WO2020145157A1 - Cylinder head manufacturing method - Google Patents

Cylinder head manufacturing method Download PDF

Info

Publication number
WO2020145157A1
WO2020145157A1 PCT/JP2019/050944 JP2019050944W WO2020145157A1 WO 2020145157 A1 WO2020145157 A1 WO 2020145157A1 JP 2019050944 W JP2019050944 W JP 2019050944W WO 2020145157 A1 WO2020145157 A1 WO 2020145157A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake port
mold
cylinder head
hole
intake
Prior art date
Application number
PCT/JP2019/050944
Other languages
French (fr)
Japanese (ja)
Inventor
小島 光高
広司 石井
村田 真一
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2020565702A priority Critical patent/JP7028344B2/en
Publication of WO2020145157A1 publication Critical patent/WO2020145157A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads

Definitions

  • the present invention relates to a method for manufacturing a cylinder head having a cylinder head body in which an intake port portion communicating with a combustion chamber is formed.
  • Patent Document 1 discloses an engine intake passage structure in which a resin heat insulating member is arranged on the inner surface of an intake port to suppress a rise in intake air temperature.
  • Patent Document 1 As a method of disposing a heat insulating member made of resin on the inner surface of the intake port, injection molding can be mentioned as in Patent Document 1 above. That is, this is a method in which the mold is inserted and fixed in the intake port portion of the cylinder head molded by casting, and the space between the inner surface of the intake port portion and the outer surface of the mold is filled with resin. When this method is adopted, it is important to secure a sealing surface so that the resin does not leak to areas other than the above space. However, since the cylinder head itself is a casting, the dimensional accuracy is rough, and it is difficult to secure a sealing surface. On the other hand, it is conceivable to machine the inner surface of the intake port to secure the sealing surface, but inserting a tool into the narrow space on the combustion chamber side for machining requires machining time, machining accuracy, and machining. It is difficult considering the cost.
  • the method of manufacturing the cylinder head of the present invention has been devised in view of such problems, and it secures the sealing surface on the combustion chamber side and prevents resin leakage even if the cylinder head itself is not subjected to additional processing such as processing.
  • One of the purposes is to do.
  • the present invention is not limited to this purpose, and it is also for the other purpose of the present invention to provide operational effects that are obtained by the respective configurations shown in the modes for carrying out the invention to be described later and that cannot be obtained by the conventional technology. is there.
  • the method of manufacturing a cylinder head disclosed herein is a method of manufacturing a cylinder head having a cylinder head body in which an intake port portion communicating with a combustion chamber via an intake valve hole is formed.
  • a first hole portion through which a valve guide is inserted is formed in the cylinder head body so as to communicate with the intake port portion, and the seal member is a seal portion that fits into the intake valve hole. And a guide portion extending from the seal portion and arranged in the first hole portion in a state where the seal portion is fitted in the intake valve hole.
  • the guide portion is inserted from the combustion chamber side before the seal portion, the guide portion is inserted into the first hole portion, and the seal portion is inserted into the intake valve hole. It is preferable to seal the ends by fitting them.
  • the seal member has a circular O-ring and a holding portion to which the O-ring is attached.
  • the holding portion is inserted into the intake port portion from the combustion chamber side, and the O-ring is brought into close contact with the inner surface of the intake port portion to seal the end portion,
  • the holding portion and the mold are brought into close contact with each other.
  • the cylinder head body is formed with a first hole through which the valve guide is inserted so as to communicate with the intake port.
  • the O-ring is brought into close contact with the inner surface on the upstream side of the opening of the first hole in the intake flow direction.
  • the mold is a slide mold that is configured by combining a plurality of parts that are divided along a direction in which the intake port portion is inserted and removed.
  • the cylinder head main body is formed with a second hole portion for attaching a port injection valve so as to communicate with the intake port portion.
  • a stepped portion having a cross-section that changes in size perpendicular to the intake air flow direction is formed, and an expanded portion that expands toward the second hole portion upstream of the stepped portion in the intake air flow direction.
  • an opening of the second hole portion are formed, and the slide mold includes an upper mold arranged at an upper portion including the expansion portion, a lower mold arranged below the upper mold, and the upper mold. It is preferable to have a central mold arranged between the mold and the lower mold, at least lateral molds arranged on both sides of the central mold, and a valve mold inserted into the second hole. In this case, in the second step, the upper die, the lower die, the central die, and the lateral die are inserted in this order from the opening of the intake port portion, and the valve die is inserted into the second hole portion.
  • the valve die is inserted into the second hole portion.
  • the valve mold is inserted into the second hole portion to be integrated with the upper mold.
  • the valve mold is extracted from the second hole portion, and the side mold, the center mold, the lower mold, and the upper mold are sequentially extracted from the opening of the intake port portion. Is preferred.
  • the seal member is inserted into the intake port portion from the combustion chamber side and the end portion of the intake port portion on the combustion chamber side is sealed.
  • the sealing surface on the combustion chamber side can be secured without additional processing. Therefore, the molten resin can be prevented from leaking by pouring the molten resin while the sealing member and the mold are in close contact with each other inside the intake port portion.
  • FIG. 3 is a schematic front view of the intake side portion of the cylinder head manufactured by the manufacturing method according to the first embodiment as viewed from the front side of the engine.
  • FIG. 2 is a schematic side view of the cylinder head of FIG. 1 viewed from the intake side (a view in the direction of arrow A in FIG. 1 ).
  • FIG. 3 is a cross-sectional view (cross-sectional view taken along the line BB of FIG. 2) showing the configuration around the intake port of the cylinder head of FIG. 1.
  • FIG. 4 is a cross-sectional view showing only a cylinder head main body, excluding a resin portion from the cross-sectional view of FIG. 3.
  • FIG. 4 is a perspective view showing an example of a seal member for molding the intake port shown in FIG. 3, (a) being an integrated state and (b) being a disassembled state.
  • FIG. 4 is a perspective view showing an example of a slide mold for molding the intake port shown in FIG. 3, (a) showing a completely assembled state, and (b) showing a state in which all the molds are disassembled.
  • FIG. 7 is a cross-sectional view (cross-sectional view corresponding to the cross-sectional view taken along the arrow B′-B in FIG.
  • FIG. 8A is an enlarged view of a D portion of FIG. 8
  • FIG. 8B is an enlarged view of an E portion of FIG. 4A and 4B are perspective views showing another example of a slide mold for molding the intake port shown in FIG. 3, where FIG. 7A is a completely assembled state
  • FIG. FIG. 11 is a cross-sectional view showing a state before the side mold of the slide mold shown in FIG. 10B is inserted (a cross-sectional view corresponding to a cross-sectional view taken along the line BB′′ of FIG. 2 ).
  • FIG. 11 is a cross-sectional view showing a state before the side mold of the slide mold shown in FIG. 10B is inserted (a cross-sectional view corresponding to a cross-sectional view taken along the line BB′′ of FIG. 2 ).
  • FIG. 11 is a cross-sectional view (cross-sectional view corresponding to the cross-sectional view taken along the line CC in FIG. 1) showing a state in which the seal member shown in FIG. 6A and the slide die shown in FIG. 10A are inserted. It is a perspective view which shows the sealing member and slide mold
  • FIG. 13 is a cross-sectional view (a view corresponding to FIG. 8) showing a state in which the seal member and the slide die shown in FIG. 13A are inserted. It is a flow chart explaining the procedure of the manufacturing method concerning a second embodiment.
  • FIG. 1 is a schematic front view of an intake side portion of a cylinder head 1 manufactured by the manufacturing method according to the present embodiment as viewed from the front side
  • FIG. 2 is a side view of the cylinder head 1 (see FIG. 1). (A direction arrow view).
  • the cylinder head 1 is a component that constitutes, for example, an engine mounted on a vehicle.
  • the manufacturing method of the present embodiment is a method of manufacturing the cylinder head 1 by disposing the resin portion 20 in the intake port portion 11 of the cylinder head body 10 described later.
  • the cylinder head 1 of the engine in which four cylinders are arranged side by side in a row and two intake valves and two exhaust valves are provided in one cylinder is exemplified, but the number of cylinders and the number of valves are Is not limited to this.
  • the engine of the present embodiment includes a cylinder injection valve (not shown) that injects fuel into the combustion chamber 2 (see FIG. 3) and a port injection valve (not shown) that injects fuel into the intake port 3. Equipped.
  • FIG. 3 is a cross-sectional view (a cross-sectional view taken along the line BB of FIG. 2) showing the configuration around the intake port 3.
  • the cylinder head 1 manufactured by the manufacturing method of the present embodiment includes a cylinder head body 10 molded by casting using aluminum or an aluminum alloy, and a resin portion 20 (described later). (See FIG. 3).
  • an intake port 3 a port injection valve mounting hole 5 (second hole portion), and an in-cylinder injection valve mounting hole 6 are formed for each cylinder.
  • the intake port 3 and the mounting holes 5 and 6 are open to the outside of the cylinder head 1.
  • a pedestal portion 8 to which a delivery pipe connected to an in-cylinder injection valve is fixed, and an injection port 9 for supplying a molten resin to be a resin portion 20 are provided on the intake side wall portion 1a of the cylinder head 1.
  • the reference numerals of the intake port 3, the mounting holes 5 and 6, the pedestal portion 8 and the like that are similarly provided in each of the four cylinders are given to only one cylinder.
  • the cylinder head main body 10 constitutes the main body of the cylinder head 1, and as shown in FIGS. 3 and 4, has a combustion chamber 2, mounting holes 5, 6 and the like, and constitutes the intake port 3. It has an intake port section 11 as a section. 4 is a cross-sectional view showing only the cylinder head body 10 without the resin portion 20 from the cross-sectional view of FIG.
  • the intake port portion 11 of the present embodiment is formed in a bifurcated shape that communicates with the combustion chamber 2 via the two intake valve holes 4. In FIGS. 3 and 4, the wall portion that divides the intake port portion 11 into two forks is not shown.
  • an insertion hole 7 (first hole portion) through which a valve guide (not shown) is inserted and a port injection valve mounting hole 5 are both formed so as to communicate with the intake port portion 11.
  • the intake port portion 11 is provided with an expanded portion 16 which is formed so as to spread to the side where the port injection valve is attached (upper side in FIG. 4), an opening 5a of the attachment hole 5 and an opening 7a of the insertion hole 7. ing.
  • the resin portion 20 is a heat insulating member (resin member) that is arranged along the inner surface of the intake port portion 11 and that suppresses the heat of the cylinder head body 10 from being transferred to the intake air.
  • the resin portion 20 is formed of a resin having a lower thermal conductivity than the material of the cylinder head body 10, and more preferably a resin having a high heat resistance.
  • the resin portion 20 is formed by solidifying the molten resin that is poured into the intake port portion 11 by injection molding. In FIG. 3, the resin portion 20 is shown with dots for easy understanding.
  • the resin portion 20 of the present embodiment is arranged in the entire length of the intake port portion 11 except for the portion on the combustion chamber 2 side (downstream portion).
  • the intake port portion 11 has a portion where the resin portion 20 is not arranged and a portion where the resin portion 20 is arranged.
  • the former portion will be referred to as the exposed portion 12, and the latter portion will be referred to as the covering portion 13.
  • the exposed portion 12 is a portion where the material surface of the cylinder head body 10 directly contacts (exposes) the intake air
  • the covering portion 13 is covered with the resin portion 20 and the material surface of the cylinder head body 10 is covered. Is the part that does not directly contact the intake air.
  • the resin portion 20 of the present embodiment constitutes the inner surface of the intake port 3 together with the exposed portion 12.
  • the exposed portion 12 is located on the combustion side 2 side of the intake port portion 11, and the covering portion 13 is upstream of the exposed portion 12 in the intake flow direction (hereinafter, simply “upstream side”). Is called).
  • the covering portion 13 has a cross-sectional shape (hereinafter, simply referred to as “cross-sectional shape”) orthogonal to the intake air flow direction, which is slightly larger than the exposed portion 12. Therefore, at the boundary between the exposed portion 12 and the covering portion 13 (in the middle of the intake port flow direction in the intake port portion 11), the step portion 14 whose cross-sectional size changes is provided.
  • the expansion portion 16 and the opening 5a of the mounting hole 5 are located upstream of the step portion 14, and the opening 7a of the insertion hole 7 is downstream of the step portion 14 in the intake flow direction ( Hereinafter, it is simply referred to as "downstream side".
  • the intake port portion 11 of the present embodiment the portion from the opening 11a formed in the wall portion 1a of the cylinder head body 10 to the step portion 14 is linearly formed.
  • An intake manifold (not shown) is connected to the opening 11a of the intake port portion 11.
  • the step portion 14 of the present embodiment is located at the bifurcation point 15 (see FIG. 4) of the intake port portion 11 or on the downstream side of the bifurcation point 15.
  • the step portion 14 is located upstream of the opening 7a of the insertion hole 7 of the valve guide. That is, two step portions 14 are provided in one intake port portion 11, and each step portion 14 is provided separately from the combustion chamber 2.
  • the end of the intake port portion 11 on the side of the opening 11a is narrowed, and the resin portion 20 is not arranged in this portion.
  • An exposed portion 12' is provided.
  • the seal member 40 is inserted into the intake port portion 11 from the combustion chamber 2 side, and the end portion of the intake port portion 11 on the combustion chamber 2 side (downstream end portion). Is sealed (first step S10).
  • the two seal members 40 are inserted into one intake port portion 11 to seal the end portion of the intake port portion 11 on the combustion chamber 2 side.
  • the seal member 40 of this embodiment is configured by combining two members, a first member 41 and a second member 42.
  • the first member 41 has a seal portion 41a shaped to fit into the intake valve hole 4, and a rod-shaped guide portion 41b extending from the seal portion 41a.
  • the seal portion 41a is a portion fitted into the intake valve hole 4 from the combustion chamber 2 side
  • the guide portion 41b is a portion arranged in the insertion hole 7 in a state where the seal portion 41a is fitted in the intake valve hole 4. Is.
  • the shape of the guide portion 41b is not particularly limited as long as it can be inserted into the insertion hole 7, but if the shape of the guide portion 41b is such that the guide portion 41b is fitted in the insertion hole 7 without a gap, the guide portion 41b allows the insertion hole 7 to be inserted. Can be sealed.
  • the second member 42 has a circular O-ring 43 and a holding portion 42a to which the O-ring 43 is attached.
  • the holding portion 42a is a portion that holds the O-ring 43 and is arranged on the exposed portion 12 of the intake port portion 11, and the end surface of the intake port portion 11 arranged on the covering portion 13 side (upstream side) is flat. Has been formed.
  • the holding portion 42a is provided with a hole 42b through which the guide portion 41b is inserted.
  • the hole portion 42b is a portion that is arranged coaxially with the insertion hole 7 in a state where the holding portion 42a is arranged in the exposed portion 12 of the intake port portion 11.
  • the first member 41 and the second member 42 are integrated by inserting the guide portion 41b of the first member 41 into the hole portion 42b of the second member 42.
  • the second member 42 is inserted into the intake port portion 11 from the combustion chamber 2 side, and the stepped portion of the inner surface of the intake port portion 11 is inserted.
  • the O-ring 43 is brought into close contact with the portion immediately downstream of 14 (that is, upstream of the opening 7a of the insertion hole 7).
  • the first member 41 is inserted into the intake port portion 11 from the combustion chamber 2 side.
  • the guide portion 41b of the first member 41 is inserted from the combustion chamber 2 side before the seal portion 41a, and the guide portion 41b is inserted into the insertion hole 7 through the hole portion 42b of the second member 42.
  • the seal portion 41 a of the first member 41 is fitted into the intake valve hole 4.
  • the second member 42 is prevented from coming off by pressing the second member 42 from the combustion chamber 2 side with the first member 41.
  • the mold 30 of the present embodiment has an outer shape smaller than the inner shape of the intake port portion 11 and is divided into a plurality of parts that are divided along the direction in which the intake port portion 11 is inserted and removed (the intake air circulation direction). It is a slide type that is configured by combining.
  • the slide mold 30 of the present embodiment includes an upper mold 31 arranged at an upper part including the expansion portion 16 of the intake port portion 11, a lower mold 32 arranged below the upper mold 31, an upper mold 31 and a lower mold. It has a central mold 33 arranged between 32, side molds 34 arranged at least on both sides of the central mold 33, and a valve mold 35 inserted into the mounting hole 5.
  • the upper mold 31 has an upper surface conforming to the shape of the expansion portion 16 and a flat lower surface.
  • the end of the upper mold 31 on the combustion chamber 2 side is bifurcated, and a hole into which the valve mold 35 is fitted is formed on the upper surface of the upper mold 31.
  • the lower mold 32 has a lower surface conforming to the shape of the lower surface side of the intake port portion 11 and a flat upper surface, and the end portion on the combustion chamber 2 side is formed in a bifurcated shape.
  • the central mold 33 has a flat upper surface, a lower surface, and both side surfaces, expands from the end portion on the opening 11a side toward the end portion on the combustion chamber 2 side, and the end portion on the combustion chamber 2 side is bifurcated. Is formed in.
  • the central mold 33 is formed so as to be slidable with respect to both the upper mold 31 and the lower mold 32 arranged in the space inside the intake port portion 11.
  • the side molds 34 are formed on both sides of the central mold 33 and between the upper mold 31 and the lower mold 32. Specifically, each of the two lateral dies 34 has a flat surface on each upper surface, each lower surface, and each side surface on the side of the central mold 33, and faces from the end portion on the opening 11a side toward the end portion on the combustion chamber 2 side. It has a tapered shape. Further, each of the side molds 34 is formed slidably with respect to each of the molds 31 to 33 arranged in the space inside the intake port portion 11.
  • the valve die 35 has an outer shape that is substantially the same as the shape of the mounting hole 5, and the tip portion of the valve die 35 enters the expansion portion 16 through the mounting hole 5 and fits into the hole formed on the upper surface of the upper die 31.
