 are conceptual diagrams for explaining an example of the configuration of the wearable device 1 of this embodiment. FIG. 1 is a side view of the wearable device 1. FIG. 2 is a bottom view of the wearable device 1. FIG. 3 is a top view of the wearable device 1.
 ウェアラブルデバイス1は、熱電変換素子11、対象物15、およびバンド17を備える。以下においては、ウェアラブルデバイス1が人体に装着されると、対象物15よりも熱電変換素子11の方が人体に近い側に位置するものとする。 The wearable device 1 includes a thermoelectric conversion element 11, an object 15, and a band 17. In the following, when the wearable device 1 is attached to the human body, the thermoelectric conversion element 11 is located closer to the human body than the object 15.
 熱電変換素子11は、温度勾配で発生するスピン流を電流に変換する薄膜型熱電変換体を含む。スピン流とは、電子のスピン角運動量の流れである。熱電変換素子11は、スピンゼーベック効果と逆スピンホール効果とを併用することにより、スピンを介して温度勾配を電気に変換する。 The thermoelectric conversion element 11 includes a thin film type thermoelectric conversion body that converts a spin current generated by a temperature gradient into an electric current. Spin current is a flow of electron spin angular momentum. The thermoelectric conversion element 11 uses a spin Seebeck effect and an inverse spin Hall effect together to convert a temperature gradient into electricity via spin.
 スピンゼーベック効果とは、磁性体に温度勾配が印加された際に、温度勾配と平行方向にスピン流が誘起される現象である。スピンゼーベック効果によれば、熱がスピン流に変換される熱スピン流変換が生じる。例えば、強磁性体であるニッケル・鉄(NiFe)膜や、イットリウム鉄ガーネット(Y3Fe512)などの磁性絶縁体と金属膜との界面においてスピンゼーベック効果が発現する。逆スピンホール効果とは、スピン流が流れた際に起電力が発生する現象である。逆スピンホール効果は、例えば白金(Pt)、パラジウム(Pd)などのように、スピン軌道相互作用が大きな物質において顕著に発現する。スピンゼーベック効果によって温度勾配で誘起されたスピン流は、逆スピンホール効果によって電界(電流、電圧)に変換できる。 The spin Seebeck effect is a phenomenon in which a spin current is induced in a direction parallel to the temperature gradient when a temperature gradient is applied to the magnetic substance. According to the spin Seebeck effect, thermal spin current conversion occurs in which heat is converted into a spin current. For example, the spin Seebeck effect is exhibited at the interface between a magnetic film such as a nickel-iron (NiFe) film which is a ferromagnetic material, a magnetic insulator such as yttrium iron garnet (Y 3 Fe 5 O 12 ) and a metal film. The inverse spin Hall effect is a phenomenon in which an electromotive force is generated when a spin current flows. The inverse spin Hall effect is remarkably exhibited in a substance having a large spin-orbit interaction, such as platinum (Pt) and palladium (Pd). The spin current induced by the temperature gradient by the spin Seebeck effect can be converted into an electric field (current, voltage) by the inverse spin Hall effect.
 熱電変換素子11は、対象物15の下面に配置される。熱電変換素子11は、図示しない端子を介して対象物15に給電可能に接続される。熱電変換素子11は、ウェアラブルデバイス1が人体に装着された状態で、人体側と外側との温度勾配に応じて発電する。熱電変換素子11は、図示しない端子を経由して、温度勾配によって生じた電力を対象物15に給電する。 The thermoelectric conversion element 11 is arranged on the lower surface of the object 15. The thermoelectric conversion element 11 is connected to the target object 15 via a terminal (not shown) so that power can be supplied. The thermoelectric conversion element 11 generates power according to the temperature gradient between the human body side and the outside while the wearable device 1 is attached to the human body. The thermoelectric conversion element 11 supplies electric power generated by the temperature gradient to the object 15 via a terminal (not shown).
 対象物15は、熱電変換素子11の上面に配置される。対象物15は、図示しない端子を介して熱電変換素子11から受電可能に接続される。対象物15は、熱電変換素子11から給電される電力を受電する。例えば、対象物15は、時計などのように消費電力の小さい装置である。例えば、対象物15は、識別情報を埋め込んだRF(Radio Frequency)タグや体温計などの装置であってもよい。なお、対象物15は、熱電変換素子11から給電される電力で動くことができれば、どのような装置であってもよい。 The object 15 is arranged on the upper surface of the thermoelectric conversion element 11. The target object 15 is connected to the thermoelectric conversion element 11 so as to be able to receive power via a terminal (not shown). The target object 15 receives the electric power supplied from the thermoelectric conversion element 11. For example, the object 15 is a device with low power consumption such as a clock. For example, the object 15 may be a device such as an RF (Radio Frequency) tag in which identification information is embedded or a thermometer. Note that the object 15 may be any device as long as it can move with the electric power supplied from the thermoelectric conversion element 11.
 バンド17は帯状体であり、ウェアラブルデバイス1を人体に装着するための部品である。バンド17は、対象物15の周辺部に延在して配置される。図1の例では、バンド17は、対象物15の周辺部に延在して配置される二つのパーツによって構成される。バンド17は、バンド17を人体の一部に巻きつけた際に、対象物15に比べて熱電変換素子11が人体に近い側に配置されるように構成される。なお、図1~図3においては、バンド17を人体に装着するための留具や穴などは省略する。 The band 17 is a band-like member, which is a component for mounting the wearable device 1 on a human body. The band 17 is arranged to extend around the peripheral portion of the object 15. In the example of FIG. 1, the band 17 is composed of two parts arranged to extend around the peripheral portion of the object 15. The band 17 is configured such that, when the band 17 is wrapped around a part of the human body, the thermoelectric conversion element 11 is arranged closer to the human body than the object 15. 1 to 3, fasteners and holes for mounting the band 17 on the human body are omitted.
 ウェアラブルデバイス1は、バンド17を手首などに巻きつけることによって人体に装着できる。ウェアラブルデバイス1が人体に装着されると、熱電変換素子11の人体側と、人体とは反対側(外側とも呼ぶ)との間に温度勾配が発生し、その温度勾配によって発生したスピン流によって起電力が発生する。その起電力によって発生する電流を対象物15に給電すれば、対象物15を駆動させることができる。なお、ウェアラブルデバイス1は、手首ではなく、頭や首、肩、腕、指、足、胸、腰などに装着するように構成してもよく、その装着位置は限定されない。 The wearable device 1 can be worn on the human body by winding the band 17 around the wrist or the like. When the wearable device 1 is attached to the human body, a temperature gradient is generated between the human body side of the thermoelectric conversion element 11 and the side opposite to the human body (also referred to as the outer side), and the spin current generated by the temperature gradient causes the temperature gradient. Electricity is generated. If the current generated by the electromotive force is supplied to the object 15, the object 15 can be driven. The wearable device 1 may be configured to be worn on the head, neck, shoulders, arms, fingers, legs, chest, waist, etc., instead of the wrist, and the wearing position is not limited.
 〔薄膜型熱電変換体〕
 次に、熱電変換素子11に含まれる薄膜型熱電変換体について図面を参照しながら説明する。図4は、熱電変換素子11の構成の一例について説明するための概念図である。図5は、熱電変換素子11に含まれる薄膜型熱電変換体における熱電変換について説明するための概念図である。なお、図4および図5に示す熱電変換素子11の構成は概念的なものであり、起電体層111および磁性体層112の大きさや位置関係、配置状態などを正確に表すものではない。以下においては、熱電変換素子11が薄膜型熱電変換体で構成されるものとして説明する。
[Thin film thermoelectric converter]
Next, the thin film type thermoelectric conversion element included in the thermoelectric conversion element 11 will be described with reference to the drawings. FIG. 4 is a conceptual diagram for explaining an example of the configuration of the thermoelectric conversion element 11. FIG. 5 is a conceptual diagram for explaining thermoelectric conversion in the thin film type thermoelectric converter included in the thermoelectric conversion element 11. The configuration of the thermoelectric conversion element 11 shown in FIGS. 4 and 5 is conceptual, and does not accurately represent the size, positional relationship, arrangement state, etc. of the electromotive layer 111 and the magnetic layer 112. Below, the thermoelectric conversion element 11 is demonstrated as what is comprised by a thin film type thermoelectric conversion body.
 図4のように、熱電変換素子11は、起電体層111と磁性体層112とを積層させた構造を有する。磁性体層112は、図中のマイナスx方向に磁化方向Mを有する。図5のように、熱電変換素子11に温度勾配dTを印加すると、磁性体層112に熱スピン流Jsが発生する。熱スピン流Jsは、磁性体層112と起電体層111との界面近傍におけるスピン注入と呼ばれる過程を経て、起電体層111に純スピン流Jpを発生させる。スピン注入とは、磁性体層112と起電体層111との界面近傍において、磁化方向を中心軸として歳差運動する磁性体層112中のスピンが、起電体層111中のスピンを持たない伝導電子eと相互作用してスピン角運動量を授受する現象である。 As shown in FIG. 4, the thermoelectric conversion element 11 has a structure in which an electromotive layer 111 and a magnetic layer 112 are laminated. The magnetic layer 112 has a magnetization direction M in the minus x direction in the figure. As shown in FIG. 5, when the temperature gradient dT is applied to the thermoelectric conversion element 11, the thermal spin current Js is generated in the magnetic layer 112. The thermal spin current Js generates a pure spin current Jp in the electromotive layer 111 through a process called spin injection near the interface between the magnetic layer 112 and the electromotive layer 111. Spin injection means that a spin in the magnetic layer 112 that precesses around the interface between the magnetic layer 112 and the electromotive layer 111 about the magnetization direction has a spin in the electromotive layer 111. This is a phenomenon in which spin angular momentum is exchanged by interacting with a non-conducting electron e.
 スピン注入により、起電体層111のスピン注入界面付近にスピンを持った伝導電子eが移動すると純スピン流Jpが生成する。純スピン流Jpは、アップスピンとダウンスピンを持った伝導電子eが互いに逆方向に同量流れる。その結果、電荷移動は起こらないものの、スピンの符号が互いに異なるためにスピン角運動量が流れる。以下においては、このスピン注入現象が起こりうる状態を磁気的に結合しているとも呼ぶ。スピン注入現象は、磁性体層112と起電体層111とが接触する場合に限らず、接触していない場合であっても、スピン角運動量が伝達しうる程度に接近している場合に生じる。すなわち、磁性体層112と起電体層111との間に空隙が存在する場合であっても、スピン注入現象が起こり得る場合は磁気的に結合する。 A pure spin current Jp is generated when the conduction electron e having a spin moves near the spin injection interface of the electromotive force layer 111 by the spin injection. In the pure spin current Jp, the same amount of conduction electrons e having up spin and down spin flow in opposite directions. As a result, although charge transfer does not occur, spin angular momentum flows because the signs of spins are different from each other. In the following, the state in which this spin injection phenomenon can occur is also called magnetically coupled. The spin injection phenomenon occurs not only when the magnetic layer 112 and the electromotive layer 111 are in contact with each other, but also when the magnetic layer 112 and the electromotive layer 111 are not in contact with each other but are close enough to transmit spin angular momentum. .. That is, even if there is a gap between the magnetic layer 112 and the electromotive layer 111, they are magnetically coupled when the spin injection phenomenon can occur.
 起電体層111がスピン軌道相互作用の大きな材料により構成されている場合、スピン注入が起こると、逆スピンホール効果によって起電体層111の内部で伝導電子eが移動する。伝導電子eは、スピン流方向(z方向)と磁化方向(x方向)とに直交する方向(y方向)へ移動する。その結果、起電体層111の材料の性質に従って、プラスy方向およびマイナスy方向のいずれかの方向に電流Iが流れる。熱電変換素子11で発生する起電力は、磁性体層112で発生するスピン流の大きさに、磁性体層112と起電体層111との界面におけるスピン流の注入効率と、起電体層111における逆スピンホール効果による熱電変換効率とを乗算した大きさになる。 When the electromotive layer 111 is made of a material having a large spin-orbit interaction, when spin injection occurs, conduction electrons e move inside the electromotive layer 111 due to the inverse spin Hall effect. The conduction electron e moves in the direction (y direction) orthogonal to the spin current direction (z direction) and the magnetization direction (x direction). As a result, the current I flows in either the positive y direction or the negative y direction depending on the property of the material of the electromotive layer 111. The electromotive force generated in the thermoelectric conversion element 11 depends on the magnitude of the spin current generated in the magnetic layer 112, the injection efficiency of the spin current at the interface between the magnetic layer 112 and the electromotive layer 111, and the electromotive layer. It is a size obtained by multiplying the thermoelectric conversion efficiency by the inverse spin Hall effect in 111.
 以上が、熱電変換素子11に含まれる薄膜型熱電変換体についての説明である。本実施形態においては、逆スピンゼーベック効果を用いる例を挙げたが、異常ネルンスト効果を用いて熱電変換するように構成してもよい。 The above is the description of the thin film type thermoelectric conversion element included in the thermoelectric conversion element 11. In the present embodiment, the example using the inverse spin Seebeck effect has been described, but thermoelectric conversion may be performed using the abnormal Nernst effect.
 以上のように、本実施形態のウェアラブルデバイスは、温度勾配で発生するスピン流を電流に変換する熱電変換素子と、熱電変換素子で発生した電力を受電する対象物と、対象物の周辺部に延在して配置されるバンドとを備える。本実施形態において、熱電変換素子は、対象物の一方の面に配置される。熱電変換素子は、起電体と、起電体に接して配置される磁性体とによって構成される薄膜型熱電変換体を含む。薄膜型熱電変換体は、磁性体と起電体とを積層させた構造を有し、人体の表面温度と外気の温度とに起因する温度勾配に応じて発電する。 As described above, the wearable device of the present embodiment, the thermoelectric conversion element that converts the spin current generated by the temperature gradient into the current, the object that receives the power generated by the thermoelectric conversion element, and the peripheral portion of the object. And a band arranged to extend. In the present embodiment, the thermoelectric conversion element is arranged on one surface of the object. The thermoelectric conversion element includes a thin-film thermoelectric conversion body including an electromotive body and a magnetic body arranged in contact with the electromotive body. The thin-film thermoelectric converter has a structure in which a magnetic body and an electromotive body are laminated, and generates power according to a temperature gradient caused by the surface temperature of the human body and the temperature of the outside air.
 本実施形態のウェアラブルデバイスは、エネルギーの散逸が少ないスピン流を利用したスピン熱電変換によって熱発電する熱電変換素子を搭載する。スピン流は、エネルギーの散逸が少ないため、高効率な熱電変換を実現できる。 The wearable device of the present embodiment is equipped with a thermoelectric conversion element that thermoelectrically generates power by spin thermoelectric conversion using a spin current with little energy dissipation. Since the spin current has little energy dissipation, highly efficient thermoelectric conversion can be realized.
 また、本実施形態のウェアラブルデバイスに搭載される熱電変換素子は、半導体型の熱電変換素子のようにp型熱電半導体の柱とn型熱電半導体の柱との間に生じる空隙がないため、体積当たりの熱電変換効率の上限が高い。 In addition, since the thermoelectric conversion element mounted on the wearable device of the present embodiment does not have a void generated between the pillar of the p-type thermoelectric semiconductor and the pillar of the n-type thermoelectric semiconductor unlike the semiconductor thermoelectric conversion element, the thermoelectric conversion element has a large volume. The upper limit of the thermoelectric conversion efficiency is high.
 すなわち、本実施形態によれば、熱電変換効率の高い熱電変換素子を搭載したウェアラブルデバイスを実現できる。 That is, according to this embodiment, a wearable device equipped with a thermoelectric conversion element having high thermoelectric conversion efficiency can be realized.
