WO2020144969A1 - Control device, lens barrel, and imaging device - Google Patents

Control device, lens barrel, and imaging device Download PDF

Info

Publication number
WO2020144969A1
WO2020144969A1 PCT/JP2019/046714 JP2019046714W WO2020144969A1 WO 2020144969 A1 WO2020144969 A1 WO 2020144969A1 JP 2019046714 W JP2019046714 W JP 2019046714W WO 2020144969 A1 WO2020144969 A1 WO 2020144969A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
transmission
drive
ultrasonic motor
unit
Prior art date
Application number
PCT/JP2019/046714
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 和夫
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2020565617A priority Critical patent/JP7435474B2/en
Publication of WO2020144969A1 publication Critical patent/WO2020144969A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/06Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion
    • F16H13/08Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion with balls or with rollers acting in a similar manner
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present disclosure relates to a control device, a lens barrel, and an imaging device.
  • Patent Document 1 a cylindrical member having a small linear expansion coefficient (coefficient of thermal expansion) is arranged between the planetary rotation shaft and the insertion hole of the planetary rotation shaft, so that the insertion hole can be inserted even in a low temperature environment.
  • Patent Document 1 it was not possible to maintain the transmission having a power transmission mechanism using traction force at an appropriate temperature.
  • the present disclosure has been made in view of the above circumstances, and a new and improved control device capable of maintaining a transmission having a power transmission mechanism that uses a traction force at a more appropriate temperature, A lens barrel and an imaging device are provided.
  • a control device that includes a control unit that controls driving of a motor that generates power provided to the transmission based on temperature information of the transmission that includes a power transmission mechanism that uses a traction force. To be done.
  • a control unit that controls driving of a motor that generates power provided to the transmission based on temperature information of the transmission that includes a power transmission mechanism that uses a traction force, and the power transmission.
  • a lens barrel is provided that includes a lens group in which at least one lens is driven by using power transmitted through the mechanism.
  • a control unit that controls driving of a motor that generates power provided to the transmission based on temperature information of the transmission that includes a power transmission mechanism that uses a traction force, and the power transmission.
  • An image pickup device including: a lens group in which at least one lens is driven by using power transmitted through a mechanism; and an image pickup device that converts a subject image formed by the lens group into an electrical signal. A device is provided.
  • 7 is a graph showing a control mode of an ultrasonic motor according to a first modification and a change in temperature of a transmission device provided with power from the ultrasonic motor.
  • 7 is a graph showing a control mode of an ultrasonic motor according to a first modification and a change in temperature of a transmission device provided with power from the ultrasonic motor.
  • 8 is a graph showing a control mode of an ultrasonic motor according to a second modification and a change in temperature of a transmission device provided with power from the ultrasonic motor.
  • FIG. 9 is a graph showing a control mode of an ultrasonic motor according to a second modification and a change in temperature of a transmission device provided with power from the ultrasonic motor. It is a figure which shows the specific example of a reference table in case the fall of the rotation speed of an ultrasonic motor by control of the phase difference of a drive signal is compensated by a drive voltage. It is a figure which shows the specific example of the reference table in case the fall of the rotation speed of an ultrasonic motor by control of the phase difference of a drive signal is compensated by a drive frequency. It is a schematic diagram which shows the hardware structural example of the ultrasonic motor and the transmission which concern on this embodiment.
  • FIG. 16 is a block diagram showing an example of a functional configuration of the camera head and CCU shown in FIG. 15. It is a block diagram showing an example of a schematic structure of a vehicle control system. It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
  • traction drive As mentioned above, in recent years, various technologies have been developed for transmissions including a power transmission mechanism that uses traction force.
  • a “traction drive” will be described as an example of a power transmission mechanism that uses traction force (note that the power transmission mechanism that uses traction force is not necessarily limited to a traction drive).
  • the “traction drive” is a mechanism for transmitting the rotational force of the sun roller to the planetary roller by interposing oil or grease between two types of pressure-contacted rollers (referred to as “sun roller” and “planetary roller”). Is.
  • One of the features of the traction drive is that there is no backlash because no gears are used and no noise is generated due to backlash. Taking advantage of this feature, a transmission equipped with a traction drive is used in various products (for example, printers).
  • transmissions currently used for focusing an image pickup apparatus are provided with gears, and a drive sound due to backlash is generated. Further, the drive sound is reduced by using the transmission including the traction drive for the focus of the image pickup apparatus.
  • the traction drive may not be able to operate properly due to changes in the temperature environment. More specifically, for example, in a low temperature environment, the power transmission efficiency (or traction coefficient) may be reduced by changing the properties of oil or grease used in the traction drive (for example, increasing viscosity). descend. Also, due to contraction of each component of the traction drive in a low temperature environment and expansion in a high temperature environment, the contact surface pressure between the sun roller and the planetary roller changes, resulting in a decrease in power transmission efficiency. Or power transmission may become impossible. When the transmission equipped with the traction drive is applied to a device used in various temperature environments such as an imaging device (for example, a camera), the traction drive is appropriate due to the change in the temperature environment. It is not desirable to be unable to work.
  • an imaging device for example, a camera
  • a control device controls drive of a motor that generates power provided to a transmission based on temperature information of a transmission that includes a traction drive (power transmission mechanism that uses traction force). To do. Particularly in a low-temperature environment, the control device according to the present embodiment controls the drive of the motor and causes the motor to generate heat when it determines that the temperature of the transmission is equal to or lower than a predetermined value based on the temperature information. warm. As a result, the control device according to the present embodiment can maintain the transmission at a more appropriate temperature by using the heat generated by driving the motor.
  • the “motor” used in the present embodiment may be of any type as long as it can control the heat generated during its driving, and its type does not matter.
  • a case where an ultrasonic motor is used as the "motor” will be described as an example.
  • Ultrasonic motors are piezoelectric actuators that use a piezoelectric element to convert electrical energy into mechanical energy.
  • the principle is to generate ultrasonic vibrations in a vibrating body (hereinafter referred to as “stator”) by a piezoelectric element, and drive a moving body (hereinafter referred to as “rotor”) via frictional force. ..
  • a piezoelectric element is bonded to the stator, and the piezoelectric element is provided with independent two-phase (hereinafter referred to as “A phase” and “B phase”) electrodes.
  • a phase independent two-phase
  • B phase independent two-phase
  • FIG. 1 is a graph showing the relationship between the phase difference between the drive signals applied to the A-phase and B-phase electrodes and the speed at which the ultrasonic motor rotates (denoted as “rotation speed” in the figure).
  • rotation speed the rotation speed of the ultrasonic motor is clockwise. Maximum (or maximum counterclockwise).
  • the stator vibration is a standing wave (waveform progresses.
  • the rotor does not rotate to form a wave that seems to oscillate without stopping.
  • the ultrasonic motor has the property of generating heat when the stator vibrates at high speed due to the action of the piezoelectric element.
  • FIG. 2 is a graph showing the relationship between the vibration amount and the heat generation amount of the ultrasonic motor for each drive frequency.
  • the heat generated by the ultrasonic motor is affected more by the vibration of the piezoelectric element than by the friction between the stator and the rotor or the driving current.
  • the vibration amount and the heat generation amount of the ultrasonic motor have a positive correlation. Have.
  • the amount of heat generated by the ultrasonic motor does not depend on whether a traveling wave or a standing wave is formed by vibration.
  • the control device is applied to the ultrasonic motor in the case where the transmission is warmed by controlling the drive of the ultrasonic motor to heat the ultrasonic motor and in the case where it is not. Change (control) the voltage pattern. More specifically, the control device according to the present embodiment changes (controls) at least one of the phase difference, the drive frequency, and the drive voltage of the drive signal applied to the ultrasonic motor as a voltage pattern. ).
  • FIG. 3 is a graph showing a control mode of a conventional ultrasonic motor. More specifically, FIG. 3A shows a change in temperature of the conventional ultrasonic motor, FIG. 3B shows a change in phase difference of a drive signal applied to the ultrasonic motor, and FIG. A change in frequency (note that the broken line indicates the resonance frequency), a change in the drive voltage in D of FIG. 3 (the drive voltage that is normally applied is referred to as a “basic voltage”), E shows the change in the rotation speed of the ultrasonic motor (the normal rotation speed is referred to as the "reference speed"). As shown in FIG. 3B, the phase difference of the drive signals is not changed from +90 [deg] (or -90 [deg]) when the ultrasonic motor is driven.
  • FIG. 4 is a graph showing a control mode of the ultrasonic motor according to the present embodiment and a change in temperature of a transmission (provided with a traction drive) provided with power from the ultrasonic motor. More specifically, FIG. 4A shows a change in temperature of the transmission according to the present embodiment, and FIG. 4B shows a change in phase difference between drive signals applied to the ultrasonic motor according to the present embodiment. 4C shows a change in drive frequency, FIG. 4D shows a change in drive voltage, and E in FIG. 4 shows a change in rotation speed of the ultrasonic motor. As shown in FIGS.
  • the control device when the temperature of the transmission is equal to or lower than a predetermined value, the control device according to the present embodiment sets the phase difference of the drive signal to 0 [deg], and thus the ultrasonic motor is controlled. Generate a standing wave. Thereby, as shown in E of FIG. 4, the control device can heat the ultrasonic motor by the standing wave (vibration) while setting the rotation speed of the ultrasonic motor to 0 [r/min].
  • a transmission equipped with a traction drive can heat the heat generated by an ultrasonic motor. Then, as shown in A and B of FIG. 4, when the temperature of the transmission including the traction drive becomes higher than a predetermined value, the control device according to the present embodiment causes the phase difference of the drive signals to be approximately +90 [deg] ( Alternatively, the traveling wave is generated in the ultrasonic motor by setting it to about ⁇ 90 [deg]), and the ultrasonic motor is rotated. As a result, the control device according to the present embodiment can properly operate the transmission including the traction drive even in a low temperature environment in which the performance during operation deteriorates.
  • an operation state in which the control device according to the present embodiment controls the drive of the ultrasonic motor to heat the ultrasonic motor to heat the transmission is referred to as a “heat generation mode”. That is, when the control device according to the present embodiment determines that the temperature of the transmission is equal to or lower than the predetermined value, the control device changes the mode to the heat generation mode and warms the transmission.
  • an operating state in which the ultrasonic motor is rotating is called a "rotational drive mode”. That is, when the control device according to the present embodiment determines that the temperature of the transmission has become higher than a predetermined value, the control device changes the mode from the heat generation mode to the rotary drive mode and rotates the ultrasonic motor as usual.
  • the “predetermined value” used for the mode switching control is assumed to be, for example, about ⁇ 20 [° C.], but is not necessarily limited to this value.
  • the predetermined value is set to an appropriate value based on the characteristics of the oil or grease used in the traction drive, or the type and application of the control device according to the present embodiment.
  • control device can be realized by the control unit 150 of the lens barrel 100, the control unit 250 of the camera body 200, or the like, which will be described later with reference to FIG. 5 and the like. More specifically, the “control device according to the present embodiment” can be realized by an IC chip that functions as the control unit 150 of the lens barrel 100 or the control unit 250 of the camera body 200 (of course, the IC chip is Not limited). The “control device according to the present embodiment” may be realized by combining the control unit 150 of the lens barrel 100 or the control unit 250 of the camera body 200 with another configuration. The details of this embodiment will be described below.
  • FIG. 5 is a block diagram showing a configuration example of the lens barrel 100 and the camera body 200 according to the present embodiment.
  • the lens barrel 100 and the camera body 200 form an imaging device 300.
  • the lens barrel 100 includes an ultrasonic motor 110, a transmission device 120, an encoder 130, a temperature sensor 140, a control unit 150, a storage unit 160, a lens driving unit 170, and a lens.
  • the group 180 and the communication unit 190 are provided.
  • the ultrasonic motor 110 is driven by being controlled by the control unit 150, and generates the power provided to the transmission 120.
  • the operation principle and the like of the ultrasonic motor 110 are as described above.
  • the transmission 120 is configured to transmit the power provided from the ultrasonic motor 110 to the lens driving unit 170 using a traction drive.
  • the principle of power transmission by the traction drive is as described above.
  • a hardware configuration example of the ultrasonic motor 110 and the transmission 120 will be described later in detail.
  • the encoder 130 is configured to output information such as the rotation amount and rotation direction of the input shaft of the transmission 120 or the rotation amount and rotation direction of the output shaft of the transmission 120.
  • the encoder 130 provides the output information to the control unit 150.
  • the type and installation mode of the encoder 130 are not particularly limited.
  • the temperature sensor 140 is configured to output temperature information of the transmission 120 including the traction drive.
  • the “temperature information of the transmission 120 including the traction drive” may refer to the temperature information of a part of the traction drive or the temperature information of a part of the transmission 120.
  • the temperature sensor 140 be arranged in a manner capable of outputting temperature information of oil or grease used for the traction drive.
  • the temperature sensor 140 is arranged so as to come into contact with oil or the like of the traction drive or at a position close to the oil or the like.
  • the control unit 150 controls the drive of the ultrasonic motor 110 based on the temperature information and adjusts the temperature of the transmission 120, The traction drive can operate properly.
  • the “temperature information” output by the temperature sensor 140 refers to some information regarding the temperature.
  • the temperature information may be numerical information indicating the temperature (for example, 0 [° C.], ⁇ 20 [° C.], etc.), or indicates that the temperature is equal to or lower than the temperature at which the heat generation mode and the rotation drive mode are switched. It may be information (or information indicating that the temperature is higher than the temperature).
  • the content of the temperature information is not limited to these.
  • the control unit 150 is configured to integrally control the processing regarding each component of the lens barrel 100. For example, the control unit 150 controls the drive of the ultrasonic motor 110 based on the temperature information of the transmission 120 including the traction drive, which is provided from the temperature sensor 140. Particularly in a low temperature environment, the control unit 150 controls the drive of the ultrasonic motor 110 to cause the ultrasonic motor 110 to generate heat when it is determined that the temperature of the transmission 120 is equal to or lower than a predetermined value based on the temperature information. Warm transmission 120.
  • the control unit 150 changes the voltage pattern applied to the ultrasonic motor 110 depending on whether the transmission 120 is warmed by controlling the driving of the ultrasonic motor 110 to heat the ultrasonic motor 110 or not. More specifically, the control unit 150 changes at least one of the phase difference of the drive signal applied to the ultrasonic motor 110, the drive frequency, and the drive voltage as the voltage pattern. For example, when the temperature of the transmission 120 is equal to or lower than a predetermined value and the mode is changed to the heat generation mode to heat the transmission 120, the control unit 150 causes the phase difference of the drive signals to be approximately 0 [deg] or approximately 180 [deg]. ] (Synonymous with ⁇ 180 [deg]).
  • the control unit 150 can heat the ultrasonic motor 110 by the standing wave (vibration) and warm the transmission 120 while setting the rotation speed of the ultrasonic motor 110 to 0 [r/min].
  • the controller 150 may also change the drive frequency or drive voltage as appropriate. For example, when the temperature of the transmission 120 is lower, or when it is necessary to raise the temperature rapidly, the control unit 150 makes the drive frequency closer to the resonance frequency (natural frequency) or raises the drive voltage. Alternatively, the amount of heat generated by the ultrasonic motor 110 may be increased.
  • control unit 150 When the temperature of the transmission 120 becomes higher than a predetermined value, the control unit 150 causes the mode to transit from the heat generation mode to the rotation drive mode and causes the ultrasonic motor 110 to rotate normally.
  • the control by the control unit 150 may be realized by the control unit 250 of the camera body 200.
  • the storage unit 160 is configured to store various types of information.
  • the storage unit 160 stores information (for example, programs and parameters) used in various processes of the control unit 150 and the like, information output by various processes, and the like.
  • the storage unit 160 may also store various information transmitted from the communication unit 270 of the camera body 200. The information stored in the storage unit 160 is not limited to these.
  • the lens driving unit 170 is configured to drive at least one lens (for example, a focusing lens) included in the lens group 180 using the power transmitted via the traction drive.
  • the configuration and driving principle of the lens driving unit 170 are not particularly limited.
  • the lens group 180 includes a plurality of lenses such as a front lens, a focusing lens, and a blur correction lens, and at least one lens (for example, a focusing lens) is driven by using power transmitted through a traction drive. It is a configuration.
  • the front lens is the lens closest to the subject side among the plurality of lenses
  • the focusing lens is a lens for controlling the focus position of the subject image
  • the blur correction lens is for correcting the image blur of the subject image. It is a lens.
  • the type, number, and shape of the lenses included in the lens group 180 are not particularly limited.
  • the communication unit 190 is configured to communicate with the communication unit 270 of the camera body 200.
  • the communication unit 190 transmits various kinds of information to the communication unit 270 of the camera body 200 or receives various kinds of information from the communication unit 270 of the camera body 200 under the control of the control unit 150.
  • the content of information communicated by the communication unit 190 is not particularly limited. Further, the communication unit 190 may communicate with a unit other than the communication unit 270 of the camera body 200.
  • the camera body 200 includes a shutter 210, a filter 220, an image sensor 230, a signal processing unit 240, a control unit 250, a storage unit 260, and a communication unit 270.
  • the shutter 210 is configured to control the exposure state of the image sensor 230. As shown in FIG. 5, the shutter 210 is arranged in the rear stage of the lens group 180 and in the front stage of the filter 220, and controls the exposure state of the image sensor 230 by opening and closing the optical path under the control of the control unit 250.
  • the filter 220 has a configuration for transmitting only light of a desired wavelength.
  • the filter 220 may be, for example, an optical low pass filter or an infrared cut filter, but is not necessarily limited thereto. As shown in FIG. 5, the filter 220 is arranged in the rear stage of the shutter 210 and in the front stage of the image sensor 230.
  • the image sensor 230 is configured to include a plurality of pixels on the image forming surface, and each pixel converts the subject image formed by the lens group 180 into an electrical signal (pixel signal).
  • the pixel signal is read from each pixel under the control of the control unit 250 and provided to the signal processing unit 240.
  • the image sensor 230 may be, for example, a CCD (Charge Coupled Device) sensor array, a CMOS (Complementary Metal Oxide Semiconductor) sensor array, or the like, but is not necessarily limited thereto.
  • the signal processing unit 240 is configured to perform various types of processing on the pixel signal provided from the image sensor 230.
  • the signal processing unit 240 may perform noise removal, gain adjustment, waveform shaping, A/D conversion, white balance adjustment, brightness adjustment, contrast value adjustment, sharpness (edge enhancement) adjustment, color correction, or for pixel signals. Perform blur correction.
  • the various processes implemented by the signal processing unit 240 are not limited to these.
  • the control unit 250 is configured to centrally control the processing related to each configuration of the camera body 200.
  • the control unit 250 controls various processes such as the shutter 210 and the signal processing unit 240 based on an input to an input unit (not shown) that receives a user input, and the signal processing unit 240 performs various processes.
  • the pixel signal is displayed on the display unit (not shown).
  • the control unit 250 may instead realize the control by the control unit 150 of the lens barrel 100.
  • the control unit 250 may control the driving of the ultrasonic motor 110 based on the temperature information of the transmission 120 including the traction drive.
  • information used for processing by the control unit 250 such as temperature information acquired by the temperature sensor 140, is assumed to be communicated by the communication unit 190 of the lens barrel 100 and the communication unit 270 of the camera body 200.
  • the storage unit 260 is configured to store various types of information.
  • the storage unit 260 stores information (for example, programs and parameters) used for various processes of the control unit 250 and the like, information output by various processes, and the like.
  • the storage unit 260 may also store various information transmitted from the communication unit 190 of the lens barrel 100. The information stored in the storage unit 260 is not limited to these.
  • the communication unit 270 is configured to communicate with the communication unit 190 of the lens barrel 100.
  • the communication unit 270 transmits various information to the communication unit 190 of the lens barrel 100 or receives various information from the communication unit 190 of the lens barrel 100 under the control of the control unit 250.
  • the content of information communicated by the communication unit 270 is not particularly limited. Further, the communication unit 270 may communicate with a unit other than the communication unit 190 of the lens barrel 100.
  • the configuration example of the device according to the present embodiment has been described above with reference to FIG.
  • the configuration described above with reference to FIG. 5 is merely an example, and the configurations of the lens barrel 100 and the camera body 200 are not limited to the example.
  • the lens barrel 100 and the camera body 200 do not necessarily have to include all of the configurations shown in FIG. 5, or may have configurations other than the configurations shown in FIG.
  • the configurations of the lens barrel 100 and the camera body 200 can be flexibly deformed according to specifications and operation.
  • FIG. 6 is a flowchart showing a processing flow example when the control unit 150 according to the present embodiment sets or changes the mode.
  • control unit 150 acquires the temperature information of transmission 120 output by temperature sensor 140.
  • control unit 150 determines whether the temperature of transmission 120 is equal to or lower than a predetermined value based on the temperature information. When it is determined that the temperature of the transmission 120 is higher than the predetermined value (step S1004/No), the control unit 150 sets the mode to the rotation drive mode in step S1008. This allows the user to operate the imaging device 300 to perform focusing and imaging.
  • step S1004 When it is determined in step S1004 that the temperature of the transmission 120 is equal to or lower than the predetermined value (step S1004/Yes), the control unit 150 sets the mode to the heat generation mode in step S1012. Then, in step S1016, control unit 150 sets the phase difference of the drive signals to approximately 0 [deg] (or approximately 180 [deg]), and drives ultrasonic motor 110. As a result, the control unit 150 can heat the ultrasonic motor 110 by the standing wave (vibration) and warm the transmission 120 while setting the rotation speed of the ultrasonic motor 110 to 0 [r/min].
  • step S1000 the control unit 150 heats the ultrasonic motor 110 to heat the transmission 120 until the temperature of the transmission 120 is at least higher than a predetermined value (a temperature higher than the predetermined value is kept constant. May be warmed to temperature).
  • the timing and frequency at which the series of processes shown in FIG. 6 are performed are not particularly limited.
  • the series of processes shown in FIG. 6 may be performed at the timing when the image capturing apparatus 300 is activated, and then at predetermined time intervals, or immediately before image capturing.
  • the ultrasonic motor 110 may slightly rotate in the heat generation mode described above.
  • the ultrasonic motor 110 may slightly rotate due to the influence of a standing wave (vibration) or an error in the phase difference of the drive signal applied to the ultrasonic motor 110.
  • the control unit 150 causes at least the voltage pattern to be detected.
  • the rotation of the ultrasonic motor 110 is stopped by controlling the phase difference between the drive signals.
  • the control unit 150 sets the phase difference of the drive signal to around 0 [deg] (or around 180 [deg]). By adjusting, the rotation speed of the ultrasonic motor 110 may be maintained at 0 [r/min] as shown in E of FIG. 7.
  • the control unit 150 adjusts the phase difference and the drive frequency of the drive signal as illustrated in B and C of FIG. The rotation speed of the ultrasonic motor 110 may be maintained at 0 [r/min] as indicated by E.
  • control unit 150 may maintain the rotation speed of the ultrasonic motor 110 at 0 [r/min] by also adjusting the drive voltage. Further, the control unit 150 may correct the rotation of the ultrasonic motor 110 by switching the mode from the heat generation mode to the rotary drive mode for a short time.
  • the configuration other than the control unit 150 may be the same as that described in the above embodiment, and thus a separate description is omitted.
  • the control unit 150 drives the ultrasonic motor 110 in step S1016 of FIG. Information such as is acquired from the encoder 130, and it is confirmed whether or not the ultrasonic motor 110 is rotating. Then, when the rotation of the ultrasonic motor 110 is detected, the control unit 150 adjusts the phase difference of the drive signal, the drive frequency, and the like in order to stop the rotation of the ultrasonic motor 110.
  • control unit 150 can appropriately prevent a malfunction due to the rotation of the ultrasonic motor 110 in the heat generation mode.
  • control unit 150 heats the transmission 120 by causing the ultrasonic motor 110 to generate heat without rotating.
  • control unit 150 controls the voltage pattern applied to the ultrasonic motor 110, thereby causing the ultrasonic motor 110 to generate heat while rotating, and the transmission 120. Warm up.
  • the phase difference of the drive signals is normally set to +90 [deg] (or -90 [deg]).
  • the control unit 150 according to the second modification is The phase difference of the drive signal is a value between 0 [deg] and 90 [deg], a value between 0 [deg] and -90 [deg], a value between 90 [deg] and 180 [deg], or Set to set to a value between -90 [deg] and -180 [deg].
  • the control unit 150 according to the second modification can rotate the ultrasonic motor 110 by generating a traveling wave by vibrating the ultrasonic motor 110 while sufficiently heating the ultrasonic motor 110 to generate heat.
  • the rotation speed of the ultrasonic motor 110 is reduced.
  • at least one of the drive voltages is controlled to compensate for the decrease in the rotation speed of the ultrasonic motor 110 due to the control of the phase difference of the drive signals.
  • an operating state in which the control unit 150 heats the transmission 120 while rotating the ultrasonic motor 110 to heat the transmission 120 is referred to as a "heat generation rotation drive mode".
  • the control unit 150 sets the mode to the heat generation rotational drive mode (not the heat generation mode) as an example.
  • the condition for setting the rotation drive mode is not necessarily limited to this.
  • the control unit 150 normally drives the ultrasonic motor 110 in the heat generation mode as in the above-described embodiment, and the ultrasonic motor 110 rotates.
  • the ultrasonic motor 110 may be driven by transitioning the mode to the heat generation rotation drive mode only when is required.
  • the control unit 150 sets the mode to the heat generation rotary drive mode and sets the phase difference of the drive signals. Is a value between 0 [deg] and 90 [deg] (or a value between 0 [deg] and -90 [deg], a value between 90 [deg] and 180 [deg], -90 [deg]) To -180 [deg])). Then, as shown in D of FIG.
  • the control unit 150 compensates for the decrease in the rotation speed of the ultrasonic motor 110 by setting the drive voltage higher than the reference voltage in the heating rotation drive mode. Thereby, as shown in E of FIG. 9, the control unit 150 can warm the transmission 120 while maintaining the rotation speed of the ultrasonic motor 110 at the reference speed.
  • the control unit 150 sets the mode to the heat generation rotary drive mode and sets the phase difference of the drive signals. Is a value between 0 [deg] and 90 [deg] (or a value between 0 [deg] and -90 [deg], a value between 90 [deg] and 180 [deg], -90 [deg]) To -180 [deg])). Then, as shown in C of FIG. 10, the control unit 150 compensates for the decrease in the rotation speed of the ultrasonic motor 110 by bringing the drive frequency close to the resonance frequency (natural frequency) in the heat generation rotation drive mode. Thereby, as shown in E of FIG. 10, the control unit 150 can warm the transmission 120 while maintaining the rotation speed of the ultrasonic motor 110 at the reference speed.
  • a reference table is provided in which the temperature information of the transmission 120 and the voltage pattern applied to the ultrasonic motor 110 are associated with each other, and the control unit 150 causes the control unit 150 to obtain the temperature information of the transmission 120 acquired from the temperature sensor 140. , And the drive of the ultrasonic motor 110 may be controlled based on the reference table.
  • FIG. 11 is a diagram showing a specific example of the reference table in the case where the decrease in the rotation speed of the ultrasonic motor 110 due to the control of the phase difference of the drive signal is compensated by the drive voltage.
  • FIG. 12 is a diagram showing a specific example of the reference table in the case where the decrease in the rotation speed of the ultrasonic motor 110 due to the control of the phase difference of the drive signal is compensated by the drive frequency.
  • combinations of the phase difference of the drive signal, the drive voltage, and the drive frequency to be set are shown for each of the plurality of thresholds related to the temperature of the transmission 120.
  • the reference voltage is shown as “VM” and the resonance frequency (natural frequency) is shown as “F(Tc)”.
  • the temperature of the transmission 120 is “higher than 0 [° C.]”, “ ⁇ 10 [° C.] to 0 [° C.]”, “ ⁇ 20 [° C.] to ⁇ 10 [° C.]”, “ ⁇ 30[° C.] ⁇ 20[° C.]”, “lower than ⁇ 30[° C.]”, the control unit 150 causes the phase difference of the drive signals to be 90[deg], 60[deg], 55[].
  • the heat generation amount of the ultrasonic motor 110 is increased by changing the temperature to deg], 50 [deg], and 45 [deg].
  • control unit 150 maintains the drive frequency at F(Tc) ⁇ 1.05 and sets the drive voltage at VM, VM ⁇ 1.3, VM ⁇ 1.5, VM ⁇ 1.7, VM ⁇ 2.
  • the control unit 150 maintains the drive frequency at F(Tc) ⁇ 1.05 and sets the drive voltage at VM, VM ⁇ 1.3, VM ⁇ 1.5, VM ⁇ 1.7, VM ⁇ 2.
  • the temperature of the transmission 120 is “higher than 0 [° C.]”, “ ⁇ 10 [° C.] to 0 [° C.]”, “ ⁇ 20 [° C.] to ⁇ 10 [° C.]”, “ ⁇ ” 30[° C.] ⁇ 20[° C.]”, “lower than ⁇ 30[° C.]”, the control unit 150 causes the phase difference of the drive signals to be 90[deg], 60[deg], 55[].
  • the heat generation amount of the ultrasonic motor 110 is increased by changing the temperature to deg], 50 [deg], and 45 [deg].
  • control unit 150 keeps the drive voltage at VM and sets the drive frequency to F(Tc) ⁇ 1.05, F(Tc) ⁇ 1.03, F(Tc) ⁇ 1.025, F(Tc).
  • the decrease in the rotation speed of the ultrasonic motor 110 is compensated by approaching the resonance frequency (natural frequency) according to the temperature of the transmission 120 such as ⁇ 1.020 and F(Tc) ⁇ 1.015.
  • the control unit 150 does not need to calculate the setting values suitable for each temperature, and thus the processing load on the control unit 150 is reduced. It Further, the manufacturer, user, or the like of the image pickup apparatus 300 can easily change the setting by changing the reference table.
  • the setting values suitable for each temperature are shown in the reference table is equivalent to that the algorithm reflecting the setting values suitable for each temperature is shown in the reference table.
  • other setting values not shown in FIGS. 11 and 12 may be added to the reference table, or any of the setting values shown in FIGS. 11 and 12 may be omitted.
  • the reference table may be provided not only for the heat generation rotation drive mode but also for the heat generation mode and the rotation drive mode.
  • FIG. 13 is a schematic diagram showing a hardware configuration example of the ultrasonic motor 110 and the transmission 120 according to the present embodiment.
  • a connection unit 10 that connects the ultrasonic motor 110 and the transmission 120 to each other is provided.
  • the ultrasonic motor 110 and the transmission 120 are wholly or partially integrated with each other by being covered with the housing case 11.
  • all or part of the ultrasonic motor 110, the transmission 120, and the connecting portion 10 are covered with the housing case 11 to be integrated. With this, the heat generated by the ultrasonic motor 110 is more efficiently transferred to the transmission 120 without escaping to the outside.
  • the ultrasonic motor 110 includes a piezoelectric element 111, a stator 112, a rotor 113, a rotating shaft 114, and a case 115.
  • a drive signal is applied to the two-phase electrodes provided on the piezoelectric element 111, the stator 112 vibrates and the rotor 113 pressed by the stator 112 rotates due to frictional force (in FIG. 13, the stator 112 and the rotor 112 are rotated).
  • the contact part of 113 is described as "sliding part of ultrasonic motor”.
  • the rotating shaft 114 is connected to the rotor 113 and the sun roller 121 of the transmission 120, and transmits power to the sun roller 121 by rotating together with the rotor 113.
  • the transmission 120 includes a sun roller 121, a plurality of planet rollers 122 (four planet rollers 122 in the example of FIG. 13 ), a planet roller rotation shaft 123, an output shaft 124, and The stationary ring 125 (or the outer ring) and the case 126 are provided.
  • the sun roller 121 is rotated by the power transmitted from the rotary shaft 114 of the ultrasonic motor 110.
  • the plurality of planet rollers 122 rotate on the inner peripheral surface of the fixed ring 125 by the traction force by being pressed against the sun roller 121.
  • the planetary roller rotation shaft 123 functions as a shaft when the planetary roller 122 rotates and rotates together with the planetary roller 122 to transmit power to the output shaft 124.
  • the output shaft 124 transmits the power to the lens driving unit 170. Accordingly, the lens driving unit 170 can drive the lens using the transmitted power.
  • the hardware configuration example of the ultrasonic motor 110 and the transmission 120 according to the present embodiment has been described above with reference to FIG.
  • the hardware configuration described above with reference to FIG. 13 is merely an example, and the hardware configurations of the ultrasonic motor 110 and the transmission 120 are not limited to the example.
  • the ultrasonic motor 110 and the transmission 120 do not necessarily have to have all of the hardware configurations shown in FIG. 13, or may have hardware configurations other than the configurations shown in FIG.
  • the hardware configurations of the ultrasonic motor 110 and the transmission 120 can be flexibly modified according to specifications and operation.
  • FIG. 14 is a schematic diagram showing a specific example of a path when heat generated by the ultrasonic motor 110 is transmitted to the transmission 120.
  • the heat generated by the piezoelectric element 111 is transmitted in the order of the piezoelectric element 111, the case 115, the connecting portion 10, the case 126, and the fixed ring 125 (in the example of FIG. 1), and heats the transmission 120 (particularly oil and grease).
  • the heat generated by the piezoelectric element 111 is transmitted in the order of the piezoelectric element 111, the stator 112, the rotor 113, the rotating shaft 114, and the sun roller 121 (in the example of FIG.
  • the “second heat transfer path”) and the transmission 120 (particularly oil and grease) are warmed.
  • the members arranged on the first heat transfer path and the second heat transfer path may have higher thermal conductivity than the members arranged on the outer periphery of these paths.
  • the members arranged on the first heat transfer path and the second heat transfer path include ceramics having high thermal conductivity, such as silicon carbide, aluminum nitride, sapphire, alumina, silicon nitride, Alternatively, a member formed of cermet or the like may be used (note that the member is not limited to a member formed of ceramics, and a member formed of various metals, a heat transfer sheet or the like (for example, a graphite sheet or the like) may be used. Good).
  • the members arranged on the outer periphery of the first heat transfer path and the second heat transfer path are ceramics having lower thermal conductivity than the above-mentioned ceramics, such as steatite, zirconia, cordierite, forsterite, and mullite.
  • a material formed of yttria or the like may be used (not limited to a member formed of ceramics, a member formed of various resins or a heat insulating sheet may be used, or a gas such as air may be used therein.
  • a double structure including may be formed).
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 15 is a diagram showing an example of a schematic configuration of an endoscopic surgery system 5000 to which the technology according to the present disclosure can be applied.
  • FIG. 15 illustrates a situation in which an operator (doctor) 5067 is performing an operation on a patient 5071 on a patient bed 5069 by using the endoscopic operation system 5000.
  • the endoscopic surgery system 5000 includes an endoscope 5001, other surgical tools 5017, a support arm device 5027 for supporting the endoscope 5001, and various devices for endoscopic surgery. And a cart 5037 on which is mounted.
  • trocars 5025a to 5025d are punctured in the abdominal wall.
  • the barrel 5003 of the endoscope 5001 and other surgical tools 5017 are inserted into the body cavity of the patient 5071 from the trocars 5025a to 5025d.
  • a pneumoperitoneum tube 5019, an energy treatment tool 5021, and forceps 5023 are inserted into the body cavity of the patient 5071 as other surgical tools 5017.
  • the energy treatment tool 5021 is a treatment tool that performs incision and peeling of tissue, sealing of blood vessels, and the like by high-frequency current or ultrasonic vibration.
  • the surgical instrument 5017 shown in the figure is merely an example, and various surgical instruments generally used in endoscopic surgery, such as a concentrator and a retractor, may be used as the surgical instrument 5017.
  • An image of the surgical site in the body cavity of the patient 5071 taken by the endoscope 5001 is displayed on the display device 5041.
  • the surgeon 5067 uses the energy treatment tool 5021 and the forceps 5023 while performing real-time viewing of the image of the surgical site displayed on the display device 5041, and performs a procedure such as excising the affected site.
  • the pneumoperitoneum tube 5019, the energy treatment tool 5021, and the forceps 5023 are supported by an operator 5067, an assistant, or the like during surgery.
  • the support arm device 5027 includes an arm portion 5031 that extends from the base portion 5029.
  • the arm portion 5031 includes joint portions 5033a, 5033b, 5033c and links 5035a, 5035b, and is driven by the control from the arm control device 5045.
  • the endoscope 5001 is supported by the arm portion 5031, and its position and posture are controlled. As a result, stable fixation of the position of the endoscope 5001 can be realized.
  • the endoscope 5001 includes a lens barrel 5003 into which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 5071, and a camera head 5005 connected to the base end of the lens barrel 5003.
  • the endoscope 5001 configured as a so-called rigid endoscope having the rigid barrel 5003 is illustrated, but the endoscope 5001 is configured as a so-called flexible mirror having the flexible barrel 5003. Good.
  • An opening in which the objective lens is fitted is provided at the tip of the lens barrel 5003.
  • a light source device 5043 is connected to the endoscope 5001, and the light generated by the light source device 5043 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 5003, and the objective The observation target in the body cavity of the patient 5071 is irradiated through the lens.
  • the endoscope 5001 may be a direct-viewing endoscope, a perspective mirror, or a side-viewing endoscope.
  • An optical system and an image pickup device are provided inside the camera head 5005, and the reflected light (observation light) from the observation target is focused on the image pickup device by the optical system.
  • the observation light is photoelectrically converted by the imaging element, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted as RAW data to a camera control unit (CCU: Camera Control Unit) 5039.
  • the camera head 5005 has a function of adjusting the magnification and the focal length by appropriately driving the optical system.
  • the camera head 5005 may be provided with a plurality of image pickup elements in order to cope with, for example, stereoscopic vision (3D display).
  • a plurality of relay optical systems are provided inside the barrel 5003 in order to guide the observation light to each of the plurality of image pickup devices.
  • the CCU 5039 includes a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and controls the operations of the endoscope 5001 and the display device 5041 in a centralized manner. Specifically, the CCU 5039 performs various image processing such as development processing (demosaic processing) on the image signal received from the camera head 5005 for displaying an image based on the image signal. The CCU 5039 provides the image signal subjected to the image processing to the display device 5041. The CCU 5039 also transmits a control signal to the camera head 5005 to control the driving thereof.