  • the valve die 35 has a function of holding the upper die 31 by fitting into the hole of the upper die 31.
  • the slide mold 30 has a flat tip portion (the end surface arranged on the combustion chamber 2 side).
  • the procedure of the second step S20 of inserting the slide mold 30 will be described.
  • the upper die 31, the lower die 32, the central die 33, and the lateral die 34 are inserted in this order from the opening 11a of the intake port portion 11, and the valve die is attached to the attachment hole 5 for attaching the port injection valve.
  • Insert 35 is inserted into the mounting hole 5 and combined with the upper mold 31 in the intake port portion 11 to hold the upper mold 31. Is preferably after the upper mold 31 is inserted, and more preferably (immediately after) the upper mold 31 is inserted.
  • the upper die 31 is inserted from the opening 11a and accommodated in the upper portion including the expansion portion 16 (step S21), and in this state, the valve die 35 is attached to the mounting hole. 5, and the tip of the valve die 35 is fitted into the hole in the upper surface of the upper die 31 to integrate the valve die 35 and the upper die 31 (step S23).
  • the lower mold 32 is inserted from the opening 11a and arranged in the lower part (step S25), and further, the central mold 33 is inserted while being slid with respect to both the upper mold 31 and the lower mold 32 (step S27). Inside the intake port section 11, the three molds 31 to 33 are assembled. Finally, the two side molds 34 are inserted into the three molds 31 to 33 while sliding them (step S29) to bring the slide mold 30 into the state shown in FIG.
  • the seal member 40 inserted into the intake port portion 11 in the first step S10 and the slide die 30 inserted into the intake port portion 11 in the second step S20 are brought into close contact with each other inside the intake port portion 11 [FIG. Third step S30 of a)]. More specifically, as shown in FIG. 9A, the holding portion 42a of the second member 42 and the tip portion of the slide die 30 are brought into close contact with each other at the step portion 14 of the intake port portion 11.
  • the molten resin is supplied into the intake port portion 11 in which the seal member 40 and the slide die 30 are arranged [fourth step S40 in FIG. 5(a)].
  • the injection port 9 (see FIG. 2) for supplying the molten resin is formed for each cylinder, the injection port (not shown) is connected to each injection port 9 to melt the molten resin. Pour. The molten resin spreads into the space formed between the inner surface of the intake port portion 11 and the outer surface of the slide die 30.
  • the edge portion on the combustion chamber 2 side in the space where the molten resin spreads is sealed by an O-ring 43 attached to the holding portion 42a of the second member 42, as shown in FIG. 9A. Therefore, resin leakage to the combustion chamber 2 side is avoided.
  • the intake valve hole 4 located closer to the combustion chamber 2 than the O-ring 43 is sealed by the seal portion 41a of the first member 41. With such a double seal structure of the O-ring 43 and the seal portion 41a, resin leakage to the combustion chamber 2 side can be more reliably avoided.
  • the slide die 30 when the slide die 30 is inserted into the intake port portion 11, as shown in FIG. 9B, the throttle portion (second exposed portion 12 ′) on the upstream side of the intake port portion 11 and the slide die 30 are connected to each other. A slight gap is formed between the two. While this gap has a function of absorbing the displacement of the slide die 30, the molten resin may leak. Therefore, the slide die 30 of the present embodiment is equipped with the burr-cutting component 36 that comes into close contact with the flange surface 11b of the opening 11a of the intake port portion 11. As a result, the edge portion on the side of the opening 11a in the space where the molten resin spreads is also sealed, and resin leakage is avoided.
  • the sealing member 40 and the slide die 30 And are extracted from the intake port portion 11 [fifth step S50 in FIG. 5(a)].
  • the seal member 40 is pulled out from the intake port portion 11 to the combustion chamber 2 side in the order of the first member 41 and the second member 42.
  • the valve die 35 is pulled out from the mounting hole 5 for mounting the port injection valve, and the side die 34, the central die 33, the lower die 32, and the upper die 31 are pulled out in this order from the opening 11a of the intake port portion 11.
  • the valve mold 35 may be removed at any timing before the upper mold 31 is removed, and more preferably immediately before the upper mold 31 is removed.
  • the two side molds 34 are slid and extracted (step S51), and then the central mold 33 is extracted (step S53).
  • the lower mold 32 is lifted to the space created by removing the central mold 33, and then removed (step S55).
  • the valve mold 35 is removed (step S57), and the upper mold 31 is lowered into the space created by removing the central mold 33 and the lower mold 32 and then removed (step S59).
  • the mold 30 is not limited to the slide mold shown in FIGS. 7A and 7B, and a mold 30′ shown in FIGS. 10A and 10B may be used, for example.
  • the die 30' also has an outer shape smaller than the inner shape of the intake port portion 11, and is arranged along the direction of inserting/removing with respect to the intake port portion 11 (intake air circulation direction). It is a slide type configured by combining a plurality of divided parts. Specifically, the upper die 31' disposed on the upper portion of the intake port portion 11 including the expansion portion 16, the lower die 32' disposed below the upper die 31', the upper die 31' and the lower die. It has a central mold 33' arranged between 32', a lateral mold 34' arranged at least on both sides of the central mold 33', and a valve mold 35' inserted into the mounting hole 5.
  • the side mold 34' shown in FIGS. 10(a) and 10(b) is formed in a shape that also contacts both sides of the upper mold 31' and the lower mold 32'. That is, each of the lateral dies 34 ′ has the same height dimension as the dimension from the upper surface of the upper die 31 ′ to the lower surface of the lower die 32 ′, and the three die 31 arranged in the space inside the intake port portion 11. It is formed so as to come into surface contact with all of the side surfaces of'-33' and to be slidable with respect to these side surfaces. Similar to the side mold 34, the side mold 34' is formed in a tapered shape from the end on the side of the opening 11a toward the end on the side of the combustion chamber 2.
  • the upper mold 31', the lower mold 32', the central mold 33', and the valve mold 35' are configured in the same manner as the above-mentioned molds 31, 32, 33, 35.
  • the resin portion 20 can be molded by the above-mentioned procedure [procedures in FIGS. 5(a) to 5(c)]. That is, in the second step S20, the upper die 31' is inserted from the opening 11a and accommodated in the upper portion including the expansion portion 16 (step S21), and in this state, the valve die 35' is inserted into the mounting hole 5 to The valve mold 35' and the upper mold 31' are integrated by fitting the tip of the 35' into the hole on the upper surface of the upper mold 31' (step S23).
  • step S25 the lower die 32' is inserted from the opening 11a and placed in the lower portion (step S25), and the central die 33' is slid and inserted into both the upper die 31' and the lower die 32' (step S25).
  • Step S27 as shown in FIG. 11, the three molds 31′ to 33′ are assembled inside the intake port portion 11.
  • step S29 the two side molds 34' are inserted into the respective three molds 31' to 33' while sliding them (step S29) to bring the slide mold 30' into the state shown in FIG.
  • the seal member 40 inserted into the intake port portion 11 in the first step S10 and the slide die 30' inserted into the intake port portion 11 in the second step S20 are installed inside the intake port portion 11. They are brought into close contact [third step S30 in FIG. 5(a)].
  • the molten resin is supplied into the intake port portion 11 in which the seal member 40 and the slide die 30' are arranged [fourth step S40 in FIG. 5(a)].
  • the edge portion on the combustion chamber 2 side in the space in which the molten resin spreads is, as described above, the O-ring 43 attached to the holding portion 42a of the second member 42 and the first member fitted to the intake valve hole 4.
  • the sealing member 40 and the slide die 30 'And are taken out from the intake port portion 11 [fifth step S50 of FIG. 5(a)]. That is, in the fifth step S50, as described above, the seal member 40 is removed from the combustion chamber 2 side in the order of the first member 41 and the second member 42. Further, the two side molds 34' are slid and removed (step S51), and then the central mold 33' is removed (step S53). Next, the lower mold 32' is lifted to the space created by removing the central mold 33', and then removed (step S55). Further, the valve mold 35' is removed (step S57), and the upper mold 31' is lowered into the space created by removing the central mold 33' and the lower mold 32', and then removed (step S59).
  • FIG. 5A illustrates the case where the first step S10 is performed before the second step S20
  • the first step S10 of the present embodiment may be performed after the second step S20. However, it may be performed simultaneously with the second step S20.
  • which of the seal member 40 and the slide molds 30 and 30 ′ of this embodiment may be inserted into the intake port portion 11 first.
  • the seal member 40 is inserted into the intake port portion 11 from the fuel chamber 2 side to seal the end portion of the intake port portion 11 on the combustion chamber 2 side, and to open the opening.
  • the molds 30 and 30' are inserted from 11a. Then, since the molten resin is poured in the state where the seal member 40 and the molds 30 and 30' are in close contact with each other inside the intake port portion 11, the leakage of the molten resin can be prevented. That is, the sealing surface on the combustion chamber 2 side can be ensured and the resin leakage can be prevented even if the cylinder head body 10 that is a cast product is not subjected to additional processing. Further, by disposing the resin portion 20 in the intake port portion 11, it is possible to suppress the temperature rise of the intake air, so that it is possible to suppress the decrease of the intake air amount and the occurrence of knocking, and it is possible to improve the engine performance.
  • the first member 41 of the seal member 40 described above is arranged in the insertion hole 7 with the seal portion 41a fitted into the intake valve hole 4 and the seal portion 41a fitted in the intake valve hole 4.
  • a guide portion 41b is provided. Therefore, when the first member 41 is inserted into the intake port portion 11, the seal portion 41a can be guided to the intake valve hole 4 by inserting the guide portion 41b into the insertion hole 7 from the combustion chamber 2 side. .. Therefore, it becomes easy to properly arrange the first member 41 with respect to the intake port portion 11. Further, by disposing the guide portion 41b in the insertion hole 7 and fitting the seal portion 41a in the intake valve hole 4, the intake valve hole 4 is sealed by the seal portion 41a and the molten resin in the insertion hole 7 is sealed.
  • Leakage can be suppressed by the guide portion 41b. If the guide portion 41b has a shape that fits inside the insertion hole 7, the insertion hole 7 can be sealed by the guide portion 41b, so that leakage of the molten resin into the insertion hole 7 can be prevented.
  • a portion of the inside of the intake port portion 11 on the downstream side of the O-ring 43 can be the exposed portion 12. That is, in this case, since the resin portion 20 is not arranged in the portion of the intake port portion 11 on the combustion chamber 2 side, even if a high-temperature gas enters the intake port 3 due to the backflow of exhaust gas, the resin portion 20 is deteriorated. Can be suppressed. Further, as described above, by double sealing the end portion of the intake port portion 11 on the combustion chamber 2 side by both the seal portion 41a and the O-ring 43, it is possible to more reliably prevent leakage of the molten resin.
  • the intake port portion 11 is Even if the shape is an undercut, it can be easily removed and inserted by the slide molds 30 and 30' composed of a plurality of parts.
  • the slide molds 30 and 30' can be easily assembled in the intake port portion 11.
  • valve molds 35 and 35' are inserted into the mounting holes 5 to be integrated with the upper molds 31 and 31'.
  • 35' can hold the upper mold 31, 31'.
  • the attitude of the slide molds 30 and 30' can be stabilized in the intake port portion 11, and the variation in the thickness of the resin portion 20 can be suppressed.
  • the slide molds 30 and 30' are pulled out from the intake port portion 11 by the procedure shown in FIG. 5C, so that the side molds 34 and 34' and the central molds 33 and 33' are first processed.
  • the lower molds 32, 32' and the upper molds 31, 31' can be moved to the space formed by the removal and then removed. As a result, the lower molds 32, 32' and the upper molds 31, 31' can be removed without contacting the resin part 20.
  • the portion from the opening 11a to the step portion 14 (mainly the covering portion 13) is formed in a linear shape, so that the outer shape of the mold 30, 30' can be simplified. .. Therefore, the molds 30 and 30' can be easily inserted into and removed from the intake port portion 11, so that the cylinder head 1 can be easily manufactured.
  • FIGS. 13 to 15 A manufacturing method according to the second embodiment will be described with reference to FIGS. 13 to 15.
  • the manufacturing method of the present embodiment differs from the manufacturing method of the first embodiment described above in the seal member 40' and the mold 130 used in the injection molding of the resin portion 20.
  • elements that are the same as or correspond to the elements described in the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted.
  • the seal member 40 ′ of this embodiment is formed in the same manner as the first member 41 of the seal member 40 described above. That is, the seal member 40' does not have the second member 42 (the O-ring 43 and the holding portion 42a), and is formed in the same manner as the seal portion 41a and the guide portion 41b described above, respectively. It has a part 40b.
  • the mold 130 corresponds to a shape in which the slide mold 30′ illustrated in FIGS. 7A and 7B and the two second members 42 illustrated in FIGS. 6A and 6B are combined. It is a slide type.
  • the slide mold 130 has an upper mold 131, a lower mold 132, a central mold 133, a side mold 134, and a valve mold 135, like the slide mold 30 described above. These molds 131 to 135 are extended at the end on the combustion chamber 2 side so that each of the molds 31 to 35 of the slide mold 30 described above has a portion corresponding to the holding portion 42a of the second member 42. It has the shape shown. Further, the slide mold 130 has a hole portion 137 corresponding to the hole portion 42b of the second member 42 described above in a state where these molds 131 to 135 are completely assembled.
  • the hole portion 137 includes a through hole 131 a formed in the upper die 131, a recess 133 a formed in the upper surface of the central die 133, and a recess 134 a formed in the upper surface of each side die 134. Composed by combining.
  • the step portion 14 is omitted from the intake port portion 11, and substantially the entire inner surface of the intake port portion 11 becomes the covering portion 13 (the exposed portion 12 is not provided).
  • a cylinder head body 10' is illustrated.
  • the slide mold 130 is inserted into the intake port portion 11 from the opening 11a of the intake port portion 11 (second step A20).
  • the seal member 40' is inserted into the intake port portion 11 from the combustion chamber 2 side (first step A10).
  • the guide portion 40b of the seal member 40' is inserted from the combustion chamber 2 side before the seal portion 40a, and the guide portion 40b is inserted into the insertion hole 7 through the hole portion 137 of the slide mold 130.
  • the seal portion 40a of the seal member 40' is fitted in the intake valve hole 4 to seal the end portion of the intake port portion 11 on the combustion chamber 2 side.
  • the molds 131 to 135 of the slide mold 130 are inserted into the intake port portion 11 by the procedure shown in FIG. 5B, as in the above-described first embodiment.
  • the seal member 40' inserted into the intake port portion 11 in the first step A10 and the slide mold 130 inserted into the intake port portion 11 in the second step A20 are provided in the intake port portion.
  • the inside of 11 is closely contacted (3rd step A30 of FIG. 15), and the sealing member 40 and the slide mold 130 are brought into the state shown in FIG.
  • the molten resin is supplied into the intake port portion 11 where the seal member 40' and the slide mold 130 are arranged (fourth step A40 in FIG. 15).
  • the seal member 40' and the slide mold 130 are pulled out from the intake port portion 11. (Fifth step A50 in FIG. 15).
  • the seal member 40' is first pulled out from the combustion chamber 2 side, and then the slide die 130 is pulled out from the opening 11a of the intake port portion 11.
  • the procedure of removing the molds 131 to 135 of the slide mold 130 in the fifth step A50 can be performed by the procedure shown in FIG. 5C, as in the above-described first embodiment.
  • the slide mold 130 is inserted from the opening 11a of the intake port portion 11, and then the seal member 40' is inserted into the intake port portion 11 from the fuel chamber 2 side to intake air.
  • the end of the port portion 11 on the combustion chamber 2 side is sealed.
  • the molten resin is poured in the state where the seal member 40 ′ and the mold 130 are in close contact with each other inside the intake port portion 11, so leakage of the molten resin can be prevented.
  • the sealing surface on the combustion chamber 2 side can be secured and the resin leakage can be prevented even if the cylinder head body 10' is not additionally processed.
  • the end portion of the intake port portion 11 on the combustion chamber 2 side can be sealed only by fitting the seal portion 40a into the intake valve hole 4. That is, since the holding portion 42a and the O-ring 43 described above are not provided, the resin portion 20 can be arranged over substantially the entire length of the intake port portion 11. As a result, the temperature rise of the intake air can be further suppressed, so that the reduction of the intake air amount and the occurrence of knocking can be further suppressed, and the engine performance can be further improved. According to the manufacturing method of this embodiment, the same effect can be obtained from the same configuration as that of the above-described embodiment.
  • valve molds 35, 35', 135 may be inserted after the lower molds 32, 32', 132 and the side molds 34, 34', 134 are inserted. Further, in the fifth step A50, S50, the valve molds 35, 35', 135 may be removed first, or the side molds 34, 34', 134 may be removed next.
  • the respective configurations of the molds 30, 30', and 130 described above are examples, and are not limited to those described above.
  • the above-mentioned molds 30, 30' and 130 are all slide molds composed of five kinds of molds 31 to 35, 31' to 35' and 131 to 135, but the kind and the number of molds are not particularly limited.
  • the mold may be any structure as long as it can be arranged inside the intake port portion 11, and is not a slide mold composed of a plurality of parts (molds) divided along the direction of inserting and removing from the intake port portion 11. Good.
  • the shape of the intake port portion is not undercut, it may be configured with a single mold.
  • the configuration of the cylinder head 1 described above is an example, and is not limited to the above.
  • it may not be the cylinder head of an in-line four-cylinder engine, or the cylinder head of an engine equipped with both an in-cylinder injection valve and a port injection valve.
  • it may be a cylinder head of an engine in which one intake valve is provided in one cylinder.
  • the shape of the intake port portion does not have a bifurcated shape, and the number of seal members 40 and 40' that are inserted into one intake port portion when manufacturing the cylinder head is one.
  • the configuration of the intake port portion 11 described above is an example, and the position of the stepped portion 14 may be other than the position described above.
  • the stepped portion may be provided on the upstream side of the branch point 15.
  • the expansion part 16 is also unnecessary.
  • the step portion 14 may be omitted.
  • the configuration of the seal members 40 and 40' described above is an example, and is not limited to the above.
  • the sealing members 40, 40' may be configured to seal the end portion of the intake port portion 11 on the combustion chamber 2 side, and for example, the guide portions 41b, 40b may be omitted. Further, when the holding portion 42a to which the O-ring 43 is attached is provided as in the first embodiment described above, the seal portion 41a may be omitted.