 (第2の実施形態)
 次に、本発明の第2の実施形態に係るウェアラブルデバイスについて、図面を参照しながら説明する。本実施形態のウェアラブルデバイスは、バルク型の熱電変換体(以下、バルク型熱電変換体とも呼ぶ)を含む熱電変換素子を搭載する点において第1の実施形態のウェアラブルデバイスとは異なる。
(Second embodiment)
Next, a wearable device according to a second embodiment of the present invention will be described with reference to the drawings. The wearable device of this embodiment is different from the wearable device of the first embodiment in that a thermoelectric conversion element including a bulk-type thermoelectric conversion body (hereinafter, also referred to as bulk-type thermoelectric conversion body) is mounted.
 (構成)
 図6は、本実施形態のウェアラブルデバイス2の構成の一例について説明するための側面図である。なお、ウェアラブルデバイス2の上面図および下面図は省略する。
(Constitution)
FIG. 6 is a side view for explaining an example of the configuration of the wearable device 2 of this embodiment. A top view and a bottom view of the wearable device 2 are omitted.
 ウェアラブルデバイス2は、熱電変換素子21、対象物25、およびバンド27を備える。ウェアラブルデバイス2は、熱電変換素子21の構成が第1の実施形態のウェアラブルデバイス1とは異なる。以下においては、主に、ウェアラブルデバイス1と相違する点について説明する。 The wearable device 2 includes a thermoelectric conversion element 21, an object 25, and a band 27. The wearable device 2 is different from the wearable device 1 according to the first embodiment in the configuration of the thermoelectric conversion element 21. In the following, differences from the wearable device 1 will be mainly described.
 熱電変換素子21は、温度勾配で発生するスピン流を電流に変換するバルク型熱電変換体を含む。具体的には、熱電変換素子21は、スピンゼーベック効果を発現する磁性体材料を含む磁性体微粒子と、磁性体微粒子を被覆する起電体とによって構成される複数の熱電変換単位構造を含む。複数の熱電変換単位構造は、起電体を介して互いに接触する集合体を形成する。 The thermoelectric conversion element 21 includes a bulk type thermoelectric conversion body that converts a spin current generated by a temperature gradient into an electric current. Specifically, the thermoelectric conversion element 21 includes a plurality of thermoelectric conversion unit structures composed of magnetic fine particles containing a magnetic material that exhibits the spin Seebeck effect, and an electromotive body that coats the magnetic fine particles. The plurality of thermoelectric conversion unit structures form an aggregate that is in contact with each other via the electromotive body.
 熱電変換素子21は、対象物25の下面に配置される。熱電変換素子21は、図示しない端子を介して対象物25に給電可能に接続される。熱電変換素子21は、ウェアラブルデバイス2が人体に装着された状態で、人体側と外側との温度勾配に応じて発電する。熱電変換素子21は、図示しない端子を経由して、温度勾配によって生じた電力を対象物25に給電する。対象物25およびバンド27については、ウェアラブルデバイス1と同様であるために説明は省略する。 The thermoelectric conversion element 21 is arranged on the lower surface of the object 25. The thermoelectric conversion element 21 is connected to the object 25 via a terminal (not shown) so as to be able to supply power. The thermoelectric conversion element 21 generates power according to the temperature gradient between the human body side and the outside while the wearable device 2 is attached to the human body. The thermoelectric conversion element 21 supplies the power generated by the temperature gradient to the object 25 via a terminal (not shown). Since the object 25 and the band 27 are similar to those of the wearable device 1, the description thereof will be omitted.
 ウェアラブルデバイス2は、バンド27を手首などに巻きつけることによって人体に装着できる。ウェアラブルデバイス2が人体に装着されると、熱電変換素子21の人体側と、人体とは反対側との間に温度勾配が発生し、その温度勾配によって発生したスピン流によって起電力が発生する。その起電力によって発生する電流を対象物25に給電すれば、対象物15を駆動させることができる。 The wearable device 2 can be worn on the human body by winding the band 27 around the wrist or the like. When the wearable device 2 is attached to the human body, a temperature gradient is generated between the human body side of the thermoelectric conversion element 21 and the side opposite to the human body, and electromotive force is generated by the spin current generated by the temperature gradient. If the current generated by the electromotive force is fed to the object 25, the object 15 can be driven.
 〔バルク型熱電変換体〕
 次に、熱電変換素子21に含まれるバルク型熱電変換体について図面を参照しながら説明する。図7は、熱電変換素子21の斜視図と、その熱電変換素子21の一部の断面の拡大図とを併せて図示した概念図である。図8は、熱電変換単位構造200を構成する磁性体微粒子210および起電体220に発生するスピン流や磁化、電流について説明するための概念図である。なお、図7および図8に示す熱電変換素子21の構成は概念的なものであり、熱電変換単位構造200の大きさや位置関係、配置状態などを正確に表すものではない。
[Bulk type thermoelectric converter]
Next, the bulk type thermoelectric conversion body included in the thermoelectric conversion element 21 will be described with reference to the drawings. FIG. 7 is a conceptual diagram showing a perspective view of the thermoelectric conversion element 21 and an enlarged view of a part of the cross section of the thermoelectric conversion element 21. FIG. 8 is a conceptual diagram for explaining the spin current, the magnetization, and the current generated in the magnetic fine particles 210 and the electromotive body 220 that form the thermoelectric conversion unit structure 200. The configuration of the thermoelectric conversion element 21 shown in FIGS. 7 and 8 is conceptual, and does not accurately represent the size, positional relationship, arrangement state, etc. of the thermoelectric conversion unit structure 200.
 図7のように、熱電変換素子21に含まれるバルク型熱電変換体は、複数の熱電変換単位構造200の集合体によって構成される。熱電変換単位構造200は、微粒子状の磁性体からなる磁性体微粒子210が起電体220によって被覆された構造を有する。熱電変換によって発生する電力は、素子の体積に比例する性質がある。そのため、大きな電力を得るためには、複数の熱電変換単位構造200を集合体として構成する。 As shown in FIG. 7, the bulk type thermoelectric conversion body included in the thermoelectric conversion element 21 is composed of an assembly of a plurality of thermoelectric conversion unit structures 200. The thermoelectric conversion unit structure 200 has a structure in which magnetic fine particles 210 made of fine magnetic particles are coated with an electromotive body 220. The electric power generated by thermoelectric conversion has the property of being proportional to the volume of the element. Therefore, in order to obtain large electric power, the plurality of thermoelectric conversion unit structures 200 are configured as an aggregate.
 磁性体微粒子210は、起電体220によって被覆される。磁性体微粒子210は、球体や楕円体、錐体、錐台、柱体、多面体などの形状を有する磁性体である。なお、磁性体微粒子210は、上述の形状に限らず、破片状であったり、液相または気相中から固化、析出、凝集させた物質が有する不定形の形状であったりしてもよい。また、磁性体微粒子210を構成する磁性体材料は、スピン流が散逸しにくい構造を備えた構成を含んでいてもよい。磁性体微粒子210は、結晶性が高い方が好適であり、単結晶であることが最適である。 The magnetic fine particles 210 are covered with the electromotive body 220. The magnetic fine particles 210 are magnetic bodies having a shape such as a sphere, an ellipsoid, a cone, a frustum, a column, or a polyhedron. The magnetic fine particles 210 are not limited to the above-described shape, and may be in the shape of fragments, or an amorphous shape of a substance solidified, precipitated, or aggregated in the liquid phase or the gas phase. The magnetic material forming the magnetic fine particles 210 may include a structure having a structure in which the spin current is less likely to be dissipated. The magnetic fine particles 210 preferably have high crystallinity, and are preferably single crystals.
 磁性体微粒子210の粒径が大きすぎると、熱マグノンが散逸してしまい、一部の微粒子の温度差しか活用できなくなる。そのため、磁性体微粒子210の粒径は、磁性体微粒子210を構成する磁性体材料中の熱マグノンの拡散長相当の大きさであることが好ましい。また、磁性体微粒子210の最大径は、磁性体材料中の熱マグノンの拡散長よりも小さい方がよい。例えば、磁性体微粒子210としてイットリウム鉄ガーネット(YIG:Y3Fe512)などのガーネット系の磁性絶縁体結晶を用いることが想定される。磁性体微粒子210としてガーネット系の磁性絶縁体結晶が用いられる場合、その磁性体微粒子210の熱マグノン拡散長は、約50nm(ナノメートル)から10μm(マイクロメートル)程度であると推測される。また、結晶の成長方法によっては、ガーネット系の磁性絶縁体結晶の熱マグノン拡散長は、100μmに達すると推定される。これらの点を考慮すると、ガーネット系の磁性絶縁体結晶を用いる場合、磁性体微粒子210の粒径は、平均で1~10μm、最大でも100μm程度とするのがよい。 If the particle size of the magnetic fine particles 210 is too large, the thermal magnon is dissipated, and the temperature difference of some of the fine particles cannot be utilized. Therefore, it is preferable that the particle size of the magnetic fine particles 210 be as large as the diffusion length of the thermal magnon in the magnetic material forming the magnetic fine particles 210. Further, the maximum diameter of the magnetic fine particles 210 is preferably smaller than the diffusion length of thermal magnon in the magnetic material. For example, it is assumed that a garnet-based magnetic insulator crystal such as yttrium iron garnet (YIG:Y 3 Fe 5 O 12 ) is used as the magnetic fine particles 210. When a garnet-based magnetic insulator crystal is used as the magnetic fine particles 210, the thermal magnon diffusion length of the magnetic fine particles 210 is estimated to be about 50 nm (nanometer) to 10 μm (micrometer). It is estimated that the thermal magnon diffusion length of the garnet-based magnetic insulator crystal reaches 100 μm depending on the crystal growth method. Considering these points, when using a garnet-based magnetic insulator crystal, the particle size of the magnetic fine particles 210 is preferably 1 to 10 μm on average, and about 100 μm at the maximum.
 起電体220は、磁性体微粒子210を被覆する。起電体220は、金属や半導体、酸化物伝導体、有機伝導体などの材料を含む。起電体220は、スピン軌道相互作用が大きい金属材料を含有することが好ましい。例えば、起電体220は、スピンホール伝導率の電気伝導率に対する比で定義されるスピンホール角が0.001以上である金属材料を含有する構成とすることが好ましい。具体的には、起電体220は、金(Au)、白金(Pt)、パラジウム(Pd)、ニッケル(Ni)、鉄(Fe)、タングステン(W)、およびタンタル(Ta)のいずれか一つ以上を含む構成とすることが好ましい。 The electromotive body 220 covers the magnetic fine particles 210. The electromotive body 220 includes a material such as a metal, a semiconductor, an oxide conductor, or an organic conductor. The electromotive body 220 preferably contains a metal material having a large spin-orbit interaction. For example, the electromotive body 220 preferably includes a metal material having a spin Hall angle defined by the ratio of spin Hall conductivity to electric conductivity of 0.001 or more. Specifically, the electromotive body 220 is made of any one of gold (Au), platinum (Pt), palladium (Pd), nickel (Ni), iron (Fe), tungsten (W), and tantalum (Ta). It is preferable that the configuration includes one or more.
 起電体220の厚さは、起電体220を構成する金属材料中のスピン流の拡散長に基づいて設定されることが好ましい。起電体220の厚さが拡散長よりも小さい場合、スピン流を電流に十分変換できなくなる。それに対し、起電体220の厚さが拡散長よりも大きくなると、発生する電流の量が飽和する一方で、起電体の内部抵抗が増大する。すなわち、起電体220の厚さが拡散長より大きすぎても小さすぎても取り出せる電力量が減ってしまうため、起電体220の厚さは、起電体220を構成する金属材料中のスピン流の拡散長程度の厚さとすることが好ましい。例えば、起電体220の厚さは、数nm~数100nm程度が好ましい。 The thickness of the electromotive body 220 is preferably set based on the diffusion length of the spin current in the metal material forming the electromotive body 220. If the thickness of the electromotive body 220 is smaller than the diffusion length, the spin current cannot be sufficiently converted into a current. On the other hand, when the thickness of the electromotive body 220 becomes larger than the diffusion length, the amount of generated current saturates, while the internal resistance of the electromotive body increases. That is, if the thickness of the electromotive body 220 is larger or smaller than the diffusion length, the amount of electric power that can be taken out decreases. It is preferable that the thickness is about the diffusion length of the spin current. For example, the thickness of the electromotive body 220 is preferably several nm to several 100 nm.
 図8は、x方向(紙面に対して垂直方向)に磁化方向Mを有する磁性体微粒子210を含む熱電変換単位構造200に対して、z方向(紙面の上下方向)の一様な温度勾配dTが印加される例である。 FIG. 8 shows a uniform temperature gradient dT in the z direction (vertical direction of the paper) with respect to the thermoelectric conversion unit structure 200 including the magnetic fine particles 210 having the magnetization direction M in the x direction (direction perpendicular to the paper). Is an example in which is applied.
 このとき、熱電変換単位構造200の上部の起電体220においては、スピン流Jsの向き(プラスz方向)と磁化方向Mの向き(マイナスx方向)との外積方向Js×M(マイナスy方向)に上部電流Itが流れる。 At this time, in the electromotive body 220 above the thermoelectric conversion unit structure 200, the outer product direction Js×M (minus y direction) of the direction of the spin current Js (plus z direction) and the direction of the magnetization direction M (minus x direction). ), the upper current It flows.
 また、熱電変換単位構造200の下部の起電体220においては、スピン流Jsの向き(プラスz方向)および磁化方向M(マイナスx方向)の向きは変わらないため、上部電流Itと同じ向き(マイナスy方向)に下部電流Ibが流れる。なお、起電体220を構成する材料によっては、プラスy方向に上部電流Itおよび下部電流Ibが流れる場合があるが、以下においては、上部電流Itおよび下部電流Ibのいずれもマイナスy方向に流れるものとして説明する。 In the electromotive body 220 below the thermoelectric conversion unit structure 200, the direction of the spin current Js (plus z direction) and the direction of the magnetization direction M (minus x direction) do not change, and therefore the same direction as the upper current It ( The lower current Ib flows in the negative y direction). Depending on the material forming the electromotive body 220, the upper current It and the lower current Ib may flow in the positive y direction, but in the following, both the upper current It and the lower current Ib flow in the negative y direction. It will be described as a thing.
 図8のように、熱電変換単位構造200の全体にマイナスz方向に向かう一様な温度勾配dTがある場合、熱電変換単位構造200の起電体220の内部でマイナスy方向に向けて起電力が発生する。 As shown in FIG. 8, when the entire thermoelectric conversion unit structure 200 has a uniform temperature gradient dT toward the negative z direction, an electromotive force is generated inside the electromotive body 220 of the thermoelectric conversion unit structure 200 toward the negative y direction. Occurs.
