WO2020144789A1 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
WO2020144789A1
WO2020144789A1 PCT/JP2019/000420 JP2019000420W WO2020144789A1 WO 2020144789 A1 WO2020144789 A1 WO 2020144789A1 JP 2019000420 W JP2019000420 W JP 2019000420W WO 2020144789 A1 WO2020144789 A1 WO 2020144789A1
Authority
WO
WIPO (PCT)
Prior art keywords
control shaft
housing
arm portion
end surface
link member
Prior art date
Application number
PCT/JP2019/000420
Other languages
French (fr)
Japanese (ja)
Inventor
恵美 徳納
日吉 亮介
茂木 克也
悟 大熊
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2019/000420 priority Critical patent/WO2020144789A1/en
Publication of WO2020144789A1 publication Critical patent/WO2020144789A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups

Definitions

  • the present invention relates to an internal combustion engine equipped with a variable compression ratio mechanism.
  • variable compression ratio internal combustion engine that can change the compression ratio of the internal combustion engine using a multi-link type piston crank mechanism has been conventionally known.
  • a variable compression ratio mechanism that can change the compression ratio of an internal combustion engine according to the rotational position of a first control shaft, an actuator that changes and holds the rotational position of the first control shaft, a first Variable compression ratio internal combustion engine having a second control shaft arranged in parallel with the control shaft and transmitting rotation of an actuator through a speed reducer, and a connecting link connecting the first control shaft and the second control shaft.
  • the connection link reciprocates according to the rotation of the second control shaft, and the first control shaft rotates according to the motion of the connection link.
  • the second control shaft is located outside the oil pan side wall.
  • the length of the second control shaft can be shortened, the length of the actuator unit including the second control shaft, the speed reducer, the actuator and the like in the cylinder row direction can be easily achieved. Can be shortened.
  • the internal combustion engine of the present invention has a variable compression ratio mechanism that changes the compression ratio according to the rotational position of the first control shaft, and an actuator unit that rotationally drives the first control shaft.
  • the actuator unit includes a second control shaft, a drive source that rotationally drives the second control shaft via a speed reducer, and a link member that transmits the rotation of the second control shaft to the first control shaft.
  • the first control shaft has a first arm portion that projects radially from the first control shaft.
  • the second control shaft has a second arm portion that radially projects from the second control shaft.
  • the link member has one end rotatably connected to the first arm portion and the other end rotatably connected to the second arm portion.
  • the second control shaft and any one of the second arm portion, the link member, and the speed reducer have a function of restricting the axial position of the second control shaft.
  • the internal combustion engine can relatively shorten the axial length of the second control shaft. Therefore, in the actuator unit, the overall length of the actuator unit can be shortened by shortening the axial length of the second control shaft.
  • FIG. 1 is an explanatory diagram schematically showing a schematic configuration of a variable compression ratio mechanism 1 applied to an internal combustion engine of the present invention.
  • FIG. 1 is an explanatory view schematically showing the schematic configuration of the variable compression ratio mechanism 1 as viewed from the crankshaft axial direction.
  • variable compression ratio internal combustion engine having the variable compression ratio mechanism 1 is mounted on a vehicle such as an automobile.
  • variable compression ratio mechanism 1 is roughly composed of a piston 2, an upper link 4 as a first link, a lower link 7 as a second link, and a control link 9 as a third link.
  • the variable compression ratio mechanism 1 is a multi-link type piston crank mechanism in which the piston 2 and the crank pin 6a of the crank shaft 6 are linked by a plurality of links.
  • the piston 2 is rotatably connected to one end of an upper link 4 via a piston pin 3.
  • the other end of the upper link 4 is rotatably connected to one end of the lower link 7 via an upper pin 5 as a first link connecting pin.
  • the crankshaft 6 includes a plurality of journal portions 6b and a crank pin 6a, and the journal portion 6b is rotatably supported by a main bearing (not shown) of a cylinder block (not shown).
  • the crank pin 6a is eccentric from the journal portion 6b by a predetermined amount.
  • the lower link 7 is rotatably connected to the crank pin 6a of the crank shaft 6.
  • One end of the control link 9 is rotatably connected to the other end side of the lower link 7 via a control pin 8 as a third link connecting pin.
  • control link 9 The other end of the control link 9 is rotatably connected to the eccentric shaft portion 10a of the first control shaft 10 supported on the engine body side.
  • the first control shaft 10 made of metal is arranged parallel to the crankshaft 6 and is rotatably supported by the cylinder block, for example.
  • control link 9 that is rotatably connected to the metal eccentric shaft portion 10a is swingably supported on the engine body side.
  • the center axis of the eccentric shaft portion 10a is eccentric by a predetermined amount with respect to the rotation center of the first control shaft 10.
  • variable compression ratio mechanism 1 changes the position of the piston 2 at the top dead center by rotating the first control shaft 10 and changing the position of the eccentric shaft portion 10a, thereby changing the mechanical compression ratio of the internal combustion engine. can do.
  • the first control shaft 10 regulates the degree of freedom of the lower link 7, and the rotational position is changed and held by the actuator unit 21.
  • FIG. 2 is an explanatory view schematically showing a connecting mechanism between the first control shaft 10 and the second control shaft 24 of the actuator unit 21.
  • the first control shaft 10 has a metal-made bifurcated first arm portion 22, and rotates inside an internal combustion engine body including the cylinder block and an oil pan upper 23 fixed to a lower side (lower portion) thereof. Supported as possible.
  • the first arm portion 22 extends outward in the radial direction of the first control shaft 10. That is, the first arm portion 22 projects from the first control shaft 10.
  • the first control shaft 10 is arranged in the internal combustion engine body in which lubricating oil (lubricating oil) is scattered.
  • the second control shaft 24 made of metal is arranged in parallel with the first control shaft 10 and extends along the oil pan upper side wall 27 in the longitudinal direction of the engine. In other words, the second control shaft 24 is arranged outside the internal combustion engine body along the cylinder column direction of the internal combustion engine body.
  • the second control shaft 24 is arranged outside the internal combustion engine body such that the axial direction of the second control shaft 24 coincides with the cylinder row direction of the internal combustion engine body. Therefore, in this specification, the cylinder row direction and the second control shaft 24 axis direction coincide with each other.
  • the second control shaft 24 has a metal-made bifurcated second arm portion 26.
  • the second arm portion 26 extends outward in the radial direction of the second control shaft 24. That is, the second arm portion 26 projects from the second control shaft 24.
  • the second arm portion 26 is a component that is press-fitted into the second control shaft 24, and is fixed to the second control shaft 24 by press-fitting.
  • the first arm portion 22 and the second arm portion 26 are linked (connected) by the link member 30 of the actuator unit 21.
  • the link member 30 is an elongated metal member orthogonal to the first control shaft 10 and the second control shaft 24.
  • first control shaft 10 and the second control shaft 24 are mechanically connected by the link member 30 penetrating the oil pan upper side wall 27.
  • One end of the link member 30 is sandwiched at the tip of the first arm portion 22.
  • the first arm portion 22 and the link member 30 are rotatably connected via a metal-made cylindrical first connecting pin 31.
  • the first connecting pin 31 penetrates the tip of the first arm portion 22 and one end of the link member 30 in a state parallel to the first control shaft 10.
  • the connecting portion between the first arm portion 22 and the link member 30 that is connected via the first connecting pin 31 is, for example, lubricating oil that scatters in the internal combustion engine body, or lubrication that accumulates in the bottom portion in the internal combustion engine body. Lubricated by oil.
  • the other end of the link member 30 is sandwiched by the tip of the second arm portion 26. That is, the second arm portion 26 is formed in a bifurcated shape so that the other end can sandwich the other end of the link member 30.
  • the second arm portion 26 and the link member 30 are rotatably connected via a second cylindrical connecting pin 32 made of metal.
  • the second connecting pin 32 penetrates the tip end of the second arm portion 26 and the other end of the link member 30 in a state parallel to the second control shaft 24.
  • the second connecting pin 32 is in a state of being rotatable relative to both the second arm portion 26 and the link member 30.
  • the lubricating oil supplied into the housing 28 is returned to the inside of the internal combustion engine body, for example, through an opening (not shown) in the oil pan upper side wall 27 through which the link member 30 penetrates.
  • the housing 28 is fixed to the oil pan upper side wall 27. That is, the actuator unit 21 is fixed to the oil pan upper side wall 27.
  • FIG. 3 is a sectional view of the actuator unit 21 according to the first embodiment of the present invention.
  • the actuator unit 21 includes a second control shaft 24, a speed reducer 35 connected to the second control shaft 24, an electric motor 36 as a drive source that rotationally drives the second control shaft 24 via the speed reducer 35, And a link member 30 that transmits the rotation of the second control shaft 24 to the first control shaft 10.
  • the actuator unit 21 is configured such that the electric motor 36, the speed reducer 35, and the second control shaft 24 are arranged in series in this order from one end side (direction of arrow A in FIG. 3) in the cylinder row direction.
  • An angle sensor 37 that detects the rotation angle of the second control shaft 24 is attached to the other end of the actuator unit 21.
  • the second control shaft 24 has a substantially stepped cylindrical shape, and has a flange portion 38 formed in a flange shape at one end (direction of arrow A in FIG. 3) in the cylinder row direction (axial direction of the second control shaft 24).
  • the second control shaft 24 is a first shaft portion 24a that is a flange portion 38 located at one end side (direction of arrow A in FIG. 3) in the cylinder column direction (second control shaft 24 axial direction), It has a second shaft portion 24b supported by a first bearing portion 61a of a first housing 56 described later and a third shaft portion 24c supported by a second bearing portion 61b of a first housing 56 described later. There is.
  • the first shaft portion 24a has a larger diameter than the second shaft portion 24b.
  • the second shaft portion 24b has a larger diameter than the third shaft portion 24c. That is, the second control shaft 24 has a first shaft portion 24a that is a large diameter portion, and a second shaft portion 24b and a third shaft portion 24c that are small diameter portions with respect to the first shaft portion 24a.
  • the first shaft portion 24a has a second control shaft first end surface 39 in a portion continuous with the second shaft portion 24b. That is, the second control shaft first end surface 39 is located on the other end side (arrow in FIG. 3) of the first shaft portion 24a, which is the large diameter portion of the second control shaft 24, in the cylinder row direction (the second control shaft 24 axial direction). It is set on the end face in the B direction).
  • the second shaft portion 24b has a second control shaft second end surface 40 in a portion continuous with the third shaft portion 24c. That is, the second control shaft second end surface 40 is on the other end side (arrow B in FIG. 3) of the second shaft portion 24b, which is the small diameter portion of the second control shaft 24, in the cylinder row direction (the second control shaft 24 axial direction). Direction) end face.
  • the second control shaft 24 has a substantially stepped columnar shape, and has an annular second control shaft first end face 39 facing the first housing one end side end face 63 of the first housing 56 described later, and the second arm. And an annular second control shaft second end surface 40 capable of abutting the second arm portion 26 when the portion 26 is press-fitted.