Abstract

The present invention is a method for manufacturing a cylinder head having a cylinder head body in which is formed an air intake port that communicates with a combustion chamber, said method comprising: a first step (S10) for inserting a seal member from the combustion chamber side into the air intake port to seal an end part on the combustion chamber side of the air intake port via the seal member; a second step (S20) for inserting a mold into the air intake port from an opening in the air intake port, the opening being formed in a wall section of the cylinder head body; a third step (S30) for tightly adhering the seal member and the mold inside the air intake port; a fourth step (S40) for, after the third step (S30), supplying a molten resin to the inside of the air intake port in which the mold is disposed; and a fifth step (S50) where, after the fourth step (S40), a resin part is formed inside the air intake port by solidifying the molten resin, and the seal member and the mold are subsequently removed from the air intake port.

Description

シリンダヘッドの製造方法Cylinder head manufacturing method
 本発明は、燃焼室に連通する吸気ポート部が形成されたシリンダヘッド本体を有するシリンダヘッドの製造方法に関する。 The present invention relates to a method for manufacturing a cylinder head having a cylinder head body in which an intake port portion communicating with a combustion chamber is formed.
 一般的なエンジンのシリンダヘッドは、例えばアルミニウムやアルミニウム合金を用いた鋳造によって成型されており、熱伝導率が比較的高い。そのため、燃焼室へと繋がる吸気ポートは、燃焼室から伝わる熱によって加熱され、吸気ポートを流通する吸気の温度上昇を招く。吸気の温度が上昇すると吸入空気量が減少するとともにノッキングが発生しやすくなり、エンジン性能を低下させる可能性がある。このような課題に対し、例えば特許文献1には、吸気ポートの内面に樹脂製の断熱部材を配置して、吸気の温度上昇を抑制するようにしたエンジンの吸気通路構造が開示されている。 The cylinder head of a general engine is molded by casting using aluminum or aluminum alloy, for example, and has a relatively high thermal conductivity. Therefore, the intake port connected to the combustion chamber is heated by the heat transmitted from the combustion chamber, and the temperature of the intake air flowing through the intake port rises. When the temperature of intake air rises, the amount of intake air decreases, knocking easily occurs, and engine performance may deteriorate. With respect to such a problem, for example, Patent Document 1 discloses an engine intake passage structure in which a resin heat insulating member is arranged on the inner surface of an intake port to suppress a rise in intake air temperature.
特開2018-3601号公報Japanese Patent Laid-Open No. 2018-3601
 吸気ポートの内面に樹脂製の断熱部材を配置する方法としては、上記の特許文献1のように射出成型が挙げられる。すなわち、鋳造によって成型されたシリンダヘッドの吸気ポート部分に型枠を挿入して固定し、吸気ポート部分の内面と型枠の外面との間の空間に樹脂を充填する方法である。この方法を採用する場合には、上記の空間以外に樹脂が漏れないようシール面を確保することが重要になる。しかしながら、シリンダヘッド自体は鋳物であることから寸法精度が粗く、シール面の確保が難しいという課題がある。これに対し、吸気ポート部分の内面を機械加工してシール面を確保することも考えられるが、燃焼室側の狭い空間に工具を挿入して機械加工することは、加工時間,加工精度,加工コスト等を考慮すると困難である。 As a method of disposing a heat insulating member made of resin on the inner surface of the intake port, injection molding can be mentioned as in Patent Document 1 above. That is, this is a method in which the mold is inserted and fixed in the intake port portion of the cylinder head molded by casting, and the space between the inner surface of the intake port portion and the outer surface of the mold is filled with resin. When this method is adopted, it is important to secure a sealing surface so that the resin does not leak to areas other than the above space. However, since the cylinder head itself is a casting, the dimensional accuracy is rough, and it is difficult to secure a sealing surface. On the other hand, it is conceivable to machine the inner surface of the intake port to secure the sealing surface, but inserting a tool into the narrow space on the combustion chamber side for machining requires machining time, machining accuracy, and machining. It is difficult considering the cost.
 本件のシリンダヘッドの製造方法は、このような課題に鑑み案出されたもので、シリンダヘッド自体に加工等の追加処理を施さなくても燃焼室側のシール面を確保し、樹脂漏れを防止することを目的の一つとする。なお、この目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的である。 The method of manufacturing the cylinder head of the present invention has been devised in view of such problems, and it secures the sealing surface on the combustion chamber side and prevents resin leakage even if the cylinder head itself is not subjected to additional processing such as processing. One of the purposes is to do. Note that the present invention is not limited to this purpose, and it is also for the other purpose of the present invention to provide operational effects that are obtained by the respective configurations shown in the modes for carrying out the invention to be described later and that cannot be obtained by the conventional technology. is there.
 (1)ここで開示するシリンダヘッドの製造方法は、燃焼室に吸気バルブ孔を介して連通する吸気ポート部が形成されたシリンダヘッド本体を有するシリンダヘッドの製造方法であって、前記吸気ポート部に対して前記燃焼室側からシール部材を挿入し、前記シール部材で前記吸気ポート部の前記燃焼室側の端部を封止する第一ステップと、前記シリンダヘッド本体の壁部に形成された前記吸気ポート部の開口から前記吸気ポート部に型を挿入する第二ステップと、前記第一ステップで前記吸気ポート部に挿入した前記シール部材と、前記第二ステップで前記吸気ポート部に挿入した前記型とを、前記吸気ポート部の内部で密着させる第三ステップと、前記第三ステップ後、前記型が配置されている前記吸気ポート部の内部に溶融樹脂を供給する第四ステップと、前記第四ステップ後、前記溶融樹脂が固化することで前記吸気ポート部の内部に樹脂部が形成された以降に、前記シール部材及び前記型を前記吸気ポート部から抜き取る第五ステップと、を備えている。 (1) The method of manufacturing a cylinder head disclosed herein is a method of manufacturing a cylinder head having a cylinder head body in which an intake port portion communicating with a combustion chamber via an intake valve hole is formed. A first step of inserting a seal member from the combustion chamber side with respect to the combustion chamber side, and sealing the end of the intake port portion on the combustion chamber side with the seal member; and a wall portion of the cylinder head body. A second step of inserting a mold into the intake port section from the opening of the intake port section, the seal member inserted in the intake port section in the first step, and the seal member inserted in the intake port section in the second step. A third step of bringing the mold into close contact with the inside of the intake port portion, and a fourth step of supplying molten resin into the intake port portion in which the mold is arranged after the third step, After the fourth step, after the molten resin solidifies to form a resin portion inside the intake port portion, a fifth step of withdrawing the seal member and the mold from the intake port portion is provided. There is.
 (2)前記シリンダヘッド本体には、バルブガイドが挿通される第一孔部が前記吸気ポート部と連通するように形成されており、前記シール部材は、前記吸気バルブ孔に嵌合するシール部と、前記シール部から延設されて前記シール部が前記吸気バルブ孔に嵌合した状態で前記第一孔部に配置されるガイド部と、を有することが好ましい。この場合、前記第一ステップでは、前記ガイド部を前記シール部よりも先に前記燃焼室側から挿入し、前記ガイド部を前記第一孔部に挿入するとともに前記シール部を前記吸気バルブ孔に嵌合させることで前記端部を封止することが好ましい。 (2) A first hole portion through which a valve guide is inserted is formed in the cylinder head body so as to communicate with the intake port portion, and the seal member is a seal portion that fits into the intake valve hole. And a guide portion extending from the seal portion and arranged in the first hole portion in a state where the seal portion is fitted in the intake valve hole. In this case, in the first step, the guide portion is inserted from the combustion chamber side before the seal portion, the guide portion is inserted into the first hole portion, and the seal portion is inserted into the intake valve hole. It is preferable to seal the ends by fitting them.
 (3)前記シール部材は、円形状のオーリングと、前記オーリングが装着された保持部と、を有することが好ましい。この場合、前記第一ステップでは、前記吸気ポート部に対して前記燃焼室側から前記保持部を挿入し、前記オーリングを前記吸気ポート部の内面に密着させて前記端部を封止し、前記第三ステップでは、前記保持部と前記型とを密着させることが好ましい。 (3) It is preferable that the seal member has a circular O-ring and a holding portion to which the O-ring is attached. In this case, in the first step, the holding portion is inserted into the intake port portion from the combustion chamber side, and the O-ring is brought into close contact with the inner surface of the intake port portion to seal the end portion, In the third step, it is preferable that the holding portion and the mold are brought into close contact with each other.
 (4)前記シリンダヘッド本体には、バルブガイドが挿通される第一孔部が前記吸気ポート部と連通するように形成されていることが好ましい。この場合、前記第一ステップでは、前記内面のうち、前記第一孔部の開口よりも吸気流れ方向の上流側に前記オーリングを密着させることが好ましい。
 (5)前記型は、前記吸気ポート部に対して抜き挿しする方向に沿って分割された複数の部品が組み合わされて構成されているスライド型であることが好ましい。
(4) It is preferable that the cylinder head body is formed with a first hole through which the valve guide is inserted so as to communicate with the intake port. In this case, in the first step, it is preferable that the O-ring is brought into close contact with the inner surface on the upstream side of the opening of the first hole in the intake flow direction.
(5) It is preferable that the mold is a slide mold that is configured by combining a plurality of parts that are divided along a direction in which the intake port portion is inserted and removed.
 (6)前記シリンダヘッド本体には、ポート噴射弁を取り付けるための第二孔部が前記吸気ポート部と連通するように形成されており、前記吸気ポート部のうち、吸気流れ方向の中途には、前記吸気流れ方向に直交する断面の大きさが変化する段差部が形成されているとともに、前記段差部よりも前記吸気流れ方向の上流側には、前記第二孔部側に広がった拡張部と前記第二孔部の開口とが形成されており、前記スライド型は、前記拡張部を含む上部に配置される上方型と、前記上方型よりも下方に配置される下方型と、前記上方型及び前記下方型の間に配置される中央型と、少なくとも前記中央型の両側方に配置される側方型と、前記第二孔部に挿通される弁型と、を有することが好ましい。この場合、前記第二ステップでは、前記吸気ポート部の開口から、前記上方型、前記下方型、前記中央型、前記側方型の順に挿入するとともに、前記第二孔部に前記弁型を挿入することが好ましい。 (6) The cylinder head main body is formed with a second hole portion for attaching a port injection valve so as to communicate with the intake port portion. A stepped portion having a cross-section that changes in size perpendicular to the intake air flow direction is formed, and an expanded portion that expands toward the second hole portion upstream of the stepped portion in the intake air flow direction. And an opening of the second hole portion are formed, and the slide mold includes an upper mold arranged at an upper portion including the expansion portion, a lower mold arranged below the upper mold, and the upper mold. It is preferable to have a central mold arranged between the mold and the lower mold, at least lateral molds arranged on both sides of the central mold, and a valve mold inserted into the second hole. In this case, in the second step, the upper die, the lower die, the central die, and the lateral die are inserted in this order from the opening of the intake port portion, and the valve die is inserted into the second hole portion. Preferably.
 (7)前記第二ステップでは、前記上方型を前記吸気ポート部の開口から挿入した後、前記弁型を前記第二孔部に挿入して前記上方型と一体化させることが好ましい。
 (8)前記第五ステップでは、前記第二孔部から前記弁型を抜き取るとともに、前記吸気ポート部の開口から前記側方型、前記中央型、前記下方型、前記上方型の順で抜き取ることが好ましい。
(7) In the second step, it is preferable that after the upper mold is inserted from the opening of the intake port portion, the valve mold is inserted into the second hole portion to be integrated with the upper mold.
(8) In the fifth step, the valve mold is extracted from the second hole portion, and the side mold, the center mold, the lower mold, and the upper mold are sequentially extracted from the opening of the intake port portion. Is preferred.
 開示のシリンダヘッドの製造方法によれば、吸気ポート部に対して燃焼室側からシール部材を挿入し、吸気ポート部の燃焼室側の端部を封止するため、シリンダヘッド自体に加工等の追加処理を施さなくても燃焼室側のシール面を確保できる。よって、このシール部材と型とを吸気ポート部の内部において密着させた状態で溶融樹脂を流し込むことで、溶融樹脂の漏れを防止できる。 According to the disclosed method of manufacturing a cylinder head, the seal member is inserted into the intake port portion from the combustion chamber side and the end portion of the intake port portion on the combustion chamber side is sealed. The sealing surface on the combustion chamber side can be secured without additional processing. Therefore, the molten resin can be prevented from leaking by pouring the molten resin while the sealing member and the mold are in close contact with each other inside the intake port portion.
第一実施形態に係る製造方法で製造されたシリンダヘッドの吸気側部分をエンジンのフロント側から見た模式的な正面図である。FIG. 3 is a schematic front view of the intake side portion of the cylinder head manufactured by the manufacturing method according to the first embodiment as viewed from the front side of the engine. 図1のシリンダヘッドを吸気側から見た模式的な側面図(図1のA方向矢視図)である。FIG. 2 is a schematic side view of the cylinder head of FIG. 1 viewed from the intake side (a view in the direction of arrow A in FIG. 1 ). 図1のシリンダヘッドの吸気ポート周辺の構成を示す断面図(図2のB-B矢視断面図)である。FIG. 3 is a cross-sectional view (cross-sectional view taken along the line BB of FIG. 2) showing the configuration around the intake port of the cylinder head of FIG. 1. 図3の断面図から樹脂部を除いてシリンダヘッド本体のみを示す断面図である。FIG. 4 is a cross-sectional view showing only a cylinder head main body, excluding a resin portion from the cross-sectional view of FIG. 3. (a)は第一実施形態に係る製造方法の手順を説明するフローチャートであり、(b)及び(c)は図5(a)のサブフローチャートである。(A) is a flowchart explaining the procedure of the manufacturing method according to the first embodiment, and (b) and (c) are sub-flowcharts of FIG. 5(a). 図3に示す吸気ポートを成型するためのシール部材の一例を示す斜視図であり、(a)は一体化させた状態、(b)は分解した状態である。FIG. 4 is a perspective view showing an example of a seal member for molding the intake port shown in FIG. 3, (a) being an integrated state and (b) being a disassembled state. 図3に示す吸気ポートを成型するためのスライド型の一例を示す斜視図であり、(a)は完全に組み立てた状態、(b)は全ての型を分解した状態である。FIG. 4 is a perspective view showing an example of a slide mold for molding the intake port shown in FIG. 3, (a) showing a completely assembled state, and (b) showing a state in which all the molds are disassembled. 図6(a)に示すシール部材と図7(a)に示すスライド型とを挿入した状態を示す断面図(図2のB′-B矢視断面図に相当する断面図)である。FIG. 7 is a cross-sectional view (cross-sectional view corresponding to the cross-sectional view taken along the arrow B′-B in FIG. 2) showing a state where the seal member shown in FIG. 6A and the slide die shown in FIG. 7A are inserted. (a)は図8のD部拡大図であり、(b)は図8のE部拡大図である。8A is an enlarged view of a D portion of FIG. 8, and FIG. 8B is an enlarged view of an E portion of FIG. 図3に示す吸気ポートを成型するためのスライド型の他の例を示す斜視図であり、(a)は完全に組み立てた状態、(b)は一方の側方型をずらした状態である。4A and 4B are perspective views showing another example of a slide mold for molding the intake port shown in FIG. 3, where FIG. 7A is a completely assembled state, and FIG. 図10(b)に示すスライド型の側方型を挿入する前の状態を示す断面図(図2のB-B″矢視断面図に相当する断面図)である。FIG. 11 is a cross-sectional view showing a state before the side mold of the slide mold shown in FIG. 10B is inserted (a cross-sectional view corresponding to a cross-sectional view taken along the line BB″ of FIG. 2 ). 図6(a)に示すシール部材と図10(a)に示すスライド型とを挿入した状態を示す断面図(図1のC-C矢視断面図に相当する断面図)である。FIG. 11 is a cross-sectional view (cross-sectional view corresponding to the cross-sectional view taken along the line CC in FIG. 1) showing a state in which the seal member shown in FIG. 6A and the slide die shown in FIG. 10A are inserted. 第二実施形態に係る製造方法で使用されるシール部材及びスライド型を示す斜視図であり、(a)は完全に組み立てた状態、(b)は全ての部品及び型を分解した状態である。It is a perspective view which shows the sealing member and slide mold|die used by the manufacturing method which concerns on 2nd embodiment, (a) is a fully assembled state, (b) is the state which disassembled all components and molds. 図13(a)に示すシール部材及びスライド型を挿入した状態を示す断面図(図8に対応する図)である。FIG. 13 is a cross-sectional view (a view corresponding to FIG. 8) showing a state in which the seal member and the slide die shown in FIG. 13A are inserted. 第二実施形態に係る製造方法の手順を説明するフローチャートである。It is a flow chart explaining the procedure of the manufacturing method concerning a second embodiment.
 図面を参照して、実施形態としてのシリンダヘッドの製造方法について説明する。以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。 A method of manufacturing a cylinder head as an embodiment will be described with reference to the drawings. The embodiments described below are merely examples, and are not intended to exclude various modifications and application of techniques that are not explicitly described in the following embodiments. Each configuration of the present embodiment can be variously modified and implemented without departing from the spirit thereof. In addition, they can be selected or combined as needed.
[1.第一実施形態]
[1-1.シリンダヘッドの構造]
 図1は、本実施形態に係る製造方法により製造されたシリンダヘッド1の吸気側部分をフロント側から見た模式的な正面図であり、図2はこのシリンダヘッド1の側面図(図1のA方向矢視図)である。シリンダヘッド1は、例えば車両に搭載されるエンジンを構成する部品である。本実施形態の製造方法は、後述するシリンダヘッド本体10の吸気ポート部11に樹脂部20を配置することでシリンダヘッド1を製造する方法である。
[1. First embodiment]
[1-1. Cylinder head structure]
FIG. 1 is a schematic front view of an intake side portion of a cylinder head 1 manufactured by the manufacturing method according to the present embodiment as viewed from the front side, and FIG. 2 is a side view of the cylinder head 1 (see FIG. 1). (A direction arrow view). The cylinder head 1 is a component that constitutes, for example, an engine mounted on a vehicle. The manufacturing method of the present embodiment is a method of manufacturing the cylinder head 1 by disposing the resin portion 20 in the intake port portion 11 of the cylinder head body 10 described later.
 なお、本実施形態では、四つの気筒が一列に並設され、一つの気筒に二つの吸気弁と二つの排気弁とが設けられるエンジンのシリンダヘッド1を例示するが、気筒数や弁の個数はこれに限られない。また、本実施形態のエンジンには、燃焼室2(図3参照)に燃料を噴射する筒内噴射弁(図示略)と、吸気ポート3に燃料を噴射するポート噴射弁(図示略)とが装備される。なお、図3は吸気ポート3の周辺の構成を示す断面図(図2のB-B矢視断面図)である。 In the present embodiment, the cylinder head 1 of the engine in which four cylinders are arranged side by side in a row and two intake valves and two exhaust valves are provided in one cylinder is exemplified, but the number of cylinders and the number of valves are Is not limited to this. Further, the engine of the present embodiment includes a cylinder injection valve (not shown) that injects fuel into the combustion chamber 2 (see FIG. 3) and a port injection valve (not shown) that injects fuel into the intake port 3. Equipped. Note that FIG. 3 is a cross-sectional view (a cross-sectional view taken along the line BB of FIG. 2) showing the configuration around the intake port 3.