  • the control signal may include information regarding imaging conditions such as magnification and focal length.
  • the display device 5041 displays an image based on an image signal subjected to image processing by the CCU 5039 under the control of the CCU 5039.
  • the endoscope 5001 is compatible with high-resolution imaging such as 4K (horizontal pixel number 3840 ⁇ vertical pixel number 2160) or 8K (horizontal pixel number 7680 ⁇ vertical pixel number 4320), and/or 3D display
  • high-resolution imaging such as 4K (horizontal pixel number 3840 ⁇ vertical pixel number 2160) or 8K (horizontal pixel number 7680 ⁇ vertical pixel number 4320)
  • 3D display In the case where the display device 5041 corresponds to the display device 5041, a device capable of high-resolution display and/or a device capable of 3D display can be used as the display device 5041.
  • the display device 5041 is compatible with high-resolution shooting such as 4K or 8K, a more immersive feeling can be obtained by using a display device 5041 having a size of 55 inches or more. Further, a plurality of display devices 5041 having different resolutions and sizes may be provided depending on the application.
  • the light source device 5043 is composed of a light source such as an LED (light emitting diode), and supplies irradiation light to the endoscope 5001 when the surgical site is imaged.
  • a light source such as an LED (light emitting diode)
  • the arm control device 5045 is configured by a processor such as a CPU, for example, and operates according to a predetermined program to control driving of the arm portion 5031 of the support arm device 5027 according to a predetermined control method.
  • the input device 5047 is an input interface for the endoscopic surgery system 5000.
  • the user can input various information and instructions to the endoscopic surgery system 5000 via the input device 5047.
  • the user inputs various kinds of information regarding the surgery, such as the physical information of the patient and the information regarding the surgical procedure, through the input device 5047.
  • the user uses the input device 5047 to instruct to drive the arm unit 5031 or to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) of the endoscope 5001.
  • An instruction to drive the energy treatment tool 5021 is input.
  • the type of the input device 5047 is not limited, and the input device 5047 may be various known input devices.
  • the input device 5047 for example, a mouse, a keyboard, a touch panel, a switch, a foot switch 5057 and/or a lever can be applied.
  • the touch panel may be provided on the display surface of the display device 5041.
  • the input device 5047 is a device worn by the user, such as a glasses-type wearable device or an HMD (Head Mounted Display), and various inputs are made according to the user's gesture or line of sight detected by these devices. Is done. Further, the input device 5047 includes a camera capable of detecting the movement of the user, and various inputs are performed according to the gesture or the line of sight of the user detected from the video imaged by the camera. Further, the input device 5047 includes a microphone capable of collecting the voice of the user, and various inputs are performed by voice through the microphone.
  • a glasses-type wearable device or an HMD Head Mounted Display
  • the input device 5047 is configured to be able to input various information in a contactless manner, a user (for example, a surgeon 5067) who belongs to a clean area can operate a device that belongs to a dirty area in a contactless manner. Is possible. In addition, since the user can operate the device without releasing his/her hand from the surgical tool, the convenience of the user is improved.
  • the treatment instrument control device 5049 controls driving of the energy treatment instrument 5021 for cauterization of tissue, incision, sealing of blood vessel, or the like.
  • the pneumoperitoneum device 5051 uses a gastrointestinal tube 5019 to inject a gas into the body cavity of the patient 5071 in order to inflate the body cavity of the patient 5071 for the purpose of securing a visual field by the endoscope 5001 and a working space for the operator.
  • the recorder 5053 is a device capable of recording various information regarding surgery.
  • the printer 5055 is a device capable of printing various information regarding surgery in various formats such as text, images, and graphs.
  • the support arm device 5027 includes a base portion 5029, which is a base, and an arm portion 5031 extending from the base portion 5029.
  • the arm section 5031 is composed of a plurality of joint sections 5033a, 5033b, 5033c and a plurality of links 5035a, 5035b connected by the joint section 5033b, but in FIG.
  • the configuration of the arm portion 5031 is illustrated in a simplified manner. Actually, the shapes, the numbers, and the arrangements of the joints 5033a to 5033c and the links 5035a and 5035b, the directions of the rotation axes of the joints 5033a to 5033c, and the like are appropriately set so that the arm 5031 has a desired degree of freedom. obtain.
  • the arm portion 5031 can be preferably configured to have 6 or more degrees of freedom. Accordingly, the endoscope 5001 can be freely moved within the movable range of the arm portion 5031, so that the lens barrel 5003 of the endoscope 5001 can be inserted into the body cavity of the patient 5071 from a desired direction. It will be possible.
  • An actuator is provided in each of the joint portions 5033a to 5033c, and the joint portions 5033a to 5033c are configured to be rotatable about a predetermined rotation axis by driving the actuator.
  • the drive of the actuator is controlled by the arm control device 5045, whereby the rotation angles of the joints 5033a to 5033c are controlled and the drive of the arm 5031 is controlled. Thereby, control of the position and orientation of the endoscope 5001 can be realized.
  • the arm control device 5045 can control the drive of the arm unit 5031 by various known control methods such as force control or position control.
  • the surgeon 5067 appropriately performs an operation input via the input device 5047 (including the foot switch 5057), and the arm controller 5045 appropriately controls the drive of the arm portion 5031 according to the operation input.
  • the position and orientation of the endoscope 5001 may be controlled.
  • the endoscope 5001 at the tip of the arm portion 5031 can be moved from any position to any position, and then fixedly supported at the position after the movement.
  • the arm portion 5031 may be operated by a so-called master slave method.
  • the arm unit 5031 can be remotely operated by the user via the input device 5047 installed at a place apart from the operating room.
  • the arm control device 5045 receives the external force from the user and operates the actuators of the joint parts 5033a to 5033c so that the arm part 5031 smoothly moves according to the external force.
  • a doctor called a scoopist supported the endoscope 5001.
  • the support arm device 5027 by using the support arm device 5027, the position of the endoscope 5001 can be fixed more reliably without manual operation, and thus an image of the surgical site can be stably obtained. It becomes possible to perform surgery smoothly.
  • the arm control device 5045 does not necessarily have to be provided on the cart 5037. Further, the arm control device 5045 does not necessarily have to be one device. For example, the arm control device 5045 may be provided in each of the joint parts 5033a to 5033c of the arm part 5031 of the support arm device 5027, and the plurality of arm control devices 5045 cooperate with each other to drive the arm part 5031. Control may be realized.
  • the light source device 5043 supplies the endoscope 5001 with irradiation light for imaging a surgical site.
  • the light source device 5043 is composed of, for example, an LED, a laser light source, or a white light source configured by a combination thereof.
  • the white light source is configured by the combination of the RGB laser light sources, the output intensity and the output timing of each color (each wavelength) can be controlled with high accuracy, so that the white balance of the captured image in the light source device 5043. Can be adjusted.
  • the laser light from each of the RGB laser light sources is time-divided onto the observation target, and the drive of the image pickup device of the camera head 5005 is controlled in synchronization with the irradiation timing, so that each of the RGB colors is supported. It is also possible to take the captured image in a time division manner. According to this method, a color image can be obtained without providing a color filter on the image sensor.
  • the drive of the light source device 5043 may be controlled so as to change the intensity of the output light at predetermined time intervals.
  • the driving of the image sensor of the camera head 5005 in synchronism with the timing of changing the intensity of the light to acquire images in a time-division manner and synthesizing the images, it is possible to obtain a high dynamic image without so-called underexposure and overexposure. An image of the range can be generated.
  • the light source device 5043 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of absorption of light in body tissues, by irradiating a narrow band of light as compared with the irradiation light (that is, white light) during normal observation, the mucosal surface layer
  • the so-called narrow band imaging is performed in which high-contrast images of specific tissues such as blood vessels are captured.
  • fluorescence observation in which an image is obtained by fluorescence generated by irradiating the excitation light may be performed.
  • the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected into the body tissue.
  • a reagent such as indocyanine green (ICG)
  • ICG indocyanine green
  • the light source device 5043 can be configured to be capable of supplying narrowband light and/or excitation light compatible with such special light observation.
  • FIG. 16 is a block diagram showing an example of the functional configuration of the camera head 5005 and CCU 5039 shown in FIG.
  • the camera head 5005 has, as its functions, a lens unit 5007, an image pickup section 5009, a drive section 5011, a communication section 5013, and a camera head control section 5015.
  • the CCU 5039 has, as its functions, a communication unit 5059, an image processing unit 5061, and a control unit 5063.
  • the camera head 5005 and the CCU 5039 are bidirectionally connected by a transmission cable 5065.
  • the lens unit 5007 is an optical system provided at a connecting portion with the lens barrel 5003.
  • the observation light taken in from the tip of the lens barrel 5003 is guided to the camera head 5005 and enters the lens unit 5007.
  • the lens unit 5007 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the optical characteristics of the lens unit 5007 are adjusted so that the observation light is condensed on the light receiving surface of the image pickup element of the image pickup section 5009.
  • the zoom lens and the focus lens are configured so that their positions on the optical axis can be moved in order to adjust the magnification and focus of the captured image.
  • the image pickup section 5009 is composed of an image pickup element, and is arranged in the latter stage of the lens unit 5007.
  • the observation light that has passed through the lens unit 5007 is condensed on the light receiving surface of the image sensor, and an image signal corresponding to the observation image is generated by photoelectric conversion.
  • the image signal generated by the imaging unit 5009 is provided to the communication unit 5013.
  • the image pickup device constituting the image pickup unit 5009 for example, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, which has a Bayer array and is capable of color image pickup is used. It should be noted that as the image pickup device, for example, a device capable of capturing a high-resolution image of 4K or higher may be used. By obtaining the image of the surgical site with high resolution, the surgeon 5067 can grasp the state of the surgical site in more detail, and can proceed with the surgery more smoothly.
  • CMOS Complementary Metal Oxide Semiconductor
  • the image pickup device constituting the image pickup unit 5009 is configured to have a pair of image pickup devices for respectively obtaining the image signals for the right eye and the left eye corresponding to 3D display.
  • the 3D display enables the operator 5067 to more accurately grasp the depth of the living tissue in the operation site.
  • the image pickup unit 5009 is configured by a multi-plate type, a plurality of lens unit 5007 systems are provided corresponding to each image pickup element.
  • the image pickup unit 5009 does not necessarily have to be provided on the camera head 5005.
  • the imaging unit 5009 may be provided inside the lens barrel 5003 immediately after the objective lens.
  • the drive unit 5011 is composed of an actuator, and moves the zoom lens and the focus lens of the lens unit 5007 by a predetermined distance along the optical axis under the control of the camera head control unit 5015. Accordingly, the magnification and focus of the image captured by the image capturing unit 5009 can be adjusted appropriately.
  • the communication unit 5013 is composed of a communication device for transmitting and receiving various information to and from the CCU 5039.
  • the communication unit 5013 transmits the image signal obtained from the image capturing unit 5009 as RAW data to the CCU 5039 via the transmission cable 5065.
  • the image signal is transmitted by optical communication in order to display the captured image of the surgical site with low latency.
  • the surgeon 5067 performs the surgery while observing the state of the affected area by the captured image. Therefore, for safer and more reliable surgery, the moving image of the surgery area is displayed in real time as much as possible. Is required.
  • the communication unit 5013 is provided with a photoelectric conversion module that converts an electric signal into an optical signal.
  • the image signal is converted into an optical signal by the photoelectric conversion module and then transmitted to the CCU 5039 via the transmission cable 5065.
  • the communication unit 5013 also receives a control signal for controlling the driving of the camera head 5005 from the CCU 5039.
  • the control signal includes, for example, information specifying a frame rate of a captured image, information specifying an exposure value at the time of capturing, and/or information specifying a magnification and a focus of the captured image. Contains information about the condition.
  • the communication unit 5013 provides the received control signal to the camera head control unit 5015.
  • the control signal from the CCU 5039 may also be transmitted by optical communication.
  • the communication unit 5013 is provided with a photoelectric conversion module that converts an optical signal into an electric signal, and the control signal is converted into an electric signal by the photoelectric conversion module and then provided to the camera head control unit 5015.
  • the imaging conditions such as the frame rate, the exposure value, the magnification, and the focus described above are automatically set by the control unit 5063 of the CCU 5039 based on the acquired image signal. That is, the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are installed in the endoscope 5001.
  • AE Auto Exposure
  • AF Automatic Focus
  • AWB Automatic White Balance
  • the camera head control unit 5015 controls driving of the camera head 5005 based on the control signal from the CCU 5039 received via the communication unit 5013. For example, the camera head control unit 5015 controls the driving of the image pickup device of the image pickup unit 5009 based on the information indicating the frame rate of the captured image and/or the information indicating the exposure at the time of image capturing. Further, for example, the camera head control unit 5015 appropriately moves the zoom lens and the focus lens of the lens unit 5007 via the driving unit 5011 based on the information indicating that the magnification and the focus of the captured image are designated.
  • the camera head controller 5015 may further have a function of storing information for identifying the lens barrel 5003 and the camera head 5005.
  • the camera head 5005 can be made resistant to autoclave sterilization.
  • the communication unit 5059 is composed of a communication device for transmitting/receiving various information to/from the camera head 5005.
  • the communication unit 5059 receives the image signal transmitted from the camera head 5005 via the transmission cable 5065.
  • the image signal can be preferably transmitted by optical communication.
  • the communication unit 5059 is provided with a photoelectric conversion module that converts an optical signal into an electrical signal in response to optical communication.
  • the communication unit 5059 provides the image signal converted into the electric signal to the image processing unit 5061.
  • the communication unit 5059 transmits a control signal for controlling the driving of the camera head 5005 to the camera head 5005.
  • the control signal may also be transmitted by optical communication.
  • the image processing unit 5061 performs various kinds of image processing on the image signal that is the RAW data transmitted from the camera head 5005.
  • image processing for example, development processing, high image quality processing (band emphasis processing, super-resolution processing, NR (Noise reduction) processing and/or camera shake correction processing, etc.), and/or enlargement processing (electronic zoom processing) Etc., various known signal processings are included.
  • the image processing unit 5061 also performs detection processing on the image signal for performing AE, AF, and AWB.
  • the image processing unit 5061 is configured by a processor such as a CPU or a GPU, and the image processing and the detection processing described above can be performed by the processor operating according to a predetermined program. Note that when the image processing unit 5061 is configured by a plurality of GPUs, the image processing unit 5061 appropriately divides information related to the image signal, and the plurality of GPUs perform image processing in parallel.
  • the control unit 5063 performs various controls regarding imaging of the surgical site by the endoscope 5001 and display of the captured image. For example, the control unit 5063 generates a control signal for controlling the driving of the camera head 5005. At this time, when the imaging condition is input by the user, the control unit 5063 generates a control signal based on the input by the user. Alternatively, when the endoscope 5001 is equipped with the AE function, the AF function, and the AWB function, the control unit 5063 controls the optimum exposure value, focal length, and focal length according to the result of the detection processing by the image processing unit 5061. The white balance is appropriately calculated and a control signal is generated.
  • control unit 5063 causes the display device 5041 to display the image of the surgical site based on the image signal subjected to the image processing by the image processing unit 5061.
  • the control unit 5063 recognizes various objects in the surgical region image using various image recognition techniques.
  • the control unit 5063 detects a surgical instrument such as forceps, a specific body part, bleeding, a mist when the energy treatment instrument 5021 is used, by detecting the shape and color of the edge of the object included in the surgical image. Can be recognized.
  • the control unit 5063 superimposes and displays various types of surgical support information on the image of the surgical site using the recognition result. By displaying the surgery support information in a superimposed manner and presenting it to the operator 5067, it becomes possible to proceed with the surgery more safely and reliably.
  • a transmission cable 5065 connecting the camera head 5005 and the CCU 5039 is an electric signal cable compatible with electric signal communication, an optical fiber compatible with optical communication, or a composite cable of these.
  • wired communication is performed using the transmission cable 5065, but communication between the camera head 5005 and the CCU 5039 may be performed wirelessly.
  • the communication between the two is performed wirelessly, it is not necessary to lay the transmission cable 5065 in the operating room, so that the situation in which the movement of the medical staff in the operating room is hindered by the transmission cable 5065 can be solved.
  • the example of the endoscopic surgery system 5000 to which the technology according to the present disclosure can be applied has been described above.
  • the endoscopic surgery system 5000 is described here as an example, the system to which the technology according to the present disclosure can be applied is not limited to this example.
  • the technology according to the present disclosure may be applied to a flexible endoscope system for inspection and a microscopic surgery system.
  • the drive unit 5011 has a transmission including a power transmission mechanism that uses a traction force
  • the camera head controller 5015 is provided to the transmission based on temperature information of the transmission. It controls the drive of the motor that produces power.
  • the camera head control unit 5015 can maintain the transmission at a more suitable temperature by using the heat generated by driving the motor, and thus appropriately adjusts the position of the lens unit 5007 even in a low temperature environment. be able to.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure can be applied to any type of movement of an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, a robot, a construction machine, an agricultural machine (tractor), and the like. It may be realized as a device mounted on the body.
  • FIG. 17 is a block diagram showing a schematic configuration example of a vehicle control system 7000 which is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 7000 includes a plurality of electronic control units connected via a communication network 7010.
  • the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, a vehicle exterior information detection unit 7400, a vehicle interior information detection unit 7500, and an integrated control unit 7600. ..
  • the communication network 7010 connecting these plural control units complies with any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network) or FlexRay (registered trademark). It may be an in-vehicle communication network.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • LAN Local Area Network
  • FlexRay registered trademark
  • Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores a program executed by the microcomputer or parameters used in various arithmetic operations, and a drive circuit that drives various controlled devices. Equipped with.
  • Each control unit is equipped with a network I/F for communicating with other control units via the communication network 7010, and also by wire communication or wireless communication with devices or sensors inside or outside the vehicle. A communication I/F for performing communication is provided. In FIG.
  • a microcomputer 7610 As the functional configuration of the integrated control unit 7600, a microcomputer 7610, a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, an audio image output unit 7670, An in-vehicle network I/F 7680 and a storage unit 7690 are illustrated.
  • the other control units also include a microcomputer, a communication I/F, a storage unit, and the like.
  • the drive system control unit 7100 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 7100 includes a drive force generation device for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to wheels, and a steering angle of the vehicle. It functions as a steering mechanism for adjusting and a control device such as a braking device for generating a braking force of the vehicle.
  • the drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
  • a vehicle state detection unit 7110 is connected to the drive system control unit 7100.
  • the vehicle state detection unit 7110 includes, for example, a gyro sensor that detects the angular velocity of the shaft rotational movement of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, or a steering wheel steering operation. At least one of sensors for detecting an angle, an engine speed, a wheel rotation speed, and the like is included.
  • the drive system control unit 7100 performs arithmetic processing using the signal input from the vehicle state detection unit 7110 to control the internal combustion engine, drive motor, electric power steering device, brake device, or the like.
  • the body system control unit 7200 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a winker, or a fog lamp.
  • the body system control unit 7200 may receive radio waves or signals of various switches transmitted from a portable device that substitutes for a key.
  • the body system control unit 7200 receives the input of these radio waves or signals and controls the vehicle door lock device, the power window device, the lamp, and the like.
  • the battery control unit 7300 controls the secondary battery 7310 that is the power supply source of the drive motor according to various programs. For example, to the battery control unit 7300, information such as the battery temperature, the battery output voltage, or the remaining capacity of the battery is input from the battery device including the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals to control the temperature adjustment of the secondary battery 7310 or the cooling device provided in the battery device.
  • the exterior information detection unit 7400 detects information outside the vehicle equipped with the vehicle control system 7000.
  • the image capturing unit 7410 and the vehicle exterior information detection unit 7420 is connected to the vehicle exterior information detection unit 7400.
  • the imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the outside-vehicle information detection unit 7420 detects, for example, an environment sensor for detecting current weather or weather, or another vehicle around the vehicle equipped with the vehicle control system 7000, an obstacle, a pedestrian, or the like. At least one of the ambient information detection sensors of.
  • the environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall.
  • the ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device.
  • the imaging unit 7410 and the vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
  • FIG. 18 shows an example of installation positions of the imaging unit 7410 and the vehicle exterior information detection unit 7420.
  • the imaging units 7910, 7912, 7914, 7916, 7918 are provided at at least one of the front nose of the vehicle 7900, the side mirrors, the rear bumper, the back door, and the upper part of the windshield inside the vehicle.
  • the image capturing unit 7910 provided on the front nose and the image capturing unit 7918 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900.
  • the imaging units 7912 and 7914 provided in the side mirrors mainly acquire images of the side of the vehicle 7900.
  • the imaging unit 7916 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 7900.
  • the imaging unit 7918 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic signal, a traffic sign, a lane, or the like.
  • FIG. 18 shows an example of the shooting ranges of the respective image pickup units 7910, 7912, 7914, 7916.
  • the imaging range a indicates the imaging range of the imaging unit 7910 provided on the front nose
  • the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided on the side mirrors
  • the imaging range d is The imaging range of the imaging part 7916 provided in the rear bumper or the back door is shown. For example, by overlaying the image data captured by the image capturing units 7910, 7912, 7914, and 7916, a bird's-eye view image of the vehicle 7900 viewed from above can be obtained.
  • the vehicle exterior information detection units 7920, 7922, 7924, 7926, 7928, 7930 provided on the front, rear, sides, corners of the vehicle 7900 and on the windshield inside the vehicle may be ultrasonic sensors or radar devices, for example.
  • the vehicle exterior information detection units 7920, 7926, 7930 provided on the front nose, rear bumper, back door, and upper windshield of the vehicle 7900 may be LIDAR devices, for example.
  • These vehicle exterior information detection units 7920 to 7930 are mainly used to detect a preceding vehicle, a pedestrian, an obstacle, or the like.
  • the vehicle exterior information detection unit 7400 causes the image capturing unit 7410 to capture an image of the vehicle exterior and receives the captured image data.
  • the vehicle exterior information detection unit 7400 receives detection information from the vehicle exterior information detection unit 7420 connected thereto.
  • the vehicle exterior information detection unit 7420 is an ultrasonic sensor, a radar device, or a LIDAR device
  • the vehicle exterior information detection unit 7400 transmits ultrasonic waves, electromagnetic waves, or the like, and receives information on the received reflected waves.
  • the vehicle exterior information detection unit 7400 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or characters on the road surface based on the received information.
  • the vehicle exterior information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions, or the like based on the received information.
  • the vehicle exterior information detection unit 7400 may calculate the distance to an object outside the vehicle based on the received information.
  • the vehicle exterior information detection unit 7400 may also perform image recognition processing or distance detection processing for recognizing a person, a car, an obstacle, a sign, characters on the road surface, or the like based on the received image data.
  • the vehicle exterior information detection unit 7400 performs processing such as distortion correction or position adjustment on the received image data, combines the image data captured by different image capturing units 7410, and generates an overhead image or a panoramic image. Good.
  • the vehicle exterior information detection unit 7400 may perform viewpoint conversion processing using image data captured by different image capturing units 7410.
  • the in-vehicle information detection unit 7500 detects in-vehicle information.
  • the in-vehicle information detection unit 7500 is connected with, for example, a driver state detection unit 7510 that detects the state of the driver.
  • the driver state detecting unit 7510 may include a camera for capturing an image of the driver, a biometric sensor for detecting biometric information of the driver, a microphone for collecting voice in the vehicle interior, or the like.
  • the biometric sensor is provided on, for example, a seat surface or a steering wheel, and detects biometric information of an occupant sitting on a seat or a driver who holds the steering wheel.
  • the in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, or determine whether the driver is asleep. You may.
  • the in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected audio signal.
  • the integrated control unit 7600 controls overall operations in the vehicle control system 7000 according to various programs.
  • An input unit 7800 is connected to the integrated control unit 7600.
  • the input unit 7800 is realized by a device that can be input and operated by a passenger, such as a touch panel, a button, a microphone, a switch or a lever. Data obtained by voice recognition of voice input by a microphone may be input to the integrated control unit 7600.
  • the input unit 7800 may be, for example, a remote control device that uses infrared rays or other radio waves, or may be an external connection device such as a mobile phone or a PDA (Personal Digital Assistant) that supports the operation of the vehicle control system 7000. May be.
  • the input unit 7800 may be, for example, a camera, in which case the passenger can input information by gesture. Alternatively, data obtained by detecting the movement of the wearable device worn by the passenger may be input. Furthermore, the input unit 7800 may include, for example, an input control circuit that generates an input signal based on information input by a passenger or the like using the input unit 7800 and outputs the input signal to the integrated control unit 7600. A passenger or the like operates the input unit 7800 to input various data or instruct a processing operation to the vehicle control system 7000.
  • the storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like.
  • the storage unit 7690 may be realized by a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
  • the general-purpose communication I/F 7620 is a general-purpose communication I/F that mediates communication with various devices existing in the external environment 7750.
  • the general-purpose communication I/F 7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX (registered trademark), LTE (registered trademark) (Long Term Evolution), or LTE-A (LTE-Advanced).
  • GSM Global System of Mobile communications
  • WiMAX registered trademark
  • LTE registered trademark
  • LTE-A Long Term Evolution-Advanced
  • a wireless LAN also referred to as Wi-Fi (registered trademark)
  • Bluetooth registered trademark
  • the general-purpose communication I/F 7620 is connected to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network or a network unique to a business operator) via a base station or an access point, for example. You may.
  • the general-purpose communication I/F 7620 uses, for example, P2P (Peer To Peer) technology, and is a terminal existing in the vicinity of the vehicle (for example, a driver, a pedestrian or a shop terminal, or an MTC (Machine Type Communication) terminal). May be connected with.
  • P2P Peer To Peer
  • MTC Machine Type Communication
  • the dedicated communication I/F 7630 is a communication I/F that supports a communication protocol formulated for use in a vehicle.
  • the dedicated communication I/F 7630 uses a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), or a cellular communication protocol, which is a combination of a lower layer IEEE 802.11p and an upper layer IEEE 1609, for example. May be implemented.
  • the dedicated communication I/F 7630 is typically a vehicle-to-vehicle communication, a vehicle-to-infrastructure communication, a vehicle-to-home communication, and a vehicle-to-pedestrian communication. ) Perform V2X communications, a concept that includes one or more of the communications.
  • the positioning unit 7640 receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite) to perform positioning, and the latitude, longitude, and altitude of the vehicle. Generate position information including. Note that the positioning unit 7640 may specify the current position by exchanging signals with the wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smartphone having a positioning function.
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the beacon receiving unit 7650 receives, for example, a radio wave or an electromagnetic wave transmitted from a wireless station or the like installed on the road, and acquires information such as the current position, traffic jam, traffic closure, or required time.
  • the function of beacon reception unit 7650 may be included in dedicated communication I/F 7630 described above.
  • the in-vehicle device I/F 7660 is a communication interface that mediates a connection between the microcomputer 7610 and various in-vehicle devices 7760 existing in the vehicle.
  • the in-vehicle device I/F 7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB).
  • a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB).
  • the in-vehicle device I/F 7660 is connected to a USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface, or MHL (Mobile High) via a connection terminal (and a cable if necessary) not shown. -Definition Link) etc.
  • the wired device 7760 may include, for example, at least one of a mobile device or a wearable device that the passenger has, or an information device that is carried in or attached to the vehicle. Further, the in-vehicle device 7760 may include a navigation device that searches for a route to an arbitrary destination.
  • the in-vehicle device I/F 7660 is a control signal with the in-vehicle device 7760. Or exchange data signals.
  • the in-vehicle network I/F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010.
  • the in-vehicle network I/F 7680 transmits and receives signals and the like according to a predetermined protocol supported by the communication network 7010.
  • the microcomputer 7610 of the integrated control unit 7600 passes through at least one of a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, and an in-vehicle network I/F 7680.
  • the vehicle control system 7000 is controlled according to various programs based on the information acquired by the above. For example, the microcomputer 7610 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the acquired information on the inside and outside of the vehicle, and outputs a control command to the drive system control unit 7100. Good.
  • the microcomputer 7610 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or impact mitigation of a vehicle, follow-up traveling based on an inter-vehicle distance, vehicle speed maintenance traveling, vehicle collision warning, vehicle lane departure warning, etc. You may perform the coordinated control aiming at.
  • the microcomputer 7610 controls the driving force generation device, the steering mechanism, the braking device, and the like based on the acquired information about the surroundings of the vehicle, so that the microcomputer 7610 automatically travels independently of the driver's operation. You may perform cooperative control for the purpose of driving etc.
  • ADAS Advanced Driver Assistance System
  • a general-purpose communication I/F 7620 a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, and an in-vehicle network I/F 7680.
  • the microcomputer 7610 may generate a warning signal by predicting a danger such as a vehicle collision, a pedestrian or the like approaching a road or a closed road, based on the acquired information.
  • the warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
  • the voice image output unit 7670 transmits an output signal of at least one of a voice and an image to an output device capable of visually or audibly notifying information to a passenger of the vehicle or the outside of the vehicle.
  • an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are illustrated as output devices.
  • the display unit 7720 may include at least one of an onboard display and a head-up display, for example.
  • the display unit 7720 may have an AR (Augmented Reality) display function.
  • the output device may be a device other than these devices, such as headphones, a wearable device such as a glasses-type display worn by a passenger, a projector, or a lamp.
  • the output device When the output device is a display device, the display device displays results obtained by various processes performed by the microcomputer 7610 or information received from another control unit in various formats such as text, images, tables, and graphs. Display it visually.
  • the output device is an audio output device, the audio output device converts an audio signal composed of reproduced audio data, acoustic data, or the like into an analog signal and outputs it audibly.
  • control units connected via the communication network 7010 may be integrated as one control unit.
  • each control unit may be composed of a plurality of control units.
  • the vehicle control system 7000 may include another control unit not shown.
  • some or all of the functions of one of the control units may be given to another control unit. That is, if the information is transmitted and received via the communication network 7010, the predetermined arithmetic processing may be performed by any of the control units.
  • a sensor or device connected to one of the control units may be connected to another control unit, and a plurality of control units may send and receive detection information to and from each other via the communication network 7010. .
  • a computer program for realizing each function such as the control unit 150 (or the control unit 250 of the camera body 200) of the lens barrel 100 according to the present embodiment described with reference to FIG. Etc. can be implemented. It is also possible to provide a computer-readable recording medium in which such a computer program is stored.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Further, the above computer program may be distributed, for example, via a network without using a recording medium.
  • the control unit 150 of the lens barrel 100 (or the control unit 250 of the camera body 200) according to the present embodiment described with reference to FIG. 5 is the integration of the application examples shown in FIG. It can be applied to the control unit 7600.
  • the vehicle control system 7000 has a transmission that includes a power transmission mechanism that uses a traction force (a transmission that is used to drive the lens unit or a transmission that is used for other purposes) may be used.
  • the integrated control unit 7600 controls driving of a motor that generates power provided to the transmission based on the temperature information of the transmission.
  • the integrated control unit 7600 can maintain the transmission at a more appropriate temperature by using the heat generated by driving the motor, so that the vehicle control system 7000 can properly function even in a low temperature environment. it can.
  • the control unit 150 (or the control unit 250 of the camera body 200) of the lens barrel 100 according to the present embodiment described with reference to FIG. 5 is realized by the plurality of control units of the vehicle control system 7000 shown in FIG. May be done.
  • the control device (device that can be realized by the control unit 150 and the like of the lens barrel 100) is based on the temperature information of the transmission device 120 including the traction drive.
  • the driving of the ultrasonic motor 110 that generates the power provided to the motor 120 is controlled.
  • the control device determines that the temperature of the transmission 120 is equal to or lower than a predetermined value based on the temperature information
  • the control device controls the drive of the ultrasonic motor 110 to control the ultrasonic motor 110.
  • the transmission 120 is warmed.
  • the control device can maintain the transmission 120 at a more appropriate temperature.
  • the device since it is not necessary to provide a new mechanism (for example, a heater) for warming the transmission 120, the device can be downsized and the manufacturing cost can be reduced. Further, the gear shift performed by the traction drive reduces noise generated during driving.
  • the present disclosure is applied to the imaging device 300 (or the lens barrel 100 or the camera body 200) such as a camera
  • the application target of the present disclosure is not necessarily limited to this.
  • the present disclosure is applicable to a device used in an environment in which the temperature changes drastically (or the temperature is low) such as a robot, a vehicle, or an aircraft.
  • the effects described in the present specification are merely explanatory or exemplifying ones, and are not limiting. That is, the technique according to the present disclosure may have other effects that are apparent to those skilled in the art from the description of the present specification, in addition to or instead of the above effects.
  • a control unit that controls the drive of a motor that generates power provided to the transmission based on temperature information of the transmission that includes a power transmission mechanism that uses traction force; Control device.
  • the control unit determines that the temperature of the transmission is lower than or equal to a predetermined value based on the temperature information, the drive is controlled to heat the motor to heat the transmission.
  • the control device according to (1) above.
  • the motor is an ultrasonic motor, The control unit controls the drive by controlling a voltage pattern applied to the ultrasonic motor, The control device according to (2) above.
  • the control unit controls, as the voltage pattern, at least one of a phase difference of a drive signal applied to the ultrasonic motor, a drive frequency, and a drive voltage.
  • the control unit changes the voltage pattern depending on whether the transmission is warmed by controlling the drive to heat the motor, or not.
  • the control unit controls the voltage pattern to generate heat without rotating the ultrasonic motor, The control device according to (5) above.
  • the control unit sets the phase difference to approximately 0 [deg] or approximately 180 [deg], The control device according to (6) above.
  • the control unit stops the rotation by controlling at least the phase difference of the voltage pattern, The control device according to (7) above.
  • the control unit controls the voltage pattern to generate heat while rotating the ultrasonic motor, The control device according to (5) above.
  • the control unit sets the phase difference to a value between 0 [deg] and 90 [deg], a value between 0 [deg] and -90 [deg], and a value between 90 [deg] and 180 [deg]. Value or set to a value between -90 [deg] and -180 [deg], The control device according to (9).
  • the controller controls at least one of the drive frequency and the drive voltage to compensate for a decrease in the rotation speed of the ultrasonic motor due to the control of the phase difference, The control device according to (10).
  • the control unit controls the drive based on the temperature information and the reference table,
  • the control device according to any one of (3) to (11).
  • All or part of the motor and the transmission are covered by a case,
  • (14) As the member arranged on the path when the heat generated by the motor is transmitted to the transmission, one having a higher thermal conductivity than the member arranged on the outer periphery of the path is used.
  • the control device according to any one of (1) to (13).
  • lens barrel 110 ultrasonic motor 120 transmission device 130 encoder 140 temperature sensor 150 control unit 160 storage unit 170 lens drive unit 180 lens group 190 communication unit 200 camera body 210 shutter 220 filter 230 image sensor 240 signal processing unit 250 control unit 260 Storage unit 270 Communication unit 300 Imaging device