  • the second control shaft first end surface 39 and the second control shaft second end surface 40 are each continuous in an annular shape along the circumferential direction of the second control shaft 24.
  • the second control shaft first end surface 39 and the second control shaft second end surface 40 are formed at positions separated from each other along the cylinder column direction (the second control shaft 24 axial direction).
  • the second control shaft first end surface 39 is located at one end side (direction of arrow A in FIG. 3) in the cylinder row direction (second control shaft 24 axis direction) with respect to the second control shaft second end surface 40. ing.
  • the second control shaft first end surface 39 and the second control shaft second end surface 40 face the other end side (direction of arrow B in FIG. 3) in the cylinder row direction (second control shaft 24 axis direction).
  • the second arm portion 26 is inserted together with a plate-shaped jig (not shown) from an opening 58 of a first housing 56, which will be described later, and the jig separates the clearance between the first housing 56 and the second arm portion 26. It is press-fitted into the second control shaft 24 in a controlled state.
  • the side surface 41 of the second arm portion 26 is parallel or substantially parallel to a plane orthogonal to the second control shaft 24 when the second arm portion 26 is press-fitted into the second control shaft 24.
  • the second arm portion 26 has a second annular shape that faces the first housing other end side end surface 64 of the first housing 56, which will be described later, on the outer peripheral side of the second control shaft through hole 42 through which the second control shaft 24 penetrates. It has an arm portion first end surface 43.
  • the second arm portion first end surface 43 penetrates the second control shaft at a side surface 41a of the second arm portion 26 on one end side (direction of arrow A in FIG. 3) in the cylinder column direction (second control shaft 24 axis direction). It is the tip surface of an annular protrusion formed on the outer peripheral side of the hole 42. That is, the second arm portion first end surface 43 is formed on a part of the side surface 41a.
  • the second arm portion first end surface 43 is formed to be parallel or substantially parallel to the side surface 41a.
  • Reference numeral 41b in FIG. 3 is a side surface of the second arm portion 26 on the other end side (direction of arrow B in FIG. 3) in the cylinder column direction (second control shaft 24 axis direction).
  • the side surface 41a of the second arm portion 26 on one end side (direction of arrow A in FIG. 3) in the cylinder row direction (axial direction of the second control shaft 24) has an inner peripheral side with respect to the first end surface 43 of the second arm portion.
  • An annular second arm portion second end surface 44 facing the second control shaft second end surface 40 is formed on the inner surface.
  • the second end surface 44 of the second arm portion is formed at the opening edge of the through hole 42 for the second control shaft.
  • the second arm portion 26 is press-fitted into the second control shaft 24 until the second arm portion second end surface 44 is pressed against the second control shaft second end surface 40.
  • the second arm portion first end surface 43 and the second arm portion second end surface 44 face one end side (direction of arrow A in FIG. 3) in the cylinder row direction (second control shaft 24 axis direction).
  • the second arm portion first end surface 43 and the second arm portion second end surface 44 are annularly continuous along the circumferential direction of the second control shaft 24.
  • the speed reducer 35 decelerates the rotation of the output shaft of the electric motor 36 and transmits it to the second control shaft 24.
  • the speed reducer 35 is positioned inside the inner ring 47 that rotates in synchronization with the electric motor 36, and on the outer peripheral side of the inner ring 47. And an outer ring 48.
  • the inner ring 47 is connected to the output shaft of the electric motor 36.
  • the outer ring 48 corresponds to the output shaft that is a component of the speed reducer 35, and has an outer ring one end side end surface 51 and an outer ring other end side end surface 52.
  • the outer ring one end side end surface 51 is configured by one end side (arrow A direction in FIG. 3) end surface of the outer ring 48 in the cylinder column direction (second control shaft 24 axis direction).
  • the end surface 51 on the one end side of the outer ring is formed as a continuous annular shape.
  • the outer ring one end side end surface 51 faces one end side (direction of arrow A in FIG. 3) in the cylinder row direction (the second control shaft 24 axis direction).
  • the outer ring one end side end surface 51 faces an opening end flange surface 70 of the second housing 57 described later.
  • the other end side 52 of the outer ring is constituted by the other end (direction of arrow B in FIG. 3) of the outer ring 48 in the cylinder column direction (the second control shaft 24 axis direction).
  • the end surface 52 on the other end side of the outer ring is formed as a continuous annular shape.
  • the other end side end surface 52 of the outer ring faces the other end side (direction of arrow B in FIG. 3) in the cylinder row direction (the second control shaft 24 axis direction).
  • the outer ring 48 has an end surface 52 on the other end side of the outer ring connected to the flange portion 38 by a bolt (not shown).
  • reduction gear 35 for example, a wave gear reduction mechanism or the like can be used.
  • the housing 28 of the actuator unit 21 mainly houses the second control shaft 24 and the speed reducer 35, the first housing 56, and mainly the rotor (not shown) and the stator (not shown) of the electric motor 36. And a second housing 57 that is That is, the second housing 57 is, in other words, the motor housing of the electric motor 36.
  • the first housing 56 has a bottomed cylindrical shape, and an opening 58 through which the link member 30 penetrates is formed in a part of the peripheral wall.
  • bearing portions 61 for rotatably supporting the second control shaft 24 are formed on both sides of the opening 58. That is, the first housing 56 is located at one end side (direction of arrow A in FIG. 3) in the cylinder row direction (the direction of the second control shaft 24) with respect to the opening 58 and the opening 58. Also has a second bearing portion 61b located on the other end side (direction of arrow B in FIG. 3) in the cylinder row direction (axial direction of the second control shaft 24).
  • the first bearing portion 61 a is configured by the tip portion of the partition wall 62 protruding from the inner wall surface of the first housing 56.
  • the partition wall 62 is formed so as to be annularly continuous along the circumferential direction of the first housing 56 (the circumferential direction of the second control shaft 24).
  • the tip portion of the partition wall 62 is formed so as to have a predetermined width along the cylinder column direction (axial direction of the second control shaft 24).
  • the partition wall 62 is located between the second arm portion 26 and the speed reducer 35 in the cylinder column direction (the direction of the second control shaft 24 axis). In other words, the partition wall 62 is located inside the first housing 56 and separates a space capable of housing the second arm portion 26 and a space capable of housing the speed reducer 35.
  • a part of the side surface located on one end side (direction of arrow A in FIG. 3) in the cylinder row direction (second control shaft 24 axis direction) is the second control shaft first end as the first housing one end side end face 63. It is formed so as to face the end surface 39.
  • a part of the side surface located on the other end side (direction of arrow B in FIG. 3) in the cylinder row direction (the second control shaft 24 axis direction) has a second arm portion as the first housing other end side end surface 64. It is formed so as to face the first end surface 43.
  • the first housing 56 includes the first housing one end side end surface 63 facing the second control shaft first end surface 39 and the first housing other end side end surface 64 facing the second arm portion first end surface 43. Is formed to have.
  • the first housing one end side end surface 63 and the first housing other end side end surface 64 are formed so as to be parallel or substantially parallel to a plane orthogonal to the second control shaft 24 supported by the first housing 56.
  • the end surface 63 on one end side of the first housing and the end surface 64 on the other end side of the first housing are formed so as to continue annularly along the circumferential direction of the first housing 56 (the circumferential direction of the second control shaft 24).
  • the second bearing portion 61b uses the inner peripheral surface of the first housing through hole 66 penetrating the bottom wall 65 of the first housing 56.
  • the second housing 57 has a bottomed cylindrical shape.
  • the open end flange surface 70 of the second housing 57 abuts the open end flange surface 69 of the first housing 56. That is, the first housing 56 and the second housing are fixed by the bolts (not shown) in a state where the opening end flange surfaces 69 and 70 are butted against each other.
  • the opening end flange surface 70 of the second housing 57 faces the outer ring one end side end surface 51 with a minute gap (minute clearance).
  • the second control shaft 24 and the second arm portion 26 have a function of restricting the axial position of the second control shaft 24. ing.
  • the position of the second control shaft 24 in the axial direction of the second control shaft 24 is regulated by the second control shaft first end face 39 contacting the first housing one end side end face 63. ..
  • the second control shaft first end surface 39 is in contact with the first housing one end side end surface 63, so that the thrust load along the axial direction of the second control shaft 24 can be supported. ..
  • the second control shaft first end surface 39 contacts the first housing one end side end surface 63, so that the other end side of the second control shaft 24 in the cylinder row direction (arrow B in FIG. 3). Movement is restricted. That is, since the second control shaft first end surface 39 contacts the first housing one end side end surface 63, the thrust load acting on the second control shaft 24 toward the other end side in the cylinder row direction (direction of arrow B in FIG. 3) is applied. Can support.
  • the second arm portion first end surface 43 contacts the other end side end surface 64 of the first housing, whereby the position of the second control shaft 24 in the axial direction of the second control shaft 24 is restricted.
  • the second arm portion first end surface 43 contacts the first housing other end side end surface 64, so that the thrust load along the axial direction of the second control shaft 24 can be supported.
  • the second arm portion first end face 43 is in contact with the other end side face 64 of the first housing, so that the second control shaft 24 has one end side in the cylinder row direction (arrow A in FIG. 3). Movement is restricted. That is, the second arm portion first end surface 43 contacts the other end side surface 64 of the first housing, so that the thrust load acting on the second control shaft 24 toward the one end side in the cylinder column direction (direction of arrow A in FIG. 3) is applied.
  • Can support is
  • the second control shaft first end surface 39 serves as the first support surface, and is in contact with the end surface 63 on the first housing one end side as the housing first support surface.
  • the second arm portion first end surface 43 serves as a second support surface and is in contact with the first housing other end side end surface 64 as the housing second support surface.
  • the contact area between the second arm portion first end surface 43 and the first housing other end side end surface 64 is the same as the second control shaft first end surface 39 and the first housing one end side end surface 63. It is set to be larger than the contact area of.
  • the second arm portion first end face 43 is the first housing other end side end face 64. Is in the opposite direction (180° opposite direction) in the axial direction of the second control shaft 24 with respect to the moving direction of the second control shaft 24 which is restricted by contacting with.
  • the direction of the thrust load supported by the second control shaft first end surface 39 contacting the first housing one end side end surface 63 is such that the second arm portion first end surface 43 is the first housing other end side end surface 64. Is in the opposite direction (180° opposite direction) in the axial direction of the second control shaft 24 with respect to the direction of the thrust load supported by contacting with.
  • the second control shaft 24 and the second arm portion 26 have a function of restricting the axial position of the second control shaft 24. There is.
  • the second control shaft 24 has a shorter axial length as compared with a case where another component for the purpose of only restricting the axial position of the second control shaft 24 is press-fitted into the second control shaft 24. be able to.
  • the actuator unit 21 can shorten the length along the axial direction of the second control shaft 24, and an oil pump (not shown) or an air conditioner compressor (adjacent to the internal combustion engine (variable compression ratio internal combustion engine)) can be shortened. Interference with (not shown) or the like can be avoided. In other words, in the internal combustion engine (variable compression ratio internal combustion engine), the degree of freedom in layout can be increased by shortening the overall length of the actuator unit 21 (housing 28).