 図2及び図3に示すように、本実施形態の製造方法で製造されるシリンダヘッド1は、例えばアルミニウムやアルミニウム合金を用いた鋳造によって成型されたシリンダヘッド本体10と、後述する樹脂部20(図3参照)とを有する。シリンダヘッド1には、吸気ポート3とポート噴射弁の取付孔5(第二孔部)と筒内噴射弁の取付孔6とが気筒ごとに形成されている。吸気ポート3及び各取付孔5,6は、シリンダヘッド1の外部に開口している。また、シリンダヘッド1の吸気側の壁部1aには、筒内噴射弁に接続されるデリバリーパイプが固定される台座部8と、樹脂部20となる溶融樹脂を供給するための注入口9が形成されている。なお、図2では、四つの気筒のそれぞれに同様に設けられる吸気ポート3や取付孔5,6や台座部8等の符号を、一つの気筒にのみ付す。 As shown in FIGS. 2 and 3, the cylinder head 1 manufactured by the manufacturing method of the present embodiment includes a cylinder head body 10 molded by casting using aluminum or an aluminum alloy, and a resin portion 20 (described later). (See FIG. 3). In the cylinder head 1, an intake port 3, a port injection valve mounting hole 5 (second hole portion), and an in-cylinder injection valve mounting hole 6 are formed for each cylinder. The intake port 3 and the mounting holes 5 and 6 are open to the outside of the cylinder head 1. In addition, a pedestal portion 8 to which a delivery pipe connected to an in-cylinder injection valve is fixed, and an injection port 9 for supplying a molten resin to be a resin portion 20 are provided on the intake side wall portion 1a of the cylinder head 1. Has been formed. Note that, in FIG. 2, the reference numerals of the intake port 3, the mounting holes 5 and 6, the pedestal portion 8 and the like that are similarly provided in each of the four cylinders are given to only one cylinder.
 シリンダヘッド本体10は、シリンダヘッド1の本体部を構成するものであり、図3及び図4に示すように、燃焼室2や取付孔5,6等を有するとともに、吸気ポート3を構成する本体部としての吸気ポート部11を有する。なお、図4は図3の断面図から樹脂部20を除いてシリンダヘッド本体10のみを示す断面図である。本実施形態の吸気ポート部11は、二つの吸気バルブ孔4を介して燃焼室2と連通する二股形状に形成されている。図3及び図4では、吸気ポート部11を二股に区分する壁部については図示を省略している。 The cylinder head main body 10 constitutes the main body of the cylinder head 1, and as shown in FIGS. 3 and 4, has a combustion chamber 2, mounting holes 5, 6 and the like, and constitutes the intake port 3. It has an intake port section 11 as a section. 4 is a cross-sectional view showing only the cylinder head body 10 without the resin portion 20 from the cross-sectional view of FIG. The intake port portion 11 of the present embodiment is formed in a bifurcated shape that communicates with the combustion chamber 2 via the two intake valve holes 4. In FIGS. 3 and 4, the wall portion that divides the intake port portion 11 into two forks is not shown.
 本実施形態のシリンダヘッド本体10には、図示しないバルブガイドが挿通される挿通孔7(第一孔部)及びポート噴射弁の取付孔5がいずれも吸気ポート部11と連通するように形成されている。また、吸気ポート部11には、ポート噴射弁が取り付けられる側(図4中の上側)に広がって形成された拡張部16と取付孔5の開口5aと挿通孔7の開口7aとが形成されている。 In the cylinder head body 10 of the present embodiment, an insertion hole 7 (first hole portion) through which a valve guide (not shown) is inserted and a port injection valve mounting hole 5 are both formed so as to communicate with the intake port portion 11. ing. Further, the intake port portion 11 is provided with an expanded portion 16 which is formed so as to spread to the side where the port injection valve is attached (upper side in FIG. 4), an opening 5a of the attachment hole 5 and an opening 7a of the insertion hole 7. ing.
 図3に示すように、樹脂部20は、吸気ポート部11の内面に沿って配置され、シリンダヘッド本体10の熱が吸気へ伝わるのを抑制する断熱部材(樹脂部材)である。樹脂部20は、シリンダヘッド本体10の材質よりも熱伝導率の低い樹脂で形成されており、より好ましくは耐熱性の高い樹脂で形成される。樹脂部20は、射出成型によって吸気ポート部11内に流し込まれる溶融樹脂が固化することで形成される。なお、図3ではわかりやすいように、樹脂部20にドットを付して示す。 As shown in FIG. 3, the resin portion 20 is a heat insulating member (resin member) that is arranged along the inner surface of the intake port portion 11 and that suppresses the heat of the cylinder head body 10 from being transferred to the intake air. The resin portion 20 is formed of a resin having a lower thermal conductivity than the material of the cylinder head body 10, and more preferably a resin having a high heat resistance. The resin portion 20 is formed by solidifying the molten resin that is poured into the intake port portion 11 by injection molding. In FIG. 3, the resin portion 20 is shown with dots for easy understanding.
 本実施形態の樹脂部20は、吸気ポート部11の全長のうち、燃焼室2側の部分(下流部)を除いて配置されている。言い換えると、吸気ポート部11には、樹脂部20が配置されない部分と配置される部分とが存在する。以下、前者の部分を露出部12といい、後者の部分を被覆部13という。すなわち、露出部12は、シリンダヘッド本体10の素材面が吸気に直接的に接触する(露出した)部分であり、被覆部13は、樹脂部20で覆われておりシリンダヘッド本体10の素材面が吸気に直接的に接触しない部分である。本実施形態の樹脂部20は、露出部12とともに吸気ポート3の内面を構成する。 The resin portion 20 of the present embodiment is arranged in the entire length of the intake port portion 11 except for the portion on the combustion chamber 2 side (downstream portion). In other words, the intake port portion 11 has a portion where the resin portion 20 is not arranged and a portion where the resin portion 20 is arranged. Hereinafter, the former portion will be referred to as the exposed portion 12, and the latter portion will be referred to as the covering portion 13. That is, the exposed portion 12 is a portion where the material surface of the cylinder head body 10 directly contacts (exposes) the intake air, and the covering portion 13 is covered with the resin portion 20 and the material surface of the cylinder head body 10 is covered. Is the part that does not directly contact the intake air. The resin portion 20 of the present embodiment constitutes the inner surface of the intake port 3 together with the exposed portion 12.
 図3及び図4に示すように、露出部12は吸気ポート部11のうち燃焼側2側に位置し、被覆部13は露出部12よりも吸気流れ方向の上流側(以下、単に「上流側」という)に位置する。被覆部13は、吸気流れ方向に直交する断面形状(以下、単に「断面形状」という)が露出部12よりも一回り大きく形成されている。このため、露出部12と被覆部13との境界(吸気ポート部11における吸気流れ方向の中途)には、断面の大きさが変化する段差部14が設けられる。なお、本実施形態では、上記の拡張部16及び取付孔5の開口5aが段差部14よりも上流側に位置し、挿通孔7の開口7aが段差部14よりも吸気流れ方向の下流側(以下、単に「下流側」という)に位置する。また、本実施形態の吸気ポート部11は、シリンダヘッド本体10の壁部1aに形成された開口11aから段差部14までの部分が直線状に形成されている。吸気ポート部11の開口11aには、図示しない吸気マニホールドが接続される。 As shown in FIGS. 3 and 4, the exposed portion 12 is located on the combustion side 2 side of the intake port portion 11, and the covering portion 13 is upstream of the exposed portion 12 in the intake flow direction (hereinafter, simply “upstream side”). Is called). The covering portion 13 has a cross-sectional shape (hereinafter, simply referred to as “cross-sectional shape”) orthogonal to the intake air flow direction, which is slightly larger than the exposed portion 12. Therefore, at the boundary between the exposed portion 12 and the covering portion 13 (in the middle of the intake port flow direction in the intake port portion 11), the step portion 14 whose cross-sectional size changes is provided. In the present embodiment, the expansion portion 16 and the opening 5a of the mounting hole 5 are located upstream of the step portion 14, and the opening 7a of the insertion hole 7 is downstream of the step portion 14 in the intake flow direction ( Hereinafter, it is simply referred to as "downstream side". Further, in the intake port portion 11 of the present embodiment, the portion from the opening 11a formed in the wall portion 1a of the cylinder head body 10 to the step portion 14 is linearly formed. An intake manifold (not shown) is connected to the opening 11a of the intake port portion 11.
 本実施形態の段差部14は、吸気ポート部11の二股に分かれる分岐点15(図4参照)又は分岐点15よりも下流側に位置する。また、段差部14は、バルブガイドの挿通孔7の開口7aよりも上流側に位置する。すなわち、一つの吸気ポート部11に二つの段差部14が設けられ、各段差部14は燃焼室2から離隔して設けられる。なお、本実施形態のシリンダヘッド本体10は、吸気ポート部11の開口11a側の端部(吸気流れ方向の上流端)が絞られており、この部分には樹脂部20が配置されない第二の露出部12′が設けられる。 The step portion 14 of the present embodiment is located at the bifurcation point 15 (see FIG. 4) of the intake port portion 11 or on the downstream side of the bifurcation point 15. The step portion 14 is located upstream of the opening 7a of the insertion hole 7 of the valve guide. That is, two step portions 14 are provided in one intake port portion 11, and each step portion 14 is provided separately from the combustion chamber 2. In the cylinder head body 10 of the present embodiment, the end of the intake port portion 11 on the side of the opening 11a (upstream end in the intake air flow direction) is narrowed, and the resin portion 20 is not arranged in this portion. An exposed portion 12' is provided.
[1-2.シリンダヘッドの製造方法]
 次に、上述したシリンダヘッド本体10の吸気ポート部11に樹脂部20を配置することでシリンダヘッド1を製造する方法について、図5(a)~(c)に示すフローチャートと図6~図12を参照しながら説明する。本実施形態では、図6(a)及び(b)に示すシール部材40と、図7(a)及び(b)に示す型30とを用いて樹脂部20を形成する場合について説明する。
[1-2. Cylinder head manufacturing method]
Next, regarding the method of manufacturing the cylinder head 1 by disposing the resin portion 20 in the intake port portion 11 of the cylinder head body 10 described above, the flowcharts shown in FIGS. 5A to 5C and FIGS. Will be described with reference to. In the present embodiment, a case will be described in which the resin member 20 is formed using the seal member 40 shown in FIGS. 6A and 6B and the mold 30 shown in FIGS. 7A and 7B.
 まず、図5(a)に示すように、吸気ポート部11に対して燃焼室2側からシール部材40を挿入し、吸気ポート部11の燃焼室2側の端部(下流側の端部)を封止する(第一ステップS10)。本実施形態では吸気ポート部11が二股形状であるため、一つの吸気ポート部11に対して二つのシール部材40を挿入し、吸気ポート部11の燃焼室2側の端部を封止する。 First, as shown in FIG. 5A, the seal member 40 is inserted into the intake port portion 11 from the combustion chamber 2 side, and the end portion of the intake port portion 11 on the combustion chamber 2 side (downstream end portion). Is sealed (first step S10). In this embodiment, since the intake port portion 11 has a bifurcated shape, the two seal members 40 are inserted into one intake port portion 11 to seal the end portion of the intake port portion 11 on the combustion chamber 2 side.
 図6(a)及び(b)に示すように、本実施形態のシール部材40は、第一部材41と第二部材42との二部材が組み合わされて構成されている。第一部材41は、吸気バルブ孔4に嵌合する形状とされたシール部41aと、シール部41aから延設された棒状のガイド部41bとを有する。シール部41aは、吸気バルブ孔4に対して燃焼室2側から嵌め込まれる部位であり、ガイド部41bは、シール部41aが吸気バルブ孔4に嵌合した状態で挿通孔7に配置される部位である。なお、ガイド部41bの形状は、挿通孔7に挿通可能な形状であれば特に限定されないが、ガイド部41bが挿通孔7に隙間なく内嵌する形状であれば、ガイド部41bにより挿通孔7を封止することが可能となる。 As shown in FIGS. 6A and 6B, the seal member 40 of this embodiment is configured by combining two members, a first member 41 and a second member 42. The first member 41 has a seal portion 41a shaped to fit into the intake valve hole 4, and a rod-shaped guide portion 41b extending from the seal portion 41a. The seal portion 41a is a portion fitted into the intake valve hole 4 from the combustion chamber 2 side, and the guide portion 41b is a portion arranged in the insertion hole 7 in a state where the seal portion 41a is fitted in the intake valve hole 4. Is. The shape of the guide portion 41b is not particularly limited as long as it can be inserted into the insertion hole 7, but if the shape of the guide portion 41b is such that the guide portion 41b is fitted in the insertion hole 7 without a gap, the guide portion 41b allows the insertion hole 7 to be inserted. Can be sealed.
 第二部材42は、円形状のオーリング43と、オーリング43が装着される保持部42aとを有する。保持部42aは、オーリング43を保持するとともに吸気ポート部11の露出部12に配置される部位であり、吸気ポート部11の被覆部13側(上流側)に配置される端面が平面状に形成されている。保持部42aには、ガイド部41bが挿通される孔部42bが貫設されている。孔部42bは、保持部42aが吸気ポート部11の露出部12に配置された状態で、挿通孔7と同軸上に配置される部位である。第一部材41と第二部材42とは、第一部材41のガイド部41bが第二部材42の孔部42bに挿通されることにより、一体化される。 The second member 42 has a circular O-ring 43 and a holding portion 42a to which the O-ring 43 is attached. The holding portion 42a is a portion that holds the O-ring 43 and is arranged on the exposed portion 12 of the intake port portion 11, and the end surface of the intake port portion 11 arranged on the covering portion 13 side (upstream side) is flat. Has been formed. The holding portion 42a is provided with a hole 42b through which the guide portion 41b is inserted. The hole portion 42b is a portion that is arranged coaxially with the insertion hole 7 in a state where the holding portion 42a is arranged in the exposed portion 12 of the intake port portion 11. The first member 41 and the second member 42 are integrated by inserting the guide portion 41b of the first member 41 into the hole portion 42b of the second member 42.
 図8に示すように、本実施形態の第一ステップS10では、まず、第二部材42を吸気ポート部11に対して燃焼室2側から挿入し、吸気ポート部11の内面のうち、段差部14の直下流(すなわち、挿通孔7の開口7aよりも上流側)の部分にオーリング43を密着させる。次いで、第一部材41を吸気ポート部11に対して燃焼室2側から挿入する。具体的には、第一部材41のガイド部41bをシール部41aよりも先に燃焼室2側から挿入し、ガイド部41bを第二部材42の孔部42bに通して挿通孔7に挿入するとともに、第一部材41のシール部41aを吸気バルブ孔4に嵌合させる。このように、本実施形態では、第二部材42を第一部材41で燃焼室2側から押さえ込むことで、第二部材42の抜けが防止されている。 As shown in FIG. 8, in the first step S10 of the present embodiment, first, the second member 42 is inserted into the intake port portion 11 from the combustion chamber 2 side, and the stepped portion of the inner surface of the intake port portion 11 is inserted. The O-ring 43 is brought into close contact with the portion immediately downstream of 14 (that is, upstream of the opening 7a of the insertion hole 7). Next, the first member 41 is inserted into the intake port portion 11 from the combustion chamber 2 side. Specifically, the guide portion 41b of the first member 41 is inserted from the combustion chamber 2 side before the seal portion 41a, and the guide portion 41b is inserted into the insertion hole 7 through the hole portion 42b of the second member 42. At the same time, the seal portion 41 a of the first member 41 is fitted into the intake valve hole 4. Thus, in the present embodiment, the second member 42 is prevented from coming off by pressing the second member 42 from the combustion chamber 2 side with the first member 41.
 次に、吸気ポート部11の開口11aから吸気ポート部11に型30を挿入する〔図5(a)の第二ステップS20〕。ここで、型30の一例を図7(a)及び(b)に示す。本実施形態の型30は、吸気ポート部11の内形状よりも小さい外形状を有し、吸気ポート部11に対して抜き挿しする方向(吸気の流通方向)に沿って分割された複数の部品が組み合わされて構成されているスライド型である。本実施形態のスライド型30は、吸気ポート部11の拡張部16を含む上部に配置される上方型31と、上方型31よりも下方に配置される下方型32と、上方型31及び下方型32の間に配置される中央型33と、少なくとも中央型33の両側方に配置される側方型34と、取付孔5に挿通される弁型35とを有する。 Next, the mold 30 is inserted into the intake port portion 11 through the opening 11a of the intake port portion 11 [second step S20 in FIG. 5(a)]. Here, an example of the mold 30 is shown in FIGS. The mold 30 of the present embodiment has an outer shape smaller than the inner shape of the intake port portion 11 and is divided into a plurality of parts that are divided along the direction in which the intake port portion 11 is inserted and removed (the intake air circulation direction). It is a slide type that is configured by combining. The slide mold 30 of the present embodiment includes an upper mold 31 arranged at an upper part including the expansion portion 16 of the intake port portion 11, a lower mold 32 arranged below the upper mold 31, an upper mold 31 and a lower mold. It has a central mold 33 arranged between 32, side molds 34 arranged at least on both sides of the central mold 33, and a valve mold 35 inserted into the mounting hole 5.
 上方型31は、拡張部16の形状に沿った上面と平らな下面とを有する。上方型31の燃焼室2側の端部は二股形状であり、上方型31の上面には弁型35が嵌合される穴が形成されている。下方型32は、吸気ポート部11の下面側の形状に沿った下面と平らな上面とを有し、燃焼室2側の端部が二股形状に形成されている。中央型33は、その上面,下面及び両側面がいずれも平面であり、開口11a側の端部から燃焼室2側の端部に向かって拡開するとともに燃焼室2側の端部が二股形状に形成されている。中央型33は、吸気ポート部11内の空間に配置した上方型31及び下方型32の両方に対してスライド自在に形成されている。 The upper mold 31 has an upper surface conforming to the shape of the expansion portion 16 and a flat lower surface. The end of the upper mold 31 on the combustion chamber 2 side is bifurcated, and a hole into which the valve mold 35 is fitted is formed on the upper surface of the upper mold 31. The lower mold 32 has a lower surface conforming to the shape of the lower surface side of the intake port portion 11 and a flat upper surface, and the end portion on the combustion chamber 2 side is formed in a bifurcated shape. The central mold 33 has a flat upper surface, a lower surface, and both side surfaces, expands from the end portion on the opening 11a side toward the end portion on the combustion chamber 2 side, and the end portion on the combustion chamber 2 side is bifurcated. Is formed in. The central mold 33 is formed so as to be slidable with respect to both the upper mold 31 and the lower mold 32 arranged in the space inside the intake port portion 11.
 側方型34は、中央型33の両側方であって上方型31及び下方型32の間に配置される形状に形成されている。具体的には、二つの側方型34は、各上面,各下面及び中央型33側の各側面がいずれも平面であり、開口11a側の端部から燃焼室2側の端部に向かって先細形状となっている。また、各側方型34は、吸気ポート部11内の空間に配置した各型31~33に対してスライド自在に形成されている。弁型35は、取付孔5の形状と略一致する外形状を有し、その先端部が取付孔5から拡張部16内に進入して上方型31の上面に形成された穴に嵌合するように形成されている。弁型35は、上方型31の穴に嵌合することで上方型31を保持する機能を持つ。スライド型30は、五種類の型31~35が組み合わされた状態では、その先端部分(燃焼室2側に配置される端面)が平面状となる。 The side molds 34 are formed on both sides of the central mold 33 and between the upper mold 31 and the lower mold 32. Specifically, each of the two lateral dies 34 has a flat surface on each upper surface, each lower surface, and each side surface on the side of the central mold 33, and faces from the end portion on the opening 11a side toward the end portion on the combustion chamber 2 side. It has a tapered shape. Further, each of the side molds 34 is formed slidably with respect to each of the molds 31 to 33 arranged in the space inside the intake port portion 11. The valve die 35 has an outer shape that is substantially the same as the shape of the mounting hole 5, and the tip portion of the valve die 35 enters the expansion portion 16 through the mounting hole 5 and fits into the hole formed on the upper surface of the upper die 31. Is formed. The valve die 35 has a function of holding the upper die 31 by fitting into the hole of the upper die 31. In the state where the five types of molds 31 to 35 are combined, the slide mold 30 has a flat tip portion (the end surface arranged on the combustion chamber 2 side).
 スライド型30を挿入する第二ステップS20の手順を説明する。第二ステップS20では、吸気ポート部11の開口11aから、上方型31,下方型32,中央型33,側方型34の順に挿入するとともに、ポート噴射弁を取り付けるための取付孔5に弁型35を挿入する。なお、弁型35は、他の型31~34とは異なり取付孔5に挿入されて吸気ポート部11内で上方型31と組み合わされて上方型31を保持するため、弁型35の挿入タイミングは上方型31を挿入した後であることが好ましく、上方型31を挿入した次(直後)であることがより好ましい。 The procedure of the second step S20 of inserting the slide mold 30 will be described. In the second step S20, the upper die 31, the lower die 32, the central die 33, and the lateral die 34 are inserted in this order from the opening 11a of the intake port portion 11, and the valve die is attached to the attachment hole 5 for attaching the port injection valve. Insert 35. Unlike the other molds 31 to 34, the valve mold 35 is inserted into the mounting hole 5 and combined with the upper mold 31 in the intake port portion 11 to hold the upper mold 31. Is preferably after the upper mold 31 is inserted, and more preferably (immediately after) the upper mold 31 is inserted.
