WO2020144917A1 - 分散ユニット、中央ユニット、無線アクセスネットワークノード、及びこれらのための方法 - Google Patents

分散ユニット、中央ユニット、無線アクセスネットワークノード、及びこれらのための方法 Download PDF

Info

Publication number
WO2020144917A1
WO2020144917A1 PCT/JP2019/042894 JP2019042894W WO2020144917A1 WO 2020144917 A1 WO2020144917 A1 WO 2020144917A1 JP 2019042894 W JP2019042894 W JP 2019042894W WO 2020144917 A1 WO2020144917 A1 WO 2020144917A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
conditional mobility
mobility
conditional
wireless terminal
Prior art date
Application number
PCT/JP2019/042894
Other languages
English (en)
French (fr)
Inventor
尚 二木
林 貞福
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/420,980 priority Critical patent/US20220104087A1/en
Priority to EP21202622.3A priority patent/EP3968698A1/en
Priority to EP19908833.7A priority patent/EP3911018A4/en
Priority to JP2020565590A priority patent/JP7147875B2/ja
Publication of WO2020144917A1 publication Critical patent/WO2020144917A1/ja
Priority to US17/493,979 priority patent/US20220030498A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • H04W36/362Conditional handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00838Resource reservation for handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/087Reselecting an access point between radio units of access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/26Reselection being triggered by specific parameters by agreed or negotiated communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/328Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by altitude