  • the actuator unit 21 can improve the sound vibration performance by shortening its entire length in the cylinder row direction.
  • the number of parts of the press-fitted parts is reduced as compared with the case where another part whose purpose is only to regulate the axial position of the second control shaft 24 is press-fitted into the second control shaft 24.
  • Productivity can be improved.
  • the first embodiment it is possible to easily set a large contact area between the end surface 64 on the other end side of the first housing and the first end surface 43 of the second arm portion. Therefore, in the first embodiment, it is possible to reduce the surface pressure when the second arm portion first end surface 43 is pressed against the other end side end surface 64 of the first housing.
  • FIG. 4 is an enlarged sectional view showing a main part of the actuator unit 21 according to the second embodiment of the present invention.
  • the internal combustion engine of the second embodiment has substantially the same configuration as the internal combustion engine of the first embodiment described above, but the second arm portion first end surface 43 has one end side of the second arm portion 26 in the cylinder row direction ( It is formed on substantially the entire side surface 41 in the direction of arrow A in FIG.
  • the second arm portion 26 in the second embodiment includes all of the side surfaces 41 on the one end side in the cylinder row direction (direction of arrow A in FIG. 4) other than the portion in contact with the second control shaft second end surface 40. Serves as the second arm portion first end surface 43 and is in contact with the other end side end surface 64 of the first housing.
  • the second control shaft second end surface 40 is separated from the second control shaft second end surface 40, and the second arm portion first end surface 43 and the second control shaft first end surface 43 are separated from each other.
  • the partition wall 62 is sandwiched between the first end surface 39 and the first end surface 39, whereby the second arm portion 26 is positioned with respect to the second control shaft 24.
  • the function of restricting the position of the second control shaft 24 in the axial direction is provided by substantially the entire side surface 41 of the second arm portion 26 on the one end side (the arrow A direction in FIG. 4) in the cylinder row direction. Therefore, it is possible to easily set the contact area between the other end side end surface 64 of the first housing and the first end surface 43 of the second arm portion larger than that in the above-described first embodiment. Therefore, in the second embodiment, the surface pressure when the second arm portion first end surface 43 is pressed against the other end side end surface 64 of the first housing can be reduced as compared with the above-described first embodiment. ..
  • FIG. 5 is an enlarged sectional view showing a main part of the actuator unit 21 in the third embodiment of the present invention.
  • the internal combustion engine of the third embodiment has substantially the same configuration as the internal combustion engine of the first embodiment described above, but has a function of restricting the axial position of the second control shaft 24, not the second arm portion 26.
  • the link member 30 has.
  • the second arm portion 26 is formed in a flat plate shape.
  • the link member 30 in the third embodiment is formed in a bifurcated shape so that the other end can sandwich the tip end of the second arm portion 26.
  • the second arm portion 26 is sandwiched by the other end of the link member 30.
  • the side surface 81 at the other end of the link member 30 is parallel or substantially parallel to the plane orthogonal to the second control shaft 24 when the link member 30 is connected to the second arm portion 26.
  • the link member 30 has a link member one end surface 82 that faces the first housing other end side end surface 64 of the first housing 56.
  • the link member one-side end surface 82 is a tip portion of the other end of the link member 30 on the side surface 81a on one side (the arrow A direction in FIG. 5) of the link member 30 in the cylinder row direction (the second control shaft 24 axis direction). It is the tip surface of the protruding portion formed in. That is, the one end surface 82 of the link member is formed on a part of the side surface 81a.
  • the one end surface 82 of the link member is formed to be parallel or substantially parallel to the side surface 81a.
  • reference numeral 81b in FIG. 4 is a side surface on the other side (direction of arrow B in FIG. 5) of the link member 30 in the cylinder row direction (second control shaft 24 axis direction).
  • the second control shaft 24 and the link member 30 have a function of restricting the axial position of the second control shaft 24.
  • the position of the second control shaft 24 in the axial direction of the second control shaft 24 is restricted by the second control shaft first end face 39 contacting the first housing one end side end face 63. ..
  • the second control shaft first end surface 39 is in contact with the first housing one end side end surface 63 to support the thrust load along the second control shaft 24 axial direction. ..
  • the second control shaft first end surface 39 contacts the first housing one end side end surface 63, so that the other end side of the second control shaft 24 in the cylinder row direction (arrow B in FIG. 5). Movement is restricted. That is, since the second control shaft first end surface 39 contacts the first housing one end side end surface 63, the thrust load acting on the second control shaft 24 toward the other end side in the cylinder row direction (direction of arrow B in FIG. 5) is applied. Can support.
  • the position of the second control shaft 24 in the axial direction of the second control shaft 24 is restricted by the one end face 82 of the link member being in contact with the end face 64 of the other end of the first housing.
  • the one end face 82 of the link member is in contact with the other end face 64 of the first housing, so that the thrust load along the axial direction of the second control shaft 24 can be supported.
  • the one end surface 82 of the link member is in contact with the end surface 64 of the other end of the first housing, so that one end side of the second control shaft 24 in the cylinder row direction (direction of arrow A in FIG. 5). Is restricted to travel. That is, since the one end surface 82 of the link member contacts the other end surface 64 of the first housing, the thrust load acting on the second control shaft 24 toward the one end side in the cylinder row direction (direction of arrow A in FIG. 5) can be supported. ..
  • the second control shaft first end surface 39 serves as the first support surface and is in contact with the first housing one end side end surface 63 as the housing first support surface.
  • the end surface 82 on one side of the link member serves as a second supporting surface and is in contact with the end surface 64 on the other end side of the first housing as the second supporting surface of the housing.
  • the contact area between the link member one end surface 82 and the first housing other end side end surface 64 is the contact area between the second control shaft first end surface 39 and the first housing one end side end surface 63. It is set to be larger than the area.
  • the movement direction of the second control shaft 24, which is restricted by this, is the opposite direction (180° opposite direction) in the axial direction of the second control shaft 24.
  • the direction of the thrust load supported by the second control shaft first end face 39 contacting the first housing one end side end face 63 is such that the link member one side end face 82 contacts the first housing other end side end face 64. Therefore, the direction of the thrust load supported is opposite to the axial direction of the second control shaft 24 (180° opposite direction).
  • the third embodiment it is possible to easily set the contact area between the end surface 64 on the other end side of the first housing and the end surface 82 on one side of the link member to be large. Therefore, in the third embodiment, it is possible to reduce the surface pressure when the link member one end face 82 is pressed against the other end side end face 64 of the first housing.
  • FIG. 6 is an enlarged sectional view showing a main part of the actuator unit 21 according to the fourth embodiment of the present invention.
  • the internal combustion engine of the fourth embodiment has substantially the same configuration as the internal combustion engine of the first embodiment described above, but has a function of restricting the axial position of the second control shaft 24, not the second arm portion 26.
  • the link member 30 has.
  • the second arm portion 26 is formed in a flat plate shape. Then, the link member 30 in the fourth embodiment is formed in a bifurcated shape so that the other end can sandwich the tip end of the second arm portion 26.
  • the second arm portion 26 is sandwiched by the other end of the link member 30.
  • the side surface 81 of the link member 30 is parallel or substantially parallel to the plane orthogonal to the second control shaft 24 when the link member 30 is connected to the second arm portion 26.
  • the link member 30 has a link member one end surface 82 that faces the first housing other end side end surface 64 of the first housing 56.
  • the link member one-side end surface 82 is, at the other end of the link member 30, substantially the entire side surface 81a on one side (the arrow A direction in FIG. 6) of the link member 30 in the cylinder row direction (the second control shaft 24 axis direction). Is formed in.
  • reference numeral 81b in FIG. 6 is a side surface on the other side (direction of arrow B in FIG. 5) of the link member 30 in the cylinder column direction (second control shaft 24 axis direction).
  • the second control shaft 24 and the link member 30 can regulate the axial position of the second control shaft 24, as in the above-described third embodiment. It has various functions.
  • the position of the second control shaft 24 in the axial direction of the second control shaft 24 is restricted by the second control shaft first end surface 39 contacting the first housing one end side end surface 63. ..
  • the second control shaft first end surface 39 is in contact with the first housing one end side end surface 63, so that the thrust load along the second control shaft 24 axial direction can be supported. ..
  • the second control shaft first end surface 39 contacts the first housing one end side end surface 63, so that the other end side of the second control shaft 24 in the cylinder row direction (arrow B in FIG. 6). Movement is restricted. That is, the second control shaft first end surface 39 is in contact with the first housing one end side end surface 63, so that the thrust load acting on the second control shaft 24 toward the other end side in the cylinder row direction (direction of arrow B in FIG. 6) is applied. Can support.
  • the position of the second control shaft 24 in the axial direction of the second control shaft 24 is restricted by the one end face 82 of the link member contacting the end face 64 of the other end of the first housing.
  • the one end face 82 of the link member is in contact with the other end face 64 of the first housing, so that the thrust load along the axial direction of the second control shaft 24 can be supported.
  • the one end surface 82 of the link member contacts the other end surface 64 of the first housing, so that one end side of the second control shaft 24 in the cylinder row direction (direction of arrow A in FIG. 6). Is restricted to travel. That is, since the one end surface 82 of the link member is in contact with the other end surface 64 of the first housing, it is possible to support the thrust load acting on the second control shaft 24 toward the one end side in the cylinder row direction (direction of arrow A in FIG. 6 ). ..
  • the second control shaft first end surface 39 serves as the first support surface and is in contact with the first housing one end side end surface 63 as the housing first support surface.
  • the end surface 82 on one side of the link member serves as a second supporting surface and is in contact with the end surface 64 on the other end side of the first housing as the second supporting surface of the housing.
  • the contact area between the link member one end surface 82 and the first housing other end side end surface 64 is larger than the contact area between the second control shaft first end surface 39 and the first housing one end side end surface 63. It is set to be larger than the area.
  • the movement direction of the second control shaft 24, which is restricted by this, is the opposite direction (180° opposite direction) in the axial direction of the second control shaft 24.
  • the direction of the thrust load supported by the second control shaft first end face 39 contacting the first housing one end side end face 63 is such that the link member one side end face 82 contacts the first housing other end side end face 64. Therefore, the direction of the thrust load supported is opposite to the axial direction of the second control shaft 24 (180° opposite direction).
  • the contact area between the other end face 64 of the first housing and the one end face 82 of the link member can be easily set large. Therefore, in the fourth embodiment, it is possible to reduce the surface pressure when the link member one side end surface 82 is pressed against the other end side end surface 64 of the first housing.
  • the function of restricting the position of the second control shaft 24 in the axial direction is provided on substantially the entire side surface 81a of the link member 30 on one end side in the cylinder row direction (direction of arrow A in FIG. 6). Therefore, it is possible to easily set the contact area between the end face 64 on the other end side of the first housing and the end face 82 on one side of the link member larger than that in the third embodiment. Therefore, in the fourth embodiment, the surface pressure when the link member one-side end surface 82 is pressed against the other end side end surface 64 of the first housing can be reduced as compared with the above-described third embodiment.