 ここで、熱電変換単位構造200をxy平面に平行な面で切断した際に最大となる円周を赤道と呼ぶ。図8において、熱電変換単位構造200の赤道は、E-E線で表される。熱電変換単位構造200の赤道上においては、スピン流Jsが磁性体微粒子210と起電体220との界面に平行となるためにスピン注入が起こらない。そのため、熱電変換単位構造200の赤道上においては、スピンゼーベック効果および逆スピンホール効果による起電力はゼロとなる。したがって、熱電変換単位構造200が単体で存在している場合、上半球および下半球の領域で発生したマイナスy方向に向かう起電力は、赤道上の径路(短絡パスとも呼ぶ)を介して短絡した状態となるため、全体の起電力が減少するように働く。しかしながら、短絡パスの幅は限りなく狭く、ゼロに収束するので、インピーダンスは無限大となる。そのため、起電力が減少してしまう効果は限定的であり、実際にはマイナスy方向に向かう起電力がゼロになることはない。 Here, the maximum circumference when the thermoelectric conversion unit structure 200 is cut along a plane parallel to the xy plane is called the equator. In FIG. 8, the equator of the thermoelectric conversion unit structure 200 is represented by the line EE. On the equator of the thermoelectric conversion unit structure 200, spin injection does not occur because the spin current Js is parallel to the interface between the magnetic fine particles 210 and the electromotive body 220. Therefore, on the equator of the thermoelectric conversion unit structure 200, the electromotive force due to the spin Seebeck effect and the inverse spin Hall effect becomes zero. Therefore, when the thermoelectric conversion unit structure 200 exists alone, the electromotive force generated in the regions of the upper hemisphere and the lower hemisphere and directed in the negative y direction is short-circuited via the path on the equator (also referred to as a short-circuit path). As a result, the total electromotive force is reduced. However, the width of the short circuit path is extremely narrow and converges to zero, so that the impedance becomes infinite. Therefore, the effect of reducing the electromotive force is limited, and the electromotive force in the negative y direction never actually becomes zero.
 熱電変換素子21は、複数の熱電変換単位構造200の集合体によって構成されるバルク型熱電変換体である。隣接し合う熱電変換単位構造200は互いに接触し合う。ここで、z軸方向に積み重なって隣接し合う二つの熱電変換単位構造200がともにマイナスx方向に磁化している状態で、マイナスz方向に温度勾配が印加される場合を想定する。この場合、熱流とスピン流はともに、二つの熱電変換単位構造200の接触界面を突き抜けて、一方の熱電変換単位構造200から他方の熱電変換単位構造200に向けて流れる。二つの熱電変換単位構造200の接触界面においては、一方の熱電変換単位構造200から流れ込むスピン流と、他方の熱電変換単位構造200に流れ出すスピン流との両方によって、マイナスy方向の起電力が発生する。理想的な状況では、二つの熱電変換単位構造200の接触界面における単位面積当たりの出力電力は、接触界面以外の部分の2倍になる。また、熱電変換単位構造200同士が接触し合う領域が一部に限られる場合、熱流は固体同士が接触している領域に集中して流れる。そのため、二つの熱電変換単位構造200の接触界面においては、単位面積当たりの出力電力が増加する分と、熱流が集中する分との相乗効果によって、単位面積当たりの出力電力が上昇する。 The thermoelectric conversion element 21 is a bulk type thermoelectric conversion body configured by an assembly of a plurality of thermoelectric conversion unit structures 200. Adjacent thermoelectric conversion unit structures 200 are in contact with each other. Here, it is assumed that a temperature gradient is applied in the minus z direction in a state where two thermoelectric conversion unit structures 200 that are stacked in the z axis direction and are adjacent to each other are both magnetized in the minus x direction. In this case, both the heat flow and the spin flow pass through the contact interface between the two thermoelectric conversion unit structures 200 and flow from one thermoelectric conversion unit structure 200 toward the other thermoelectric conversion unit structure 200. At the contact interface between the two thermoelectric conversion unit structures 200, an electromotive force in the negative y direction is generated by both the spin current flowing from one thermoelectric conversion unit structure 200 and the spin current flowing out to the other thermoelectric conversion unit structure 200. To do. In an ideal situation, the output power per unit area at the contact interface between the two thermoelectric conversion unit structures 200 is twice as high as that at the portion other than the contact interface. Moreover, when the area where the thermoelectric conversion unit structures 200 contact each other is limited to a part, the heat flow concentrates in the area where the solids contact each other. Therefore, at the contact interface between the two thermoelectric conversion unit structures 200, the output power per unit area increases due to the synergistic effect of the increase in the output power per unit area and the concentration of the heat flow.
 一方、接触界面以外の領域から大気へ放出される熱の流れは、固体を伝導して流れる熱と比較すると非常に小さい。そのため、接触界面以外で発生する熱起電力は非常に小さくなる。その結果、二つの熱電変換単位構造200の接触界面で発生した熱起電力を短絡してしまう場合が起こり得る。 On the other hand, the flow of heat released from the area other than the contact interface to the atmosphere is very small compared to the heat flowing through the solid. Therefore, the thermoelectromotive force generated at other than the contact interface is extremely small. As a result, the thermoelectromotive force generated at the contact interface between the two thermoelectric conversion unit structures 200 may be short-circuited.
 また、熱電変換素子21は、複数の熱電変換単位構造200の起電体220の表面が互いに電気的に接続されたネットワークを構成する。ここで、熱電変換素子21に含まれる複数の磁性体微粒子210のそれぞれを構成する磁性体材料が、マイナスx方向の向きに磁化しているものとする。このとき、熱流とスピン流とがともにプラスz方向の向きに流れていると、ネットワーク状に接続された起電体220においては、マイナスy方向の起電力が発生する。 Further, the thermoelectric conversion element 21 constitutes a network in which the surfaces of the electromotive bodies 220 of the plurality of thermoelectric conversion unit structures 200 are electrically connected to each other. Here, it is assumed that the magnetic material forming each of the plurality of magnetic fine particles 210 included in the thermoelectric conversion element 21 is magnetized in the minus x direction. At this time, if both the heat flow and the spin flow are flowing in the plus z direction, electromotive force in the minus y direction is generated in the electromotive body 220 connected in a network.
 複数の熱電変換単位構造200同士がランダムに密接して存在する場合、熱電変換単位構造200の赤道上の短絡パスにおいても、隣接する熱電変換単位構造200で発生する起電力が重なりあう。そのため、起電体220の表面において起電力がゼロになる領域は無視できる程度にまで減少する。 When a plurality of thermoelectric conversion unit structures 200 are closely adjacent to each other at random, electromotive forces generated in adjacent thermoelectric conversion unit structures 200 are overlapped with each other even in a short circuit path on the equator of the thermoelectric conversion unit structures 200. Therefore, the area where the electromotive force is zero on the surface of the electromotive body 220 is reduced to a negligible level.
 また、熱電変換素子21において、熱電変換単位構造200同士が電気的により密接に接続できるように、熱電変換単位構造200と導電性バインダとを組み合わせてもよい。導電性バインダとしては、金属や伝導性ポリマー製の箔、ナノワイア、マイクロワイア、ナノ粒子、マイクロ粒子などの導電性のある材料を用いることができる。例えば、導電性バインダとしては、ナノメートルあるいはマイクロメートルのオーダーの形状を有する材料を用いることができる。導電性バインダを用いる場合、起電体220の中に異物が挟まることによって、スピン流の緩和長が実効的に短くなるため、熱スピン流が起電体中で電流に十分変換されずに隣接する磁性体に透過してしまうことを防止することができる。すなわち、導電性バインダを用いれば、スピン流-電流変換の効率を向上させることが可能になる。 Further, in the thermoelectric conversion element 21, the thermoelectric conversion unit structure 200 and the conductive binder may be combined so that the thermoelectric conversion unit structures 200 can be electrically and more closely connected to each other. As the conductive binder, a conductive material such as foil made of metal or conductive polymer, nanowire, microwire, nanoparticle, or microparticle can be used. For example, as the conductive binder, a material having a shape on the order of nanometers or micrometers can be used. When a conductive binder is used, the relaxation length of the spin current is effectively shortened by the inclusion of foreign matter in the electromotive body 220, so that the thermal spin current is not sufficiently converted into a current in the electromotive body and is adjacent to it. It is possible to prevent the magnetic material from passing through. That is, if the conductive binder is used, the efficiency of spin current-current conversion can be improved.
 以上が、熱電変換素子21に含まれるバルク型熱電変換体についての説明である。なお、熱電変換素子21には、異常ネルンスト効果を発現する材料で構成されたブロック状のバルク型熱電変換体を用いてもよい。バルク型熱電変換体は、薄膜型熱電変換体と比べて厚みがあるため、より大きな温度勾配を得ることができる。そのため、バルク型熱電変換体を用いれば、薄膜型熱電変換体と比べて出力を増大できる。 The above is the description of the bulk-type thermoelectric converter included in the thermoelectric conversion element 21. The thermoelectric conversion element 21 may be a block-shaped bulk thermoelectric conversion body made of a material exhibiting an abnormal Nernst effect. The bulk-type thermoelectric converter has a larger thickness than the thin-film type thermoelectric converter, so that a larger temperature gradient can be obtained. Therefore, if the bulk type thermoelectric converter is used, the output can be increased as compared with the thin film type thermoelectric converter.
 以上のように、本実施形態のウェアラブルデバイスは、温度勾配で発生するスピン流を電流に変換する熱電変換素子と、熱電変換素子で発生した電力を受電する対象物と、対象物の周辺部に延在して配置されるバンドとを備える。本実施形態において、熱電変換素子は、対象物の一方の面に配置される。熱電変換素子は、磁性体微粒子と、磁性体微粒子の表面を被覆する起電体とによって構成される熱電変換単位構造の集合体がバルク状に形成されたバルク型熱電変換体を含む。バルク型熱電変換体は、人体の表面温度と外気の温度とに起因する温度勾配に応じて発電する。バルク型熱電変換体は、薄膜型熱電変換体と比べて厚くすることができるので、厚み方向の温度勾配が大きくなる。そのため、本実施形態によれば、第1の実施形態と比べて、熱電変換素子の発電量を向上できる。 As described above, the wearable device of the present embodiment, the thermoelectric conversion element that converts the spin current generated by the temperature gradient into the current, the object that receives the power generated by the thermoelectric conversion element, and the peripheral portion of the object. And a band arranged to extend. In the present embodiment, the thermoelectric conversion element is arranged on one surface of the object. The thermoelectric conversion element includes a bulk-type thermoelectric conversion body in which an aggregate of thermoelectric conversion unit structures composed of magnetic fine particles and an electromotive body covering the surface of the magnetic fine particles is formed in a bulk shape. The bulk-type thermoelectric converter generates power according to the temperature gradient caused by the surface temperature of the human body and the temperature of the outside air. Since the bulk type thermoelectric converter can be made thicker than the thin film type thermoelectric converter, the temperature gradient in the thickness direction becomes large. Therefore, according to the present embodiment, the power generation amount of the thermoelectric conversion element can be improved as compared with the first embodiment.
 (第3の実施形態)
 次に、本発明の第3の実施形態に係るウェアラブルデバイスについて、図面を参照しながら説明する。本実施形態のウェアラブルデバイスは、薄膜型熱電変換体を含む熱電変換素子をバンドに配置する点において第1の実施形態のウェアラブルデバイスとは異なる。
(Third Embodiment)
Next, a wearable device according to a third embodiment of the present invention will be described with reference to the drawings. The wearable device according to the present embodiment is different from the wearable device according to the first embodiment in that a thermoelectric conversion element including a thin film thermoelectric conversion body is arranged in a band.
 (構成)
 図9は、本実施形態のウェアラブルデバイス3の構成の一例について説明するための側面図である。ウェアラブルデバイス3は、熱電変換素子31、対象物35、およびバンド37を備える。ウェアラブルデバイス3は、熱電変換素子31を配置する位置が第1の実施形態のウェアラブルデバイス1とは異なる。以下においては、主に、ウェアラブルデバイス1と相違する点について説明する。
(Constitution)
FIG. 9 is a side view for explaining an example of the configuration of the wearable device 3 of this embodiment. The wearable device 3 includes a thermoelectric conversion element 31, an object 35, and a band 37. The wearable device 3 is different from the wearable device 1 of the first embodiment in the position where the thermoelectric conversion element 31 is arranged. In the following, differences from the wearable device 1 will be mainly described.
 熱電変換素子31は、温度勾配で発生するスピン流を電流に変換する薄膜型熱電変換体によって構成される。熱電変換素子31は薄膜型熱電変換体によって構成されるために柔軟性がある。熱電変換素子31は、バンド37が曲げられると、バンド37の変形に伴って変形する。 The thermoelectric conversion element 31 is composed of a thin film type thermoelectric conversion body that converts a spin current generated by a temperature gradient into an electric current. The thermoelectric conversion element 31 is flexible because it is composed of a thin film type thermoelectric conversion body. When the band 37 is bent, the thermoelectric conversion element 31 deforms along with the deformation of the band 37.
 熱電変換素子31は、バンド37の下面に配置される。熱電変換素子31は、図示しない端子を介して対象物35に給電可能に接続される。熱電変換素子31は、ウェアラブルデバイス3が人体に装着された状態で、人体側と外側との温度勾配に応じて発電する。熱電変換素子31は、図示しない端子を経由して、温度勾配によって生じた電力を対象物35に給電する。 The thermoelectric conversion element 31 is arranged on the lower surface of the band 37. The thermoelectric conversion element 31 is connected to the target object 35 via a terminal (not shown) so that power can be supplied. The thermoelectric conversion element 31 generates electric power according to the temperature gradient between the human body side and the outside while the wearable device 3 is attached to the human body. The thermoelectric conversion element 31 supplies electric power generated by the temperature gradient to the object 35 via a terminal (not shown).
 バンド37は、ウェアラブルデバイス3を人体に装着するための帯状体である。バンド37は、対象物35の周辺部に延在して配置される。図9の例では、バンド37は、対象物35の周辺部に延在して配置される二つのパーツによって構成される。バンド37の下面には熱電変換素子31が配置される。バンド37は、バンド37を人体の一部に巻きつけた際に、熱電変換素子31が人体に近い側に配置されるように構成される。なお、図9においては、バンド37を人体に装着するための留具や穴などは省略する。バンド37の素材については、特に限定を加えないが、人体側から外側に向けた温度勾配を大きくするために、熱伝導性が高いものの方が好ましい。 The band 37 is a band-shaped body for mounting the wearable device 3 on a human body. The band 37 is arranged to extend around the peripheral portion of the object 35. In the example of FIG. 9, the band 37 is composed of two parts arranged to extend around the peripheral portion of the object 35. The thermoelectric conversion element 31 is arranged on the lower surface of the band 37. The band 37 is configured such that the thermoelectric conversion element 31 is arranged on the side closer to the human body when the band 37 is wound around a part of the human body. In FIG. 9, fasteners and holes for attaching the band 37 to the human body are omitted. The material of the band 37 is not particularly limited, but a material having high thermal conductivity is preferable in order to increase the temperature gradient from the human body side to the outside.
 ウェアラブルデバイス3は、バンド37を手首などに巻きつけることによって人体に装着できる。ウェアラブルデバイス3が人体に装着されると、熱電変換素子31の人体側と、人体とは反対側との間に温度勾配が発生し、その温度勾配によって発生したスピン流によって起電力が発生する。その起電力によって発生する電流を対象物35に給電すれば、対象物35を駆動させることができる。 The wearable device 3 can be worn on the human body by winding the band 37 around the wrist or the like. When the wearable device 3 is attached to a human body, a temperature gradient is generated between the human body side of the thermoelectric conversion element 31 and the side opposite to the human body, and electromotive force is generated by the spin current generated by the temperature gradient. By feeding the current generated by the electromotive force to the target object 35, the target object 35 can be driven.
 図10は、本実施形態のウェアラブルデバイス3のバリエーション(ウェアラブルデバイス3-2)である。ウェアラブルデバイス3-2には、一端が対象物35に接続され、他端に留具36が配置される一対のバンド37を設ける。留具36は、一対のバンド37のうち少なくとも一方の他端に設けられる。図10は、留具36を閉じた状態である。留具36を開けば、ウェアラブルデバイス3-2は、図9のウェアラブルデバイス3と同様の形体になる。一対のバンド37のうち人体に接する側の面に熱電変換素子31が配置される。一対のバンド37に配置された熱電変換素子31は、図示しない端子を介して対象物35に給電可能に接続される。 FIG. 10 shows a variation (wearable device 3-2) of the wearable device 3 of this embodiment. The wearable device 3-2 is provided with a pair of bands 37, one end of which is connected to the object 35 and the other end of which is provided with a fastener 36. The fastener 36 is provided at the other end of at least one of the pair of bands 37. FIG. 10 shows the fastener 36 in a closed state. When the fastener 36 is opened, the wearable device 3-2 has the same shape as the wearable device 3 in FIG. The thermoelectric conversion element 31 is arranged on the surface of the pair of bands 37 that is in contact with the human body. The thermoelectric conversion elements 31 arranged in the pair of bands 37 are connected to the target object 35 via terminals (not shown) so that power can be supplied.