Definitions

  • the present disclosure relates to wireless communication systems, and particularly to mobility of wireless terminals.
  • Non-Patent Documents 1 and 2 disclose conditional handover (CHO) discussed in 3GPP.
  • the source radio access network (radioaccess network (RAN)) node eg, eNodeB (eNB)
  • RAN radio access network
  • eNodeB eNodeB
  • the wireless terminal maintains the connection with the source RAN node even after receiving the handover command, and starts access to the target RAN node as soon as a condition (configured condition) set by the handover command is satisfied.
  • conditional handover (CHO) is an existing method in that the wireless terminal starts access to the target cell not in response to reception of the handover command but in response to satisfaction of the condition set by the handover command. Different from the handover of.
  • CHO can improve the reliability of delivery of handover commands to the UE by early event triggering (that is, lowering the threshold that triggers measurement reports by wireless terminals). This allows the CHO to reduce the handover failure rate.
  • settings of multiple candidate target cells may be sent to the wireless terminal.
  • Candidate target cells may be referred to as potential target cells.
  • the wireless terminal receives a handover command including a plurality of candidate target cell settings and a CHO execution threshold from the source RAN node (e.g., eNB). Then, the wireless terminal measures (or starts) the set plurality of candidate target cells, and when the measurement in any of the candidate target cells satisfies the CHO execution threshold, access to the candidate cells (eg randomly). Access).
  • C-RAN cloud RAN
  • a base station e.g., eNB, or NR gNodeB (gNB)
  • CU Central Unit
  • DU Distributed Unit
  • C-RAN is sometimes called Centralized RAN or CU-DU split architecture.
  • conditional mobility eg, conditional handover
  • CU-DU split architecture how does the CU know whether the conditional mobility execution condition is satisfied (or conditional mobility starts)? Is not clear.
  • One of the objects to be achieved by the embodiments disclosed herein is to enable the Central Unit (CU) to know whether the execution condition of conditional mobility is satisfied (or the start of conditional mobility). It is to provide an apparatus, a method, and a program that contribute to the. It should be noted that this goal is only one of the goals that the embodiments disclosed herein seek to achieve. Other objects or problems and novel features will become apparent from the description of the present specification or the accompanying drawings.
  • the distributed unit of the base station comprises at least one memory and at least one processor coupled to said at least one memory.
  • the at least one processor sends a first message to the base station in response to detecting the initiation of conditional mobility of a wireless terminal from a first cell to a second cell provided by the distribution unit. Configured to send to the central unit of.
  • a method for a distributed unit of a base station is responsive to detecting an initiation of conditional mobility of a wireless terminal from a first cell to a second cell provided by said distributed unit. And sending a first message to the central unit of the base station.
  • the central unit of the base station comprises at least one memory and at least one processor coupled to said at least one memory.
  • the at least one processor controls conditional mobility of a wireless terminal from a first cell to a second cell provided by a distributed unit of the base station, the distributed unit detecting an initiation of the conditional mobility. It is configured to receive the first message to send in response to doing so.
  • a method for a central unit of a base station controls conditional mobility of a wireless terminal from a first cell to a second cell provided by a distributed unit of the base station, and Receiving a first message that the distribution unit sends in response to detecting the initiation of the conditional mobility.
  • the program includes a group of instructions (software code) for causing the computer to perform the method according to the second or fourth aspect when read by the computer.
  • a plurality of embodiments described below can be implemented independently or can be implemented in an appropriate combination.
  • the plurality of embodiments have novel features different from each other. Therefore, these plurality of embodiments contribute to solving different purposes or problems, and contribute to achieving different effects.
  • LTE Long Term Evolution
  • 5G system fifth generation mobile communication system
  • LTE Long Term Evolution
  • 5G system fifth generation mobile communication system
  • LTE Long Term Evolution
  • 5G System also includes a network configuration in which LTE eNodeB (eNB) connects to the 5G core network (5GC).
  • eNB LTE eNodeB
  • 5GC 5G core network
  • eNB LTE eNodeB
  • ng-eNB is also called eNB/5GC because it is an eNB connected to 5GC.
  • FIG. 1 shows a configuration example of a wireless communication network according to this embodiment.
  • the wireless communication network according to the present embodiment includes a Central Unit (CU) 1 and one or more Distributed Units (DUs) 2.
  • the CU 1 and one or more DUs 2 are arranged in a radio access network (RAN).
  • RAN radio access network
  • CU1 and one or more DUs2 operate as a base station (eg, LTE eNB, or gNB).
  • the interface 101 connects the CU 1 and each DU 2.
  • the UE 3 is connected to at least one DU 2 via at least one air interface 102.
  • CU1 and one or more DUs2 may be Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (EUTRAN) node or NG-RAN (Next generation Radio Access Network) node.
  • the EUTRAN node may be an eNB or an en-gNB.
  • the NG-RAN node may be a gNB or ng-eNB.
  • CU1 may be a logical node that hosts gNB Radio Resource Control (RRC), Service Data Adaptation Protocol (SDAP), and Packet Data Convergence Protocol (PDCP) protocols (or gNB RRC and PDCP protocols).
  • the DU 2 may be a logical node that hosts gNB Radio Link Control (RLC), Medium Access Control (MAC), and Physical (PHY) layers. If CU1 is a gNB-CU and DUs2 is a gNB-DUs, the interface 101 may be an F1 interface.
  • the CU 1 has a Control Plane (CP) Unit (eg, gNB-CU-CP) 11 and one or more User Plane (UP) Units (eg, gNB-CU-UP) 12. May be included.
  • the CU-CP 11 is connected to the CU-UP 12 via the control plane interface 201 (e.g., E1 interface).
  • the CU-CP 11 is connected to each DU 2 via the control plane interface 202 (e.g., F1-C interface).
  • the CU-UP 12 is connected to each DU 2 via the user plane interface 203 (e.g., F1-U interface).
  • FIG. 3 shows an example of processing performed by the DU 2 of this embodiment.
  • DU2 detects the initiation of conditional mobility of UE3 from the cell (first cell) provided by the DU2 to another cell (second cell).
  • the conditional mobility may be a conditional handover.
  • the conditional handover may be an intra-CU intra-DU handover, an intra-CU inter-DU handover, or an inter-CU handover. Therefore, in the case of intra-CU-intra-DU handover, the second cell (target cell) may be provided by the same DU2 as the first cell (source cell).
  • the second cell (target cell) is provided by another DU2 which is different from DU2 which provides the first cell (source cell) but which is connected to this same CU1. May be.
  • the second cell (target cell) is provided by another RAN node (eg, another DU connected to CU1 different from DU2 which provides the first cell (source cell)) May be done.
  • conditional handover the UE 3 does not respond to the reception of the handover command (or instruction), but responds to the satisfaction of the set condition (eg random access).
  • the CHO execution condition includes, for example, a threshold value and a corresponding time-to-trigger (TTT).
  • TTT time-to-trigger
  • the CHO execution condition may be reception of an explicit execution instruction (e.g., predetermined signaling) from the network.
  • the reception of the setting e.g., wireless parameter
  • the CHO execution condition may implicitly indicate to the UE3 that the CHO execution condition is the reception of the execution instruction.
  • the UE 3 receives the setting (eg, radio parameter), even if the CHO execution condition associated with the UE 3 determines (or understands) that the execution instruction (eg, predetermined signaling) is received. Good.
  • the UE 3 does not respond to the reception of the mobility command (eg, RRCRecofiguration for mobility), but rather the conditions (eg, threshold and TTT) set by the mobility command.
  • the mobility command eg, RRCRecofiguration for mobility
  • the conditions eg, threshold and TTT
  • access to another cell second cell, target cell
  • conditional handover CHO
  • the reception of an explicit execution instruction eg, predetermined signaling
  • PSCell change conditional mobility
  • It can also be a condition.
  • the above description for CHO can also be applied to other conditional mobility.
  • conditional mobility may be, for example, the change of the primary cell of the master cell group (Master Cell Group (MCG)) in Dual Connectivity (DC) (Primary Cell (PCell) change) or the master node in DC. It may be an inter-master node (MN) handover.
  • the conditional mobility may be a secondary node change (Secondary Node (SN) change) in the DC, or a change of the primary cell of the secondary cell group (Secondary Cell Group (SCG)) in the DC ( That is, the primary SCG cell change (Primary SCG Cell (PSCell) change) may be used.
  • PSCell is a Special Cell (SpCell) of SCG.
  • conditional mobility includes various inter-MN mobility scenarios, intra-MN mobility senarios, inter-SN mobility scenarios, and intra-SN mobility scenarios.
  • MR-DC Multi-Radio Dual Connectivity
  • MR-DC is Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (E-UTRA)-NR Dual Connectivit (EN-DC), NR-E-UTRA DC (NE-DC), NG-RAN EN-DC ( NGEN-DC) and NR-NRDC (NRDC) are included.
  • UMTS Evolved Universal Mobile Telecommunications System
  • E-UTRA Evolved Universal Mobile Telecommunications System
  • E-UTRA Evolved Universal Mobile Telecommunications System
  • EN-DC NR-E-UTRA DC
  • NE-DC NR-RAN EN-DC
  • NRDC NR-NRDC
  • Conditional PCell change or conditional inter-MN handover may be accompanied by MN initiated SN change.
  • the conditional PSCell change may be Inter-gNB-DU Mobility using MCG SRB.
  • the RRC signaling between the UE and CU that is, the secondary node (Secondary Node (SN)) for PS Cell change between DUs is the Master Cell provided by the master node (Master Node (MN)). It may be performed via a Signaling Radio Bearer (SRB) (eg, SRB1) of the Group (MCG).
  • SRB Signaling Radio Bearer
  • the conditional PSCell change may be Inter-gNB-DU Mobility using SCG SRB.
  • the RRC signaling between the UE and CU that is, the secondary node (Secondary Node (SN)) for PS Cell change between DUs is through the SRB (eg, SRB3) of the Secondary Cell Group (SCG). May be performed.
  • the conditional PSCell change may be MN initiated SN change or SN initiated SN change.
  • the RRC signaling between the UE and the target SN (eg, target CU) for PSCell change between SNs (eg, CUs of different SNs) is via SRB (eg, SRB1) of MCG. May be done.
  • Conditional Intra-CUPSCellChange can also be called conditional SNModification.
  • Intra-CUPS Cell Change is an example of setting change of SCG in the same SN. To change the SCG settings within the same SN, use the SN initiated SN Modification with with (or without) MN involve procedure.
  • the PSCell Change procedure is an example of the procedure that involves the Reconfiguration with sync procedure. From this, the conditional PSCellChange can also be called conditional Reconfiguration withsync (for PSCellchange).
  • DU2 may detect the initiation (or execution) of conditional mobility by receiving an indication of conditional mobility (e.g., measurement report) from UE3.
  • the DU 2 may autonomously determine that the condition for starting (or executing) the conditional mobility is satisfied, and thereby autonomously detect the start (or executing) of the conditional mobility.
  • the DU 2 sends a predetermined message to the CU 1 with which the DU 2 is associated in response to the detection of the start of conditional mobility. Therefore, the predetermined message is associated with the initiation (or execution) of the conditional mobility by the UE3.
  • the predetermined message may, for example but not limited to, specify the start of conditional mobility.
  • FIG. 4 shows an example of signaling according to the present embodiment.
  • the DU 2 transmits a predetermined message (e.g., F1AP message) associated with the start of conditional mobility to the CU 1.
  • a predetermined message e.g., F1AP message
  • the DU 2 transmits a predetermined message to the CU 1 with which the DU 2 is associated in response to the detection of the start of the conditional mobility. This allows the CU 1 to know the start of conditional mobility.
  • CU1 passes through source DU2 until just before the start (or execution) of conditional mobility. It may be preferable to be able to continue data transmission (downlink or uplink, or both) for UE3. According to the operation described in this embodiment, the CU 1 can know the start (or execution) of the conditional mobility by receiving the predetermined message from the source DU 2. Thus, for example, CU1 may operate to continue data transmission (downlink or uplink, or both) for UE3 via source DU2 until receiving a predetermined message.
  • CU1 may operate to continue data transmission (downlink or uplink, or both) for UE3 via source DU2 until receiving a predetermined message.
  • the above-mentioned predetermined message may be common to existing messages or data sent from DU2 to CU1.
  • the predetermined message may be a message (e.g., F1AP message) transmitted in a signaling procedure for changing the UE context for UE3.
  • the predetermined message may be a UE CONTEXT MODIFICATION RESPONSE message transmitted in the UE Context Modification procedure.
  • the predetermined message may be a message (or frame, or Protocol Data Unit (PDU)) transmitted to CU1 to indicate downlink data that has not been transmitted to UE3. More specifically, the predetermined message may be a DOWNLINK DATA DELIVERY STATUS (DDDS) frame.
  • PDU Protocol Data Unit
  • DDDS DOWNLINK DATA DELIVERY STATUS
  • the predetermined message described above may be a newly defined message or data (e.g., F1AP message) to indicate the start of conditional mobility.
  • the source DU2 sends a UECONTEXT MODIFICATIONRESPONSE message to CU1 and a DDDS frame to CU1 and then sends a newly defined message or data to indicate the start of conditional mobility to CU1. May be.
  • the source DU2 may send a DDDS frame to CU1 again when sending a new message or data to CU1.
  • This embodiment provides improved DU operation for conditional mobility.
  • the configuration example of the wireless communication network according to this embodiment may be the same as the examples shown in FIGS. 1 and 2.
  • FIG. 5 shows an example of processing performed by the DU 2 of this embodiment.
  • DU2 determines whether the planned mobility of UE3 is conditional mobility.
  • DU2 may determine whether the planned mobility of UE3 is conditional mobility based on whether the control message received from CU1 includes an information element associated with conditional mobility. Instead, the DU 2 determines whether or not the information element included in the control message received from the CU 1 indicates conditional mobility (or that conditional mobility is planned for UE 3). It may be determined whether the planned mobility is conditional mobility.
  • the control message (or the information element included in the control message) may explicitly or implicitly indicate that the planned mobility of UE3 is conditional mobility.
  • the information element may be, for example, an information element indicating a condition for starting (or executing) conditional mobility.
  • the information element may be some indication of conditional mobility (eg, conditional mobility information element (IE) or conditional mobility flag (bit)).
  • IE conditional mobility information element
  • bit conditional mobility flag
  • control message may be a message (e.g., F1AP message) sent in the signaling procedure for changing the UE context for UE3.
  • predetermined message may be a UE CONTEXT MODIFICATION REQUEST message transmitted in the UE Context Modification procedure.
  • step 502 when the planned mobility is the conditional mobility, the DU 2 performs the predetermined mobility as compared to the case where the planned mobility is not the conditional mobility (normal mobility (eg, handover)). Delay the sending of the message to CU1.
  • normal mobility e.g, handover
  • the predetermined message may be a message (e.g., F1AP message) sent in a signaling procedure for changing the UE context for UE3. More specifically, the predetermined message may be a UE CONTEXT MODIFICATION RESPONSE message transmitted in the UE Context Modification procedure.
  • the DU 2 responds to the UE CONTEXT MODIFICATION REQUEST message received from the CU 1 and performs the requested modifications (modifications) and updates (UE) CONTEXT MODIFICATION RESPONSE Report in message.
  • the DU 2 may receive the UE CONTEXT MODIFICATION REQUEST message from the CU 1 and suspend the requested modifications. Then, the DU 2 may execute the requested modification and report the update in the UE CONTEXT MODIFICATION RESPONSE message in response to the establishment of the conditional mobility start condition.
  • the predetermined message is a message (or frame, or Protocol Data Unit (PDU)) sent to CU1 to indicate downlink data that has not been sent to UE3. May be. More specifically, the predetermined message may be a DOWNLINK DATA DELIVERY STATUS (DDDS) frame.
  • the DDDS frame may be a GTP-U (or F1-U) PDU.
  • the DU2 responds to the reception of the UE CONTEXT MODIFICATION REQUEST message (including the Transmission Stop Indicator information element indicating the stop of data transmission for UE3) from the CU1, and the DDDS Send the frame to CU1.
  • the DU 2 may continue data transmission for the UE 3 even after receiving the UE CONTEXT MODIFICATION REQUEST message from the CU 1. Then, the DU 2 may stop the data transmission for the UE 3 and transmit the DDDS frame to the CU 1 in response to the establishment of the conditional mobility start condition.
  • DDDD frame may include new information (e.g., bit) that indicates the start (or execution) of conditional mobility.
  • DU2 is newly defined to indicate the initiation (or execution) of conditional mobility from DU2 to CU1 while reusing the DDDS frame used in normal (ie non-conditional) UE mobility.
  • the message may be sent.
  • the message may be referred to as a CONDITIONAL MOBILITY (or HANDOVER, PS Cell CHANGE, or RECONFIGURATION WITH SYNC) TRIGGERED (or INITIATED, DETECTED, INDICATION, or INSTRUCTION) message.
  • the DU 2 may send the DDDS frame after the message or before the message.
  • the DU 2 delays the transmission of the predetermined message to the CU 1 when the planned mobility of the UE 3 is the conditional mobility, as compared with the case where the planned mobility is not the conditional mobility.
  • the DU 2 may suspend (or postpone) the transmission of the predetermined message to the CU 1 until the conditional mobility start condition is satisfied (or until it is detected that the condition is satisfied).
  • the predetermined message can also serve as a purpose of reporting the start (or execution) of the conditional mobility to the CU1.
  • the CU 1 can know that the UE 3 has started (or executed) the conditional mobility by receiving the predetermined message.
  • This embodiment provides a specific example of signaling for conditional mobility.
  • the configuration example of the wireless communication network according to this embodiment may be the same as the examples shown in FIGS. 1 and 2.
  • FIG. 6 shows an example of an intra-CU inter-DU conditional handover (CHO) procedure.
  • the procedure of FIG. 6 may be used for conditional PS Cell change using SCG SRB (e.g., SRB3).
  • the procedure of FIG. 6 may be used for Inter-gNB-DU Mobility using SCG SRB.
  • CU1 Prior to the procedure of Fig. 6, CU1 generates the RRC message (eg, RRCReconfiguration message) that includes the measurement settings (eg, MeasConfig) that includes the report settings (eg, ReportConfig) for CHO, and uses this as the source. It may be transmitted to UE3 via DU2A.
  • the measurement setup for CHO enables early event triggering (ie lowering the threshold that triggers measurement reporting by UE3) for CHO determination.
  • the DU 2A receives the RRC message including the measurement setting, but does not have to recognize that the RRC message includes the measurement setting. In other words, the DU 2A may transparently transfer the measurement settings received from the CU 1 to the UE 3. The same applies to the following description including other embodiments.
  • the DU 2A may also handle the RRC message transmitted from the CU 1 to the UE 3 including information other than the measurement settings in the same manner.
  • the UE3 sends a measurement report (Measurement Report) to the source DU2A.
  • the source DU 2A sends an UPLINK RRC TRANSFER message to the CU 1 to carry the received measurement report.
  • CU1 determines CHO of UE3 from the cell of source DU2A to the cell of target DU2B based on the said measurement report.
  • the DU 2A receives the RRC message including the measurement report, but does not have to recognize that the RRC message includes the measurement report. In other words, DU 2A may transparently transfer the measurement report received from UE 3 to CU 1.
  • the DU 2A may handle the RRC message transmitted from the UE 3 to the CU 1 including information other than the measurement report in the same manner.
  • CU1 sends a UE CONTEXT SETUP REQUEST message to the target DU2B to create a UE context and set up one or more bearers.
  • the UE CONTEXT SETUP REQUEST message may request the target DU2B to set the radio resource of the target cell for CHO (e.g., CellGroupConfig).
  • the "Handover Preparation Information" information element included in the "CUtoDURU RRC Information" information element in the UECONTEXT SETUP REQUEST message may be used to indicate that it is a CHO request. Instead of this, a new information element may be defined in the UE CONTEXT SETUP REQUEST message to indicate that it is a CHO request.
  • the target DU2B responds to the CU1 with a UE CONTEXT SETUP RESPONSE message.
  • the target DU 2B may determine whether it can accept the CHO in response to receiving the CHO request.
  • the target DU 2B may include an information element indicating whether or not CHO can be accepted in the UE CONTEXT SETUP RESPONSE message (step 604).
  • the CU1 sends a UE CONTEXT MODIFICATION REQUEST message including the RRC-Container including the RRC message (e.g., RRC Reconfiguration message) generated by the CU1 to the source DU 2A.
  • the RRC message includes a CHO start (or execution) condition (e.g., threshold and TTT).
  • the RRC message may include a condition (e.g., offset) for the UE 3 to leave the CHO (exit), and a value of a validity timer.
  • the value of the validity timer may indicate how long the resources of the candidate target cell are valid.
  • the value of the valid timer may indicate a period (time) during which access to the candidate target cell is permitted, or a period (time) during which the setting for CHO is valid.
  • the UE CONTEXT MODIFICATION REQUEST message (step 605) explicitly or implicitly indicates that this includes an instruction of CHO to UE3 (that is, RRC setting information necessary for handover by CHO), or that this is intended for CHO.
  • the information element (IE) shown in may be included.
  • the DU 2A may determine whether the received UE CONTEXT MODIFICATION REQUEST message includes the IE. For example, when the DU 2A determines that it is a CHO, the subsequent operation may be determined.
  • the CU1 determines the CHO start condition, and the CU1 is included in the UE CONTEXT SETUP REQUEST message (step 603) and the CUToDUDURRCInformation information element (eg, Handover Preparation Information in this) or It may be included in a new information element. Then, the target DU 2B may generate a radio resource setting (e.g., CellGroupConfig) of the target cell including the CHO start condition, and include this in the UE CONTEXT SETUP RESPONSE message (step 604).
  • a radio resource setting e.g., CellGroupConfig
  • the CU 1 may generate an RRCReconfiguration message including the received radio resource configuration (e.g., CellGroupConfig) and include this in the RRC-Container in the UE CONTEXT MODIFICATION REQUEST message (step 605).
  • the received radio resource configuration e.g., CellGroupConfig
  • the CU 1 may determine the CHO start condition and include this in the new information element in the UE CONTEXT MODIFICATION REQUEST message (step 605).
  • the target DU2B may determine the CHO start condition.
  • the target DU 2B determines the CHO start condition in response to the CHO request (step 603), and the determined CHO start condition is the CellGroupConfig information element or the new information element in the UE CONTEXT SETUP RESPONSE message (step 604). May be included in.
  • the CU 1 may generate an RRCReconfiguration message including a CellGroupConfig information element including the CHO start condition or a new information requirement, and may include this in the UE CONTEXT MODIFICATION REQUEST message (step 605).
  • the CU 1 may include an information element (IE) or parameter that explicitly indicates the CHO instruction in the RRC Reconfiguration message.
  • IE information element
  • the UE3 exit condition (exit) and the validity timer value may be handled in the same manner as the CHO start condition.
  • the CHO start condition, the CHO leave condition, and the valid timer value may be handled by any of the above methods.
  • the source DU 2A forwards the received RRC Reconfiguration message to the UE 3.
  • the UE3 When the UE3 receives the RRCReconfiguration message (step 606), whether or not it includes an information element (IE) or a parameter indicating that this is a CHO instruction, or whether or not it includes a CHO start condition, Determine if it is a CHO instruction.
  • the UE3 determines that the instruction is CHO, the UE3 maintains the connection with the source DU 2A even after receiving the RRCReconfiguration message.
  • the UE3 starts access (i.e., random access procedure) to the target DU2B in response to the execution condition of the CHO set by the RRC Reconfiguration message being satisfied (step 607) (step 610).
  • UE3 may send an indication (or report) of CHO start to source DU2A (step 608).
  • the indication of CHO start by UE3 may be the Uplink Control Information (UCI) transmitted in Physical Uplink Control Channel (PUCCH).
  • the CHO start indication may be a MAC Control Element (CE).
  • the source DU 2A may predetermine the setting of the radio resource used to display the CHO start, and notify the UE 3 of this via the CU 1.
  • the source DU 2A may include the setting of the radio resource used to display the CHO start in the information (e.g., CellGroupConfig) included in the UE CONTEXT SETUP RESPONSE message, and transmit this to the CU 1.
  • the CU 1 may generate an RRCReconfiguration message including the setting of the radio resource used to display the CHO start, and transmit this to the UE 3.
  • the CHO initiation indication may include information that explicitly or implicitly indicates the selected candidate target cell (ie, the candidate target cell for which the handover was triggered).
  • the source DU 2A responds to the CU 1 with a UE CONTEXT MODIFICATION RESPONSE message.
  • the source DU 2A may send the UE CONTEXT MODIFICATION RESPONSE message (step 609) in response to receiving the CHO start indication (step 608) from the UE 3.
  • the UE CONTEXT MODIFICATION RESPONSE message can also serve the purpose of reporting the start (or execution) of CHO to CU1.
  • the source DU 2A may send the UE CONTEXT MODIFICATION RESPONSE message (step 609) regardless of receiving the CHO start indication (step 608).
  • the source DU 2A may send the UE CONTEXT MODIFICATION RESPONSE message (step 609) before receiving the CHO start indication (step 608).
  • UE3 may respond to CU1 via target DU2B with RRCReconfigurationComplete message.
  • the target DU 2B may send an UPLINK RRC TRANSFER message to the CU 1 to carry the RRCReconfigurationComplete message received from the UE 3.
  • the CU 1 may send the UE CONTEXT RELEASE COMMAND message to the source DU 2A.
  • the release Cause value attached to (or included in) the UECONTEXT RELEASECOMMAND message is, for example, "HandoverConditionMet", "ActionDesirableforRadioReasons", “HandoverComplete", or "NormalRelease". May be.
  • the source DU2A may release the UE context for UE3 and respond to the CU1 with a UECONTEXTRELEASE COMPLETE message.
  • FIG. 7 shows another example of the intra-CU inter-DU conditional handover (CHO) procedure.
  • the procedure of FIG. 7 may be used for the conditional PSCell change using SRB (e.g., SRB3) of SCG.
  • SRB e.g., SRB3
  • the processing of steps 701 to 706 is similar to that of steps 601 to 606 of FIG.
  • the source DU 2A responds to the CU 1 with a UE CONTEXT MODIFICATION RESPONSE message.
  • the UE3 determines that the CHO execution condition set by the RRCReconfiguration message is satisfied, and starts access to the target DU2B (i.e., random access procedure) (step 711).
  • UE3 may send an indication (or report) of CHO start to source DU2A (step 709).
  • the indication of CHO start by UE3 may be uplink control information (UCI) transmitted on PUCCH.
  • the CHO start indication may be MACCE.
  • the source DU 2A sends the DDDS frame to the CU 1.
  • source DU 2A may send a DDDS frame (step 710) in response to receiving a CHO start indication (step 709) from UE3.
  • the DDDS frame can also serve the purpose of reporting the start (or execution) of CHO to CU1.
  • the source DU 2A may send a DDDS frame used in a normal (that is, unconditional) handover, while also sending a new message to the CU 1 to indicate CHO start (or execution). Good (not shown).
  • the message may be referred to as a CONDITIONAL HANDOVER TRIGGERED (or INITIATED, DETECTED, INDICATION, orINSTRUCTION) message.
  • the source DU 2A may send a DDDS frame (step 710) independent of receiving the CHO start indication (step 709).
  • the source DU 2A may send a DDDS frame (step 710) prior to receiving the CHO start indication (step 709).
  • UE3 may respond to CU1 via target DU2B with RRCReconfigurationComplete message.
  • the target DU 2B may send an UPLINK RRC TRANSFER message to the CU 1 to carry the RRCReconfigurationComplete message received from the UE 3.
  • the CU 1 may send the UE CONTEXT RELEASE COMMAND message to the source DU 2A.
  • the release Cause value attached to (or included in) the UECONTEXT RELEASECOMMAND message is, for example, "HandoverConditionMet", "ActionDesirableforRadioReasons", “HandoverComplete", or "NormalRelease". May be.
  • the source DU2A may release the UE context for UE3 and respond to the CU1 with a UECONTEXTRELEASE COMPLETE message.
  • This embodiment provides a specific example of signaling for conditional mobility.
  • the configuration example of the wireless communication network according to this embodiment may be the same as the examples shown in FIGS. 1 and 2.
  • FIG. 8 shows an example of an intra-CU inter-DU conditional handover (CHO) procedure.
  • the procedure of FIG. 8 may be used for conditional PSCell change using SRB (e.g., SRB3) of SCG.
  • SRB e.g., SRB3
  • the processing of steps 801 to 806 is similar to that of steps 601 to 606 of FIG.
  • the source DU 2A autonomously determines whether the CHO execution condition is satisfied.
  • the source DU 2A sends a CHO start command to the UE 3 in response to the satisfaction of the CHO execution condition.
  • the CHO start command may be downlink control information (Downlink Control Information (DCI)) transmitted in the Physical Downlink Control Channel (PDCCH).
  • DCI Downlink Control Information
  • the CHO start command may be a MAC Control Element (CE).
  • CE MAC Control Element
  • the source DU 2A may predetermine the setting of the radio resource used for the CHO start command, and notify the UE 3 of this via the CU 1.
  • the source DU 2A may include the setting of the radio resource used for the CHO start command in the information (e.g., CellGroupConfig) included in the UE CONTEXT SETUP RESPONSE message and send this to the CU 1. Then, the CU1 may generate an RRCReconfiguration message including the setting of the radio resource used for the CHO start command, and transmit this to the UE3. If there are multiple candidate target cells, the CHO start command may include information that explicitly or implicitly indicates the selected candidate target cell (ie, the candidate target cell for which the handover was triggered).
  • the information e.g., CellGroupConfig
  • the CU1 may generate an RRCReconfiguration message including the setting of the radio resource used for the CHO start command, and transmit this to the UE3.
  • the CHO start command may include information that explicitly or implicitly indicates the selected candidate target cell (ie, the candidate target cell for which the handover was triggered).