  • the function that can regulate the axial position of the second control shaft 24 can be provided to the speed reducer 35 instead of the second arm portion 26 and the link member 30.
  • the outer ring one end side end surface 51 of the speed reducer 35 serves as the second support surface and contacts the opening end flange surface 70 of the second housing 57 that serves as the housing second support surface.
  • the outer ring one end side end face 51 is set to the whole or a part of the end face of the outer ring 48 on the one end side in the cylinder column direction (for example, the direction of arrow A in FIG. 3).
  • the speed reducer 35 is provided with a function capable of restricting the axial position of the second control shaft 24, the contact area between the opening end flange surface 70 of the second housing 57 and the outer ring one end side end surface 51 is easily large. It is possible to set.
  • the function of restricting the position of the second control shaft 24 in the axial direction is provided with one end side of the outer ring 48 in the cylinder row direction.
  • the second housing 57 has a function of restricting the axial position of the second control shaft 24 compared to a case where a part of the end surface of the outer ring 48 on the one end side in the cylinder row direction is set. It is possible to reduce the surface pressure when the outer ring one end side end surface 51 is pressed against the opening end flange surface 70.
  • the second arm portion first end surface 43 serving as the second support surface may be C-shaped along the circumferential direction of the second control shaft 24. That is, the second arm portion first end surface 43 may be formed in an arc shape on the outer peripheral side of the second control shaft through hole 42 along a part of the periphery of the second control shaft through hole 42. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

This internal combustion engine is configured such that a second control shaft (24) and a second arm (26) function to restrict the position of the second control shaft (24) in an axial direction. Specifically, as a result of contact between a first end surface (39) of the second control shaft and an end surface (63) on one end side of a first housing, the movement of the second control shaft (24) to the other end side in a cylinder array direction is restricted. The movement of the second control shaft (24) to the one end side in the cylinder array direction is restricted as a result of contact between a first end surface (43) of the second arm and an end surface (64) on the other end side of the first housing. As a result, the axial length of the second control shaft (24) can be relatively reduced in the internal combustion engine. Furthermore, by having a short axial length for the second control shaft (24), it is possible to reduce the total length of an actuator unit 21.

Description

内燃機関Internal combustion engine
 本発明は、可変圧縮比機構を備えた内燃機関に関する。 The present invention relates to an internal combustion engine equipped with a variable compression ratio mechanism.
 複リンク式のピストンクランク機構を利用して内燃機関の圧縮比を変更可能な可変圧縮比内燃機関が従来から知られている。 A variable compression ratio internal combustion engine that can change the compression ratio of the internal combustion engine using a multi-link type piston crank mechanism has been conventionally known.
 例えば、特許文献1には、第1制御軸の回転位置に応じて内燃機関の圧縮比を変更可能な可変圧縮比機構と、第1制御軸の回転位置を変更及び保持するアクチュエータと、第1制御軸と平行に配置され、アクチュエータの回転が減速機を介して伝達される第2制御軸と、第1制御軸と第2制御軸とを連結する連結リンクと、を有する可変圧縮比内燃機関が開示されている。この可変圧縮比内燃機関においては、第2制御軸の回転に応じて連結リンクが往復運動し、連結リンクの動きに応じて第1制御軸が回転する。第2制御軸は、オイルパン側壁の外側に位置している。 For example, in Patent Document 1, a variable compression ratio mechanism that can change the compression ratio of an internal combustion engine according to the rotational position of a first control shaft, an actuator that changes and holds the rotational position of the first control shaft, a first Variable compression ratio internal combustion engine having a second control shaft arranged in parallel with the control shaft and transmitting rotation of an actuator through a speed reducer, and a connecting link connecting the first control shaft and the second control shaft. Is disclosed. In this variable compression ratio internal combustion engine, the connection link reciprocates according to the rotation of the second control shaft, and the first control shaft rotates according to the motion of the connection link. The second control shaft is located outside the oil pan side wall.
 このような従来の可変圧縮比内燃機関においては、第2制御軸の長さを短くできれば、第2制御軸、減速機及びアクチュエータ等からなるアクチュエータユニットの気筒列方向に沿った長さを容易に短くできる。 In such a conventional variable compression ratio internal combustion engine, if the length of the second control shaft can be shortened, the length of the actuator unit including the second control shaft, the speed reducer, the actuator and the like in the cylinder row direction can be easily achieved. Can be shortened.
 しかしながら、このような従来の可変圧縮比内燃機関においては、第2制御軸を短くすることに関して十分な検討がなされていない。 However, in such a conventional variable compression ratio internal combustion engine, sufficient consideration has not been given to shortening the second control shaft.
 つまり、従来の可変圧縮比内燃機関においては、第2制御軸を短くすることに関して、さらなる改善の余地がある。 In other words, in the conventional variable compression ratio internal combustion engine, there is room for further improvement regarding shortening the second control shaft.
特開2011-169152号公報JP, 2011-169152, A
 本発明の内燃機関は、第1制御軸の回転位置に応じて圧縮比を変更する可変圧縮比機構と、上記第1制御軸を回転駆動するアクチュエータユニットと、を有している。 The internal combustion engine of the present invention has a variable compression ratio mechanism that changes the compression ratio according to the rotational position of the first control shaft, and an actuator unit that rotationally drives the first control shaft.
 上記アクチュエータユニットは、第2制御軸と、減速機を介して上記第2制御軸を回転駆動する駆動源と、上記第2制御軸の回転を上記第1制御軸に伝達するリンク部材と、を有している。 The actuator unit includes a second control shaft, a drive source that rotationally drives the second control shaft via a speed reducer, and a link member that transmits the rotation of the second control shaft to the first control shaft. Have
 上記第1制御軸は、当該第1制御軸から径方向に突出する第1アーム部を有している。 The first control shaft has a first arm portion that projects radially from the first control shaft.
 上記第2制御軸は、当該第2制御軸から径方向に突出する第2アーム部を有している。 The second control shaft has a second arm portion that radially projects from the second control shaft.
 上記リンク部材は、一端が上記第1アーム部に回転可能に連結され、他端が上記第2アーム部に回転可能に連結されている。 The link member has one end rotatably connected to the first arm portion and the other end rotatably connected to the second arm portion.
 そして、上記第2制御軸と、上記第2アーム部、上記リンク部材または上記減速機のいずれかとが、上記第2制御軸の軸方向の位置を規制可能な機能を有している。 The second control shaft and any one of the second arm portion, the link member, and the speed reducer have a function of restricting the axial position of the second control shaft.
 これによって、内燃機関は、上記第2制御軸の軸長を相対的に短くすることができる。そのため、上記アクチュエータユニットは、上記第2制御軸の軸長が短くなることにより、その全長を短くすることが可能となる。 With this, the internal combustion engine can relatively shorten the axial length of the second control shaft. Therefore, in the actuator unit, the overall length of the actuator unit can be shortened by shortening the axial length of the second control shaft.
本発明に係る内燃機関に適用される可変圧縮比機構の概略構成を模式的に示した説明図。The explanatory view showing typically the schematic structure of the variable compression ratio mechanism applied to the internal-combustion engine concerning the present invention. 第1制御軸と第2制御軸との連結機構を模式的に示した説明図。Explanatory drawing which showed typically the connection mechanism of a 1st control axis and a 2nd control axis. 第1実施例におけるアクチュエータユニットの断面図。Sectional drawing of the actuator unit in 1st Example. 第2実施例におけるアクチュエータユニットの要部を拡大して示した断面図。Sectional drawing which expanded and showed the principal part of the actuator unit in 2nd Example. 第3実施例におけるアクチュエータユニットの要部を拡大して示した断面図。Sectional drawing which expanded and showed the principal part of the actuator unit in 3rd Example. 第4実施例におけるアクチュエータユニットの要部を拡大して示した断面図。Sectional drawing which expanded and showed the principal part of the actuator unit in 4th Example.
 以下、本発明の一実施例を図面に基づいて詳細に説明する。 An embodiment of the present invention will be described in detail below with reference to the drawings.
 図1は、本発明の内燃機関に適用される可変圧縮比機構1の概略構成を模式的に示した説明図である。図1は、クランクシャフト軸方向から見た可変圧縮比機構1の概略構成を模式的に示した説明図である。 FIG. 1 is an explanatory diagram schematically showing a schematic configuration of a variable compression ratio mechanism 1 applied to an internal combustion engine of the present invention. FIG. 1 is an explanatory view schematically showing the schematic configuration of the variable compression ratio mechanism 1 as viewed from the crankshaft axial direction.
 可変圧縮比機構1を有する内燃機関(可変圧縮比内燃機関)は、例えば、自動車等の車両に搭載される。 An internal combustion engine (variable compression ratio internal combustion engine) having the variable compression ratio mechanism 1 is mounted on a vehicle such as an automobile.
 可変圧縮比機構1は、ピストン2と、第1リンクとしてのアッパリンク4と、第2リンクとしてのロアリンク7と、第3リンクとしてのコントロールリンク9と、から大略構成されている。可変圧縮比機構1は、ピストン2とクランクシャフト6のクランクピン6aとを複数のリンクで連係(連結)した複リンク式ピストンクランク機構である。 The variable compression ratio mechanism 1 is roughly composed of a piston 2, an upper link 4 as a first link, a lower link 7 as a second link, and a control link 9 as a third link. The variable compression ratio mechanism 1 is a multi-link type piston crank mechanism in which the piston 2 and the crank pin 6a of the crank shaft 6 are linked by a plurality of links.
 ピストン2は、ピストンピン3を介してアッパリンク4の一端に回転可能に連結されている。 The piston 2 is rotatably connected to one end of an upper link 4 via a piston pin 3.
 アッパリンク4の他端は、第1リンク連結ピンとしてのアッパピン5を介してロアリンク7の一端側に回転可能に連結されている。 The other end of the upper link 4 is rotatably connected to one end of the lower link 7 via an upper pin 5 as a first link connecting pin.
 クランクシャフト6は、複数のジャーナル部6bとクランクピン6aとを備えており、シリンダブロック(図示せず)の主軸受(図示せず)に、ジャーナル部6bが回転可能に支持されている。クランクピン6aは、ジャーナル部6bから所定量偏心している。 The crankshaft 6 includes a plurality of journal portions 6b and a crank pin 6a, and the journal portion 6b is rotatably supported by a main bearing (not shown) of a cylinder block (not shown). The crank pin 6a is eccentric from the journal portion 6b by a predetermined amount.
 ロアリンク7は、クランクシャフト6のクランクピン6aに回転可能に連結されている。 The lower link 7 is rotatably connected to the crank pin 6a of the crank shaft 6.
 コントロールリンク9の一端は、第3リンク連結ピンとしてのコントロールピン8を介してロアリンク7の他端側に回転可能に連結されている。 ▽ One end of the control link 9 is rotatably connected to the other end side of the lower link 7 via a control pin 8 as a third link connecting pin.