 本実施形態では、図5(b)に示すように、まず、上方型31を開口11aから挿入して拡張部16を含む上部に収容し(ステップS21)、この状態で弁型35を取付孔5に挿入し、弁型35の先端部を上方型31の上面の穴に嵌合させることで、弁型35と上方型31とを一体化させる(ステップS23)。次いで、下方型32を開口11aから挿入して下部に配置し(ステップS25)、さらに中央型33を上方型31及び下方型32の双方に対してスライドさせながら挿入することで(ステップS27)、吸気ポート部11の内部において三つの型31~33を組み立てる。最後に二つの側方型34をそれぞれ三つの型31~33に対してスライドさせながら挿入することで(ステップS29)、スライド型30を図8に示す状態とする。 In the present embodiment, as shown in FIG. 5B, first, the upper die 31 is inserted from the opening 11a and accommodated in the upper portion including the expansion portion 16 (step S21), and in this state, the valve die 35 is attached to the mounting hole. 5, and the tip of the valve die 35 is fitted into the hole in the upper surface of the upper die 31 to integrate the valve die 35 and the upper die 31 (step S23). Then, the lower mold 32 is inserted from the opening 11a and arranged in the lower part (step S25), and further, the central mold 33 is inserted while being slid with respect to both the upper mold 31 and the lower mold 32 (step S27). Inside the intake port section 11, the three molds 31 to 33 are assembled. Finally, the two side molds 34 are inserted into the three molds 31 to 33 while sliding them (step S29) to bring the slide mold 30 into the state shown in FIG.
 そして、第一ステップS10で吸気ポート部11に挿入したシール部材40と、第二ステップS20で吸気ポート部11に挿入したスライド型30とを、吸気ポート部11の内部で密着させる〔図5(a)の第三ステップS30〕。より具体的には、図9(a)に示すように、第二部材42の保持部42aとスライド型30の先端部分とを、吸気ポート部11の段差部14において互いに密着させる。 Then, the seal member 40 inserted into the intake port portion 11 in the first step S10 and the slide die 30 inserted into the intake port portion 11 in the second step S20 are brought into close contact with each other inside the intake port portion 11 [FIG. Third step S30 of a)]. More specifically, as shown in FIG. 9A, the holding portion 42a of the second member 42 and the tip portion of the slide die 30 are brought into close contact with each other at the step portion 14 of the intake port portion 11.
 第三ステップS30後、シール部材40及びスライド型30が配置されている吸気ポート部11の内部に溶融樹脂を供給する〔図5(a)の第四ステップS40〕。本実施形態のシリンダヘッド本体10には、溶融樹脂を供給するための注入口9(図2参照)が気筒ごとに形成されているため、各注入口9に図示しないインジェクションを接続して溶融樹脂を流し込む。溶融樹脂は、吸気ポート部11の内面とスライド型30の外面との間に形成される空間に広がっていく。 After the third step S30, the molten resin is supplied into the intake port portion 11 in which the seal member 40 and the slide die 30 are arranged [fourth step S40 in FIG. 5(a)]. In the cylinder head body 10 of the present embodiment, since the injection port 9 (see FIG. 2) for supplying the molten resin is formed for each cylinder, the injection port (not shown) is connected to each injection port 9 to melt the molten resin. Pour. The molten resin spreads into the space formed between the inner surface of the intake port portion 11 and the outer surface of the slide die 30.
 ここで、溶融樹脂が広がる空間における燃焼室2側の縁部は、図9(a)に示すように、第二部材42の保持部42aに装着されたオーリング43によってシールされている。このため、燃焼室2側への樹脂漏れが回避される。さらに、本実施形態では、オーリング43よりも燃焼室2側に位置する吸気バルブ孔4が、第一部材41のシール部41aによってシールされている。このようなオーリング43とシール部41aとの二重のシール構造により、燃焼室2側への樹脂漏れがより確実に回避される。 Here, the edge portion on the combustion chamber 2 side in the space where the molten resin spreads is sealed by an O-ring 43 attached to the holding portion 42a of the second member 42, as shown in FIG. 9A. Therefore, resin leakage to the combustion chamber 2 side is avoided. Further, in the present embodiment, the intake valve hole 4 located closer to the combustion chamber 2 than the O-ring 43 is sealed by the seal portion 41a of the first member 41. With such a double seal structure of the O-ring 43 and the seal portion 41a, resin leakage to the combustion chamber 2 side can be more reliably avoided.
 一方、吸気ポート部11にスライド型30を挿入した状態では、図9(b)に示すように、吸気ポート部11の上流側における絞り部分(第二の露出部12′)とスライド型30との間に僅かな隙間が形成される。この隙間は、スライド型30の位置ずれを吸収する機能を持つ一方で、溶融樹脂の漏れを発生させる可能性がある。このため、本実施形態のスライド型30には、吸気ポート部11の開口11aのフランジ面11bに密着するバリ切り用の部品36が装着される。これにより、溶融樹脂が広がる空間における開口11a側の縁部もシールされ、樹脂漏れが回避される。 On the other hand, when the slide die 30 is inserted into the intake port portion 11, as shown in FIG. 9B, the throttle portion (second exposed portion 12 ′) on the upstream side of the intake port portion 11 and the slide die 30 are connected to each other. A slight gap is formed between the two. While this gap has a function of absorbing the displacement of the slide die 30, the molten resin may leak. Therefore, the slide die 30 of the present embodiment is equipped with the burr-cutting component 36 that comes into close contact with the flange surface 11b of the opening 11a of the intake port portion 11. As a result, the edge portion on the side of the opening 11a in the space where the molten resin spreads is also sealed, and resin leakage is avoided.
 第四ステップS40後、溶融樹脂が固化することで吸気ポート部11の内部に樹脂部20が形成された以降に〔図5(a)のステップS45のYESルート〕、シール部材40とスライド型30とを吸気ポート部11から抜き取る〔図5(a)の第五ステップS50〕。本実施形態の第五ステップS50では、吸気ポート部11から燃焼室2側に、第一部材41,第二部材42の順でシール部材40を抜き取る。また、ポート噴射弁を取り付けるための取付孔5から弁型35を抜き取るとともに、吸気ポート部11の開口11aから、側方型34,中央型33,下方型32,上方型31の順で抜き取る。なお、弁型35を抜くタイミングは上方型31を抜き取る前であればよく、上方型31を抜く直前であることがより好ましい。 After the fourth step S40, after the resin portion 20 is formed inside the intake port portion 11 by solidifying the molten resin [YES route of step S45 in FIG. 5A], the sealing member 40 and the slide die 30 And are extracted from the intake port portion 11 [fifth step S50 in FIG. 5(a)]. In the fifth step S50 of the present embodiment, the seal member 40 is pulled out from the intake port portion 11 to the combustion chamber 2 side in the order of the first member 41 and the second member 42. Further, the valve die 35 is pulled out from the mounting hole 5 for mounting the port injection valve, and the side die 34, the central die 33, the lower die 32, and the upper die 31 are pulled out in this order from the opening 11a of the intake port portion 11. The valve mold 35 may be removed at any timing before the upper mold 31 is removed, and more preferably immediately before the upper mold 31 is removed.
 本実施形態では、図5(c)に示すように、二つの側方型34をスライドさせて抜き取り(ステップS51)、次いで中央型33を抜き取る(ステップS53)。次に、下方型32を、中央型33を抜くことで生まれた空間に上昇させてから抜き取る(ステップS55)。さらに、弁型35を抜き取るとともに(ステップS57)、上方型31を、中央型33及び下方型32を抜くことで生まれた空間に下降させてから抜き取る(ステップS59)。このように、先に側方型34及び中央型33を抜き取ることで、樹脂部20の内面との接触を極力回避して、下方型32及び上方型31を抜き取ることができる。 In the present embodiment, as shown in FIG. 5(c), the two side molds 34 are slid and extracted (step S51), and then the central mold 33 is extracted (step S53). Next, the lower mold 32 is lifted to the space created by removing the central mold 33, and then removed (step S55). Further, the valve mold 35 is removed (step S57), and the upper mold 31 is lowered into the space created by removing the central mold 33 and the lower mold 32 and then removed (step S59). Thus, by removing the side mold 34 and the center mold 33 first, it is possible to remove the lower mold 32 and the upper mold 31 while avoiding contact with the inner surface of the resin portion 20 as much as possible.
 なお、型30は図7(a)及び(b)に示すスライド型に限られず、例えば図10(a)及び(b)に示す型30′を用いてもよい。この型30′も、上記のスライド型30と同様、吸気ポート部11の内形状よりも小さい外形状を有し、吸気ポート部11に対して抜き挿しする方向(吸気の流通方向)に沿って分割された複数の部品が組み合わされて構成されているスライド型である。具体的には、吸気ポート部11の拡張部16を含む上部に配置される上方型31′と、上方型31′よりも下方に配置される下方型32′と、上方型31′及び下方型32′の間に配置される中央型33′と、少なくとも中央型33′の両側方に配置される側方型34′と、取付孔5に挿通される弁型35′とを有する。 The mold 30 is not limited to the slide mold shown in FIGS. 7A and 7B, and a mold 30′ shown in FIGS. 10A and 10B may be used, for example. Like the slide die 30, the die 30' also has an outer shape smaller than the inner shape of the intake port portion 11, and is arranged along the direction of inserting/removing with respect to the intake port portion 11 (intake air circulation direction). It is a slide type configured by combining a plurality of divided parts. Specifically, the upper die 31' disposed on the upper portion of the intake port portion 11 including the expansion portion 16, the lower die 32' disposed below the upper die 31', the upper die 31' and the lower die. It has a central mold 33' arranged between 32', a lateral mold 34' arranged at least on both sides of the central mold 33', and a valve mold 35' inserted into the mounting hole 5.
 図10(a)及び(b)に示す側方型34′は、上記の側方型34と異なり、上方型31′及び下方型32′の両側方にも接触する形状に形成されている。すなわち、各側方型34′は、上方型31′の上面から下方型32′の下面までの寸法と同等の高さ寸法を有し、吸気ポート部11内の空間に配置した三つの型31′~33′の全ての側面に面接触するとともに、これらの側面に対してスライド自在に形成されている。側方型34′は、上記の側方型34と同様、開口11a側の端部から燃焼室2側の端部に向かって先細形状に形成されている。なお、上方型31′,下方型32′,中央型33′及び弁型35′は、上記の各型31,32,33,35と同様に構成されている。 Unlike the side mold 34 described above, the side mold 34' shown in FIGS. 10(a) and 10(b) is formed in a shape that also contacts both sides of the upper mold 31' and the lower mold 32'. That is, each of the lateral dies 34 ′ has the same height dimension as the dimension from the upper surface of the upper die 31 ′ to the lower surface of the lower die 32 ′, and the three die 31 arranged in the space inside the intake port portion 11. It is formed so as to come into surface contact with all of the side surfaces of'-33' and to be slidable with respect to these side surfaces. Similar to the side mold 34, the side mold 34' is formed in a tapered shape from the end on the side of the opening 11a toward the end on the side of the combustion chamber 2. The upper mold 31', the lower mold 32', the central mold 33', and the valve mold 35' are configured in the same manner as the above-mentioned molds 31, 32, 33, 35.
 このスライド型30′を用いた場合でも、上述した手順〔図5(a)~(c)の手順〕で樹脂部20を成型することができる。すなわち、第二ステップS20では、上方型31′を開口11aから挿入して拡張部16を含む上部に収容し(ステップS21)、この状態で弁型35′を取付孔5に挿入し、弁型35′の先端部を上方型31′の上面の穴に嵌合させることで、弁型35′と上方型31′とを一体化させる(ステップS23)。次いで、下方型32′を開口11aから挿入して下部に配置し(ステップS25)、さらに中央型33′を上方型31′及び下方型32′の双方に対してスライドさせながら挿入することで(ステップS27)、図11に示すように、吸気ポート部11の内部において三つの型31′~33′を組み立てる。最後に二つの側方型34′をそれぞれ三つの型31′~33′に対してスライドさせながら挿入することで(ステップS29)、スライド型30′を図12に示す状態とする。 Even when this slide mold 30' is used, the resin portion 20 can be molded by the above-mentioned procedure [procedures in FIGS. 5(a) to 5(c)]. That is, in the second step S20, the upper die 31' is inserted from the opening 11a and accommodated in the upper portion including the expansion portion 16 (step S21), and in this state, the valve die 35' is inserted into the mounting hole 5 to The valve mold 35' and the upper mold 31' are integrated by fitting the tip of the 35' into the hole on the upper surface of the upper mold 31' (step S23). Then, the lower die 32' is inserted from the opening 11a and placed in the lower portion (step S25), and the central die 33' is slid and inserted into both the upper die 31' and the lower die 32' (step S25). (Step S27), as shown in FIG. 11, the three molds 31′ to 33′ are assembled inside the intake port portion 11. Finally, the two side molds 34' are inserted into the respective three molds 31' to 33' while sliding them (step S29) to bring the slide mold 30' into the state shown in FIG.
 そして、上述したように、第一ステップS10で吸気ポート部11に挿入したシール部材40と、第二ステップS20で吸気ポート部11に挿入したスライド型30′とを、吸気ポート部11の内部で密着させる〔図5(a)の第三ステップS30〕。第三ステップS30後、シール部材40及びスライド型30′が配置されている吸気ポート部11の内部に溶融樹脂を供給する〔図5(a)の第四ステップS40〕。ここで、溶融樹脂が広がる空間における燃焼室2側の縁部は、上述したように、第二部材42の保持部42aに装着されたオーリング43及び吸気バルブ孔4に嵌合した第一部材41のシール部41aによって二重にシールされているため、燃焼室2側への樹脂漏れが回避される。一方、溶融樹脂が広がる空間における開口11a側の縁部は、バリ切り用の部品36′によってシールされ、樹脂漏れが回避される。 Then, as described above, the seal member 40 inserted into the intake port portion 11 in the first step S10 and the slide die 30' inserted into the intake port portion 11 in the second step S20 are installed inside the intake port portion 11. They are brought into close contact [third step S30 in FIG. 5(a)]. After the third step S30, the molten resin is supplied into the intake port portion 11 in which the seal member 40 and the slide die 30' are arranged [fourth step S40 in FIG. 5(a)]. Here, the edge portion on the combustion chamber 2 side in the space in which the molten resin spreads is, as described above, the O-ring 43 attached to the holding portion 42a of the second member 42 and the first member fitted to the intake valve hole 4. Since it is doubly sealed by the seal portion 41a of 41, resin leakage to the combustion chamber 2 side is avoided. On the other hand, the edge portion on the side of the opening 11a in the space where the molten resin spreads is sealed by the burr-cutting component 36' to prevent resin leakage.
 第四ステップS40後、溶融樹脂が固化することで吸気ポート部11の内部に樹脂部20が形成された以降に〔図5(a)のステップS45のYESルート〕、シール部材40とスライド型30′とを吸気ポート部11から抜き取る〔図5(a)の第五ステップS50〕。すなわち、第五ステップS50では、上述したように第一部材41,第二部材42の順でシール部材40を燃焼室2側から抜き取る。また、二つの側方型34′をスライドさせて抜き取り(ステップS51)、次いで中央型33′を抜き取る(ステップS53)。次に、下方型32′を、中央型33′を抜くことで生まれた空間に上昇させてから抜き取る(ステップS55)。さらに、弁型35′を抜き取るとともに(ステップS57)、上方型31′を、中央型33′及び下方型32′を抜くことで生まれた空間に下降させてから抜き取る(ステップS59)。 After the fourth step S40, after the resin portion 20 is formed inside the intake port portion 11 by solidifying the molten resin [YES route of step S45 in FIG. 5A], the sealing member 40 and the slide die 30 'And are taken out from the intake port portion 11 [fifth step S50 of FIG. 5(a)]. That is, in the fifth step S50, as described above, the seal member 40 is removed from the combustion chamber 2 side in the order of the first member 41 and the second member 42. Further, the two side molds 34' are slid and removed (step S51), and then the central mold 33' is removed (step S53). Next, the lower mold 32' is lifted to the space created by removing the central mold 33', and then removed (step S55). Further, the valve mold 35' is removed (step S57), and the upper mold 31' is lowered into the space created by removing the central mold 33' and the lower mold 32', and then removed (step S59).
 なお、図5(a)には第一ステップS10が第二ステップS20の前に実施される場合を例示したが、本実施形態の第一ステップS10は、第二ステップS20後に実施されてもよいし、第二ステップS20と同時に実施されてもよい。言い換えると、本実施形態のシール部材40とスライド型30,30′とは、どちらが先に吸気ポート部11に挿入されてもよい。 Although FIG. 5A illustrates the case where the first step S10 is performed before the second step S20, the first step S10 of the present embodiment may be performed after the second step S20. However, it may be performed simultaneously with the second step S20. In other words, which of the seal member 40 and the slide molds 30 and 30 ′ of this embodiment may be inserted into the intake port portion 11 first.
[1-3.作用,効果]
 (1)上述したシリンダヘッド1の製造方法では、吸気ポート部11に対し、燃料室2側からシール部材40を挿入して吸気ポート部11の燃焼室2側の端部を封止し、開口11aから型30,30′を挿入する。そして、吸気ポート部11の内部においてシール部材40と型30,30′とを密着させた状態で、溶融樹脂を流し込むため、溶融樹脂の漏れを防止できる。すなわち、鋳造品であるシリンダヘッド本体10に追加処理を施さなくても燃焼室2側のシール面を確保でき、樹脂漏れを防止することができる。また、吸気ポート部11に樹脂部20を配置することで吸気の温度上昇を抑制できるため、吸入空気量の減少とノッキングの発生とを抑制でき、エンジン性能の向上を図ることができる。
[1-3. Action, effect]
(1) In the method for manufacturing the cylinder head 1 described above, the seal member 40 is inserted into the intake port portion 11 from the fuel chamber 2 side to seal the end portion of the intake port portion 11 on the combustion chamber 2 side, and to open the opening. The molds 30 and 30' are inserted from 11a. Then, since the molten resin is poured in the state where the seal member 40 and the molds 30 and 30' are in close contact with each other inside the intake port portion 11, the leakage of the molten resin can be prevented. That is, the sealing surface on the combustion chamber 2 side can be ensured and the resin leakage can be prevented even if the cylinder head body 10 that is a cast product is not subjected to additional processing. Further, by disposing the resin portion 20 in the intake port portion 11, it is possible to suppress the temperature rise of the intake air, so that it is possible to suppress the decrease of the intake air amount and the occurrence of knocking, and it is possible to improve the engine performance.
 (2)上述したシール部材40の第一部材41には、吸気バルブ孔4に嵌合するシール部41aと、シール部41aが吸気バルブ孔4に嵌合した状態で挿通孔7に配置されるガイド部41bとが設けられる。このため、第一部材41を吸気ポート部11に挿入する際に、ガイド部41bを燃焼室2側から挿通孔7に挿入することで、シール部41aを吸気バルブ孔4に案内することができる。よって、第一部材41を吸気ポート部11に対して適切に配置することが容易となる。また、ガイド部41bを挿通孔7に配置するとともにシール部41aを吸気バルブ孔4に嵌合させることにより、吸気バルブ孔4をシール部41aで封止しつつ、挿通孔7への溶融樹脂の漏れをガイド部41bで抑制することができる。なお、ガイド部41bが挿通孔7に内嵌する形状であれば、ガイド部41bで挿通孔7を封止できるため、挿通孔7への溶融樹脂の漏れを防止することができる。 (2) The first member 41 of the seal member 40 described above is arranged in the insertion hole 7 with the seal portion 41a fitted into the intake valve hole 4 and the seal portion 41a fitted in the intake valve hole 4. A guide portion 41b is provided. Therefore, when the first member 41 is inserted into the intake port portion 11, the seal portion 41a can be guided to the intake valve hole 4 by inserting the guide portion 41b into the insertion hole 7 from the combustion chamber 2 side. .. Therefore, it becomes easy to properly arrange the first member 41 with respect to the intake port portion 11. Further, by disposing the guide portion 41b in the insertion hole 7 and fitting the seal portion 41a in the intake valve hole 4, the intake valve hole 4 is sealed by the seal portion 41a and the molten resin in the insertion hole 7 is sealed. Leakage can be suppressed by the guide portion 41b. If the guide portion 41b has a shape that fits inside the insertion hole 7, the insertion hole 7 can be sealed by the guide portion 41b, so that leakage of the molten resin into the insertion hole 7 can be prevented.
 (3)シール部材40の保持部42aを吸気ポート部11に挿入し、保持部42aに装着されたオーリング43を吸気ポート部11の内面に密着させたうえで、保持部42aと型30,30′とを吸気ポート部11の内部で密着させることにより、溶融樹脂の漏れをより確実に防止できる。また、オーリング43が装着された保持部42aを吸気ポート部11に対して燃焼室2側から挿入することにより、吸気ポート部11の内部にオーリング43を容易に配置することができる。 (3) The holding portion 42a of the seal member 40 is inserted into the intake port portion 11, the O-ring 43 attached to the holding portion 42a is brought into close contact with the inner surface of the intake port portion 11, and then the holding portion 42a and the mold 30 are inserted. By closely contacting 30' with the inside of the intake port portion 11, leakage of the molten resin can be prevented more reliably. Further, the O-ring 43 can be easily arranged inside the intake port section 11 by inserting the holding section 42a to which the O-ring 43 is attached from the combustion chamber 2 side into the intake port section 11.