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Lens Barrels (AREA)

Abstract

Provided is a control device comprising a control unit that controls driving of a motor that generates power provided to a gearbox, controlling same on the basis of temperature information for the gearbox which comprises a power transmission mechanism using traction force.

Description

制御装置、レンズ鏡筒、および撮像装置Control device, lens barrel, and imaging device
 本開示は、制御装置、レンズ鏡筒、および撮像装置に関する。 The present disclosure relates to a control device, a lens barrel, and an imaging device.
 近年、トラクション力を用いる動力伝達機構を備える変速装置に関する様々な技術が開発されている。例えば、以下の特許文献1には、遊星回転軸と、遊星回転軸の挿通孔との間に、線膨張係数(熱膨張係数)の小さい円筒部材を配置することで、低温環境においても挿通孔の径が収縮し遊星回転軸を締め付けないようにする技術が開示されている。これによって、低温環境においても遊星ローラは回転し続けることができる。 In recent years, various technologies have been developed for transmissions equipped with a power transmission mechanism that uses traction force. For example, in Patent Document 1 below, a cylindrical member having a small linear expansion coefficient (coefficient of thermal expansion) is arranged between the planetary rotation shaft and the insertion hole of the planetary rotation shaft, so that the insertion hole can be inserted even in a low temperature environment. There is disclosed a technique for preventing the planetary rotation shaft from being tightened by contracting the diameter of. As a result, the planetary roller can continue to rotate even in a low temperature environment.
特開2017-201192号公報JP, 2017-201192, A
 しかし、特許文献1などに開示されている技術によっては、トラクション力を用いる動力伝達機構を備える変速装置を適切な温度に維持することはできなかった。 However, with the technology disclosed in Patent Document 1 and the like, it was not possible to maintain the transmission having a power transmission mechanism using traction force at an appropriate temperature.
 そこで、本開示は、上記事情に鑑みてなされたものであり、トラクション力を用いる動力伝達機構を備える変速装置を、より適切な温度に維持することが可能な、新規かつ改良された制御装置、レンズ鏡筒、および撮像装置を提供する。 Therefore, the present disclosure has been made in view of the above circumstances, and a new and improved control device capable of maintaining a transmission having a power transmission mechanism that uses a traction force at a more appropriate temperature, A lens barrel and an imaging device are provided.
 本開示によれば、トラクション力を用いる動力伝達機構を備える変速装置の温度情報に基づいて、前記変速装置に提供される動力を発生させるモータの駆動を制御する制御部を備える、制御装置が提供される。 According to the present disclosure, there is provided a control device that includes a control unit that controls driving of a motor that generates power provided to the transmission based on temperature information of the transmission that includes a power transmission mechanism that uses a traction force. To be done.
 また、本開示によれば、トラクション力を用いる動力伝達機構を備える変速装置の温度情報に基づいて、前記変速装置に提供される動力を発生させるモータの駆動を制御する制御部と、前記動力伝達機構を介して伝達される動力を用いて、少なくとも1つのレンズが駆動されるレンズ群と、を備える、レンズ鏡筒が提供される。 Further, according to the present disclosure, a control unit that controls driving of a motor that generates power provided to the transmission based on temperature information of the transmission that includes a power transmission mechanism that uses a traction force, and the power transmission. A lens barrel is provided that includes a lens group in which at least one lens is driven by using power transmitted through the mechanism.
 また、本開示によれば、トラクション力を用いる動力伝達機構を備える変速装置の温度情報に基づいて、前記変速装置に提供される動力を発生させるモータの駆動を制御する制御部と、前記動力伝達機構を介して伝達される動力を用いて、少なくとも1つのレンズが駆動されるレンズ群と、前記レンズ群により結像された被写体像を電気的な信号に変換する撮像素子と、を備える、撮像装置が提供される。 Further, according to the present disclosure, a control unit that controls driving of a motor that generates power provided to the transmission based on temperature information of the transmission that includes a power transmission mechanism that uses a traction force, and the power transmission. An image pickup device including: a lens group in which at least one lens is driven by using power transmitted through a mechanism; and an image pickup device that converts a subject image formed by the lens group into an electrical signal. A device is provided.
超音波モータのA相とB相に印加される駆動信号の位相差と、超音波モータの回転速度との関係を示すグラフである。It is a graph which shows the phase difference of the drive signal applied to A phase and B phase of an ultrasonic motor, and the relationship of the rotation speed of an ultrasonic motor. 超音波モータの振動量と発熱量との関係を示すグラフである。It is a graph which shows the relationship between the amount of vibrations of an ultrasonic motor, and the amount of heat generation. 従来の超音波モータの制御態様を示すグラフである。It is a graph which shows the control mode of the conventional ultrasonic motor. 本実施形態に係る超音波モータの制御態様、および超音波モータから動力を提供される(トラクションドライブを備える)変速装置の温度の変化を示すグラフである。6 is a graph showing a control mode of the ultrasonic motor according to the present embodiment and a change in temperature of a transmission device (including a traction drive) provided with power from the ultrasonic motor. 本実施形態に係るレンズ鏡筒およびカメラボディ(換言すると、撮像装置)の構成例を示すブロック図である。It is a block diagram showing an example of composition of a lens barrel and a camera body (in other words, an imaging device) concerning this embodiment. 本実施形態に係る制御部がモードを設定、変更する際の処理フロー例を示すフローチャートである。It is a flow chart which shows an example of a processing flow when a control part concerning this embodiment sets up and changes a mode. 第1の変形例に係る超音波モータの制御態様、および超音波モータから動力を提供される変速装置の温度の変化を示すグラフである。7 is a graph showing a control mode of an ultrasonic motor according to a first modification and a change in temperature of a transmission device provided with power from the ultrasonic motor. 第1の変形例に係る超音波モータの制御態様、および超音波モータから動力を提供される変速装置の温度の変化を示すグラフである。7 is a graph showing a control mode of an ultrasonic motor according to a first modification and a change in temperature of a transmission device provided with power from the ultrasonic motor. 第2の変形例に係る超音波モータの制御態様、および超音波モータから動力を提供される変速装置の温度の変化を示すグラフである。8 is a graph showing a control mode of an ultrasonic motor according to a second modification and a change in temperature of a transmission device provided with power from the ultrasonic motor. 第2の変形例に係る超音波モータの制御態様、および超音波モータから動力を提供される変速装置の温度の変化を示すグラフである。9 is a graph showing a control mode of an ultrasonic motor according to a second modification and a change in temperature of a transmission device provided with power from the ultrasonic motor. 駆動信号の位相差の制御による超音波モータの回転速度の低下が、駆動電圧によって補償される場合の参照テーブルの具体例を示す図である。It is a figure which shows the specific example of a reference table in case the fall of the rotation speed of an ultrasonic motor by control of the phase difference of a drive signal is compensated by a drive voltage. 駆動信号の位相差の制御による超音波モータの回転速度の低下が、駆動周波数によって補償される場合の参照テーブルの具体例を示す図である。It is a figure which shows the specific example of the reference table in case the fall of the rotation speed of an ultrasonic motor by control of the phase difference of a drive signal is compensated by a drive frequency. 本実施形態に係る超音波モータおよび変速装置のハードウェア構成例を示す模式図である。It is a schematic diagram which shows the hardware structural example of the ultrasonic motor and the transmission which concern on this embodiment. 本実施形態に係る超音波モータによって発せられた熱が変速装置へ伝達される際の経路の具体例を示す模式図である。It is a schematic diagram which shows the specific example of the path|route at the time when the heat generated by the ultrasonic motor which concerns on this embodiment is transmitted to a transmission. 内視鏡手術システムの概略的な構成の一例を示す図である。It is a figure which shows an example of a schematic structure of an endoscopic surgery system. 図15に示すカメラヘッド及びCCUの機能構成の一例を示すブロック図である。FIG. 16 is a block diagram showing an example of a functional configuration of the camera head and CCU shown in FIG. 15. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram showing an example of a schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In this specification and the drawings, constituent elements having substantially the same functional configuration are designated by the same reference numerals, and a duplicate description will be omitted.
 なお、説明は以下の順序で行うものとする。
 1.概要
 2.構成例
 3.処理フロー例
 4.変形例
 5.ハードウェア構成例
 6.応用例
 7.むすび
The description will be given in the following order.
1. Outline 2. Configuration example 3. Example of processing flow 4. Modification 5. Example of hardware configuration 6. Application example 7. Conclusion
  <1.概要>
 まず、本実施形態の概要について説明する。
<1. Overview>
First, the outline of this embodiment will be described.
 上記のとおり、近年、トラクション力を用いる動力伝達機構を備える変速装置に関する様々な技術が開発されている。以降では、トラクション力を用いる動力伝達機構の一例として「トラクションドライブ」について説明していく(なお、トラクション力を用いる動力伝達機構が必ずしもトラクションドライブに限定されない点に留意されたい)。「トラクションドライブ」とは、圧接された2種類のローラ(「太陽ローラ」および「遊星ローラ」と呼称する)の間にオイルやグリス等を介在させ、太陽ローラの回転力を遊星ローラに伝える機構である。トラクションドライブはギアを用いないためバックラッシがなく、バックラッシに起因する騒音が発生しないことが特長の一つである。この特長を生かして、トラクションドライブを備える変速装置は様々な製品(例えば、プリンタ等)に用いられている。 As mentioned above, in recent years, various technologies have been developed for transmissions including a power transmission mechanism that uses traction force. Hereinafter, a "traction drive" will be described as an example of a power transmission mechanism that uses traction force (note that the power transmission mechanism that uses traction force is not necessarily limited to a traction drive). The "traction drive" is a mechanism for transmitting the rotational force of the sun roller to the planetary roller by interposing oil or grease between two types of pressure-contacted rollers (referred to as "sun roller" and "planetary roller"). Is. One of the features of the traction drive is that there is no backlash because no gears are used and no noise is generated due to backlash. Taking advantage of this feature, a transmission equipped with a traction drive is used in various products (for example, printers).
 ここで、現在の撮像装置(例えば、カメラ等)のフォーカスに用いられる変速装置は、ギアを備えている場合が多く、バックラッシに起因する駆動音が発生するところ、例えば上記の特許文献1のように撮像装置のフォーカスにトラクションドライブを備える変速装置が用いられることによって駆動音が低減される。 Here, in many cases, transmissions currently used for focusing an image pickup apparatus (for example, a camera) are provided with gears, and a drive sound due to backlash is generated. Further, the drive sound is reduced by using the transmission including the traction drive for the focus of the image pickup apparatus.
 一方で、トラクションドライブは、温度環境の変化に起因して適切に動作することができない場合がある。より具体的に説明すると、例えば低温環境においては、トラクションドライブに用いられるオイルやグリス等の性質が変化すること(例えば、粘度が高くなること等)で動力伝達の効率(または、トラクション係数)が低下する。また、トラクションドライブの各構成が低温環境において収縮したり高温環境において膨張したりすることに起因して、太陽ローラと遊星ローラとの接触面圧が変化することで、動力伝達の効率が低下したり動力伝達が不可能になったりする場合がある。トラクションドライブを備える変速装置が、例えば撮像装置(例えば、カメラ等)のように、様々な温度環境において使用される装置に適用される場合には、温度環境の変化に起因してトラクションドライブが適切に動作できないことは望ましくない。 On the other hand, the traction drive may not be able to operate properly due to changes in the temperature environment. More specifically, for example, in a low temperature environment, the power transmission efficiency (or traction coefficient) may be reduced by changing the properties of oil or grease used in the traction drive (for example, increasing viscosity). descend. Also, due to contraction of each component of the traction drive in a low temperature environment and expansion in a high temperature environment, the contact surface pressure between the sun roller and the planetary roller changes, resulting in a decrease in power transmission efficiency. Or power transmission may become impossible. When the transmission equipped with the traction drive is applied to a device used in various temperature environments such as an imaging device (for example, a camera), the traction drive is appropriate due to the change in the temperature environment. It is not desirable to be unable to work.
 本件の開示者は、上記事情に鑑みて本開示に係る技術を創作するに至った。本開示の一実施形態に係る制御装置は、トラクションドライブ(トラクション力を用いる動力伝達機構)を備える変速装置の温度情報に基づいて、当該変速装置に提供される動力を発生させるモータの駆動を制御する。特に低温環境においては、本実施形態に係る制御装置は、温度情報に基づいて変速装置の温度が所定値以下であると判定した場合、モータの駆動を制御しモータを発熱させることで変速装置を温める。これによって、本実施形態に係る制御装置は、モータの駆動によって発生した熱を用いて、当該変速装置を、より適切な温度に維持することができる。 The presenter of the present case has created the technology related to the present disclosure in view of the above circumstances. A control device according to an embodiment of the present disclosure controls drive of a motor that generates power provided to a transmission based on temperature information of a transmission that includes a traction drive (power transmission mechanism that uses traction force). To do. Particularly in a low-temperature environment, the control device according to the present embodiment controls the drive of the motor and causes the motor to generate heat when it determines that the temperature of the transmission is equal to or lower than a predetermined value based on the temperature information. warm. As a result, the control device according to the present embodiment can maintain the transmission at a more appropriate temperature by using the heat generated by driving the motor.
 ここで、本実施形態に用いられる「モータ」は、その駆動時に発生する熱を制御可能なものであればよく、その種類は問わない。本書では、「モータ」として超音波モータが用いられる場合を一例として説明する。 Here, the “motor” used in the present embodiment may be of any type as long as it can control the heat generated during its driving, and its type does not matter. In this document, a case where an ultrasonic motor is used as the "motor" will be described as an example.
 超音波モータは、圧電素子を用いて電気エネルギーを機械エネルギーに変換する圧電アクチュエータである。その原理は、圧電素子によって振動体(以降、「ステータ」と呼称する)に超音波振動を発生させ、摩擦力を介して移動体(以降、「ロータ」と呼称する)を駆動するものである。より具体的には、ステータには圧電素子が接着されており、圧電素子には、独立した2相(以降、「A相」、「B相」と呼称する)の電極が設けられている。そして、ステータの共振周波数(固有振動数)付近の駆動信号をA相とB相の電極に印加すると、ステータが激しく振動する。 Ultrasonic motors are piezoelectric actuators that use a piezoelectric element to convert electrical energy into mechanical energy. The principle is to generate ultrasonic vibrations in a vibrating body (hereinafter referred to as “stator”) by a piezoelectric element, and drive a moving body (hereinafter referred to as “rotor”) via frictional force. .. More specifically, a piezoelectric element is bonded to the stator, and the piezoelectric element is provided with independent two-phase (hereinafter referred to as “A phase” and “B phase”) electrodes. When a drive signal near the resonance frequency (natural frequency) of the stator is applied to the A-phase and B-phase electrodes, the stator vibrates violently.
 その際、A相、B相の電極に印加される駆動信号の位相をずらすと、ステータの振動が進行波を形成し、この進行波がロータを進行波の方向に回転させる(換言すると、超音波モータが回転する)。図1は、A相とB相の電極に印加される駆動信号の位相差と、超音波モータが回転する速度(図中では、「回転速度」と表記)との関係を示すグラフである。図1に示すように、A相とB相の電極に印加される駆動信号の位相差が+90[deg](または、-90[deg])の場合、超音波モータの回転速度は時計回りに最大(または、反時計回りに最大)となる。また、A相とB相の電極に印加される駆動信号の位相差が0[deg](または+180[deg]、-180[deg])の場合、ステータの振動は定在波(波形が進行せずその場に止まって振動しているようにみえる波を指す)を形成するため、ロータは回転しない。 At that time, when the phases of the drive signals applied to the A-phase and B-phase electrodes are shifted, the vibration of the stator forms a traveling wave, and this traveling wave rotates the rotor in the traveling wave direction (in other words, The sonic motor rotates). FIG. 1 is a graph showing the relationship between the phase difference between the drive signals applied to the A-phase and B-phase electrodes and the speed at which the ultrasonic motor rotates (denoted as “rotation speed” in the figure). As shown in FIG. 1, when the phase difference between the drive signals applied to the A-phase and B-phase electrodes is +90 [deg] (or -90 [deg]), the rotation speed of the ultrasonic motor is clockwise. Maximum (or maximum counterclockwise). When the phase difference between the drive signals applied to the A-phase and B-phase electrodes is 0 [deg] (or +180 [deg], -180 [deg]), the stator vibration is a standing wave (waveform progresses. The rotor does not rotate to form a wave that seems to oscillate without stopping.
 ここで、超音波モータは、圧電素子の作用によりステータが高速で振動する際に発熱するという性質を有する。図2は、超音波モータの振動量と発熱量の関係を駆動周波数ごとに示したグラフである。超音波モータによる発熱は、ステータとロータの摩擦や駆動電流の影響よりも、圧電素子の作用による振動の影響が大きく、図2に示すように超音波モータの振動量と発熱量は正の相関を有する。また超音波モータの発熱量は、振動によって進行波が形成されるか定在波が形成されるかによらない。 ▽ Here, the ultrasonic motor has the property of generating heat when the stator vibrates at high speed due to the action of the piezoelectric element. FIG. 2 is a graph showing the relationship between the vibration amount and the heat generation amount of the ultrasonic motor for each drive frequency. The heat generated by the ultrasonic motor is affected more by the vibration of the piezoelectric element than by the friction between the stator and the rotor or the driving current. As shown in FIG. 2, the vibration amount and the heat generation amount of the ultrasonic motor have a positive correlation. Have. The amount of heat generated by the ultrasonic motor does not depend on whether a traveling wave or a standing wave is formed by vibration.
 上記を踏まえて、本実施形態に係る制御装置は、超音波モータの駆動を制御し超音波モータを発熱させることで変速装置を温める場合と、そうでない場合とで、超音波モータに印加される電圧パターンを変える(制御する)。より具体的には、本実施形態に係る制御装置は、電圧パターンとして超音波モータに印加される駆動信号の位相差、駆動周波数、または駆動電圧のうちの少なくともいずれか1つを変える(制御する)。 Based on the above, the control device according to the present embodiment is applied to the ultrasonic motor in the case where the transmission is warmed by controlling the drive of the ultrasonic motor to heat the ultrasonic motor and in the case where it is not. Change (control) the voltage pattern. More specifically, the control device according to the present embodiment changes (controls) at least one of the phase difference, the drive frequency, and the drive voltage of the drive signal applied to the ultrasonic motor as a voltage pattern. ).
 本実施形態に係る超音波モータの制御態様を、図3および図4を参照して説明する。図3は、従来の超音波モータの制御態様を示すグラフである。より具体的には、図3のAには従来の超音波モータの温度の変化、図3のBには超音波モータに印加される駆動信号の位相差の変化、図3のCには駆動周波数の変化(なお、破線は共振周波数を示している)、図3のDには駆動電圧の変化(なお、通常印加される駆動電圧を「基本電圧」と表記している)、図3のEには超音波モータの回転速度の変化(なお、通常の回転速度を「基準速度」と表記している)が示されている。図3のBに示すように、超音波モータの駆動時には、駆動信号の位相差は+90[deg](または、-90[deg])から変更されない。 A control mode of the ultrasonic motor according to this embodiment will be described with reference to FIGS. 3 and 4. FIG. 3 is a graph showing a control mode of a conventional ultrasonic motor. More specifically, FIG. 3A shows a change in temperature of the conventional ultrasonic motor, FIG. 3B shows a change in phase difference of a drive signal applied to the ultrasonic motor, and FIG. A change in frequency (note that the broken line indicates the resonance frequency), a change in the drive voltage in D of FIG. 3 (the drive voltage that is normally applied is referred to as a “basic voltage”), E shows the change in the rotation speed of the ultrasonic motor (the normal rotation speed is referred to as the "reference speed"). As shown in FIG. 3B, the phase difference of the drive signals is not changed from +90 [deg] (or -90 [deg]) when the ultrasonic motor is driven.
 図4は、本実施形態に係る超音波モータの制御態様、および超音波モータから動力を提供される(トラクションドライブを備える)変速装置の温度の変化を示すグラフである。より具体的には、図4のAには本実施形態に係る変速装置の温度の変化、図4のBには本実施形態に係る超音波モータに印加される駆動信号の位相差の変化、図4のCには駆動周波数の変化、図4のDには駆動電圧の変化、図4のEには超音波モータの回転速度の変化が示されている。図4のAおよびBに示すように、本実施形態に係る制御装置は、変速装置の温度が所定値以下である場合、駆動信号の位相差を0[deg]にすることで超音波モータに定在波を発生させる。これによって図4のEに示すように、制御装置は、超音波モータの回転速度を0[r/min]にしつつ、定在波(振動)によって超音波モータを発熱させることができる。 FIG. 4 is a graph showing a control mode of the ultrasonic motor according to the present embodiment and a change in temperature of a transmission (provided with a traction drive) provided with power from the ultrasonic motor. More specifically, FIG. 4A shows a change in temperature of the transmission according to the present embodiment, and FIG. 4B shows a change in phase difference between drive signals applied to the ultrasonic motor according to the present embodiment. 4C shows a change in drive frequency, FIG. 4D shows a change in drive voltage, and E in FIG. 4 shows a change in rotation speed of the ultrasonic motor. As shown in FIGS. 4A and 4B, when the temperature of the transmission is equal to or lower than a predetermined value, the control device according to the present embodiment sets the phase difference of the drive signal to 0 [deg], and thus the ultrasonic motor is controlled. Generate a standing wave. Thereby, as shown in E of FIG. 4, the control device can heat the ultrasonic motor by the standing wave (vibration) while setting the rotation speed of the ultrasonic motor to 0 [r/min].
 トラクションドライブを備える変速装置は、超音波モータにより発せられた熱を伝達され温められる。そして図4のAおよびBに示すように、トラクションドライブを備える変速装置の温度が所定値より高くなった場合、本実施形態に係る制御装置は、駆動信号の位相差を略+90[deg](または、略-90[deg])にすることで超音波モータに進行波を発生させ、超音波モータを回転させる。これによって、動作時の性能が低下するほどの低温環境においても、本実施形態に係る制御装置は、トラクションドライブを備える変速装置を適切に動作させることができる。 A transmission equipped with a traction drive can heat the heat generated by an ultrasonic motor. Then, as shown in A and B of FIG. 4, when the temperature of the transmission including the traction drive becomes higher than a predetermined value, the control device according to the present embodiment causes the phase difference of the drive signals to be approximately +90 [deg] ( Alternatively, the traveling wave is generated in the ultrasonic motor by setting it to about −90 [deg]), and the ultrasonic motor is rotated. As a result, the control device according to the present embodiment can properly operate the transmission including the traction drive even in a low temperature environment in which the performance during operation deteriorates.
 ここで、本実施形態に係る制御装置が、超音波モータの駆動を制御し超音波モータを発熱させることで変速装置を温めている動作状態を「発熱モード」と呼称する。すなわち、本実施形態に係る制御装置は、変速装置の温度が所定値以下であると判定した場合、モードを発熱モードへ遷移させて変速装置を温める。一方、超音波モータが回転している動作状態(通常の動作状態)を「回転駆動モード」と呼称する。すなわち、本実施形態に係る制御装置は、変速装置の温度が所定値より高くなったと判定した場合、モードを発熱モードから回転駆動モードへ遷移させて通常通り超音波モータを回転させる。 Here, an operation state in which the control device according to the present embodiment controls the drive of the ultrasonic motor to heat the ultrasonic motor to heat the transmission is referred to as a “heat generation mode”. That is, when the control device according to the present embodiment determines that the temperature of the transmission is equal to or lower than the predetermined value, the control device changes the mode to the heat generation mode and warms the transmission. On the other hand, an operating state in which the ultrasonic motor is rotating (normal operating state) is called a "rotational drive mode". That is, when the control device according to the present embodiment determines that the temperature of the transmission has become higher than a predetermined value, the control device changes the mode from the heat generation mode to the rotary drive mode and rotates the ultrasonic motor as usual.
 なお、モードの切り替え制御に用いられる「所定値」は、例えば-20[℃]程度を想定しているところ、必ずしもこの値に限定されない。当該所定値は、トラクションドライブに用いられるオイルやグリス等の特性、または本実施形態に係る制御装置の種類や用途等に基づいて適した値が設定される。 The “predetermined value” used for the mode switching control is assumed to be, for example, about −20 [° C.], but is not necessarily limited to this value. The predetermined value is set to an appropriate value based on the characteristics of the oil or grease used in the traction drive, or the type and application of the control device according to the present embodiment.
 「本実施形態に係る制御装置」は、後に図5などを参照しながら説明する、レンズ鏡筒100の制御部150、またはカメラボディ200の制御部250などによって実現され得る。より具体的には、「本実施形態に係る制御装置」は、レンズ鏡筒100の制御部150、またはカメラボディ200の制御部250として機能するICチップなどによって実現され得る(もちろん、ICチップに限定されない)。なお、「本実施形態に係る制御装置」は、レンズ鏡筒100の制御部150、またはカメラボディ200の制御部250などと他の構成とが合せられることで実現されてもよい。以降では、本実施形態の詳細について説明していく。 The “control device according to the present embodiment” can be realized by the control unit 150 of the lens barrel 100, the control unit 250 of the camera body 200, or the like, which will be described later with reference to FIG. 5 and the like. More specifically, the “control device according to the present embodiment” can be realized by an IC chip that functions as the control unit 150 of the lens barrel 100 or the control unit 250 of the camera body 200 (of course, the IC chip is Not limited). The “control device according to the present embodiment” may be realized by combining the control unit 150 of the lens barrel 100 or the control unit 250 of the camera body 200 with another configuration. The details of this embodiment will be described below.
  <2.構成例>
 図5を参照して、本実施形態に係る装置の構成例について説明する。図5は、本実施形態に係るレンズ鏡筒100およびカメラボディ200の構成例を示すブロック図である。なお、レンズ鏡筒100およびカメラボディ200によって撮像装置300が形成される。
<2. Configuration example>
A configuration example of the device according to the present embodiment will be described with reference to FIG. FIG. 5 is a block diagram showing a configuration example of the lens barrel 100 and the camera body 200 according to the present embodiment. The lens barrel 100 and the camera body 200 form an imaging device 300.
 (2.1.レンズ鏡筒100の構成例)
 図5に示すように、レンズ鏡筒100は、超音波モータ110と、変速装置120と、エンコーダ130と、温度センサ140と、制御部150と、記憶部160と、レンズ駆動部170と、レンズ群180と、通信部190と、を備える。
(2.1. Configuration example of lens barrel 100)
As shown in FIG. 5, the lens barrel 100 includes an ultrasonic motor 110, a transmission device 120, an encoder 130, a temperature sensor 140, a control unit 150, a storage unit 160, a lens driving unit 170, and a lens. The group 180 and the communication unit 190 are provided.
 超音波モータ110は、制御部150に制御されることで駆動し、変速装置120に提供される動力を発生させる構成である。超音波モータ110の動作原理などについては上記のとおりである。 The ultrasonic motor 110 is driven by being controlled by the control unit 150, and generates the power provided to the transmission 120. The operation principle and the like of the ultrasonic motor 110 are as described above.
 変速装置120は、トラクションドライブを用いて、超音波モータ110から提供される動力をレンズ駆動部170に伝達する構成である。トラクションドライブによる動力伝達原理などについては上記のとおりである。なお、超音波モータ110および変速装置120のハードウェア構成例については後段にて詳述する。 The transmission 120 is configured to transmit the power provided from the ultrasonic motor 110 to the lens driving unit 170 using a traction drive. The principle of power transmission by the traction drive is as described above. A hardware configuration example of the ultrasonic motor 110 and the transmission 120 will be described later in detail.
 エンコーダ130は、変速装置120の入力軸の回転量や回転方向、もしくは変速装置120の出力軸の回転量や回転方向などの情報を出力する構成である。エンコーダ130は、出力した情報を制御部150に提供する。なお、エンコーダ130の種類や設置態様は特に限定されない。 The encoder 130 is configured to output information such as the rotation amount and rotation direction of the input shaft of the transmission 120 or the rotation amount and rotation direction of the output shaft of the transmission 120. The encoder 130 provides the output information to the control unit 150. The type and installation mode of the encoder 130 are not particularly limited.
 温度センサ140は、トラクションドライブを備える変速装置120の温度情報を出力する構成である。ここで、「トラクションドライブを備える変速装置120の温度情報」とは、トラクションドライブの一部分の温度情報を指してもよいし、変速装置120の一部分の温度情報を指してもよい。温度センサ140は、トラクションドライブに用いられるオイルやグリスの温度情報を出力可能な態様で配置されることが望ましい。例えば、温度センサ140は、トラクションドライブのオイル等に接触するように、またはオイル等に近い位置に配置されることが望ましい。上記のとおり、温度変化によって、トラクションドライブに用いられるオイル等の性質が変化したり、トラクションドライブの各構成(太陽ローラや遊星ローラなど)が収縮したり膨張したりすることで、トラクションドライブが適切に動作できなくなる場合がある。温度センサ140がオイル等の温度情報を出力することによって、後段で説明する制御部150は、当該温度情報に基づいて超音波モータ110の駆動を制御し変速装置120の温度を調節することで、トラクションドライブを適切に動作させることができる。 The temperature sensor 140 is configured to output temperature information of the transmission 120 including the traction drive. Here, the “temperature information of the transmission 120 including the traction drive” may refer to the temperature information of a part of the traction drive or the temperature information of a part of the transmission 120. It is desirable that the temperature sensor 140 be arranged in a manner capable of outputting temperature information of oil or grease used for the traction drive. For example, it is desirable that the temperature sensor 140 is arranged so as to come into contact with oil or the like of the traction drive or at a position close to the oil or the like. As described above, due to changes in temperature, the properties of the oil used in the traction drive change, and the components of the traction drive (sun roller, planetary roller, etc.) contract and expand, making the traction drive appropriate. It may not work properly. Since the temperature sensor 140 outputs the temperature information of oil or the like, the control unit 150 described later controls the drive of the ultrasonic motor 110 based on the temperature information and adjusts the temperature of the transmission 120, The traction drive can operate properly.
 なお、温度センサ140が出力する「温度情報」とは、温度に関する何らかの情報を指す。例えば、温度情報は、温度を示す数値情報(例えば、0[℃]、-20[℃]等)であってもよいし、発熱モードと回転駆動モードとが切り替えられる温度以下であることを示す情報(または当該温度より高いことを示す情報)であってもよい。もちろん、温度情報の内容はこれらに限定されない。 Note that the “temperature information” output by the temperature sensor 140 refers to some information regarding the temperature. For example, the temperature information may be numerical information indicating the temperature (for example, 0 [° C.], −20 [° C.], etc.), or indicates that the temperature is equal to or lower than the temperature at which the heat generation mode and the rotation drive mode are switched. It may be information (or information indicating that the temperature is higher than the temperature). Of course, the content of the temperature information is not limited to these.
 制御部150は、レンズ鏡筒100の各構成に関する処理を統括的に制御する構成である。例えば、制御部150は、温度センサ140から提供される、トラクションドライブを備える変速装置120の温度情報に基づいて、超音波モータ110の駆動を制御する。特に低温環境においては、制御部150は、温度情報に基づいて変速装置120の温度が所定値以下であると判定した場合、超音波モータ110の駆動を制御し超音波モータ110を発熱させることで変速装置120を温める。 The control unit 150 is configured to integrally control the processing regarding each component of the lens barrel 100. For example, the control unit 150 controls the drive of the ultrasonic motor 110 based on the temperature information of the transmission 120 including the traction drive, which is provided from the temperature sensor 140. Particularly in a low temperature environment, the control unit 150 controls the drive of the ultrasonic motor 110 to cause the ultrasonic motor 110 to generate heat when it is determined that the temperature of the transmission 120 is equal to or lower than a predetermined value based on the temperature information. Warm transmission 120.