 コントロールリンク9の他端は、機関本体側に支持される第1制御軸10の偏心軸部10aに回転可能に連結されている。 The other end of the control link 9 is rotatably connected to the eccentric shaft portion 10a of the first control shaft 10 supported on the engine body side.
 金属製の第1制御軸10は、クランクシャフト6と平行に配置され、例えば、上記シリンダブロックに回転可能に支持される。 The first control shaft 10 made of metal is arranged parallel to the crankshaft 6 and is rotatably supported by the cylinder block, for example.
 つまり、金属製の偏心軸部10aに回転可能に連結されているコントロールリンク9の他端は、機関本体側に揺動可能に支持されていることになる。 That is, the other end of the control link 9 that is rotatably connected to the metal eccentric shaft portion 10a is swingably supported on the engine body side.
 偏心軸部10aの中心軸は、第1制御軸10の回転中心に対して所定量偏心している。 The center axis of the eccentric shaft portion 10a is eccentric by a predetermined amount with respect to the rotation center of the first control shaft 10.
 可変圧縮比機構1は、第1制御軸10を回転させて偏心軸部10aの位置を変更することで、上死点におけるピストン2の位置が変更可能となり、内燃機関の機械的圧縮比を変更することができる。 The variable compression ratio mechanism 1 changes the position of the piston 2 at the top dead center by rotating the first control shaft 10 and changing the position of the eccentric shaft portion 10a, thereby changing the mechanical compression ratio of the internal combustion engine. can do.
 第1制御軸10は、ロアリンク7の自由度を規制するものであり、アクチュエータユニット21によって回転位置が変更及び保持される。 The first control shaft 10 regulates the degree of freedom of the lower link 7, and the rotational position is changed and held by the actuator unit 21.
 図2は、第1制御軸10とアクチュエータユニット21の第2制御軸24との連結機構を模式的に示した説明図である。 FIG. 2 is an explanatory view schematically showing a connecting mechanism between the first control shaft 10 and the second control shaft 24 of the actuator unit 21.
 なお、図2においては、説明の便宜上、後述する第2制御軸24の一部、角度センサ37、第1ハウジング56の底壁65等の構成を省略または簡略化して示している。 Note that, in FIG. 2, for convenience of description, configurations of a part of the second control shaft 24, the angle sensor 37, the bottom wall 65 of the first housing 56, and the like, which will be described later, are omitted or simplified.
 第1制御軸10は、金属製で二股状の第1アーム部22を有し、上記シリンダブロックやその下側(下部)に固定されるオイルパンアッパ23等からなる内燃機関本体の内部に回転可能に支持されている。第1アーム部22は、第1制御軸10の径方向外側に向かって延出している。つまり、第1アーム部22は、第1制御軸10から突出している。 The first control shaft 10 has a metal-made bifurcated first arm portion 22, and rotates inside an internal combustion engine body including the cylinder block and an oil pan upper 23 fixed to a lower side (lower portion) thereof. Supported as possible. The first arm portion 22 extends outward in the radial direction of the first control shaft 10. That is, the first arm portion 22 projects from the first control shaft 10.
 第1制御軸10は、潤滑用のオイル(潤滑油)が飛散する上記内燃機関本体内に配置されている。 The first control shaft 10 is arranged in the internal combustion engine body in which lubricating oil (lubricating oil) is scattered.
 金属製の第2制御軸24は、第1制御軸10と平行に配置されており、オイルパンアッパ側壁27に沿って、機関前後方向に延在している。換言すれば、第2制御軸24は、上記内燃機関本体の気筒列方向に沿って、上記内燃機関本体の外部に配置されている。 The second control shaft 24 made of metal is arranged in parallel with the first control shaft 10 and extends along the oil pan upper side wall 27 in the longitudinal direction of the engine. In other words, the second control shaft 24 is arranged outside the internal combustion engine body along the cylinder column direction of the internal combustion engine body.
 つまり、第2制御軸24は、第2制御軸24軸方向が上記内燃機関本体の気筒列方向と一致するように上記内燃機関本体の外部に配置されている。従って、本明細書においては、気筒列方向と第2制御軸24軸方向とは一致したものとなっている。 That is, the second control shaft 24 is arranged outside the internal combustion engine body such that the axial direction of the second control shaft 24 coincides with the cylinder row direction of the internal combustion engine body. Therefore, in this specification, the cylinder row direction and the second control shaft 24 axis direction coincide with each other.
 第2制御軸24は、金属製で二股状の第2アーム部26を有している。第2アーム部26は、第2制御軸24の径方向外側に向かって延出している。つまり、第2アーム部26は、第2制御軸24から突出している。 The second control shaft 24 has a metal-made bifurcated second arm portion 26. The second arm portion 26 extends outward in the radial direction of the second control shaft 24. That is, the second arm portion 26 projects from the second control shaft 24.
 第2アーム部26は、第2制御軸24に圧入される部品であり、圧入によって第2制御軸24に固定されている。 The second arm portion 26 is a component that is press-fitted into the second control shaft 24, and is fixed to the second control shaft 24 by press-fitting.
 第1アーム部22と第2アーム部26とは、アクチュエータユニット21のリンク部材30により連係(連結)されている。リンク部材30は、第1制御軸10及び第2制御軸24に対して直交する細長い金属製の部材である。 The first arm portion 22 and the second arm portion 26 are linked (connected) by the link member 30 of the actuator unit 21. The link member 30 is an elongated metal member orthogonal to the first control shaft 10 and the second control shaft 24.
 すなわち、第1制御軸10と第2制御軸24とは、オイルパンアッパ側壁27を貫通するリンク部材30によって機械的に連結された構成となっている。 That is, the first control shaft 10 and the second control shaft 24 are mechanically connected by the link member 30 penetrating the oil pan upper side wall 27.
 第1アーム部22の先端には、リンク部材30の一端が挟み込まれている。第1アーム部22とリンク部材30は、金属製で円筒状の第1連結ピン31を介して回転可能に連結されている。第1連結ピン31は、第1制御軸10に平行な状態で、第1アーム部22の先端及びリンク部材30の一端を貫通している。 One end of the link member 30 is sandwiched at the tip of the first arm portion 22. The first arm portion 22 and the link member 30 are rotatably connected via a metal-made cylindrical first connecting pin 31. The first connecting pin 31 penetrates the tip of the first arm portion 22 and one end of the link member 30 in a state parallel to the first control shaft 10.
 第1連結ピン31を介して連結された第1アーム部22とリンク部材30との連結部分は、例えば上記内燃機関本体内を飛散する潤滑油や、上記内燃機関本体内の底部に滞留した潤滑油によって潤滑される。 The connecting portion between the first arm portion 22 and the link member 30 that is connected via the first connecting pin 31 is, for example, lubricating oil that scatters in the internal combustion engine body, or lubrication that accumulates in the bottom portion in the internal combustion engine body. Lubricated by oil.
 第2アーム部26の先端には、リンク部材30の他端が挟み込まれている。つまり、第2アーム部26は、他端がリンク部材30の他端を挟み込めるように二股状に形成されている。第2アーム部26とリンク部材30は、金属製で円筒状の第2連結ピン32を介して回転可能に連結されている。第2連結ピン32は、第2制御軸24に平行な状態で、第2アーム部26の先端及びリンク部材30の他端を貫通している。 The other end of the link member 30 is sandwiched by the tip of the second arm portion 26. That is, the second arm portion 26 is formed in a bifurcated shape so that the other end can sandwich the other end of the link member 30. The second arm portion 26 and the link member 30 are rotatably connected via a second cylindrical connecting pin 32 made of metal. The second connecting pin 32 penetrates the tip end of the second arm portion 26 and the other end of the link member 30 in a state parallel to the second control shaft 24.
 第2連結ピン32は、第2アーム部26及びリンク部材30の双方に対して相対回転可能な状態となっている。 The second connecting pin 32 is in a state of being rotatable relative to both the second arm portion 26 and the link member 30.
 第2連結ピン32を介して連結された第2アーム部26とリンク部材30との連結部分は、例えばアクチュエータユニット21のハウジング28内に供給された潤滑油によって潤滑される。ハウジング28内に供給された潤滑油は、例えば、リンク部材30が貫通するオイルパンアッパ側壁27の開口部(図示せず)を介して上記内燃機関本体内に戻される。 The connecting portion between the second arm portion 26 and the link member 30, which are connected via the second connecting pin 32, is lubricated by the lubricating oil supplied into the housing 28 of the actuator unit 21, for example. The lubricating oil supplied into the housing 28 is returned to the inside of the internal combustion engine body, for example, through an opening (not shown) in the oil pan upper side wall 27 through which the link member 30 penetrates.
 ハウジング28は、オイルパンアッパ側壁27に固定されている。つまり、アクチュエータユニット21は、オイルパンアッパ側壁27に固定されている。 The housing 28 is fixed to the oil pan upper side wall 27. That is, the actuator unit 21 is fixed to the oil pan upper side wall 27.
 リンク部材30は、第2制御軸24が回転すると、第2制御軸24の回転に伴う第2アーム部26の揺動により第1制御軸10に直交する平面に沿って往復運動する。そして、第1制御軸10は、リンク部材30の往復運動に伴い第1アーム部22が揺動することで回転する。つまり、第1制御軸10は、第2制御軸24が回転することによって回転する。 When the second control shaft 24 rotates, the link member 30 reciprocates along a plane orthogonal to the first control shaft 10 due to the swing of the second arm portion 26 accompanying the rotation of the second control shaft 24. Then, the first control shaft 10 rotates as the first arm portion 22 swings as the link member 30 reciprocates. That is, the first control shaft 10 rotates as the second control shaft 24 rotates.
 図3を用いて、本願発明の要部であるアクチュエータユニット21の構造について説明する。図3は、本発明における第1実施例のアクチュエータユニット21の断面図である。 The structure of the actuator unit 21, which is the main part of the present invention, will be described with reference to FIG. FIG. 3 is a sectional view of the actuator unit 21 according to the first embodiment of the present invention.
 アクチュエータユニット21は、第2制御軸24と、第2制御軸24に連結された減速機35と、減速機35を介して第2制御軸24を回転駆動する駆動源としての電動モータ36と、第2制御軸24の回転を第1制御軸10に伝達するリンク部材30と、を有している。 The actuator unit 21 includes a second control shaft 24, a speed reducer 35 connected to the second control shaft 24, an electric motor 36 as a drive source that rotationally drives the second control shaft 24 via the speed reducer 35, And a link member 30 that transmits the rotation of the second control shaft 24 to the first control shaft 10.
 詳述すると、アクチュエータユニット21は、気筒列方向の一端側(図3における矢印A方向)から順に電動モータ36、減速機35、第2制御軸24が直列に並んだ構成となっている。 More specifically, the actuator unit 21 is configured such that the electric motor 36, the speed reducer 35, and the second control shaft 24 are arranged in series in this order from one end side (direction of arrow A in FIG. 3) in the cylinder row direction.