 留具36は、一対のバンド37に配置された熱電変換素子31を電気的に接続する。図10のウェアラブルデバイス3-2においては、留具36を開いた状態では熱電変換素子31から対象物35に給電するための回路が開く構造とする。図10のウェアラブルデバイス3-2においては、留具36を閉じると、バンド37を構成する二つのパーツに配置された熱電変換素子31が留具36を介して電気的に接続され、対象物35が稼働するために十分な電力や電圧がされる構造とする。留具36は、導電性があれば、その素材には特に限定を加えない。例えば、留具36は、全体的に導電性があってもよいし、一部に導電性があるように構成してもよい。 The fastener 36 electrically connects the thermoelectric conversion elements 31 arranged on the pair of bands 37. The wearable device 3-2 of FIG. 10 has a structure in which a circuit for supplying power from the thermoelectric conversion element 31 to the object 35 is opened when the fastener 36 is opened. In the wearable device 3-2 of FIG. 10, when the fastener 36 is closed, the thermoelectric conversion elements 31 arranged in the two parts forming the band 37 are electrically connected via the fastener 36, and the object 35. The structure shall be such that sufficient power and voltage are available to operate the. The fastener 36 is not particularly limited in its material as long as it is electrically conductive. For example, the fastener 36 may be entirely conductive, or may be partially conductive.
 ウェアラブルデバイス3-2(図10)のような構成にすれば、留具36が閉じられている間だけ、熱電変換素子31から対象物35に十分な電力や電圧が供給される。そのため、ウェアラブルデバイス3-2は、人体に装着されていない状態では動作せず、予期せぬ温度勾配の印加によって誤動作するようなことがなくなる。また、ウェアラブルデバイス3-2は、ウェアラブルデバイス3-2が人体に装着されたことを検知する用途にも適用できる。なお、図10には留具36を一つしか図示していないが、一対のバンド37の他端のそれぞれに留具36を配置し、それらの留具36を互いに接続する形態であってもよい。 With the configuration like the wearable device 3-2 (FIG. 10), sufficient power and voltage are supplied from the thermoelectric conversion element 31 to the object 35 only while the fastener 36 is closed. Therefore, the wearable device 3-2 does not operate in a state where the wearable device 3-2 is not attached to the human body, and does not malfunction due to the application of an unexpected temperature gradient. The wearable device 3-2 can also be applied to the application of detecting that the wearable device 3-2 is worn on the human body. Although only one fastener 36 is shown in FIG. 10, a fastener 36 may be arranged at each of the other ends of the pair of bands 37 and the fasteners 36 may be connected to each other. Good.
 図11は、本実施形態のウェアラブルデバイス3の別のバリエーション(ウェアラブルデバイス3-3)である。ウェアラブルデバイス3-3は、薄膜型熱電変換体を含む熱電変換素子31をバンド37の下面に配置し、バルク型の熱電変換素子32を対象物35の下面に配置した構成を有する。熱電変換素子31と熱電変換素子32とは、対象物35の近傍において電気的に接続される。薄膜型の熱電変換素子31とバルク型の熱電変換素子32を接続する際には、電流の流れる方向を考慮して接続すればよい。ウェアラブルデバイス3-3は、第2の実施形態のウェアラブルデバイス2と本実施形態のウェアラブルデバイス3とを組み合わせた構成である。ウェアラブルデバイス3-3は、バンド37の下面に配置される薄膜型の熱電変換素子31に加えて、対象物35の下面に配置されるバルク型の熱電変換素子32を有するため、ウェアラブルデバイス3と比べて熱電変換素子の出力をを大きくすることができる。 FIG. 11 shows another variation (wearable device 3-3) of the wearable device 3 of this embodiment. The wearable device 3-3 has a configuration in which the thermoelectric conversion element 31 including a thin film type thermoelectric conversion body is arranged on the lower surface of the band 37, and the bulk type thermoelectric conversion element 32 is arranged on the lower surface of the object 35. The thermoelectric conversion element 31 and the thermoelectric conversion element 32 are electrically connected in the vicinity of the object 35. When connecting the thin film type thermoelectric conversion element 31 and the bulk type thermoelectric conversion element 32, the connection may be made in consideration of the direction of current flow. The wearable device 3-3 has a configuration in which the wearable device 2 of the second embodiment and the wearable device 3 of the present embodiment are combined. The wearable device 3-3 has the bulk type thermoelectric conversion element 32 arranged on the lower surface of the object 35 in addition to the thin film type thermoelectric conversion element 31 arranged on the lower surface of the band 37. In comparison, the output of the thermoelectric conversion element can be increased.
 図12は、本実施形態のウェアラブルデバイス3の別のバリエーション(ウェアラブルデバイス3-4)である。ウェアラブルデバイス3-4は、二つのパーツによって構成されるバンド37の下面に熱電変換素子31を配置した構成を有する。バンド37が二つの部分によって構成されるため、ウェアラブルデバイス3-4は一対の熱電変換素子31を有する。一対の熱電変換素子31のそれぞれの一端は、図示しない端子によって対象物35に電気的に接続される。一対の熱電変換素子31のそれぞれの他端は、折り返し電極34および導電部材33を介して、対をなす熱電変換素子31の他端に電気的に接続される。折り返し電極34は、導電性のある材料であればその素材に限定を加えない。なお、折り返し電極34は、熱電変換素子31とは逆符号のスピン熱電材料を含んでいてもよい。折り返し電極34が熱電変換素子31と逆符号のスピン熱電材料を含んでいれば、ウェアラブルデバイス3-4は、さらに大きな電力を発生させることができる。また、発電効率や装着性を向上させるためには、熱電変換素子31と折り返し電極34が人体側で面一となるように構成する方が好ましい。また、ウェアラブルデバイス3(図9)、ウェアラブルデバイス3-2(図10)、ウェアラブルデバイス3-3(図11)、およびウェアラブルデバイス3-4(図12)を任意に組み合わせてもよい。 FIG. 12 shows another variation (wearable device 3-4) of the wearable device 3 of this embodiment. The wearable device 3-4 has a configuration in which the thermoelectric conversion element 31 is arranged on the lower surface of the band 37 composed of two parts. Since the band 37 is composed of two parts, the wearable device 3-4 has a pair of thermoelectric conversion elements 31. One end of each of the pair of thermoelectric conversion elements 31 is electrically connected to the object 35 by a terminal (not shown). The other end of each of the pair of thermoelectric conversion elements 31 is electrically connected to the other end of the pair of thermoelectric conversion elements 31 via the folded electrode 34 and the conductive member 33. The material of the folding electrode 34 is not limited as long as it is a conductive material. The folded electrode 34 may include a spin thermoelectric material having a sign opposite to that of the thermoelectric conversion element 31. If the folded electrode 34 contains a spin thermoelectric material having a sign opposite to that of the thermoelectric conversion element 31, the wearable device 3-4 can generate a larger amount of electric power. In addition, in order to improve power generation efficiency and wearability, it is preferable that the thermoelectric conversion element 31 and the folded electrode 34 are flush with each other on the human body side. Further, the wearable device 3 (FIG. 9), the wearable device 3-2 (FIG. 10), the wearable device 3-3 (FIG. 11), and the wearable device 3-4 (FIG. 12) may be arbitrarily combined.
 以上のように、本実施形態のウェアラブルデバイスは、薄膜型熱電変換体によって構成される熱電変換素子をバンドの下面に配置した構成を有する。熱電変換素子は、バンドのそれぞれの一方の面に配置される。本実施形態のウェアラブルデバイスでは、第1の実施形態よりも熱電変換素子の面積を大きく設定できる。すなわち、本実施形態によれば、熱電変換素子の発電量を向上できるので、第1の実施形態よりも消費電力の大きな対象物を搭載することができる。 As described above, the wearable device of this embodiment has a configuration in which the thermoelectric conversion element configured by the thin film type thermoelectric conversion body is arranged on the lower surface of the band. The thermoelectric conversion element is arranged on one surface of each of the bands. In the wearable device of this embodiment, the area of the thermoelectric conversion element can be set larger than that of the first embodiment. That is, according to the present embodiment, the amount of power generated by the thermoelectric conversion element can be improved, so that an object that consumes more power than the first embodiment can be mounted.
 例えば、熱電変換素子は、バンドの一方の面に配置される薄膜型熱電変換体と、対象物の一方の面に配置され、バンドに配置された薄膜型熱電変換体と電気的に接続されるバルク型熱電変換体とによって構成される。例えば、熱電変換素子は、バンドの一方の面に配置される薄膜型熱電変換体と、バンドに配置された薄膜型熱電変換体の両端部を電気的に接続する導電部材とによって構成される。例えば、導電部材は、バンドに配置された薄膜型熱電変換体と同じ方向に温度勾配が印加された際に、薄膜型熱電変換体とは反対の向きに電流が流れる熱電変換材料を含む。例えば、本実施形態のウェアラブルデバイスには、一端が対象物に接続され、他端に留具が配置される一対のバンドが設けられ、留具は、一対のバンドに配置された薄膜型熱電変換体を電気的に接続する。 For example, the thermoelectric conversion element is arranged on one surface of the band, and the thin film thermoelectric conversion element arranged on one surface of the object is electrically connected to the thin film thermoelectric conversion body arranged on the band. And a bulk type thermoelectric converter. For example, the thermoelectric conversion element is configured by a thin film type thermoelectric conversion body arranged on one surface of the band, and a conductive member electrically connecting both ends of the thin film type thermoelectric conversion body arranged on the band. For example, the conductive member includes a thermoelectric conversion material in which an electric current flows in a direction opposite to the thin film type thermoelectric converter when a temperature gradient is applied in the same direction as the thin film type thermoelectric converter arranged in the band. For example, the wearable device of the present embodiment is provided with a pair of bands in which one end is connected to an object and the other end is provided with a fastener, and the fastener is a thin-film thermoelectric conversion device arranged in the pair of bands. Connect your body electrically.
 (第4の実施形態)
 次に、本発明の第4の実施形態に係るウェアラブルデバイスについて、図面を参照しながら説明する。本実施形態のウェアラブルデバイスは、バルク型熱電変換体を含む熱電変換素子をバンドに配置する点において第2の実施形態のウェアラブルデバイスとは異なる。
(Fourth Embodiment)
Next, a wearable device according to a fourth embodiment of the present invention will be described with reference to the drawings. The wearable device according to the present embodiment is different from the wearable device according to the second embodiment in that a thermoelectric conversion element including a bulk type thermoelectric conversion body is arranged in a band.
 (構成)
 図13は、本実施形態のウェアラブルデバイス4の構成の一例について説明するための側面図である。
(Constitution)
FIG. 13 is a side view for explaining an example of the configuration of the wearable device 4 of this embodiment.
 ウェアラブルデバイス4は、熱電変換体41、導電部材42、対象物45、およびバンド47を備える。ウェアラブルデバイス4は、熱電変換体41を配置する位置が第2の実施形態のウェアラブルデバイス2とは異なる。以下においては、主に、ウェアラブルデバイス2と相違する点について説明する。 The wearable device 4 includes a thermoelectric converter 41, a conductive member 42, an object 45, and a band 47. The wearable device 4 is different from the wearable device 2 of the second embodiment in the position where the thermoelectric converter 41 is arranged. In the following, differences from the wearable device 2 will be mainly described.
 熱電変換体41は、温度勾配で発生するスピン流を電流に変換するバルク型熱電変換体である。熱電変換体41は、バルク型であるために柔軟性がない。そのため、複数の熱電変換体41のブロックを導電部材42によって電気的に接続した構成にする。導電部材42は、バンド47が曲げられると、バンド47の変形に伴って変形する素材で構成する。 The thermoelectric converter 41 is a bulk-type thermoelectric converter that converts a spin current generated by a temperature gradient into an electric current. Since the thermoelectric converter 41 is a bulk type, it is not flexible. Therefore, the block of the plurality of thermoelectric converters 41 is electrically connected by the conductive member 42. The conductive member 42 is made of a material that is deformed as the band 47 is deformed when the band 47 is bent.
 複数の熱電変換体41は、バンド47の下面に配置される。複数の熱電変換体41は、折り曲げ自在な導電部材42によって直列に接続される。対象物45の最も近くに配置される熱電変換体41は、図示しない端子を介して対象物45に給電可能に接続される。熱電変換体41は、ウェアラブルデバイス4が人体に装着された状態で、人体と外部との温度勾配に応じて発電する。熱電変換体41は、図示しない端子を経由して、温度勾配によって生じた電力を対象物45に給電する。なお、図13においては、熱電変換体41と導電部材42が人体側で凹凸を形成するように図示しているが、発電効率や装着性を向上させるためには人体側で面一となるように構成する方が好ましい。 The plurality of thermoelectric converters 41 are arranged on the lower surface of the band 47. The plurality of thermoelectric converters 41 are connected in series by a bendable conductive member 42. The thermoelectric converter 41 arranged closest to the target object 45 is connected to the target object 45 via a terminal (not shown) so that power can be supplied. The thermoelectric converter 41 generates power according to the temperature gradient between the human body and the outside while the wearable device 4 is attached to the human body. The thermoelectric converter 41 supplies electric power generated by the temperature gradient to the object 45 via a terminal (not shown). In addition, in FIG. 13, the thermoelectric converter 41 and the conductive member 42 are illustrated so as to form irregularities on the human body side. However, in order to improve power generation efficiency and wearability, the thermoelectric converter 41 and the conductive member 42 should be flush with the human body side. Is preferable.
 バンド47は、ウェアラブルデバイス4を人体に装着するための帯状体である。バンド47は、対象物45の周辺部に延在して配置される。図13の例では、バンド47は、対象物45の周辺部に延在して配置される二つのパーツによって構成される。バンド47の下面には、導電部材42によって連結された複数の熱電変換体41のブロックが配置される。バンド47は、バンド47を人体の一部に巻きつけた際に、熱電変換体41が人体に近い側に配置されるように構成される。なお、図13においては、バンド47を人体に装着するための留具や穴などは省略する。バンド47の素材については、特に限定を加えないが、人体側から外側に向けた温度勾配を大きくするために、熱伝導性が高いものの方が好ましい。 The band 47 is a strip-shaped body for mounting the wearable device 4 on the human body. The band 47 is arranged to extend around the peripheral portion of the object 45. In the example of FIG. 13, the band 47 is composed of two parts arranged to extend around the peripheral portion of the object 45. On the lower surface of the band 47, blocks of the plurality of thermoelectric converters 41 connected by the conductive member 42 are arranged. The band 47 is configured such that when the band 47 is wound around a part of the human body, the thermoelectric conversion body 41 is arranged on the side closer to the human body. In FIG. 13, fasteners and holes for attaching the band 47 to the human body are omitted. The material of the band 47 is not particularly limited, but a material having high thermal conductivity is preferable in order to increase the temperature gradient from the human body side to the outside.