 制御部150は、超音波モータ110の駆動を制御し超音波モータ110を発熱させることで変速装置120を温める場合と、そうでない場合とで、超音波モータ110に印加される電圧パターンを変える。より具体的には、制御部150は、電圧パターンとして、超音波モータ110に印加される駆動信号の位相差、駆動周波数、または駆動電圧のうちの少なくともいずれか1つを変える。例えば、変速装置120の温度が所定値以下であり、モードを発熱モードへ遷移させて変速装置120を温める場合、制御部150は、駆動信号の位相差を略0[deg]または略180[deg](略-180[deg]と同義)に設定する。これによって、制御部150は、超音波モータ110の回転速度を0[r/min]にしつつ、定在波(振動)によって超音波モータ110を発熱させ、変速装置120を温めることができる。なお、制御部150は、駆動周波数または駆動電圧も適宜変更してもよい。例えば、変速装置120の温度がより低い場合や、温度を急速に上げる必要がある場合などにおいて、制御部150は、駆動周波数を共振周波数(固有振動数)に近づけたり、駆動電圧をより高くしたりすることで超音波モータ110による発熱量を増加させてもよい。 The control unit 150 changes the voltage pattern applied to the ultrasonic motor 110 depending on whether the transmission 120 is warmed by controlling the driving of the ultrasonic motor 110 to heat the ultrasonic motor 110 or not. More specifically, the control unit 150 changes at least one of the phase difference of the drive signal applied to the ultrasonic motor 110, the drive frequency, and the drive voltage as the voltage pattern. For example, when the temperature of the transmission 120 is equal to or lower than a predetermined value and the mode is changed to the heat generation mode to heat the transmission 120, the control unit 150 causes the phase difference of the drive signals to be approximately 0 [deg] or approximately 180 [deg]. ] (Synonymous with −180 [deg]). As a result, the control unit 150 can heat the ultrasonic motor 110 by the standing wave (vibration) and warm the transmission 120 while setting the rotation speed of the ultrasonic motor 110 to 0 [r/min]. The controller 150 may also change the drive frequency or drive voltage as appropriate. For example, when the temperature of the transmission 120 is lower, or when it is necessary to raise the temperature rapidly, the control unit 150 makes the drive frequency closer to the resonance frequency (natural frequency) or raises the drive voltage. Alternatively, the amount of heat generated by the ultrasonic motor 110 may be increased.
 変速装置120の温度が所定値より高くなった場合、制御部150は、モードを発熱モードから回転駆動モードへ遷移させて通常通り超音波モータ110を回転させる。なお、制御部150による上記制御は、カメラボディ200の制御部250によって実現されてもよい。 When the temperature of the transmission 120 becomes higher than a predetermined value, the control unit 150 causes the mode to transit from the heat generation mode to the rotation drive mode and causes the ultrasonic motor 110 to rotate normally. The control by the control unit 150 may be realized by the control unit 250 of the camera body 200.
 記憶部160は、各種情報を記憶する構成である。例えば、記憶部160は、制御部150等の各種処理に用いられる情報(例えば、プログラムやパラメータ等)、または各種処理によって出力された情報等を記憶する。また、記憶部160は、カメラボディ200の通信部270から送信された各種情報を記憶してもよい。なお、記憶部160が記憶する情報はこれらに限定されない。 The storage unit 160 is configured to store various types of information. For example, the storage unit 160 stores information (for example, programs and parameters) used in various processes of the control unit 150 and the like, information output by various processes, and the like. The storage unit 160 may also store various information transmitted from the communication unit 270 of the camera body 200. The information stored in the storage unit 160 is not limited to these.
 レンズ駆動部170は、トラクションドライブを介して伝達される動力を用いて、レンズ群180に備えられる少なくとも1つのレンズ(例えば、フォーカシングレンズ等)を駆動する構成である。なお、レンズ駆動部170が備える構成および駆動原理は特に限定されない。 The lens driving unit 170 is configured to drive at least one lens (for example, a focusing lens) included in the lens group 180 using the power transmitted via the traction drive. The configuration and driving principle of the lens driving unit 170 are not particularly limited.
 レンズ群180は、前玉レンズ、フォーカシングレンズ、ぶれ補正レンズ等の複数のレンズを備え、トラクションドライブを介して伝達される動力を用いて、少なくとも1つのレンズ(例えば、フォーカシングレンズ等)が駆動される構成である。前玉レンズは複数のレンズのうち最も被写体側に位置するレンズであり、フォーカシングレンズは被写体像のピント位置を制御するためのレンズであり、ぶれ補正レンズは被写体像の像ぶれを補正するためのレンズである。なお、レンズ群180が備えるレンズの種類、枚数、および形状などは特に限定されない。 The lens group 180 includes a plurality of lenses such as a front lens, a focusing lens, and a blur correction lens, and at least one lens (for example, a focusing lens) is driven by using power transmitted through a traction drive. It is a configuration. The front lens is the lens closest to the subject side among the plurality of lenses, the focusing lens is a lens for controlling the focus position of the subject image, and the blur correction lens is for correcting the image blur of the subject image. It is a lens. The type, number, and shape of the lenses included in the lens group 180 are not particularly limited.
 通信部190は、カメラボディ200の通信部270と通信を行う構成である。例えば、通信部190は、制御部150による制御に基づいてカメラボディ200の通信部270に対して各種情報を送信したり、カメラボディ200の通信部270から各種情報を受信したりする。なお、通信部190が通信する情報の内容は特に限定されない。また、通信部190は、カメラボディ200の通信部270以外と通信を行ってもよい。 The communication unit 190 is configured to communicate with the communication unit 270 of the camera body 200. For example, the communication unit 190 transmits various kinds of information to the communication unit 270 of the camera body 200 or receives various kinds of information from the communication unit 270 of the camera body 200 under the control of the control unit 150. The content of information communicated by the communication unit 190 is not particularly limited. Further, the communication unit 190 may communicate with a unit other than the communication unit 270 of the camera body 200.
 (2.2.カメラボディ200の構成例)
 図5に示すように、カメラボディ200は、シャッタ210と、フィルタ220と、撮像素子230と、信号処理部240と、制御部250と、記憶部260と、通信部270と、を備える。
(2.2. Configuration example of camera body 200)
As shown in FIG. 5, the camera body 200 includes a shutter 210, a filter 220, an image sensor 230, a signal processing unit 240, a control unit 250, a storage unit 260, and a communication unit 270.
 シャッタ210は、撮像素子230の露光状態を制御する構成である。シャッタ210は、図5に示すように、レンズ群180の後段かつフィルタ220の前段に配置され、制御部250による制御に基づいて光路を開閉することによって撮像素子230の露光状態を制御する。 The shutter 210 is configured to control the exposure state of the image sensor 230. As shown in FIG. 5, the shutter 210 is arranged in the rear stage of the lens group 180 and in the front stage of the filter 220, and controls the exposure state of the image sensor 230 by opening and closing the optical path under the control of the control unit 250.
 フィルタ220は、所望の波長の光のみを透過させるための構成である。フィルタ220は、例えば、光学的ローパスフィルターや赤外線カットフィルターなどであり得るところ、必ずしもこれらに限定されない。フィルタ220は、図5に示すように、シャッタ210の後段かつ撮像素子230の前段に配置される。 The filter 220 has a configuration for transmitting only light of a desired wavelength. The filter 220 may be, for example, an optical low pass filter or an infrared cut filter, but is not necessarily limited thereto. As shown in FIG. 5, the filter 220 is arranged in the rear stage of the shutter 210 and in the front stage of the image sensor 230.
 撮像素子230は、結像面に複数の画素を備える構成であり、各々の画素は、レンズ群180により結像された被写体像を電気的な信号(画素信号)に変換する。画素信号は、制御部250による制御に基づいて各々の画素から読み出され、信号処理部240に提供される。撮像素子230は、例えばCCD(Charge Coupled Device)センサアレイや、CMOS(Complementary Metal Oxide Semiconductor)センサアレイ等であり得るところ、必ずしもこれらに限定されない。 The image sensor 230 is configured to include a plurality of pixels on the image forming surface, and each pixel converts the subject image formed by the lens group 180 into an electrical signal (pixel signal). The pixel signal is read from each pixel under the control of the control unit 250 and provided to the signal processing unit 240. The image sensor 230 may be, for example, a CCD (Charge Coupled Device) sensor array, a CMOS (Complementary Metal Oxide Semiconductor) sensor array, or the like, but is not necessarily limited thereto.
 信号処理部240は、撮像素子230から提供された画素信号に対して各種処理を施す構成である。例えば、信号処理部240は、画素信号に対して、ノイズ除去、ゲイン調節、波形整形、A/D変換、ホワイトバランス調節、輝度調節、コントラスト値調節、シャープネス(輪郭強調)調節、色補正、またはぶれ補正等を行う。なお、信号処理部240によって実現される各種処理はこれらに限定されない。 The signal processing unit 240 is configured to perform various types of processing on the pixel signal provided from the image sensor 230. For example, the signal processing unit 240 may perform noise removal, gain adjustment, waveform shaping, A/D conversion, white balance adjustment, brightness adjustment, contrast value adjustment, sharpness (edge enhancement) adjustment, color correction, or for pixel signals. Perform blur correction. The various processes implemented by the signal processing unit 240 are not limited to these.
 制御部250は、カメラボディ200の各構成に関する処理を統括的に制御する構成である。例えば、制御部250は、ユーザ入力を受け付ける入力部(図示なし)への入力に基づいてシャッタ210や信号処理部240などの各種処理を制御したり、信号処理部240によって各種処理が施された画素信号を表示部(図示なし)に表示させたりする。また上記のとおり、制御部250は、レンズ鏡筒100の制御部150による制御を代りに実現してもよい。例えば、制御部250は、トラクションドライブを備える変速装置120の温度情報に基づいて超音波モータ110の駆動を制御してもよい。この場合、温度センサ140によって取得された温度情報などの、制御部250による処理に用いられる情報は、レンズ鏡筒100の通信部190およびカメラボディ200の通信部270によって通信されるものとする。 The control unit 250 is configured to centrally control the processing related to each configuration of the camera body 200. For example, the control unit 250 controls various processes such as the shutter 210 and the signal processing unit 240 based on an input to an input unit (not shown) that receives a user input, and the signal processing unit 240 performs various processes. The pixel signal is displayed on the display unit (not shown). Further, as described above, the control unit 250 may instead realize the control by the control unit 150 of the lens barrel 100. For example, the control unit 250 may control the driving of the ultrasonic motor 110 based on the temperature information of the transmission 120 including the traction drive. In this case, information used for processing by the control unit 250, such as temperature information acquired by the temperature sensor 140, is assumed to be communicated by the communication unit 190 of the lens barrel 100 and the communication unit 270 of the camera body 200.
 記憶部260は、各種情報を記憶する構成である。例えば、記憶部260は、制御部250等の各種処理に用いられる情報(例えば、プログラムやパラメータ等)、または各種処理によって出力された情報等を記憶する。また、記憶部260は、レンズ鏡筒100の通信部190から送信された各種情報を記憶してもよい。なお、記憶部260が記憶する情報はこれらに限定されない。 The storage unit 260 is configured to store various types of information. For example, the storage unit 260 stores information (for example, programs and parameters) used for various processes of the control unit 250 and the like, information output by various processes, and the like. The storage unit 260 may also store various information transmitted from the communication unit 190 of the lens barrel 100. The information stored in the storage unit 260 is not limited to these.
 通信部270は、レンズ鏡筒100の通信部190と通信を行う構成である。例えば、通信部270は、制御部250による制御に基づいてレンズ鏡筒100の通信部190に対して各種情報を送信したり、レンズ鏡筒100の通信部190から各種情報を受信したりする。なお、通信部270が通信する情報の内容は特に限定されない。また、通信部270は、レンズ鏡筒100の通信部190以外と通信を行ってもよい。 The communication unit 270 is configured to communicate with the communication unit 190 of the lens barrel 100. For example, the communication unit 270 transmits various information to the communication unit 190 of the lens barrel 100 or receives various information from the communication unit 190 of the lens barrel 100 under the control of the control unit 250. The content of information communicated by the communication unit 270 is not particularly limited. Further, the communication unit 270 may communicate with a unit other than the communication unit 190 of the lens barrel 100.
 以上、図5を参照して、本実施形態に係る装置の構成例について説明した。なお、図5を用いて説明した上記の構成はあくまで一例であり、レンズ鏡筒100およびカメラボディ200の構成は係る例に限定されない。例えば、レンズ鏡筒100およびカメラボディ200は、図5に示す構成の全てを必ずしも備えなくてもよいし、図5に示す構成以外の構成を備えていてもよい。レンズ鏡筒100およびカメラボディ200の構成は、仕様や運用に応じて柔軟に変形可能である。 The configuration example of the device according to the present embodiment has been described above with reference to FIG. The configuration described above with reference to FIG. 5 is merely an example, and the configurations of the lens barrel 100 and the camera body 200 are not limited to the example. For example, the lens barrel 100 and the camera body 200 do not necessarily have to include all of the configurations shown in FIG. 5, or may have configurations other than the configurations shown in FIG. The configurations of the lens barrel 100 and the camera body 200 can be flexibly deformed according to specifications and operation.
  <3.処理フロー例>
 上記では、本実施形態に係る各装置の構成例について説明した。続いて、図6を参照して、本実施形態に係るレンズ鏡筒100の制御部150の処理フロー例について説明する。図6は、本実施形態に係る制御部150がモードを設定、変更する際の処理フロー例を示すフローチャートである。
<3. Process flow example>
In the above, the configuration example of each device according to the present embodiment has been described. Subsequently, an example of a processing flow of the control unit 150 of the lens barrel 100 according to the present embodiment will be described with reference to FIG. FIG. 6 is a flowchart showing a processing flow example when the control unit 150 according to the present embodiment sets or changes the mode.
 ステップS1000では、制御部150が、温度センサ140によって出力された変速装置120の温度情報を取得する。ステップS1004では、制御部150が、温度情報に基づいて変速装置120の温度が所定値以下であるか否かを判定する。変速装置120の温度が所定値より高いと判定された場合(ステップS1004/No)、ステップS1008にて、制御部150は、モードを回転駆動モードに設定する。これによって、ユーザは、撮像装置300を操作してフォーカスおよび撮像を行うことができる。 In step S1000, control unit 150 acquires the temperature information of transmission 120 output by temperature sensor 140. In step S1004, control unit 150 determines whether the temperature of transmission 120 is equal to or lower than a predetermined value based on the temperature information. When it is determined that the temperature of the transmission 120 is higher than the predetermined value (step S1004/No), the control unit 150 sets the mode to the rotation drive mode in step S1008. This allows the user to operate the imaging device 300 to perform focusing and imaging.
 ステップS1004にて変速装置120の温度が所定値以下であると判定された場合(ステップS1004/Yes)、ステップS1012にて、制御部150は、モードを発熱モードに設定する。そして、ステップS1016にて、制御部150は、駆動信号の位相差を略0[deg](または略180[deg])に設定し、超音波モータ110を駆動する。これによって、制御部150は、超音波モータ110の回転速度を0[r/min]にしつつ、定在波(振動)によって超音波モータ110を発熱させ、変速装置120を温めることができる。その後、処理はステップS1000に戻り、制御部150は、変速装置120の温度が少なくとも所定値より高いと判定するまで超音波モータ110を発熱させて変速装置120を温める(所定値よりも高い一定の温度まで温めてもよい)。 When it is determined in step S1004 that the temperature of the transmission 120 is equal to or lower than the predetermined value (step S1004/Yes), the control unit 150 sets the mode to the heat generation mode in step S1012. Then, in step S1016, control unit 150 sets the phase difference of the drive signals to approximately 0 [deg] (or approximately 180 [deg]), and drives ultrasonic motor 110. As a result, the control unit 150 can heat the ultrasonic motor 110 by the standing wave (vibration) and warm the transmission 120 while setting the rotation speed of the ultrasonic motor 110 to 0 [r/min]. Then, the process returns to step S1000, and the control unit 150 heats the ultrasonic motor 110 to heat the transmission 120 until the temperature of the transmission 120 is at least higher than a predetermined value (a temperature higher than the predetermined value is kept constant. May be warmed to temperature).
 なお、図6に示される一連の処理が行われるタイミング、および頻度は特に限定されない。例えば、図6に示される一連の処理は、撮像装置300が起動されたタイミングで行われ、その後、所定の時間間隔で行われてもよいし、撮像の直前に行われてもよい。 The timing and frequency at which the series of processes shown in FIG. 6 are performed are not particularly limited. For example, the series of processes shown in FIG. 6 may be performed at the timing when the image capturing apparatus 300 is activated, and then at predetermined time intervals, or immediately before image capturing.
  <4.変形例>
 上記では、本実施形態に係る制御部150の処理フロー例について説明した。続いて、本実施形態に係る変形例について説明する。
<4. Modification>
The example of the processing flow of the control unit 150 according to the present embodiment has been described above. Subsequently, a modified example according to the present embodiment will be described.
 (4.1.第1の変形例)
 まず、本実施形態に係る第1の変形例について説明する。
(4.1. First modified example)
First, a first modified example according to this embodiment will be described.
 上記で説明した発熱モード時に、超音波モータ110が僅かに回転する場合がある。例えば、定在波(振動)の影響や、超音波モータ110に印加された駆動信号の位相差の誤差などによって超音波モータ110が僅かに回転する場合がある。 The ultrasonic motor 110 may slightly rotate in the heat generation mode described above. For example, the ultrasonic motor 110 may slightly rotate due to the influence of a standing wave (vibration) or an error in the phase difference of the drive signal applied to the ultrasonic motor 110.
 そこで、第1の変形例においては、エンコーダ130から出力された回転量などの情報に基づいて発熱モード時に超音波モータ110の回転が検出された場合、制御部150は、電圧パターンのうちの少なくとも駆動信号の位相差を制御することで超音波モータ110の回転を停止させる。 Therefore, in the first modification, when the rotation of the ultrasonic motor 110 is detected in the heat generation mode based on the information such as the rotation amount output from the encoder 130, the control unit 150 causes at least the voltage pattern to be detected. The rotation of the ultrasonic motor 110 is stopped by controlling the phase difference between the drive signals.
 図7および図8を参照して具体例を説明する。発熱モード時に超音波モータ110の回転が検出された場合、例えば図7のBに示すように、制御部150は、駆動信号の位相差を0[deg]付近(または180[deg]付近)で調節することで、図7のEに示すように超音波モータ110の回転速度を0[r/min]に維持してもよい。または、発熱モード時に超音波モータ110の回転が検出された場合、例えば図8のBとCに示すように、制御部150は、駆動信号の位相差および駆動周波数を調節することで、図8のEに示すように超音波モータ110の回転速度を0[r/min]に維持してもよい。 A specific example will be described with reference to FIGS. 7 and 8. When the rotation of the ultrasonic motor 110 is detected in the heat generation mode, for example, as illustrated in B of FIG. 7, the control unit 150 sets the phase difference of the drive signal to around 0 [deg] (or around 180 [deg]). By adjusting, the rotation speed of the ultrasonic motor 110 may be maintained at 0 [r/min] as shown in E of FIG. 7. Alternatively, when the rotation of the ultrasonic motor 110 is detected in the heat generation mode, the control unit 150 adjusts the phase difference and the drive frequency of the drive signal as illustrated in B and C of FIG. The rotation speed of the ultrasonic motor 110 may be maintained at 0 [r/min] as indicated by E.
 なお、図7および図8には示していないが、制御部150は、駆動電圧も併せて調節することで超音波モータ110の回転速度を0[r/min]に維持してもよい。また、制御部150は、モードを発熱モードから回転駆動モードへ短時間だけ切り替えることで、超音波モータ110の回転を補正してもよい。 Although not shown in FIGS. 7 and 8, the control unit 150 may maintain the rotation speed of the ultrasonic motor 110 at 0 [r/min] by also adjusting the drive voltage. Further, the control unit 150 may correct the rotation of the ultrasonic motor 110 by switching the mode from the heat generation mode to the rotary drive mode for a short time.
 第1の変形例において、制御部150以外の構成は、上記の実施形態で説明したものと同様であり得るため別途の説明を省略する。また、第1の変形例に係る制御部150の処理フロー例について説明すると、制御部150は、図6のステップS1016にて超音波モータ110を駆動している間、超音波モータ110の回転量などの情報をエンコーダ130から取得し、超音波モータ110の回転の有無を確認する。そして、超音波モータ110の回転が検出された場合、制御部150は、超音波モータ110の回転を止めるために、上記のように駆動信号の位相差や駆動周波数などを調節する。 In the first modified example, the configuration other than the control unit 150 may be the same as that described in the above embodiment, and thus a separate description is omitted. In addition, an example of the processing flow of the control unit 150 according to the first modification will be described. The control unit 150 drives the ultrasonic motor 110 in step S1016 of FIG. Information such as is acquired from the encoder 130, and it is confirmed whether or not the ultrasonic motor 110 is rotating. Then, when the rotation of the ultrasonic motor 110 is detected, the control unit 150 adjusts the phase difference of the drive signal, the drive frequency, and the like in order to stop the rotation of the ultrasonic motor 110.
 第1の変形例によって、制御部150は、発熱モード時に超音波モータ110の回転による誤作動を適切に防ぐことができる。 According to the first modification, the control unit 150 can appropriately prevent a malfunction due to the rotation of the ultrasonic motor 110 in the heat generation mode.
 (4.2.第2の変形例)
 続いて、本実施形態に係る第2の変形例について説明する。
(4.2. Second Modification)
Then, the 2nd modification concerning this embodiment is explained.
 上記で説明した発熱モードでは、制御部150は、超音波モータ110を回転させることなく発熱させて変速装置120を温めた。一方、本実施形態に係る第2の変形例においては、制御部150は、超音波モータ110に印加される電圧パターンを制御することで、超音波モータ110を回転させつつ発熱させて変速装置120を温める。 In the heat generation mode described above, the control unit 150 heats the transmission 120 by causing the ultrasonic motor 110 to generate heat without rotating. On the other hand, in the second modified example according to the present embodiment, the control unit 150 controls the voltage pattern applied to the ultrasonic motor 110, thereby causing the ultrasonic motor 110 to generate heat while rotating, and the transmission 120. Warm up.
 より具体的に説明すると、回転駆動モードでは通常、駆動信号の位相差が+90[deg](または、-90[deg])に設定されるところ、第2の変形例に係る制御部150は、駆動信号の位相差を0[deg]から90[deg]の間の値、0[deg]から-90[deg]の間の値、90[deg]から180[deg]の間の値、または-90[deg]から-180[deg]の間の値に設定するに設定する。これによって、第2の変形例に係る制御部150は、超音波モータ110を十分振動させることで発熱させつつ、その振動により進行波を発生させることで超音波モータ110を回転させることができる。駆動信号の位相差が+90[deg](または、-90[deg])からずらされると、超音波モータ110の回転速度が低下するところ、第2の変形例に係る制御部150は、駆動周波数、または駆動電圧のうちの少なくともいずれか1つを制御することで、駆動信号の位相差の制御による超音波モータ110の回転速度の低下を補償する。 More specifically, in the rotary drive mode, the phase difference of the drive signals is normally set to +90 [deg] (or -90 [deg]). However, the control unit 150 according to the second modification is The phase difference of the drive signal is a value between 0 [deg] and 90 [deg], a value between 0 [deg] and -90 [deg], a value between 90 [deg] and 180 [deg], or Set to set to a value between -90 [deg] and -180 [deg]. Accordingly, the control unit 150 according to the second modification can rotate the ultrasonic motor 110 by generating a traveling wave by vibrating the ultrasonic motor 110 while sufficiently heating the ultrasonic motor 110 to generate heat. When the phase difference of the drive signal is deviated from +90 [deg] (or -90 [deg]), the rotation speed of the ultrasonic motor 110 is reduced. , Or at least one of the drive voltages is controlled to compensate for the decrease in the rotation speed of the ultrasonic motor 110 due to the control of the phase difference of the drive signals.
 ここで、制御部150が超音波モータ110を回転させつつ発熱させて変速装置120を温めている動作状態を「発熱回転駆動モード」と呼称する。また以降では、変速装置120の温度が所定値以下であると判定された場合、制御部150は、モードを(発熱モードではなく)発熱回転駆動モードに設定する場合を一例として説明するところ、発熱回転駆動モードが設定される条件は必ずしもこれに限定されない。例えば、変速装置120の温度が所定値以下であると判定された場合、制御部150は、通常、上記の実施形態のように発熱モードで超音波モータ110を駆動し、超音波モータ110による回転が必要な場合にだけモードを発熱回転駆動モードに遷移させて超音波モータ110を駆動してもよい。 Here, an operating state in which the control unit 150 heats the transmission 120 while rotating the ultrasonic motor 110 to heat the transmission 120 is referred to as a "heat generation rotation drive mode". Further, hereinafter, when it is determined that the temperature of the transmission 120 is equal to or lower than the predetermined value, the control unit 150 sets the mode to the heat generation rotational drive mode (not the heat generation mode) as an example. The condition for setting the rotation drive mode is not necessarily limited to this. For example, when it is determined that the temperature of the transmission 120 is equal to or lower than the predetermined value, the control unit 150 normally drives the ultrasonic motor 110 in the heat generation mode as in the above-described embodiment, and the ultrasonic motor 110 rotates. The ultrasonic motor 110 may be driven by transitioning the mode to the heat generation rotation drive mode only when is required.
 続いて、図9および図10を参照して具体例を説明する。例えば、図9のAおよびBに示すように、トラクションドライブを備える変速装置120の温度が所定値以下である場合、制御部150は、モードを発熱回転駆動モードに設定し、駆動信号の位相差を0[deg]から90[deg]の間の値(または0[deg]から-90[deg]の間の値、90[deg]から180[deg]の間の値、-90[deg]から-180[deg]の間の値)に設定する。そして図9のDに示すように、制御部150は、発熱回転駆動モード時に、駆動電圧を基準電圧よりも高く設定することで超音波モータ110の回転速度の低下を補償する。これによって図9のEに示すように、制御部150は、超音波モータ110の回転速度を基準速度に維持しつつ、変速装置120を温めることができる。 Next, a specific example will be described with reference to FIGS. 9 and 10. For example, as shown in FIGS. 9A and 9B, when the temperature of the transmission 120 including the traction drive is equal to or lower than a predetermined value, the control unit 150 sets the mode to the heat generation rotary drive mode and sets the phase difference of the drive signals. Is a value between 0 [deg] and 90 [deg] (or a value between 0 [deg] and -90 [deg], a value between 90 [deg] and 180 [deg], -90 [deg]) To -180 [deg])). Then, as shown in D of FIG. 9, the control unit 150 compensates for the decrease in the rotation speed of the ultrasonic motor 110 by setting the drive voltage higher than the reference voltage in the heating rotation drive mode. Thereby, as shown in E of FIG. 9, the control unit 150 can warm the transmission 120 while maintaining the rotation speed of the ultrasonic motor 110 at the reference speed.
 また、図10のAおよびBに示すように、トラクションドライブを備える変速装置120の温度が所定値以下である場合、制御部150は、モードを発熱回転駆動モードに設定し、駆動信号の位相差を0[deg]から90[deg]の間の値(または0[deg]から-90[deg]の間の値、90[deg]から180[deg]の間の値、-90[deg]から-180[deg]の間の値)に設定する。そして図10のCに示すように、制御部150は、発熱回転駆動モード時に、駆動周波数を共振周波数(固有振動数)に近づけることで超音波モータ110の回転速度の低下を補償する。これによって図10のEに示すように、制御部150は、超音波モータ110の回転速度を基準速度に維持しつつ、変速装置120を温めることができる。 Further, as shown in A and B of FIG. 10, when the temperature of the transmission 120 including the traction drive is equal to or lower than a predetermined value, the control unit 150 sets the mode to the heat generation rotary drive mode and sets the phase difference of the drive signals. Is a value between 0 [deg] and 90 [deg] (or a value between 0 [deg] and -90 [deg], a value between 90 [deg] and 180 [deg], -90 [deg]) To -180 [deg])). Then, as shown in C of FIG. 10, the control unit 150 compensates for the decrease in the rotation speed of the ultrasonic motor 110 by bringing the drive frequency close to the resonance frequency (natural frequency) in the heat generation rotation drive mode. Thereby, as shown in E of FIG. 10, the control unit 150 can warm the transmission 120 while maintaining the rotation speed of the ultrasonic motor 110 at the reference speed.
 ここで、変速装置120の温度情報と、超音波モータ110に印加される電圧パターンとが対応付けられた参照テーブルが設けられ、制御部150は、温度センサ140から取得した変速装置120の温度情報、および当該参照テーブルに基づいて、超音波モータ110の駆動を制御してもよい。 Here, a reference table is provided in which the temperature information of the transmission 120 and the voltage pattern applied to the ultrasonic motor 110 are associated with each other, and the control unit 150 causes the control unit 150 to obtain the temperature information of the transmission 120 acquired from the temperature sensor 140. , And the drive of the ultrasonic motor 110 may be controlled based on the reference table.
 図11および図12を参照して具体例を説明する。図11は、駆動信号の位相差の制御による超音波モータ110の回転速度の低下が、駆動電圧によって補償される場合の参照テーブルの具体例を示す図である。一方、図12は、駆動信号の位相差の制御による超音波モータ110の回転速度の低下が、駆動周波数によって補償される場合の参照テーブルの具体例を示す図である。図11および図12の例では、変速装置120の温度に関する複数の閾値毎に、設定されるべき駆動信号の位相差、駆動電圧、および駆動周波数の組合せが示されている。また、図11および図12の例では、基準電圧が「VM」と示されており、共振周波数(固有振動数)が「F(Tc)」と示されている。 A concrete example will be described with reference to FIGS. 11 and 12. FIG. 11 is a diagram showing a specific example of the reference table in the case where the decrease in the rotation speed of the ultrasonic motor 110 due to the control of the phase difference of the drive signal is compensated by the drive voltage. On the other hand, FIG. 12 is a diagram showing a specific example of the reference table in the case where the decrease in the rotation speed of the ultrasonic motor 110 due to the control of the phase difference of the drive signal is compensated by the drive frequency. In the examples of FIGS. 11 and 12, combinations of the phase difference of the drive signal, the drive voltage, and the drive frequency to be set are shown for each of the plurality of thresholds related to the temperature of the transmission 120. Further, in the examples of FIGS. 11 and 12, the reference voltage is shown as “VM” and the resonance frequency (natural frequency) is shown as “F(Tc)”.
 図11の例では、変速装置120の温度が「0[℃]より高温」、「-10[℃]~0[℃]」、「-20[℃]~-10[℃]」、「-30[℃]~-20[℃]」、「-30[℃]より低温」と下がるに連れて、制御部150は、駆動信号の位相差を90[deg]、60[deg]、55[deg]、50[deg]、45[deg]と変化させることで超音波モータ110の発熱量を増加させる。そして、制御部150は、駆動周波数をF(Tc)×1.05に維持したまま、駆動電圧をVM、VM×1.3、VM×1.5、VM×1.7、VM×2と、変速装置120の温度に応じて上げることで超音波モータ110の回転速度の低下を補償する。 In the example of FIG. 11, the temperature of the transmission 120 is “higher than 0 [° C.]”, “−10 [° C.] to 0 [° C.]”, “−20 [° C.] to −10 [° C.]”, “− 30[° C.]−−20[° C.]”, “lower than −30[° C.]”, the control unit 150 causes the phase difference of the drive signals to be 90[deg], 60[deg], 55[]. The heat generation amount of the ultrasonic motor 110 is increased by changing the temperature to deg], 50 [deg], and 45 [deg]. Then, the control unit 150 maintains the drive frequency at F(Tc)×1.05 and sets the drive voltage at VM, VM×1.3, VM×1.5, VM×1.7, VM×2. By increasing the temperature according to the temperature of the transmission 120, the decrease in the rotation speed of the ultrasonic motor 110 is compensated.
 図12の例では、変速装置120の温度が「0[℃]より高温」、「-10[℃]~0[℃]」、「-20[℃]~-10[℃]」、「-30[℃]~-20[℃]」、「-30[℃]より低温」と下がるに連れて、制御部150は、駆動信号の位相差を90[deg]、60[deg]、55[deg]、50[deg]、45[deg]と変化させることで超音波モータ110の発熱量を増加させる。そして、制御部150は、駆動電圧をVMに維持したまま、駆動周波数をF(Tc)×1.05、F(Tc)×1.03、F(Tc)×1.025、F(Tc)×1.020、F(Tc)×1.015と、変速装置120の温度に応じて共振周波数(固有振動数)に近づけることで超音波モータ110の回転速度の低下を補償する。 In the example of FIG. 12, the temperature of the transmission 120 is “higher than 0 [° C.]”, “−10 [° C.] to 0 [° C.]”, “−20 [° C.] to −10 [° C.]”, “−” 30[° C.]−−20[° C.]”, “lower than −30[° C.]”, the control unit 150 causes the phase difference of the drive signals to be 90[deg], 60[deg], 55[]. The heat generation amount of the ultrasonic motor 110 is increased by changing the temperature to deg], 50 [deg], and 45 [deg]. Then, the control unit 150 keeps the drive voltage at VM and sets the drive frequency to F(Tc)×1.05, F(Tc)×1.03, F(Tc)×1.025, F(Tc). The decrease in the rotation speed of the ultrasonic motor 110 is compensated by approaching the resonance frequency (natural frequency) according to the temperature of the transmission 120 such as ×1.020 and F(Tc)×1.015.
 このように、各温度において適した設定値が参照テーブルに示されることによって、制御部150は、各温度において適した設定値を計算する必要がなくなるため、制御部150による処理の負荷が軽減される。また、撮像装置300の製造者やユーザ等は、参照テーブルを変更することで容易に設定を変更することができる。 In this way, by setting the setting values suitable for each temperature in the reference table, the control unit 150 does not need to calculate the setting values suitable for each temperature, and thus the processing load on the control unit 150 is reduced. It Further, the manufacturer, user, or the like of the image pickup apparatus 300 can easily change the setting by changing the reference table.
 なお図11および図12のように、各温度において適した設定値が参照テーブルに示されることは、各温度において適した設定値が反映されたアルゴリズムが参照テーブルに示されることと等価である点に留意されたい。また、参照テーブルには、図11および図12に示されていない他の設定値が追加されてもよいし、図11および図12に示された設定値のうちのいずれかが省略されてもよい。また参照テーブルは、発熱回転駆動モード用だけでなく、発熱モード用や回転駆動モード用にも設けられ得る。 It should be noted that, as shown in FIGS. 11 and 12, that the setting values suitable for each temperature are shown in the reference table is equivalent to that the algorithm reflecting the setting values suitable for each temperature is shown in the reference table. Please note. Further, other setting values not shown in FIGS. 11 and 12 may be added to the reference table, or any of the setting values shown in FIGS. 11 and 12 may be omitted. Good. Further, the reference table may be provided not only for the heat generation rotation drive mode but also for the heat generation mode and the rotation drive mode.
  <5.ハードウェア構成例>
 上記では、本実施形態に係る変形例について説明した。続いて、本実施形態に係る超音波モータ110および変速装置120のハードウェア構成例について説明する。
<5. Hardware configuration example>
In the above, the modified example according to the present embodiment has been described. Subsequently, a hardware configuration example of the ultrasonic motor 110 and the transmission 120 according to the present embodiment will be described.