 アクチュエータユニット21の他端には、第2制御軸24の回転角度を検出する角度センサ37が取り付けられている。 An angle sensor 37 that detects the rotation angle of the second control shaft 24 is attached to the other end of the actuator unit 21.
 第2制御軸24は、略段付き円柱形状を呈し、気筒列方向(第2制御軸24軸方向)の一端(図3における矢印A方向)に鍔状に形成されたフランジ部38を有している。詳述すると、第2制御軸24は、気筒列方向(第2制御軸24軸方向)の一端側(図3における矢印A方向)に位置してフランジ部38となる第1軸部24aと、後述する第1ハウジング56の第1軸受部61aに支持される第2軸部24bと、後述する第1ハウジング56の第2軸受部61bに支持される第3軸部24cと、を有している。 The second control shaft 24 has a substantially stepped cylindrical shape, and has a flange portion 38 formed in a flange shape at one end (direction of arrow A in FIG. 3) in the cylinder row direction (axial direction of the second control shaft 24). ing. More specifically, the second control shaft 24 is a first shaft portion 24a that is a flange portion 38 located at one end side (direction of arrow A in FIG. 3) in the cylinder column direction (second control shaft 24 axial direction), It has a second shaft portion 24b supported by a first bearing portion 61a of a first housing 56 described later and a third shaft portion 24c supported by a second bearing portion 61b of a first housing 56 described later. There is.
 第1軸部24aは、第2軸部24bよりも大径となっている。第2軸部24bは、第3軸部24cよりも大径となっている。つまり、第2制御軸24は、大径部となる第1軸部24aと、第1軸部24aに対して小径部となる第2軸部24b及び第3軸部24cを有している。 The first shaft portion 24a has a larger diameter than the second shaft portion 24b. The second shaft portion 24b has a larger diameter than the third shaft portion 24c. That is, the second control shaft 24 has a first shaft portion 24a that is a large diameter portion, and a second shaft portion 24b and a third shaft portion 24c that are small diameter portions with respect to the first shaft portion 24a.
 そして、第1軸部24aは、第2軸部24bと連続する部分に第2制御軸第1端面39を有している。つまり、第2制御軸第1端面39は、第2制御軸24の大径部となる第1軸部24aの気筒列方向(第2制御軸24軸方向)の他端側(図3における矢印B方向)の端面に設定されている。 The first shaft portion 24a has a second control shaft first end surface 39 in a portion continuous with the second shaft portion 24b. That is, the second control shaft first end surface 39 is located on the other end side (arrow in FIG. 3) of the first shaft portion 24a, which is the large diameter portion of the second control shaft 24, in the cylinder row direction (the second control shaft 24 axial direction). It is set on the end face in the B direction).
 第2軸部24bは、第3軸部24cと連続する部分に第2制御軸第2端面40を有している。つまり、第2制御軸第2端面40は、第2制御軸24の小径部となる第2軸部24bの気筒列方向(第2制御軸24軸方向)の他端側(図3における矢印B方向)の端面に設定されている。 The second shaft portion 24b has a second control shaft second end surface 40 in a portion continuous with the third shaft portion 24c. That is, the second control shaft second end surface 40 is on the other end side (arrow B in FIG. 3) of the second shaft portion 24b, which is the small diameter portion of the second control shaft 24, in the cylinder row direction (the second control shaft 24 axial direction). Direction) end face.
 換言すると、第2制御軸24は、略段付き円柱形状を呈し、後述する第1ハウジング56の第1ハウジング一端側端面63と対向する環状の第2制御軸第1端面39と、第2アーム部26を圧入した際に第2アーム部26を突き当てることが可能な環状の第2制御軸第2端面40と、を有している。 In other words, the second control shaft 24 has a substantially stepped columnar shape, and has an annular second control shaft first end face 39 facing the first housing one end side end face 63 of the first housing 56 described later, and the second arm. And an annular second control shaft second end surface 40 capable of abutting the second arm portion 26 when the portion 26 is press-fitted.
 第2制御軸第1端面39及び第2制御軸第2端面40は、それぞれ第2制御軸24周方向に沿って環状に連続している。 The second control shaft first end surface 39 and the second control shaft second end surface 40 are each continuous in an annular shape along the circumferential direction of the second control shaft 24.
 第2制御軸第1端面39と第2制御軸第2端面40とは、気筒列方向(第2制御軸24軸方向)に沿って互いに離間した位置に形成されている。図3においては、第2制御軸第1端面39が第2制御軸第2端面40よりも気筒列方向(第2制御軸24軸方向)の一端側(図3における矢印A方向)に位置している。 The second control shaft first end surface 39 and the second control shaft second end surface 40 are formed at positions separated from each other along the cylinder column direction (the second control shaft 24 axial direction). In FIG. 3, the second control shaft first end surface 39 is located at one end side (direction of arrow A in FIG. 3) in the cylinder row direction (second control shaft 24 axis direction) with respect to the second control shaft second end surface 40. ing.
 第2制御軸第1端面39及び第2制御軸第2端面40は、気筒列方向(第2制御軸24軸方向)の他端側(図3における矢印B方向)を向いている。 The second control shaft first end surface 39 and the second control shaft second end surface 40 face the other end side (direction of arrow B in FIG. 3) in the cylinder row direction (second control shaft 24 axis direction).
 第2アーム部26は、後述する第1ハウジング56の開口部58からプレート状の治具(図示せず)とともに挿入され、当該治具で第1ハウジング56と第2アーム部26とのクリアランスを管理した状態で、第2制御軸24に圧入される。第2アーム部26の側面41は、第2アーム部26が第2制御軸24に圧入された状態において、第2制御軸24と直交する平面と平行または略平行となっている。 The second arm portion 26 is inserted together with a plate-shaped jig (not shown) from an opening 58 of a first housing 56, which will be described later, and the jig separates the clearance between the first housing 56 and the second arm portion 26. It is press-fitted into the second control shaft 24 in a controlled state. The side surface 41 of the second arm portion 26 is parallel or substantially parallel to a plane orthogonal to the second control shaft 24 when the second arm portion 26 is press-fitted into the second control shaft 24.
 第2アーム部26は、第2制御軸24が貫通する第2制御軸用貫通孔42の外周側に、後述する第1ハウジング56の第1ハウジング他端側端面64と対向する環状の第2アーム部第1端面43を有している。 The second arm portion 26 has a second annular shape that faces the first housing other end side end surface 64 of the first housing 56, which will be described later, on the outer peripheral side of the second control shaft through hole 42 through which the second control shaft 24 penetrates. It has an arm portion first end surface 43.
 第2アーム部第1端面43は、第2アーム部26の気筒列方向(第2制御軸24軸方向)の一端側(図3における矢印A方向)の側面41aにおいて、第2制御軸用貫通孔42の外周側に形成された環状の突出部の先端面である。つまり、第2アーム部第1端面43は、側面41aの一部分に形成されている。第2アーム部第1端面43は、側面41aと平行または略平行となるよう形成されている。なお、図3中における符号41bは、第2アーム部26の気筒列方向(第2制御軸24軸方向)の他端側(図3における矢印B方向)の側面である。 The second arm portion first end surface 43 penetrates the second control shaft at a side surface 41a of the second arm portion 26 on one end side (direction of arrow A in FIG. 3) in the cylinder column direction (second control shaft 24 axis direction). It is the tip surface of an annular protrusion formed on the outer peripheral side of the hole 42. That is, the second arm portion first end surface 43 is formed on a part of the side surface 41a. The second arm portion first end surface 43 is formed to be parallel or substantially parallel to the side surface 41a. Reference numeral 41b in FIG. 3 is a side surface of the second arm portion 26 on the other end side (direction of arrow B in FIG. 3) in the cylinder column direction (second control shaft 24 axis direction).
 また、第2アーム部26の気筒列方向(第2制御軸24軸方向)の一端側(図3における矢印A方向)の側面41aには、第2アーム部第1端面43よりも内周側に、第2制御軸第2端面40と対向する環状の第2アーム部第2端面44が形成されている。この第2アーム部第2端面44は、第2制御軸用貫通孔42の開口縁に形成されている。この第1実施例においては、第2アーム部第2端面44が第2制御軸第2端面40に押し当てられるまで第2アーム部26が第2制御軸24に圧入されている。 Further, the side surface 41a of the second arm portion 26 on one end side (direction of arrow A in FIG. 3) in the cylinder row direction (axial direction of the second control shaft 24) has an inner peripheral side with respect to the first end surface 43 of the second arm portion. An annular second arm portion second end surface 44 facing the second control shaft second end surface 40 is formed on the inner surface. The second end surface 44 of the second arm portion is formed at the opening edge of the through hole 42 for the second control shaft. In the first embodiment, the second arm portion 26 is press-fitted into the second control shaft 24 until the second arm portion second end surface 44 is pressed against the second control shaft second end surface 40.
 第2アーム部第1端面43及び第2アーム部第2端面44は、気筒列方向(第2制御軸24軸方向)の一端側(図3における矢印A方向)を向いている。 The second arm portion first end surface 43 and the second arm portion second end surface 44 face one end side (direction of arrow A in FIG. 3) in the cylinder row direction (second control shaft 24 axis direction).
 第2アーム部第1端面43及び第2アーム部第2端面44は、それぞれ第2制御軸24周方向に沿って環状に連続している。 The second arm portion first end surface 43 and the second arm portion second end surface 44 are annularly continuous along the circumferential direction of the second control shaft 24.
 減速機35は、電動モータ36の出力軸の回転を減速して第2制御軸24へ伝達するものである。減速機35は、電動モータ36と同期回転する内側のインナーリング47と、インナーリング47の外周側に位置し、インナーリング47の回転に対して所定の減速比で減速して回転する円筒状のアウターリング48と、を有している。 The speed reducer 35 decelerates the rotation of the output shaft of the electric motor 36 and transmits it to the second control shaft 24. The speed reducer 35 is positioned inside the inner ring 47 that rotates in synchronization with the electric motor 36, and on the outer peripheral side of the inner ring 47. And an outer ring 48.
 インナーリング47は、電動モータ36の出力軸が連結されている。アウターリング48は、減速機35の構成要素である出力軸に相当するものであり、アウターリング一端側端面51及びアウターリング他端側端面52を有している。 The inner ring 47 is connected to the output shaft of the electric motor 36. The outer ring 48 corresponds to the output shaft that is a component of the speed reducer 35, and has an outer ring one end side end surface 51 and an outer ring other end side end surface 52.
 アウターリング一端側端面51は、アウターリング48の気筒列方向(第2制御軸24軸方向)の一端側(図3における矢印A方向)の端面によって構成される。アウターリング一端側端面51は、環状に連続したものとして形成されている。アウターリング一端側端面51は、気筒列方向(第2制御軸24軸方向)の一端側(図3における矢印A方向)を向いている。アウターリング一端側端面51は、後述する第2ハウジング57の開口端フランジ面70と対向している。 The outer ring one end side end surface 51 is configured by one end side (arrow A direction in FIG. 3) end surface of the outer ring 48 in the cylinder column direction (second control shaft 24 axis direction). The end surface 51 on the one end side of the outer ring is formed as a continuous annular shape. The outer ring one end side end surface 51 faces one end side (direction of arrow A in FIG. 3) in the cylinder row direction (the second control shaft 24 axis direction). The outer ring one end side end surface 51 faces an opening end flange surface 70 of the second housing 57 described later.