  • the source DU 2A responds to the CU 1 with a UE CONTEXT MODIFICATION RESPONSE message.
  • the source DU 2A may send the UE CONTEXT MODIFICATION RESPONSE message (step 809) in response to the establishment of the CHO execution condition.
  • the UE CONTEXT MODIFICATION RESPONSE message can also serve the purpose of reporting the start (or execution) of CHO to CU1.
  • the source DU 2A may send the UE CONTEXT MODIFICATION RESPONSE message (step 809) regardless of whether the CHO execution condition is satisfied.
  • the source DU 2A may send the UE CONTEXT MODIFICATION RESPONSE message (step 809) before the CHO execution condition is satisfied.
  • step 810 the UE3 starts access to the target DU2B (i.e., random access procedure) in response to the reception of the CHO start command.
  • target DU2B i.e., random access procedure
  • UE3 may respond to CU1 via target DU2B with RRCReconfigurationComplete message.
  • the target DU 2B may send an UPLINK RRC TRANSFER message to the CU 1 to carry the RRCReconfigurationComplete message received from the UE 3.
  • the CU 1 may send the UE CONTEXT RELEASE COMMAND message to the source DU 2A.
  • the source DU2A may release the UE context for UE3 and respond to the CU1 with a UECONTEXTRELEASE COMPLETE message.
  • FIG. 9 shows another example of the intra-CU inter-DU conditional handover (CHO) procedure.
  • the procedure of FIG. 9 may be used for conditional PSCell change using SRB (e.g., SRB3) of SCG.
  • SRB e.g., SRB3
  • the processing of steps 901 to 906 is similar to that of steps 801 to 806 of FIG.
  • the source DU 2A responds to the CU 1 with a UE CONTEXT MODIFICATION RESPONSE message.
  • the source DU 2A autonomously determines whether the CHO execution condition is satisfied.
  • the source DU 2A sends a CHO start command to the UE 3 in response to the satisfaction of the CHO execution condition.
  • the CHO start command may be DCI transmitted on PDCCH.
  • the CHO start command may be MACCE.
  • the source DU 2A sends the DDDS frame to the CU 1.
  • the source DU 2A may send a DDDS frame (step 910) in response to the fulfillment of the CHO execution condition.
  • the DDDS frame can also serve the purpose of reporting the start (or execution) of CHO to CU1.
  • the source DU 2A may send a new message to indicate the CHO start (or execution) to the CU 1 while sending the DDDS frame used in the normal (that is, unconditional) handover. (Not shown).
  • the message may be referred to as a CONDITIONAL HANDOVER TRIGGERED (or INITIATED, DETECTED, INDICATION, orINSTRUCTION) message.
  • the source DU 2A may transmit the DDDS frame (step 910) regardless of whether the CHO execution condition is satisfied.
  • the source DU 2A may transmit the DDDS frame (step 910) before the CHO execution condition is satisfied.
  • UE3 may respond to CU1 via target DU2B by RRCReconfigurationComplete message.
  • the target DU 2B may send an UPLINK RRC TRANSFER message to the CU 1 to carry the RRCReconfigurationComplete message received from the UE 3.
  • the CU 1 may send the UE CONTEXT RELEASE COMMAND message to the source DU 2A.
  • the release Cause value attached to (or included in) the UECONTEXT RELEASECOMMAND message is, for example, "HandoverConditionMet", "ActionDesirableforRadioReasons", “HandoverComplete", or "Normal Release" May be.
  • the source DU2A may release the UE context for UE3 and respond to the CU1 with a UECONTEXTRELEASE COMPLETE message.
  • This embodiment provides a specific example of signaling for conditional mobility.
  • the configuration example of the wireless communication network according to this embodiment may be the same as the examples shown in FIGS. 1 and 2.
  • FIG. 10 shows an example of a PSCell Change procedure with intra-CU inter-DU condition.
  • the conditional PSCell Change can also be called conditional Reconfiguration with sync (for PSCell change).
  • FIG. 10 shows a case where MN4 (e.g., Master eNB (MeNB)) is involved in PS Cell Change in MR-DC.
  • MN4 Master eNB (MeNB)
  • the PSCell for UE3 is changed from the cell of the source DU2A to the cell of the target DU2B.
  • RRC signaling transmitted between SN (i.e., CU1) and UE3 for PSCell Change uses SRB in MCG provided by MN4.
  • the CU1 Prior to the procedure of FIG. 10, the CU1 generates an RRC message (eg, RRCReconfiguration message) including a measurement setting (eg, MeasConfig) including a report setting (eg, ReportConfig) for conditional PSCellChange, This may be transmitted to the UE3 via the MCGSRB provided by the MN4.
  • the measurement settings for conditional PSCell Change enable fast event triggering (that is, lowering the threshold for triggering measurement report by UE3) for conditional PSCell Change determination.
  • UE3 sends a measurement report (Measurement Report) to CU1 via MN4.
  • the MN 4 sends an RRC TRANSFER message to the CU 1 to carry the received measurement report.
  • the CU1 determines the conditional mobility (i.e., conditional PSCell change) of the UE3 from the cell of the source DU2A to the cell of the target DU2B based on the measurement report.
  • CU1 sends a UE CONTEXT SETUP REQUEST message to the target DU2B to create a UE context and set up one or more bearers.
  • the UE CONTEXT SETUP REQUEST message may request the target DU2B to set the radio resource of PSCell (e.g., CellGroupConfig).
  • PSCell e.g., CellGroupConfig
  • the “CU toDURCCInformation” information element in the UECONTEXT SETUP REQUEST message contains the “ The "CG-ConfigInfo” information element may be used.
  • a new information element may be defined (or introduced) in the UE CONTEXT SETUP REQUEST message in order to explicitly or implicitly indicate that it is a conditional mobility request.
  • the target DU2B responds to the CU1 with a UE CONTEXT SETUP RESPONSE message.
  • the target DU 2B may determine whether or not the conditional mobility (i.e., conditional PSCell change) can be accepted in response to the reception of the conditional mobility request.
  • the target DU 2B may include an information element indicating whether conditional mobility can be accepted in the UE CONTEXT SETUP RESPONSE message (step 1004).
  • CU1 sends to MN4 an SN MODIFICATION REQUIRED message including the RRC message (e.g., NRRRC Reconfiguration message) of SN RAT (e.g., NR) generated by CU1.
  • the RRC message includes a start (or execution) condition of conditional mobility (i.e., conditional PSCell change or conditional Reconfiguration with sync for PSCell change).
  • condition for starting (or executing) the conditional ability may be, for example, a threshold value and TTT.
  • the start (or execution) condition of the conditional ability may be reception of an explicit execution instruction (e.g., predetermined signaling) from the network.
  • the reception by the UE3 of the setting (eg, wireless parameter) used for receiving the execution instruction is implicit to the UE3 that the start (or execution) condition of conditional mobility is the reception of the execution instruction. May be shown in.
  • the UE 3 receives the setting (eg, wireless parameter)
  • the RRC message may include a condition (e.g., offset) for UE3 to leave the conditional PSCell change (e.g., offset), and a value of a validity timer.
  • the value of the valid timer may indicate how long the resources of the candidate target cell (that is, the cell that is a candidate for the changed PSCell) are valid.
  • the value of the valid timer may indicate a period (time) during which access to the candidate target cell is permitted, or a period (time) during which the setting for conditional mobility is valid.
  • the CU 1 may determine the start condition for conditional mobility and include this in the CG-ConfigInfo information element or new information element included in the UE CONTEXT SETUP REQUEST message (step 1003). Then, the target DU 2B may generate a radio resource setting (e.g., CellGroupConfig) including the conditional mobility start condition, and include this in the UE CONTEXT SETUP RESPONSE message (step 1004). Further, the CU 1 may generate an SN RAT RRC message including the received radio resource setting (e.g., CellGroupConfig) and include this in the SN MODIFICATION REQUIRED message (step 1005).
  • a radio resource setting e.g., CellGroupConfig
  • the CU 1 may generate an SN RAT RRC message including the received radio resource setting (e.g., CellGroupConfig) and include this in the SN MODIFICATION REQUIRED message (step 1005).
  • the CU 1 may determine the conditional mobility start condition and include this in the new information element in the SNMODIFICATION REQUIRED message (step 1005).
  • the target DU2B may determine the condition for starting conditional mobility.
  • the target DU 2B determines the start condition of the conditional mobility in response to the conditional mobility request (step 1003), and the determined start condition is the CellGroupConfig information element in the UE CONTEXT SETUP RESPONSE message (step 1004) or the new start condition. It may be included in the information element.
  • the CU 1 may generate an SN_RAT RRC message including a CellGroupConfig information element including a conditional mobility start condition or a new information requirement, and may include this in the SN_MODIFICATION_REQUIRED message (step 1005).
  • MN4 performs MN initiated SN Modification procedure and sends forwarding address or new SN security key information or both using SN Modification Request message. It may be applied to CU1.
  • CU1 sends a UE CONTEXT MODIFICATION REQUEST message to the source DU 2A.
  • the message includes a display of conditional mobility (i.e., conditional PSCell change).
  • the MN 4 performs the RRC reconfiguration procedure (eg, LTE RRC Connection Reconfigurtion procedure) of the MN RAT (eg, LTE) via the MCG SRB, and forwards the SN RAT RRC message received from the CU 1 to the UE 3. ..
  • the UE3 transmits the MN RAT RRC message (e.g., LTE RRC Connection Reconfiguration Complete message) including the SN RAT RRC response message (e.g., NR RRC Reconfiguration Complete message) addressed to the CU 1 to the MN 4.
  • the MN RAT RRC message e.g., LTE RRC Connection Reconfiguration Complete message
  • the SN RAT RRC response message e.g., NR RRC Reconfiguration Complete message
  • the MN4 responds to the CU1 with an SNMODIFICATIONCONFIRM message in response to the successful completion of the RRC reconfiguration procedure of the MN RAT.
  • the SN MODIFICATION CONFIRM message includes the SN RAT RRC response message (e.g., NR RRC Reconfiguration Complete message) received from the UE3.
  • UE3 maintains the connection with the source DU2A even after receiving the RRC message of SN RAT (step 1007).
  • the UE3 applies the new setting in response to the execution condition of the conditional mobility (ie, conditional Reconfiguration with sync) set by the RRC message of the SN RAT being satisfied (step 1009), and applies the new setting to the target DU2B.
  • Access ie, random access procedure
  • UE3 may send an indication (or report) of conditional mobility initiation to source DU2A (step 1010).
  • the indication of the conditional mobility start by the UE3 may be uplink control information (UCI) transmitted on PUCCH.
  • the indication of conditional mobility start may be MACCE.
  • the source DU 2A may predetermine the setting of the radio resource used to display the CHO start, and notify the UE 3 of this via the CU 1.
  • the source DU 2A may include, in the information (e.g., CellGroupConfig) included in the UE CONTEXT SETUP RESPONSE message, the setting of the radio resource used to display the conditional mobility start, and may transmit this to the CU 1.
  • the CU 1 may generate an RRCReconfiguration message including the setting of the radio resource used to indicate the start of conditional mobility, and may transmit this to the UE 3.
  • the display of conditional mobility start indicates explicitly or implicitly the selected candidate target cell (eg, candidate target cell for which PSCell change was triggered). It may include information.
  • the source DU 2A responds to the CU 1 with a UE CONTEXT MODIFICATION RESPONSE message.
  • the source DU 2A may send the UE CONTEXT MODIFICATION RESPONSE message (step 1011) in response to receiving the conditional mobility start indication (step 1010) from the UE 3.
  • the UE CONTEXT MODIFICATION RESPONSE message can also serve the purpose of reporting the start (or execution) of conditional mobility to CU1.
  • the source DU 2A may send the UE CONTEXT MODIFICATION RESPONSE message (step 1011) regardless of receiving the conditional mobility start indication (step 1010).
  • the source DU 2A may send the UE CONTEXT MODIFICATION RESPONSE message (step 1011) prior to receiving the conditional mobility start indication (step 1010).
  • the CU 1 may send the UE CONTEXT RELEASE COMMAND message to the source DU 2A after receiving the UE CONTEXT MODIFICATION RESPONSE message (step 1011).
  • the CU 1 may send a UE CONTEXT RELEASE COMMAND message to the source DU 2A after receiving a DDDS frame (not shown) from the source DU 2A.
  • the release Cause value attached to (or included in) the UECONTEXT RELEASECOMMAND message is, for example, "HandoverConditionMet", "ActionDesirableforRadioReasons", “HandoverComplete", or "Normal Release" May be.
  • the source DU2A may release the UE context for UE3 and respond to the CU1 with a UECONTEXTRELEASE COMPLETE message.
  • FIG. 11 shows another example of an intra-CU inter-DU conditional PSCell Change procedure.
  • the processing of steps 1101 to 1106 is similar to that of steps 1001 to 1006 of FIG.
  • the source DU 2A responds to the CU 1 with a UE CONTEXT MODIFICATION RESPONSE message.
  • Step 1108 the MN 4 performs the RRC reconfiguration procedure (eg, LTE LTE RRC Connection Reconfigurtion procedure) of the MN RAT (eg, LTE) via the MCG SRB, and the SN 4 RAT (eg, NR) received from the CU 1 Forward the RRC message (eg, NRRRC Reconfiguration message) to UE3.
  • the UE3 transmits to the MN4 an MN RAT RRC response message (e.g., LTE RRC Connection Reconfiguration Complete message) that includes an SN RAT RRC response message (e.g.,NR RRC Reconfiguration Complete message) addressed to the CU1.
  • MN RAT RRC response message e.g., LTE RRC Connection Reconfiguration Complete message
  • SN RAT RRC response message e.g.,NR RRC Reconfiguration Complete message
  • the MN 4 responds to the CU 1 with an SNMODIFICATION CONFIRM message in response to the successful completion of the RRC reconfiguration procedure of the MN RAT.
  • the SN MODIFICATION CONFIRM message includes the SN RAT RRC response message (e.g., NR RRC Reconfiguration Complete message) received from the UE3.
  • step 1110 the UE3 determines whether the execution condition of the conditional mobility (ie, conditional Reconfiguration with sync) set by the RRC message of the SN RAT is satisfied, applies the new setting, and accesses the target DU2B ( ie, random access procedure) is started (step 1113).
  • UE3 may send an indication of conditional mobility initiation to source DU2A (step 11110).
  • the source DU 2A sends a DDDS frame to the CU 1.
  • source DU 2A may send a DDDS frame (step 1112) in response to receiving an indication of conditional mobility initiation (step 1111) from UE3.
  • the DDDS frame can also serve the purpose of reporting the start (or execution) of conditional mobility to the CU1.
  • the source DU 2A sends a new message to the CU 1 to indicate the initiation (or execution) of conditional mobility while sending the DDDS frame used for normal (ie unconditional) mobility. (Not shown).
  • the message may be called a CONDITIONAL MOBILITY TRIGGERED (or INITIATED, DETECTED, INDICATION, orINSTRUCTION) message.
  • the source DU 2A may send a DDDS frame (step 1112) independent of receiving the conditional mobility initiation indication (step 1111).
  • the source DU 2A may send a DDDS frame (step 1112) prior to receiving the conditional mobility start indication (step 1111).
  • the CU 1 may send the UE CONTEXT RELEASE COMMAND message to the source DU 2A after receiving the DDDS frame (step 1112).
  • the release Cause value attached to (or included in) the UECONTEXT RELEASECOMMAND message is, for example, "HandoverConditionMet", “ActionDesirableforRadioReasons”, “HandoverComplete”, or "NormalRelease”. May be.
  • the source DU2A may release the UE context for UE3 and respond to the CU1 with a UECONTEXTRELEASE COMPLETE message.
  • Some steps described in this embodiment enable intra-CU inter-DU conditional PSCell Change.
  • This embodiment provides a specific example of signaling for conditional mobility.
  • the configuration example of the wireless communication network according to this embodiment may be the same as the examples shown in FIGS. 1 and 2.
  • Fig. 12 shows an example of the PSCell Change procedure with intra-CU inter-DU condition.
  • the processing of steps 1201 to 1208 is the same as that of steps 1001 to 1008 of FIG.
  • the UE CONTEXT MODIFICATION REQUEST message in step 1206 indicates the condition for conditional mobility (i.e., conditional PSCell change or conditional Reconfiguration with sync).
  • the source DU 2A autonomously determines whether the execution condition of the conditional mobility (i.e., conditional PSCell change or conditional Reconfiguration with sync) is satisfied.
  • the source DU 2A sends a conditional mobility start command to the UE 3 in response to the fulfillment of the conditional mobility execution condition.
  • the conditional mobility start command may be downlink control information (DCI) transmitted on the PDCCH.
  • the conditional mobility start command may be MACCE.
  • the source DU 2A may predetermine the setting of the radio resource used for the conditional mobility start command, and notify the UE 3 of this via the CU 1.
  • the source DU 2A may include the setting of the radio resource used for the conditional mobility start command in the information (e.g., CellGroupConfig) included in the UE CONTEXT SETUP RESPONSE message, and send this to the CU 1. Then, the CU 1 may generate an RRCReconfiguration message including the setting of the radio resource used for the conditional mobility start command, and transmit this to the UE 3.
  • the conditional mobility start command explicitly or implicitly indicates the selected candidate target cell (eg, candidate cell for which PSCell change was triggered). May be included.
  • the source DU 2A responds to the CU 1 with a UE CONTEXT MODIFICATION RESPONSE message.
  • the source DU 2A may send the UE CONTEXT MODIFICATION RESPONSE message (step 1211) in response to the satisfaction of the conditional mobility execution condition.
  • the UE CONTEXT MODIFICATION RESPONSE message can also serve the purpose of reporting the start (or execution) of conditional mobility to CU1.
  • the source DU 2A may send the UE CONTEXT MODIFICATION RESPONSE message (step 1211) regardless of whether the conditional mobility execution condition is satisfied.
  • the source DU 2A may send the UE CONTEXT MODIFICATION RESPONSE message (step 1211) before the execution condition of the conditional mobility is satisfied.
  • step 1212 the UE 3 starts access to the target DU 2B (i.e., random access procedure) in response to the reception of the conditional mobility start command.
  • target DU 2B i.e., random access procedure
  • the CU 1 may send the UE CONTEXT RELEASE COMMAND message to the source DU 2A after receiving the UE CONTEXT MODIFICATION RESPONSE message (step 1211).
  • the CU 1 may send a UE CONTEXT RELEASE COMMAND message to the source DU 2A after receiving a DDDS frame (not shown) from the source DU 2A.
  • the release Cause value attached to (or included in) the UECONTEXT RELEASECOMMAND message is, for example, "HandoverConditionMet", "ActionDesirableforRadioReasons", “HandoverComplete", or "NormalRelease". May be.
  • the source DU2A may release the UE context for UE3 and respond to the CU1 with a UECONTEXTRELEASE COMPLETE message.
  • FIG. 13 shows another example of the PSCell Change procedure with intra-CU inter-DU condition.
  • the processing in steps 1301 to 1306 is similar to that in steps 1201 to 1206 in FIG.
  • the source DU 2A responds to the CU 1 with a UE CONTEXT MODIFICATION RESPONSE message.
  • Step 1308 the MN 4 performs the RRC reconfiguration procedure (eg, LTE LTE RRC Connection Reconfigurtion procedure) of the MN RAT (eg, LTE) via the MCGSRB, and the SN 4 RAT (eg, Forward the RRC message (eg, NRRRC Reconfiguration message) to UE3.
  • UE3 transmits to MN4 the RN RRC RRC response message (e.g., LTE Connection Reconfiguration Complete message) that includes the SN RAT RRC response message (e.g., NR RRC Reconfiguration Complete message) addressed to CU1.
  • the RN RRC RRC response message e.g., LTE Connection Reconfiguration Complete message
  • the SN RAT RRC response message e.g., NR RRC Reconfiguration Complete message
  • the MN 4 responds to the CU 1 with a SN.MODIFICATION CONFIRM message in response to the successful completion of the RRC reconfiguration procedure of the MN.RAT.
  • the SN MODIFICATION CONFIRM message includes the SN RAT RRC response message (e.g., NR RRC Reconfiguration Complete message) received from the UE3.
  • the source DU 2A autonomously determines whether the execution condition of the conditional mobility (i.e., conditional PSCell change or conditional Reconfiguration with sync) is satisfied.
  • the source DU 2A sends a conditional mobility start command to the UE 3 in response to the fulfillment of the conditional mobility execution condition.
  • the conditional mobility start command may be a DCI transmitted on the PDCCH.
  • the conditional mobility start command may be MACCE.
  • the source DU 2A sends a DDDS frame to the CU 1.
  • the source DU 2A may send a DDDS frame (step 1312) in response to the fulfillment of the conditional mobility execution condition.
  • the DDDS frame can also serve the purpose of reporting the start (or execution) of conditional mobility to the CU1.
  • the source DU 2A sends a new message to the CU 1 to indicate the initiation (or execution) of conditional mobility while sending the DDDS frame used for normal (ie unconditional) mobility. (Not shown).
  • the message may be called a CONDITIONAL MOBILITY TRIGGERED (or INITIATED, DETECTED, INDICATION, orINSTRUCTION) message.
  • the source DU 2A may send the DDDS frame (step 1312) regardless of whether the conditional mobility execution condition is satisfied.
  • the source DU 2A may transmit the DDDS frame (step 1312) before the execution condition of the conditional mobility is satisfied.
  • the CU 1 may send the UE CONTEXT RELEASE COMMAND message to the source DU 2A after receiving the DDDS frame (step 1312).
  • the release Cause value attached to (or included in) the UECONTEXT RELEASECOMMAND message is, for example, "HandoverConditionMet", “ActionDesirableforRadioReasons”, “HandoverComplete”, or "NormalRelease”. May be.
  • the source DU2A may release the UE context for UE3 and respond to the CU1 with a UECONTEXTRELEASE COMPLETE message.
  • Some steps described in this embodiment enable intra-CU inter-DU conditional PSCell Change.
  • This embodiment provides a specific example of signaling for conditional mobility.
  • the configuration example of the wireless communication network according to this embodiment may be the same as the examples shown in FIGS. 1 and 2.
  • the UE3 may start conditional mobility (e.g., CHO) in response to receiving a conditional mobility start command from the source DU2A (or CU1).
  • the mobility start condition set in the UE 3 for conditional mobility may be reception of explicit signaling (e.g., conditional mobility start command) from the network (e.g., source DU2A).
  • the conditional mobility start command is in a lower layer (eg, MAC layer, physical layer) than the layer (RRC layer) of the message (eg, RRC message) sent from the network to UE3 to set the mobility start condition to UE3. It may be a signal. More specifically, the conditional mobility start command may be DCI (i.e., physical layer signaling) transmitted on PDCCH or MAC CE (i.e., MAC layer signaling). In general, the physical layer and MAC layer signaling can be sent more frequently than the RRC layer signaling. In other words, the intervals of transmission opportunities of the physical layer and MAC layer signaling are shorter than those of the RRC layer signaling. Therefore, using signaling of a layer lower than the RRC layer can contribute to prompt transmission of the conditional mobility start command to the UE3.
  • DCI i.e., physical layer signaling
  • MAC CE i.e., MAC layer signaling
  • SN Modification Modification with MN including Inter-gNB-DU Mobility Mobility using MCG SRB is used.
  • RRC signaling for conditional mobility e.g., conditional PSCell change
  • MCG SRB MCG SRB
  • the MAC or physical layer signaling from the SN (ie, source DU2A and CU1) to the UE3 is transmitted to the UE3 via the physical channel of the cell provided by the SN (ie, source DU2A and CU1). Can be sent directly to. Therefore, the SN (ie, source DU2A and CU1) sends the conditional mobility start command to the UE3 by transmitting a conditional mobility start command using signaling of a layer lower than the RRC layer (eg, MAC layer, physical layer). The delay in sending can be reduced.
  • the RRC layer eg, MAC layer, physical layer
  • the signaling procedure described in this embodiment is effective even when CU-DU split is not applied.
  • the SN may transmit the conditional mobility start command using signaling of layers lower than the RRC layer (e.g., MAC layer, physical layer).
  • the conditional mobility start command can be sent directly to the UE3 via the physical channel of the cell provided by the SN, without going through the MCG SRB. This can contribute to the reduction of the delay in sending the conditional mobility start command to the UE3.
  • FIG. 14 shows an example of signaling according to the present embodiment.
  • the source DU 2A (or CU 1) transmits an RRC message (e.g., RRC Reconfiguration message) including the setting for the conditional mobility start command.
  • the source DU 2A may determine the setting for the conditional mobility start command, and may transmit this to the CU 1, for example, in the DUToToCURRCInformation information element.
  • the CU1 may generate an RRC message including the setting and transmit the RRC message to the UE3 via the source DU2A.
  • CU1 and DU2A are SN (e.g., SgNB) of DC
  • the RRC message may be sent to UE3 via MN (e.g., MeNB) (that is, via SRB of MCG cell).
  • MN e.g., MeNB
  • the setting for the conditional mobility start command may indicate the identification information of the conditional mobility start command. Additionally or alternatively, the configuration may indicate resources for transmission of the conditional mobility start command. More specifically, the configuration may indicate the index of the conditional mobility start command or may indicate the time/frequency/code resource for the transmission of the conditional mobility start command.
  • the setting may be PDCCH-Config used for setting PDCCH parameters (e.g., Downlink Control Information (DCI)) specific to the UE3.
  • DCI Downlink Control Information
  • the source DU 2A determines whether the execution condition of conditional mobility (e.g., CHO) is satisfied.
  • the source DU 2A sends a conditional mobility start command (e.g., CHO start command) to the UE 3 in response to the satisfaction of the conditional mobility execution condition.
  • the transmission of the conditional mobility start command follows the settings previously provided to the UE 3 in step 1401.
  • the procedure of FIG. 14 may be performed for CHO by a source node (e.g., source gNB or source eNB) to which CU-DU split is not applied.
  • the procedure of FIG. 14 may be performed for conditional PS Cell change in MR-DC by SN to which CU-DU split is not applied.
  • This embodiment provides a specific example of signaling for conditional mobility.
  • the configuration example of the wireless communication network according to this embodiment may be the same as the examples shown in FIGS. 1 and 2.
  • multiple candidate target cells may be provided by multiple DUs 2.
  • FIG. 15 is a diagram illustrating an example of signaling regarding intra-CU inter-DU conditional mobility (e.g., CHO).
  • the CU 1 sends a request for releasing the resources of the candidate target cell to one or more target DUs 2B.
  • the request requests each target DU 2B to release the resources of one or more candidate target cells reserved for conditional handover.
  • CU1 should just transmit the said request to target DU2B which manages the candidate target cell different from the target cell which UE3 moves.
  • the request is such that each target DU2B releases resources of one or more candidate target PSCells reserved for conditional PSCell Change (or conditional Reconfiguration with sync).
  • CU1 should just transmit the said request to target DU2B which manages candidate target PSCell different from target PSCell which UE3 moves.
  • the message transmitted in step 1501 for the resource release request may be, for example, a UE CONTEXT RELEASE COMMAND message.
  • the release Cause value attached to (or included in) the UECONTEXT RELEASECOMMAND message is, for example, "HandoverConditionMet”, “ActionDesirableforRadioReasons”, “HandoverComplete”, “Normal Release”, or "HandoverConditionMet”. Candidate Target Cell Found”.
  • the CU 1 may transmit the request of step 1501 when detecting that the UE 3 has completed the conditional mobility.
  • the CU1 may detect the completion of the conditional mobility by receiving a message indicating the success of the conditional mobility of the UE3 (UPLINK RRCTRANSFER message carrying the e.g., RRCReconfigurationComplete message) from any of the target DUs 2B.
  • UPLINK RRCTRANSFER message carrying the e.g., RRCReconfigurationComplete message
  • MN eg, MeNB
  • the CU 1 may transmit the request of step 1501 when detecting that the UE 3 has performed (or started) the conditional mobility.
  • CU1 may detect mobility execution (or start) by receiving an indication (e.g., measurement report) of the start of conditional mobility from UE3 or any target DU2B.
  • the target DU 2B can release the resources reserved for the conditional mobility in response to the request from the CU 1 without waiting for the expiration of the validity timer.
  • the UE 3 may autonomously release the resource (that is, the radio resource setting) of the other candidate target cell.
  • the UE3 may release resources of other candidate target cells in response to receiving a release request from the network (eg, CU1 or target DU2B) after completing conditional mobility. ..
  • the configuration example of the wireless communication network according to this embodiment may be the same as the examples shown in FIGS. 1 and 2.
  • This embodiment provides an improvement of the control message sent from source DU2A to CU1 to indicate downlink data that has not been sent to UE3.
  • the control message is not limited to this, but may be, for example, a DOWNLINK DATA DELIVERY STATUS (DDDS) frame used in LTE and NR.
  • DDDS DOWNLINK DATA DELIVERY STATUS
  • the DDDS frame indicates the start (or execution) of conditional mobility (eg, CHO) in addition to indicating the downlink data that has not been transmitted to the UE3. It may be used for the purposes of reporting to CU1.
  • the DDDS frame may explicitly indicate the start (or execution) of conditional mobility.
  • a DDDS frame may include one or more bits to indicate the initiation (or execution) of conditional mobility.
  • FIG. 16 shows an example of a DDDS frame format improved to explicitly display the start (or execution) of CHO.
  • the DDDS frame includes a Conditional Handover Met bit 1601.
  • Bit 1601 indicates whether or not the CHO execution (or start) condition is met (met or satisfied).
  • Bit 1601 may be used instead of or in addition to CHO to indicate other conditional mobility.
  • the value of the bit 1601 may be set to 1 when the execution (or start) condition of conditional mobility is satisfied, and may be set to 0 otherwise. In this case, when the value of the bit 1601 is 1, the bit indicates Conditional Handover indication.
  • Conditional Handover indication is signaled when the execution (or start) condition of conditional mobility is satisfied. For example, when a Conditional Handover indication is received, the node (eg, CU1) hosting the NRPDCP entity thinks that no more uplink or downlink data will be transmitted between the corresponding node (eg, DU2) and UE3. May be recognized.
  • the control message (eg, DDDS frame) according to the present embodiment indicates to the DU 3 the start (or execution) of conditional mobility (eg, CHO) in addition to indicating downlink data that has not been transmitted to the UE 3, for example. Allows DU2 to report.
  • conditional mobility eg, CHO
  • FIG. 17 is a block diagram showing a configuration example of the CU 1 according to the above embodiment.
  • the configurations of the CU-CP 11 and the CU-UP 12 may be the same as that shown in FIG.
  • the CU 1 includes a network interface 1701, a processor 1702, and a memory 1703.
  • the network interface 1701 is used to communicate with network nodes (e.g., DU2 and control pool (CP) node and user plane (UP) node in the core network).
  • the network interface 1701 may include a plurality of interfaces.
  • the network interface 1701 may include, for example, an optical fiber interface for CU-DU communication and a network interface compliant with IEEE802.3 series.