 図13は、本実施形態に係る超音波モータ110および変速装置120のハードウェア構成例を示す模式図である。図13に示すように、超音波モータ110および変速装置120の間には互いを接続する接続部10が設けられる。そして、超音波モータ110および変速装置120の全部または一部は、ハウジングケース11に覆われることによって一体化される。図13の例では、超音波モータ110、変速装置120および接続部10の全部または一部は、ハウジングケース11に覆われることによって一体化される。これによって、超音波モータ110で発せられた熱が、外部に逃げることなくより効率的に変速装置120へ伝えられる。 FIG. 13 is a schematic diagram showing a hardware configuration example of the ultrasonic motor 110 and the transmission 120 according to the present embodiment. As shown in FIG. 13, a connection unit 10 that connects the ultrasonic motor 110 and the transmission 120 to each other is provided. The ultrasonic motor 110 and the transmission 120 are wholly or partially integrated with each other by being covered with the housing case 11. In the example of FIG. 13, all or part of the ultrasonic motor 110, the transmission 120, and the connecting portion 10 are covered with the housing case 11 to be integrated. With this, the heat generated by the ultrasonic motor 110 is more efficiently transferred to the transmission 120 without escaping to the outside.
 超音波モータ110は、図13に示すように、圧電素子111と、ステータ112と、ロータ113と、回転軸114と、ケース115と、を備える。圧電素子111に設けられた2相の電極に駆動信号が印加されると、ステータ112が振動し、ステータ112に加圧されたロータ113が摩擦力により回転する(図13では、ステータ112とロータ113の接触部分を「超音波モータの摺動部」と表記している)。回転軸114は、ロータ113および変速装置120の太陽ローラ121に接続されており、ロータ113と共に回転することで、動力を太陽ローラ121に伝達する。 As shown in FIG. 13, the ultrasonic motor 110 includes a piezoelectric element 111, a stator 112, a rotor 113, a rotating shaft 114, and a case 115. When a drive signal is applied to the two-phase electrodes provided on the piezoelectric element 111, the stator 112 vibrates and the rotor 113 pressed by the stator 112 rotates due to frictional force (in FIG. 13, the stator 112 and the rotor 112 are rotated). The contact part of 113 is described as "sliding part of ultrasonic motor". The rotating shaft 114 is connected to the rotor 113 and the sun roller 121 of the transmission 120, and transmits power to the sun roller 121 by rotating together with the rotor 113.
 変速装置120は、図13に示すように、太陽ローラ121と、複数の遊星ローラ122(図13の例では、4個の遊星ローラ122)と、遊星ローラ回転軸123と、出力軸124と、固定環125(または外環)と、ケース126と、を備える。太陽ローラ121は、超音波モータ110の回転軸114から伝達された動力により回転する。複数の遊星ローラ122は、太陽ローラ121に圧接されることで、トラクション力により固定環125の内周面を回転する。遊星ローラ回転軸123は、遊星ローラ122が回転する際の軸として機能し遊星ローラ122と共に回転することで、動力を出力軸124に伝達する。その後、出力軸124が動力をレンズ駆動部170に伝達する。これによって、レンズ駆動部170は、伝達された動力を用いてレンズを駆動することができる。 As shown in FIG. 13, the transmission 120 includes a sun roller 121, a plurality of planet rollers 122 (four planet rollers 122 in the example of FIG. 13 ), a planet roller rotation shaft 123, an output shaft 124, and The stationary ring 125 (or the outer ring) and the case 126 are provided. The sun roller 121 is rotated by the power transmitted from the rotary shaft 114 of the ultrasonic motor 110. The plurality of planet rollers 122 rotate on the inner peripheral surface of the fixed ring 125 by the traction force by being pressed against the sun roller 121. The planetary roller rotation shaft 123 functions as a shaft when the planetary roller 122 rotates and rotates together with the planetary roller 122 to transmit power to the output shaft 124. After that, the output shaft 124 transmits the power to the lens driving unit 170. Accordingly, the lens driving unit 170 can drive the lens using the transmitted power.
 以上、図13を参照して、本実施形態に係る超音波モータ110および変速装置120のハードウェア構成例について説明した。なお、図13を用いて説明した上記のハードウェア構成はあくまで一例であり、超音波モータ110および変速装置120のハードウェア構成は係る例に限定されない。例えば、超音波モータ110および変速装置120は、図13に示すハードウェア構成の全てを必ずしも備えなくてもよいし、図13に示す構成以外のハードウェア構成を備えていてもよい。超音波モータ110および変速装置120のハードウェア構成は、仕様や運用に応じて柔軟に変形可能である。 The hardware configuration example of the ultrasonic motor 110 and the transmission 120 according to the present embodiment has been described above with reference to FIG. The hardware configuration described above with reference to FIG. 13 is merely an example, and the hardware configurations of the ultrasonic motor 110 and the transmission 120 are not limited to the example. For example, the ultrasonic motor 110 and the transmission 120 do not necessarily have to have all of the hardware configurations shown in FIG. 13, or may have hardware configurations other than the configurations shown in FIG. The hardware configurations of the ultrasonic motor 110 and the transmission 120 can be flexibly modified according to specifications and operation.
 図14は、超音波モータ110によって発せられた熱が変速装置120へ伝達される際の経路の具体例を示す模式図である。図14に示すように、圧電素子111によって発せられた熱は、圧電素子111、ケース115、接続部10、ケース126、固定環125の順に伝達され(図14の例では、当該経路を「第1の熱伝達経路」と表記している)、変速装置120(特に、オイルやグリス)を温める。また、図14に示すように、圧電素子111によって発せられた熱は、圧電素子111、ステータ112、ロータ113、回転軸114、太陽ローラ121の順に伝達され(図14の例では、当該経路を「第2の熱伝達経路」と表記している)、変速装置120(特に、オイルやグリス)を温める。 FIG. 14 is a schematic diagram showing a specific example of a path when heat generated by the ultrasonic motor 110 is transmitted to the transmission 120. As shown in FIG. 14, the heat generated by the piezoelectric element 111 is transmitted in the order of the piezoelectric element 111, the case 115, the connecting portion 10, the case 126, and the fixed ring 125 (in the example of FIG. 1), and heats the transmission 120 (particularly oil and grease). In addition, as shown in FIG. 14, the heat generated by the piezoelectric element 111 is transmitted in the order of the piezoelectric element 111, the stator 112, the rotor 113, the rotating shaft 114, and the sun roller 121 (in the example of FIG. The “second heat transfer path”) and the transmission 120 (particularly oil and grease) are warmed.
 このとき、第1の熱伝達経路および第2の熱伝達経路上に配置される部材には、これらの経路の外周に配置される部材よりも熱伝導率の高いものが用いられ得る。より具体的には、第1の熱伝達経路および第2の熱伝達経路上に配置される部材には、熱伝導率の高いセラミックスである、炭化珪素、窒化アルミニウム、サファイア、アルミナ、窒化珪素、またはサーメット等で形成されたものが用いられ得る(なお、セラミックスで形成された部材に限定されず、各種金属で形成された部材や、伝熱シート等(例えばグラファイトシート等)が用いられてもよい)。これによって、超音波モータ110によって発せられた熱をより短時間で変速装置120へ伝達することが可能になる。そして、第1の熱伝達経路および第2の熱伝達経路の外周に配置される部材には、上記セラミックスよりも熱伝導率の低いセラミックスである、ステアタイト、ジルコニア、コージライト、フォルステライト、ムライト、またはイットリア等で形成されたものが用いられ得る(なお、セラミックスで形成された部材に限定されず、各種樹脂で形成された部材や断熱シートが用いられたり、空気などの気体をその中に含む二重構造が形成されたりしてもよい)。これによって、超音波モータ110によって発せられ、変速装置120へ伝達される熱が外部(超音波モータ110および変速装置120の外部)へ伝達されにくくなるため、外部の各構成が熱によって誤作動を起こすことが防止される。 At this time, the members arranged on the first heat transfer path and the second heat transfer path may have higher thermal conductivity than the members arranged on the outer periphery of these paths. More specifically, the members arranged on the first heat transfer path and the second heat transfer path include ceramics having high thermal conductivity, such as silicon carbide, aluminum nitride, sapphire, alumina, silicon nitride, Alternatively, a member formed of cermet or the like may be used (note that the member is not limited to a member formed of ceramics, and a member formed of various metals, a heat transfer sheet or the like (for example, a graphite sheet or the like) may be used. Good). This makes it possible to transfer the heat generated by the ultrasonic motor 110 to the transmission 120 in a shorter time. The members arranged on the outer periphery of the first heat transfer path and the second heat transfer path are ceramics having lower thermal conductivity than the above-mentioned ceramics, such as steatite, zirconia, cordierite, forsterite, and mullite. Alternatively, a material formed of yttria or the like may be used (not limited to a member formed of ceramics, a member formed of various resins or a heat insulating sheet may be used, or a gas such as air may be used therein. A double structure including may be formed). As a result, the heat generated by the ultrasonic motor 110 and transferred to the transmission 120 is less likely to be transferred to the outside (outside the ultrasonic motor 110 and the transmission 120), so that the external components malfunction due to the heat. It is prevented from causing.
  <6.応用例>
 (6.1.第1の応用例)
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
<6. Application example>
(6.1. First application example)
The technology according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure may be applied to an endoscopic surgery system.
 図15は、本開示に係る技術が適用され得る内視鏡手術システム5000の概略的な構成の一例を示す図である。図15では、術者(医師)5067が、内視鏡手術システム5000を用いて、患者ベッド5069上の患者5071に手術を行っている様子が図示されている。図示するように、内視鏡手術システム5000は、内視鏡5001と、その他の術具5017と、内視鏡5001を支持する支持アーム装置5027と、内視鏡下手術のための各種の装置が搭載されたカート5037と、から構成される。 FIG. 15 is a diagram showing an example of a schematic configuration of an endoscopic surgery system 5000 to which the technology according to the present disclosure can be applied. FIG. 15 illustrates a situation in which an operator (doctor) 5067 is performing an operation on a patient 5071 on a patient bed 5069 by using the endoscopic operation system 5000. As shown in the figure, the endoscopic surgery system 5000 includes an endoscope 5001, other surgical tools 5017, a support arm device 5027 for supporting the endoscope 5001, and various devices for endoscopic surgery. And a cart 5037 on which is mounted.
 内視鏡手術では、腹壁を切って開腹する代わりに、トロッカ5025a~5025dと呼ばれる筒状の開孔器具が腹壁に複数穿刺される。そして、トロッカ5025a~5025dから、内視鏡5001の鏡筒5003や、その他の術具5017が患者5071の体腔内に挿入される。図示する例では、その他の術具5017として、気腹チューブ5019、エネルギー処置具5021及び鉗子5023が、患者5071の体腔内に挿入されている。また、エネルギー処置具5021は、高周波電流や超音波振動により、組織の切開及び剥離、又は血管の封止等を行う処置具である。ただし、図示する術具5017はあくまで一例であり、術具5017としては、例えば攝子、レトラクタ等、一般的に内視鏡下手術において用いられる各種の術具が用いられてよい。 In endoscopic surgery, instead of cutting the abdominal wall to open the abdomen, multiple tubular perforation devices called trocars 5025a to 5025d are punctured in the abdominal wall. Then, the barrel 5003 of the endoscope 5001 and other surgical tools 5017 are inserted into the body cavity of the patient 5071 from the trocars 5025a to 5025d. In the illustrated example, a pneumoperitoneum tube 5019, an energy treatment tool 5021, and forceps 5023 are inserted into the body cavity of the patient 5071 as other surgical tools 5017. The energy treatment tool 5021 is a treatment tool that performs incision and peeling of tissue, sealing of blood vessels, and the like by high-frequency current or ultrasonic vibration. However, the surgical instrument 5017 shown in the figure is merely an example, and various surgical instruments generally used in endoscopic surgery, such as a concentrator and a retractor, may be used as the surgical instrument 5017.
 内視鏡5001によって撮影された患者5071の体腔内の術部の画像が、表示装置5041に表示される。術者5067は、表示装置5041に表示された術部の画像をリアルタイムで見ながら、エネルギー処置具5021や鉗子5023を用いて、例えば患部を切除する等の処置を行う。なお、図示は省略しているが、気腹チューブ5019、エネルギー処置具5021及び鉗子5023は、手術中に、術者5067又は助手等によって支持される。 An image of the surgical site in the body cavity of the patient 5071 taken by the endoscope 5001 is displayed on the display device 5041. The surgeon 5067 uses the energy treatment tool 5021 and the forceps 5023 while performing real-time viewing of the image of the surgical site displayed on the display device 5041, and performs a procedure such as excising the affected site. Although not shown, the pneumoperitoneum tube 5019, the energy treatment tool 5021, and the forceps 5023 are supported by an operator 5067, an assistant, or the like during surgery.
 (支持アーム装置)
 支持アーム装置5027は、ベース部5029から延伸するアーム部5031を備える。図示する例では、アーム部5031は、関節部5033a、5033b、5033c、及びリンク5035a、5035bから構成されており、アーム制御装置5045からの制御により駆動される。アーム部5031によって内視鏡5001が支持され、その位置及び姿勢が制御される。これにより、内視鏡5001の安定的な位置の固定が実現され得る。
(Support arm device)
The support arm device 5027 includes an arm portion 5031 that extends from the base portion 5029. In the illustrated example, the arm portion 5031 includes joint portions 5033a, 5033b, 5033c and links 5035a, 5035b, and is driven by the control from the arm control device 5045. The endoscope 5001 is supported by the arm portion 5031, and its position and posture are controlled. As a result, stable fixation of the position of the endoscope 5001 can be realized.
 (内視鏡)
 内視鏡5001は、先端から所定の長さの領域が患者5071の体腔内に挿入される鏡筒5003と、鏡筒5003の基端に接続されるカメラヘッド5005と、から構成される。図示する例では、硬性の鏡筒5003を有するいわゆる硬性鏡として構成される内視鏡5001を図示しているが、内視鏡5001は、軟性の鏡筒5003を有するいわゆる軟性鏡として構成されてもよい。
(Endoscope)
The endoscope 5001 includes a lens barrel 5003 into which a region having a predetermined length from the distal end is inserted into the body cavity of the patient 5071, and a camera head 5005 connected to the base end of the lens barrel 5003. In the illustrated example, the endoscope 5001 configured as a so-called rigid endoscope having the rigid barrel 5003 is illustrated, but the endoscope 5001 is configured as a so-called flexible mirror having the flexible barrel 5003. Good.
 鏡筒5003の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡5001には光源装置5043が接続されており、当該光源装置5043によって生成された光が、鏡筒5003の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者5071の体腔内の観察対象に向かって照射される。なお、内視鏡5001は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 An opening in which the objective lens is fitted is provided at the tip of the lens barrel 5003. A light source device 5043 is connected to the endoscope 5001, and the light generated by the light source device 5043 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 5003, and the objective The observation target in the body cavity of the patient 5071 is irradiated through the lens. Note that the endoscope 5001 may be a direct-viewing endoscope, a perspective mirror, or a side-viewing endoscope.
 カメラヘッド5005の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU:Camera Control Unit)5039に送信される。なお、カメラヘッド5005には、その光学系を適宜駆動させることにより、倍率及び焦点距離を調整する機能が搭載される。 An optical system and an image pickup device are provided inside the camera head 5005, and the reflected light (observation light) from the observation target is focused on the image pickup device by the optical system. The observation light is photoelectrically converted by the imaging element, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted as RAW data to a camera control unit (CCU: Camera Control Unit) 5039. The camera head 5005 has a function of adjusting the magnification and the focal length by appropriately driving the optical system.
 なお、例えば立体視(3D表示)等に対応するために、カメラヘッド5005には撮像素子が複数設けられてもよい。この場合、鏡筒5003の内部には、当該複数の撮像素子のそれぞれに観察光を導光するために、リレー光学系が複数系統設けられる。 It should be noted that the camera head 5005 may be provided with a plurality of image pickup elements in order to cope with, for example, stereoscopic vision (3D display). In this case, a plurality of relay optical systems are provided inside the barrel 5003 in order to guide the observation light to each of the plurality of image pickup devices.
 (カートに搭載される各種の装置)
 CCU5039は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡5001及び表示装置5041の動作を統括的に制御する。具体的には、CCU5039は、カメラヘッド5005から受け取った画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。CCU5039は、当該画像処理を施した画像信号を表示装置5041に提供する。また、CCU5039は、カメラヘッド5005に対して制御信号を送信し、その駆動を制御する。当該制御信号には、倍率や焦点距離等、撮像条件に関する情報が含まれ得る。
(Various devices mounted on the cart)
The CCU 5039 includes a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and controls the operations of the endoscope 5001 and the display device 5041 in a centralized manner. Specifically, the CCU 5039 performs various image processing such as development processing (demosaic processing) on the image signal received from the camera head 5005 for displaying an image based on the image signal. The CCU 5039 provides the image signal subjected to the image processing to the display device 5041. The CCU 5039 also transmits a control signal to the camera head 5005 to control the driving thereof. The control signal may include information regarding imaging conditions such as magnification and focal length.
 表示装置5041は、CCU5039からの制御により、当該CCU5039によって画像処理が施された画像信号に基づく画像を表示する。内視鏡5001が例えば4K(水平画素数3840×垂直画素数2160)又は8K(水平画素数7680×垂直画素数4320)等の高解像度の撮影に対応したものである場合、及び/又は3D表示に対応したものである場合には、表示装置5041としては、それぞれに対応して、高解像度の表示が可能なもの、及び/又は3D表示可能なものが用いられ得る。4K又は8K等の高解像度の撮影に対応したものである場合、表示装置5041として55インチ以上のサイズのものを用いることで一層の没入感が得られる。また、用途に応じて、解像度、サイズが異なる複数の表示装置5041が設けられてもよい。 The display device 5041 displays an image based on an image signal subjected to image processing by the CCU 5039 under the control of the CCU 5039. When the endoscope 5001 is compatible with high-resolution imaging such as 4K (horizontal pixel number 3840×vertical pixel number 2160) or 8K (horizontal pixel number 7680×vertical pixel number 4320), and/or 3D display In the case where the display device 5041 corresponds to the display device 5041, a device capable of high-resolution display and/or a device capable of 3D display can be used as the display device 5041. If the display device 5041 is compatible with high-resolution shooting such as 4K or 8K, a more immersive feeling can be obtained by using a display device 5041 having a size of 55 inches or more. Further, a plurality of display devices 5041 having different resolutions and sizes may be provided depending on the application.
 光源装置5043は、例えばLED(light emitting diode)等の光源から構成され、術部を撮影する際の照射光を内視鏡5001に供給する。 The light source device 5043 is composed of a light source such as an LED (light emitting diode), and supplies irradiation light to the endoscope 5001 when the surgical site is imaged.
 アーム制御装置5045は、例えばCPU等のプロセッサによって構成され、所定のプログラムに従って動作することにより、所定の制御方式に従って支持アーム装置5027のアーム部5031の駆動を制御する。 The arm control device 5045 is configured by a processor such as a CPU, for example, and operates according to a predetermined program to control driving of the arm portion 5031 of the support arm device 5027 according to a predetermined control method.
 入力装置5047は、内視鏡手術システム5000に対する入力インタフェースである。ユーザは、入力装置5047を介して、内視鏡手術システム5000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、入力装置5047を介して、患者の身体情報や、手術の術式についての情報等、手術に関する各種の情報を入力する。また、例えば、ユーザは、入力装置5047を介して、アーム部5031を駆動させる旨の指示や、内視鏡5001による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示、エネルギー処置具5021を駆動させる旨の指示等を入力する。 The input device 5047 is an input interface for the endoscopic surgery system 5000. The user can input various information and instructions to the endoscopic surgery system 5000 via the input device 5047. For example, the user inputs various kinds of information regarding the surgery, such as the physical information of the patient and the information regarding the surgical procedure, through the input device 5047. In addition, for example, the user uses the input device 5047 to instruct to drive the arm unit 5031 or to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) of the endoscope 5001. , An instruction to drive the energy treatment tool 5021 is input.
 入力装置5047の種類は限定されず、入力装置5047は各種の公知の入力装置であってよい。入力装置5047としては、例えば、マウス、キーボード、タッチパネル、スイッチ、フットスイッチ5057及び/又はレバー等が適用され得る。入力装置5047としてタッチパネルが用いられる場合には、当該タッチパネルは表示装置5041の表示面上に設けられてもよい。 The type of the input device 5047 is not limited, and the input device 5047 may be various known input devices. As the input device 5047, for example, a mouse, a keyboard, a touch panel, a switch, a foot switch 5057 and/or a lever can be applied. When a touch panel is used as the input device 5047, the touch panel may be provided on the display surface of the display device 5041.
 あるいは、入力装置5047は、例えばメガネ型のウェアラブルデバイスやHMD(Head Mounted Display)等の、ユーザによって装着されるデバイスであり、これらのデバイスによって検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。また、入力装置5047は、ユーザの動きを検出可能なカメラを含み、当該カメラによって撮像された映像から検出されるユーザのジェスチャや視線に応じて各種の入力が行われる。更に、入力装置5047は、ユーザの声を収音可能なマイクロフォンを含み、当該マイクロフォンを介して音声によって各種の入力が行われる。このように、入力装置5047が非接触で各種の情報を入力可能に構成されることにより、特に清潔域に属するユーザ(例えば術者5067)が、不潔域に属する機器を非接触で操作することが可能となる。また、ユーザは、所持している術具から手を離すことなく機器を操作することが可能となるため、ユーザの利便性が向上する。 Alternatively, the input device 5047 is a device worn by the user, such as a glasses-type wearable device or an HMD (Head Mounted Display), and various inputs are made according to the user's gesture or line of sight detected by these devices. Is done. Further, the input device 5047 includes a camera capable of detecting the movement of the user, and various inputs are performed according to the gesture or the line of sight of the user detected from the video imaged by the camera. Further, the input device 5047 includes a microphone capable of collecting the voice of the user, and various inputs are performed by voice through the microphone. As described above, since the input device 5047 is configured to be able to input various information in a contactless manner, a user (for example, a surgeon 5067) who belongs to a clean area can operate a device that belongs to a dirty area in a contactless manner. Is possible. In addition, since the user can operate the device without releasing his/her hand from the surgical tool, the convenience of the user is improved.
 処置具制御装置5049は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具5021の駆動を制御する。気腹装置5051は、内視鏡5001による視野の確保及び術者の作業空間の確保の目的で、患者5071の体腔を膨らめるために、気腹チューブ5019を介して当該体腔内にガスを送り込む。レコーダ5053は、手術に関する各種の情報を記録可能な装置である。プリンタ5055は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment instrument control device 5049 controls driving of the energy treatment instrument 5021 for cauterization of tissue, incision, sealing of blood vessel, or the like. The pneumoperitoneum device 5051 uses a gastrointestinal tube 5019 to inject a gas into the body cavity of the patient 5071 in order to inflate the body cavity of the patient 5071 for the purpose of securing a visual field by the endoscope 5001 and a working space for the operator. Send in. The recorder 5053 is a device capable of recording various information regarding surgery. The printer 5055 is a device capable of printing various information regarding surgery in various formats such as text, images, and graphs.
 以下、内視鏡手術システム5000において特に特徴的な構成について、更に詳細に説明する。 Below, a particularly characteristic configuration of the endoscopic surgery system 5000 will be described in more detail.
 (支持アーム装置)
 支持アーム装置5027は、基台であるベース部5029と、ベース部5029から延伸するアーム部5031と、を備える。図示する例では、アーム部5031は、複数の関節部5033a、5033b、5033cと、関節部5033bによって連結される複数のリンク5035a、5035bと、から構成されているが、図15では、簡単のため、アーム部5031の構成を簡略化して図示している。実際には、アーム部5031が所望の自由度を有するように、関節部5033a~5033c及びリンク5035a、5035bの形状、数及び配置、並びに関節部5033a~5033cの回転軸の方向等が適宜設定され得る。例えば、アーム部5031は、好適に、6自由度以上の自由度を有するように構成され得る。これにより、アーム部5031の可動範囲内において内視鏡5001を自由に移動させることが可能になるため、所望の方向から内視鏡5001の鏡筒5003を患者5071の体腔内に挿入することが可能になる。
(Support arm device)
The support arm device 5027 includes a base portion 5029, which is a base, and an arm portion 5031 extending from the base portion 5029. In the illustrated example, the arm section 5031 is composed of a plurality of joint sections 5033a, 5033b, 5033c and a plurality of links 5035a, 5035b connected by the joint section 5033b, but in FIG. The configuration of the arm portion 5031 is illustrated in a simplified manner. Actually, the shapes, the numbers, and the arrangements of the joints 5033a to 5033c and the links 5035a and 5035b, the directions of the rotation axes of the joints 5033a to 5033c, and the like are appropriately set so that the arm 5031 has a desired degree of freedom. obtain. For example, the arm portion 5031 can be preferably configured to have 6 or more degrees of freedom. Accordingly, the endoscope 5001 can be freely moved within the movable range of the arm portion 5031, so that the lens barrel 5003 of the endoscope 5001 can be inserted into the body cavity of the patient 5071 from a desired direction. It will be possible.
 関節部5033a~5033cにはアクチュエータが設けられており、関節部5033a~5033cは当該アクチュエータの駆動により所定の回転軸まわりに回転可能に構成されている。当該アクチュエータの駆動がアーム制御装置5045によって制御されることにより、各関節部5033a~5033cの回転角度が制御され、アーム部5031の駆動が制御される。これにより、内視鏡5001の位置及び姿勢の制御が実現され得る。この際、アーム制御装置5045は、力制御又は位置制御等、各種の公知の制御方式によってアーム部5031の駆動を制御することができる。 An actuator is provided in each of the joint portions 5033a to 5033c, and the joint portions 5033a to 5033c are configured to be rotatable about a predetermined rotation axis by driving the actuator. The drive of the actuator is controlled by the arm control device 5045, whereby the rotation angles of the joints 5033a to 5033c are controlled and the drive of the arm 5031 is controlled. Thereby, control of the position and orientation of the endoscope 5001 can be realized. At this time, the arm control device 5045 can control the drive of the arm unit 5031 by various known control methods such as force control or position control.
 例えば、術者5067が、入力装置5047(フットスイッチ5057を含む)を介して適宜操作入力を行うことにより、当該操作入力に応じてアーム制御装置5045によってアーム部5031の駆動が適宜制御され、内視鏡5001の位置及び姿勢が制御されてよい。当該制御により、アーム部5031の先端の内視鏡5001を任意の位置から任意の位置まで移動させた後、その移動後の位置で固定的に支持することができる。なお、アーム部5031は、いわゆるマスタースレイブ方式で操作されてもよい。この場合、アーム部5031は、手術室から離れた場所に設置される入力装置5047を介してユーザによって遠隔操作され得る。 For example, the surgeon 5067 appropriately performs an operation input via the input device 5047 (including the foot switch 5057), and the arm controller 5045 appropriately controls the drive of the arm portion 5031 according to the operation input. The position and orientation of the endoscope 5001 may be controlled. By this control, the endoscope 5001 at the tip of the arm portion 5031 can be moved from any position to any position, and then fixedly supported at the position after the movement. The arm portion 5031 may be operated by a so-called master slave method. In this case, the arm unit 5031 can be remotely operated by the user via the input device 5047 installed at a place apart from the operating room.
 また、力制御が適用される場合には、アーム制御装置5045は、ユーザからの外力を受け、その外力にならってスムーズにアーム部5031が移動するように、各関節部5033a~5033cのアクチュエータを駆動させる、いわゆるパワーアシスト制御を行ってもよい。これにより、ユーザが直接アーム部5031に触れながらアーム部5031を移動させる際に、比較的軽い力で当該アーム部5031を移動させることができる。従って、より直感的に、より簡易な操作で内視鏡5001を移動させることが可能となり、ユーザの利便性を向上させることができる。 Further, when force control is applied, the arm control device 5045 receives the external force from the user and operates the actuators of the joint parts 5033a to 5033c so that the arm part 5031 smoothly moves according to the external force. You may perform what is called a power assist control which drives. Accordingly, when the user moves the arm unit 5031 while directly touching the arm unit 5031, the arm unit 5031 can be moved with a comparatively light force. Therefore, the endoscope 5001 can be moved more intuitively and with a simpler operation, and the convenience of the user can be improved.
 ここで、一般的に、内視鏡下手術では、スコピストと呼ばれる医師によって内視鏡5001が支持されていた。これに対して、支持アーム装置5027を用いることにより、人手によらずに内視鏡5001の位置をより確実に固定することが可能になるため、術部の画像を安定的に得ることができ、手術を円滑に行うことが可能になる。 In general, in endoscopic surgery, a doctor called a scoopist supported the endoscope 5001. On the other hand, by using the support arm device 5027, the position of the endoscope 5001 can be fixed more reliably without manual operation, and thus an image of the surgical site can be stably obtained. It becomes possible to perform surgery smoothly.
 なお、アーム制御装置5045は必ずしもカート5037に設けられなくてもよい。また、アーム制御装置5045は必ずしも1つの装置でなくてもよい。例えば、アーム制御装置5045は、支持アーム装置5027のアーム部5031の各関節部5033a~5033cにそれぞれ設けられてもよく、複数のアーム制御装置5045が互いに協働することにより、アーム部5031の駆動制御が実現されてもよい。 The arm control device 5045 does not necessarily have to be provided on the cart 5037. Further, the arm control device 5045 does not necessarily have to be one device. For example, the arm control device 5045 may be provided in each of the joint parts 5033a to 5033c of the arm part 5031 of the support arm device 5027, and the plurality of arm control devices 5045 cooperate with each other to drive the arm part 5031. Control may be realized.
 (光源装置)
 光源装置5043は、内視鏡5001に術部を撮影する際の照射光を供給する。光源装置5043は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成される。このとき、RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置5043において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド5005の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
(Light source device)
The light source device 5043 supplies the endoscope 5001 with irradiation light for imaging a surgical site. The light source device 5043 is composed of, for example, an LED, a laser light source, or a white light source configured by a combination thereof. At this time, when the white light source is configured by the combination of the RGB laser light sources, the output intensity and the output timing of each color (each wavelength) can be controlled with high accuracy, so that the white balance of the captured image in the light source device 5043. Can be adjusted. In this case, the laser light from each of the RGB laser light sources is time-divided onto the observation target, and the drive of the image pickup device of the camera head 5005 is controlled in synchronization with the irradiation timing, so that each of the RGB colors is supported. It is also possible to take the captured image in a time division manner. According to this method, a color image can be obtained without providing a color filter on the image sensor.
 また、光源装置5043は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド5005の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the drive of the light source device 5043 may be controlled so as to change the intensity of the output light at predetermined time intervals. By controlling the driving of the image sensor of the camera head 5005 in synchronism with the timing of changing the intensity of the light to acquire images in a time-division manner and synthesizing the images, it is possible to obtain a high dynamic image without so-called underexposure and overexposure. An image of the range can be generated.
 また、光源装置5043は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察するもの(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得るもの等が行われ得る。光源装置5043は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Further, the light source device 5043 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependence of absorption of light in body tissues, by irradiating a narrow band of light as compared with the irradiation light (that is, white light) during normal observation, the mucosal surface layer The so-called narrow band imaging (Narrow Band Imaging) is performed in which high-contrast images of specific tissues such as blood vessels are captured. Alternatively, in the special light observation, fluorescence observation in which an image is obtained by fluorescence generated by irradiating the excitation light may be performed. In fluorescence observation, the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected into the body tissue. For example, one that irradiates excitation light corresponding to the fluorescence wavelength of the reagent to obtain a fluorescence image can be used. The light source device 5043 can be configured to be capable of supplying narrowband light and/or excitation light compatible with such special light observation.