 ウェアラブルデバイス4は、バンド47を手首などに巻きつけることによって人体に装着できる。ウェアラブルデバイス4が人体に装着されると、熱電変換体41の人体側と、人体とは反対側との間に温度勾配が発生し、その温度勾配によって発生したスピン流によって起電力が発生する。その起電力によって発生する電流を対象物45に給電すれば、対象物45を駆動させることができる。 The wearable device 4 can be worn on the human body by winding the band 47 around the wrist or the like. When the wearable device 4 is attached to the human body, a temperature gradient is generated between the human body side of the thermoelectric converter 41 and the side opposite to the human body, and electromotive force is generated by the spin current generated by the temperature gradient. By feeding the current generated by the electromotive force to the target object 45, the target object 45 can be driven.
 図14は、本実施形態のウェアラブルデバイス4のバリエーション(ウェアラブルデバイス4-2)である。ウェアラブルデバイス4-2は、バンド47の下面に複数のバルク型の熱電変換体41と、複数の薄膜型の熱電変換体43とを配置した構成を有する。複数のバルク型の熱電変換体41は、薄膜型の熱電変換体43を介して電気的に接続される。熱電変換体43は、スピン流を用いるスピン熱電変換によって熱発電する薄膜型熱電変換体を含む。熱電変換体43は、薄膜型であるために柔軟性がある。そのため、熱電変換体43は、バンド47が曲げられると、バンド47の変形に伴って変形する。なお、図14においては、バルク型の熱電変換体41と薄膜型の熱電変換体43が人体側で凹凸を形成するように図示しているが、発電効率や装着性を向上させるためには人体側で面一となるように構成した方が好ましい。 FIG. 14 shows a variation (wearable device 4-2) of the wearable device 4 of this embodiment. The wearable device 4-2 has a configuration in which a plurality of bulk type thermoelectric converters 41 and a plurality of thin film type thermoelectric converters 43 are arranged on the lower surface of the band 47. The plurality of bulk-type thermoelectric converters 41 are electrically connected via thin-film thermoelectric converters 43. The thermoelectric converter 43 includes a thin-film thermoelectric converter that thermoelectrically generates power by spin thermoelectric conversion using spin current. Since the thermoelectric converter 43 is a thin film type, it has flexibility. Therefore, when the band 47 is bent, the thermoelectric converter 43 deforms along with the deformation of the band 47. In addition, in FIG. 14, the bulk-type thermoelectric conversion body 41 and the thin-film type thermoelectric conversion body 43 are illustrated so as to form irregularities on the human body side, but in order to improve power generation efficiency and wearability, It is preferable that the surfaces are flush with each other.
 以上のように、本実施形態のウェアラブルデバイスは、バンドの下面にバルク型熱電変換体を配置した構成を有する。バルク型熱電変換体は、薄膜型熱電変換体と比べて厚くできるために厚み方向の温度勾配が大きくなる。そのため、本実施形態によれば、第1の実施形態と比べて発電量が大きくなる。 As described above, the wearable device according to the present embodiment has a configuration in which the bulk type thermoelectric converter is arranged on the lower surface of the band. The bulk-type thermoelectric converter can be made thicker than the thin-film thermoelectric converter, so that the temperature gradient in the thickness direction becomes large. Therefore, according to this embodiment, the amount of power generation is larger than that in the first embodiment.
 例えば、熱電変換素子は、バンドの一方の面に配置される複数のバルク型熱電変換体と、バンドに配置された複数のバルク型熱電変換体を電気的に接続する導電部材とによって構成される。例えば、熱電変換素子は、バンドの一方の面に配置される複数のバルク型熱電変換体と、バンドに配置された複数のバルク型熱電変換体と電気的に接続される薄膜型熱電変換体とによって構成される。 For example, the thermoelectric conversion element is composed of a plurality of bulk type thermoelectric converters arranged on one surface of the band, and a conductive member electrically connecting the plurality of bulk type thermoelectric converters arranged on the band. .. For example, the thermoelectric conversion element, a plurality of bulk type thermoelectric converters arranged on one surface of the band, and a thin film type thermoelectric converter electrically connected to the plurality of bulk type thermoelectric converters arranged on the band. Composed by.
 (第5の実施形態)
 次に、本発明の第5の実施形態に係るウェアラブルデバイスについて、図面を参照しながら説明する。本実施形態のウェアラブルデバイスは、バルク型熱電変換体でバンドを構成する点において第1の実施形態のウェアラブルデバイスとは異なる。
(Fifth Embodiment)
Next, a wearable device according to a fifth embodiment of the present invention will be described with reference to the drawings. The wearable device according to the present embodiment differs from the wearable device according to the first embodiment in that a band is formed by a bulk thermoelectric converter.
 (構成)
 図15および図16は、本実施形態のウェアラブルデバイス5の構成の一例について説明するための概念図である。図15は、ウェアラブルデバイス5の上面図である。図16は、ウェアラブルデバイス5の側面図である。
(Constitution)
15 and 16 are conceptual diagrams for explaining an example of the configuration of the wearable device 5 of this embodiment. FIG. 15 is a top view of the wearable device 5. FIG. 16 is a side view of the wearable device 5.
 ウェアラブルデバイス5は、熱電変換体51、連結部材52、および対象物55を備える。複数の熱電変換体51と複数の連結部材52とは、互いに連結されてバンド57を形成する。ウェアラブルデバイス5は、複数の熱電変換体51を連結部材52で連結することによってバンド57を構成する点で第4の実施形態のウェアラブルデバイス4とは異なる。以下においては、主に、ウェアラブルデバイス4と相違する点について説明する。 The wearable device 5 includes a thermoelectric converter 51, a connecting member 52, and an object 55. The plurality of thermoelectric converters 51 and the plurality of connecting members 52 are connected to each other to form a band 57. The wearable device 5 is different from the wearable device 4 of the fourth embodiment in that a band 57 is formed by connecting a plurality of thermoelectric converters 51 with a connecting member 52. In the following, differences from the wearable device 4 will be mainly described.
 熱電変換体51は、温度勾配で発生するスピン流を電流に変換するバルク型熱電変換体である。熱電変換体51は、バルク型であるために柔軟性がない。そのため、複数の熱電変換体51のブロックを連結部材52によって電気的に接続した構成にする。 The thermoelectric converter 51 is a bulk thermoelectric converter that converts a spin current generated by a temperature gradient into an electric current. Since the thermoelectric conversion body 51 is a bulk type, it has no flexibility. Therefore, the block of the plurality of thermoelectric converters 51 is electrically connected by the connecting member 52.
 複数の熱電変換体51は、連結部材52によって連結されてバンド57を構成する。複数の熱電変換体51は、連結部材52によって接続される。対象物55の最も近くに配置される熱電変換体51は、図示しない端子を介して対象物55に給電可能に接続される。熱電変換体51は、ウェアラブルデバイス5が人体に装着された状態で、人体と外部との温度勾配に応じて発電する。熱電変換体51は、図示しない端子を経由して、温度勾配によって生じた電力を対象物55に給電する。 The plurality of thermoelectric converters 51 are connected by the connecting member 52 to form the band 57. The plurality of thermoelectric converters 51 are connected by the connecting member 52. The thermoelectric conversion body 51 arranged closest to the target object 55 is connected to the target object 55 via a terminal (not shown) so that power can be supplied. The thermoelectric conversion body 51 generates power according to the temperature gradient between the human body and the outside while the wearable device 5 is attached to the human body. The thermoelectric converter 51 supplies electric power generated by the temperature gradient to the object 55 via a terminal (not shown).
 連結部材52は、隣接して配置される熱電変換体51同士を連結する部材である。また、連結部材52は、導電性を有し、隣接して配置される熱電変換体51同士を電気的に接続する。例えば、連結部材52は、連結対象の二つの熱電変換体51を電気的に接続しながら、それらの熱電変換体51を回転可能に接続する。二つの熱電変換体51と連結部材52とを電気的に接続する接点の露出を防止する場合は、接点の部分を絶縁性樹脂などで被覆すればよい。 The connecting member 52 is a member that connects the thermoelectric converters 51 arranged adjacent to each other. Further, the connecting member 52 has conductivity and electrically connects the thermoelectric converters 51 arranged adjacent to each other. For example, the connecting member 52 rotatably connects the two thermoelectric converters 51 to be connected while electrically connecting the two thermoelectric converters 51. In order to prevent the exposure of the contact that electrically connects the two thermoelectric converters 51 and the connecting member 52, the contact portion may be covered with an insulating resin or the like.
 複数の熱電変換体51と複数の連結部材52とによって構成されるバンド57は、ウェアラブルデバイス5を人体に装着するための帯状体である。図15の例では、バンド57は、対象物55の周辺部に延在して配置される二つのパーツによって構成される。なお、図15および図16においては、バンド57を人体に装着するための留具や穴などは省略する。 The band 57 composed of the plurality of thermoelectric converters 51 and the plurality of connecting members 52 is a belt-like body for mounting the wearable device 5 on a human body. In the example of FIG. 15, the band 57 is composed of two parts that are arranged to extend around the peripheral portion of the object 55. 15 and 16, fasteners and holes for attaching the band 57 to the human body are omitted.
 ウェアラブルデバイス5は、バンド57を手首などに巻きつけることによって人体に装着できる。ウェアラブルデバイス5が人体に装着されると、熱電変換体51の人体側と、人体とは反対側との間に温度勾配が発生し、その温度勾配によって発生したスピン流によって起電力が発生する。その起電力によって発生する電流を対象物55に給電すれば、対象物55を駆動させることができる。 The wearable device 5 can be attached to the human body by winding the band 57 around the wrist or the like. When the wearable device 5 is attached to a human body, a temperature gradient is generated between the human body side of the thermoelectric converter 51 and the side opposite to the human body, and electromotive force is generated by the spin current generated by the temperature gradient. By feeding the current generated by the electromotive force to the target object 55, the target object 55 can be driven.
 以上のように、本実施形態のウェアラブルデバイスは、複数のバルク型熱電変換体と、隣接し合うバルク型熱電変換体同士を連結するとともに、電気的に接続する複数の連結部材と、熱電変換素子で発生した電力を受電する対象物とを備える。複数のバルク型熱電変換体を連結部材によって連結した構造によって形成されるバンドは、対象物の周辺部に延在して配置される。本実施形態のウェアラブルデバイスでは、バンドにバルク型熱電変換体を仕込むことによって、人体とは反対側の面が外気に直接晒されるため、人体とは反対側の面において空気が入れ替わりやすい状況であれば、人体側と、人体とは反対側との間の温度勾配が大きくなる。そのため、本実施形態によれば、ウェアラブルデバイスを装着したユーザが歩行している状況のように、ウェアラブルデバイスの周囲の空気が入れ替わりやすい状況であれば、第1の実施形態と比べて、熱電変換効率や発電量を増大することができる。
 (第6の実施形態)
 次に、本発明の第6の実施形態に係るウェアラブルデバイスについて、図面を参照しながら説明する。本実施形態のウェアラブルデバイスは、同じ温度勾配によって異なる方向に電流が流れる2種類の熱電変換体を交互に接続して構成した熱電変換素子を搭載する点において第1の実施形態のウェアラブルデバイスとは異なる。
As described above, the wearable device according to the present embodiment includes a plurality of bulk-type thermoelectric converters, a plurality of connecting members that electrically connect the adjacent bulk-type thermoelectric converters, and a plurality of electrically connecting members, and a thermoelectric conversion element. And an object for receiving the electric power generated in. The band formed by the structure in which a plurality of bulk type thermoelectric converters are connected by the connecting member is arranged to extend to the peripheral portion of the object. In the wearable device of the present embodiment, by charging the band with the bulk-type thermoelectric converter, the surface on the side opposite to the human body is directly exposed to the outside air, so that the surface on the side opposite to the human body can easily exchange air. For example, the temperature gradient between the human body side and the side opposite to the human body becomes large. Therefore, according to the present embodiment, in a situation in which the air around the wearable device is easily replaced, such as a situation in which the user wearing the wearable device is walking, thermoelectric conversion is performed as compared with the first embodiment. It is possible to increase efficiency and power generation.
(Sixth Embodiment)
Next, a wearable device according to a sixth embodiment of the present invention will be described with reference to the drawings. The wearable device of the present embodiment is different from the wearable device of the first embodiment in that the wearable device of the first embodiment is equipped with a thermoelectric conversion element configured by alternately connecting two types of thermoelectric conversion bodies in which currents flow in different directions due to the same temperature gradient. different.
 図17は、本実施形態のウェアラブルデバイス6の構成の一例について説明するための側面図である。ウェアラブルデバイス6は、第1熱電変換体61、第2熱電変換体62、導電部材63、対象物65、およびバンド67を備える。ウェアラブルデバイス6は、第1熱電変換体61と第2熱電変換体62とを導電部材63で連結した熱電変換素子を搭載する。以下においては、主に、ウェアラブルデバイス1と相違する点について説明する。 FIG. 17 is a side view for explaining an example of the configuration of the wearable device 6 of this embodiment. The wearable device 6 includes a first thermoelectric converter 61, a second thermoelectric converter 62, a conductive member 63, an object 65, and a band 67. The wearable device 6 is equipped with a thermoelectric conversion element in which the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are connected by a conductive member 63. In the following, differences from the wearable device 1 will be mainly described.
 第1熱電変換体61は、温度勾配で発生するスピン流を電流に変換する熱電変換素子を含む。第1熱電変換体61は、第2熱電変換体62と同じ温度勾配を印加された際に、第2熱電変換体62とは反対方向に電流が流れる材料で構成される。例えば、第1熱電変換体61をN型にする場合は第2熱電変換体62をP型にし、第1熱電変換体61をP型にする場合は第2熱電変換体62をN型にする。P型とN型では、磁化方向が同じで温度勾配方向も同じ場合には、反対方向の電流が流れる。第1熱電変換体61は、薄膜型熱電変換体であってもよいし、バルク型熱電変換体であってもよい。 The first thermoelectric conversion body 61 includes a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current. The first thermoelectric conversion body 61 is made of a material through which an electric current flows in the opposite direction to the second thermoelectric conversion body 62 when the same temperature gradient as that of the second thermoelectric conversion body 62 is applied. For example, when the first thermoelectric conversion body 61 is N type, the second thermoelectric conversion body 62 is P type, and when the first thermoelectric conversion body 61 is P type, the second thermoelectric conversion body 62 is N type. .. In the P-type and the N-type, when the magnetization directions are the same and the temperature gradient directions are the same, current flows in opposite directions. The first thermoelectric converter 61 may be a thin film type thermoelectric converter or a bulk type thermoelectric converter.
 第2熱電変換体62は、温度勾配で発生するスピン流を電流に変換する熱電変換素子を含む。第2熱電変換体62は、第1熱電変換体61と同じ温度勾配を印加された際に、第1熱電変換体61とは反対方向に電流が流れる材料で構成される。例えば、第2熱電変換体62をP型にする場合は第1熱電変換体61をN型にし、第2熱電変換体62をN型にする場合は第1熱電変換体61をP型にする。第2熱電変換体62は、薄膜型熱電変換体であってもよいし、バルク型熱電変換体であってもよい。 The second thermoelectric conversion body 62 includes a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current. The second thermoelectric conversion body 62 is made of a material through which an electric current flows in the opposite direction to the first thermoelectric conversion body 61 when the same temperature gradient as that of the first thermoelectric conversion body 61 is applied. For example, when the second thermoelectric converter 62 is a P type, the first thermoelectric converter 61 is an N type, and when the second thermoelectric converter 62 is an N type, the first thermoelectric converter 61 is a P type. .. The second thermoelectric converter 62 may be a thin film thermoelectric converter or a bulk thermoelectric converter.