  • the processor 1702 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Processor 1702 may include multiple processors.
  • the processor 1702 includes a modem processor (eg, Digital Signal Processor (DSP)) that performs digital baseband signal processing and a protocol stack processor (eg, Central Processing Unit (CPU)) or a Micro Processing Unit (CPU) that performs control plane processing. MPU)) may be included.
  • DSP Digital Signal Processor
  • MPU Micro Processing Unit
  • the memory 1703 is composed of a combination of a volatile memory and a non-volatile memory.
  • the volatile memory is, for example, Static Random Access Memory (SRAM), Dynamic RAM (DRAM), or a combination thereof.
  • the non-volatile memory is a mask Read Only Memory (MROM), an Electrically Erasable Programmable ROM (EEPROM), a flash memory, a hard disk drive, or any combination thereof.
  • Memory 1703 may include storage located remotely from processor 1702. In this case, the processor 1702 may access the memory 1703 via the network interface 1701 or an I/O interface (not shown).
  • the memory 1703 may store one or more software modules (computer programs) 1704 including a command group and data for performing processing by the CU 1 described in the above-described embodiments.
  • the processor 1702 may be configured to perform the processing of the CU1 described in the above embodiments by reading the one or more software modules 1704 from the memory 1703 and executing them.
  • FIG. 18 is a block diagram showing a configuration example of the DU 2 according to the above embodiment.
  • the DU 2 includes a Radio Frequency transceiver 1801, a network interface 1803, a processor 1804, and a memory 1805.
  • the RF transceiver 1801 performs analog RF signal processing to communicate with UEs.
  • the RF transceiver 1801 may include multiple transceivers.
  • the RF transceiver 1801 is coupled with the antenna array 1802 and the processor 1804.
  • the RF transceiver 1801 receives the modulation symbol data from the processor 1804, generates a transmission RF signal, and supplies the transmission RF signal to the antenna array 1802.
  • the RF transceiver 1801 also generates a baseband reception signal based on the reception RF signal received by the antenna array 1802, and supplies this to the processor 1804.
  • the RF transceiver 1801 may include an analog beamformer circuit for beamforming.
  • the analog beamformer circuit includes, for example, a plurality of phase shifters and a plurality of power amplifiers.
  • the network interface 1803 is used to communicate with the network nodes (e.g., CU1, CU-CP11, CU-UP12).
  • the network interface 1803 may include multiple interfaces.
  • the network interface 1803 may include, for example, at least one of an optical fiber interface for CU-DU communication and a network interface compliant with IEEE802.3 series.
  • the processor 1804 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Processor 1804 may include multiple processors.
  • the processor 1804 may include a modem processor (e.g., DSP) that performs digital baseband signal processing and a protocol stack processor (e.g., CPU or MPU) that performs control plane processing.
  • Processor 1804 may include a digital beamformer module for beamforming.
  • the digital beamformer module may include a Multiple Input Multiple Output (MIMO) encoder and a precoder.
  • MIMO Multiple Input Multiple Output
  • the memory 1805 is composed of a combination of a volatile memory and a non-volatile memory. Volatile memory is, for example, SRAM or DRAM or a combination thereof.
  • the non-volatile memory is MROM, EEPROM, flash memory, or hard disk drive, or any combination thereof.
  • Memory 1805 may include storage located remotely from processor 1804. In this case, the processor 1804 may access the memory 1805 via the network interface 1803 or an I/O interface (not shown).
  • the memory 1805 may store one or more software modules (computer programs) 1806 including a command group and data for performing processing by the DU 2 described in the above-described embodiments.
  • the processor 1804 may be configured to read and execute the one or more software modules 1806 from the memory 1805 to perform the processing of the DU2 described in the above embodiments.
  • FIG. 19 is a block diagram showing a configuration example of the UE 3 according to the above embodiment.
  • the Radio Frequency (RF) transceiver 1901 performs analog RF signal processing to communicate with the RAN node (e.g., DU2).
  • the RF transceiver 1901 may include multiple transceivers.
  • the analog RF signal processing performed by the RF transceiver 1901 includes frequency up conversion, frequency down conversion, and amplification.
  • the RF transceiver 1901 is coupled with the antenna array 1902 and the baseband processor 1903.
  • the RF transceiver 1901 receives modulated symbol data (or OFDM symbol data) from the baseband processor 1903, generates a transmission RF signal, and supplies the transmission RF signal to the antenna array 1902.
  • the RF transceiver 1901 also generates a baseband reception signal based on the reception RF signal received by the antenna array 1902, and supplies this to the baseband processor 1903.
  • the RF transceiver 1901 may include an analog beamformer circuit for beamforming.
  • the analog beamformer circuit includes, for example, a plurality of phase shifters and a plurality of power amplifiers.
  • the baseband processor 1903 performs digital baseband signal processing (data plane processing) and control plane processing for wireless communication.
  • Digital baseband signal processing includes (a) data compression/decompression, (b) data segmentation/concatenation, (c) transmission format (transmission frame) generation/decomposition, and (d) transmission channel encoding/decoding. , (E) modulation (symbol mapping)/demodulation, and (f) Inverse Fast Fourier Transform (IFFT) generation of OFDM symbol data (baseband OFDM signal).
  • the control plane processing includes layer 1 (eg, transmission power control), layer 2 (eg, wireless resource management, and hybrid automatic repeat request (HARQ) processing), and layer 3 (eg, attach, mobility, and call management). Signaling management).
  • digital baseband signal processing by the baseband processor 1903 is performed by processing the Service Data Adaptation Protocol (SDAP) layer, Packet Data Convergence Protocol (PDCP) layer, Radio Link Control (RLC) layer, MAC layer, and PHY layer signal processing. May be included.
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Management Function
  • PHY Packet Data Convergence Protocol
  • the control plane processing by the baseband processor 1903 may include processing of Non-Access Stratum (NAS) protocol, RRC protocol, and MAC CE.
  • NAS Non-Access Stratum
  • the baseband processor 1903 may perform MIMO encoding and precoding for beamforming.
  • the baseband processor 1903 may include a modem processor (e.g., DSP) that performs digital baseband signal processing and a protocol stack processor (e.g., CPU or MPU) that performs control plane processing.
  • a modem processor e.g., DSP
  • a protocol stack processor e.g., CPU or MPU
  • the protocol stack processor that performs the control plane process may be shared with the application processor 1904 described later.
  • the application processor 1904 is also called a CPU, MPU, microprocessor, or processor core.
  • the application processor 1904 may include a plurality of processors (a plurality of processor cores).
  • the application processor 1904 is a system software program (Operating System (OS)) read from the memory 1906 or a memory (not shown) and various application programs (for example, call application, WEB browser, mailer, camera operation application, music playback).
  • OS Operating System
  • application programs for example, call application, WEB browser, mailer, camera operation application, music playback.
  • Various functions of the UE 3 are realized by executing the (application).
  • the baseband processor 1903 and the application processor 1904 may be integrated on one chip, as shown by the dashed line (1905) in FIG.
  • the baseband processor 1903 and the application processor 1904 may be implemented as one System on Chip (SoC) device 1905.
  • SoC devices are also called system large scale integration (LSI) or chipsets.
  • the memory 1906 is a volatile memory, a non-volatile memory, or a combination thereof.
  • Memory 1906 may include multiple physically independent memory devices. Volatile memory is, for example, SRAM or DRAM or a combination thereof.
  • the non-volatile memory is MROM, EEPROM, flash memory, or hard disk drive, or any combination thereof.
  • the memory 1906 may include a baseband processor 1903, an application processor 1904, and an external memory device accessible by the SoC 1905.
  • Memory 1906 may include embedded memory devices integrated within baseband processor 1903, application processor 1904, or SoC 1905.
  • the memory 1906 may include a memory in a Universal Integrated Circuit Card (UICC).
  • UICC Universal Integrated Circuit Card
  • the memory 1906 may store one or more software modules (computer programs) 1907 including a command group and data for performing processing by the UE 3 described in the above embodiments.
  • the baseband processor 1903 or the application processor 1904 is configured to read the software module 1907 from the memory 1906 and execute the software module 1907 to perform the processing of the UE3 described in the above embodiments with reference to the drawings. May be done.
  • control plane processing and operation performed by the UE 3 described in the above-described embodiment are performed by other elements except the RF transceiver 1901 and the antenna array 1902, that is, at least one of the baseband processor 1903 and the application processor 1904, and the software module 1907. And a memory 1906 storing
  • each of the processors included in the CU1, DU2, and UE3 has an instruction group for causing a computer to execute the algorithm described with reference to the drawings.
  • This program can be stored using various types of non-transitory computer readable medium and supplied to the computer.
  • Non-transitory computer-readable media include tangible storage media of various types.
  • non-transitory computer-readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical disks), Compact Disc Read Only Memory (CD-ROM), CD- R, CD-R/W, semiconductor memory (for example, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)) are included.
  • the program may be supplied to the computer by various types of transitory computer readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves.
  • the transitory computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • the signaling between CU1 and DU2 described in the above embodiment may be performed between CU-CP11 and DU2 or between CU-UP12 and DU2.
  • conditional mobility in the above embodiments may be called pre-conditioned mobility, prepared mobility, delayed mobility, or the like. More specifically, the function described as conditional handover (CHO) is, for example, pre-conditioned handover (pre-conditioned HO), pre-prepared handover (prepared HO), or delayed handover (delayed HO). May be called. Similarly, the function described as a conditional (Conditional) PSCell change in the above-described embodiment includes a pre-conditioned PSCell change, a prepared PSCell change, or a delayed PSCell change. May be called.
  • conditional handover (or Reconfiguration with sync) described in the above embodiment is not limited to, for example, inter-gNB handover, intra-gNB (inter-gNB-DU) handover, gNB and eNB/5GC (ng).
  • -eNB intra-gNB
  • inter-eNB/5GC inter-eNB/5GC
  • intra-eNB/5GC-DU intra-eNB/5GC-DU
  • conditional handover described in the above embodiment may be a conditional intra-DU (e.g., intra-gNB-DU or intra-eNB-DU) handover.
  • conditional intra-DU handover at least one of the plurality of candidate target cells is a cell of the same gNB-DU (or eNB-DU) as the source cell.
  • the UECONCONTEXTSETUPREQUEST and UECONCONTEXTRESPONSE messages between the target RAN node's CU (eg, gNB-CU) and DU (eg, gNB-DU) are UECONCONTEXT MODIFICATION REQUEST and UE CONTEXT MODIFICATION RESPONSE messages, respectively. It may be.
  • the handover execution condition (eg, threshold (event) and corresponding time-to-trigger (TTT)) for the conditional handover described above is an event that triggers a measurement report (Measurement report) already specified by 3GPP.
  • EventEvent A1, A2, A3, A4, A5, A6, B1, B2, C1, C2, W1, W2, W3, V1, V2, H1, or H2 added (defined) as a new event Good.
  • the handover execution condition for the conditional handover described above includes a parameter that replaces at least one of the plurality of parameters included in each event that triggers the measurement report already defined by 3GPP. But it's okay.
  • the handover execution condition for the conditional handover described above includes an offset value for at least one of a plurality of parameters included in each event that triggers a measurement report already specified by 3GPP. But it's okay.
  • H1, and H2 may include, but are not limited to, at least one of the following: Ms: measurement result of a serving cell that does not consider an offset value, measurement result of a channel busy ratio of a transmission resource pool that does not consider an offset value, or altitude of an Aerial UE that does not consider an offset value when the UE3 is an Aerial UE , Hys: Hysteresis value for this event, Thresh (1 or 2): Threshold for this event, Mn: Measurement result of adjacent cell without considering offset value, Ofn: Frequency-specific offset value for the frequency of the adjacent cell, Ocn: cell-specific offset value for adjacent cells, Mp: Measurement result of Primary Cell or Primary SCG Cell without considering the offset value Ofp: Frequency-specific offset value
  • a wireless terminal (User Equipment (UE)) in this specification is an entity connected to a network via a wireless interface.
  • the wireless terminal (UE) in this specification is not limited to a dedicated communication device, and may be any of the following devices having the communication function of the wireless terminal (UE) described in this specification. May be.
  • the terms “User equipment (User Equipment (UE))” (as words used in 3GPP), "mobile station”, “mobile terminal”, “mobile device”, and “mobile device”
  • the terms “wireless device” are generally intended to be synonymous with each other.
  • the UE may be a stand-alone mobile station such as a terminal, mobile phone, smartphone, tablet, cellular IoT terminal, IoT device, etc.
  • the terms “UE” and “wireless terminal” also include devices that are stationary for long periods of time.
  • the UE is, for example, a production facility/manufacturing facility and/or an energy-related machine (for example, a boiler, an engine, a turbine, a solar panel, a wind power generator, a hydro power generator, a thermal power generator, a nuclear power generator, a storage battery, a nuclear power system, Nuclear power related equipment, heavy electrical equipment, pumps including vacuum pumps, compressors, fans, blowers, hydraulic equipment, pneumatic equipment, metal working machines, manipulators, robots, robot application systems, transfer equipment, lifting equipment, cargo handling equipment, Textile machines, sewing machines, printing machines, printing machines, paper machines, chemical machines, mining machines, mining machines, construction machines, construction machines, agricultural machines and/or instruments, forestry machines and/or instruments, fisheries. Machinery and/or equipment, safety and/or environmental protection equipment, tractors, power transmissions, and/or any of the equipment or machine application systems described above).
  • an energy-related machine for example, a boiler, an engine, a turbine, a solar panel, a wind power generator, a hydro
  • the UE is, for example, a transportation device (as an example, a vehicle, an automobile, a motorcycle, a bicycle, a train, a bus, a rear car, a rickshaw, a ship (ship and other watercraft), an airplane, a rocket, a satellite, a drone, a balloon, etc.). It may be.
  • a transportation device as an example, a vehicle, an automobile, a motorcycle, a bicycle, a train, a bus, a rear car, a rickshaw, a ship (ship and other watercraft), an airplane, a rocket, a satellite, a drone, a balloon, etc.
  • the UE may be, for example, an information communication device (for example, an electronic computer and related device, a communication device and related device, electronic component, etc.).
  • an information communication device for example, an electronic computer and related device, a communication device and related device, electronic component, etc.
  • a UE is, for example, a commercial and service device, a vending machine, an automatic service machine, an office machine and device, a consumer electric and electronic machine/equipment (for example, a voice device, a speaker, a radio, a video device, a television, etc.). May be.
  • the UE may be, for example, an electronic application system or an electronic application device (for example, an X-ray device, a particle accelerator, a radioactive material application device, a sound wave application device, an electromagnetic application device, a power application device, etc.).
  • an electronic application system for example, an X-ray device, a particle accelerator, a radioactive material application device, a sound wave application device, an electromagnetic application device, a power application device, etc.
  • the UE is, for example, a light bulb, a lighting device, a weighing machine, an analytical device, a testing machine and a measuring machine (as an example, a smoke alarm, an interpersonal alarm sensor, a motion sensor, a wireless tag, etc.), a watch (clock or clock), a physicochemical machine, It may be an optical machine, a medical device and/or a medical system, a weapon, a hand tool, or a hand tool.
  • a UE is, for example, a personal digital assistant or device equipped with a wireless communication function (as an example, an electronic device to which a wireless card, a wireless module, or the like is attached or configured (for example, a personal computer or an electronic measuring instrument)). ).
  • a wireless communication function as an example, an electronic device to which a wireless card, a wireless module, or the like is attached or configured (for example, a personal computer or an electronic measuring instrument).
  • UE may be, for example, a device that provides the following applications, services, or solutions in the “Internet of Things (IoT)” that uses wired or wireless communication technology, or a part thereof.
  • IoT device (or thing) comprises suitable electronics, software, sensors, network connections, etc. that allow the devices to collect and exchange data with each other and with other communication devices.
  • the IoT device may be an automated device that complies with software instructions stored in internal memory. IoT devices may operate without the need for human supervision or response.
  • An IoT device may be equipped with equipment for a long period of time and/or may remain inactive for a long period of time.
  • the IoT device may be implemented as part of a stationary device.
  • the IoT device may be embedded in a non-stationary device (such as a vehicle) or attached to an animal or person to be monitored/tracked.
  • IoT technology can be implemented on any communication device that can be connected to a communication network that sends and receives data regardless of control by human input or software instructions stored in memory.
  • the IoT device is sometimes called a machine type communication (MTC) device, a machine-to-machine (Machine to Machine, M2M) communication device, or a narrow band-IoT (NB-IoT) UE.
  • MTC machine type communication
  • M2M Machine to Machine
  • NB-IoT narrow band-IoT
  • UE may support one or more IoT or MTC applications.
  • MTC applications are listed in the list given in 3GPP TS22.368V13.2.0(2017-01-13) Annex B, the contents of which are incorporated herein by reference. This list is not exhaustive and is provided as an example of MTC applications.
  • the service area (Service Area) of the MTC application is security (Security), tracking and tracing (Tracking & Tracing), payment (Payment), health (Health), remote maintenance/control (Remote Maintenance/Control), Includes Metering and Consumer Devices.
  • MTC applications related to security include surveillance systems (Surveillance systems), fixed phone backup (Backup for landline), physical access control (for example, access to buildings) (Control of physical access (eg to buildings)), and vehicles. / Includes driver/driver security.
  • MTC applications related to tracking and tracing are fleet management (Fleet Management), order management (Order Management), telematics insurance: billing according to travel (Pay as you drive (PAYD)), asset tracking (Asset Tracking), navigation (Navigation), traffic information (Traffic information), road toll collection (Road tolling), and road traffic optimization/guidance (Road traffic optimization/steering).
  • MTC applications related to payment include point-of-sale information management (Point of sales (POS)), vending machines (Vending machines), and amusement machines (Gaming machines).
  • POS Point of sales
  • Vending machines vending machines
  • Giaming machines amusement machines
  • MTC applications related to health are: Monitoring vital signs, Supporting the elderly or handicapped, Web Access Telemedicine points, and Remote diagnostics. including.
  • MTC applications related to remote maintenance/control are sensors (Sensors), lighting (Lighting), pumps (Pumps), valves (Valves), elevator control (Elevator control), vending machine control (Vending machine control), and vehicles. Includes vehicle diagnostics.
  • MTC applications for weighing are Power, Gas Includes Water, Heating, Grid control, and Industrial metering.
  • MTC applications for consumer devices include digital photo frames, digital cameras, and ebooks (ebooks).
  • MVNO Mobile Virtual Network Operator
  • disaster prevention wireless services/systems private wireless telephone (PBX (Private Branch eXchange) services) /System, PHS/Digital cordless phone service/system, Point of sales(POS) system, Advertising service/system, Multicast (Multimedia Broadcast and Multicast Service (MBMS)) service/system, V2X (Vehicle Everything: Inter-vehicle communication) And road/vehicle/pedestrian communication service/system, in-train mobile wireless service/system, location-related service/system, disaster/emergency wireless communication service/system, IoT (Internet of Things) service/system , Community service/system, video distribution service/system, Femto cell application service/system, VoLTE (Voice over LTE) service/system, RFID tag service/system, billing service/system, radio on-demand service/system, roaming service /System, user behavior monitoring service/system, communication carrier/communication NW selection service/system, function restriction
  • the at least one processor is Configured to determine if the planned mobility of the wireless terminal is the conditional mobility, Configured to delay the transmission of the first message to the central unit when the planned mobility is the conditional mobility as compared to when the planned mobility is not the conditional mobility , The dispersion unit according to attachment 1.
  • the first message is sent in a signaling procedure for a context change for the wireless terminal,
  • the dispersion unit according to appendix 1 or 2.
  • the signaling procedure is a UE Context Modification procedure
  • the first message is a UE CONTEXT MODIFICATION RESPONSE message
  • the dispersion unit according to attachment 3.
  • the first message is sent to the central unit to indicate downlink data that has not been sent to the wireless terminal.
  • the dispersion unit according to appendix 1 or 2.
  • the first message is a DOWNLINK DATA DELIVERY STATUS frame, The dispersion unit according to attachment 5.
  • the at least one processor is configured to detect the initiation of the conditional mobility by receiving a report transmitted from the wireless terminal in response to satisfaction of the conditional mobility initiation condition.
  • the dispersion unit according to any one of appendices 1 to 6.
  • the at least one processor is configured to detect the initiation of the conditional mobility by autonomously determining that a conditional mobility initiation condition is met. 7.
  • the dispersion unit according to any one of appendices 1 to 6.
  • the at least one processor is configured to send a conditional mobility start command to the wireless terminal in response to satisfaction of the start condition of the conditional mobility.
  • the at least one processor is configured to send a configuration for the conditional mobility start command to the central unit prior to sending the conditional mobility start command.
  • the second cell is provided by the distribution unit, another distribution unit of the base station different from the distribution unit, or another base station different from the base station, 11.
  • the dispersion unit according to any one of appendices 1 to 10.
  • a method for a distributed unit of a base station comprising: Sending a first message to a central unit of the base station in response to detecting the initiation of conditional mobility of a wireless terminal from a first cell to a second cell provided by the distribution unit; Prepare, Method.
  • Appendix 13 Determining if the planned mobility of the wireless terminal is the conditional mobility, and if the planned mobility is the conditional mobility, the planned mobility is the conditional mobility. Delaying the transmission of the first message to the central unit as compared to otherwise Further comprising, The method according to Appendix 12.
  • the first message is sent in a signaling procedure for a context change for the wireless terminal, The method according to appendix 12 or 13.
  • the signaling procedure is a UE Context Modification procedure
  • the first message is a UE CONTEXT MODIFICATION RESPONSE message, The method according to Appendix 14.
  • the first message is sent to the central unit to indicate downlink data that has not been sent to the wireless terminal.
  • the first message is a DOWNLINK DATA DELIVERY STATUS frame, The method according to appendix 16.
  • Appendix 18 Further comprising detecting the start of the conditional mobility by receiving a report transmitted from the wireless terminal in response to establishment of the conditional mobility start condition. 18. The method according to any one of appendices 12 to 17.
  • Appendix 19 Further comprising detecting the start of the conditional mobility by autonomously determining the establishment of the start condition of the conditional mobility. 18. The method according to any one of appendices 12 to 17.
  • Appendix 20 A program for causing a computer to perform a method for a distributed unit of a base station, comprising: The method is responsive to detecting the initiation of conditional mobility of a wireless terminal from a first cell to a second cell provided by the distribution unit in response to detecting a first message by sending a first message to a central unit of the base station. Preparing to send to, program.
  • the central unit of the base station At least one memory, At least one processor coupled to the at least one memory; Equipped with The at least one processor is Controlling conditional mobility of a wireless terminal from a first cell to a second cell provided by a distributed unit of the base station, The distribution unit is configured to receive a first message to send in response to detecting the initiation of the conditional mobility, Central unit.
  • the at least one processor is configured to send to the decentralized unit information explicitly or implicitly indicating that the planned mobility for the wireless terminal is the conditional mobility.
  • the at least one processor is configured to know in response to receiving the first message that conditional mobility by the wireless terminal has been initiated.
  • Appendix 24 A method for a central unit of a base station, comprising: Controlling the conditional mobility of a wireless terminal from a first cell to a second cell provided by a distributed unit of the base station, and in response to the distributed unit detecting the initiation of the conditional mobility. Receiving the first message sent by Comprising a method.
  • a program for causing a computer to perform a method for a central unit of a base station comprising: The method is Controlling the conditional mobility of a wireless terminal from a first cell to a second cell provided by a distributed unit of the base station, and in response to the distributed unit detecting the initiation of the conditional mobility.
  • Receiving the first message sent by A program that comprises:
  • a radio access network node At least one memory, At least one processor coupled to the at least one memory; Equipped with The at least one processor is responsive to the establishment of conditional mobility initiation conditions for a wireless terminal from a first cell to a second cell provided by the wireless access network node to the wireless terminal Configured to send a start command, The at least one processor is configured to send a configuration for the conditional mobility start command to the wireless terminal prior to sending the conditional mobility start command.
  • Radio access network node At least one memory, At least one processor coupled to the at least one memory; Equipped with The at least one processor is responsive to the establishment of conditional mobility initiation conditions for a wireless terminal from a first cell to a second cell provided by the wireless access network node to the wireless terminal Configured to send a start command, The at least one processor is configured to send a configuration for the conditional mobility start command to the wireless terminal prior to sending the conditional mobility start command.
  • Radio access network node Radio access network node.
  • the at least one processor is configured to send the configuration to the wireless terminal via a dual connectivity master node, The at least one processor is configured to send the conditional mobility initiation command directly to the wireless terminal via a cell provided by the wireless access network node, The radio access network node according to attachment 26.
  • the settings are sent to the wireless terminal via a Radio Resource Control (RRC) message,
  • RRC Radio Resource Control
  • the conditional mobility start command is transmitted to the wireless terminal using signaling of a layer lower than an RRC layer, 28.
  • the radio access network node according to any one of appendices 26 or 27.
  • the conditional mobility start command is transmitted to the wireless terminal using Medium Access Control (MAC) signaling, The radio access network node according to attachment 28.
  • MAC Medium Access Control
  • the conditional mobility start command is a MAC Control Element (CE), The radio access network node according to attachment 28 or 29.
  • CE MAC Control Element
  • the conditional mobility start command is transmitted to the wireless terminal using physical layer signaling, The radio access network node according to attachment 28.
  • the conditional mobility start command is downlink control information (Downlink Control Information (DCI)) transmitted by Physical Downlink Control Channel (PDCCH), The radio access network node according to attachment 28 or 31.
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control Channel
  • the setting indicates at least one of identification information of the conditional mobility start command and resources for transmission of the conditional mobility start command, 33.
  • the radio access network node according to any one of appendices 26 to 32.
  • the radio access network node comprises a central unit and at least one distributed unit, 34.
  • the radio access network node according to any one of appendices 26 to 33.
  • a method for a radio access network node comprising: Transmitting a conditional mobility start command to the wireless terminal in response to fulfillment of a conditional mobility start condition for the wireless terminal from a first cell to a second cell provided by the wireless access network node; And transmitting a setting for the conditional mobility start command to the wireless terminal before transmitting the conditional mobility start command, A method comprising.
  • a program for causing a computer to perform a method for a radio access network node comprising: The method is Transmitting a conditional mobility start command to the wireless terminal in response to fulfillment of a conditional mobility start condition for the wireless terminal from a first cell to a second cell provided by the wireless access network node; And transmitting a setting for the conditional mobility start command to the wireless terminal before transmitting the conditional mobility start command, With program.
  • CU Central Unit
  • DU Distributed Unit
  • MN Master Node
  • CU-CP Master Node
  • CU-CP CU-UP 1702 Processor 1703 Memory 1704 Modules 1804 Processor 1805 Memory 1806 Modules 1903 Baseband processor 1904 Application processor 1906 Memory 1907 Modules