 さらに、吸気ポート部11の内部にオーリング43を配置することで、吸気ポート部11の内部のうち、オーリング43よりも下流側の部分を露出部12とすることができる。すなわち、この場合、吸気ポート部11の燃焼室2側の部分には樹脂部20が配置されないため、排ガスの逆流により吸気ポート3内に高温のガスが入り込んだとしても、樹脂部20の劣化を抑制できる。また、上述したようにシール部41aとオーリング43との双方により吸気ポート部11の燃焼室2側の端部を二重に封止することで、溶融樹脂の漏れをより確実に防止できる。 Further, by arranging the O-ring 43 inside the intake port portion 11, a portion of the inside of the intake port portion 11 on the downstream side of the O-ring 43 can be the exposed portion 12. That is, in this case, since the resin portion 20 is not arranged in the portion of the intake port portion 11 on the combustion chamber 2 side, even if a high-temperature gas enters the intake port 3 due to the backflow of exhaust gas, the resin portion 20 is deteriorated. Can be suppressed. Further, as described above, by double sealing the end portion of the intake port portion 11 on the combustion chamber 2 side by both the seal portion 41a and the O-ring 43, it is possible to more reliably prevent leakage of the molten resin.
 (4)吸気ポート部11の内面のうち、挿通孔7の開口7aよりも上流側にオーリング43を密着させることで、挿通孔7への溶融樹脂の漏れを防止できる。また、この場合、挿通孔7の開口7aよりも下流側には樹脂部20が配置されないため、燃焼室2から逆流した高温のガスの影響で樹脂部20が劣化することを効果的に抑制できる。 (4) The leakage of the molten resin into the insertion hole 7 can be prevented by bringing the O-ring 43 into close contact with the inner surface of the intake port portion 11 on the upstream side of the opening 7a of the insertion hole 7. Further, in this case, since the resin portion 20 is not arranged on the downstream side of the opening 7a of the insertion hole 7, it is possible to effectively suppress the deterioration of the resin portion 20 due to the influence of the high temperature gas flowing back from the combustion chamber 2. ..
 (5)上述した型30,30′は、吸気ポート部11に対して抜き挿しする方向に沿って分割された複数の部品が組み合わされて構成されたスライド型であるため、吸気ポート部11がアンダーカットとなるような形状であっても、複数の部品で構成されたスライド型30,30′で容易に抜き挿しすることができる。
 (6)また、図5(b)に示す手順で吸気ポート部11にスライド型30,30′を挿入すれば、吸気ポート部11内でスライド型30,30′を容易に組み立てることができる。
(5) Since the above-described molds 30 and 30' are slide molds configured by combining a plurality of parts that are divided along the direction in which the intake port portion 11 is inserted and removed, the intake port portion 11 is Even if the shape is an undercut, it can be easily removed and inserted by the slide molds 30 and 30' composed of a plurality of parts.
(6) Further, by inserting the slide molds 30 and 30' into the intake port portion 11 according to the procedure shown in FIG. 5B, the slide molds 30 and 30' can be easily assembled in the intake port portion 11.
 (7)さらに、上方型31,31′を吸気ポート部11に挿入した後、弁型35,35′を取付孔5に挿入して上方型31,31′と一体化させるため、弁型35,35′によって上方型31,31′を保持することができる。これにより、スライド型30,30′の姿勢を吸気ポート部11内で安定させることができ、樹脂部20の肉厚のばらつきを抑制できる。 (7) Further, after inserting the upper molds 31 and 31' into the intake port portion 11, the valve molds 35 and 35' are inserted into the mounting holes 5 to be integrated with the upper molds 31 and 31'. , 35' can hold the upper mold 31, 31'. As a result, the attitude of the slide molds 30 and 30' can be stabilized in the intake port portion 11, and the variation in the thickness of the resin portion 20 can be suppressed.
 (8)上述した製造方法では、図5(c)に示す手順で吸気ポート部11からスライド型30,30′を抜き取るため、側方型34,34′及び中央型33,33′を先に抜くことでできたスペースに下方型32,32′及び上方型31,31′を移動させてから抜くことができる。これにより、下方型32,32′及び上方型31,31′を樹脂部20に接触させずに抜き取ることができる。 (8) In the manufacturing method described above, the slide molds 30 and 30' are pulled out from the intake port portion 11 by the procedure shown in FIG. 5C, so that the side molds 34 and 34' and the central molds 33 and 33' are first processed. The lower molds 32, 32' and the upper molds 31, 31' can be moved to the space formed by the removal and then removed. As a result, the lower molds 32, 32' and the upper molds 31, 31' can be removed without contacting the resin part 20.
 (9)なお、上述した吸気ポート部11は、開口11aから段差部14までの部分(おもに被覆部13)が直線状に形成されているため、型30,30′の外形状を簡素化できる。このため、吸気ポート部11に対し、型30,30′を簡単に抜き挿しできることから、シリンダヘッド1を容易に製造できる。 (9) In the intake port portion 11 described above, the portion from the opening 11a to the step portion 14 (mainly the covering portion 13) is formed in a linear shape, so that the outer shape of the mold 30, 30' can be simplified. .. Therefore, the molds 30 and 30' can be easily inserted into and removed from the intake port portion 11, so that the cylinder head 1 can be easily manufactured.
[2.第二実施形態]
 第二実施形態に係る製造方法について、図13~図15を参照しながら説明する。本実施形態の製造方法は、上述した第一実施形態の製造方法に対し、樹脂部20の射出成型で用いるシール部材40′及び型130が異なる。以下、第一実施形態で説明した要素と同一又は対応する要素に同一の符号を付し、重複する説明を省略する。
[2. Second embodiment]
A manufacturing method according to the second embodiment will be described with reference to FIGS. 13 to 15. The manufacturing method of the present embodiment differs from the manufacturing method of the first embodiment described above in the seal member 40' and the mold 130 used in the injection molding of the resin portion 20. Hereinafter, elements that are the same as or correspond to the elements described in the first embodiment will be denoted by the same reference numerals, and redundant description will be omitted.
 図13(a)及び(b)に示すように、本実施形態のシール部材40′は、上述したシール部材40の第一部材41と同様に形成されている。すなわち、シール部材40′は、上記の第二部材42(オーリング43及び保持部42a)を有さず、上述したシール部41a及びガイド部41bのそれぞれと同様に形成されたシール部40a及びガイド部40bを有する。一方、型130は、図7(a)及び(b)に例示したスライド型30′と、図6(a)及び(b)に例示した二つの第二部材42とを合体させた形状に相当するスライド型である。 As shown in FIGS. 13A and 13B, the seal member 40 ′ of this embodiment is formed in the same manner as the first member 41 of the seal member 40 described above. That is, the seal member 40' does not have the second member 42 (the O-ring 43 and the holding portion 42a), and is formed in the same manner as the seal portion 41a and the guide portion 41b described above, respectively. It has a part 40b. On the other hand, the mold 130 corresponds to a shape in which the slide mold 30′ illustrated in FIGS. 7A and 7B and the two second members 42 illustrated in FIGS. 6A and 6B are combined. It is a slide type.
 具体的には、スライド型130は、上述したスライド型30と同様に、上方型131,下方型132,中央型133,側方型134及び弁型135を有する。これらの型131~135は、上述したスライド型30の型31~35のそれぞれが、上記の第二部材42の保持部42aに相当する部分を有するように、燃焼室2側の端部が延長された形状をなす。また、スライド型130は、これらの型131~135を完全に組み立てた状態で、上述した第二部材42の孔部42bに相当する孔部137を有する。孔部137は、具体的には、上方型131に形成された貫通孔131aと、中央型133の上面に形成された凹部133aと、各側方型134の上面に形成された凹部134aとが組み合わされて構成される。 Specifically, the slide mold 130 has an upper mold 131, a lower mold 132, a central mold 133, a side mold 134, and a valve mold 135, like the slide mold 30 described above. These molds 131 to 135 are extended at the end on the combustion chamber 2 side so that each of the molds 31 to 35 of the slide mold 30 described above has a portion corresponding to the holding portion 42a of the second member 42. It has the shape shown. Further, the slide mold 130 has a hole portion 137 corresponding to the hole portion 42b of the second member 42 described above in a state where these molds 131 to 135 are completely assembled. Specifically, the hole portion 137 includes a through hole 131 a formed in the upper die 131, a recess 133 a formed in the upper surface of the central die 133, and a recess 134 a formed in the upper surface of each side die 134. Composed by combining.
 以下、本実施形態のシール部材40′及びスライド型130を用いて樹脂部20を吸気ポート部11に配置する手順について説明する。なお、図14に示すように、本実施形態では、吸気ポート部11から段差部14が省略され、吸気ポート部11の内面の略全域が被覆部13となる(露出部12が設けられない)シリンダヘッド本体10′を例示する。 Hereinafter, a procedure for arranging the resin portion 20 in the intake port portion 11 using the seal member 40′ and the slide mold 130 of the present embodiment will be described. Note that, as shown in FIG. 14, in the present embodiment, the step portion 14 is omitted from the intake port portion 11, and substantially the entire inner surface of the intake port portion 11 becomes the covering portion 13 (the exposed portion 12 is not provided). A cylinder head body 10' is illustrated.
 図15に示すように、本実施形態では、まず吸気ポート部11の開口11aから吸気ポート部11にスライド型130を挿入する(第二ステップA20)。次いで、吸気ポート部11に対して燃焼室2側からシール部材40′を挿入する(第一ステップA10)。具体的には、シール部材40′のガイド部40bをシール部40aよりも先に燃焼室2側から挿入し、ガイド部40bをスライド型130の孔部137に通して挿通孔7に挿入するとともに、シール部材40′のシール部40aを吸気バルブ孔4に嵌合させて吸気ポート部11の燃焼室2側の端部を封止する。なお、本実施形態の第二ステップA20でも、上述した第一実施形態と同様に、図5(b)に示した手順でスライド型130の型131~135を吸気ポート部11に挿入する。 As shown in FIG. 15, in the present embodiment, first, the slide mold 130 is inserted into the intake port portion 11 from the opening 11a of the intake port portion 11 (second step A20). Next, the seal member 40' is inserted into the intake port portion 11 from the combustion chamber 2 side (first step A10). Specifically, the guide portion 40b of the seal member 40' is inserted from the combustion chamber 2 side before the seal portion 40a, and the guide portion 40b is inserted into the insertion hole 7 through the hole portion 137 of the slide mold 130. The seal portion 40a of the seal member 40' is fitted in the intake valve hole 4 to seal the end portion of the intake port portion 11 on the combustion chamber 2 side. Also in the second step A20 of this embodiment, the molds 131 to 135 of the slide mold 130 are inserted into the intake port portion 11 by the procedure shown in FIG. 5B, as in the above-described first embodiment.
 そして、上述した第一実施形態と同様に、第一ステップA10で吸気ポート部11に挿入したシール部材40′と、第二ステップA20で吸気ポート部11に挿入したスライド型130とを吸気ポート部11の内部で密着させ(図15の第三ステップA30)、シール部材40とスライド型130とを図14に示す状態とする。その後、シール部材40′及びスライド型130が配置されている吸気ポート部11の内部に溶融樹脂を供給する(図15の第四ステップA40)。 Then, similarly to the above-described first embodiment, the seal member 40' inserted into the intake port portion 11 in the first step A10 and the slide mold 130 inserted into the intake port portion 11 in the second step A20 are provided in the intake port portion. The inside of 11 is closely contacted (3rd step A30 of FIG. 15), and the sealing member 40 and the slide mold 130 are brought into the state shown in FIG. Then, the molten resin is supplied into the intake port portion 11 where the seal member 40' and the slide mold 130 are arranged (fourth step A40 in FIG. 15).
 ここで、溶融樹脂が広がる空間における燃焼室2側の縁部は、シール部材40′のシール部40aによってシールされているため、燃焼室2側への樹脂漏れが回避される。一方、溶融樹脂が広がる空間における開口11a側の縁部は、上述した第一実施形態と同様に、バリ切り用の部品136によってシールされるため、樹脂漏れが回避される。 Here, since the edge portion on the combustion chamber 2 side in the space where the molten resin spreads is sealed by the seal portion 40a of the seal member 40', resin leakage to the combustion chamber 2 side is avoided. On the other hand, the edge portion on the side of the opening 11a in the space where the molten resin spreads is sealed by the burr-cutting component 136 as in the above-described first embodiment, so that resin leakage is avoided.
 溶融樹脂が固化することで吸気ポート部11の内部に樹脂部20が形成された以降に(図15のステップA45のYESルート)、シール部材40′とスライド型130とを吸気ポート部11から抜き取る(図15の第五ステップA50)。なお、本実施形態の第五ステップA50では、まずシール部材40′を燃焼室2側から抜き取り、次いでスライド型130を吸気ポート部11の開口11aから抜き取る。第五ステップA50でスライド型130の各型131~135を抜き取る手順は、上述した第一実施形態と同様に、図5(c)に示す手順で行うことができる。 After the resin portion 20 is formed inside the intake port portion 11 by solidifying the molten resin (YES route in step A45 of FIG. 15), the seal member 40' and the slide mold 130 are pulled out from the intake port portion 11. (Fifth step A50 in FIG. 15). In the fifth step A50 of this embodiment, the seal member 40' is first pulled out from the combustion chamber 2 side, and then the slide die 130 is pulled out from the opening 11a of the intake port portion 11. The procedure of removing the molds 131 to 135 of the slide mold 130 in the fifth step A50 can be performed by the procedure shown in FIG. 5C, as in the above-described first embodiment.
 本実施形態に係る製造方法によれば、まず吸気ポート部11の開口11aからスライド型130を挿入し、次に吸気ポート部11に対して燃料室2側からシール部材40′を挿入して吸気ポート部11の燃焼室2側の端部を封止する。その後は、上述した第一実施形態と同様に、吸気ポート部11の内部においてシール部材40′と型130とを密着させた状態で、溶融樹脂を流し込むため、溶融樹脂の漏れを防止できる。これにより、シリンダヘッド本体10′に追加処理を施さなくても燃焼室2側のシール面を確保でき、樹脂漏れを防止することができる。 According to the manufacturing method of the present embodiment, first, the slide mold 130 is inserted from the opening 11a of the intake port portion 11, and then the seal member 40' is inserted into the intake port portion 11 from the fuel chamber 2 side to intake air. The end of the port portion 11 on the combustion chamber 2 side is sealed. After that, as in the above-described first embodiment, the molten resin is poured in the state where the seal member 40 ′ and the mold 130 are in close contact with each other inside the intake port portion 11, so leakage of the molten resin can be prevented. As a result, the sealing surface on the combustion chamber 2 side can be secured and the resin leakage can be prevented even if the cylinder head body 10' is not additionally processed.
 また、本実施形態に係る製造方法によれば、シール部40aを吸気バルブ孔4に嵌合させるだけで吸気ポート部11の燃焼室2側の端部を封止することができる。すなわち、上述した保持部42a及びオーリング43が設けられないため、樹脂部20を吸気ポート部11の略全長にわたって配置することができる。これにより、吸気の温度上昇を更に抑制できることから、吸入空気量の減少とノッキングの発生とをより抑えることができ、更なるエンジン性能の向上を図ることができる。なお、本実施形態に係る製造方法によれば、上述した実施形態と同様の構成からは同様の効果が得られる。 Further, according to the manufacturing method of the present embodiment, the end portion of the intake port portion 11 on the combustion chamber 2 side can be sealed only by fitting the seal portion 40a into the intake valve hole 4. That is, since the holding portion 42a and the O-ring 43 described above are not provided, the resin portion 20 can be arranged over substantially the entire length of the intake port portion 11. As a result, the temperature rise of the intake air can be further suppressed, so that the reduction of the intake air amount and the occurrence of knocking can be further suppressed, and the engine performance can be further improved. According to the manufacturing method of this embodiment, the same effect can be obtained from the same configuration as that of the above-described embodiment.
[3.変形例]
 上述したシリンダヘッド1の製造方法は一例であって、上述した手順に限られない。例えば、弁型35,35′,135を下方型32,32′,132や側方型34,34′,134の挿入後に挿入してもよい。また、第五ステップA50,S50において、最初に弁型35,35′,135を抜いてもよいし、側方型34,34′,134を抜いた次に抜いてもよい。
[3. Modification]
The manufacturing method of the cylinder head 1 described above is an example, and is not limited to the procedure described above. For example, the valve molds 35, 35', 135 may be inserted after the lower molds 32, 32', 132 and the side molds 34, 34', 134 are inserted. Further, in the fifth step A50, S50, the valve molds 35, 35', 135 may be removed first, or the side molds 34, 34', 134 may be removed next.
 上述した型30,30′,130の各構成は一例であって、上述したものに限られない。上述した型30,30′,130はいずれも五種類の型31~35,31′~35′,131~135から構成されたスライド型であるが、型の種類や個数は特に限定されない。また、型は、吸気ポート部11の内部に配置できる構成であればよく、吸気ポート部11に対して抜き挿しする方向に沿って分割された複数の部品(型)からなるスライド型でなくてもよい。例えば、吸気ポート部の形状がアンダーカットになっていない場合には、単一の型で構成することもできる。 The respective configurations of the molds 30, 30', and 130 described above are examples, and are not limited to those described above. The above-mentioned molds 30, 30' and 130 are all slide molds composed of five kinds of molds 31 to 35, 31' to 35' and 131 to 135, but the kind and the number of molds are not particularly limited. Further, the mold may be any structure as long as it can be arranged inside the intake port portion 11, and is not a slide mold composed of a plurality of parts (molds) divided along the direction of inserting and removing from the intake port portion 11. Good. For example, when the shape of the intake port portion is not undercut, it may be configured with a single mold.
 上述したシリンダヘッド1の構成は一例であって、上述したものに限られない。例えば、直列四気筒エンジンのシリンダヘッドでなくてもよいし、筒内噴射弁及びポート噴射弁の両方を備えたエンジンのシリンダヘッドでなくてもよい。また、1気筒に吸気弁が一つ設けられるエンジンのシリンダヘッドであってもよい。この場合、吸気ポート部の形状が二股形状とはならず、シリンダヘッドを製造する際に一つの吸気ポート部に挿入するシール部材40,40′の個数は一つとなる。 The configuration of the cylinder head 1 described above is an example, and is not limited to the above. For example, it may not be the cylinder head of an in-line four-cylinder engine, or the cylinder head of an engine equipped with both an in-cylinder injection valve and a port injection valve. Further, it may be a cylinder head of an engine in which one intake valve is provided in one cylinder. In this case, the shape of the intake port portion does not have a bifurcated shape, and the number of seal members 40 and 40' that are inserted into one intake port portion when manufacturing the cylinder head is one.
 上述した吸気ポート部11の構成は一例であり、段差部14の位置が上述した位置以外であってもよい。例えば、吸気ポート部11に分岐点15がある場合に、段差部が分岐点15よりも上流側に設けられていてもよい。また、ポート噴射弁が設けられないエンジンであれば、拡張部16も不要となる。なお、段差部14が省略されてもよい。 The configuration of the intake port portion 11 described above is an example, and the position of the stepped portion 14 may be other than the position described above. For example, when the intake port portion 11 has the branch point 15, the stepped portion may be provided on the upstream side of the branch point 15. Further, if the engine is not provided with the port injection valve, the expansion part 16 is also unnecessary. The step portion 14 may be omitted.
 上述したシール部材40,40′の構成は一例であって、上述したものに限られない。シール部材40,40′は、吸気ポート部11の燃焼室2側の端部を封止する構成を有していればよく、例えば、ガイド部41b,40bが省略されてもよい。また、上述した第一実施形態のようにオーリング43を装着された保持部42aが設けられる場合は、シール部41aが省略されてもよい。 The configuration of the seal members 40 and 40' described above is an example, and is not limited to the above. The sealing members 40, 40' may be configured to seal the end portion of the intake port portion 11 on the combustion chamber 2 side, and for example, the guide portions 41b, 40b may be omitted. Further, when the holding portion 42a to which the O-ring 43 is attached is provided as in the first embodiment described above, the seal portion 41a may be omitted.
 1 シリンダヘッド
 1a 壁部
 2 燃焼室
 3 吸気ポート
 4 吸気バルブ孔
 5 ポート噴射弁の取付孔(第二孔部)
 5a 開口
 7 挿通孔(第一孔部)
 7a 開口
 10 シリンダヘッド本体
 11 吸気ポート部
 11a 開口
 14 段差部
 16 拡張部
 20 樹脂部
 30,30′,130 スライド型(型)
 31,31′,131 上方型
 32,32′,132 下方型
 33,33′,133 中央型
 34,34′,134 側方型
 35,35′,135 弁型
 40,40′ シール部材
 41a シール部
 41b ガイド部
 42a 保持部
 A10,S10 第一ステップ
 A20,S20 第二ステップ
 A30,S30 第三ステップ
 A40,S40 第四ステップ
 A50,S50 第五ステップ
1 Cylinder Head 1a Wall 2 Combustion Chamber 3 Intake Port 4 Intake Valve Hole 5 Port Injection Valve Mounting Hole (Second Hole)
5a opening 7 insertion hole (first hole portion)
7a Opening 10 Cylinder Head Main Body 11 Intake Port Part 11a Opening 14 Stepped Part 16 Expanded Part 20 Resin Part 30, 30', 130 Slide Type
31, 31', 131 Upper mold 32, 32', 132 Lower mold 33, 33', 133 Central mold 34, 34', 134 Lateral mold 35, 35', 135 Valve mold 40, 40' Seal member 41a Seal part 41b Guide part 42a Holding part A10,S10 First step A20,S20 Second step A30,S30 Third step A40,S40 Fourth step A50,S50 Fifth step