 (カメラヘッド及びCCU)
 図16を参照して、内視鏡5001のカメラヘッド5005及びCCU5039の機能についてより詳細に説明する。図16は、図15に示すカメラヘッド5005及びCCU5039の機能構成の一例を示すブロック図である。
(Camera head and CCU)
The functions of the camera head 5005 and the CCU 5039 of the endoscope 5001 will be described in more detail with reference to FIG. FIG. 16 is a block diagram showing an example of the functional configuration of the camera head 5005 and CCU 5039 shown in FIG.
 図16を参照すると、カメラヘッド5005は、その機能として、レンズユニット5007と、撮像部5009と、駆動部5011と、通信部5013と、カメラヘッド制御部5015と、を有する。また、CCU5039は、その機能として、通信部5059と、画像処理部5061と、制御部5063と、を有する。カメラヘッド5005とCCU5039とは、伝送ケーブル5065によって双方向に通信可能に接続されている。 Referring to FIG. 16, the camera head 5005 has, as its functions, a lens unit 5007, an image pickup section 5009, a drive section 5011, a communication section 5013, and a camera head control section 5015. Further, the CCU 5039 has, as its functions, a communication unit 5059, an image processing unit 5061, and a control unit 5063. The camera head 5005 and the CCU 5039 are bidirectionally connected by a transmission cable 5065.
 まず、カメラヘッド5005の機能構成について説明する。レンズユニット5007は、鏡筒5003との接続部に設けられる光学系である。鏡筒5003の先端から取り込まれた観察光は、カメラヘッド5005まで導光され、当該レンズユニット5007に入射する。レンズユニット5007は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。レンズユニット5007は、撮像部5009の撮像素子の受光面上に観察光を集光するように、その光学特性が調整されている。また、ズームレンズ及びフォーカスレンズは、撮像画像の倍率及び焦点の調整のため、その光軸上の位置が移動可能に構成される。 First, the functional configuration of the camera head 5005 will be described. The lens unit 5007 is an optical system provided at a connecting portion with the lens barrel 5003. The observation light taken in from the tip of the lens barrel 5003 is guided to the camera head 5005 and enters the lens unit 5007. The lens unit 5007 is configured by combining a plurality of lenses including a zoom lens and a focus lens. The optical characteristics of the lens unit 5007 are adjusted so that the observation light is condensed on the light receiving surface of the image pickup element of the image pickup section 5009. Further, the zoom lens and the focus lens are configured so that their positions on the optical axis can be moved in order to adjust the magnification and focus of the captured image.
 撮像部5009は撮像素子によって構成され、レンズユニット5007の後段に配置される。レンズユニット5007を通過した観察光は、当該撮像素子の受光面に集光され、光電変換によって、観察像に対応した画像信号が生成される。撮像部5009によって生成された画像信号は、通信部5013に提供される。 The image pickup section 5009 is composed of an image pickup element, and is arranged in the latter stage of the lens unit 5007. The observation light that has passed through the lens unit 5007 is condensed on the light receiving surface of the image sensor, and an image signal corresponding to the observation image is generated by photoelectric conversion. The image signal generated by the imaging unit 5009 is provided to the communication unit 5013.
 撮像部5009を構成する撮像素子としては、例えばCMOS(Complementary Metal Oxide Semiconductor)タイプのイメージセンサであり、Bayer配列を有するカラー撮影可能なものが用いられる。なお、当該撮像素子としては、例えば4K以上の高解像度の画像の撮影に対応可能なものが用いられてもよい。術部の画像が高解像度で得られることにより、術者5067は、当該術部の様子をより詳細に把握することができ、手術をより円滑に進行することが可能となる。 As the image pickup device constituting the image pickup unit 5009, for example, a CMOS (Complementary Metal Oxide Semiconductor) type image sensor, which has a Bayer array and is capable of color image pickup is used. It should be noted that as the image pickup device, for example, a device capable of capturing a high-resolution image of 4K or higher may be used. By obtaining the image of the surgical site with high resolution, the surgeon 5067 can grasp the state of the surgical site in more detail, and can proceed with the surgery more smoothly.
 また、撮像部5009を構成する撮像素子は、3D表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成される。3D表示が行われることにより、術者5067は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部5009が多板式で構成される場合には、各撮像素子に対応して、レンズユニット5007も複数系統設けられる。 Further, the image pickup device constituting the image pickup unit 5009 is configured to have a pair of image pickup devices for respectively obtaining the image signals for the right eye and the left eye corresponding to 3D display. The 3D display enables the operator 5067 to more accurately grasp the depth of the living tissue in the operation site. When the image pickup unit 5009 is configured by a multi-plate type, a plurality of lens unit 5007 systems are provided corresponding to each image pickup element.
 また、撮像部5009は、必ずしもカメラヘッド5005に設けられなくてもよい。例えば、撮像部5009は、鏡筒5003の内部に、対物レンズの直後に設けられてもよい。 The image pickup unit 5009 does not necessarily have to be provided on the camera head 5005. For example, the imaging unit 5009 may be provided inside the lens barrel 5003 immediately after the objective lens.
 駆動部5011は、アクチュエータによって構成され、カメラヘッド制御部5015からの制御により、レンズユニット5007のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部5009による撮像画像の倍率及び焦点が適宜調整され得る。 The drive unit 5011 is composed of an actuator, and moves the zoom lens and the focus lens of the lens unit 5007 by a predetermined distance along the optical axis under the control of the camera head control unit 5015. Accordingly, the magnification and focus of the image captured by the image capturing unit 5009 can be adjusted appropriately.
 通信部5013は、CCU5039との間で各種の情報を送受信するための通信装置によって構成される。通信部5013は、撮像部5009から得た画像信号をRAWデータとして伝送ケーブル5065を介してCCU5039に送信する。この際、術部の撮像画像を低レイテンシで表示するために、当該画像信号は光通信によって送信されることが好ましい。手術の際には、術者5067が撮像画像によって患部の状態を観察しながら手術を行うため、より安全で確実な手術のためには、術部の動画像が可能な限りリアルタイムに表示されることが求められるからである。光通信が行われる場合には、通信部5013には、電気信号を光信号に変換する光電変換モジュールが設けられる。画像信号は当該光電変換モジュールによって光信号に変換された後、伝送ケーブル5065を介してCCU5039に送信される。 The communication unit 5013 is composed of a communication device for transmitting and receiving various information to and from the CCU 5039. The communication unit 5013 transmits the image signal obtained from the image capturing unit 5009 as RAW data to the CCU 5039 via the transmission cable 5065. At this time, it is preferable that the image signal is transmitted by optical communication in order to display the captured image of the surgical site with low latency. During the surgery, the surgeon 5067 performs the surgery while observing the state of the affected area by the captured image. Therefore, for safer and more reliable surgery, the moving image of the surgery area is displayed in real time as much as possible. Is required. When optical communication is performed, the communication unit 5013 is provided with a photoelectric conversion module that converts an electric signal into an optical signal. The image signal is converted into an optical signal by the photoelectric conversion module and then transmitted to the CCU 5039 via the transmission cable 5065.
 また、通信部5013は、CCU5039から、カメラヘッド5005の駆動を制御するための制御信号を受信する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。通信部5013は、受信した制御信号をカメラヘッド制御部5015に提供する。なお、CCU5039からの制御信号も、光通信によって伝送されてもよい。この場合、通信部5013には、光信号を電気信号に変換する光電変換モジュールが設けられ、制御信号は当該光電変換モジュールによって電気信号に変換された後、カメラヘッド制御部5015に提供される。 The communication unit 5013 also receives a control signal for controlling the driving of the camera head 5005 from the CCU 5039. The control signal includes, for example, information specifying a frame rate of a captured image, information specifying an exposure value at the time of capturing, and/or information specifying a magnification and a focus of the captured image. Contains information about the condition. The communication unit 5013 provides the received control signal to the camera head control unit 5015. The control signal from the CCU 5039 may also be transmitted by optical communication. In this case, the communication unit 5013 is provided with a photoelectric conversion module that converts an optical signal into an electric signal, and the control signal is converted into an electric signal by the photoelectric conversion module and then provided to the camera head control unit 5015.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、取得された画像信号に基づいてCCU5039の制御部5063によって自動的に設定される。つまり、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡5001に搭載される。 Note that the imaging conditions such as the frame rate, the exposure value, the magnification, and the focus described above are automatically set by the control unit 5063 of the CCU 5039 based on the acquired image signal. That is, the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are installed in the endoscope 5001.
 カメラヘッド制御部5015は、通信部5013を介して受信したCCU5039からの制御信号に基づいて、カメラヘッド5005の駆動を制御する。例えば、カメラヘッド制御部5015は、撮像画像のフレームレートを指定する旨の情報及び/又は撮像時の露光を指定する旨の情報に基づいて、撮像部5009の撮像素子の駆動を制御する。また、例えば、カメラヘッド制御部5015は、撮像画像の倍率及び焦点を指定する旨の情報に基づいて、駆動部5011を介してレンズユニット5007のズームレンズ及びフォーカスレンズを適宜移動させる。カメラヘッド制御部5015は、更に、鏡筒5003やカメラヘッド5005を識別するための情報を記憶する機能を備えてもよい。 The camera head control unit 5015 controls driving of the camera head 5005 based on the control signal from the CCU 5039 received via the communication unit 5013. For example, the camera head control unit 5015 controls the driving of the image pickup device of the image pickup unit 5009 based on the information indicating the frame rate of the captured image and/or the information indicating the exposure at the time of image capturing. Further, for example, the camera head control unit 5015 appropriately moves the zoom lens and the focus lens of the lens unit 5007 via the driving unit 5011 based on the information indicating that the magnification and the focus of the captured image are designated. The camera head controller 5015 may further have a function of storing information for identifying the lens barrel 5003 and the camera head 5005.
 なお、レンズユニット5007や撮像部5009等の構成を、気密性及び防水性が高い密閉構造内に配置することで、カメラヘッド5005について、オートクレーブ滅菌処理に対する耐性を持たせることができる。 By disposing the lens unit 5007, the imaging unit 5009, and the like in a hermetically sealed structure that is highly airtight and waterproof, the camera head 5005 can be made resistant to autoclave sterilization.
 次に、CCU5039の機能構成について説明する。通信部5059は、カメラヘッド5005との間で各種の情報を送受信するための通信装置によって構成される。通信部5059は、カメラヘッド5005から、伝送ケーブル5065を介して送信される画像信号を受信する。この際、上記のように、当該画像信号は好適に光通信によって送信され得る。この場合、光通信に対応して、通信部5059には、光信号を電気信号に変換する光電変換モジュールが設けられる。通信部5059は、電気信号に変換した画像信号を画像処理部5061に提供する。 Next, the functional configuration of the CCU 5039 will be described. The communication unit 5059 is composed of a communication device for transmitting/receiving various information to/from the camera head 5005. The communication unit 5059 receives the image signal transmitted from the camera head 5005 via the transmission cable 5065. At this time, as described above, the image signal can be preferably transmitted by optical communication. In this case, the communication unit 5059 is provided with a photoelectric conversion module that converts an optical signal into an electrical signal in response to optical communication. The communication unit 5059 provides the image signal converted into the electric signal to the image processing unit 5061.
 また、通信部5059は、カメラヘッド5005に対して、カメラヘッド5005の駆動を制御するための制御信号を送信する。当該制御信号も光通信によって送信されてよい。 Also, the communication unit 5059 transmits a control signal for controlling the driving of the camera head 5005 to the camera head 5005. The control signal may also be transmitted by optical communication.
 画像処理部5061は、カメラヘッド5005から送信されたRAWデータである画像信号に対して各種の画像処理を施す。当該画像処理としては、例えば現像処理、高画質化処理(帯域強調処理、超解像処理、NR(Noise reduction)処理及び/又は手ブレ補正処理等)、並びに/又は拡大処理(電子ズーム処理)等、各種の公知の信号処理が含まれる。また、画像処理部5061は、AE、AF及びAWBを行うための、画像信号に対する検波処理を行う。 The image processing unit 5061 performs various kinds of image processing on the image signal that is the RAW data transmitted from the camera head 5005. As the image processing, for example, development processing, high image quality processing (band emphasis processing, super-resolution processing, NR (Noise reduction) processing and/or camera shake correction processing, etc.), and/or enlargement processing (electronic zoom processing) Etc., various known signal processings are included. The image processing unit 5061 also performs detection processing on the image signal for performing AE, AF, and AWB.
 画像処理部5061は、CPUやGPU等のプロセッサによって構成され、当該プロセッサが所定のプログラムに従って動作することにより、上述した画像処理や検波処理が行われ得る。なお、画像処理部5061が複数のGPUによって構成される場合には、画像処理部5061は、画像信号に係る情報を適宜分割し、これら複数のGPUによって並列的に画像処理を行う。 The image processing unit 5061 is configured by a processor such as a CPU or a GPU, and the image processing and the detection processing described above can be performed by the processor operating according to a predetermined program. Note that when the image processing unit 5061 is configured by a plurality of GPUs, the image processing unit 5061 appropriately divides information related to the image signal, and the plurality of GPUs perform image processing in parallel.
 制御部5063は、内視鏡5001による術部の撮像、及びその撮像画像の表示に関する各種の制御を行う。例えば、制御部5063は、カメラヘッド5005の駆動を制御するための制御信号を生成する。この際、撮像条件がユーザによって入力されている場合には、制御部5063は、当該ユーザによる入力に基づいて制御信号を生成する。あるいは、内視鏡5001にAE機能、AF機能及びAWB機能が搭載されている場合には、制御部5063は、画像処理部5061による検波処理の結果に応じて、最適な露出値、焦点距離及びホワイトバランスを適宜算出し、制御信号を生成する。 The control unit 5063 performs various controls regarding imaging of the surgical site by the endoscope 5001 and display of the captured image. For example, the control unit 5063 generates a control signal for controlling the driving of the camera head 5005. At this time, when the imaging condition is input by the user, the control unit 5063 generates a control signal based on the input by the user. Alternatively, when the endoscope 5001 is equipped with the AE function, the AF function, and the AWB function, the control unit 5063 controls the optimum exposure value, focal length, and focal length according to the result of the detection processing by the image processing unit 5061. The white balance is appropriately calculated and a control signal is generated.
 また、制御部5063は、画像処理部5061によって画像処理が施された画像信号に基づいて、術部の画像を表示装置5041に表示させる。この際、制御部5063は、各種の画像認識技術を用いて術部画像内における各種の物体を認識する。例えば、制御部5063は、術部画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具5021使用時のミスト等を認識することができる。制御部5063は、表示装置5041に術部の画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させる。手術支援情報が重畳表示され、術者5067に提示されることにより、より安全かつ確実に手術を進めることが可能になる。 Further, the control unit 5063 causes the display device 5041 to display the image of the surgical site based on the image signal subjected to the image processing by the image processing unit 5061. At this time, the control unit 5063 recognizes various objects in the surgical region image using various image recognition techniques. For example, the control unit 5063 detects a surgical instrument such as forceps, a specific body part, bleeding, a mist when the energy treatment instrument 5021 is used, by detecting the shape and color of the edge of the object included in the surgical image. Can be recognized. When displaying the image of the surgical site on the display device 5041, the control unit 5063 superimposes and displays various types of surgical support information on the image of the surgical site using the recognition result. By displaying the surgery support information in a superimposed manner and presenting it to the operator 5067, it becomes possible to proceed with the surgery more safely and reliably.
 カメラヘッド5005及びCCU5039を接続する伝送ケーブル5065は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 A transmission cable 5065 connecting the camera head 5005 and the CCU 5039 is an electric signal cable compatible with electric signal communication, an optical fiber compatible with optical communication, or a composite cable of these.
 ここで、図示する例では、伝送ケーブル5065を用いて有線で通信が行われていたが、カメラヘッド5005とCCU5039との間の通信は無線で行われてもよい。両者の間の通信が無線で行われる場合には、伝送ケーブル5065を手術室内に敷設する必要がなくなるため、手術室内における医療スタッフの移動が当該伝送ケーブル5065によって妨げられる事態が解消され得る。 Here, in the illustrated example, wired communication is performed using the transmission cable 5065, but communication between the camera head 5005 and the CCU 5039 may be performed wirelessly. When the communication between the two is performed wirelessly, it is not necessary to lay the transmission cable 5065 in the operating room, so that the situation in which the movement of the medical staff in the operating room is hindered by the transmission cable 5065 can be solved.
 以上、本開示に係る技術が適用され得る内視鏡手術システム5000の一例について説明した。なお、ここでは、一例として内視鏡手術システム5000について説明したが、本開示に係る技術が適用され得るシステムはかかる例に限定されない。例えば、本開示に係る技術は、検査用軟性内視鏡システムや顕微鏡手術システムに適用されてもよい。 The example of the endoscopic surgery system 5000 to which the technology according to the present disclosure can be applied has been described above. Although the endoscopic surgery system 5000 is described here as an example, the system to which the technology according to the present disclosure can be applied is not limited to this example. For example, the technology according to the present disclosure may be applied to a flexible endoscope system for inspection and a microscopic surgery system.
 本開示に係る技術は、以上説明した構成のうち、カメラヘッド制御部5015に対して好適に適用され得る。より具体的に説明すると、駆動部5011がトラクション力を用いる動力伝達機構を備える変速装置を有しており、カメラヘッド制御部5015は、変速装置の温度情報に基づいて、変速装置に提供される動力を発生させるモータの駆動を制御する。これによって、カメラヘッド制御部5015は、モータの駆動によって発生した熱を用いて、変速装置をより適切な温度に維持することができるため、低温環境においてもレンズユニット5007の位置を適切に調節することができる。 The technology according to the present disclosure can be suitably applied to the camera head control unit 5015 among the configurations described above. More specifically, the drive unit 5011 has a transmission including a power transmission mechanism that uses a traction force, and the camera head controller 5015 is provided to the transmission based on temperature information of the transmission. It controls the drive of the motor that produces power. As a result, the camera head control unit 5015 can maintain the transmission at a more suitable temperature by using the heat generated by driving the motor, and thus appropriately adjusts the position of the lens unit 5007 even in a low temperature environment. be able to.
 (6.2.第2の応用例)
 本開示に係る技術は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット、建設機械、農業機械(トラクター)などのいずれかの種類の移動体に搭載される装置として実現されてもよい。
(6.2. Second application example)
The technology according to the present disclosure can be applied to various products. For example, the technology according to the present disclosure can be applied to any type of movement of an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, a robot, a construction machine, an agricultural machine (tractor), and the like. It may be realized as a device mounted on the body.
 図17は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システム7000の概略的な構成例を示すブロック図である。車両制御システム7000は、通信ネットワーク7010を介して接続された複数の電子制御ユニットを備える。図17に示した例では、車両制御システム7000は、駆動系制御ユニット7100、ボディ系制御ユニット7200、バッテリ制御ユニット7300、車外情報検出ユニット7400、車内情報検出ユニット7500、及び統合制御ユニット7600を備える。これらの複数の制御ユニットを接続する通信ネットワーク7010は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)又はFlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークであってよい。 FIG. 17 is a block diagram showing a schematic configuration example of a vehicle control system 7000 which is an example of a mobile body control system to which the technology according to the present disclosure can be applied. The vehicle control system 7000 includes a plurality of electronic control units connected via a communication network 7010. In the example shown in FIG. 17, the vehicle control system 7000 includes a drive system control unit 7100, a body system control unit 7200, a battery control unit 7300, a vehicle exterior information detection unit 7400, a vehicle interior information detection unit 7500, and an integrated control unit 7600. .. The communication network 7010 connecting these plural control units complies with any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network) or FlexRay (registered trademark). It may be an in-vehicle communication network.
 各制御ユニットは、各種プログラムにしたがって演算処理を行うマイクロコンピュータと、マイクロコンピュータにより実行されるプログラム又は各種演算に用いられるパラメータ等を記憶する記憶部と、各種制御対象の装置を駆動する駆動回路とを備える。各制御ユニットは、通信ネットワーク7010を介して他の制御ユニットとの間で通信を行うためのネットワークI/Fを備えるとともに、車内外の装置又はセンサ等との間で、有線通信又は無線通信により通信を行うための通信I/Fを備える。図17では、統合制御ユニット7600の機能構成として、マイクロコンピュータ7610、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660、音声画像出力部7670、車載ネットワークI/F7680及び記憶部7690が図示されている。他の制御ユニットも同様に、マイクロコンピュータ、通信I/F及び記憶部等を備える。 Each control unit includes a microcomputer that performs arithmetic processing according to various programs, a storage unit that stores a program executed by the microcomputer or parameters used in various arithmetic operations, and a drive circuit that drives various controlled devices. Equipped with. Each control unit is equipped with a network I/F for communicating with other control units via the communication network 7010, and also by wire communication or wireless communication with devices or sensors inside or outside the vehicle. A communication I/F for performing communication is provided. In FIG. 17, as the functional configuration of the integrated control unit 7600, a microcomputer 7610, a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, an audio image output unit 7670, An in-vehicle network I/F 7680 and a storage unit 7690 are illustrated. Similarly, the other control units also include a microcomputer, a communication I/F, a storage unit, and the like.
 駆動系制御ユニット7100は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット7100は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。駆動系制御ユニット7100は、ABS(Antilock Brake System)又はESC(Electronic Stability Control)等の制御装置としての機能を有してもよい。 The drive system control unit 7100 controls the operation of devices related to the drive system of the vehicle according to various programs. For example, the drive system control unit 7100 includes a drive force generation device for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to wheels, and a steering angle of the vehicle. It functions as a steering mechanism for adjusting and a control device such as a braking device for generating a braking force of the vehicle. The drive system control unit 7100 may have a function as a control device such as ABS (Antilock Brake System) or ESC (Electronic Stability Control).
 駆動系制御ユニット7100には、車両状態検出部7110が接続される。車両状態検出部7110には、例えば、車体の軸回転運動の角速度を検出するジャイロセンサ、車両の加速度を検出する加速度センサ、あるいは、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数又は車輪の回転速度等を検出するためのセンサのうちの少なくとも一つが含まれる。駆動系制御ユニット7100は、車両状態検出部7110から入力される信号を用いて演算処理を行い、内燃機関、駆動用モータ、電動パワーステアリング装置又はブレーキ装置等を制御する。 A vehicle state detection unit 7110 is connected to the drive system control unit 7100. The vehicle state detection unit 7110 includes, for example, a gyro sensor that detects the angular velocity of the shaft rotational movement of the vehicle body, an acceleration sensor that detects the acceleration of the vehicle, an accelerator pedal operation amount, a brake pedal operation amount, or a steering wheel steering operation. At least one of sensors for detecting an angle, an engine speed, a wheel rotation speed, and the like is included. The drive system control unit 7100 performs arithmetic processing using the signal input from the vehicle state detection unit 7110 to control the internal combustion engine, drive motor, electric power steering device, brake device, or the like.
 ボディ系制御ユニット7200は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット7200は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット7200には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット7200は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 7200 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 7200 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a winker, or a fog lamp. In this case, the body system control unit 7200 may receive radio waves or signals of various switches transmitted from a portable device that substitutes for a key. The body system control unit 7200 receives the input of these radio waves or signals and controls the vehicle door lock device, the power window device, the lamp, and the like.
 バッテリ制御ユニット7300は、各種プログラムにしたがって駆動用モータの電力供給源である二次電池7310を制御する。例えば、バッテリ制御ユニット7300には、二次電池7310を備えたバッテリ装置から、バッテリ温度、バッテリ出力電圧又はバッテリの残存容量等の情報が入力される。バッテリ制御ユニット7300は、これらの信号を用いて演算処理を行い、二次電池7310の温度調節制御又はバッテリ装置に備えられた冷却装置等の制御を行う。 The battery control unit 7300 controls the secondary battery 7310 that is the power supply source of the drive motor according to various programs. For example, to the battery control unit 7300, information such as the battery temperature, the battery output voltage, or the remaining capacity of the battery is input from the battery device including the secondary battery 7310. The battery control unit 7300 performs arithmetic processing using these signals to control the temperature adjustment of the secondary battery 7310 or the cooling device provided in the battery device.
 車外情報検出ユニット7400は、車両制御システム7000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット7400には、撮像部7410及び車外情報検出部7420のうちの少なくとも一方が接続される。撮像部7410には、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ及びその他のカメラのうちの少なくとも一つが含まれる。車外情報検出部7420には、例えば、現在の天候又は気象を検出するための環境センサ、あるいは、車両制御システム7000を搭載した車両の周囲の他の車両、障害物又は歩行者等を検出するための周囲情報検出センサのうちの少なくとも一つが含まれる。 The exterior information detection unit 7400 detects information outside the vehicle equipped with the vehicle control system 7000. For example, at least one of the image capturing unit 7410 and the vehicle exterior information detection unit 7420 is connected to the vehicle exterior information detection unit 7400. The imaging unit 7410 includes at least one of a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras. The outside-vehicle information detection unit 7420 detects, for example, an environment sensor for detecting current weather or weather, or another vehicle around the vehicle equipped with the vehicle control system 7000, an obstacle, a pedestrian, or the like. At least one of the ambient information detection sensors of.
 環境センサは、例えば、雨天を検出する雨滴センサ、霧を検出する霧センサ、日照度合いを検出する日照センサ、及び降雪を検出する雪センサのうちの少なくとも一つであってよい。周囲情報検出センサは、超音波センサ、レーダ装置及びLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)装置のうちの少なくとも一つであってよい。これらの撮像部7410及び車外情報検出部7420は、それぞれ独立したセンサないし装置として備えられてもよいし、複数のセンサないし装置が統合された装置として備えられてもよい。 The environmental sensor may be, for example, at least one of a raindrop sensor that detects rainy weather, a fog sensor that detects fog, a sunshine sensor that detects the degree of sunshine, and a snow sensor that detects snowfall. The ambient information detection sensor may be at least one of an ultrasonic sensor, a radar device, and a LIDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) device. The imaging unit 7410 and the vehicle exterior information detection unit 7420 may be provided as independent sensors or devices, or may be provided as a device in which a plurality of sensors or devices are integrated.
 ここで、図18は、撮像部7410及び車外情報検出部7420の設置位置の例を示す。撮像部7910,7912,7914,7916,7918は、例えば、車両7900のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部のうちの少なくとも一つの位置に設けられる。フロントノーズに備えられる撮像部7910及び車室内のフロントガラスの上部に備えられる撮像部7918は、主として車両7900の前方の画像を取得する。サイドミラーに備えられる撮像部7912,7914は、主として車両7900の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部7916は、主として車両7900の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部7918は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 Here, FIG. 18 shows an example of installation positions of the imaging unit 7410 and the vehicle exterior information detection unit 7420. The imaging units 7910, 7912, 7914, 7916, 7918 are provided at at least one of the front nose of the vehicle 7900, the side mirrors, the rear bumper, the back door, and the upper part of the windshield inside the vehicle. The image capturing unit 7910 provided on the front nose and the image capturing unit 7918 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 7900. The imaging units 7912 and 7914 provided in the side mirrors mainly acquire images of the side of the vehicle 7900. The imaging unit 7916 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 7900. The imaging unit 7918 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic signal, a traffic sign, a lane, or the like.
 なお、図18には、それぞれの撮像部7910,7912,7914,7916の撮影範囲の一例が示されている。撮像範囲aは、フロントノーズに設けられた撮像部7910の撮像範囲を示し、撮像範囲b,cは、それぞれサイドミラーに設けられた撮像部7912,7914の撮像範囲を示し、撮像範囲dは、リアバンパ又はバックドアに設けられた撮像部7916の撮像範囲を示す。例えば、撮像部7910,7912,7914,7916で撮像された画像データが重ね合わせられることにより、車両7900を上方から見た俯瞰画像が得られる。 Note that FIG. 18 shows an example of the shooting ranges of the respective image pickup units 7910, 7912, 7914, 7916. The imaging range a indicates the imaging range of the imaging unit 7910 provided on the front nose, the imaging ranges b and c indicate the imaging ranges of the imaging units 7912 and 7914 provided on the side mirrors, and the imaging range d is The imaging range of the imaging part 7916 provided in the rear bumper or the back door is shown. For example, by overlaying the image data captured by the image capturing units 7910, 7912, 7914, and 7916, a bird's-eye view image of the vehicle 7900 viewed from above can be obtained.
 車両7900のフロント、リア、サイド、コーナ及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7922,7924,7926,7928,7930は、例えば超音波センサ又はレーダ装置であってよい。車両7900のフロントノーズ、リアバンパ、バックドア及び車室内のフロントガラスの上部に設けられる車外情報検出部7920,7926,7930は、例えばLIDAR装置であってよい。これらの車外情報検出部7920~7930は、主として先行車両、歩行者又は障害物等の検出に用いられる。 The vehicle exterior information detection units 7920, 7922, 7924, 7926, 7928, 7930 provided on the front, rear, sides, corners of the vehicle 7900 and on the windshield inside the vehicle may be ultrasonic sensors or radar devices, for example. The vehicle exterior information detection units 7920, 7926, 7930 provided on the front nose, rear bumper, back door, and upper windshield of the vehicle 7900 may be LIDAR devices, for example. These vehicle exterior information detection units 7920 to 7930 are mainly used to detect a preceding vehicle, a pedestrian, an obstacle, or the like.