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局の分散ユニット(Distributed Unit(DU))(2)は、当該DU(2)によって提供される第1のセルから第2のセルへの無線端末(3)の条件付きモビリティの開始を検出したことに応答して、第1のメッセージを基地局の中央ユニット(Central Unit(CU))(1)に送る。これにより、例えば、条件付きモビリティの実行条件の成立(又は条件付きモビリティの開始)を知ることをCentral Unit(CU)に可能にできる。

Description

分散ユニット、中央ユニット、無線アクセスネットワークノード、及びこれらのための方法
 本開示は、無線通信システムに関し、特に無線端末のモビリティに関する。
 非特許文献1及び2は、3GPPで議論されている条件付きハンドオーバ(conditional handover(CHO))について開示している。CHOのための幾つかの実装では、ソース無線アクセスネットワーク(radio access network(RAN))ノード(e.g., eNodeB(eNB))がハンドオーバ実行の条件(e.g., 閾値)を含むハンドオーバコマンドを無線端末(e.g., User Equipment(UE))に送信する。無線端末は、ハンドオーバコマンドの受信後もソースRANノードとのコネクションを維持し、ハンドオーバコマンドにより設定された条件(configured condition)が成立するとすぐにターゲットRANノードへのアクセスを開始する。すなわち、条件付きハンドオーバ(CHO)は、無線端末が、ハンドオーバコマンドの受信に応答してではなく、ハンドオーバコマンドにより設定された条件の成立に応答してターゲットセルへのアクセスを開始する点で、既存のハンドオーバと異なる。
 CHOは、早いイベント・トリガリング(つまり、無線端末による測定報告をトリガーする閾値を下げること)によって、UEへのハンドオーバコマンドのデリバリーの信頼性(reliability)を高めることができる。これにより、CHOは、ハンドオーバ失敗率(handover failure rate)を低減できる。
 なお、CHOでは、複数の候補ターゲットセルの設定が無線端末に送られてもよい。候補ターゲットセルは、潜在的(potential)ターゲットセルと呼ばれてもよい。例えば、無線端末は、複数の候補ターゲットセルの設定とCHO実行閾値とを含むハンドオーバコマンドをソースRANノード(e.g., eNB)から受信する。そして、無線端末は、設定された複数の候補ターゲットセルの測定を行い(又は開始し)、いずれかの候補ターゲットセルでの測定がCHO実行閾値を満たす場合に当該候補セルへのアクセス(e.g. ランダムアクセス)を開始する。
Intel Corporation, "Discussion of conditional handover", R2-1816691, 3GPP TSG RAN WG2 Meeting #104, Spokane, WA, USA, November 12-16, 2018 MediaTek Inc., "Conditional Handover Procedures", R2-1816959, 3GPP TSG RAN WG2 Meeting #104, Spokane, WA, USA, November 12-16, 2018
 発明者等は、条件付きハンドオーバを含む条件付きモビリティをcloud RAN(C-RAN)配置(deployment)に適用することを検討し、様々な課題を見出した。C-RANでは、基地局(e.g., eNB、又はNR gNodeB(gNB))は、Central Unit(CU)と1又はそれ以上のDistributed Units(DUs)から構成される。C-RAN は、Centralized RANと呼ばれることもあるし、CU-DU split architectureと呼ばれることもある。
 例えば、条件付きモビリティ(e.g., 条件付きハンドオーバ)がCU-DU split architectureに適用される場合に、条件付きモビリティの実行条件の成立(又は条件付きモビリティの開始)をCUがどのようにして知るのかが明確でない。
 本明細書に開示される実施形態が達成しようとする目的の1つは、条件付きモビリティの実行条件の成立(又は条件付きモビリティの開始)を知ることをCentral Unit(CU)に可能にすることに寄与する装置、方法、及びプログラムを提供することである。なお、この目的は、本明細書に開示される複数の実施形態が達成しようとする複数の目的の1つに過ぎないことに留意されるべきである。その他の目的又は課題と新規な特徴は、本明細書の記述又は添付図面から明らかにされる。
 第1の態様では、基地局の分散ユニットは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、前記分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始を検出したことに応答して、第1のメッセージを前記基地局の中央ユニットに送るよう構成される。
 第2の態様では、基地局の分散ユニットのための方法は、前記分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始を検出したことに応答して、第1のメッセージを前記基地局の中央ユニットに送ることを含む。
 第3の態様では、基地局の中央ユニットは、少なくとも1つのメモリ及び前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサを含む。前記少なくとも1つのプロセッサは、前記基地局の分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティを制御し、前記分散ユニットが前記条件付きモビリティの開始を検出したことに応答して送信する第1のメッセージを受信するよう構成される。
 第4の態様では、基地局の中央ユニットのための方法は、前記基地局の分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティを制御すること、及び前記分散ユニットが前記条件付きモビリティの開始を検出したことに応答して送信する第1のメッセージを受信することを含む。
 第5の態様では、プログラムは、コンピュータに読み込まれた場合に、上述の第2又は第4の態様に係る方法をコンピュータに行わせるための命令群(ソフトウェアコード)を含む。
 上述の態様によれば、条件付きモビリティの実行条件の成立(又は条件付きモビリティの開始)を知ることをCentral Unit(CU)に可能にすることに寄与する装置、方法、及びプログラムを提供できる。
第1の実施形態に係る無線通信ネットワークの構成例を示す図である。 第1の実施形態に係る無線通信ネットワークの構成例を示す図である。 第1の実施形態に係る分散ユニットによって行われる処理の一例を示すフローチャートである。 第1の実施形態に係るシグナリングの一例を示すシーケンス図である。 第2の実施形態に係る分散ユニットによって行われる処理の一例を示すフローチャートである。 第3の実施形態に係るシグナリングの一例を示すシーケンス図である。 第3の実施形態に係るシグナリングの一例を示すシーケンス図である。 第4の実施形態に係るシグナリングの一例を示すシーケンス図である。 第4の実施形態に係るシグナリングの一例を示すシーケンス図である。 第5の実施形態に係るシグナリングの一例を示すシーケンス図である。 第5の実施形態に係るシグナリングの一例を示すシーケンス図である。 第6の実施形態に係るシグナリングの一例を示すシーケンス図である。 第6の実施形態に係るシグナリングの一例を示すシーケンス図である。 第7の実施形態に係るシグナリングの一例を示すシーケンス図である。 第8の実施形態に係るシグナリングの一例を示すシーケンス図である。 第9の実施形態に係るDOWNLINK DATA DELIVERY STATUSフレームのフォーマットの一例を示す図である。 幾つかの実施形態に係る中央ノード(e.g., gNB-CU)の構成例を示すブロック図である。 幾つかの実施形態に係る分散ノード(e.g., gNB-DU)の構成例を示すブロック図である。 幾つかの実施形態に係る無線端末の構成例を示すブロック図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
 以下に説明される複数の実施形態は、独立に実施されることもできるし、適宜組み合わせて実施されることもできる。これら複数の実施形態は、互いに異なる新規な特徴を有している。したがって、これら複数の実施形態は、互いに異なる目的又は課題を解決することに寄与し、互いに異なる効果を奏することに寄与する。
 以下に示される複数の実施形態は、3GPP Long Term Evolution (LTE)システム及び第5世代移動通信システム(5G system)を主な対象として説明される。しかしながら、これらの実施形態は、無線端末のモビリティ(e.g., ハンドオーバ)をサポートする他の無線通信システムに適用されてもよい。なお、本明細書で使用されるLTEとの用語は、特に断らない限り、5G Systemとのインターワーキングを可能とするためのLTE及びLTE-Advancedの改良・発展を含む。さらに、5G Systemは、NR (New Radio)に加えて、LTE eNodeB (eNB)が5Gコアネットワーク(5GC)と接続するネットワーク構成を含む。このときのLTE eNBは、ng-eNBとも呼ばれる。ng-eNBは、5GCと接続しているeNBということでeNB/5GCとも呼ばれる。
<第1の実施形態>
 図1は、本実施形態に係る無線通信ネットワークの構成例を示している。本実施形態に係る無線通信ネットワークは、Central Unit(CU)1、及び1又はそれ以上のDistributed Units(DUs)2を含む。CU1及び1又はそれ以上のDUs2は、無線アクセスネットワーク(Radio Access Network(RAN))に配置される。CU1及び1又はそれ以上のDUs2は、基地局(e.g., LTE eNB、又はgNB)として動作する。CU1及び各DU2の間はインタフェース101によって接続される。UE3は、少なくとも1つのエアインタフェース102を介して、少なくとも1つのDU2に接続される。
 CU1及び1又はそれ以上のDUs2は、Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network(EUTRAN)ノード又はNG-RAN(Next generation Radio Access Network)ノードであってもよい。EUTRANノードは、eNB又はen-gNBであってもよい。NG-RANノードは、gNB又はng-eNBであってもよい。
 CU1は、gNBのRadio Resource Control(RRC)、Service Data Adaptation Protocol(SDAP)、及びPacket Data Convergence Protocol(PDCP)protocols(又はgNBのRRC及びPDCP protocols)をホストする論理ノードであってもよい。DU2は、gNBのRadio Link Control(RLC)、Medium Access Control(MAC)、及びPhysical(PHY)layersをホストする論理ノードであってもよい。CU1がgNB-CUでありDUs2がgNB-DUsであるなら、インタフェース101はF1インタフェースであってもよい。
 図2に示されるように、CU1は、Control Plane (CP)Unit(e.g., gNB-CU-CP)11及び1又はそれ以上のUser Plane(UP)Unit(e.g., gNB-CU-UP)12を含んでもよい。この場合、CU-CP11は、コントロールプレーン・インタフェース201(e.g., E1インタフェース)を介してCU-UP12に接続される。さらに、CU-CP11は、コントロールプレーン・インタフェース202(e.g., F1-Cインタフェース)を介して各DU2に接続される。CU-UP12は、ユーザプレーン・インタフェース203(e.g., F1-Uインタフェース)を介して各DU2に接続される。
 図3は、本実施形態のDU2によって行われる処理の一例を示している。ステップ301では、DU2は、当該DU2によって提供されるセル(第1のセル)から他のセル(第2のセル)へのUE3の条件付きモビリティの開始を検出する。ここで、条件付きモビリティは、条件付きハンドオーバであってもよい。条件付きハンドオーバは、intra-CU intra-DUハンドオーバであってもよいし、intra-CU inter-DUハンドオーバであってもよいし、inter-CUハンドオーバであってもよい。したがって、intra-CU intra-DUハンドオーバの場合、第2のセル(ターゲットセル)は、第1のセル(ソースセル)と同じDU2によって提供されてもよい。intra-CU inter-DUハンドオーバの場合、第2のセル(ターゲットセル)は、第1のセル(ソースセル)を提供するDU2とは異なるがこれと同じCU1に接続された他のDU2によって提供されてもよい。inter-CUハンドオーバの場合、第2のセル(ターゲットセル)は、他のRANノード(e.g., 第1のセル(ソースセル)を提供するDU2とは異なるCU1に接続された他のDU)により提供されてもよい。
 条件付きハンドオーバと同様の動作は、他の様々なモビリティ・シナリオにも適用されることができる。上述のように、条件付きハンドオーバ(CHO)では、UE3が、ハンドオーバコマンド(又は指示)の受信に応答してではなく、設定された条件の成立に応答してターゲットセルへのアクセス(e.g. ランダムアクセス)を開始する。CHOの実行条件は、例えば、閾値及び対応するtime-to-trigger(TTT)を含む。これに代えて、CHOの実行条件は、ネットワークからの明示的な実行指示(e.g., 所定のシグナリング)の受信であってもよい。この場合、当該実行指示の受信に使用される設定(e.g., 無線パラメータ)のUE3による受信は、CHOの実行条件が当該実行指示の受信であることを、UE3に暗示的に示してもよい。言い換えると、UE3は当該設定(e.g., 無線パラメータ)を受信した場合、それに関連付けられたCHOの実行条件が当該実行指示(e.g., 所定のシグナリング)の受信であると判定(又は理解)してもよい。
 これと同様に、様々な条件付きモビリティでは、UE3が、モビリティ・コマンド(e.g., RRC Recofiguration for mobility)の受信に応答してではなく、モビリティ・コマンドにより設定された条件(e.g., 閾値及びTTT)の成立に応答して他のセル(第2のセル、ターゲットセル)へのアクセスを開始する。条件付きハンドオーバ(CHO)と同様に、他の条件付きモビリティ(e.g., PSCell change)に対しても、ネットワークからの明示的な実行指示(e.g., 所定のシグナリング)の受信を当該条件付きモビリティの実行条件とすることもできる。さらに、上述のCHOに対する説明は、その他の条件付きモビリティにも適用されることができる。
 このような条件付きモビリティは、例えば、Dual Connectivity(DC)でのマスターセルグループ(Master Cell Group(MCG))のプライマリセルの変更(Primary Cell (PCell) change)でもよいし、DCでのマスターノード間(inter-Master Node (MN))ハンドオーバでもよい。さらに又はこれに代えて、条件付きモビリティは、DCでのセカンダリノード変更(Secondary Node (SN) change)でもよいし、DCでのセカンダリセルグループ(Secondary Cell Group(SCG))のプライマリセルの変更(つまりプライマリSCGセル変更(Primary SCG Cell (PSCell) change))でもよい。PSCellは、SCGのSpecial Cell(SpCell)である。UE3は、ハンドオーバ手順(又はReconfiguration with Sync手順)を行うときに、PSCellにランダムアクセスを行う。すなわち、条件付きモビリティは、様々なinter-MN mobility scenarios、intra-MN mobility senarios、 inter-SN mobility scenarios、及びintra-SN mobility scenariosを含む。
 DCは、Multi-Radio Dual Connectivity (MR-DC)であってもよい。MR-DCは、Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (E-UTRA)-NR Dual Connectivit (EN-DC)、NR-E-UTRA DC(NE-DC)、NG-RAN EN-DC(NGEN-DC)、及びNR-NR DC(NR DC)を含む。
 条件付きPCell change又は条件付きinter-MN handoverは、MN initiated SN changeを伴ってもよい。
 条件付きPSCell changeは、Inter-gNB-DU Mobility using MCG SRBであってもよい。言い換えると、DU間でのPSCell changeのためのUEとCU(つまり、セカンダリノード(Secondary Node(SN))との間のRRCシグナリングは、マスターノード(Master Node(MN))によって提供されるMaster Cell Group(MCG)のシグナリング無線ベアラ(Signalling Radio Bearer(SRB))(e.g., SRB1)を介して行われてもよい。
 条件付きPSCell changeは、Inter-gNB-DU Mobility using SCG SRBであってもよい。言い換えると、DU間でのPSCell changeのためのUEとCU(つまり、セカンダリノード(Secondary Node(SN))との間のRRCシグナリングは、Secondary Cell Group(SCG)のSRB(e.g., SRB3)を介して行われてもよい。
 条件付きPSCell changeは、MN initiated SN change又はSN initiated SN changeであってもよい。言い換えると、SN間(e.g., 異なるSNのCU間)でのPSCell changeのためのUEとターゲットSN(e.g., ターゲットCU)との間のRRCシグナリングは、MCGのSRB(e.g., SRB1)を介して行われてもよい。
 条件付きIntra-CU PSCell Changeは、条件つきSN Modificationと呼ぶこともできる。Intra-CU PSCell Changeは、同一のSN内でのSCGの設定変更の一例である。このような同一のSN内でのSCGの設定変更は、SN initiated SN Modification with (or without) MN involvement手順を使用する。
 PSCell Change手順は、Reconfiguration with sync手順を伴う手順の一例である。このことから、条件付きPSCell Changeは、条件付きReconfiguration with sync(for PSCell change)と呼ぶこともできる。
 幾つかの実装では、DU2は、条件付きモビリティの表示(indication)(e.g., measurement report)をUE3から受信したことによって条件付きモビリティの開始(又は実行)を検出してもよい。これに代えて、DU2は、条件付きモビリティの開始(又は実行)の条件の成立を自律的に判定し、これにより条件付きモビリティの開始(又は実行)を自律的に検出してもよい。
 ステップ302では、DU2は、条件付きモビリティの開始の検出に応答して、当該DU2が関連付けられているCU1に所定のメッセージを送信する。したがって、当該所定のメッセージは、UE3による条件付きモビリティの開始(又は実行)に関連付けられる。当該所定のメッセージは、これに限定されないが例えば、条件付きモビリティの開始を明示してもよい。
 図4は、本実施形態に係るシグナリングの一例を示している。ステップ401では、DU2は、CU1に、条件付きモビリティの開始に関連付けられた所定のメッセージ(e.g., F1APメッセージ)を送信する。
 以上の説明から理解されるように、本実施形態では、DU2は、条件付きモビリティの開始の検出に応答して、当該DU2が関連付けられているCU1に所定のメッセージを送信する。これにより、CU1は、条件付きモビリティの開始を知ることができる。
 幾つかの条件付きモビリティ・シナリオ(e.g., Intra-CU Inter-DU ハンドオーバ、及びIntra-CU Inter-DU PSCell Change)では、CU1は、条件付きモビリティの開始(又は実行)の直前までソースDU2を介してUE3のためのデータ伝送(ダウンリンク、又はアップリンク、又は両方)を継続できることが好ましいかもしれない。本実施形態で説明された動作によれば、CU1は、ソースDU2からの所定のメッセージの受信によって、条件付きモビリティの開始(又は実行)を知ることができる。したがって、例えば、CU1は、所定のメッセージを受信するまでソースDU2を介してUE3のためのデータ伝送(ダウンリンク、又はアップリンク、又は両方)を継続するよう動作してもよい。
 なお、幾つかの実装では、上述の所定のメッセージは、DU2からCU1に送られる既存のメッセージ又はデータと共通であってもよい。例えば、所定のメッセージは、UE3に関するUEコンテキストの変更のためのシグナリング手順において送信されるメッセージ(e.g., F1APメッセージ)であってもよい。より具体的には、当該所定のメッセージは、UE Context Modification手順で送信されるUE CONTEXT MODIFICATION RESPONSEメッセージであってもよい。
 所定のメッセージは、UE3へ送信されていないダウンリンクデータを示すためにCU1に送信されるメッセージ(又はフレーム、又はProtocol Data Unit(PDU))であってもよい。より具体的には、当該所定のメッセージは、DOWNLINK DATA DELIVERY STATUS(DDDS)フレームであってもよい。
 これに代えて、幾つかの実装では、上述の所定のメッセージは、条件付きモビリティの開始を示すために新規に規定されたメッセージ又はデータ(e.g., F1APメッセージ)であってもよい。例えば、ソースDU2は、UE CONTEXT MODIFICATION RESPONSEメッセージをCU1に送り、さらにDDDSフレームをCU1に送り、その後に、条件付きモビリティの開始を示すために新規に規定されたメッセージ又はデータをさらにCU1に送信してもよい。ソースDU2は、新規メッセージ又はデータをCU1に送信するとき、再度DDDSフレームをCU1に送ってもよい。
<第2の実施形態>
 本実施形態は、条件付きモビリティのために改良されたDUの動作を提供する。本実施形態に係る無線通信ネットワークの構成例は、図1及び図2に示された例と同様であってもよい。
 図5は、本実施形態のDU2によって行われる処理の一例を示している。ステップ501では、DU2は、UE3の計画されている(planned)モビリティが条件付きモビリティであるかを判定する。DU2は、CU1から受信した制御メッセージが条件付きモビリティに関連付けられた情報要素を含むか否かに基づいて、UE3の計画されているモビリティが条件付きモビリティであるかを判定してもよい。これに代えて、DU2は、CU1から受信した制御メッセージに包含されている情報要素が条件付きモビリティ(又は条件付きモビリティがUE3に計画されていること)を示すか否かに基づいて、UE3の計画されているモビリティが条件付きモビリティであるかを判定してもよい。
 当該制御メッセージ(又はこれに包含される情報要素)は、UE3の計画されているモビリティが条件付きモビリティであることを明示的に示してもよいし暗示的に示してもよい。当該情報要素は、例えば、条件付きモビリティの開始(又は実行)の条件を示す情報要素であってもよい。当該情報要素は、条件付きモビリティを示す何らかの表示(例えば、条件付きモビリティ情報要素(IE)又は条件付きモビリティ・フラグ(ビット))であってもよい。
 幾つかの実装では、当該制御メッセージは、UE3に関するUEコンテキストの変更のためのシグナリング手順において送信されるメッセージ(e.g., F1APメッセージ)であってもよい。より具体的には、当該所定のメッセージは、UE Context Modification手順で送信されるUE CONTEXT MODIFICATION REQUESTメッセージであってもよい。
 ステップ502では、DU2は、計画されているモビリティが条件付きモビリティである場合に、計画されているモビリティが条件付きモビリティでない場合(通常のモビリティ(e.g., ハンドオーバ)の場合)に比べて、所定のメッセージのCU1への送信を遅らせる。
 幾つかの実装では、当該所定のメッセージは、UE3に関するUEコンテキストの変更のためのシグナリング手順において送信されるメッセージ(e.g., F1APメッセージ)であってもよい。より具体的には、当該所定のメッセージは、UE Context Modification手順で送信されるUE CONTEXT MODIFICATION RESPONSEメッセージであってもよい。通常の(つまり条件付きでない)UEモビリティでは、DU2は、CU1からのUE CONTEXT MODIFICATION REQUESTメッセージの受信に応答して、要求された修正(modifications)を実行し、更新(update)をUE CONTEXT MODIFICATION RESPONSEメッセージにおいて報告する。これとは対照的に、条件付きUEモビリティでは、DU2は、CU1からUE CONTEXT MODIFICATION REQUESTメッセージを受信し、要求された修正(modifications)を保留してもよい。そして、DU2は、条件付きモビリティの開始条件の成立に応答して、要求された修正を実行し、更新(update)をUE CONTEXT MODIFICATION RESPONSEメッセージにおいて報告してもよい。
 これに代えて、幾つかの実装では、当該所定のメッセージは、UE3へ送信されていないダウンリンクデータを示すためにCU1に送信されるメッセージ(又はフレーム、又はProtocol Data Unit(PDU))であってもよい。より具体的には、当該所定のメッセージは、DOWNLINK DATA DELIVERY STATUS(DDDS)フレームであってもよい。DDDSフレームは、GTP-U(又はF1-U)PDUであってもよい。通常の(つまり条件付きでない)UEモビリティでは、DU2は、CU1からのUE CONTEXT MODIFICATION REQUESTメッセージ(UE3のためのデータ送信の停止を示すTransmission Stop Indicator 情報要素を含む)の受信に応答して、DDDSフレームをCU1に送信する。これとは対照的に、条件付きUEモビリティでは、DU2は、CU1からUE CONTEXT MODIFICATION REQUESTメッセージを受信した後も、UE3のためのデータ送信を継続してもよい。そして、DU2は、条件付きモビリティの開始条件の成立に応答して、UE3のためのデータ送信を停止し、DDDSフレームをCU1に送信してもよい。
 DDDSフレームは、条件付きモビリティの開始(又は実行)を示す新たな情報(e.g., ビット)を包含してもよい。これに代えて、DU2は、通常の(つまり条件付きでない)UEモビリティで使用されるDDDSフレームを再利用しつつ、DU2からCU1に条件付きモビリティの開始(又は実行)を示すための新たに規定されるメッセージを送信してもよい。当該メッセージは、CONDITIONAL MOBILITY (又はHANDOVER, PSCell CHANGE, or RECONFIGURATION WITH SYNC) TRIGGERED (又はINITIATED, DETECTED, INDICATION, or INSTRUCTION)メッセージと呼ばれてもよい。このとき、DU2は、DDDSフレームを当該メッセージの後に送ってもよいし、当該メッセージの前に送ってもよい。
 本実施形態では、DU2は、UE3の計画されているモビリティが条件付きモビリティである場合に、計画されているモビリティが条件付きモビリティでない場合に比べて、所定のメッセージのCU1への送信を遅らせる。具体的には、例えば、DU2は条件付きモビリティの開始条件が成立するまで(又は、成立したことを検出するまで)、当該所定のメッセージのCU1への送信を保留(又は延期)してもよい。したがって、当該所定のメッセージは、条件付きモビリティの開始(又は実行)をCU1に報告する用途を兼ねることができる。言い換えると、CU1は、当該所定のメッセージを受信することで、UE3が条件付きモビリティを開始(又は実行)したことを知ることができる。
<第3の実施形態>
 本実施形態は、条件付きモビリティのためのシグナリングの具体例を提供する。本実施形態に係る無線通信ネットワークの構成例は、図1及び図2に示された例と同様であってもよい。
 図6は、intra-CU inter-DU条件付きハンドオーバ(CHO)手順の一例を示している。なお、図6の手順は、SCGのSRB(e.g., SRB3)を使用する条件付きPSCell changeのために使用されてもよい。言い換えると、図6の手順は、Inter-gNB-DU Mobility using SCG SRBのために使用されてもよい。
 図6の手順よりも前に、CU1は、CHOのための報告設定(e.g., ReportConfig)を包含する測定設定(e.g., MeasConfig)を含むRRCメッセージ(e.g., RRCReconfigurationメッセージ)を生成し、これをソースDU2A経由でUE3へ送信してもよい。CHOのための測定設定は、CHO判定のために早いイベント・トリガリング(つまり、UE3による測定報告をトリガーする閾値を下げること)を可能にする。DU2Aは、測定設定を含むRRCメッセージを受信するが、当該RRCメッセージに測定設定が含まれていることを認識しなくてもよい。言い換えると、DU2AはCU1から受信する測定設定を透過的に(transparently)UE3へ転送してもよい。他の実施形態を含む以降の説明でも、同様である。DU2Aは、測定設定以外の他の情報を含むCU1からUE3へ送信されるRRCメッセージも同様に扱ってもよい。
 ステップ601では、UE3は、測定報告(Measurement Report)をソースDU2Aに送る。ステップ602では、ソースDU2Aは、受信した測定報告を運ぶためにUPLINK RRC TRANSFERメッセージをCU1に送る。CU1は、当該測定報告に基づいて、ソースDU2AのセルからターゲットDU2BのセルへのUE3のCHOを決定する。DU2Aは、測定報告を含むRRCメッセージを受信するが、当該RRCメッセージに測定報告が含まれていることを認識しなくてもよい。言い換えると、DU2AはUE3から受信する測定報告を透過的に(transparently)CU1へ転送してもよい。他の実施形態を含む以降の説明でも、同様である。DU2Aは、測定報告以外の他の情報を含むUE3からCU1へ送信されるRRCメッセージについても同様に扱ってもよい。
 ステップ603では、CU1は、UEコンテキストを作成し且つ1又はそれ以上のベアラをセットアップするために、UE CONTEXT SETUP REQUESTメッセージをターゲットDU2Bに送る。UE CONTEXT SETUP REQUESTメッセージは、CHOのためのターゲットセルの無線リソースの設定(e.g., CellGroupConfig)をターゲットDU2Bに要求してもよい。CHO要求であることを示すために、UE CONTEXT SETUP REQUESTメッセージ内の“CU to DU RRC Information”情報要素に包含されている“Handover Preparation Information”情報要素が使用されてもよい。これに代えて、CHO要求であることを示すために、UE CONTEXT SETUP REQUESTメッセージ内に新たな情報要素が定義されてもよい。
 ステップ604では、ターゲットDU2Bは、UE CONTEXT SETUP RESPONSEメッセージによりCU1に応答する。ターゲットDU2Bは、CHO要求の受信に応答して、CHOを受け入れ可能であるか否かを判定してもよい。ターゲットDU2Bは、CHOを受け入れ可能であるか否かを示す情報要素をUE CONTEXT SETUP RESPONSEメッセージ(ステップ604)に含めてもよい。
 ステップ605では、CU1は、CU1によって生成されたRRCメッセージ(e.g., RRCReconfigurationメッセージ)を包含するRRC-Containerを含むUE CONTEXT MODIFICATION REQUESTメッセージをソースDU2Aに送る。当該RRCメッセージは、CHOの開始(又は実行)条件(e.g., 閾値及びTTT)を含む。さらに、当該RRCメッセージは、UE3がCHOを離れる(exit)条件(e.g., offset)、及び有効(validity)タイマの値を含んでもよい。有効タイマの値は、候補ターゲットセルのリソースがいつまで有効であるかを示してもよい。あるいは、有効タイマの値は、候補ターゲットセルへのアクセスが許可される期間(時間)、又はCHOのための設定が有効な期間(時間)を示してもよい。
 UE CONTEXT MODIFICATION REQUESTメッセージ(ステップ605)は、これがUE3へのCHOの指示(つまり、CHOによるハンドオーバに必要なRRC設定情報)を含むこと、又はこれがCHOを意図していることを明示的又は暗示的に示す情報要素(IE)を含んでもよい。DU2Aは、受信したUE CONTEXT MODIFICATION REQUESTメッセージが当該IEを含むか否かを判定してもよい。例えば、DU2Aが、CHOであると判定した場合、後続の動作を決定してもよい。
 より具体的には、CU1は、CHOの開始条件を決定し、これをUE CONTEXT SETUP REQUESTメッセージ(ステップ603)に包含されるCU To DU RRC Information情報要素(e.g., この中のHandover Preparation Information)又は新規な情報要素に含めてもよい。そして、ターゲットDU2Bは、CHOの開始条件を包含するターゲットセルの無線リソースの設定(e.g., CellGroupConfig)を生成し、これをUE CONTEXT SETUP RESPONSEメッセージ(ステップ604)に含めてもよい。さらに、CU1は、受信した無線リソースの設定(e.g., CellGroupConfig)を包含するRRCReconfigurationメッセージを生成し、これをUE CONTEXT MODIFICATION REQUESTメッセージ(ステップ605)内のRRC-Containerに含めてもよい。
 これに代えて、CU1は、CHOの開始条件を決定し、これをUE CONTEXT MODIFICATION REQUESTメッセージ(ステップ605)内の新規情報要素に含めてもよい。
 さらにこれに代えて、ターゲットDU2BがCHOの開始条件を決定してもよい。この場合、ターゲットDU2Bは、CHO要求(ステップ603)に応答してCHOの開始条件を決定し、決定したCHOの開始条件をUE CONTEXT SETUP RESPONSEメッセージ(ステップ604)内のCellGroupConfig情報要素又は新規情報要素に含めてもよい。そして、CU1は、CHOの開始条件を含むCellGroupConfig情報要素又は新規情報要を包含するRRCReconfigurationメッセージを生成し、これをUE CONTEXT MODIFICATION REQUESTメッセージ(ステップ605)に含めてもよい。CU1は、CHOの指示を明示的に示す情報要素(IE)又はパラメータを、RRCReconfigurationメッセージに含めてもよい。
 CHOの開始条件に加えて、UE3がCHOを離れる(exit)条件、及び有効(validity)タイマの値も、CHOの開始条件と同様に取り扱われてもよい。これに代えて、CHOの開始条件、CHOを離れる条件、及び有効タイマの値それぞれが、上述のいずれかの方法によって取り扱われてもよい。
 ステップ606では、ソースDU2Aは、受信したRRCReconfigurationメッセージをUE3にフォワードする。
 UE3は、RRCReconfigurationメッセージ(ステップ606)を受信すると、これがCHOの指示であることを示す情報要素(IE)又はパラメータを含むか否か、又はこれがCHOの開始条件を含むか否かに応じて、CHOの指示であるか否かを判定する。UE3は、CHOの指示であると判定した場合、当該RRCReconfigurationメッセージの受信後もソースDU2Aとのコネクションを維持する。UE3は、RRCReconfigurationメッセージにより設定されたCHOの実行条件が成立したことに応じて(ステップ607)、ターゲットDU2Bへのアクセス(i.e., ランダムアクセス手順)を開始する(ステップ610)。UE3は、CHO開始の表示(又は報告)をソースDU2Aに送信してもよい(ステップ608)。
 UE3によるCHO開始の表示は、Physical Uplink Control Channel(PUCCH)で送信されるアップリンク制御情報(Uplink Control Information(UCI))であってもよい。これに代えて、CHO開始の表示は、MAC Control Element(CE)であってもよい。ソースDU2Aは、CHO開始の表示に用いられる無線リソースの設定を予め決定し、これをCU1を介してUE3に通知してもよい。例えば、ソースDU2Aは、CHO開始の表示に用いられる無線リソースの設定をUE CONTEXT SETUP RESPONSEメッセージに包含される情報(e.g., CellGroupConfig)に含め、これをCU1へ送信してもよい。そして、CU1は、CHO開始の表示に用いられる無線リソースの設定を含むRRCReconfigurationメッセージを生成し、これをUE3へ送信してもよい。複数の候補ターゲットセルがある場合、CHO開始の表示は、選択された候補ターゲットセル(つまり、ハンドオーバがトリガされた候補ターゲットセル)を明示的又は暗示的に示す情報を含んでもよい。
 ステップ609では、ソースDU2Aは、UE CONTEXT MODIFICATION RESPONSEメッセージによりCU1に応答する。一例では、ソースDU2Aは、CHO開始の表示(ステップ608)をUE3から受信したことに応答して、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ609)を送信してもよい。この場合、UE CONTEXT MODIFICATION RESPONSEメッセージは、CHOの開始(又は実行)をCU1に報告する用途を兼ねることができる。他の例では、ソースDU2Aは、CHO開始の表示(ステップ608)の受信と無関係に、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ609)を送信してもよい。ソースDU2Aは、CHO開始の表示(ステップ608)の受信よりも前に、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ609)を送信してもよい。
 図6には示されていないが、ランダムアクセス手順(ステップ610)に成功した後に、UE3は、RRCReconfigurationCompleteメッセージによってターゲットDU2Bを介してCU1に応答してもよい。ターゲットDU2Bは、UE3から受信したRRCReconfigurationCompleteメッセージを運ぶためにUPLINK RRC TRANSFERメッセージをCU1に送ってもよい。そして、CU1は、UE CONTEXT RELEASE COMMANDメッセージをソースDU2Aに送信してもよい。このとき、UE CONTEXT RELEASE COMMANDメッセージに付される(又は含まれる)解放Cause値は、例えば、“Handover Condition Met”、“Action Desirable for Radio Reasons”、“Handover Complete”、又は“Normal Release”であってもよい。ソースDU2Aは、UE3に関するUEコンテキストを解放し、UE CONTEXT RELEASE COMPLETEメッセージによってCU1に応答してもよい。
 図7は、intra-CU inter-DU条件付きハンドオーバ(CHO)手順の他の例を示している。図7の手順は、SCGのSRB(e.g., SRB3)を使用する条件付きPSCell changeのために使用されてもよい。ステップ701~706の処理は、図6のステップ601~606のそれと同様である。ステップ707では、ソースDU2Aは、UE CONTEXT MODIFICATION RESPONSEメッセージによりCU1に応答する。
 ステップ708では、UE3は、RRCReconfigurationメッセージにより設定されたCHOの実行条件の成立を判定し、ターゲットDU2Bへのアクセス(i.e., ランダムアクセス手順)を開始する(ステップ711)。UE3は、CHO開始の表示(又は報告)をソースDU2Aに送信してもよい(ステップ709)。UE3によるCHO開始の表示は、PUCCHで送信されるアップリンク制御情報(UCI)であってもよい。これに代えて、CHO開始の表示は、MAC CEであってもよい。
 ステップ710では、ソースDU2Aは、DDDSフレームをCU1に送信する。一例では、ソースDU2Aは、CHO開始の表示(ステップ709)をUE3から受信したことに応答して、DDDSフレーム(ステップ710)を送信してもよい。この場合、DDDSフレームは、CHOの開始(又は実行)をCU1に報告する用途を兼ねることができる。これに代えて、ソースDU2Aは、通常の(つまり条件付きでない)ハンドオーバで使用されるDDDSフレームを送信しつつ、CU1にCHO開始(又は実行)を示すための新たなメッセージをさらに送信してもよい(図示なし)。当該メッセージは、CONDITIONAL HANDOVER TRIGGERED (又はINITIATED, DETECTED, INDICATION, or INSTRUCTION)メッセージと呼ばれてもよい。他の例では、ソースDU2Aは、CHO開始の表示(ステップ709)の受信と無関係に、DDDSフレーム(ステップ710)を送信してもよい。ソースDU2Aは、CHO開始の表示(ステップ709)の受信よりも前に、DDDSフレーム(ステップ710)を送信してもよい。