Claims (8)

  1.  燃焼室に吸気バルブ孔を介して連通する吸気ポート部が形成されたシリンダヘッド本体を有するシリンダヘッドの製造方法であって、
     前記吸気ポート部に対して前記燃焼室側からシール部材を挿入し、前記シール部材で前記吸気ポート部の前記燃焼室側の端部を封止する第一ステップと、
     前記シリンダヘッド本体の壁部に形成された前記吸気ポート部の開口から前記吸気ポート部に型を挿入する第二ステップと、
     前記第一ステップで前記吸気ポート部に挿入した前記シール部材と、前記第二ステップで前記吸気ポート部に挿入した前記型とを、前記吸気ポート部の内部で密着させる第三ステップと、
     前記第三ステップ後、前記型が配置されている前記吸気ポート部の内部に溶融樹脂を供給する第四ステップと、
     前記第四ステップ後、前記溶融樹脂が固化することで前記吸気ポート部の内部に樹脂部が形成された以降に、前記シール部材及び前記型を前記吸気ポート部から抜き取る第五ステップと、を備えた
    ことを特徴とする、シリンダヘッドの製造方法。
    A method of manufacturing a cylinder head, comprising a cylinder head body having an intake port portion communicating with a combustion chamber via an intake valve hole,
    A first step of inserting a seal member into the intake port portion from the combustion chamber side, and sealing the end portion of the intake port portion on the combustion chamber side with the seal member,
    A second step of inserting a mold into the intake port portion from an opening of the intake port portion formed in the wall portion of the cylinder head body;
    A third step of bringing the seal member inserted into the intake port section in the first step and the mold inserted into the intake port section in the second step into close contact with each other inside the intake port section;
    After the third step, a fourth step of supplying a molten resin inside the intake port portion in which the mold is arranged,
    After the fourth step, after the molten resin is solidified to form a resin portion inside the intake port portion, a fifth step of withdrawing the seal member and the mold from the intake port portion, A method of manufacturing a cylinder head, characterized in that
  2.  前記シリンダヘッド本体には、バルブガイドが挿通される第一孔部が前記吸気ポート部と連通するように形成されており、
     前記シール部材は、前記吸気バルブ孔に嵌合するシール部と、前記シール部から延設されて前記シール部が前記吸気バルブ孔に嵌合した状態で前記第一孔部に配置されるガイド部と、を有し、
     前記第一ステップでは、前記ガイド部を前記シール部よりも先に前記燃焼室側から挿入し、前記ガイド部を前記第一孔部に挿入するとともに前記シール部を前記吸気バルブ孔に嵌合させることで前記端部を封止する
    ことを特徴とする、請求項1記載のシリンダヘッドの製造方法。
    The cylinder head body is formed with a first hole through which a valve guide is inserted so as to communicate with the intake port.
    The seal member includes a seal portion that fits into the intake valve hole, and a guide portion that extends from the seal portion and that is disposed in the first hole portion in a state where the seal portion fits into the intake valve hole. And have,
    In the first step, the guide portion is inserted from the combustion chamber side before the seal portion, the guide portion is inserted into the first hole portion, and the seal portion is fitted into the intake valve hole. The method of manufacturing a cylinder head according to claim 1, wherein the end portion is sealed by doing so.
  3.  前記シール部材は、円形状のオーリングと、前記オーリングが装着された保持部と、を有し、
     前記第一ステップでは、前記吸気ポート部に対して前記燃焼室側から前記保持部を挿入し、前記オーリングを前記吸気ポート部の内面に密着させて前記端部を封止し、
     前記第三ステップでは、前記保持部と前記型とを密着させる
    ことを特徴とする、請求項1又は2記載のシリンダヘッドの製造方法。
    The seal member has a circular O-ring and a holding unit to which the O-ring is attached,
    In the first step, the holding portion is inserted from the combustion chamber side with respect to the intake port portion, the O-ring is brought into close contact with the inner surface of the intake port portion to seal the end portion,
    The method of manufacturing a cylinder head according to claim 1, wherein, in the third step, the holder and the mold are brought into close contact with each other.
  4.  前記シリンダヘッド本体には、バルブガイドが挿通される第一孔部が前記吸気ポート部と連通するように形成されており、
     前記第一ステップでは、前記内面のうち、前記第一孔部の開口よりも吸気流れ方向の上流側に前記オーリングを密着させる
    ことを特徴とする、請求項3記載のシリンダヘッドの製造方法。
    The cylinder head body is formed with a first hole through which a valve guide is inserted so as to communicate with the intake port.
    4. The method of manufacturing a cylinder head according to claim 3, wherein, in the first step, the O-ring is brought into close contact with the inner surface on an upstream side of an opening of the first hole portion in an intake air flow direction.
  5.  前記型は、前記吸気ポート部に対して抜き挿しする方向に沿って分割された複数の部品が組み合わされて構成されているスライド型である
    ことを特徴とする、請求項1~4のいずれか一項に記載のシリンダヘッドの製造方法。
    5. The mold is a slide mold configured by combining a plurality of parts divided along a direction of inserting and extracting with respect to the intake port portion, wherein the mold is a slide mold. A method of manufacturing a cylinder head according to one item.
  6.  前記シリンダヘッド本体には、ポート噴射弁を取り付けるための第二孔部が前記吸気ポート部と連通するように形成されており、
     前記吸気ポート部のうち、吸気流れ方向の中途には、前記吸気流れ方向に直交する断面の大きさが変化する段差部が形成されているとともに、前記段差部よりも前記吸気流れ方向の上流側には、前記第二孔部側に広がった拡張部と前記第二孔部の開口とが形成されており、
     前記スライド型は、前記拡張部を含む上部に配置される上方型と、前記上方型よりも下方に配置される下方型と、前記上方型及び前記下方型の間に配置される中央型と、少なくとも前記中央型の両側方に配置される側方型と、前記第二孔部に挿通される弁型と、を有し、
     前記第二ステップでは、前記吸気ポート部の開口から、前記上方型、前記下方型、前記中央型、前記側方型の順に挿入するとともに、前記第二孔部に前記弁型を挿入する
    ことを特徴とする、請求項5記載のシリンダヘッドの製造方法。
    In the cylinder head body, a second hole for attaching a port injection valve is formed so as to communicate with the intake port portion,
    A step portion of which the size of a cross section orthogonal to the intake flow direction changes is formed midway in the intake flow direction of the intake port portion, and an upstream side of the step portion in the intake flow direction is formed. In the, the expanded portion and the opening of the second hole portion that is widened toward the second hole portion side,
    The slide mold includes an upper mold arranged at an upper part including the expansion portion, a lower mold arranged below the upper mold, and a central mold arranged between the upper mold and the lower mold. At least a side mold arranged on both sides of the central mold, and a valve mold inserted into the second hole portion,
    In the second step, the upper die, the lower die, the central die, and the lateral die are inserted in this order from the opening of the intake port portion, and the valve die is inserted into the second hole portion. The method for manufacturing a cylinder head according to claim 5, characterized in that
  7.  前記第二ステップでは、前記上方型を前記吸気ポート部の開口から挿入した後、前記弁型を前記第二孔部に挿入して前記上方型と一体化させる
    ことを特徴とする、請求項6記載のシリンダヘッドの製造方法。
    7. In the second step, the upper die is inserted from the opening of the intake port portion, and then the valve die is inserted into the second hole portion to be integrated with the upper die. A method for manufacturing the described cylinder head.
  8.  前記第五ステップでは、前記第二孔部から前記弁型を抜き取るとともに、前記吸気ポート部の開口から前記側方型、前記中央型、前記下方型、前記上方型の順で抜き取る
    ことを特徴とする、請求項6又は7記載のシリンダヘッドの製造方法。
    In the fifth step, the valve mold is extracted from the second hole portion, and the side mold, the central mold, the lower mold, and the upper mold are sequentially extracted from the opening of the intake port portion. The method for manufacturing a cylinder head according to claim 6 or 7.
PCT/JP2019/050944 2019-01-07 2019-12-25 Cylinder head manufacturing method WO2020145157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020565702A JP7028344B2 (en) 2019-01-07 2019-12-25 Cylinder head manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-000833 2019-01-07
JP2019000833 2019-01-07