 第1熱電変換体61と第2熱電変換体62とは、長手方向が略平行になるように配置される。隣接し合う第1熱電変換体61と第2熱電変換体62とは、熱電変換ユニットを構成し、導電部材63によって電気的に直列接続される。熱電変換素子の末端に位置する第1熱電変換体61と第2熱電変換体62とは、図示しない端子を介して対象物65と電気的に接続される。 The first thermoelectric converter 61 and the second thermoelectric converter 62 are arranged so that their longitudinal directions are substantially parallel to each other. The first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 that are adjacent to each other form a thermoelectric conversion unit, and are electrically connected in series by the conductive member 63. The first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 located at the ends of the thermoelectric conversion element are electrically connected to the object 65 via terminals not shown.
 第1熱電変換体61、第2熱電変換体62、および導電部材63によって構成される熱電変換素子は、対象物65の下面に配置される。熱電変換素子の末端に位置する第1熱電変換体61および第2熱電変換体62は、図示しない端子を介して対象物65に給電可能に接続される。熱電変換素子は、ウェアラブルデバイス6が人体に装着された状態で、人体と外部との温度勾配に応じて発電する。熱電変換素子は、温度勾配によって生じた電力を図示しない端子を経由して対象物65に給電する。ウェアラブルデバイス6は、複数の熱電変換ユニットを直列に接続した構成を有するため、熱電変換ユニットの数に応じて電圧を高く設定できる。なお、図17には、熱電変換素子の末端に第1熱電変換体61および第2熱電変換体62を配置する例を図示しているが、一対の第1熱電変換体61あるいは一対の第2熱電変換体62を熱電変換素子の両末端に配置してもよい。 The thermoelectric conversion element configured by the first thermoelectric conversion body 61, the second thermoelectric conversion body 62, and the conductive member 63 is arranged on the lower surface of the object 65. The first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 located at the ends of the thermoelectric conversion elements are connected to a target object 65 via terminals (not shown) so that power can be supplied. The thermoelectric conversion element generates power according to the temperature gradient between the human body and the outside while the wearable device 6 is attached to the human body. The thermoelectric conversion element supplies electric power generated by the temperature gradient to the object 65 via a terminal (not shown). Since the wearable device 6 has a configuration in which a plurality of thermoelectric conversion units are connected in series, the voltage can be set high according to the number of thermoelectric conversion units. Note that, although FIG. 17 illustrates an example in which the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are arranged at the ends of the thermoelectric conversion elements, a pair of first thermoelectric conversion bodies 61 or a pair of second thermoelectric conversion bodies 61. The thermoelectric conversion body 62 may be arranged at both ends of the thermoelectric conversion element.
 図18は、本実施形態のウェアラブルデバイス6の別のバリエーション(ウェアラブルデバイス6-2)である。ウェアラブルデバイス6-2は、第1熱電変換体61と第2熱電変換体62とを導電部材63で連結した熱電変換素子をバンド67の下面に配置した構成を有する。第1熱電変換体61と第2熱電変換体62は、長手方向がバンド67の長手方向と略垂直になるように配置される。熱電変換素子の末端に位置する第1熱電変換体61および第2熱電変換体62は、図示しない端子を介して対象物65に電気的に接続される。図18のように、第1熱電変換体61と第2熱電変換体62の長手方向をバンド67の長手方向と略垂直にする場合、導電部材33を柔軟な素材で構成すればバンド67を屈曲させることができる。ウェアラブルデバイス6-2は、第1熱電変換体61と第2熱電変換体62とによって構成される熱電変換素子の表面積を大きくできるので、図17のウェアラブルデバイス6よりも高電圧かつ高出力に設定できる。 FIG. 18 shows another variation (wearable device 6-2) of the wearable device 6 of this embodiment. The wearable device 6-2 has a configuration in which a thermoelectric conversion element in which the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are connected by a conductive member 63 is arranged on the lower surface of the band 67. The first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are arranged such that the longitudinal direction is substantially perpendicular to the longitudinal direction of the band 67. The 1st thermoelectric conversion body 61 and the 2nd thermoelectric conversion body 62 located in the terminal of a thermoelectric conversion element are electrically connected to object 65 via a terminal which is not illustrated. As shown in FIG. 18, when the longitudinal direction of the first thermoelectric converter 61 and the second thermoelectric converter 62 is made substantially perpendicular to the longitudinal direction of the band 67, the band 67 can be bent if the conductive member 33 is made of a flexible material. Can be made. Since the wearable device 6-2 can increase the surface area of the thermoelectric conversion element composed of the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62, it is set to a higher voltage and higher output than the wearable device 6 of FIG. it can.
 図19は、本実施形態のウェアラブルデバイス6の別のバリエーション(ウェアラブルデバイス6-3)である。ウェアラブルデバイス6-3は、第1熱電変換体61と第2熱電変換体62とを導電部材63で連結した熱電変換素子を対象物65およびバンド67の下面に配置した構成を有する。第1熱電変換体61と第2熱電変換体62とは、長手方向がバンド67の長手方向と略平行になるように配置される。熱電変換素子の末端に位置する第1熱電変換体61および第2熱電変換体62は、図示しない端子を介して対象物65に電気的に接続される。図19のように、第1熱電変換体61と第2熱電変換体62の長手方向をバンド67の長手方向と略平行にする場合、第1熱電変換体61および第2熱電変換体62を薄膜型熱電変換体で構成すればバンド67を屈曲させることができる。ウェアラブルデバイス6-3は、第1熱電変換体61と第2熱電変換体62とによって構成される熱電変換素子の表面積を対象物65の下面の分だけ大きくできるので、図18のウェアラブルデバイス6-2よりも高出力に設定できる。 FIG. 19 shows another variation (wearable device 6-3) of the wearable device 6 of this embodiment. The wearable device 6-3 has a configuration in which a thermoelectric conversion element in which the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are connected by a conductive member 63 is arranged on the lower surface of the object 65 and the band 67. The first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are arranged such that the longitudinal direction thereof is substantially parallel to the longitudinal direction of the band 67. The first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 located at the ends of the thermoelectric conversion element are electrically connected to the object 65 via terminals not shown. As shown in FIG. 19, when the longitudinal directions of the first thermoelectric converter 61 and the second thermoelectric converter 62 are made substantially parallel to the longitudinal direction of the band 67, the first thermoelectric converter 61 and the second thermoelectric converter 62 are thin films. The band 67 can be bent by using a thermoelectric conversion body. Since the wearable device 6-3 can increase the surface area of the thermoelectric conversion element constituted by the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 by the amount of the lower surface of the object 65, the wearable device 6-3 of FIG. It can be set to a higher output than 2.
 図20は、本実施形態のウェアラブルデバイス6の別のバリエーション(ウェアラブルデバイス6-4)である。ウェアラブルデバイス6-4は、第1熱電変換体61と第2熱電変換体62とを導電部材63で連結した熱電変換素子を、対象物65およびバンド67の下面および上面に配置した構成を有する。上面側の第2熱電変換体62と下面側の第1熱電変換体61は、一端が対象物65に接続されたバンド67の他端に設置される導電部材63によって電気的に接続される。第1熱電変換体61と第2熱電変換体62は、長手方向がバンド67の長手方向と略平行になるように配置される。第1熱電変換体61と第2熱電変換体62は、図19のようにバンド67の長手方向に沿って並べて配置されてもよいし、バンド67の表面全体に貼り付けられてもよい。熱電変換素子の末端に位置する第1熱電変換体61および第2熱電変換体62は、図示しない端子を介して対象物65に電気的に接続される。図20のように、第1熱電変換体61と第2熱電変換体62の長手方向をバンド67の長手方向と略平行にする場合、第1熱電変換体61および第2熱電変換体62を薄膜型熱電変換体で構成すればバンド67を屈曲させることができる。ウェアラブルデバイス6-4は、第1熱電変換体61と第2熱電変換体62とによって構成される熱電変換素子の表面積をバンド67の上面の分だけ大きくできる。そのため、図20のウェアラブルデバイス6-4は、第1熱電変換体61と第2熱電変換体62とをバンド67の各面に配置することで温度勾配に影響がなければ、図19のウェアラブルデバイス6-3よりも熱電変換素子の出力を大きくすることができる。 FIG. 20 shows another variation (wearable device 6-4) of the wearable device 6 of this embodiment. The wearable device 6-4 has a configuration in which thermoelectric conversion elements in which the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are connected by a conductive member 63 are arranged on the lower surface and the upper surface of the object 65 and the band 67. The second thermoelectric converter 62 on the upper surface side and the first thermoelectric converter 61 on the lower surface side are electrically connected by a conductive member 63 installed at the other end of the band 67 whose one end is connected to the object 65. The first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 are arranged such that the longitudinal direction thereof is substantially parallel to the longitudinal direction of the band 67. The first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 may be arranged side by side along the longitudinal direction of the band 67 as shown in FIG. 19, or may be attached to the entire surface of the band 67. The first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 located at the ends of the thermoelectric conversion element are electrically connected to the object 65 via terminals not shown. As shown in FIG. 20, when the longitudinal directions of the first thermoelectric converter 61 and the second thermoelectric converter 62 are made substantially parallel to the longitudinal direction of the band 67, the first thermoelectric converter 61 and the second thermoelectric converter 62 are thin films. The band 67 can be bent by using a thermoelectric conversion body. In the wearable device 6-4, the surface area of the thermoelectric conversion element formed by the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 can be increased by the amount of the upper surface of the band 67. Therefore, the wearable device 6-4 in FIG. 20 has the first thermoelectric conversion body 61 and the second thermoelectric conversion body 62 arranged on each surface of the band 67 so that the temperature gradient is not affected. The output of the thermoelectric conversion element can be made higher than that of 6-3.
 以上のように、本実施形態のウェアラブルデバイスの熱電変換素子は、複数の第1熱電変換体と、複数の第2熱電変換体とによって構成される。複数の第2熱電変換体は、第1熱電変換体と導電部材によって電気的に接続され、第1熱電変換体と同じ温度勾配を印加された際に反対の向きに電流が流れる。第1熱電変換体と第2熱電変換体とは、長手方向が略平行になるように配置される。 As described above, the thermoelectric conversion element of the wearable device according to the present embodiment is composed of the plurality of first thermoelectric conversion bodies and the plurality of second thermoelectric conversion bodies. The plurality of second thermoelectric converters are electrically connected to the first thermoelectric converter by the conductive member, and when the same temperature gradient as that of the first thermoelectric converter is applied, a current flows in the opposite direction. The first thermoelectric converter and the second thermoelectric converter are arranged so that their longitudinal directions are substantially parallel to each other.
 すなわち、本実施形態のウェアラブルデバイスには、同じ熱勾配を印加した際に反対方向に電流が流れる2種類の熱電変換体を交互に接続した構成の熱電変換素子が搭載される。そのため、本実施形態によれば、複数の熱電変換ユニットを直列接続した構成にできるので、第1の実施形態よりも高電圧を得ることができる。 That is, the wearable device of the present embodiment is equipped with a thermoelectric conversion element having a configuration in which two types of thermoelectric conversion bodies in which currents flow in opposite directions when the same thermal gradient is applied are alternately connected. Therefore, according to the present embodiment, a plurality of thermoelectric conversion units can be connected in series, so that a higher voltage can be obtained than in the first embodiment.
 (第7の実施形態)
 次に、本発明の第7の実施形態に係るウェアラブルデバイスについて、図面を参照しながら説明する。本実施形態のウェアラブルデバイスは、帯状の薄膜型熱電変換体をバンドに巻きつける点において第1の実施形態のウェアラブルデバイスとは異なる。
(Seventh embodiment)
Next, a wearable device according to a seventh embodiment of the present invention will be described with reference to the drawings. The wearable device of this embodiment is different from the wearable device of the first embodiment in that a strip-shaped thin-film thermoelectric converter is wound around the band.
 (構成)
 図21~図22は、本実施形態のウェアラブルデバイス7の構成の一例について説明するための概念図である。図21は、ウェアラブルデバイス7の構成の一例を示す側面図である。図22は、ウェアラブルデバイス7の構成の一例を示す上面図である。
(Constitution)
21 to 22 are conceptual diagrams for explaining an example of the configuration of the wearable device 7 of the present embodiment. FIG. 21 is a side view showing an example of the configuration of the wearable device 7. FIG. 22 is a top view showing an example of the configuration of the wearable device 7.
 ウェアラブルデバイス7は、熱電変換体71、対象物75、およびバンド77を備える。ウェアラブルデバイス7は、帯状の薄膜型の熱電変換体71をバンド77の周りに巻きつける点で第1の実施形態のウェアラブルデバイス1とは異なる。以下においては、主に、ウェアラブルデバイス1と相違する点について説明する。なお、図21においては、バンド77の右端が露出するように図示しているが、実際にはバンド77の右端まで熱電変換体71を巻きつけておくことが好ましい。 The wearable device 7 includes a thermoelectric converter 71, an object 75, and a band 77. The wearable device 7 is different from the wearable device 1 according to the first embodiment in that a strip-shaped thin film type thermoelectric conversion body 71 is wound around a band 77. In the following, differences from the wearable device 1 will be mainly described. Although the right end of the band 77 is exposed in FIG. 21, it is actually preferable to wind the thermoelectric converter 71 up to the right end of the band 77.
 熱電変換体71は、温度勾配で発生するスピン流を電流に変換する薄膜型熱電変換体によって構成される。熱電変換体71は、薄膜型であるために柔軟性がある。熱電変換体71は、バンド77が曲げられると、バンド77の変形に伴って変形する。 The thermoelectric converter 71 is composed of a thin film thermoelectric converter that converts a spin current generated by a temperature gradient into an electric current. The thermoelectric conversion body 71 is flexible because it is a thin film type. When the band 77 is bent, the thermoelectric conversion body 71 is deformed along with the deformation of the band 77.
 熱電変換体71は、バンド77の周りに巻きつけられる。熱電変換体71は、図示しない端子を介して対象物75に給電可能に接続される。熱電変換体71は、ウェアラブルデバイス7が人体に装着された状態で、人体と外部との温度勾配に応じて発電する。熱電変換体71は、図示しない端子を経由して、温度勾配によって生じた電力を対象物75に給電する。なお、バンド77の周りに熱電変換体71を巻きつける構成とする場合、バンド77の人体側の面では熱電変換体71の表側から裏側に向かう温度勾配になるのに対し、バンド77の外側の面では熱電変換体71の裏側から表側に向かう温度勾配になる。そのため、バンド77の人体側と外側とでは、温度勾配で発生するスピン流の向きが反対になり、端子から取り出せる電流が相殺される。しかしながら、ウェアラブルデバイス7を人体に装着すると、バンド77の外側の熱電変換体71に印加される温度勾配と比べて、バンド77の人体側の熱電変換体71に印加される温度勾配の方が大きいため、熱電変換体71の端子間には電流が流れる。 The thermoelectric converter 71 is wound around the band 77. The thermoelectric converter 71 is connected to the target object 75 via a terminal (not shown) so as to be able to supply power. The thermoelectric converter 71 generates power according to the temperature gradient between the human body and the outside while the wearable device 7 is attached to the human body. The thermoelectric converter 71 supplies the electric power generated by the temperature gradient to the object 75 via a terminal (not shown). When the thermoelectric converter 71 is wound around the band 77, the human body side surface of the band 77 has a temperature gradient from the front side to the back side of the thermoelectric converter 71, whereas the outside of the band 77 has a temperature gradient. On the surface, there is a temperature gradient from the back side of the thermoelectric converter 71 to the front side. Therefore, the directions of the spin currents generated due to the temperature gradient are opposite between the human body side and the outer side of the band 77, and the currents that can be taken out from the terminals are offset. However, when the wearable device 7 is attached to the human body, the temperature gradient applied to the thermoelectric converter 71 on the human body side of the band 77 is larger than the temperature gradient applied to the thermoelectric converter 71 outside the band 77. Therefore, a current flows between the terminals of the thermoelectric converter 71.