 図7には示されていないが、ランダムアクセス手順(ステップ711)に成功した後に、UE3は、RRCReconfigurationCompleteメッセージによってターゲットDU2Bを介してCU1に応答してもよい。ターゲットDU2Bは、UE3から受信したRRCReconfigurationCompleteメッセージを運ぶためにUPLINK RRC TRANSFERメッセージをCU1に送ってもよい。そして、CU1は、UE CONTEXT RELEASE COMMANDメッセージをソースDU2Aに送信してもよい。このとき、UE CONTEXT RELEASE COMMANDメッセージに付される(又は含まれる)解放Cause値は、例えば、“Handover Condition Met”、“Action Desirable for Radio Reasons”、“Handover Complete”、又は“Normal Release”であってもよい。ソースDU2Aは、UE3に関するUEコンテキストを解放し、UE CONTEXT RELEASE COMPLETEメッセージによってCU1に応答してもよい。
 本実施形態で説明された幾つかの手順は、intra-CU inter-DU条件付きハンドオーバを可能にする。
<第4の実施形態>
 本実施形態は、条件付きモビリティのためのシグナリングの具体例を提供する。本実施形態に係る無線通信ネットワークの構成例は、図1及び図2に示された例と同様であってもよい。
 図8は、intra-CU inter-DU条件付きハンドオーバ(CHO)手順の一例を示している。図8の手順は、SCGのSRB(e.g., SRB3)を使用する条件付きPSCell changeのために使用されてもよい。ステップ801~806の処理は、図6のステップ601~606のそれと同様である。
 ステップ807では、ソースDU2Aは、CHOの実行条件の成立を自律的に判定する。ステップ808では、ソースDU2Aは、CHOの実行条件の成立に応答して、CHO開始コマンドをUE3に送る。CHO開始コマンドは、Physical Downlink Control Channel(PDCCH)で送信されるダウンリンク制御情報(Downlink Control Information(DCI))であってもよい。これに代えて、CHO開始コマンドは、MAC Control Element(CE)であってもよい。ソースDU2Aは、CHO開始コマンドに用いられる無線リソースの設定を予め決定し、これをCU1を介してUE3に通知してもよい。例えば、ソースDU2Aは、CHO開始コマンドに用いられる無線リソースの設定をUE CONTEXT SETUP RESPONSEメッセージに包含される情報(e.g., CellGroupConfig)に含め、これをCU1へ送信してもよい。そして、CU1は、CHO開始コマンドに用いられる無線リソースの設定を含むRRCReconfigurationメッセージを生成し、これをUE3へ送信してもよい。複数の候補ターゲットセルがある場合、CHO開始コマンドは、選択された候補ターゲットセル(つまり、ハンドオーバがトリガされた候補ターゲットセル)を明示的又は暗示的に示す情報を含んでもよい。
 ステップ809では、ソースDU2Aは、UE CONTEXT MODIFICATION RESPONSEメッセージによりCU1に応答する。一例では、ソースDU2Aは、CHOの実行条件の成立に応答して、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ809)を送信してもよい。この場合、UE CONTEXT MODIFICATION RESPONSEメッセージは、CHOの開始(又は実行)をCU1に報告する用途を兼ねることができる。他の例では、ソースDU2Aは、CHOの実行条件の成立と無関係に、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ809)を送信してもよい。ソースDU2Aは、CHOの実行条件の成立よりも前に、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ809)を送信してもよい。
 ステップ810では、UE3は、CHO開始コマンドの受信に応答して、ターゲットDU2Bへのアクセス(i.e., ランダムアクセス手順)を開始する。
 図8には示されていないが、ランダムアクセス手順(ステップ810)に成功した後に、UE3は、RRCReconfigurationCompleteメッセージによってターゲットDU2Bを介してCU1に応答してもよい。ターゲットDU2Bは、UE3から受信したRRCReconfigurationCompleteメッセージを運ぶためにUPLINK RRC TRANSFERメッセージをCU1に送ってもよい。そして、CU1は、UE CONTEXT RELEASE COMMANDメッセージをソースDU2Aに送信してもよい。ソースDU2Aは、UE3に関するUEコンテキストを解放し、UE CONTEXT RELEASE COMPLETEメッセージによってCU1に応答してもよい。
 図9は、intra-CU inter-DU条件付きハンドオーバ(CHO)手順の他の例を示している。図9の手順は、SCGのSRB(e.g., SRB3)を使用する条件付きPSCell changeのために使用されてもよい。ステップ901~906の処理は、図8のステップ801~806のそれと同様である。ステップ907では、ソースDU2Aは、UE CONTEXT MODIFICATION RESPONSEメッセージによりCU1に応答する。
 ステップ908では、ソースDU2Aは、CHOの実行条件の成立を自律的に判定する。ステップ909では、ソースDU2Aは、CHOの実行条件の成立に応答して、CHO開始コマンドをUE3に送る。CHO開始コマンドは、PDCCHで送信されるDCIであってもよい。これに代えて、CHO開始コマンドは、MAC CEであってもよい。
 ステップ910では、ソースDU2Aは、DDDSフレームをCU1に送信する。一例では、ソースDU2Aは、CHOの実行条件の成立に応答して、DDDSフレーム(ステップ910)を送信してもよい。この場合、DDDSフレームは、CHOの開始(又は実行)をCU1に報告する用途を兼ねることができる。これに代えて、ソースDU2Aは、通常の(つまり条件付きでない)ハンドオーバで使用されるDDDSフレームを送信しつつ、CU1にCHO開始(又は実行)を示すための新たなメッセージを送信してもよい(図示なし)。当該メッセージは、CONDITIONAL HANDOVER TRIGGERED (又はINITIATED, DETECTED, INDICATION, or INSTRUCTION)メッセージと呼ばれてもよい。他の例では、ソースDU2Aは、CHOの実行条件の成立と無関係に、DDDSフレーム(ステップ910)を送信してもよい。ソースDU2Aは、CHOの実行条件の成立よりも前に、DDDSフレーム(ステップ910)を送信してもよい。
 図9には示されていないが、ランダムアクセス手順(ステップ911)に成功した後に、UE3は、RRCReconfigurationCompleteメッセージによってターゲットDU2Bを介してCU1に応答してもよい。ターゲットDU2Bは、UE3から受信したRRCReconfigurationCompleteメッセージを運ぶためにUPLINK RRC TRANSFERメッセージをCU1に送ってもよい。そして、CU1は、UE CONTEXT RELEASE COMMANDメッセージをソースDU2Aに送信してもよい。このとき、UE CONTEXT RELEASE COMMANDメッセージに付される(又は含まれる)解放Cause値は、例えば、“Handover Condition Met”、“Action Desirable for Radio Reasons”、“Handover Complete”、又は“Normal Release”であってもよい。ソースDU2Aは、UE3に関するUEコンテキストを解放し、UE CONTEXT RELEASE COMPLETEメッセージによってCU1に応答してもよい。
 本実施形態で説明された幾つかの手順は、intra-CU inter-DU条件付きハンドオーバを可能にする。
<第5の実施形態>
 本実施形態は、条件付きモビリティのためのシグナリングの具体例を提供する。本実施形態に係る無線通信ネットワークの構成例は、図1及び図2に示された例と同様であってもよい。
 図10は、intra-CU inter-DU 条件付きPSCell Change手順の一例を示している。既に述べたように、条件付きPSCell Changeは、条件付きReconfiguration with sync(for PSCell change)と呼ぶこともできる。図10は、MR-DCでのPSCell ChangeにMN4(e.g., Master eNB(MeNB))が関与(involve)するケースを示している。図10の例では、UE3のためのPSCellがソースDU2AのセルからターゲットDU2Bのセルに変更される。PSCell ChangeのためにSN(i.e., CU1)とUE3との間で送信されるRRCシグナリングは、MN4によって提供されるMCG内のSRBを使用する。
 図10の手順よりも前に、CU1は、条件付きPSCell Changeのための報告設定(e.g., ReportConfig)を包含する測定設定(e.g., MeasConfig)を含むRRCメッセージ(e.g., RRCReconfigurationメッセージ)を生成し、これをMN4により提供されるMCG SRB経由でUE3へ送信してもよい。条件付きPSCell Changeのための測定設定は、条件付きPSCell Change判定のために早いイベント・トリガリング(つまり、UE3による測定報告をトリガーする閾値を下げること)を可能にする。
 ステップ1001及び1002では、UE3は、測定報告(Measurement Report)をMN4を介してCU1に送る。ステップ1002では、MN4は、受信した測定報告を運ぶためにRRC TRANSFERメッセージをCU1に送る。CU1は、当該測定報告に基づいて、ソースDU2AのセルからターゲットDU2BのセルへのUE3の条件付きモビリティ(i.e., 条件付きPSCell change)を決定する。
 ステップ1003では、CU1は、UEコンテキストを作成し且つ1又はそれ以上のベアラをセットアップするために、UE CONTEXT SETUP REQUESTメッセージをターゲットDU2Bに送る。UE CONTEXT SETUP REQUESTメッセージは、PSCellの無線リソースの設定(e.g., CellGroupConfig)をターゲットDU2Bに要求してもよい。条件付きモビリティ(i.e., 条件付きPSCell change)の要求であることを明示的に又は暗示的に示すために、UE CONTEXT SETUP REQUESTメッセージ内の“CU to DU RRC Information”情報要素に包含されている“CG-ConfigInfo”情報要素が使用されてもよい。これに代えて、条件付きモビリティ要求であることを明示的に又は暗示的に示すために、UE CONTEXT SETUP REQUESTメッセージ内に新たな情報要素が定義(又は導入)されてもよい。
 ステップ1004では、ターゲットDU2Bは、UE CONTEXT SETUP RESPONSEメッセージによりCU1に応答する。ターゲットDU2Bは、条件付きモビリティ要求の受信に応答して、条件付きモビリティ(i.e., 条件付きPSCell change)を受け入れ可能であるか否かを判定してもよい。ターゲットDU2Bは、条件付きモビリティを受け入れ可能であるか否かを示す情報要素をUE CONTEXT SETUP RESPONSEメッセージ(ステップ1004)に含めてもよい。
 ステップ1005では、CU1は、CU1によって生成されたSN RAT(e.g., NR)のRRCメッセージ(e.g., NR RRCReconfigurationメッセージ)を含むSN MODIFICATION REQUIREDメッセージをMN4に送る。当該RRCメッセージは、条件付きモビリティ(i.e., 条件付きPSCell change、又は条件付きReconfiguration with sync for PSCell change)の開始(又は実行)条件を含む。既に説明したように、条件付きビリティの開始(又は実行)条件は、例えば、閾値及びTTTであってもよい。これに代えて、条件付きビリティの開始(又は実行)条件は、ネットワークからの明示的な実行指示(e.g., 所定のシグナリング)の受信であってもよい。この場合、当該実行指示の受信に使用される設定(e.g., 無線パラメータ)のUE3による受信は、条件付きモビリティの開始(又は実行)条件が当該実行指示の受信であることを、UE3に暗示的に示してもよい。言い換えると、UE3は当該設定(e.g., 無線パラメータ)を受信した場合、それに関連付けられた条件付きモビリティの開始(又は実行)条件が当該実行指示(e.g., 所定のシグナリング)の受信であると判定(又は理解)してもよい。
 さらに、当該RRCメッセージは、UE3が条件付きPSCell changeを離れる(exit)条件(e.g., offset)、及び有効(validity)タイマの値を含んでもよい。有効タイマの値は、候補ターゲットセル(つまり変更後のPSCellの候補となるセル)のリソースがいつまで有効であるかを示してもよい。あるいは、有効タイマの値は、候補ターゲットセルへのアクセスが許可される期間(時間)、又は条件付きモビリティのための設定が有効な期間(時間)を示してもよい。
 より具体的には、CU1は、条件付きモビリティの開始条件を決定し、これをUE CONTEXT SETUP REQUESTメッセージ(ステップ1003)に包含されるCG-ConfigInfo情報要素又は新規な情報要素に含めてもよい。そして、ターゲットDU2Bは、条件付きモビリティの開始条件を包含する無線リソースの設定(e.g., CellGroupConfig)を生成し、これをUE CONTEXT SETUP RESPONSEメッセージ(ステップ1004)に含めてもよい。さらに、CU1は、受信した無線リソースの設定(e.g., CellGroupConfig)を包含するSN RATのRRCメッセージを生成し、これをSN MODIFICATION REQUIREDメッセージ(ステップ1005)に含めてもよい。
 これに代えて、CU1は、条件付きモビリティの開始条件を決定し、これをSN MODIFICATION REQUIREDメッセージ(ステップ1005)内の新規情報要素に含めてもよい。
 さらにこれに代えて、ターゲットDU2Bが条件付きモビリティの開始条件を決定してもよい。この場合、ターゲットDU2Bは、条件付きモビリティ要求(ステップ1003)に応答して条件付きモビリティの開始条件を決定し、決定した開始条件をUE CONTEXT SETUP RESPONSEメッセージ(ステップ1004)内のCellGroupConfig情報要素又は新規情報要素に含めてもよい。そして、CU1は、条件付きモビリティの開始条件を含むCellGroupConfig情報要素又は新規情報要を包含するSN RATのRRCメッセージを生成し、これをSN MODIFICATION REQUIREDメッセージ(ステップ1005)に含めてもよい。
 もしデータフォワーディング若しくはSNセキュリティキーの変更又は両方が適用される必要があるなら、MN4は、MN initiated SN Modification手順を行い、フォワーディングアドレス若しくは新たなSNセキュリティキー情報又は両方をSN Modification Requestメッセージを用いてCU1に適用してもよい。
 ステップ1006では、CU1は、UE CONTEXT MODIFICATION REQUESTメッセージをソースDU2Aに送る。当該メッセージは、条件付きモビリティ(i.e., 条件付きPSCell change)の表示を含む。
 ステップ1007では、MN4は、MCG SRBを介したMN RAT(e.g., LTE)のRRC再設定手順(e.g., LTE RRC Connection Reconfigurtion手順)を行い、CU1から受信したSN RATのRRCメッセージをUE3にフォワードする。UE3は、CU1宛てのSN RATのRRC応答メッセージ(e.g., NR RRC Reconfiguration Completeメッセージ)を包含するMN RATのRRCメッセージ(e.g., LTE RRC Connection Reconfiguration Completeメッセージ)をMN4に送信する。
 ステップ1008では、MN4は、MN RATのRRC再設定手順の成功裏の完了に応じて、SN MODIFICATION CONFIRMメッセージによりCU1に応答する。当該SN MODIFICATION CONFIRMメッセージは、UE3から受信したSN RATのRRC応答メッセージ(e.g., NR RRC Reconfiguration Completeメッセージ)を包含する。
 UE3は、SN RATのRRCメッセージ(ステップ1007)の受信後もソースDU2Aとのコネクションを維持する。UE3は、SN RATのRRCメッセージにより設定された条件付きモビリティ(i.e., 条件付きReconfiguration with sync)の実行条件が成立したことに応じて(ステップ1009)、新たな設定を適用し、ターゲットDU2Bへのアクセス(i.e., ランダムアクセス手順)を開始する(ステップ1012)。UE3は、条件付きモビリティ開始の表示(又は報告)をソースDU2Aに送信してもよい(ステップ1010)。UE3による条件付きモビリティ開始の表示は、PUCCHで送信されるアップリンク制御情報(UCI)であってもよい。これに代えて、条件付きモビリティ開始の表示は、MAC CEであってもよい。ソースDU2Aは、CHO開始の表示に用いられる無線リソースの設定を予め決定し、これをCU1を介してUE3に通知してもよい。例えば、ソースDU2Aは、条件付きモビリティ開始の表示に用いられる無線リソースの設定をUE CONTEXT SETUP RESPONSEメッセージに包含される情報(e.g., CellGroupConfig)に含め、これをCU1へ送信してもよい。そして、CU1は、条件付きモビリティ開始の表示に用いられる無線リソースの設定を含むRRCReconfigurationメッセージを生成し、これをUE3へ送信してもよい。複数の候補ターゲットセル(e.g., PSCell候補)がある場合、条件付きモビリティ開始の表示は、選択された候補ターゲットセル(e.g., PSCell changeがトリガされた候補ターゲットセル)を明示的又は暗示的に示す情報を含んでもよい。
 ステップ1011では、ソースDU2Aは、UE CONTEXT MODIFICATION RESPONSEメッセージによりCU1に応答する。一例では、ソースDU2Aは、条件付きモビリティ開始の表示(ステップ1010)をUE3から受信したことに応答して、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ1011)を送信してもよい。この場合、UE CONTEXT MODIFICATION RESPONSEメッセージは、条件付きモビリティの開始(又は実行)をCU1に報告する用途を兼ねることができる。他の例では、ソースDU2Aは、条件付きモビリティ開始の表示(ステップ1010)の受信と無関係に、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ1011)を送信してもよい。ソースDU2Aは、条件付きモビリティ開始の表示(ステップ1010)の受信よりも前に、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ1011)を送信してもよい。
 図10には示されていないが、CU1は、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ1011)の受信後に、UE CONTEXT RELEASE COMMANDメッセージをソースDU2Aに送信してもよい。又は、CU1は、図示されていないDDDSフレームをソースDU2Aから受信した後に、UE CONTEXT RELEASE COMMANDメッセージをソースDU2Aに送信してもよい。このとき、UE CONTEXT RELEASE COMMANDメッセージに付される(又は含まれる)解放Cause値は、例えば、“Handover Condition Met”、“Action Desirable for Radio Reasons”、“Handover Complete”、又は“Normal Release”であってもよい。ソースDU2Aは、UE3に関するUEコンテキストを解放し、UE CONTEXT RELEASE COMPLETEメッセージによってCU1に応答してもよい。
 図11は、intra-CU inter-DU 条件付きPSCell Change手順の他の例を示している。ステップ1101~1106の処理は、図10のステップ1001~1006のそれと同様である。ステップ1107では、ソースDU2Aは、UE CONTEXT MODIFICATION RESPONSEメッセージによりCU1に応答する。
 ステップ1108及び1109の処理は、図10のステップ1007及び1008の処理と同様である。すなわち、ステップ1108では、MN4は、MCG SRBを介したMN RAT(e.g., LTE)のRRC再設定手順(e.g., LTE RRC Connection Reconfigurtion手順)を行い、CU1から受信したSN RAT(e.g., NR)のRRCメッセージ(e.g., NR RRC Reconfigurationメッセージ)をUE3にフォワードする。UE3は、CU1宛てのSN RATのRRC応答メッセージ(e.g., NR RRC Reconfiguration Completeメッセージ)を包含するMN RATのRRC応答メッセージ(e.g., LTE RRC Connection Reconfiguration Completeメッセージ)をMN4に送信する。ステップ1109では、MN4は、MN RATのRRC再設定手順の成功裏の完了に応じて、SN MODIFICATION CONFIRMメッセージによりCU1に応答する。当該SN MODIFICATION CONFIRMメッセージは、UE3から受信したSN RATのRRC応答メッセージ(e.g., NR RRC Reconfiguration Completeメッセージ)を包含する。
 ステップ1110では、UE3は、SN RATのRRCメッセージにより設定された条件付きモビリティ(i.e., 条件付きReconfiguration with sync)の実行条件の成立を判定し、新たな設定を適用し、ターゲットDU2Bへのアクセス(i.e., ランダムアクセス手順)を開始する(ステップ1113)。UE3は、条件付きモビリティ開始の表示をソースDU2Aに送信してもよい(ステップ11110)。
 ステップ1112では、ソースDU2Aは、DDDSフレームをCU1に送信する。一例では、ソースDU2Aは、条件付きモビリティ開始の表示(ステップ1111)をUE3から受信したことに応答して、DDDSフレーム(ステップ1112)を送信してもよい。この場合、DDDSフレームは、条件付きモビリティの開始(又は実行)をCU1に報告する用途を兼ねることができる。これに代えて、ソースDU2Aは、通常の(つまり条件付きでない)モビリティで使用されるDDDSフレームを送信しつつ、CU1に条件付きモビリティの開始(又は実行)を示すための新たなメッセージを送信してもよい(図示なし)。当該メッセージは、CONDITIONAL MOBILITY TRIGGERED (又はINITIATED, DETECTED, INDICATION, or INSTRUCTION)メッセージと呼ばれてもよい。他の例では、ソースDU2Aは、条件付きモビリティ開始の表示(ステップ1111)の受信と無関係に、DDDSフレーム(ステップ1112)を送信してもよい。ソースDU2Aは、条件付きモビリティ開始の表示(ステップ1111)の受信よりも前に、DDDSフレーム(ステップ1112)を送信してもよい。
 図11には示されていないが、CU1は、DDDSフレーム(ステップ1112)の受信後に、UE CONTEXT RELEASE COMMANDメッセージをソースDU2Aに送信してもよい。このとき、UE CONTEXT RELEASE COMMANDメッセージに付される(又は含まれる)解放Cause値は、例えば、“Handover Condition Met”、“Action Desirable for Radio Reasons”、“Handover Complete”、又は“Normal Release”であってもよい。ソースDU2Aは、UE3に関するUEコンテキストを解放し、UE CONTEXT RELEASE COMPLETEメッセージによってCU1に応答してもよい。
 本実施形態で説明された幾つかの手順は、intra-CU inter-DU条件付きPSCell Changeを可能にする。
<第6の実施形態>
 本実施形態は、条件付きモビリティのためのシグナリングの具体例を提供する。本実施形態に係る無線通信ネットワークの構成例は、図1及び図2に示された例と同様であってもよい。
 図12は、intra-CU inter-DU条件付きPSCell Change手順の一例を示している。ステップ1201~1208の処理は、図10のステップ1001~1008のそれと同様である。ただし、ステップ1206のUE CONTEXT MODIFICATION REQUESTメッセージは、条件付きモビリティ(i.e., 条件付きPSCell change、又は条件付きReconfiguration with sync)の条件を示す。
 ステップ1209では、ソースDU2Aは、条件付きモビリティ(i.e., 条件付きPSCell change、又は条件付きReconfiguration with sync)の実行条件の成立を自律的に判定する。ステップ1210では、ソースDU2Aは、条件付きモビリティの実行条件の成立に応答して、条件付きモビリティ開始コマンドをUE3に送る。条件付きモビリティ開始コマンドは、PDCCHで送信されるダウンリンク制御情報(DCI)であってもよい。これに代えて、条件付きモビリティ開始コマンドは、MAC CEであってもよい。ソースDU2Aは、条件付きモビリティ開始コマンドに用いられる無線リソースの設定を予め決定し、これをCU1を介してUE3に通知してもよい。例えば、ソースDU2Aは、条件付きモビリティ開始コマンドに用いられる無線リソースの設定をUE CONTEXT SETUP RESPONSEメッセージに包含される情報(e.g., CellGroupConfig)に含め、これをCU1へ送信してもよい。そして、CU1は、条件付きモビリティ開始コマンドに用いられる無線リソースの設定を含むRRCReconfigurationメッセージを生成し、これをUE3へ送信してもよい。複数の候補ターゲットセル(e.g., PSCell候補)がある場合、条件付きモビリティ開始コマンドは、選択された候補ターゲットセル(e.g., PSCell changeがトリガされた候補ターゲットセル)を明示的又は暗示的に示す情報を含んでもよい。
 ステップ1211では、ソースDU2Aは、UE CONTEXT MODIFICATION RESPONSEメッセージによりCU1に応答する。一例では、ソースDU2Aは、条件付きモビリティの実行条件の成立に応答して、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ1211)を送信してもよい。この場合、UE CONTEXT MODIFICATION RESPONSEメッセージは、条件付きモビリティの開始(又は実行)をCU1に報告する用途を兼ねることができる。他の例では、ソースDU2Aは、条件付きモビリティの実行条件の成立と無関係に、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ1211)を送信してもよい。ソースDU2Aは、条件付きモビリティの実行条件の成立よりも前に、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ1211)を送信してもよい。
 ステップ1212では、UE3は、条件付きモビリティ開始コマンドの受信に応答して、ターゲットDU2Bへのアクセス(i.e., ランダムアクセス手順)を開始する。
 図12には示されていないが、CU1は、UE CONTEXT MODIFICATION RESPONSEメッセージ(ステップ1211)の受信後に、UE CONTEXT RELEASE COMMANDメッセージをソースDU2Aに送信してもよい。又は、CU1は、図示されていないDDDSフレームをソースDU2Aから受信した後に、UE CONTEXT RELEASE COMMANDメッセージをソースDU2Aに送信してもよい。このとき、UE CONTEXT RELEASE COMMANDメッセージに付される(又は含まれる)解放Cause値は、例えば、“Handover Condition Met”、“Action Desirable for Radio Reasons”、“Handover Complete”、又は“Normal Release”であってもよい。ソースDU2Aは、UE3に関するUEコンテキストを解放し、UE CONTEXT RELEASE COMPLETEメッセージによってCU1に応答してもよい。
 図13は、intra-CU inter-DU 条件付きPSCell Change手順の他の例を示している。ステップ1301~1306の処理は、図12のステップ1201~1206のそれと同様である。ステップ1307では、ソースDU2Aは、UE CONTEXT MODIFICATION RESPONSEメッセージによりCU1に応答する。
 ステップ1308及び1309の処理は、図12のステップ1207及び1208の処理と同様である。すなわち、ステップ1308では、MN4は、MCG SRBを介したMN RAT(e.g., LTE)のRRC再設定手順(e.g., LTE RRC Connection Reconfigurtion手順)を行い、CU1から受信したSN RAT(e.g., NR)のRRCメッセージ(e.g., NR RRC Reconfigurationメッセージ)をUE3にフォワードする。UE3は、CU1宛てのSN RATのRRC応答メッセージ(e.g., NR RRC Reconfiguration Completeメッセージ)を包含するMN RATのRRC RRC応答メッセージ(e.g., LTE Connection Reconfiguration Completeメッセージ)をMN4に送信する。ステップ1309では、MN4は、MN RATのRRC再設定手順の成功裏の完了に応じて、SN MODIFICATION CONFIRMメッセージによりCU1に応答する。当該SN MODIFICATION CONFIRMメッセージは、UE3から受信したSN RATのRRC応答メッセージ(e.g., NR RRC Reconfiguration Completeメッセージ)を包含する。
 ステップ1310では、ソースDU2Aは、条件付きモビリティ(i.e., 条件付きPSCell change、又は条件付きReconfiguration with sync)の実行条件の成立を自律的に判定する。ステップ1311では、ソースDU2Aは、条件付きモビリティの実行条件の成立に応答して、条件付きモビリティ開始コマンドをUE3に送る。条件付きモビリティ開始コマンドは、PDCCHで送信されるDCIであってもよい。これに代えて、条件付きモビリティ開始コマンドは、MAC CEであってもよい。
 ステップ1312では、ソースDU2Aは、DDDSフレームをCU1に送信する。一例では、ソースDU2Aは、条件付きモビリティの実行条件の成立に応答して、DDDSフレーム(ステップ1312)を送信してもよい。この場合、DDDSフレームは、条件付きモビリティの開始(又は実行)をCU1に報告する用途を兼ねることができる。これに代えて、ソースDU2Aは、通常の(つまり条件付きでない)モビリティで使用されるDDDSフレームを送信しつつ、CU1に条件付きモビリティの開始(又は実行)を示すための新たなメッセージを送信してもよい(図示なし)。当該メッセージは、CONDITIONAL MOBILITY TRIGGERED (又はINITIATED, DETECTED, INDICATION, or INSTRUCTION)メッセージと呼ばれてもよい。他の例では、ソースDU2Aは、条件付きモビリティの実行条件の成立と無関係に、DDDSフレーム(ステップ1312)を送信してもよい。ソースDU2Aは、条件付きモビリティの実行条件の成立よりも前に、DDDSフレーム(ステップ1312)を送信してもよい。
 図13には示されていないが、CU1は、DDDSフレーム(ステップ1312)の受信後に、UE CONTEXT RELEASE COMMANDメッセージをソースDU2Aに送信してもよい。このとき、UE CONTEXT RELEASE COMMANDメッセージに付される(又は含まれる)解放Cause値は、例えば、“Handover Condition Met”、“Action Desirable for Radio Reasons”、“Handover Complete”、又は“Normal Release”であってもよい。ソースDU2Aは、UE3に関するUEコンテキストを解放し、UE CONTEXT RELEASE COMPLETEメッセージによってCU1に応答してもよい。
 本実施形態で説明された幾つかの手順は、intra-CU inter-DU条件付きPSCell Changeを可能にする。
<第7の実施形態>
 本実施形態は、条件付きモビリティのためのシグナリングの具体例を提供する。本実施形態に係る無線通信ネットワークの構成例は、図1及び図2に示された例と同様であってもよい。
 UE3は、ソースDU2A(又はCU1)から条件付きモビリティ開始コマンドを受信したことに応答して、条件付きモビリティ(e.g., CHO)を開始してもよい。言い換えると、条件付きモビリティのためにUE3に設定されるモビリティ開始条件は、ネットワーク(e.g., ソースDU2A)からの明示的なシグナリング(e.g., 条件付きモビリティ開始コマンド)の受信であってもよい。
 条件付きモビリティ開始コマンドは、モビリティ開始条件をUE3に設定するためにネットワークからUE3に送られるメッセージ(e.g., RRCメッセージ)のレイヤ(RRCレイヤ)よりも下位レイヤ(e.g., MACレイヤ、physicalレイヤ)の信号であってもよい。より具体的には、条件付きモビリティ開始コマンドは、PDCCHで送信されるDCI(i.e., physical layer signalling)であってもよいし、MAC CE(i.e., MAC layer signalling)であってもよい。一般的に、物理レイヤ及びMACレイヤのシグナリングは、RRCレイヤのシグナリングよりも頻繁に送信されることができる。言い換えると、物理レイヤ及びMACレイヤのシグナリングの送信機会(transmission opportunities)の間隔は、RRCレイヤのシグナリングのそれよりも短い。したがって、RRCレイヤよりも下位のレイヤのシグナリングを用いることは、UE3への条件付きモビリティ開始コマンドの速やかな送信に寄与できる。
 さらに、条件付きモビリティ開始コマンドの送信のためにRRCレイヤよりも下位のレイヤ(e.g., MACレイヤ、physicalレイヤ)のシグナリングを用いることは、Inter-gNB-DU Mobility using MCG SRBを含むSN Modification with MN involvementにおいて特に有効である。SN Modification with MN involvementでは、条件付きモビリティ(e.g., 条件付きPSCell change)のためのRRCシグナリングがMCG SRBを介して送信される。したがって、セカンダリノード(SN)(i.e., ソースDU2A及びCU1)からUE3へのRRCシグナリングの送信は、マスターノード(MN)を経由することに起因する遅延が生じる。これとは対照的に、SN(i.e., ソースDU2A及びCU1)からUE3へのMACレイヤ又はphysicalレイヤのシグナリングは、SN(i.e., ソースDU2A及びCU1)によって提供されるセルの物理チャネルを介してUE3に直接的に送信できる。したがって、SN(i.e., ソースDU2A及びCU1)は、RRCレイヤよりも下位のレイヤ(e.g., MACレイヤ、physicalレイヤ)のシグナリングを用いて条件付きモビリティ開始コマンドを送信することによって、当該コマンドをUE3に送る際の遅延を低減できる。
 なお、この説明から理解されるように、本実施形態で説明されたシグナリング手順は、CU-DU splitが適用されない場合にも有効である。例えば、SN Modification with MN involvementのケースにおいて、SNは、RRCレイヤよりも下位のレイヤ(e.g., MACレイヤ、physicalレイヤ)のシグナリングを用いて条件付きモビリティ開始コマンドを送信してもよい。これにより、条件付きモビリティ開始コマンドは、MCG SRBを経由せずに、SN によって提供されるセルの物理チャネルを介してUE3に直接的に送られることができる。このことは、条件付きモビリティ開始コマンドをUE3に送る際の遅延の低減に寄与できる。
 図14は、本実施形態に係るシグナリングの一例を示している。ステップ1401では、ソースDU2A(又はCU1)は、条件付きモビリティ開始コマンドのための設定を含むRRCメッセージ(e.g., RRCReconfigurationメッセージ)を送信する。図示されていないが、ソースDU2Aが条件付きモビリティ開始コマンドのための設定を決定し、これをCU1へ例えばDU To CU RRC Information情報要素で送信してもよい。そして、CU1が当該設定を含むRRCメッセージを生成し、ソースDU2Aを介してUE3へ送信してもよい。さらに、CU1及びDU2AがDCのSN(e.g., SgNB)である場合、当該RRCメッセージは、MN(e.g., MeNB)を介して(つまりMCGセルのSRBを介して)UE3に送られてもよい。
 条件付きモビリティ開始コマンドのための設定は、条件付きモビリティ開始コマンドの識別情報を示してもよい。さらに又はこれに代えて、当該設定は、条件付きモビリティ開始コマンドの送信のためのリソースを示してもよい。より具体的には、当該設定は、条件付きモビリティ開始コマンドのインデックスを示してもよいし、条件付きモビリティ開始コマンドの送信のための時間/周波数/コード・リソースを示してもよい。当該設定は、UE3に固有のPDCCH parameters(e.g., Downlink Control Information (DCI))を設定するために使用されるPDCCH-Configであってもよい。
 ステップ1402では、ソースDU2A(又はCU1)は、条件付きモビリティ(e.g., CHO)の実行条件の成立を判定する。ステップ1403では、ソースDU2Aは、条件付きモビリティの実行条件の成立に応答して、条件付きモビリティ開始コマンド(e.g., CHO開始コマンド)をUE3に送る。条件付きモビリティ開始コマンドの送信は、ステップ1401においてUE3に事前に提供された設定に従う。
 図14の手順は、CU-DUスプリットを適用されていないソースノード(e.g., ソースgNB、又はソースeNB)によって、CHOのために行われてもよい。図14の手順は、CU-DUスプリットを適用されていないSNによって、MR-DCでの条件付きPSCell changeのために行われてもよい。
<第8の実施形態>
 本実施形態は、条件付きモビリティのためのシグナリングの具体例を提供する。本実施形態に係る無線通信ネットワークの構成例は、図1及び図2に示された例と同様であってもよい。本実施形態では、複数の候補ターゲットセルは、複数のDU2によって提供されてもよい。
 図15は、intra-CU inter-DU 条件付きモビリティ(e.g., CHO)に関するシグナリングの一例を示す図である。ステップ1501では、CU1は、候補ターゲットセルのリソースの解放の要求を1又は複数のターゲットDU2Bに送る。Inter-DUハンドオーバのケースでは、当該要求は、条件付きハンドオーバのために予約されている1又は複数の候補ターゲットセルのリソースを解放するよう各ターゲットDU2Bに要求する。CU1は、UE3が移動するターゲットセルとは異なる候補ターゲットセルを管理するターゲットDU2Bに当該要求を送信すればよい。一方、Inter-DU PSCell Changeのケースでは、当該要求は、条件付きPSCell Change(又は条件付きReconfiguration with sync)のために予約されている1又は複数の候補ターゲットPSCellのリソースを解放するよう各ターゲットDU2Bに要求する。CU1は、UE3が移動するターゲットPSCellとは異なる候補ターゲットPSCellを管理するターゲットDU2Bに当該要求を送信すればよい。
 リソース解放要求のためにステップ1501で送信されるメッセージは、例えばUE CONTEXT RELEASE COMMANDメッセージであってもよい。このとき、UE CONTEXT RELEASE COMMANDメッセージに付される(又は含まれる)解放Cause値は、例えば、“Handover Condition Met”、“Action Desirable for Radio Reasons”、“Handover Complete”、 “Normal Release”、又は“Candidate Target Cell Found”であってもよい。
 例えば、CU1は、UE3が条件付きモビリティを完了したことを検出した場合に、ステップ1501の要求を送信してもよい。CU1は、UE3の条件付きモビリティの成功を示すメッセージ(e.g., RRCReconfigurationCompleteメッセージを運ぶUPLINK RRC TRANSFERメッセージ)をいずれかのターゲットDU2Bから受信したことによって、条件付きモビリティの完了を検出してもよい。CU1及びDU2AがDCのSNである場合、CU1は、UE3の条件付きモビリティの成功を示すメッセージ(e.g., RRCReconfigurationCompleteメッセージ)をMN(e.g., MeNB)を介してUE3から受信したことによって、条件付きモビリティの完了を検出してもよい。
 これに代えて、CU1は、UE3が条件付きモビリティを実行(又は開始)したこと検出した場合に、ステップ1501の要求を送信してもよい。CU1は、条件付きモビリティの開始の表示(indication)(e.g., measurement report)をUE3又はいずれかのターゲットDU2Bから受信したことによって、モビリティ実行(又は開始)を検出してもよい。
 このような動作によれば、例えば、ターゲットDU2Bは、有効(validity)タイマの満了を待つことなく、条件付きモビリティのために予約されていたリソースをCU1からの要求に応答して解放できる。
 一方、UE3は、いずれかの候補ターゲットセルへの条件付きモビリティを完了した場合に、自律的に他の候補ターゲットセルのリソース(つまり、無線リソース設定)を解放してもよい。これに代えて、UE3は、条件付きモビリティを完了した後にネットワーク(e.g., CU1、又はターゲットDU2B)から解放要求を受信したことに応答して、他の候補ターゲットセルのリソースを解放してもよい。