Publications (1)

Publication Number Publication Date
WO2020145157A1 true WO2020145157A1 (en) 2020-07-16

Family

ID=71520701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050944 WO2020145157A1 (en) 2019-01-07 2019-12-25 Cylinder head manufacturing method

Country Status (2)

Country Link
JP (1) JP7028344B2 (en)
WO (1) WO2020145157A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204796A (en) * 2002-12-26 2004-07-22 Nissan Motor Co Ltd Intake port structure of internal combustion engine
JP2016205267A (en) * 2015-04-24 2016-12-08 三菱自動車工業株式会社 Process of manufacture of port part of cylinder head
JP2016223304A (en) * 2015-05-27 2016-12-28 トヨタ紡織株式会社 Fixing structure of intake port liner, fixing method of intake port liner, and preform
JP2018003601A (en) * 2016-06-27 2018-01-11 三菱自動車工業株式会社 Intake passage structure for engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204796A (en) * 2002-12-26 2004-07-22 Nissan Motor Co Ltd Intake port structure of internal combustion engine
JP2016205267A (en) * 2015-04-24 2016-12-08 三菱自動車工業株式会社 Process of manufacture of port part of cylinder head
JP2016223304A (en) * 2015-05-27 2016-12-28 トヨタ紡織株式会社 Fixing structure of intake port liner, fixing method of intake port liner, and preform
JP2018003601A (en) * 2016-06-27 2018-01-11 三菱自動車工業株式会社 Intake passage structure for engine

Also Published As

Publication number Publication date
JP7028344B2 (en) 2022-03-02
JPWO2020145157A1 (en) 2021-09-27

Similar Documents

Publication Publication Date Title
US7198026B2 (en) Divider plate for an inlet port, sand core for forming an inlet port, and cylinder head
US7100560B2 (en) Partition plate for intake port, intake port molding sand core and cylinder head
WO2020145157A1 (en) Cylinder head manufacturing method
WO2020145154A1 (en) Method for manufacturing cylinder head
KR101055831B1 (en) Molding apparatus for cylinder head casting
JP3417331B2 (en) Cylinder head and method of manufacturing the same
JP7173166B2 (en) cylinder head
JP4172371B2 (en) Cylinder head manufacturing method
JP6117575B2 (en) Molding equipment for casting
JP7136233B2 (en) cylinder head
JP5762488B2 (en) Mold for casting
JP6461199B2 (en) Internal combustion engine
JP7136232B2 (en) cylinder head
JP2004268061A (en) Cooling structure for core pin, and casting method using the structure
JP7040645B2 (en) cylinder head
JP2015117585A (en) Cylinder head structure of engine
JP2009024616A (en) Cylinder body of engine and its manufacturing method
JPWO2020145158A1 (en) cylinder head
JPH02307657A (en) Manufacture of cylinder block
JP2007278092A (en) Manufacturing method for cylinder block and cylinder block
JP2019078254A (en) cylinder head
JP2011190731A (en) Method and device for manufacturing cylinder head, and cylinder head
KR20050064839A (en) Method of producing cylinder head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565702

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909540

Country of ref document: EP

Kind code of ref document: A1