 バンド77は、ウェアラブルデバイス7を人体に装着するための帯状体である。バンド77は、対象物75の周辺部に延在して配置される。図21~図22の例では、バンド77は、対象物75の周辺部に延在して配置される二つのパーツによって構成される。バンド77の周囲には熱電変換体71が巻きつけられる。なお、図21においては、バンド77を人体に装着するための留具や穴などは省略する。なお、熱電変換体71は、バンド77を構成する二つのパーツのうちいずれか一方に巻きつけるように構成してもよい。 Band 77 is a band-like body for mounting wearable device 7 on the human body. The band 77 is disposed so as to extend around the target object 75. In the examples of FIGS. 21 to 22, the band 77 is composed of two parts that are arranged so as to extend around the peripheral portion of the object 75. A thermoelectric converter 71 is wound around the band 77. In FIG. 21, fasteners and holes for attaching the band 77 to a human body are omitted. The thermoelectric conversion body 71 may be wound around either one of the two parts forming the band 77.
 ウェアラブルデバイス7は、バンド77を手首などに巻きつけることによって人体に装着できる。ウェアラブルデバイス7が人体に装着されると、熱電変換体71の人体側と、人体とは反対側との間に温度勾配が発生し、その温度勾配によって発生したスピン流によって起電力が発生する。その起電力によって発生する電流を対象物75に給電すれば、対象物75を駆動させることができる。 The wearable device 7 can be attached to the human body by winding the band 77 around the wrist or the like. When the wearable device 7 is attached to the human body, a temperature gradient is generated between the human body side of the thermoelectric converter 71 and the side opposite to the human body, and electromotive force is generated by the spin current generated by the temperature gradient. By feeding the current generated by the electromotive force to the target object 75, the target object 75 can be driven.
 以上のように、本実施形態のウェアラブルデバイスは、帯状に形成された薄膜型の熱電変換素子をバンドの周囲に巻きつけた構成を有する。本実施形態によれば、第1の実施形態と比べて、帯状の薄膜型熱電変換体の両端部の距離が長くなるため、より高い電圧を得ることができる。 As described above, the wearable device according to the present embodiment has a configuration in which the strip-shaped thin film type thermoelectric conversion element is wound around the band. According to this embodiment, the distance between both ends of the strip-shaped thin-film thermoelectric converter is longer than that in the first embodiment, and thus a higher voltage can be obtained.
 (第8の実施形態)
 次に、本発明の第8の実施形態に係るウェアラブルデバイスについて図面を参照しながら説明する。本実施形態のウェアラブルデバイスは、対象物が着脱できる点で第1の実施形態のウェアラブルデバイスとは異なる。
(Eighth Embodiment)
Next, a wearable device according to an eighth embodiment of the present invention will be described with reference to the drawings. The wearable device of this embodiment is different from the wearable device of the first embodiment in that an object can be attached and detached.
 図23~図27は、本実施形態のウェアラブルデバイス8の構成の一例について説明するための概念図である。図23は、ウェアラブルデバイス8の上面図である。図24は、図23のA-A線でウェアラブルデバイス8を切断した際の断面図である。図25は、ウェアラブルデバイス8に搭載される対象物800の下面図である。図26は、対象物800をウェアラブルデバイス8に搭載した状態を示す上面図である。図27は、図26のB-B線でウェアラブルデバイス8を切断した際の断面図である。 23 to 27 are conceptual diagrams for explaining an example of the configuration of the wearable device 8 of the present embodiment. FIG. 23 is a top view of the wearable device 8. FIG. 24 is a sectional view of the wearable device 8 taken along the line AA of FIG. FIG. 25 is a bottom view of the object 800 mounted on the wearable device 8. FIG. 26 is a top view showing a state where the object 800 is mounted on the wearable device 8. 27 is a cross-sectional view of the wearable device 8 taken along the line BB of FIG.
 ウェアラブルデバイス8は、熱電変換素子81、搭載部82、第1給電端子83、第2給電端子84、およびバンド87を備える。また、対象物800は、第1受電端子801および第2受電端子802を有する。以下においては、ウェアラブルデバイス8が人体に装着されると、搭載部82よりも熱電変換素子81が人体側に位置するものとする。なお、熱電変換素子81は、第1給電端子83または第2給電端子84に電気的に接続される構成であれば、第1~第7の実施形態のいずれの形態であってもよい。 The wearable device 8 includes a thermoelectric conversion element 81, a mounting portion 82, a first feeding terminal 83, a second feeding terminal 84, and a band 87. Further, the object 800 has a first power receiving terminal 801 and a second power receiving terminal 802. In the following, when the wearable device 8 is mounted on the human body, the thermoelectric conversion element 81 is located closer to the human body than the mounting portion 82. The thermoelectric conversion element 81 may be in any of the first to seventh embodiments as long as it is electrically connected to the first power feeding terminal 83 or the second power feeding terminal 84.
 熱電変換素子81は、温度勾配で発生するスピン流を電流に変換する熱電変換素子を含む。熱電変換素子81は、搭載部82の下面に配置される。熱電変換素子81は、ウェアラブルデバイス8の搭載部82に対象物800が搭載されると、第1給電端子83および第2給電端子84を介して対象物800に給電可能に接続される。熱電変換素子81はウェアラブルデバイス8が人体に装着された状態で、人体と外部との温度勾配に応じて発電する。熱電変換素子81は、第1給電端子83および第2給電端子84を介して、温度勾配によって生じた電力を対象物800に給電する。 The thermoelectric conversion element 81 includes a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current. The thermoelectric conversion element 81 is arranged on the lower surface of the mounting portion 82. When the target 800 is mounted on the mounting portion 82 of the wearable device 8, the thermoelectric conversion element 81 is connected to the target 800 via the first power supply terminal 83 and the second power supply terminal 84 so that power can be supplied to the target 800. The thermoelectric conversion element 81 generates power according to the temperature gradient between the human body and the outside while the wearable device 8 is attached to the human body. The thermoelectric conversion element 81 feeds the electric power generated by the temperature gradient to the object 800 via the first feeding terminal 83 and the second feeding terminal 84.
 搭載部82は、対象物800が搭載される部分を有する。図23のように、搭載部82の凹部には第1給電端子83および第2給電端子84が露出する。また、図24のように、対象物800の下面には第1受電端子801および第2受電端子802が露出する。図26のように、搭載部82の凹部に対象物800を嵌め込むことによって、対象物800を搭載部82に搭載できる。図27のように、第1給電端子83と第1受電端子801、第2給電端子84と第2受電端子802とが接触するように対象物800を搭載部82に嵌めこむことによって、対象物800と熱電変換素子81とが電気的に接続される。 The mounting portion 82 has a portion on which the target object 800 is mounted. As shown in FIG. 23, the first feeding terminal 83 and the second feeding terminal 84 are exposed in the recess of the mounting portion 82. Further, as shown in FIG. 24, the first power receiving terminal 801 and the second power receiving terminal 802 are exposed on the lower surface of the object 800. As shown in FIG. 26, the target object 800 can be mounted on the mounting portion 82 by fitting the target object 800 into the concave portion of the mounting portion 82. As shown in FIG. 27, by inserting the object 800 into the mounting portion 82 so that the first power supply terminal 83 and the first power receiving terminal 801, and the second power supply terminal 84 and the second power receiving terminal 802 are in contact with each other, the object 800 and the thermoelectric conversion element 81 are electrically connected.
 対象物800は、熱電変換素子81によって発生する電力で駆動させることができれば、どのような電子機器であってもよい。例えば、対象物800は、時計、活動量計、通信端末などのような電子機器である。 The object 800 may be any electronic device as long as it can be driven by the electric power generated by the thermoelectric conversion element 81. For example, the object 800 is an electronic device such as a clock, an activity meter, a communication terminal, or the like.
 以上が本実施形態のウェアラブルデバイス8の構成についての説明である。なお、図23~図27に示すウェアラブルデバイス8の構成は一例であって、本実施形態のウェアラブルデバイス8の構成をそのままの形態に限定するものではない。 The above is the description of the configuration of the wearable device 8 of the present embodiment. Note that the configuration of the wearable device 8 shown in FIGS. 23 to 27 is an example, and the configuration of the wearable device 8 of the present embodiment is not limited to the same form.
 以上のように、本実施形態のウェアラブルデバイスは、温度勾配で発生するスピン流を電流に変換する熱電変換素子と、熱電変換素子で発生した電力を受電する対象物を搭載する搭載部と、搭載部の周辺部に延在して配置されるバンドとを備える。熱電変換素子は、温度勾配によって発生するスピン流を用いて熱電変換する。本実施形態によれば、搭載された対象物に給電することができるだけではなく、搭載される対象物を交換することができるために汎用性が高い。 As described above, the wearable device according to the present embodiment includes a thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current, a mounting portion that mounts an object that receives electric power generated by the thermoelectric conversion element, and a mounted portion. And a band arranged so as to extend to a peripheral portion of the portion. The thermoelectric conversion element performs thermoelectric conversion using the spin current generated by the temperature gradient. According to the present embodiment, not only power can be supplied to the mounted target object, but also the mounted target object can be replaced, so that the versatility is high.
 以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the exemplary embodiments, the present invention is not limited to the above exemplary embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 温度勾配で発生するスピン流を電流に変換する熱電変換素子と、
 前記熱電変換素子で発生した電力を受電する対象物と、
 前記対象物の周辺部に延在して配置されるバンドとを備えるウェアラブルデバイス。
(付記2)
 前記熱電変換素子は、
 起電体と、前記起電体に接して配置される磁性体とを積層させた薄膜型熱電変換体である付記1に記載のウェアラブルデバイス。
(付記3)
 前記熱電変換素子は、
 磁性体微粒子と、前記磁性体微粒子の表面を被覆する起電体とによって構成される熱電変換単位構造の集合体によって構成されるバルク型熱電変換体である付記1に記載のウェアラブルデバイス。
(付記4)
 前記熱電変換素子は、
 前記対象物の一方の面に配置される付記1乃至3のいずれか一項に記載のウェアラブルデバイス。
(付記5)
 前記熱電変換素子は、
 前記バンドの一方の面に配置された薄膜型熱電変換体を含む付記1乃至4のいずれか一項に記載のウェアラブルデバイス。
(付記6)
 一端が前記対象物に接続され、他端に留具が配置される一対の前記バンドを設け、
 前記留具は、
 前記一対の前記バンドに配置された前記薄膜型熱電変換体を電気的に接続する付記5に記載のウェアラブルデバイス。
(付記7)
 前記熱電変換素子は、
 前記バンドの一方の面に配置された薄膜型熱電変換体と、
 前記対象物の一方の面に配置され、前記バンドに配置された前記薄膜型熱電変換体と電気的に接続されるバルク型熱電変換体とによって構成される付記1に記載のウェアラブルデバイス。
(付記8)
 前記熱電変換素子は、
 前記バンドの一方の面に配置される薄膜型熱電変換体と、
 前記バンドに配置された前記薄膜型熱電変換体の両端部を電気的に接続する導電部材とによって構成される付記1に記載のウェアラブルデバイス。
(付記9)
 前記導電部材は、
 前記バンドに配置された前記薄膜型熱電変換体と同じ方向に温度勾配が印加された際に、前記薄膜型熱電変換体とは反対の向きに電流が流れる熱電変換材料を含む付記8に記載のウェアラブルデバイス。
(付記10)
 前記熱電変換素子は、
 前記バンドの一方の面に配置される複数のバルク型熱電変換体と、
 前記バンドに配置された複数の前記バルク型熱電変換体を電気的に接続する導電部材とによって構成される付記1に記載のウェアラブルデバイス。
(付記11)
 前記熱電変換素子は、
 前記バンドの一方の面に配置される複数のバルク型熱電変換体と、
 前記バンドに配置された複数の前記バルク型熱電変換体と電気的に接続される薄膜型熱電変換体とによって構成される付記1に記載のウェアラブルデバイス。
(付記12)
 前記熱電変換素子は、
 複数の第1熱電変換体と、
 前記第1熱電変換体と導電部材によって電気的に接続され、前記第1熱電変換体と同じ温度勾配を印加された際に反対の向きに電流が流れる複数の第2熱電変換体とによって構成され、
 前記第1熱電変換体と前記第2熱電変換体とは、それぞれの長手方向が略平行になるように配置される付記1乃至3のいずれか一項に記載のウェアラブルデバイス。
(付記13)
 前記熱電変換素子は、
 帯状に形成され、前記バンドの周囲に巻きつけられる薄膜型熱電変換体によって構成される付記1に記載のウェアラブルデバイス。
(付記14)
 温度勾配で発生するスピン流を電流に変換する複数のバルク型熱電変換体と、
 隣接し合う前記バルク型熱電変換体同士を連結するとともに、電気的に接続する複数の連結部材と、
 複数の前記バルク型熱電変換体によって構成される熱電変換素子で発生した電力を受電する対象物とを備え、
 複数の前記バルク型熱電変換体を前記連結部材によって連結した構造によって形成されるバンドは、前記対象物の周辺部に延在して配置されるウェアラブルデバイス。
(付記15)
 温度勾配で発生するスピン流を電流に変換する熱電変換素子と、
 前記熱電変換素子からの給電を受ける対象物を搭載する搭載部と、
 前記搭載部の周辺部に延在して配置されるバンドとを備えるウェアラブルデバイス。
The whole or part of the exemplary embodiments disclosed above can be described as, but not limited to, the following supplementary notes.
(Appendix 1)
A thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current,
An object for receiving the power generated by the thermoelectric conversion element,
A wearable device, comprising: a band extending around a peripheral portion of the object.
(Appendix 2)
The thermoelectric conversion element,
The wearable device according to appendix 1, which is a thin-film thermoelectric conversion body in which an electromotive body and a magnetic body arranged in contact with the electromotive body are laminated.
(Appendix 3)
The thermoelectric conversion element,
The wearable device according to appendix 1, which is a bulk-type thermoelectric conversion body configured by an aggregate of thermoelectric conversion unit structures configured by magnetic fine particles and an electromotive body that covers the surface of the magnetic fine particles.
(Appendix 4)
The thermoelectric conversion element,
4. The wearable device according to any one of appendices 1 to 3, which is arranged on one surface of the object.
(Appendix 5)
The thermoelectric conversion element,
5. The wearable device according to any one of appendices 1 to 4, including a thin film type thermoelectric conversion element arranged on one surface of the band.
(Appendix 6)
One end is connected to the object, the other end is provided with a pair of the band where the fastener is arranged,
The fastener is
6. The wearable device according to appendix 5, which electrically connects the thin-film thermoelectric converters arranged in the pair of bands.
(Appendix 7)
The thermoelectric conversion element,
A thin film type thermoelectric converter arranged on one surface of the band,
The wearable device according to appendix 1, which is disposed on one surface of the object and includes a bulk-type thermoelectric converter electrically connected to the thin-film type thermoelectric converter arranged in the band.
(Appendix 8)
The thermoelectric conversion element,
A thin film type thermoelectric converter arranged on one surface of the band,
The wearable device according to appendix 1, which is configured by a conductive member that electrically connects both ends of the thin-film thermoelectric converter arranged in the band.
(Appendix 9)
The conductive member is
The supplementary note 8 including a thermoelectric conversion material in which an electric current flows in a direction opposite to the thin film type thermoelectric converter when a temperature gradient is applied in the same direction as the thin film type thermoelectric converter arranged in the band. Wearable device.
(Appendix 10)
The thermoelectric conversion element,
A plurality of bulk type thermoelectric converters arranged on one surface of the band,
The wearable device according to appendix 1, which is configured by a conductive member that electrically connects the plurality of bulk thermoelectric converters arranged in the band.