<第9の実施形態>
 本実施形態に係る無線通信ネットワークの構成例は、図1及び図2に示された例と同様であってもよい。本実施形態は、UE3へ送信されていないダウンリンクデータを示すためにソースDU2AからCU1へ送られる制御メッセージの改良を提供する。当該制御メッセージは、これに限られないが例えば、LTE及びNRで使用されるDOWNLINK DATA DELIVERY STATUS(DDDS)フレームであってもよい。
 第1~第3の実施形態で説明されたように、DDDSフレームは、UE3へ送信されていないダウンリンクデータを示すことに加えて、条件付きモビリティ(e.g., CHO)の開始(又は実行)をCU1に報告する用途のために使用されてもよい。DDDSフレームは、条件付きモビリティの開始(又は実行)を明示的に表示してもよい。例えば、DDDSフレームは、条件付きモビリティの開始(又は実行)を示すための1又はそれ以上のビットを含んでもよい。
 図16は、CHOの開始(又は実行)を明示的に表示するために改良されたDDDSフレームのフォーマットの一例を示している。図16の例では、DDDSフレームは、Conditional Handover Metビット1601を含む。ビット1601は、CHOの実行(又は開始)条件が満たされた(met、又はsatisfied)か否かを示す。ビット1601は、CHOに代えて又は加えて、他の条件付きモビリティを示すために使用されてもよい。
 ビット1601の値は、条件付きモビリティの実行(又は開始)条件が満たされた場合に1とされ、そうでない場合に0とされてもよい。この場合、ビット1601の値が1であるとき、当該ビットはConditional Handover indicationを示す。Conditional Handover indicationは、条件付きモビリティの実行(又は開始)条件が満たされた場合にシグナルされる。例えば、Conditional Handover indicationを受信した場合、NR PDCP entityをホストするノード(e.g., CU1)は、対応するノード(e.g., DU2)とUE3の間でアップリンク又はダウンリンクデータがこれ以上送信されないと考えられることを認識してもよい。
 本実施形態に係る制御メッセージ(e.g., DDDSフレーム)は、例えば、UE3へ送信されていないダウンリンクデータを示すことに加えて、条件付きモビリティ(e.g., CHO)の開始(又は実行)をDU3に報告することをDU2に可能にする。
 続いて以下では、上述の複数の実施形態に係るCU1、DU2、及びUE3の構成例について説明する。図17は、上述の実施形態に係るCU1の構成例を示すブロック図である。なお、CU-CP11及びCU-UP12の構成も図17に示されたそれと同様であってもよい。図17を参照すると、CU1は、ネットワークインターフェース1701、プロセッサ1702、及びメモリ1703を含む。ネットワークインターフェース1701は、ネットワークノード(e.g., DU2並びにコアネットワーク内の制御プーレーン(CP)ノード及びユーザプレーン(UP)ノード)と通信するために使用される。ネットワークインターフェース1701は、複数のインタフェースを含んでもよい。ネットワークインターフェース1701は、例えば、CU-DU間通信のための光ファイバーインタフェース及びIEEE 802.3 seriesに準拠したネットワークインターフェースを含んでもよい。
 プロセッサ1702は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。プロセッサ1702は、複数のプロセッサを含んでもよい。例えば、プロセッサ1702は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., Digital Signal Processor(DSP))とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., Central Processing Unit(CPU)又はMicro Processing Unit(MPU))を含んでもよい。
 メモリ1703は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、Static Random Access Memory(SRAM)若しくはDynamic RAM(DRAM)又はこれらの組み合わせである。不揮発性メモリは、マスクRead Only Memory(MROM)、Electrically Erasable Programmable ROM(EEPROM)、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。メモリ1703は、プロセッサ1702から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1702は、ネットワークインターフェース1701又は図示されていないI/Oインタフェースを介してメモリ1703にアクセスしてもよい。
 メモリ1703は、上述の複数の実施形態で説明されたCU1による処理を行うための命令群およびデータを含む1又はそれ以上のソフトウェアモジュール(コンピュータプログラム)1704を格納してもよい。いくつかの実装において、プロセッサ1702は、当該1又はそれ以上のソフトウェアモジュール1704をメモリ1703から読み出して実行することで、上述の実施形態で説明されたCU1の処理を行うよう構成されてもよい。
 図18は、上述の実施形態に係るDU2の構成例を示すブロック図である。図18を参照すると、DU2は、Radio Frequencyトランシーバ1801、ネットワークインターフェース1803、プロセッサ1804、及びメモリ1805を含む。RFトランシーバ1801は、UEsと通信するためにアナログRF信号処理を行う。RFトランシーバ1801は、複数のトランシーバを含んでもよい。RFトランシーバ1801は、アンテナアレイ1802及びプロセッサ1804と結合される。RFトランシーバ1801は、変調シンボルデータをプロセッサ1804から受信し、送信RF信号を生成し、送信RF信号をアンテナアレイ1802に供給する。また、RFトランシーバ1801は、アンテナアレイ1802によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをプロセッサ1804に供給する。RFトランシーバ1801は、ビームフォーミングのためのアナログビームフォーマ回路を含んでもよい。アナログビームフォーマ回路は、例えば複数の移相器及び複数の電力増幅器を含む。
 ネットワークインターフェース1803は、ネットワークノード(e.g., CU1、CU-CP11、CU-UP12)と通信するために使用される。ネットワークインターフェース1803は、複数のインタフェースを含んでもよい。ネットワークインターフェース1803は、例えば、CU-DU間通信のための光ファイバーインタフェース及びIEEE 802.3 seriesに準拠したネットワークインターフェースのうち少なくとも1つを含んでもよい。
 プロセッサ1804は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。プロセッサ1804は、複数のプロセッサを含んでもよい。例えば、プロセッサ1804は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., DSP)とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., CPU又はMPU)を含んでもよい。プロセッサ1804は、ビームフォーミングのためのデジタルビームフォーマ・モジュールを含んでもよい。デジタルビームフォーマ・モジュールは、Multiple Input Multiple Output(MIMO)エンコーダ及びプリコーダを含んでもよい。
 メモリ1805は、揮発性メモリ及び不揮発性メモリの組み合わせによって構成される。揮発性メモリは、例えば、SRAM若しくはDRAM又はこれらの組み合わせである。不揮発性メモリは、MROM、EEPROM、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。メモリ1805は、プロセッサ1804から離れて配置されたストレージを含んでもよい。この場合、プロセッサ1804は、ネットワークインターフェース1803又は図示されていないI/Oインタフェースを介してメモリ1805にアクセスしてもよい。
 メモリ1805は、上述の複数の実施形態で説明されたDU2による処理を行うための命令群およびデータを含む1又はそれ以上のソフトウェアモジュール(コンピュータプログラム)1806を格納してもよい。いくつかの実装において、プロセッサ1804は、当該1又はそれ以上のソフトウェアモジュール1806をメモリ1805から読み出して実行することで、上述の実施形態で説明されたDU2の処理を行うよう構成されてもよい。
 図19は、上述の実施形態に係るUE3の構成例を示すブロック図である。Radio Frequency(RF)トランシーバ1901は、RANノード(e.g., DU2)と通信するためにアナログRF信号処理を行う。RFトランシーバ1901は、複数のトランシーバを含んでもよい。RFトランシーバ1901により行われるアナログRF信号処理は、周波数アップコンバージョン、周波数ダウンコンバージョン、及び増幅を含む。RFトランシーバ1901は、アンテナアレイ1902及びベースバンドプロセッサ1903と結合される。RFトランシーバ1901は、変調シンボルデータ(又はOFDMシンボルデータ)をベースバンドプロセッサ1903から受信し、送信RF信号を生成し、送信RF信号をアンテナアレイ1902に供給する。また、RFトランシーバ1901は、アンテナアレイ1902によって受信された受信RF信号に基づいてベースバンド受信信号を生成し、これをベースバンドプロセッサ1903に供給する。RFトランシーバ1901は、ビームフォーミングのためのアナログビームフォーマ回路を含んでもよい。アナログビームフォーマ回路は、例えば複数の移相器及び複数の電力増幅器を含む。
 ベースバンドプロセッサ1903は、無線通信のためのデジタルベースバンド信号処理(データプレーン処理)とコントロールプレーン処理を行う。デジタルベースバンド信号処理は、(a) データ圧縮/復元、(b) データのセグメンテーション/コンカテネーション、(c) 伝送フォーマット(伝送フレーム)の生成/分解、(d) 伝送路符号化/復号化、(e) 変調(シンボルマッピング)/復調、及び(f) Inverse Fast Fourier Transform(IFFT)によるOFDMシンボルデータ(ベースバンドOFDM信号)の生成などを含む。一方、コントロールプレーン処理は、レイヤ1(e.g., 送信電力制御)、レイヤ2(e.g., 無線リソース管理、及びhybrid automatic repeat request(HARQ)処理)、及びレイヤ3(e.g., アタッチ、モビリティ、及び通話管理に関するシグナリング)の通信管理を含む。
 例えば、ベースバンドプロセッサ1903によるデジタルベースバンド信号処理は、Service Data Adaptation Protocol(SDAP)レイヤ、Packet Data Convergence Protocol(PDCP)レイヤ、Radio Link Control(RLC)レイヤ、MACレイヤ、およびPHYレイヤの信号処理を含んでもよい。また、ベースバンドプロセッサ1903によるコントロールプレーン処理は、Non-Access Stratum(NAS)プロトコル、RRCプロトコル、及びMAC CEの処理を含んでもよい。
 ベースバンドプロセッサ1903は、ビームフォーミングのためのMIMOエンコーディング及びプリコーディングを行ってもよい。
 ベースバンドプロセッサ1903は、デジタルベースバンド信号処理を行うモデム・プロセッサ(e.g., DSP)とコントロールプレーン処理を行うプロトコルスタック・プロセッサ(e.g., CPU又はMPU)を含んでもよい。この場合、コントロールプレーン処理を行うプロトコルスタック・プロセッサは、後述するアプリケーションプロセッサ1904と共通化されてもよい。
 アプリケーションプロセッサ1904は、CPU、MPU、マイクロプロセッサ、又はプロセッサコアとも呼ばれる。アプリケーションプロセッサ1904は、複数のプロセッサ(複数のプロセッサコア)を含んでもよい。アプリケーションプロセッサ1904は、メモリ1906又は図示されていないメモリから読み出されたシステムソフトウェアプログラム(Operating System(OS))及び様々なアプリケーションプログラム(例えば、通話アプリケーション、WEBブラウザ、メーラ、カメラ操作アプリケーション、音楽再生アプリケーション)を実行することによって、UE3の各種機能を実現する。
 幾つかの実装において、図19に破線(1905)で示されているように、ベースバンドプロセッサ1903及びアプリケーションプロセッサ1904は、1つのチップ上に集積されてもよい。言い換えると、ベースバンドプロセッサ1903及びアプリケーションプロセッサ1904は、1つのSystem on Chip(SoC)デバイス1905として実装されてもよい。SoCデバイスは、システムLarge Scale Integration(LSI)またはチップセットと呼ばれることもある。
 メモリ1906は、揮発性メモリ若しくは不揮発性メモリ又はこれらの組合せである。メモリ1906は、物理的に独立した複数のメモリデバイスを含んでもよい。揮発性メモリは、例えば、SRAM若しくはDRAM又はこれらの組み合わせである。不揮発性メモリは、MROM、EEPROM、フラッシュメモリ、若しくはハードディスクドライブ、又はこれらの任意の組合せである。例えば、メモリ1906は、ベースバンドプロセッサ1903、アプリケーションプロセッサ1904、及びSoC1905からアクセス可能な外部メモリデバイスを含んでもよい。メモリ1906は、ベースバンドプロセッサ1903内、アプリケーションプロセッサ1904内、又はSoC1905内に集積された内蔵メモリデバイスを含んでもよい。さらに、メモリ1906は、Universal Integrated Circuit Card(UICC)内のメモリを含んでもよい。
 メモリ1906は、上述の複数の実施形態で説明されたUE3による処理を行うための命令群およびデータを含む1又はそれ以上のソフトウェアモジュール(コンピュータプログラム)1907を格納してもよい。幾つかの実装において、ベースバンドプロセッサ1903又はアプリケーションプロセッサ1904は、当該ソフトウェアモジュール1907をメモリ1906から読み出して実行することで、上述の実施形態で図面を用いて説明されたUE3の処理を行うよう構成されてもよい。
 なお、上述の実施形態で説明されたUE3によって行われるコントロールプレーン処理及び動作は、RFトランシーバ1901及びアンテナアレイ1902を除く他の要素、すなわちベースバンドプロセッサ1903及びアプリケーションプロセッサ1904の少なくとも一方とソフトウェアモジュール1907を格納したメモリ1906とによって実現されることができる。
 図17~図19を用いて説明したように、上述の実施形態に係るCU1、DU2、及びUE3が有するプロセッサの各々は、図面を用いて説明されたアルゴリズムをコンピュータに行わせるための命令群を含む1又は複数のプログラムを実行する。このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
<その他の実施形態>
 上述の実施形態で説明されたCU1とDU2の間のシグナリングは、CU-CP11とDU2の間、又はCU-UP12とDU2の間で行われてもよい。
 上述の実施形態は、各々独立に実施されてもよいし、実施形態全体又はその一部が適宜組み合わせて実施されてもよい。これらの実施形態は、互いに独立に実施されることができ、互いに異なる目的又は課題を解決することに寄与し、互いに異なる効果を奏することに寄与する。
 上述の実施形態で条件付き(Conditional)モビリティとして説明された機能は、事前条件設定(pre-conditioned)モビリティ、事前準備(prepared)モビリティ、又は遅延型(delayed)モビリティなどと呼ばれてもよい。さらに具体的には、条件付きハンドオーバ(Conditional handover: CHO)として説明された機能は、事前条件設定ハンドオーバ(pre-conditioned HO)、事前準備ハンドオーバ(prepared HO)、又は遅延型ハンドオーバ(delayed HO)などと呼ばれてもよい。同様に、上述の実施形態で条件付き(Conditional)PSCell changeとして説明された機能は、事前条件設定(pre-conditioned)PSCell change、事前準備(prepared)PSCell change、又は遅延型(delayed)PSCell changeなどと呼ばれてもよい。
 上述の実施形態で説明された条件付きハンドオーバ(又はReconfiguration with sync)は、これらに限定されないが例えば、inter-gNBハンドオーバ、intra-gNB (inter-gNB-DU) ハンドオーバ、gNB及びeNB/5GC (ng-eNB) の間のハンドオーバ、inter-eNB/5GCハンドオーバ、又はintra-eNB/5GC (inter-eNB/5GC-DU)ハンドオーバであってもよい。さらに、上述の実施形態で説明された条件付きハンドオーバは、条件付きintra-DU(e.g., intra-gNB-DU又はintra-eNB-DU)ハンドオーバであってもよい。条件付きintra-DUハンドオーバでは、複数の候補ターゲットセルの少なくとも1つが、ソースセルと同じgNB-DU(又はeNB-DU)のセルである。この場合、ターゲットRANノードのCU(e.g., gNB-CU)とDU(e.g., gNB-DU)の間のUE CONTEXT SETUP REQUEST及びUE CONTEXT RESPONSEメッセージは、それぞれUE CONTEXT MODIFICATION REQUEST及びUE CONTEXT MODIFICATION RESPONSEメッセージであってもよい。
 上述した条件付きハンドオーバのためのハンドオーバ実行の条件(e.g., 閾値(イベント)及び対応するtime-to-trigger (TTT))は、すでに3GPPにより規定されている測定報告(Measurement report)をトリガするイベント(e.g. Event A1, A2, A3, A4, A5, A6, B1, B2, C1, C2, W1, W2, W3, V1, V2, H1, or H2)毎に新たなイベントとして追加(定義)されてもよい。
 さらに又はこれに代えて、上述した条件付きハンドオーバのためのハンドオーバ実行の条件は、すでに3GPPにより規定されている測定報告をトリガする各イベントに含まれる複数のパラメータの少なくとも1つと置き換えられるパラメータを含んでもよい。
 さらに又はこれに代えて、上述した条件付きハンドオーバのためのハンドオーバ実行の条件は、すでに3GPPにより規定されている測定報告をトリガする各イベントに含まれる複数のパラメータの少なくとも1つに対するオフセット値を含んでもよい。
 すでに3GPPで規定されている測定報告(Measurement report)をトリガするイベント(e.g. Event A1, A2, A3, A4, A5, A6, B1, B2, C1, C2, W1, W2, W3, V1, V2, H1, and H2)に含まれるパラメータは、これには限られないが例えば、以下のうち少なくとも1つを含んでもよい:
Ms:オフセット値を考慮しないサービングセルの測定結果、オフセット値を考慮しない送信リソースプールのチャネル混雑比(channel busy ratio)の測定結果、又はUE3がAerial UEの場合のオフセット値を考慮しないAerial UEの高度、
Hys:このイベントのためのヒステリシス値、
Thresh (1又は2):このイベントのための閾値、
Mn:オフセット値を考慮しない隣接セルの測定結果、
Ofn:隣接セルの周波数のための周波数固有のオフセット値、
Ocn:隣接セルにのためのセル固有のオフセット値、
Mp:オフセット値を考慮しないPrimary Cell又はPrimary SCG Cellの測定結果
Ofp:Primary Cell又はPrimary SCG Cellの周波数のための周波数固有のオフセット値、
Ocp:Primary Cell又はPrimary SCG Cellのためのセル固有のオフセット値
Off:このイベントのためのオフセットパラメータ、
Mcr:オフセット値を考慮しないCSI-RS(Channel State Information-Reference Signal)リソースの測定結果、
Ocr:CSI-RSのためのCSI-RS固有のオフセット値、
Mref:参照CSI-RSリソースの測定結果、及び
Oref:参照CSI-RSリソースのためのCSI-RS固有のオフセット値。
 本明細書における無線端末(User Equipment(UE))は、無線インターフェースを介して、ネットワークに接続されるエンティティである。本明細書の無線端末(UE)は、専用の通信装置に限定されるものではなく、本明細書中に記載された無線端末(UE)の通信機能を有する次のような任意の機器であってもよい。
 「(3GPPで使われる単語としての)ユーザー端末(User Equipment(UE))」、「移動局(mobile station)」、「移動端末(mobile terminal)」、「モバイルデバイス(mobile device)」、及び「無線端末(wireless device)」との用語は、一般的に互いに同義であることが意図されている。UEは、ターミナル、携帯電話、スマートフォン、タブレット、セルラIoT端末、IoTデバイス、などのスタンドアローン移動局であってもよい。「UE」及び「無線端末」との用語は、長期間にわたって静止している装置も包含する。
 UEは、例えば、生産設備・製造設備および/またはエネルギー関連機械(一例として、ボイラー、機関、タービン、ソーラーパネル、風力発電機、水力発電機、火力発電機、原子力発電機、蓄電池、原子力システム、原子力関連機器、重電機器、真空ポンプなどを含むポンプ、圧縮機、ファン、送風機、油圧機器、空気圧機器、金属加工機械、マニピュレータ、ロボット、ロボット応用システム、搬送装置、昇降装置、貨物取扱装置、繊維機械、縫製機械、印刷機、印刷関連機械、紙工機械、化学機械、鉱山機械、鉱山関連機械、建設機械、建設関連機械、農業用機械および/または器具、林業用機械および/または器具、漁業用機械および/または器具、安全および/または環境保全器具、トラクター、動力伝動装置、および/または上記で述べた任意の機器又は機械のアプリケーションシステムなど)であってもよい。
 UEは、例えば、輸送用装置(一例として、車両、自動車、二輪自動車、自転車、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、気球など)であってもよい。
 UEは、例えば、情報通信用装置(一例として、電子計算機及び関連装置、通信装置及び関連装置、電子部品など)であってもよい。
 UEは、例えば、商業およびサービス用機器、自動販売機、自動サービス機、事務用機械及び装置、民生用電気・電子機械器具(一例として音声機器、スピーカー、ラジオ、映像機器、テレビなど)であってもよい。
 UEは、例えば、電子応用システムまたは電子応用装置(一例として、X線装置、粒子加速装置、放射性物質応用装置、音波応用装置、電磁応用装置、電力応用装置など)であってもよい。
 UEは、例えば、電球、照明、計量機、分析機器、試験機及び計測機械(一例として、煙報知器、対人警報センサ、動きセンサ、無線タグなど)、時計(watchまたはclock)、理化学機械、光学機械、医療用機器および/または医療用システム、武器、利器工匠具、または手道具であってもよい。
 UEは、例えば、無線通信機能を備えたパーソナルデジタルアシスタントまたは装置(一例として、無線カードや無線モジュールなどを取り付けられる、もしくは挿入するよう構成された電子装置(例えば、パーソナルコンピュータや電子計測器など))であってもよい。
 UEは、例えば、有線や無線通信技術を使用した「あらゆるモノのインターネット(IoT:Internet of Things)」において、以下のアプリケーション、サービス、ソリューションを提供する装置またはその一部であってもよい。IoTデバイス(もしくはモノ)は、デバイスが互いに、および他の通信デバイスとの間で、データ収集およびデータ交換することを可能にする適切な電子機器、ソフトウェア、センサー、ネットワーク接続、などを備える。IoTデバイスは、内部メモリの格納されたソフトウェア指令に従う自動化された機器であってもよい。IoTデバイスは、人間による監督または対応を必要とすることなく動作してもよい。IoTデバイスは、長期間にわたって備え付けられている装置および/または、長期間に渡って非活性状態(inactive)状態のままであってもよい。IoTデバイスは、据え置き型な装置の一部として実装され得る。IoTデバイスは、非据え置き型の装置(例えば車両など)に埋め込まれ得る、または監視される/追跡される動物や人に取り付けられ得る。IoT技術は、人間の入力による制御またはメモリに格納されるソフトウェア命令に関係なくデータを送受信する通信ネットワークに接続されることができる任意の通信デバイス上に実装されることができる。IoTデバイスは、機械型通信(Machine Type Communication、MTC)デバイス、またはマシンツーマシン(Machine to Machine、M2M)通信デバイス、Narrow Band-IoT (NB-IoT) UEと呼ばれることもある。
 UEは、1つまたは複数のIoTまたはMTCアプリケーションをサポートしてもよい。
 MTCアプリケーションのいくつかの例は、3GPP TS22.368 V13.2.0(2017-01-13) Annex B(その内容は参照により本明細書に組み込まれる)に示されたリストに列挙されている。このリストは、網羅的ではなく、一例としてのMTCアプリケーションを示すものである。このリストでは、MTCアプリケーションのサービス範囲 (Service Area)は、セキュリティ (Security)、追跡及びトレース (Tracking & Tracing)、支払い (Payment)、健康 (Health)、リモートメンテナンス/制御 (Remote Maintenance/Control)、計量 (Metering)、及び民生機器 (Consumer Devices)を含む。
 セキュリティに関するMTCアプリケーションの例は、監視システム (Surveillance systems)、固定電話のバックアップ (Backup for landline)、物理アクセスの制御(例えば建物へのアクセス) (Control of physical access (e.g. to buildings))、及び車/運転手のセキュリティ (Car/driver security)を含む。
 追跡及びトレースに関するMTCアプリケーションの例は、フリート管理 (Fleet Management)、注文管理 (Order Management)、テレマティクス保険:走行に応じた課金 (Pay as you drive (PAYD))、資産追跡 (Asset Tracking)、ナビゲーション (Navigation)、交通情報 (Traffic information)、道路料金徴収 (Road tolling)、及び道路通行最適化/誘導 (Road traffic optimisation/steering)を含む。
 支払いに関するMTCアプリケーションの例は、販売時点情報管理 (Point of sales (POS))、自動販売機 (Vending machines)、及び遊戯機 (Gaming machines)を含む。
 健康に関するMTCアプリケーションの例は、生命徴候の監視 (Monitoring vital signs)、高齢者又は障害者支援 (Supporting the aged or handicapped)、ウェブアクセス遠隔医療 (Web Access Telemedicine points)、及びリモート診断 (Remote diagnostics)を含む。
 リモートメンテナンス/制御に関するMTCアプリケーションの例は、センサー (Sensors)、明かり (Lighting)、ポンプ (Pumps)、バルブ (Valves)、エレベータ制御 (Elevator control)、自動販売機制御 (Vending machine control)、及び車両診断 (Vehicle diagnostics)を含む。
 計量に関するMTCアプリケーションの例は、パワー (Power)、ガス (Gas)
水 (Water)、暖房 (Heating)、グリッド制御 (Grid control)、及び産業用メータリング (Industrial metering)を含む。
 民生機器に関するMTCアプリケーションの例は、デジタルフォトフレーム、デジタルカメラ、及び電子ブック (ebook)を含む。
 アプリケーション、サービス、及びソリューションは、一例として、MVNO(Mobile Virtual Network Operator:仮想移動体通信事業者)サービス/システム、防災無線サービス/システム、構内無線電話(PBX(Private Branch eXchange:構内交換機))サービス/システム、PHS/デジタルコードレス電話サービス/システム、Point of sales(POS)システム、広告発信サービス/システム、マルチキャスト(Multimedia Broadcast and Multicast Service(MBMS))サービス/システム、V2X(Vehicle to Everything:車車間通信および路車間・歩車間通信)サービス/システム、列車内移動無線サービス/システム、位置情報関連サービス/システム、災害/緊急時無線通信サービス/システム、IoT(Internet of Things:モノのインターネット)サービス/システム、コミュニティーサービス/システム、映像配信サービス/システム、Femtoセル応用サービス/システム、VoLTE(Voice over LTE)サービス/システム、無線タグ・サービス/システム、課金サービス/システム、ラジオオンデマンドサービス/システム、ローミングサービス/システム、ユーザー行動監視サービス/システム、通信キャリア/通信NW選択サービス/システム、機能制限サービス/システム、PoC(Proof of Concept)サービス/システム、端末向け個人情報管理サービス/システム、端末向け表示・映像サービス/システム、端末向け非通信サービス/システム、アドホックNW/DTN(Delay Tolerant Networking)サービス/システムなどであってもよい。
 上述したUEのカテゴリは、本明細書に記載された技術思想及び実施形態の応用例に過ぎない。本明細書のUEは、これらの例に限定されるものではなく、当業者は種々の変更をこれに行うことができる。
 さらに、上述した実施形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。
 例えば、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記1)
 基地局の分散ユニットであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、前記分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始を検出したことに応答して、第1のメッセージを前記基地局の中央ユニットに送るよう構成される、
分散ユニット。
(付記2)
 前記少なくとも1つのプロセッサは、
 前記無線端末の計画されているモビリティが前記条件付きモビリティであるかを判定するよう構成され、
 前記計画されているモビリティが前記条件付きモビリティである場合に、前記計画されているモビリティが前記条件付きモビリティでない場合に比べて前記第1のメッセージの前記中央ユニットへの送信を遅らせるよう構成される、
付記1に記載の分散ユニット。
(付記3)
 前記第1のメッセージは、前記無線端末に関するコンテキストの変更のためのシグナリング手順において送信される、
付記1又は2に記載の分散ユニット。
(付記4)
 前記シグナリング手順は、UE Context Modification 手順であり、
 前記第1のメッセージは、UE CONTEXT MODIFICATION RESPONSEメッセージである、
付記3に記載の分散ユニット。
(付記5)
 前記第1のメッセージは、前記無線端末へ送信されていないダウンリンクデータを示すために前記中央ユニットに送信される、
付記1又は2に記載の分散ユニット。
(付記6)
 前記第1のメッセージは、DOWNLINK DATA DELIVERY STATUSフレームである、
付記5に記載の分散ユニット。
(付記7)
 前記少なくとも1つのプロセッサは、前記条件付きモビリティの開始条件の成立に応じて前記無線端末から送信される報告を受信したことによって、前記条件付きモビリティの開始を検出するよう構成される、
付記1~6のいずれか1項に記載の分散ユニット。
(付記8)
 前記少なくとも1つのプロセッサは、前記条件付きモビリティの開始条件の成立を自律的に判定したことによって、前記条件付きモビリティの開始を検出するよう構成される、
付記1~6のいずれか1項に記載の分散ユニット。
(付記9)
 前記少なくとも1つのプロセッサは、前記条件付きモビリティの前記開始条件の成立に応答して、前記無線端末に条件付きモビリティ開始コマンドを送信するよう構成される、
付記8に記載の分散ユニット。
(付記10)
 前記少なくとも1つのプロセッサは、前記条件付きモビリティ開始コマンドのための設定を、前記条件付きモビリティ開始コマンドの送信よりも前に、前記中央ユニットへ送信するよう構成される、
付記9に記載の分散ユニット。
(付記11)
 前記第2のセルは、前記分散ユニット、前記分散ユニットとは異なる前記基地局の他の分散ユニット、又は前記基地局とは異なる他の基地局によって提供される、
付記1~10のいずれか1項に記載の分散ユニット。
(付記12)
 基地局の分散ユニットのための方法であって、
 前記分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始を検出したことに応答して、第1のメッセージを前記基地局の中央ユニットに送ることを備える、
方法。
(付記13)
 前記無線端末の計画されているモビリティが前記条件付きモビリティであるかを判定すること、及び
 前記計画されているモビリティが前記条件付きモビリティである場合に、前記計画されているモビリティが前記条件付きモビリティでない場合に比べて前記第1のメッセージの前記中央ユニットへの送信を遅らせること、
をさらに備える、
付記12に記載の方法。
(付記14)
 前記第1のメッセージは、前記無線端末に関するコンテキストの変更のためのシグナリング手順において送信される、
付記12又は13に記載の方法。
(付記15)
 前記シグナリング手順は、UE Context Modification 手順であり、
 前記第1のメッセージは、UE CONTEXT MODIFICATION RESPONSEメッセージである、
付記14に記載の方法。
(付記16)
 前記第1のメッセージは、前記無線端末へ送信されていないダウンリンクデータを示すために前記中央ユニットに送信される、
付記12又は13に記載の方法。
(付記17)
 前記第1のメッセージは、DOWNLINK DATA DELIVERY STATUSフレームである、
付記16に記載の方法。
(付記18)
 前記条件付きモビリティの開始条件の成立に応じて前記無線端末から送信される報告を受信したことによって、前記条件付きモビリティの開始を検出すことをさらに備える、
付記12~17のいずれか1項に記載の方法。
(付記19)
 前記条件付きモビリティの開始条件の成立を自律的に判定したことによって、前記条件付きモビリティの開始を検出することをさらに備える、
付記12~17のいずれか1項に記載の方法。
(付記20)
 基地局の分散ユニットのための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、前記分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始を検出したことに応答して、第1のメッセージを前記基地局の中央ユニットに送ることを備える、
プログラム。
(付記21)
 基地局の中央ユニットであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、
 前記基地局の分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティを制御し、
 前記分散ユニットが前記条件付きモビリティの開始を検出したことに応答して送信する第1のメッセージを受信するよう構成される、
中央ユニット。
(付記22)
 前記少なくとも1つのプロセッサは、前記無線端末に計画されているモビリティが前記条件付きモビリティであることを明示的に又は暗示的に示す情報を前記分散ユニットに送信するよう構成される、
付記21に記載の中央ユニット。
(付記23)
 前記少なくとも1つのプロセッサは、前記第1のメッセージの受信に応答して、前記無線端末による条件付きモビリティが開始されたことを知るよう構成される、
付記21又は22に記載の中央ユニット。
(付記24)
 基地局の中央ユニットのための方法であって、
 前記基地局の分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティを制御すること、及び
 前記分散ユニットが前記条件付きモビリティの開始を検出したことに応答して送信する第1のメッセージを受信すること、
を備える、方法。
(付記25)
 基地局の中央ユニットのための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、
 前記基地局の分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティを制御すること、及び
 前記分散ユニットが前記条件付きモビリティの開始を検出したことに応答して送信する第1のメッセージを受信すること、
を備える、プログラム。
(付記26)
 無線アクセスネットワークノードであって、
 少なくとも1つのメモリと、
 前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
を備え、
 前記少なくとも1つのプロセッサは、前記無線アクセスネットワークノードによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始条件の成立に応答して、前記無線端末に条件付きモビリティ開始コマンドを送信するよう構成され、
 前記少なくとも1つのプロセッサは、前記条件付きモビリティ開始コマンドのための設定を、前記条件付きモビリティ開始コマンドの送信よりも前に、前記無線端末に送信するよう構成される、
無線アクセスネットワークノード。
(付記27)
 前記少なくとも1つのプロセッサは、デュアルコネクティビティのマスターノードを介して、前記設定を前記無線端末に送信するよう構成され、
 前記少なくとも1つのプロセッサは、前記無線アクセスネットワークノードにより提供されるセルを介して、前記条件付きモビリティ開始コマンドを前記無線端末に直接的に送信するよう構成される、
付記26に記載の無線アクセスネットワークノード。
(付記28)
 前記設定は、Radio Resource Control(RRC)メッセージを介して前記無線端末に送信され、
 前記条件付きモビリティ開始コマンドは、RRCレイヤよりも下位レイヤのシグナリングを用いて前記無線端末に送信される、
 付記26又は27のいずれか1項に記載の無線アクセスネットワークノード。
(付記29)
 前記条件付きモビリティ開始コマンドは、Medium Access Control(MAC)のシグナリングを用いて前記無線端末に送信される、
付記28に記載の無線アクセスネットワークノード。
(付記30)
 前記条件付きモビリティ開始コマンドは、MAC Control Element(CE)である、
付記28又は29に記載の無線アクセスネットワークノード。
(付記31)
 前記条件付きモビリティ開始コマンドは、物理レイヤのシグナリングを用いて前記無線端末に送信される、
付記28に記載の無線アクセスネットワークノード。
(付記32)
 前記条件付きモビリティ開始コマンドは、Physical Downlink Control Channel(PDCCH)で送信されるダウンリンク制御情報(Downlink Control Information(DCI))である、
付記28又は31に記載の無線アクセスネットワークノード。
(付記33)
 前記設定は、前記条件付きモビリティ開始コマンドの識別情報、及び前記条件付きモビリティ開始コマンドの送信のためのリソースのうち少なくとも1つを示す、
付記26~32のいずれか1項に記載の無線アクセスネットワークノード。
(付記34)
 前記無線アクセスネットワークノードは、中央ユニット及び少なくとも1つの分散ユニットを含む、
付記26~33のいずれか1項に記載の無線アクセスネットワークノード。
(付記35)
 無線アクセスネットワークノードのための方法であって、
 前記無線アクセスネットワークノードによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始条件の成立に応答して、前記無線端末に条件付きモビリティ開始コマンドを送信すること、及び
 前記条件付きモビリティ開始コマンドのための設定を、前記条件付きモビリティ開始コマンドの送信よりも前に、前記無線端末に送信すること、
を備える方法。
(付記36)
 無線アクセスネットワークノードのための方法をコンピュータに行わせるためのプログラムであって、
 前記方法は、
 前記無線アクセスネットワークノードによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始条件の成立に応答して、前記無線端末に条件付きモビリティ開始コマンドを送信すること、及び
 前記条件付きモビリティ開始コマンドのための設定を、前記条件付きモビリティ開始コマンドの送信よりも前に、前記無線端末に送信すること、
を備える、
プログラム。
 この出願は、2019年1月11日に出願された日本出願特願2019-003562を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 中央ユニット(Central Unit(CU))
2 分散ユニット(Distributed Unit(DU))
3 UE
4 マスターノード(Master Node(MN))
11 CU-CP
12 CU-UP
1702 プロセッサ
1703 メモリ
1704 モジュール(modules)
1804 プロセッサ
1805 メモリ
1806 モジュール(modules)
1903 ベースバンドプロセッサ
1904 アプリケーションプロセッサ
1906 メモリ
1907 モジュール(modules)