 図17に戻って説明を続ける。車外情報検出ユニット7400は、撮像部7410に車外の画像を撮像させるとともに、撮像された画像データを受信する。また、車外情報検出ユニット7400は、接続されている車外情報検出部7420から検出情報を受信する。車外情報検出部7420が超音波センサ、レーダ装置又はLIDAR装置である場合には、車外情報検出ユニット7400は、超音波又は電磁波等を発信させるとともに、受信された反射波の情報を受信する。車外情報検出ユニット7400は、受信した情報に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、降雨、霧又は路面状況等を認識する環境認識処理を行ってもよい。車外情報検出ユニット7400は、受信した情報に基づいて、車外の物体までの距離を算出してもよい。 Return to FIG. 17 to continue the explanation. The vehicle exterior information detection unit 7400 causes the image capturing unit 7410 to capture an image of the vehicle exterior and receives the captured image data. In addition, the vehicle exterior information detection unit 7400 receives detection information from the vehicle exterior information detection unit 7420 connected thereto. When the vehicle exterior information detection unit 7420 is an ultrasonic sensor, a radar device, or a LIDAR device, the vehicle exterior information detection unit 7400 transmits ultrasonic waves, electromagnetic waves, or the like, and receives information on the received reflected waves. The vehicle exterior information detection unit 7400 may perform an object detection process or a distance detection process such as a person, a car, an obstacle, a sign, or characters on the road surface based on the received information. The vehicle exterior information detection unit 7400 may perform environment recognition processing for recognizing rainfall, fog, road surface conditions, or the like based on the received information. The vehicle exterior information detection unit 7400 may calculate the distance to an object outside the vehicle based on the received information.
 また、車外情報検出ユニット7400は、受信した画像データに基づいて、人、車、障害物、標識又は路面上の文字等を認識する画像認識処理又は距離検出処理を行ってもよい。車外情報検出ユニット7400は、受信した画像データに対して歪補正又は位置合わせ等の処理を行うとともに、異なる撮像部7410により撮像された画像データを合成して、俯瞰画像又はパノラマ画像を生成してもよい。車外情報検出ユニット7400は、異なる撮像部7410により撮像された画像データを用いて、視点変換処理を行ってもよい。 The vehicle exterior information detection unit 7400 may also perform image recognition processing or distance detection processing for recognizing a person, a car, an obstacle, a sign, characters on the road surface, or the like based on the received image data. The vehicle exterior information detection unit 7400 performs processing such as distortion correction or position adjustment on the received image data, combines the image data captured by different image capturing units 7410, and generates an overhead image or a panoramic image. Good. The vehicle exterior information detection unit 7400 may perform viewpoint conversion processing using image data captured by different image capturing units 7410.
 車内情報検出ユニット7500は、車内の情報を検出する。車内情報検出ユニット7500には、例えば、運転者の状態を検出する運転者状態検出部7510が接続される。運転者状態検出部7510は、運転者を撮像するカメラ、運転者の生体情報を検出する生体センサ又は車室内の音声を集音するマイク等を含んでもよい。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座った搭乗者又はステアリングホイールを握る運転者の生体情報を検出する。車内情報検出ユニット7500は、運転者状態検出部7510から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。車内情報検出ユニット7500は、集音された音声信号に対してノイズキャンセリング処理等の処理を行ってもよい。 The in-vehicle information detection unit 7500 detects in-vehicle information. The in-vehicle information detection unit 7500 is connected with, for example, a driver state detection unit 7510 that detects the state of the driver. The driver state detecting unit 7510 may include a camera for capturing an image of the driver, a biometric sensor for detecting biometric information of the driver, a microphone for collecting voice in the vehicle interior, or the like. The biometric sensor is provided on, for example, a seat surface or a steering wheel, and detects biometric information of an occupant sitting on a seat or a driver who holds the steering wheel. The in-vehicle information detection unit 7500 may calculate the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 7510, or determine whether the driver is asleep. You may. The in-vehicle information detection unit 7500 may perform processing such as noise canceling processing on the collected audio signal.
 統合制御ユニット7600は、各種プログラムにしたがって車両制御システム7000内の動作全般を制御する。統合制御ユニット7600には、入力部7800が接続されている。入力部7800は、例えば、タッチパネル、ボタン、マイクロフォン、スイッチ又はレバー等、搭乗者によって入力操作され得る装置によって実現される。統合制御ユニット7600には、マイクロフォンにより入力される音声を音声認識することにより得たデータが入力されてもよい。入力部7800は、例えば、赤外線又はその他の電波を利用したリモートコントロール装置であってもよいし、車両制御システム7000の操作に対応した携帯電話又はPDA(Personal Digital Assistant)等の外部接続機器であってもよい。入力部7800は、例えばカメラであってもよく、その場合搭乗者はジェスチャにより情報を入力することができる。あるいは、搭乗者が装着したウェアラブル装置の動きを検出することで得られたデータが入力されてもよい。さらに、入力部7800は、例えば、上記の入力部7800を用いて搭乗者等により入力された情報に基づいて入力信号を生成し、統合制御ユニット7600に出力する入力制御回路などを含んでもよい。搭乗者等は、この入力部7800を操作することにより、車両制御システム7000に対して各種のデータを入力したり処理動作を指示したりする。 The integrated control unit 7600 controls overall operations in the vehicle control system 7000 according to various programs. An input unit 7800 is connected to the integrated control unit 7600. The input unit 7800 is realized by a device that can be input and operated by a passenger, such as a touch panel, a button, a microphone, a switch or a lever. Data obtained by voice recognition of voice input by a microphone may be input to the integrated control unit 7600. The input unit 7800 may be, for example, a remote control device that uses infrared rays or other radio waves, or may be an external connection device such as a mobile phone or a PDA (Personal Digital Assistant) that supports the operation of the vehicle control system 7000. May be. The input unit 7800 may be, for example, a camera, in which case the passenger can input information by gesture. Alternatively, data obtained by detecting the movement of the wearable device worn by the passenger may be input. Furthermore, the input unit 7800 may include, for example, an input control circuit that generates an input signal based on information input by a passenger or the like using the input unit 7800 and outputs the input signal to the integrated control unit 7600. A passenger or the like operates the input unit 7800 to input various data or instruct a processing operation to the vehicle control system 7000.
 記憶部7690は、マイクロコンピュータにより実行される各種プログラムを記憶するROM(Read Only Memory)、及び各種パラメータ、演算結果又はセンサ値等を記憶するRAM(Random Access Memory)を含んでいてもよい。また、記憶部7690は、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス又は光磁気記憶デバイス等によって実現してもよい。 The storage unit 7690 may include a ROM (Read Only Memory) that stores various programs executed by the microcomputer, and a RAM (Random Access Memory) that stores various parameters, calculation results, sensor values, and the like. The storage unit 7690 may be realized by a magnetic storage device such as an HDD (Hard Disc Drive), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like.
 汎用通信I/F7620は、外部環境7750に存在する様々な機器との間の通信を仲介する汎用的な通信I/Fである。汎用通信I/F7620は、GSM(登録商標)(Global System of Mobile communications)、WiMAX(登録商標)、LTE(登録商標)(Long Term Evolution)若しくはLTE-A(LTE-Advanced)などのセルラー通信プロトコル、又は無線LAN(Wi-Fi(登録商標)ともいう)、Bluetooth(登録商標)などのその他の無線通信プロトコルを実装してよい。汎用通信I/F7620は、例えば、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)へ接続してもよい。また、汎用通信I/F7620は、例えばP2P(Peer To Peer)技術を用いて、車両の近傍に存在する端末(例えば、運転者、歩行者若しくは店舗の端末、又はMTC(Machine Type Communication)端末)と接続してもよい。 The general-purpose communication I/F 7620 is a general-purpose communication I/F that mediates communication with various devices existing in the external environment 7750. The general-purpose communication I/F 7620 is a cellular communication protocol such as GSM (registered trademark) (Global System of Mobile communications), WiMAX (registered trademark), LTE (registered trademark) (Long Term Evolution), or LTE-A (LTE-Advanced). , Or a wireless LAN (also referred to as Wi-Fi (registered trademark)), Bluetooth (registered trademark), or other wireless communication protocol may be implemented. The general-purpose communication I/F 7620 is connected to a device (for example, an application server or a control server) existing on an external network (for example, the Internet, a cloud network or a network unique to a business operator) via a base station or an access point, for example. You may. In addition, the general-purpose communication I/F 7620 uses, for example, P2P (Peer To Peer) technology, and is a terminal existing in the vicinity of the vehicle (for example, a driver, a pedestrian or a shop terminal, or an MTC (Machine Type Communication) terminal). May be connected with.
 専用通信I/F7630は、車両における使用を目的として策定された通信プロトコルをサポートする通信I/Fである。専用通信I/F7630は、例えば、下位レイヤのIEEE802.11pと上位レイヤのIEEE1609との組合せであるWAVE(Wireless Access in Vehicle Environment)、DSRC(Dedicated Short Range Communications)、又はセルラー通信プロトコルといった標準プロトコルを実装してよい。専用通信I/F7630は、典型的には、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両と家との間(Vehicle to Home)の通信及び歩車間(Vehicle to Pedestrian)通信のうちの1つ以上を含む概念であるV2X通信を遂行する。 The dedicated communication I/F 7630 is a communication I/F that supports a communication protocol formulated for use in a vehicle. The dedicated communication I/F 7630 uses a standard protocol such as WAVE (Wireless Access in Vehicle Environment), DSRC (Dedicated Short Range Communications), or a cellular communication protocol, which is a combination of a lower layer IEEE 802.11p and an upper layer IEEE 1609, for example. May be implemented. The dedicated communication I/F 7630 is typically a vehicle-to-vehicle communication, a vehicle-to-infrastructure communication, a vehicle-to-home communication, and a vehicle-to-pedestrian communication. ) Perform V2X communications, a concept that includes one or more of the communications.
 測位部7640は、例えば、GNSS(Global Navigation Satellite System)衛星からのGNSS信号(例えば、GPS(Global Positioning System)衛星からのGPS信号)を受信して測位を実行し、車両の緯度、経度及び高度を含む位置情報を生成する。なお、測位部7640は、無線アクセスポイントとの信号の交換により現在位置を特定してもよく、又は測位機能を有する携帯電話、PHS若しくはスマートフォンといった端末から位置情報を取得してもよい。 The positioning unit 7640 receives, for example, a GNSS signal from a GNSS (Global Navigation Satellite System) satellite (for example, a GPS signal from a GPS (Global Positioning System) satellite) to perform positioning, and the latitude, longitude, and altitude of the vehicle. Generate position information including. Note that the positioning unit 7640 may specify the current position by exchanging signals with the wireless access point, or may acquire position information from a terminal such as a mobile phone, PHS, or smartphone having a positioning function.
 ビーコン受信部7650は、例えば、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行止め又は所要時間等の情報を取得する。なお、ビーコン受信部7650の機能は、上述した専用通信I/F7630に含まれてもよい。 The beacon receiving unit 7650 receives, for example, a radio wave or an electromagnetic wave transmitted from a wireless station or the like installed on the road, and acquires information such as the current position, traffic jam, traffic closure, or required time. The function of beacon reception unit 7650 may be included in dedicated communication I/F 7630 described above.
 車内機器I/F7660は、マイクロコンピュータ7610と車内に存在する様々な車内機器7760との間の接続を仲介する通信インタフェースである。車内機器I/F7660は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)又はWUSB(Wireless USB)といった無線通信プロトコルを用いて無線接続を確立してもよい。また、車内機器I/F7660は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface、又はMHL(Mobile High-definition Link)等の有線接続を確立してもよい。車内機器7760は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、又は車両に搬入され若しくは取り付けられる情報機器のうちの少なくとも1つを含んでいてもよい。また、車内機器7760は、任意の目的地までの経路探索を行うナビゲーション装置を含んでいてもよい。車内機器I/F7660は、これらの車内機器7760との間で、制御信号又はデータ信号を交換する。 The in-vehicle device I/F 7660 is a communication interface that mediates a connection between the microcomputer 7610 and various in-vehicle devices 7760 existing in the vehicle. The in-vehicle device I/F 7660 may establish a wireless connection using a wireless communication protocol such as wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication) or WUSB (Wireless USB). Further, the in-vehicle device I/F 7660 is connected to a USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Multimedia Interface, or MHL (Mobile High) via a connection terminal (and a cable if necessary) not shown. -Definition Link) etc. The wired device 7760 may include, for example, at least one of a mobile device or a wearable device that the passenger has, or an information device that is carried in or attached to the vehicle. Further, the in-vehicle device 7760 may include a navigation device that searches for a route to an arbitrary destination.The in-vehicle device I/F 7660 is a control signal with the in-vehicle device 7760. Or exchange data signals.
 車載ネットワークI/F7680は、マイクロコンピュータ7610と通信ネットワーク7010との間の通信を仲介するインタフェースである。車載ネットワークI/F7680は、通信ネットワーク7010によりサポートされる所定のプロトコルに則して、信号等を送受信する。 The in-vehicle network I/F 7680 is an interface that mediates communication between the microcomputer 7610 and the communication network 7010. The in-vehicle network I/F 7680 transmits and receives signals and the like according to a predetermined protocol supported by the communication network 7010.
 統合制御ユニット7600のマイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、各種プログラムにしたがって、車両制御システム7000を制御する。例えば、マイクロコンピュータ7610は、取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット7100に対して制御指令を出力してもよい。例えば、マイクロコンピュータ7610は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行ってもよい。また、マイクロコンピュータ7610は、取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行ってもよい。 The microcomputer 7610 of the integrated control unit 7600 passes through at least one of a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, and an in-vehicle network I/F 7680. The vehicle control system 7000 is controlled according to various programs based on the information acquired by the above. For example, the microcomputer 7610 calculates a control target value of the driving force generation device, the steering mechanism or the braking device based on the acquired information on the inside and outside of the vehicle, and outputs a control command to the drive system control unit 7100. Good. For example, the microcomputer 7610 realizes the functions of ADAS (Advanced Driver Assistance System) including collision avoidance or impact mitigation of a vehicle, follow-up traveling based on an inter-vehicle distance, vehicle speed maintenance traveling, vehicle collision warning, vehicle lane departure warning, etc. You may perform the coordinated control aiming at. In addition, the microcomputer 7610 controls the driving force generation device, the steering mechanism, the braking device, and the like based on the acquired information about the surroundings of the vehicle, so that the microcomputer 7610 automatically travels independently of the driver's operation. You may perform cooperative control for the purpose of driving etc.
 マイクロコンピュータ7610は、汎用通信I/F7620、専用通信I/F7630、測位部7640、ビーコン受信部7650、車内機器I/F7660及び車載ネットワークI/F7680のうちの少なくとも一つを介して取得される情報に基づき、車両と周辺の構造物や人物等の物体との間の3次元距離情報を生成し、車両の現在位置の周辺情報を含むローカル地図情報を作成してもよい。また、マイクロコンピュータ7610は、取得される情報に基づき、車両の衝突、歩行者等の近接又は通行止めの道路への進入等の危険を予測し、警告用信号を生成してもよい。警告用信号は、例えば、警告音を発生させたり、警告ランプを点灯させたりするための信号であってよい。 Information acquired by the microcomputer 7610 via at least one of a general-purpose communication I/F 7620, a dedicated communication I/F 7630, a positioning unit 7640, a beacon receiving unit 7650, an in-vehicle device I/F 7660, and an in-vehicle network I/F 7680. Based on the above, three-dimensional distance information between the vehicle and surrounding objects such as structures and people may be generated, and local map information including peripheral information of the current position of the vehicle may be created. In addition, the microcomputer 7610 may generate a warning signal by predicting a danger such as a vehicle collision, a pedestrian or the like approaching a road or a closed road, based on the acquired information. The warning signal may be, for example, a signal for generating a warning sound or lighting a warning lamp.
 音声画像出力部7670は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図17の例では、出力装置として、オーディオスピーカ7710、表示部7720及びインストルメントパネル7730が例示されている。表示部7720は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。表示部7720は、AR(Augmented Reality)表示機能を有していてもよい。出力装置は、これらの装置以外の、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ又はランプ等の他の装置であってもよい。出力装置が表示装置の場合、表示装置は、マイクロコンピュータ7610が行った各種処理により得られた結果又は他の制御ユニットから受信された情報を、テキスト、イメージ、表、グラフ等、様々な形式で視覚的に表示する。また、出力装置が音声出力装置の場合、音声出力装置は、再生された音声データ又は音響データ等からなるオーディオ信号をアナログ信号に変換して聴覚的に出力する。 The voice image output unit 7670 transmits an output signal of at least one of a voice and an image to an output device capable of visually or audibly notifying information to a passenger of the vehicle or the outside of the vehicle. In the example of FIG. 17, an audio speaker 7710, a display unit 7720, and an instrument panel 7730 are illustrated as output devices. The display unit 7720 may include at least one of an onboard display and a head-up display, for example. The display unit 7720 may have an AR (Augmented Reality) display function. The output device may be a device other than these devices, such as headphones, a wearable device such as a glasses-type display worn by a passenger, a projector, or a lamp. When the output device is a display device, the display device displays results obtained by various processes performed by the microcomputer 7610 or information received from another control unit in various formats such as text, images, tables, and graphs. Display it visually. When the output device is an audio output device, the audio output device converts an audio signal composed of reproduced audio data, acoustic data, or the like into an analog signal and outputs it audibly.
 なお、図17に示した例において、通信ネットワーク7010を介して接続された少なくとも二つの制御ユニットが一つの制御ユニットとして一体化されてもよい。あるいは、個々の制御ユニットが、複数の制御ユニットにより構成されてもよい。さらに、車両制御システム7000が、図示されていない別の制御ユニットを備えてもよい。また、上記の説明において、いずれかの制御ユニットが担う機能の一部又は全部を、他の制御ユニットに持たせてもよい。つまり、通信ネットワーク7010を介して情報の送受信がされるようになっていれば、所定の演算処理が、いずれかの制御ユニットで行われるようになってもよい。同様に、いずれかの制御ユニットに接続されているセンサ又は装置が、他の制御ユニットに接続されるとともに、複数の制御ユニットが、通信ネットワーク7010を介して相互に検出情報を送受信してもよい。 Note that in the example shown in FIG. 17, at least two control units connected via the communication network 7010 may be integrated as one control unit. Alternatively, each control unit may be composed of a plurality of control units. Further, the vehicle control system 7000 may include another control unit not shown. Further, in the above description, some or all of the functions of one of the control units may be given to another control unit. That is, if the information is transmitted and received via the communication network 7010, the predetermined arithmetic processing may be performed by any of the control units. Similarly, a sensor or device connected to one of the control units may be connected to another control unit, and a plurality of control units may send and receive detection information to and from each other via the communication network 7010. ..
 なお、図5を用いて説明した本実施形態に係るレンズ鏡筒100の制御部150(またはカメラボディ200の制御部250)などの各機能を実現するためのコンピュータプログラムを、いずれかの制御ユニット等に実装することができる。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体を提供することもできる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリ等である。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信されてもよい。 Note that a computer program for realizing each function such as the control unit 150 (or the control unit 250 of the camera body 200) of the lens barrel 100 according to the present embodiment described with reference to FIG. Etc. can be implemented. It is also possible to provide a computer-readable recording medium in which such a computer program is stored. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Further, the above computer program may be distributed, for example, via a network without using a recording medium.
 以上説明した車両制御システム7000において、図5を用いて説明した本実施形態に係るレンズ鏡筒100の制御部150(またはカメラボディ200の制御部250)は、図17に示した応用例の統合制御ユニット7600に適用することができる。例えば、車両制御システム7000がトラクション力を用いる動力伝達機構を備える変速装置を有している場合(レンズユニットの駆動に用いられる変速装置でもよいし、その他の用途に用いられる変速装置でもよい)、統合制御ユニット7600は、変速装置の温度情報に基づいて、変速装置に提供される動力を発生させるモータの駆動を制御する。これによって、統合制御ユニット7600は、モータの駆動によって発生した熱を用いて、変速装置をより適切な温度に維持することができるため、低温環境においても車両制御システム7000を適切に機能させることができる。 In the vehicle control system 7000 described above, the control unit 150 of the lens barrel 100 (or the control unit 250 of the camera body 200) according to the present embodiment described with reference to FIG. 5 is the integration of the application examples shown in FIG. It can be applied to the control unit 7600. For example, when the vehicle control system 7000 has a transmission that includes a power transmission mechanism that uses a traction force (a transmission that is used to drive the lens unit or a transmission that is used for other purposes) may be used. The integrated control unit 7600 controls driving of a motor that generates power provided to the transmission based on the temperature information of the transmission. As a result, the integrated control unit 7600 can maintain the transmission at a more appropriate temperature by using the heat generated by driving the motor, so that the vehicle control system 7000 can properly function even in a low temperature environment. it can.
 また、図5を用いて説明した本実施形態に係るレンズ鏡筒100の制御部150(またはカメラボディ200の制御部250)の少なくとも一部の機能は、図17に示した統合制御ユニット7600のためのモジュール(例えば、一つのダイで構成される集積回路モジュール)において実現されてもよい。あるいは、図5を用いて説明した本実施形態に係るレンズ鏡筒100の制御部150(またはカメラボディ200の制御部250)が、図17に示した車両制御システム7000の複数の制御ユニットによって実現されてもよい。 Further, at least a part of the functions of the control unit 150 (or the control unit 250 of the camera body 200) of the lens barrel 100 according to the present embodiment described with reference to FIG. 5 is the same as that of the integrated control unit 7600 shown in FIG. Module (for example, an integrated circuit module composed of one die). Alternatively, the control unit 150 (or the control unit 250 of the camera body 200) of the lens barrel 100 according to the present embodiment described with reference to FIG. 5 is realized by the plurality of control units of the vehicle control system 7000 shown in FIG. May be done.
  <7.むすび>
 以上で説明してきたように、本実施形態に係る制御装置(レンズ鏡筒100の制御部150等によって実現され得る装置)は、トラクションドライブを備える変速装置120の温度情報に基づいて、当該変速装置120に提供される動力を発生させる超音波モータ110の駆動を制御する。特に低温環境においては、本実施形態に係る制御装置は、温度情報に基づいて変速装置120の温度が所定値以下であると判定した場合、超音波モータ110の駆動を制御し超音波モータ110を発熱させることで変速装置120を温める。これによって、本実施形態に係る制御装置は、当該変速装置120をより適切な温度に維持することができる。また、変速装置120を温めるための新規機構(例えば、ヒータなど)を設けなくてもよくなるため、装置の小型化および製造コストの削減が実現される。さらに、トラクションドライブによって変速が行われることによって、駆動時に発生する騒音が低減される。
<7. Conclusion>
As described above, the control device according to the present embodiment (device that can be realized by the control unit 150 and the like of the lens barrel 100) is based on the temperature information of the transmission device 120 including the traction drive. The driving of the ultrasonic motor 110 that generates the power provided to the motor 120 is controlled. Particularly in a low temperature environment, when the control device according to the present embodiment determines that the temperature of the transmission 120 is equal to or lower than a predetermined value based on the temperature information, the control device controls the drive of the ultrasonic motor 110 to control the ultrasonic motor 110. By generating heat, the transmission 120 is warmed. With this, the control device according to the present embodiment can maintain the transmission 120 at a more appropriate temperature. Further, since it is not necessary to provide a new mechanism (for example, a heater) for warming the transmission 120, the device can be downsized and the manufacturing cost can be reduced. Further, the gear shift performed by the traction drive reduces noise generated during driving.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described above in detail with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that the invention also belongs to the technical scope of the present disclosure.
 例えば上記では、本開示がカメラ等の撮像装置300(または、レンズ鏡筒100やカメラボディ200)に適用される場合を一例として説明したところ、本開示の適用対象は必ずしもこれに限定されない。例えば、本開示は、ロボット、車両、または航空機等の、特に温度変化が激しい(または温度が低い)環境で使用される装置に適用可能である。 For example, although the case where the present disclosure is applied to the imaging device 300 (or the lens barrel 100 or the camera body 200) such as a camera has been described above as an example, the application target of the present disclosure is not necessarily limited to this. For example, the present disclosure is applicable to a device used in an environment in which the temperature changes drastically (or the temperature is low) such as a robot, a vehicle, or an aircraft.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Also, the effects described in the present specification are merely explanatory or exemplifying ones, and are not limiting. That is, the technique according to the present disclosure may have other effects that are apparent to those skilled in the art from the description of the present specification, in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 トラクション力を用いる動力伝達機構を備える変速装置の温度情報に基づいて、前記変速装置に提供される動力を発生させるモータの駆動を制御する制御部を備える、
 制御装置。
(2)
 前記制御部は、前記温度情報に基づいて前記変速装置の温度が所定値以下であると判定した場合、前記駆動を制御し前記モータを発熱させることで前記変速装置を温める、
 前記(1)に記載の制御装置。
(3)
 前記モータは、超音波モータであり、
 前記制御部は、前記超音波モータに印加される電圧パターンを制御することで前記駆動を制御する、
 前記(2)に記載の制御装置。
(4)
 前記制御部は、前記電圧パターンとして、前記超音波モータに印加される駆動信号の位相差、駆動周波数、または駆動電圧のうちの少なくともいずれか1つを制御する、
 前記(3)に記載の制御装置。
(5)
 前記制御部は、前記駆動を制御し前記モータを発熱させることで前記変速装置を温める場合と、そうでない場合とで、前記電圧パターンを変える、
 前記(4)に記載の制御装置。
(6)
 前記制御部は、前記電圧パターンを制御することで、前記超音波モータを回転させることなく発熱させる、
 前記(5)に記載の制御装置。
(7)
 前記制御部は、前記位相差を略0[deg]または略180[deg]に設定する、
 前記(6)に記載の制御装置。
(8)
 前記超音波モータの回転が検出された場合、前記制御部は、前記電圧パターンのうちの少なくとも前記位相差を制御することで前記回転を停止させる、
 前記(7)に記載の制御装置。
(9)
 前記制御部は、前記電圧パターンを制御することで、前記超音波モータを回転させつつ発熱させる、
 前記(5)に記載の制御装置。
(10)
 前記制御部は、前記位相差を0[deg]から90[deg]の間の値、0[deg]から-90[deg]の間の値、90[deg]から180[deg]の間の値、または-90[deg]から-180[deg]の間の値に設定する、
 前記(9)に記載の制御装置。
(11)
 前記制御部は、前記駆動周波数または前記駆動電圧のうちの少なくともいずれか1つを制御することで、前記位相差の制御による前記超音波モータの回転速度の低下を補償する、
 前記(10)に記載の制御装置。
(12)
 前記温度情報と前記電圧パターンとが対応付けられた参照テーブルをさらに備え、
 前記制御部は、前記温度情報および前記参照テーブルに基づいて前記駆動を制御する、
 前記(3)から(11)のいずれか1項に記載の制御装置。
(13)
 前記モータおよび前記変速装置の全部または一部はケースによって覆われる、
 前記(1)から(12)のいずれか1項に記載の制御装置。
(14)
 前記モータによって発せられた熱が前記変速装置まで伝達されるときの経路上に配置される部材には、前記経路の外周に配置される部材よりも熱伝導率の高いものが用いられる、
 前記(1)から(13)のいずれか1項に記載の制御装置。
(15)
 トラクション力を用いる動力伝達機構を備える変速装置の温度情報に基づいて、前記変速装置に提供される動力を発生させるモータの駆動を制御する制御部と、
 前記動力伝達機構を介して伝達される動力を用いて、少なくとも1つのレンズが駆動されるレンズ群と、を備える、
 レンズ鏡筒。
(16)
 トラクション力を用いる動力伝達機構を備える変速装置の温度情報に基づいて、前記変速装置に提供される動力を発生させるモータの駆動を制御する制御部と、
 前記動力伝達機構を介して伝達される動力を用いて、少なくとも1つのレンズが駆動されるレンズ群と、
 前記レンズ群により結像された被写体像を電気的な信号に変換する撮像素子と、を備える、
 撮像装置。
(17)
 トラクション力を用いる動力伝達機構を備える変速装置の温度情報に基づいて、前記変速装置に提供される動力を発生させるモータの駆動を制御することを有する、
 コンピュータにより実行される制御方法。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A control unit that controls the drive of a motor that generates power provided to the transmission based on temperature information of the transmission that includes a power transmission mechanism that uses traction force;
Control device.
(2)
When the control unit determines that the temperature of the transmission is lower than or equal to a predetermined value based on the temperature information, the drive is controlled to heat the motor to heat the transmission.
The control device according to (1) above.
(3)
The motor is an ultrasonic motor,
The control unit controls the drive by controlling a voltage pattern applied to the ultrasonic motor,
The control device according to (2) above.
(4)
The control unit controls, as the voltage pattern, at least one of a phase difference of a drive signal applied to the ultrasonic motor, a drive frequency, and a drive voltage.
The control device according to (3) above.
(5)
The control unit changes the voltage pattern depending on whether the transmission is warmed by controlling the drive to heat the motor, or not.
The control device according to (4) above.
(6)
The control unit controls the voltage pattern to generate heat without rotating the ultrasonic motor,
The control device according to (5) above.
(7)
The control unit sets the phase difference to approximately 0 [deg] or approximately 180 [deg],
The control device according to (6) above.
(8)
When rotation of the ultrasonic motor is detected, the control unit stops the rotation by controlling at least the phase difference of the voltage pattern,
The control device according to (7) above.
(9)
The control unit controls the voltage pattern to generate heat while rotating the ultrasonic motor,
The control device according to (5) above.
(10)
The control unit sets the phase difference to a value between 0 [deg] and 90 [deg], a value between 0 [deg] and -90 [deg], and a value between 90 [deg] and 180 [deg]. Value or set to a value between -90 [deg] and -180 [deg],
The control device according to (9).
(11)
The controller controls at least one of the drive frequency and the drive voltage to compensate for a decrease in the rotation speed of the ultrasonic motor due to the control of the phase difference,
The control device according to (10).
(12)
Further comprising a reference table in which the temperature information and the voltage pattern are associated with each other,
The control unit controls the drive based on the temperature information and the reference table,
The control device according to any one of (3) to (11).
(13)
All or part of the motor and the transmission are covered by a case,
The control device according to any one of (1) to (12).
(14)
As the member arranged on the path when the heat generated by the motor is transmitted to the transmission, one having a higher thermal conductivity than the member arranged on the outer periphery of the path is used.
The control device according to any one of (1) to (13).
(15)
A control unit that controls driving of a motor that generates power provided to the transmission based on temperature information of the transmission that includes a power transmission mechanism that uses traction force;
A lens group in which at least one lens is driven by using the power transmitted through the power transmission mechanism,
Lens barrel.
(16)
A control unit that controls driving of a motor that generates power provided to the transmission based on temperature information of the transmission that includes a power transmission mechanism that uses traction force;
A lens group in which at least one lens is driven using power transmitted through the power transmission mechanism;
An image sensor for converting an object image formed by the lens group into an electrical signal,
Imaging device.
(17)
Controlling drive of a motor for generating power provided to the transmission based on temperature information of the transmission including a power transmission mechanism using traction force,
A control method executed by a computer.
 100  レンズ鏡筒
 110  超音波モータ
 120  変速装置
 130  エンコーダ
 140  温度センサ
 150  制御部
 160  記憶部
 170  レンズ駆動部
 180  レンズ群
 190  通信部
 200  カメラボディ
 210  シャッタ
 220  フィルタ
 230  撮像素子
 240  信号処理部
 250  制御部
 260  記憶部
 270  通信部
 300  撮像装置
100 lens barrel 110 ultrasonic motor 120 transmission device 130 encoder 140 temperature sensor 150 control unit 160 storage unit 170 lens drive unit 180 lens group 190 communication unit 200 camera body 210 shutter 220 filter 230 image sensor 240 signal processing unit 250 control unit 260 Storage unit 270 Communication unit 300 Imaging device