(Appendix 11)
The thermoelectric conversion element,
A plurality of bulk type thermoelectric converters arranged on one surface of the band,
2. The wearable device according to appendix 1, which includes a plurality of bulk thermoelectric converters arranged in the band and a thin film thermoelectric converter electrically connected to the bulk thermoelectric converter.
(Appendix 12)
The thermoelectric conversion element,
A plurality of first thermoelectric converters,
And a plurality of second thermoelectric converters that are electrically connected to the first thermoelectric converter by a conductive member and that flow a current in the opposite direction when the same temperature gradient as the first thermoelectric converter is applied. ,
4. The wearable device according to any one of appendices 1 to 3, wherein the first thermoelectric converter and the second thermoelectric converter are arranged such that their longitudinal directions are substantially parallel to each other.
(Appendix 13)
The thermoelectric conversion element,
2. The wearable device according to appendix 1, which is formed of a thin film type thermoelectric converter formed in a band shape and wound around the band.
(Appendix 14)
A plurality of bulk-type thermoelectric converters that convert the spin current generated by the temperature gradient into an electric current;
While connecting the adjacent bulk type thermoelectric converters, a plurality of connecting members electrically connected,
A plurality of the bulk-type thermoelectric converter, and an object for receiving the power generated by the thermoelectric conversion element,
A wearable device in which a band formed by a structure in which a plurality of the bulk-type thermoelectric converters are connected by the connecting member is arranged to extend around a peripheral portion of the object.
(Appendix 15)
A thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current,
A mounting portion on which an object to be fed with power from the thermoelectric conversion element is mounted,
A wearable device, comprising: a band extending around the mounting portion.
 この出願は、2019年1月11日に出願された日本出願特願2019-003515を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2019-003515 filed on January 11, 2019, and incorporates all of the disclosure thereof.
 1、2、3、4、5、6、7、8  ウェアラブルデバイス
 11、21、31  熱電変換素子
 15、25、35、45、55、65、75  対象物
 17、27、37、47、57、67、77、87  バンド
 34  折り返し電極
 33、42、63  導電部材
 41、43  熱電変換体
 51  熱電変換体
 52  連結部材
 36  留具
 61  第1熱電変換体
 62  第2熱電変換体
 82  搭載部
 83  第1給電端子
 84  第2給電端子
 111  起電体層
 112  磁性体層
 200  熱電変換単位構造
 210  磁性体微粒子
 220  起電体
 800  対象物
 801  第1受電端子
 802  第2受電端子
1, 2, 3, 4, 5, 6, 7, 8 Wearable device 11, 21, 31 Thermoelectric conversion element 15, 25, 35, 45, 55, 65, 75 Target object 17, 27, 37, 47, 57, 67, 77, 87 band 34 folding electrode 33, 42, 63 conductive member 41, 43 thermoelectric converter 51 thermoelectric converter 52 connecting member 36 fastener 61 first thermoelectric converter 62 second thermoelectric converter 82 mounting portion 83 first Power feeding terminal 84 Second power feeding terminal 111 Electromotive body layer 112 Magnetic body layer 200 Thermoelectric conversion unit structure 210 Magnetic fine particles 220 Electromotive body 800 Object 801 First power receiving terminal 802 Second power receiving terminal

Claims (15)

  1.  温度勾配で発生するスピン流を電流に変換する熱電変換素子と、
     前記熱電変換素子で発生した電力を受電する対象物と、
     前記対象物の周辺部に延在して配置されるバンドとを備えるウェアラブルデバイス。
    A thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current,
    An object for receiving the power generated by the thermoelectric conversion element,
    A wearable device, comprising: a band extending around a peripheral portion of the object.
  2.  前記熱電変換素子は、
     起電体と、前記起電体に接して配置される磁性体とを積層させた薄膜型熱電変換体である請求項1に記載のウェアラブルデバイス。
    The thermoelectric conversion element,
    The wearable device according to claim 1, wherein the wearable device is a thin-film thermoelectric conversion body in which an electromotive body and a magnetic body arranged in contact with the electromotive body are laminated.
  3.  前記熱電変換素子は、
     磁性体微粒子と、前記磁性体微粒子の表面を被覆する起電体とによって構成される熱電変換単位構造の集合体によって構成されるバルク型熱電変換体である請求項1に記載のウェアラブルデバイス。
    The thermoelectric conversion element,
    The wearable device according to claim 1, wherein the wearable device is a bulk-type thermoelectric converter constituted by an aggregate of thermoelectric conversion unit structures constituted by magnetic fine particles and an electromotive body covering the surface of the magnetic fine particles.
  4.  前記熱電変換素子は、
     前記対象物の一方の面に配置される請求項1乃至3のいずれか一項に記載のウェアラブルデバイス。
    The thermoelectric conversion element,
    The wearable device according to claim 1, wherein the wearable device is arranged on one surface of the object.
  5.  前記熱電変換素子は、
     前記バンドの一方の面に配置された薄膜型熱電変換体を含む請求項1乃至4のいずれか一項に記載のウェアラブルデバイス。
    The thermoelectric conversion element,
    The wearable device according to any one of claims 1 to 4, comprising a thin film type thermoelectric conversion element arranged on one surface of the band.
  6.  一端が前記対象物に接続され、他端に留具が配置される一対の前記バンドを設け、
     前記留具は、
     前記一対の前記バンドに配置された前記薄膜型熱電変換体を電気的に接続する請求項5に記載のウェアラブルデバイス。
    One end is connected to the object, the other end is provided with a pair of the band where the fastener is arranged,
    The fastener is
    The wearable device according to claim 5, wherein the thin-film thermoelectric conversion elements arranged in the pair of bands are electrically connected.
  7.  前記熱電変換素子は、
     前記バンドの一方の面に配置された薄膜型熱電変換体と、
     前記対象物の一方の面に配置され、前記バンドに配置された前記薄膜型熱電変換体と電気的に接続されるバルク型熱電変換体とによって構成される請求項1に記載のウェアラブルデバイス。
    The thermoelectric conversion element,
    A thin film type thermoelectric converter arranged on one surface of the band,
    The wearable device according to claim 1, wherein the wearable device is configured by a bulk-type thermoelectric conversion body that is disposed on one surface of the object and that is electrically connected to the thin-film-type thermoelectric conversion body that is disposed in the band.
  8.  前記熱電変換素子は、
     前記バンドの一方の面に配置される薄膜型熱電変換体と、
     前記バンドに配置された前記薄膜型熱電変換体の両端部を電気的に接続する導電部材とによって構成される請求項1に記載のウェアラブルデバイス。
    The thermoelectric conversion element,
    A thin film type thermoelectric converter arranged on one surface of the band,
    The wearable device according to claim 1, wherein the wearable device is configured by a conductive member that electrically connects both ends of the thin-film thermoelectric converter arranged in the band.
  9.  前記導電部材は、
     前記バンドに配置された前記薄膜型熱電変換体と同じ方向に温度勾配が印加された際に、前記薄膜型熱電変換体とは反対の向きに電流が流れる熱電変換材料を含む請求項8に記載のウェアラブルデバイス。
    The conductive member is
    The thermoelectric conversion material comprising a thermoelectric conversion material in which an electric current flows in a direction opposite to the thin film type thermoelectric converter when a temperature gradient is applied in the same direction as the thin film type thermoelectric converter arranged in the band. Wearable device.
  10.  前記熱電変換素子は、
     前記バンドの一方の面に配置される複数のバルク型熱電変換体と、
     前記バンドに配置された複数の前記バルク型熱電変換体を電気的に接続する導電部材とによって構成される請求項1に記載のウェアラブルデバイス。
    The thermoelectric conversion element,
    A plurality of bulk type thermoelectric converters arranged on one surface of the band,
    The wearable device according to claim 1, wherein the wearable device is configured by a conductive member that electrically connects the plurality of bulk thermoelectric converters arranged in the band.
  11.  前記熱電変換素子は、
     前記バンドの一方の面に配置される複数のバルク型熱電変換体と、
     前記バンドに配置された複数の前記バルク型熱電変換体と電気的に接続される薄膜型熱電変換体とによって構成される請求項1に記載のウェアラブルデバイス。
    The thermoelectric conversion element,
    A plurality of bulk type thermoelectric converters arranged on one surface of the band,
    The wearable device according to claim 1, wherein the wearable device includes a plurality of bulk thermoelectric converters arranged in the band and a thin film thermoelectric converter electrically connected to the plurality of bulk thermoelectric converters.
  12.  前記熱電変換素子は、
     複数の第1熱電変換体と、
     前記第1熱電変換体と導電部材によって電気的に接続され、前記第1熱電変換体と同じ温度勾配を印加された際に反対の向きに電流が流れる複数の第2熱電変換体とによって構成され、
     前記第1熱電変換体と前記第2熱電変換体とは、それぞれの長手方向が略平行になるように配置される請求項1乃至3のいずれか一項に記載のウェアラブルデバイス。
    The thermoelectric conversion element,
    A plurality of first thermoelectric converters,
    And a plurality of second thermoelectric converters that are electrically connected to the first thermoelectric converter by a conductive member and that flow a current in the opposite direction when the same temperature gradient as the first thermoelectric converter is applied. ,
    The wearable device according to any one of claims 1 to 3, wherein the first thermoelectric converter and the second thermoelectric converter are arranged such that their longitudinal directions are substantially parallel to each other.
  13.  前記熱電変換素子は、
     帯状に形成され、前記バンドの周囲に巻きつけられる薄膜型熱電変換体によって構成される請求項1に記載のウェアラブルデバイス。
    The thermoelectric conversion element,
    The wearable device according to claim 1, wherein the wearable device is formed in a strip shape and is configured by a thin film type thermoelectric conversion body that is wound around the band.
  14.  温度勾配で発生するスピン流を電流に変換する複数のバルク型熱電変換体と、
     隣接し合う前記バルク型熱電変換体同士を連結するとともに、電気的に接続する複数の連結部材と、
     複数の前記バルク型熱電変換体によって構成される熱電変換素子で発生した電力を受電する対象物とを備え、
     複数の前記バルク型熱電変換体を前記連結部材によって連結した構造によって形成されるバンドは、前記対象物の周辺部に延在して配置されるウェアラブルデバイス。
    A plurality of bulk-type thermoelectric converters that convert the spin current generated by the temperature gradient into an electric current;
    While connecting the adjacent bulk type thermoelectric converters, a plurality of connecting members electrically connected,
    A plurality of the bulk-type thermoelectric converter, and an object for receiving the power generated by the thermoelectric conversion element,
    A wearable device in which a band formed by a structure in which a plurality of the bulk-type thermoelectric converters are connected by the connecting member is arranged to extend around a peripheral portion of the object.
  15.  温度勾配で発生するスピン流を電流に変換する熱電変換素子と、
     前記熱電変換素子からの給電を受ける対象物を搭載する搭載部と、
     前記搭載部の周辺部に延在して配置されるバンドとを備えるウェアラブルデバイス。
    A thermoelectric conversion element that converts a spin current generated by a temperature gradient into an electric current,
    A mounting portion on which an object to be fed from the thermoelectric conversion element is mounted,
    A wearable device, comprising: a band extending around the mounting portion.
PCT/JP2020/000729 2019-01-11 2020-01-10 Wearable device WO2020145396A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020565230A JP7310832B2 (en) 2019-01-11 2020-01-10 wearable device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-003515 2019-01-11
JP2019003515 2019-01-11

Publications (1)

Publication Number Publication Date
WO2020145396A1 true WO2020145396A1 (en) 2020-07-16

Family

ID=71521010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000729 WO2020145396A1 (en) 2019-01-11 2020-01-10 Wearable device

Country Status (2)

Country Link
JP (1) JP7310832B2 (en)
WO (1) WO2020145396A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169377A1 (en) * 2011-06-09 2012-12-13 日本電気株式会社 Thermoelectric conversion device
WO2013047254A1 (en) * 2011-09-27 2013-04-04 日本電気株式会社 Member with thermoelectric conversion function, and method for producing same
JP2015179745A (en) * 2014-03-19 2015-10-08 日本電気株式会社 Thermoelectric conversion element and method of manufacturing the same
JP2016009838A (en) * 2014-06-26 2016-01-18 日本電気株式会社 Thermoelectric conversion structure and method for manufacturing the same
JP2016054254A (en) * 2014-09-04 2016-04-14 株式会社東芝 Thermoelectric conversion element
WO2016080182A1 (en) * 2014-11-18 2016-05-26 ソニー株式会社 Wearable device
US20170365766A1 (en) * 2016-05-03 2017-12-21 Matrix Industries, Inc. Thermoelectric devices and systems
JP2018514938A (en) * 2015-03-27 2018-06-07 インテル・コーポレーション Technology for transferring thermal energy stored in phase change materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169377A1 (en) * 2011-06-09 2012-12-13 日本電気株式会社 Thermoelectric conversion device
WO2013047254A1 (en) * 2011-09-27 2013-04-04 日本電気株式会社 Member with thermoelectric conversion function, and method for producing same
JP2015179745A (en) * 2014-03-19 2015-10-08 日本電気株式会社 Thermoelectric conversion element and method of manufacturing the same
JP2016009838A (en) * 2014-06-26 2016-01-18 日本電気株式会社 Thermoelectric conversion structure and method for manufacturing the same
JP2016054254A (en) * 2014-09-04 2016-04-14 株式会社東芝 Thermoelectric conversion element
WO2016080182A1 (en) * 2014-11-18 2016-05-26 ソニー株式会社 Wearable device
JP2018514938A (en) * 2015-03-27 2018-06-07 インテル・コーポレーション Technology for transferring thermal energy stored in phase change materials
US20170365766A1 (en) * 2016-05-03 2017-12-21 Matrix Industries, Inc. Thermoelectric devices and systems

Also Published As

Publication number Publication date
JPWO2020145396A1 (en) 2021-10-21
JP7310832B2 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
JP6311487B2 (en) Thermoelectric conversion structure and manufacturing method thereof
JP6298155B2 (en) Single-electrode friction nano-generator, power generation method, and self-driven tracking device
EP2876687B1 (en) Thermoelectric conversion element and manufacturing method for same
CN103414176B (en) A kind of magnetic resistance current limiter
JP2016535894A (en) Single electrode touch sensor and touch pen
JP2014072256A (en) Thermoelectric generation device
Tainoff et al. Network of thermoelectric nanogenerators for low power energy harvesting
KR20150134362A (en) Sliding frictional nano generator and power generation method
JP6398573B2 (en) Spin heat flow sensor and manufacturing method thereof
EP3133375B1 (en) Sensor and power generator based on electrostatic induction, and sensing method and power generation method
JP5630230B2 (en) Thermoelectric conversion element
JP2014216333A (en) Thermoelectric transducer
WO2020145396A1 (en) Wearable device
CN105431742B (en) Current detection circuit and the magnetic detection device equipped with the current detection circuit
JP6565689B2 (en) Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing thermoelectric conversion element
JP6241618B2 (en) Thermoelectric conversion element, thermoelectric conversion system, and method of manufacturing thermoelectric conversion element
Gomes et al. Flexible thermoelectric films based on interconnected magnetic nanowire networks
CN101611327A (en) Have the flip coil of combination and the MR magnetometer of compensating coil
JP2008071720A (en) Battery, battery system, and microwave transmitter
Fernandes et al. Overview on thermoactive materials, simulations and applications
JP2013016630A (en) Magnetoresistance effect element and magnetic sensor using the same
EP4358166A1 (en) Thermoelectric power generation device
JP4849952B2 (en) Bidirectional single electron counting element
EP3041056A1 (en) Thermoelectric generator
JPWO2018146713A1 (en) Thermoelectric conversion element and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20738637

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20738637

Country of ref document: EP

Kind code of ref document: A1