 アウターリング他端側端面52は、アウターリング48の気筒列方向(第2制御軸24軸方向)の他端側(図3における矢印B方向)の端面によって構成される。アウターリング他端側端面52は、環状に連続したものとして形成されている。アウターリング他端側端面52は、気筒列方向(第2制御軸24軸方向)の他端側(図3における矢印B方向)を向いている。 The other end side 52 of the outer ring is constituted by the other end (direction of arrow B in FIG. 3) of the outer ring 48 in the cylinder column direction (the second control shaft 24 axis direction). The end surface 52 on the other end side of the outer ring is formed as a continuous annular shape. The other end side end surface 52 of the outer ring faces the other end side (direction of arrow B in FIG. 3) in the cylinder row direction (the second control shaft 24 axis direction).
 アウターリング48は、アウターリング他端側端面52がフランジ部38にボルト(図示せず)により連結されている。 The outer ring 48 has an end surface 52 on the other end side of the outer ring connected to the flange portion 38 by a bolt (not shown).
 なお、減速機35としては、例えば、波動歯車減速機構等を用いることが可能である。 Note that, as the reduction gear 35, for example, a wave gear reduction mechanism or the like can be used.
 アクチュエータユニット21のハウジング28は、主として第2制御軸24と減速機35が収容される第1ハウジング56と、主として電動モータ36のロータ(図示せず)及びステータ(図示せず)等が収容される第2ハウジング57と、から大略構成されている。つまり、第2ハウジング57は、換言すれば電動モータ36のモータハウジングである。 The housing 28 of the actuator unit 21 mainly houses the second control shaft 24 and the speed reducer 35, the first housing 56, and mainly the rotor (not shown) and the stator (not shown) of the electric motor 36. And a second housing 57 that is That is, the second housing 57 is, in other words, the motor housing of the electric motor 36.
 第1ハウジング56は、有底円筒状を呈し、周壁の一部にリンク部材30が貫通する開口部58が形成されている。 The first housing 56 has a bottomed cylindrical shape, and an opening 58 through which the link member 30 penetrates is formed in a part of the peripheral wall.
 第1ハウジング56の内側には、開口部58の両側に、第2制御軸24を回転可能に支持するための軸受部61が形成されている。つまり、第1ハウジング56は、開口部58よりも気筒列方向(第2制御軸24軸方向)の一端側(図3における矢印A方向)に位置する第1軸受部61aと、開口部58よりも気筒列方向(第2制御軸24軸方向)の他端側(図3における矢印B方向)に位置する第2軸受部61bと、を有している。 Inside the first housing 56, bearing portions 61 for rotatably supporting the second control shaft 24 are formed on both sides of the opening 58. That is, the first housing 56 is located at one end side (direction of arrow A in FIG. 3) in the cylinder row direction (the direction of the second control shaft 24) with respect to the opening 58 and the opening 58. Also has a second bearing portion 61b located on the other end side (direction of arrow B in FIG. 3) in the cylinder row direction (axial direction of the second control shaft 24).
 第1軸受部61aは、第1ハウジング56の内壁面から突出する隔壁62の先端部分によって構成される。 The first bearing portion 61 a is configured by the tip portion of the partition wall 62 protruding from the inner wall surface of the first housing 56.
 隔壁62は、第1ハウジング56周方向(第2制御軸24周方向)に沿って環状に連続するよう形成されている。隔壁62の先端部分は、気筒列方向(第2制御軸24軸方向)に沿って所定幅を有するように形成されている。 The partition wall 62 is formed so as to be annularly continuous along the circumferential direction of the first housing 56 (the circumferential direction of the second control shaft 24). The tip portion of the partition wall 62 is formed so as to have a predetermined width along the cylinder column direction (axial direction of the second control shaft 24).
 隔壁62は、気筒列方向(第2制御軸24軸方向)で、第2アーム部26と減速機35との間に位置している。換言すると、隔壁62は、第1ハウジング56内にあって、第2アーム部26を収容可能な空間と減速機35を収容可能な空間とを隔てている。 The partition wall 62 is located between the second arm portion 26 and the speed reducer 35 in the cylinder column direction (the direction of the second control shaft 24 axis). In other words, the partition wall 62 is located inside the first housing 56 and separates a space capable of housing the second arm portion 26 and a space capable of housing the speed reducer 35.
 隔壁62は、気筒列方向(第2制御軸24軸方向)の一端側(図3における矢印A方向)に位置する側面の一部が、第1ハウジング一端側端面63として第2制御軸第1端面39と対向するよう形成されている。 In the partition wall 62, a part of the side surface located on one end side (direction of arrow A in FIG. 3) in the cylinder row direction (second control shaft 24 axis direction) is the second control shaft first end as the first housing one end side end face 63. It is formed so as to face the end surface 39.
 隔壁62は、気筒列方向(第2制御軸24軸方向)の他端側(図3における矢印B方向)に位置する側面の一部が、第1ハウジング他端側端面64として第2アーム部第1端面43と対向するよう形成されている。 In the partition wall 62, a part of the side surface located on the other end side (direction of arrow B in FIG. 3) in the cylinder row direction (the second control shaft 24 axis direction) has a second arm portion as the first housing other end side end surface 64. It is formed so as to face the first end surface 43.
 つまり、第1ハウジング56は、第2制御軸第1端面39と対向する第1ハウジング一端側端面63と、第2アーム部第1端面43と対向する第1ハウジング他端側端面64と、を有するよう形成されている。 That is, the first housing 56 includes the first housing one end side end surface 63 facing the second control shaft first end surface 39 and the first housing other end side end surface 64 facing the second arm portion first end surface 43. Is formed to have.
 第1ハウジング一端側端面63及び第1ハウジング他端側端面64は、第1ハウジング56に支持された第2制御軸24に直交する平面と平行または略平行となるように形成されている。 The first housing one end side end surface 63 and the first housing other end side end surface 64 are formed so as to be parallel or substantially parallel to a plane orthogonal to the second control shaft 24 supported by the first housing 56.
 第1ハウジング一端側端面63及び第1ハウジング他端側端面64は、第1ハウジング56周方向(第2制御軸24周方向)に沿って環状に連続するよう形成されている。 The end surface 63 on one end side of the first housing and the end surface 64 on the other end side of the first housing are formed so as to continue annularly along the circumferential direction of the first housing 56 (the circumferential direction of the second control shaft 24).
 第2軸受部61bは、第1ハウジング56の底壁65を貫通する第1ハウジング貫通孔66の内周面を利用したものである。 The second bearing portion 61b uses the inner peripheral surface of the first housing through hole 66 penetrating the bottom wall 65 of the first housing 56.
 第2ハウジング57は、有底円筒状を呈している。第2ハウジング57の開口端フランジ面70は、第1ハウジング56の開口端フランジ面69に突き合わされている。つまり、第1ハウジング56と第2ハウジングとは、お互いの開口端フランジ面69、70を突き合わせた状態でボルト(図示せず)によって固定される。 The second housing 57 has a bottomed cylindrical shape. The open end flange surface 70 of the second housing 57 abuts the open end flange surface 69 of the first housing 56. That is, the first housing 56 and the second housing are fixed by the bolts (not shown) in a state where the opening end flange surfaces 69 and 70 are butted against each other.
 第2ハウジング57の開口端フランジ面70は、アウターリング一端側端面51と微小間隙(微小クリアランス)をもって対向している。 The opening end flange surface 70 of the second housing 57 faces the outer ring one end side end surface 51 with a minute gap (minute clearance).
 そして、第1実施例の内燃機関(可変圧縮比内燃機関)においては、第2制御軸24及び第2アーム部26が、第2制御軸24の軸方向の位置を規制可能な機能を有している。 In the internal combustion engine (variable compression ratio internal combustion engine) of the first embodiment, the second control shaft 24 and the second arm portion 26 have a function of restricting the axial position of the second control shaft 24. ing.
 すなわち、第1実施例においては、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで、第2制御軸24の第2制御軸24軸方向の位置が規制されている。換言すると、第1実施例においては、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで、第2制御軸24軸方向に沿ったスラスト荷重が支持可能となっている。 That is, in the first embodiment, the position of the second control shaft 24 in the axial direction of the second control shaft 24 is regulated by the second control shaft first end face 39 contacting the first housing one end side end face 63. .. In other words, in the first embodiment, the second control shaft first end surface 39 is in contact with the first housing one end side end surface 63, so that the thrust load along the axial direction of the second control shaft 24 can be supported. ..
 詳述すると、第1実施例においては、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで、第2制御軸24の気筒列方向他端側(図3における矢印B方向)への移動が規制される。つまり、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで、第2制御軸24に作用する気筒列方向他端側(図3における矢印B方向)へ向かうスラスト荷重を支持できる。 More specifically, in the first embodiment, the second control shaft first end surface 39 contacts the first housing one end side end surface 63, so that the other end side of the second control shaft 24 in the cylinder row direction (arrow B in FIG. 3). Movement is restricted. That is, since the second control shaft first end surface 39 contacts the first housing one end side end surface 63, the thrust load acting on the second control shaft 24 toward the other end side in the cylinder row direction (direction of arrow B in FIG. 3) is applied. Can support.
 また、第1実施例においては、第2アーム部第1端面43が第1ハウジング他端側端面64に接することで、第2制御軸24の第2制御軸24軸方向の位置が規制されている。換言すると、第1実施例においては、第2アーム部第1端面43が第1ハウジング他端側端面64に接することで、第2制御軸24軸方向に沿ったスラスト荷重が支持可能となっている。 In addition, in the first embodiment, the second arm portion first end surface 43 contacts the other end side end surface 64 of the first housing, whereby the position of the second control shaft 24 in the axial direction of the second control shaft 24 is restricted. There is. In other words, in the first embodiment, the second arm portion first end surface 43 contacts the first housing other end side end surface 64, so that the thrust load along the axial direction of the second control shaft 24 can be supported. There is.
 詳述すると、第1実施例においては、第2アーム部第1端面43が第1ハウジング他端側端面64に接することで、第2制御軸24の気筒列方向一端側(図3における矢印A方向)への移動が規制される。つまり、第2アーム部第1端面43が第1ハウジング他端側端面64に接することで、第2制御軸24に作用する気筒列方向一端側(図3における矢印A方向)へ向かうスラスト荷重を支持できる。 More specifically, in the first embodiment, the second arm portion first end face 43 is in contact with the other end side face 64 of the first housing, so that the second control shaft 24 has one end side in the cylinder row direction (arrow A in FIG. 3). Movement is restricted. That is, the second arm portion first end surface 43 contacts the other end side surface 64 of the first housing, so that the thrust load acting on the second control shaft 24 toward the one end side in the cylinder column direction (direction of arrow A in FIG. 3) is applied. Can support.