Claims (16)

  1.  トラクション力を用いる動力伝達機構を備える変速装置の温度情報に基づいて、前記変速装置に提供される動力を発生させるモータの駆動を制御する制御部を備える、
     制御装置。
    A control unit that controls the drive of a motor that generates power provided to the transmission based on temperature information of the transmission that includes a power transmission mechanism that uses traction force;
    Control device.
  2.  前記制御部は、前記温度情報に基づいて前記変速装置の温度が所定値以下であると判定した場合、前記駆動を制御し前記モータを発熱させることで前記変速装置を温める、
     請求項1に記載の制御装置。
    When the control unit determines that the temperature of the transmission is equal to or lower than a predetermined value based on the temperature information, the drive is controlled to heat the motor to heat the transmission.
    The control device according to claim 1.
  3.  前記モータは、超音波モータであり、
     前記制御部は、前記超音波モータに印加される電圧パターンを制御することで前記駆動を制御する、
     請求項2に記載の制御装置。
    The motor is an ultrasonic motor,
    The control unit controls the drive by controlling a voltage pattern applied to the ultrasonic motor,
    The control device according to claim 2.
  4.  前記制御部は、前記電圧パターンとして、前記超音波モータに印加される駆動信号の位相差、駆動周波数、または駆動電圧のうちの少なくともいずれか1つを制御する、
     請求項3に記載の制御装置。
    The control unit controls, as the voltage pattern, at least one of a phase difference of a drive signal applied to the ultrasonic motor, a drive frequency, and a drive voltage.
    The control device according to claim 3.
  5.  前記制御部は、前記駆動を制御し前記モータを発熱させることで前記変速装置を温める場合と、そうでない場合とで、前記電圧パターンを変える、
     請求項4に記載の制御装置。
    The control unit changes the voltage pattern depending on whether the transmission is warmed by controlling the drive to heat the motor, or not.
    The control device according to claim 4.
  6.  前記制御部は、前記電圧パターンを制御することで、前記超音波モータを回転させることなく発熱させる、
     請求項5に記載の制御装置。
    The control unit controls the voltage pattern to generate heat without rotating the ultrasonic motor,
    The control device according to claim 5.
  7.  前記制御部は、前記位相差を略0[deg]または略180[deg]に設定する、
     請求項6に記載の制御装置。
    The control unit sets the phase difference to approximately 0 [deg] or approximately 180 [deg],
    The control device according to claim 6.
  8.  前記超音波モータの回転が検出された場合、前記制御部は、前記電圧パターンのうちの少なくとも前記位相差を制御することで前記回転を停止させる、
     請求項7に記載の制御装置。
    When rotation of the ultrasonic motor is detected, the control unit stops the rotation by controlling at least the phase difference of the voltage pattern,
    The control device according to claim 7.
  9.  前記制御部は、前記電圧パターンを制御することで、前記超音波モータを回転させつつ発熱させる、
     請求項5に記載の制御装置。
    The control unit controls the voltage pattern to generate heat while rotating the ultrasonic motor,
    The control device according to claim 5.
  10.  前記制御部は、前記位相差を0[deg]から90[deg]の間の値、0[deg]から-90[deg]の間の値、90[deg]から180[deg]の間の値、または-90[deg]から-180[deg]の間の値に設定する、
     請求項9に記載の制御装置。
    The control unit sets the phase difference to a value between 0 [deg] and 90 [deg], a value between 0 [deg] and -90 [deg], and a phase difference between 90 [deg] and 180 [deg]. Value or set to a value between -90 [deg] and -180 [deg],
    The control device according to claim 9.
  11.  前記制御部は、前記駆動周波数または前記駆動電圧のうちの少なくともいずれか1つを制御することで、前記位相差の制御による前記超音波モータの回転速度の低下を補償する、
     請求項10に記載の制御装置。
    The controller controls at least one of the drive frequency and the drive voltage to compensate for a decrease in the rotation speed of the ultrasonic motor due to the control of the phase difference,
    The control device according to claim 10.
  12.  前記温度情報と前記電圧パターンとが対応付けられた参照テーブルをさらに備え、
     前記制御部は、前記温度情報および前記参照テーブルに基づいて前記駆動を制御する、
     請求項3に記載の制御装置。
    Further comprising a reference table in which the temperature information and the voltage pattern are associated with each other,
    The control unit controls the drive based on the temperature information and the reference table,
    The control device according to claim 3.
  13.  前記モータおよび前記変速装置の全部または一部はケースによって覆われる、
     請求項1に記載の制御装置。
    All or part of the motor and the transmission are covered by a case,
    The control device according to claim 1.
  14.  前記モータによって発せられた熱が前記変速装置まで伝達されるときの経路上に配置される部材には、前記経路の外周に配置される部材よりも熱伝導率の高いものが用いられる、
     請求項1に記載の制御装置。
    As the member arranged on the path when the heat generated by the motor is transmitted to the transmission, one having higher thermal conductivity than the member arranged on the outer periphery of the path is used.
    The control device according to claim 1.
  15.  トラクション力を用いる動力伝達機構を備える変速装置の温度情報に基づいて、前記変速装置に提供される動力を発生させるモータの駆動を制御する制御部と、
     前記動力伝達機構を介して伝達される動力を用いて、少なくとも1つのレンズが駆動されるレンズ群と、を備える、
     レンズ鏡筒。
    A control unit that controls driving of a motor that generates power provided to the transmission based on temperature information of the transmission that includes a power transmission mechanism that uses traction force;
    A lens group in which at least one lens is driven by using the power transmitted through the power transmission mechanism,
    Lens barrel.
  16.  トラクション力を用いる動力伝達機構を備える変速装置の温度情報に基づいて、前記変速装置に提供される動力を発生させるモータの駆動を制御する制御部と、
     前記動力伝達機構を介して伝達される動力を用いて、少なくとも1つのレンズが駆動されるレンズ群と、
     前記レンズ群により結像された被写体像を電気的な信号に変換する撮像素子と、を備える、
     撮像装置。
    A control unit that controls driving of a motor that generates power provided to the transmission based on temperature information of the transmission that includes a power transmission mechanism that uses traction force;
    A lens group in which at least one lens is driven using power transmitted through the power transmission mechanism;
    An image sensor for converting an object image formed by the lens group into an electrical signal,
    Imaging device.
PCT/JP2019/046714 2019-01-08 2019-11-29 Control device, lens barrel, and imaging device WO2020144969A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020565617A JP7435474B2 (en) 2019-01-08 2019-11-29 Control device, lens barrel, and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-001139 2019-01-08
JP2019001139 2019-01-08

Publications (1)

Publication Number Publication Date
WO2020144969A1 true WO2020144969A1 (en) 2020-07-16

Family

ID=71520791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046714 WO2020144969A1 (en) 2019-01-08 2019-11-29 Control device, lens barrel, and imaging device

Country Status (2)

Country Link
JP (1) JP7435474B2 (en)
WO (1) WO2020144969A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336480A (en) * 2000-05-26 2001-12-07 Nsk Ltd Pump drive mechanism
JP2011220478A (en) * 2010-04-13 2011-11-04 Denso Corp Warming-up control device of vehicle driving system
JP2015012703A (en) * 2013-06-28 2015-01-19 株式会社ニコン Driving force transmission structure and optical device
JP2016031120A (en) * 2014-07-29 2016-03-07 株式会社ジェイテクト Planetary roller traction drive
JP2017160997A (en) * 2016-03-10 2017-09-14 株式会社豊田自動織機 Method for driving transmission
JP2017201192A (en) * 2016-05-06 2017-11-09 株式会社ニコン Deceleration device and optical equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001336480A (en) * 2000-05-26 2001-12-07 Nsk Ltd Pump drive mechanism
JP2011220478A (en) * 2010-04-13 2011-11-04 Denso Corp Warming-up control device of vehicle driving system
JP2015012703A (en) * 2013-06-28 2015-01-19 株式会社ニコン Driving force transmission structure and optical device
JP2016031120A (en) * 2014-07-29 2016-03-07 株式会社ジェイテクト Planetary roller traction drive
JP2017160997A (en) * 2016-03-10 2017-09-14 株式会社豊田自動織機 Method for driving transmission
JP2017201192A (en) * 2016-05-06 2017-11-09 株式会社ニコン Deceleration device and optical equipment

Also Published As

Publication number Publication date
JP7435474B2 (en) 2024-02-21
JPWO2020144969A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
JP6868789B2 (en) Image transfer device, image transfer method, program, moving image generation system
US11640071B2 (en) Lens barrel and imaging apparatus
WO2018016344A1 (en) Solid-state image capturing device and electronic instrument
JP7229988B2 (en) Manufacturing method of distance measuring system, light receiving module, and bandpass filter
WO2018150768A1 (en) Photometry device, photometry method, program, and imaging device
WO2018003305A1 (en) Solid-state imaging element, imaging device, and method for controlling solid-state imaging element
US11119633B2 (en) Information processing device and method
JP7306269B2 (en) Control device, control method and program
US20200382823A1 (en) Display control apparatus, display control method, and video output apparatus
JPWO2020174865A1 (en) Variable focal length lens system and image pickup device
WO2018037680A1 (en) Imaging device, imaging system, and signal processing method
WO2018100992A1 (en) Imaging optical system, camera module, and electronic apparatus
US11482159B2 (en) Display control device, display control method, and display control program
JP7435474B2 (en) Control device, lens barrel, and imaging device
JP7081609B2 (en) Lens device and image pickup device
JP7405132B2 (en) Lens barrel and imaging device
WO2022163378A1 (en) Lens array and stereoscopic display device
US11470295B2 (en) Signal processing device, signal processing method, and imaging device
WO2020202812A1 (en) Drive motor, image shake correction device, and imaging device
JPWO2020174866A1 (en) Variable focal length lens system and image pickup device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909522

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565617

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909522

Country of ref document: EP

Kind code of ref document: A1