Claims (36)

  1.  基地局の分散ユニットであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、前記分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始を検出したことに応答して、第1のメッセージを前記基地局の中央ユニットに送るよう構成される、
    分散ユニット。
  2.  前記少なくとも1つのプロセッサは、
     前記無線端末の計画されているモビリティが前記条件付きモビリティであるかを判定するよう構成され、
     前記計画されているモビリティが前記条件付きモビリティである場合に、前記計画されているモビリティが前記条件付きモビリティでない場合に比べて前記第1のメッセージの前記中央ユニットへの送信を遅らせるよう構成される、
    請求項1に記載の分散ユニット。
  3.  前記第1のメッセージは、前記無線端末に関するコンテキストの変更のためのシグナリング手順において送信される、
    請求項1又は2に記載の分散ユニット。
  4.  前記シグナリング手順は、UE Context Modification 手順であり、
     前記第1のメッセージは、UE CONTEXT MODIFICATION RESPONSEメッセージである、
    請求項3に記載の分散ユニット。
  5.  前記第1のメッセージは、前記無線端末へ送信されていないダウンリンクデータを示すために前記中央ユニットに送信される、
    請求項1又は2に記載の分散ユニット。
  6.  前記第1のメッセージは、DOWNLINK DATA DELIVERY STATUSフレームである、
    請求項5に記載の分散ユニット。
  7.  前記少なくとも1つのプロセッサは、前記条件付きモビリティの開始条件の成立に応じて前記無線端末から送信される報告を受信したことによって、前記条件付きモビリティの開始を検出するよう構成される、
    請求項1~6のいずれか1項に記載の分散ユニット。
  8.  前記少なくとも1つのプロセッサは、前記条件付きモビリティの開始条件の成立を自律的に判定したことによって、前記条件付きモビリティの開始を検出するよう構成される、
    請求項1~6のいずれか1項に記載の分散ユニット。
  9.  前記少なくとも1つのプロセッサは、前記条件付きモビリティの前記開始条件の成立に応答して、前記無線端末に条件付きモビリティ開始コマンドを送信するよう構成される、
    請求項8に記載の分散ユニット。
  10.  前記少なくとも1つのプロセッサは、前記条件付きモビリティ開始コマンドのための設定を、前記条件付きモビリティ開始コマンドの送信よりも前に、前記中央ユニットへ送信するよう構成される、
    請求項9に記載の分散ユニット。
  11.  前記第2のセルは、前記分散ユニット、前記分散ユニットとは異なる前記基地局の他の分散ユニット、又は前記基地局とは異なる他の基地局によって提供される、
    請求項1~10のいずれか1項に記載の分散ユニット。
  12.  基地局の分散ユニットのための方法であって、
     前記分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始を検出したことに応答して、第1のメッセージを前記基地局の中央ユニットに送ることを備える、
    方法。
  13.  前記無線端末の計画されているモビリティが前記条件付きモビリティであるかを判定すること、及び
     前記計画されているモビリティが前記条件付きモビリティである場合に、前記計画されているモビリティが前記条件付きモビリティでない場合に比べて前記第1のメッセージの前記中央ユニットへの送信を遅らせること、
    をさらに備える、
    請求項12に記載の方法。
  14.  前記第1のメッセージは、前記無線端末に関するコンテキストの変更のためのシグナリング手順において送信される、
    請求項12又は13に記載の方法。
  15.  前記シグナリング手順は、UE Context Modification 手順であり、
     前記第1のメッセージは、UE CONTEXT MODIFICATION RESPONSEメッセージである、
    請求項14に記載の方法。
  16.  前記第1のメッセージは、前記無線端末へ送信されていないダウンリンクデータを示すために前記中央ユニットに送信される、
    請求項12又は13に記載の方法。
  17.  前記第1のメッセージは、DOWNLINK DATA DELIVERY STATUSフレームである、
    請求項16に記載の方法。
  18.  前記条件付きモビリティの開始条件の成立に応じて前記無線端末から送信される報告を受信したことによって、前記条件付きモビリティの開始を検出すことをさらに備える、
    請求項12~17のいずれか1項に記載の方法。
  19.  前記条件付きモビリティの開始条件の成立を自律的に判定したことによって、前記条件付きモビリティの開始を検出することをさらに備える、
    請求項12~17のいずれか1項に記載の方法。
  20.  基地局の分散ユニットのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、前記分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始を検出したことに応答して、第1のメッセージを前記基地局の中央ユニットに送ることを備える、
    非一時的なコンピュータ可読媒体。
  21.  基地局の中央ユニットであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、
     前記基地局の分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティを制御し、
     前記分散ユニットが前記条件付きモビリティの開始を検出したことに応答して送信する第1のメッセージを受信するよう構成される、
    中央ユニット。
  22.  前記少なくとも1つのプロセッサは、前記無線端末に計画されているモビリティが前記条件付きモビリティであることを明示的に又は暗示的に示す情報を前記分散ユニットに送信するよう構成される、
    請求項21に記載の中央ユニット。
  23.  前記少なくとも1つのプロセッサは、前記第1のメッセージの受信に応答して、前記無線端末による条件付きモビリティが開始されたことを知るよう構成される、
    請求項21又は22に記載の中央ユニット。
  24.  基地局の中央ユニットのための方法であって、
     前記基地局の分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティを制御すること、及び
     前記分散ユニットが前記条件付きモビリティの開始を検出したことに応答して送信する第1のメッセージを受信すること、
    を備える、方法。
  25.  基地局の中央ユニットのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、
    前記基地局の分散ユニットによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティを制御すること、及び
     前記分散ユニットが前記条件付きモビリティの開始を検出したことに応答して送信する第1のメッセージを受信すること、
    を備える、非一時的なコンピュータ可読媒体。
  26.  無線アクセスネットワークノードであって、
     少なくとも1つのメモリと、
     前記少なくとも1つのメモリに結合された少なくとも1つのプロセッサと、
    を備え、
     前記少なくとも1つのプロセッサは、前記無線アクセスネットワークノードによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始条件の成立に応答して、前記無線端末に条件付きモビリティ開始コマンドを送信するよう構成され、
     前記少なくとも1つのプロセッサは、前記条件付きモビリティ開始コマンドのための設定を、前記条件付きモビリティ開始コマンドの送信よりも前に、前記無線端末に送信するよう構成される、
    無線アクセスネットワークノード。
  27.  前記少なくとも1つのプロセッサは、デュアルコネクティビティのマスターノードを介して、前記設定を前記無線端末に送信するよう構成され、
     前記少なくとも1つのプロセッサは、前記無線アクセスネットワークノードにより提供されるセルを介して、前記条件付きモビリティ開始コマンドを前記無線端末に直接的に送信するよう構成される、
    請求項26に記載の無線アクセスネットワークノード。
  28.  前記設定は、Radio Resource Control(RRC)メッセージを介して前記無線端末に送信され、
     前記条件付きモビリティ開始コマンドは、RRCレイヤよりも下位レイヤのシグナリングを用いて前記無線端末に送信される、
     請求項26又は27のいずれか1項に記載の無線アクセスネットワークノード。
  29.  前記条件付きモビリティ開始コマンドは、Medium Access Control(MAC)のシグナリングを用いて前記無線端末に送信される、
    請求項28に記載の無線アクセスネットワークノード。
  30.  前記条件付きモビリティ開始コマンドは、MAC Control Element(CE)である、
    請求項28又は29に記載の無線アクセスネットワークノード。
  31.  前記条件付きモビリティ開始コマンドは、物理レイヤのシグナリングを用いて前記無線端末に送信される、
    請求項28に記載の無線アクセスネットワークノード。
  32.  前記条件付きモビリティ開始コマンドは、Physical Downlink Control Channel(PDCCH)で送信されるダウンリンク制御情報(Downlink Control Information(DCI))である、
    請求項28又は31に記載の無線アクセスネットワークノード。
  33.  前記設定は、前記条件付きモビリティ開始コマンドの識別情報、及び前記条件付きモビリティ開始コマンドの送信のためのリソースのうち少なくとも1つを示す、
    請求項26~32のいずれか1項に記載の無線アクセスネットワークノード。
  34.  前記無線アクセスネットワークノードは、中央ユニット及び少なくとも1つの分散ユニットを含む、
    請求項26~33のいずれか1項に記載の無線アクセスネットワークノード。
  35.  無線アクセスネットワークノードのための方法であって、
     前記無線アクセスネットワークノードによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始条件の成立に応答して、前記無線端末に条件付きモビリティ開始コマンドを送信すること、及び
     前記条件付きモビリティ開始コマンドのための設定を、前記条件付きモビリティ開始コマンドの送信よりも前に、前記無線端末に送信すること、
    を備える方法。
  36.  無線アクセスネットワークノードのための方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記方法は、
     前記無線アクセスネットワークノードによって提供される第1のセルから第2のセルへの無線端末の条件付きモビリティの開始条件の成立に応答して、前記無線端末に条件付きモビリティ開始コマンドを送信すること、及び
     前記条件付きモビリティ開始コマンドのための設定を、前記条件付きモビリティ開始コマンドの送信よりも前に、前記無線端末に送信すること、
    を備える、
    非一時的なコンピュータ可読媒体。
PCT/JP2019/042894 2019-01-11 2019-10-31 分散ユニット、中央ユニット、無線アクセスネットワークノード、及びこれらのための方法 WO2020144917A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/420,980 US20220104087A1 (en) 2019-01-11 2019-10-31 Distributed unit, central unit, radio access network node, and method therefor
EP21202622.3A EP3968698A1 (en) 2019-01-11 2019-10-31 Distributed unit, central unit, radio access network node, and method therefor
EP19908833.7A EP3911018A4 (en) 2019-01-11 2019-10-31 DISTRIBUTED UNIT, CENTRAL UNIT, WIRELESS ACCESS NETWORK NODE AND DISTRIBUTED UNIT, CENTRAL UNIT AND WIRELESS ACCESS NETWORK NODE METHOD
JP2020565590A JP7147875B2 (ja) 2019-01-11 2019-10-31 分散ユニット、中央ユニット、及びこれらのための方法
US17/493,979 US20220030498A1 (en) 2019-01-11 2021-10-05 Distributed unit, central unit, radio access network node, and method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-003562 2019-01-11
JP2019003562 2019-01-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/420,980 A-371-Of-International US20220104087A1 (en) 2019-01-11 2019-10-31 Distributed unit, central unit, radio access network node, and method therefor
US17/493,979 Continuation US20220030498A1 (en) 2019-01-11 2021-10-05 Distributed unit, central unit, radio access network node, and method therefor

Publications (1)

Publication Number Publication Date
WO2020144917A1 true WO2020144917A1 (ja) 2020-07-16

Family

ID=71521168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042894 WO2020144917A1 (ja) 2019-01-11 2019-10-31 分散ユニット、中央ユニット、無線アクセスネットワークノード、及びこれらのための方法

Country Status (4)

Country Link
US (2) US20220104087A1 (ja)
EP (2) EP3911018A4 (ja)
JP (3) JP7147875B2 (ja)
WO (1) WO2020144917A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079986A (zh) * 2020-08-18 2022-02-22 华为技术有限公司 一种移动性管理方法和装置
EP3986026A1 (en) * 2020-10-13 2022-04-20 Nokia Technologies Oy Inter-secondary node conditional pscell change procedure
EP4152826A4 (en) * 2020-10-22 2023-07-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD OF CHANGING A SECONDARY NODE, TERMINAL DEVICE AND NETWORK DEVICE
WO2023153336A1 (ja) * 2022-02-09 2023-08-17 三菱電機株式会社 通信システムおよび基地局

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210352543A1 (en) * 2020-05-08 2021-11-11 Qualcomm Incorporated Signaling aspects of a conditional primary secondary cell change procedure in multi-radio access technology dual connectivity
US11956690B2 (en) * 2020-07-24 2024-04-09 Asustek Computer Inc. Method and apparatus for mobility procedure in a wireless communication system
US20230247492A1 (en) * 2022-02-02 2023-08-03 Samsung Electronics Co., Ltd. Method and apparatus for conditional pscell addition and change
CN116980995A (zh) * 2022-04-24 2023-10-31 中国电信股份有限公司 服务小区改变方法、基站的集中/分布单元及通信系统
CN117560690A (zh) * 2022-08-04 2024-02-13 大唐移动通信设备有限公司 候选小区配置方法及装置
WO2024031298A1 (en) * 2022-08-08 2024-02-15 Apple Inc. Mobility with pre-configuration of candidate cells at ue
WO2024035289A1 (en) * 2022-08-08 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) L1/l2 inter-cell mobility execution with candidate du involvement
WO2024035290A1 (en) * 2022-08-08 2024-02-15 Telefonaktiebolaget Lm Ericsson (Publ) L1/l2 inter-cell mobility execution
WO2023192692A2 (en) * 2022-08-09 2023-10-05 Futurewei Technologies, Inc. Method and apparatus for intercell cross-trp seamless mobility
WO2024031384A1 (en) * 2022-08-09 2024-02-15 Apple Inc. Intra-du or inter-du mobility based on pre-configuration
WO2024065163A1 (en) * 2022-09-27 2024-04-04 Lenovo (Beijing) Limited Methods and apparatuses of supporting lower layer mobility
WO2024065551A1 (zh) * 2022-09-29 2024-04-04 富士通株式会社 小区间移动性过程的触发方法和装置
WO2024073946A1 (en) * 2022-12-16 2024-04-11 Lenovo (Beijing) Limited Methods and apparatuses of supporting subsequent ltm
WO2024082427A1 (en) * 2022-12-20 2024-04-25 Lenovo (Beijing) Limited Methods and apparatuses for ul synchronization and dl synchronization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024574A1 (ja) * 2011-08-12 2013-02-21 パナソニック株式会社 ハンドオーバ制御方法、無線通信端末及び無線通信装置
JP2015005872A (ja) * 2013-06-20 2015-01-08 株式会社日立製作所 基地局装置、無線通信システムおよび方法
US20180368109A1 (en) * 2017-06-16 2018-12-20 Kt Corporation Methods for managing resource based on open interface and apparatuses thereof
JP2019003562A (ja) 2017-06-19 2019-01-10 キヤノン株式会社 情報処理システム、および情報処理システムの制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104302011A (zh) * 2013-07-16 2015-01-21 中兴通讯股份有限公司 一种无线资源控制连接重建立的方法、系统及装置
WO2018156696A1 (en) * 2017-02-27 2018-08-30 Intel IP Corporation Exit conditions for conditional handovers and beam based mobility state estimation
US10805856B2 (en) * 2017-09-22 2020-10-13 Telefonaktiebolaget Lm Ericsson (Publ) Methods and units in a network node for handling communication with a wireless device
EP3766274A4 (en) * 2018-03-12 2021-12-01 Nokia Technologies Oy PROVISION FOR CONDITIONAL DELIVERY ERRORS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024574A1 (ja) * 2011-08-12 2013-02-21 パナソニック株式会社 ハンドオーバ制御方法、無線通信端末及び無線通信装置
JP2015005872A (ja) * 2013-06-20 2015-01-08 株式会社日立製作所 基地局装置、無線通信システムおよび方法
US20180368109A1 (en) * 2017-06-16 2018-12-20 Kt Corporation Methods for managing resource based on open interface and apparatuses thereof
JP2019003562A (ja) 2017-06-19 2019-01-10 キヤノン株式会社 情報処理システム、および情報処理システムの制御方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP TS 22.368, 13 January 2017 (2017-01-13)
HUAWEI: "Downlink Flow control for EN-DC", 3GPP TSG RAN WG3 ADHOC_R3_AH_NR_1706 R3-172456, 20 June 2017 (2017-06-20), XP051308089, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG3_Iu/TSGR3_AHGs/R3_AH_NR_1706/Docs/R3-172456.zip> *
INTEL CORPORATION: "Discussion of conditional handover", R2-1816691, 3GPP TSG RAN WG2 MEETING #104, 12 November 2018 (2018-11-12)
MEDIATEK INC.: "Conditional Handover Procedures", R2-18 16959, 3GPP TSG RAN WG2 MEETING #104, 12 November 2018 (2018-11-12)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114079986A (zh) * 2020-08-18 2022-02-22 华为技术有限公司 一种移动性管理方法和装置
CN114079986B (zh) * 2020-08-18 2024-04-09 华为技术有限公司 一种移动性管理方法和装置
EP3986026A1 (en) * 2020-10-13 2022-04-20 Nokia Technologies Oy Inter-secondary node conditional pscell change procedure
WO2022078710A1 (en) * 2020-10-13 2022-04-21 Nokia Technologies Oy Apparatus comprising at least one processor
EP4152826A4 (en) * 2020-10-22 2023-07-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD OF CHANGING A SECONDARY NODE, TERMINAL DEVICE AND NETWORK DEVICE
WO2023153336A1 (ja) * 2022-02-09 2023-08-17 三菱電機株式会社 通信システムおよび基地局

Also Published As

Publication number Publication date
JP7396444B2 (ja) 2023-12-12
JP2023011033A (ja) 2023-01-20
JP2021193841A (ja) 2021-12-23
JPWO2020144917A1 (ja) 2021-11-25
EP3968698A1 (en) 2022-03-16
EP3911018A1 (en) 2021-11-17
US20220030498A1 (en) 2022-01-27
JP7188526B2 (ja) 2022-12-13
JP7147875B2 (ja) 2022-10-05
US20220104087A1 (en) 2022-03-31
EP3911018A4 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
JP7396444B2 (ja) User equipment及びUser equipmentのための方法
JP7367823B2 (ja) User equipmentのための方法
JP7306540B2 (ja) 無線端末、マスターノード、及びこれらにより行われる方法
JP7147862B2 (ja) 無線端末、無線アクセスネットワークノード、及びこれらの方法
JP7435870B2 (ja) ユーザ装置、通信装置、及びこれらの方法
US12022329B2 (en) Radio access network node, radio terminal, and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908833

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565590

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019908833

Country of ref document: EP

Effective date: 20210811