 つまり、第1実施例においては、第2制御軸第1端面39が第1支持面となり、ハウジング第1支持面としての第1ハウジング一端側端面63に接する構成となっている。また、この第1実施例においては、第2アーム部第1端面43が第2支持面となりハウジング第2支持面としての第1ハウジング他端側端面64に接する構成となっている。 That is, in the first embodiment, the second control shaft first end surface 39 serves as the first support surface, and is in contact with the end surface 63 on the first housing one end side as the housing first support surface. Further, in the first embodiment, the second arm portion first end surface 43 serves as a second support surface and is in contact with the first housing other end side end surface 64 as the housing second support surface.
 また、この第1実施例においては、第2アーム部第1端面43と第1ハウジング他端側端面64との接触面積が、第2制御軸第1端面39と第1ハウジング一端側端面63との接触面積よりも大きくなるよう設定されている。 In the first embodiment, the contact area between the second arm portion first end surface 43 and the first housing other end side end surface 64 is the same as the second control shaft first end surface 39 and the first housing one end side end surface 63. It is set to be larger than the contact area of.
 第2制御軸第1端面39が第1ハウジング一端側端面63に接することで規制される第2制御軸24の移動方向は、第2アーム部第1端面43が第1ハウジング他端側端面64に接することで規制される第2制御軸24の移動方向に対して、第2制御軸24軸方向で逆方向(180°反対方向)となっている。換言すれば、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで支持されるスラスト荷重の方向は、第2アーム部第1端面43が第1ハウジング他端側端面64に接することで支持されるスラスト荷重の方向に対して、第2制御軸24軸方向で逆方向(180°反対方向)となっている。 In the moving direction of the second control shaft 24, which is regulated by the second control shaft first end face 39 contacting the first housing one end side end face 63, the second arm portion first end face 43 is the first housing other end side end face 64. Is in the opposite direction (180° opposite direction) in the axial direction of the second control shaft 24 with respect to the moving direction of the second control shaft 24 which is restricted by contacting with. In other words, the direction of the thrust load supported by the second control shaft first end surface 39 contacting the first housing one end side end surface 63 is such that the second arm portion first end surface 43 is the first housing other end side end surface 64. Is in the opposite direction (180° opposite direction) in the axial direction of the second control shaft 24 with respect to the direction of the thrust load supported by contacting with.
 このような第1実施例の内燃機関(可変圧縮比内燃機関)においては、第2制御軸24及び第2アーム部26が第2制御軸24軸方向の位置を規制可能な機能を有している。 In the internal combustion engine (variable compression ratio internal combustion engine) of the first embodiment as described above, the second control shaft 24 and the second arm portion 26 have a function of restricting the axial position of the second control shaft 24. There is.
 そのため、第2制御軸24は、第2制御軸24の軸方向の位置を規制することのみを目的とする別部品を第2制御軸24に圧入する場合に比べて、その軸長を短くすることができる。 Therefore, the second control shaft 24 has a shorter axial length as compared with a case where another component for the purpose of only restricting the axial position of the second control shaft 24 is press-fitted into the second control shaft 24. be able to.
 従って、アクチュエータユニット21は、第2制御軸24軸方向に沿った長さを短くすることが可能となり、内燃機関(可変圧縮比内燃機関)に隣接するオイルポンプ(図示せず)やエアコンコンプレッサ(図示せず)等との干渉を回避できる。換言すれば、内燃機関(可変圧縮比内燃機関)は、アクチュエータユニット21(ハウジング28)の全長を短くすることで、レイアウトの自由度を高くすることができる。 Therefore, the actuator unit 21 can shorten the length along the axial direction of the second control shaft 24, and an oil pump (not shown) or an air conditioner compressor (adjacent to the internal combustion engine (variable compression ratio internal combustion engine)) can be shortened. Interference with (not shown) or the like can be avoided. In other words, in the internal combustion engine (variable compression ratio internal combustion engine), the degree of freedom in layout can be increased by shortening the overall length of the actuator unit 21 (housing 28).
 また、アクチュエータユニット21は、気筒列方向に沿ったその全長を短くすることで、音振性能を向上させることができる。 Further, the actuator unit 21 can improve the sound vibration performance by shortening its entire length in the cylinder row direction.
 さらに、アクチュエータユニット21は、第2制御軸24軸方向の位置を規制することのみを目的とする別部品を第2制御軸24に圧入する場合に比べて圧入部品の部品点数が減少するので、生産性を向上させることができる。 Further, in the actuator unit 21, the number of parts of the press-fitted parts is reduced as compared with the case where another part whose purpose is only to regulate the axial position of the second control shaft 24 is press-fitted into the second control shaft 24. Productivity can be improved.
 また、第1実施例においては、第1ハウジング他端側端面64と第2アーム部第1端面43との接触面積を容易に大きく設定することが可能となる。そのため、第1実施例においては、第1ハウジング他端側端面64に第2アーム部第1端面43が押し付けられた際の面圧を低減することが可能となる。 In addition, in the first embodiment, it is possible to easily set a large contact area between the end surface 64 on the other end side of the first housing and the first end surface 43 of the second arm portion. Therefore, in the first embodiment, it is possible to reduce the surface pressure when the second arm portion first end surface 43 is pressed against the other end side end surface 64 of the first housing.
 以下、本発明の他の実施例について説明する。なお、上述した実施例と同一の構成要素については、同一の符号を付し重複する説明を省略する。 Another embodiment of the present invention will be described below. The same components as those in the above-described embodiment are designated by the same reference numerals, and duplicated description will be omitted.
 図4を用いて、本発明の第2実施例の内燃機関について説明する。図4は、本発明の第2実施例におけるアクチュエータユニット21の要部を拡大して示す断面図である。 An internal combustion engine according to the second embodiment of the present invention will be described with reference to FIG. FIG. 4 is an enlarged sectional view showing a main part of the actuator unit 21 according to the second embodiment of the present invention.
 第2実施例の内燃機関は、上述した第1実施例の内燃機関と略同一構成となっているが、第2アーム部第1端面43が第2アーム部26の気筒列方向の一端側(図4における矢印A方向)の側面41の略全体に形成されている。 The internal combustion engine of the second embodiment has substantially the same configuration as the internal combustion engine of the first embodiment described above, but the second arm portion first end surface 43 has one end side of the second arm portion 26 in the cylinder row direction ( It is formed on substantially the entire side surface 41 in the direction of arrow A in FIG.
 詳述すると、第2実施例における第2アーム部26は、気筒列方向の一端側(図4における矢印A方向)の側面41のうち、第2制御軸第2端面40に接する部分以外の全てが第2アーム部第1端面43となって第1ハウジング他端側端面64に接している。 More specifically, the second arm portion 26 in the second embodiment includes all of the side surfaces 41 on the one end side in the cylinder row direction (direction of arrow A in FIG. 4) other than the portion in contact with the second control shaft second end surface 40. Serves as the second arm portion first end surface 43 and is in contact with the other end side end surface 64 of the first housing.
 なお、この第2実施例においては、第2制御軸第2端面40が第2制御軸第2端面40から離間した状態となっており、第2アーム部第1端面43と第2制御軸第1端面39とによって隔壁62を挟み込むことで第2アーム部26の第2制御軸24に対する位置決めがなされている。 In the second embodiment, the second control shaft second end surface 40 is separated from the second control shaft second end surface 40, and the second arm portion first end surface 43 and the second control shaft first end surface 43 are separated from each other. The partition wall 62 is sandwiched between the first end surface 39 and the first end surface 39, whereby the second arm portion 26 is positioned with respect to the second control shaft 24.
 このような第2実施例の内燃機関においても、第2制御軸24及び第2アーム部26が第2制御軸24軸方向の位置規制可能な機能を有しているため、上述した第1実施例の内燃機関と略同様の作用効果を奏することができる。 Also in such an internal combustion engine of the second embodiment, since the second control shaft 24 and the second arm portion 26 have the function of restricting the position of the second control shaft 24 in the axial direction, the first embodiment described above is performed. It is possible to obtain substantially the same operational effects as the internal combustion engine of the example.
 また、第2実施例においては、第2制御軸24軸方向の位置を規制可能な機能を第2アーム部26の気筒列方向の一端側(図4における矢印A方向)の側面41の略全体に持たせているので、上述した第1実施例よりも第1ハウジング他端側端面64と第2アーム部第1端面43との接触面積を容易に大きく設定することが可能となる。そのため、第2実施例においては、第1ハウジング他端側端面64に第2アーム部第1端面43が押し付けられた際の面圧を上述した第1実施例よりも低減することが可能となる。 In addition, in the second embodiment, the function of restricting the position of the second control shaft 24 in the axial direction is provided by substantially the entire side surface 41 of the second arm portion 26 on the one end side (the arrow A direction in FIG. 4) in the cylinder row direction. Therefore, it is possible to easily set the contact area between the other end side end surface 64 of the first housing and the first end surface 43 of the second arm portion larger than that in the above-described first embodiment. Therefore, in the second embodiment, the surface pressure when the second arm portion first end surface 43 is pressed against the other end side end surface 64 of the first housing can be reduced as compared with the above-described first embodiment. ..
 図5を用いて、本発明の第3実施例の内燃機関について説明する。図5は、本発明の第3実施例におけるアクチュエータユニット21の要部を拡大して示す断面図である。 An internal combustion engine according to the third embodiment of the present invention will be described with reference to FIG. FIG. 5 is an enlarged sectional view showing a main part of the actuator unit 21 in the third embodiment of the present invention.
 第3実施例の内燃機関は、上述した第1実施例の内燃機関と略同一構成となっているが、第2制御軸24軸方向の位置を規制可能な機能を第2アーム部26ではなくリンク部材30が有している。 The internal combustion engine of the third embodiment has substantially the same configuration as the internal combustion engine of the first embodiment described above, but has a function of restricting the axial position of the second control shaft 24, not the second arm portion 26. The link member 30 has.
 この第3実施例においては、第2アーム部26が平板状に形成されている。そして、第3実施例におけるリンク部材30は、他端が第2アーム部26の先端を挟み込めるように二股状に形成されている。 In the third embodiment, the second arm portion 26 is formed in a flat plate shape. The link member 30 in the third embodiment is formed in a bifurcated shape so that the other end can sandwich the tip end of the second arm portion 26.
 つまり、第3実施例おいては、第2アーム部26がリンク部材30の他端によって挟み込まれている。 That is, in the third embodiment, the second arm portion 26 is sandwiched by the other end of the link member 30.
 リンク部材30の他端の側面81は、リンク部材30が第2アーム部26と連結された状態において、第2制御軸24と直交する平面と平行または略平行となっている。 The side surface 81 at the other end of the link member 30 is parallel or substantially parallel to the plane orthogonal to the second control shaft 24 when the link member 30 is connected to the second arm portion 26.
 リンク部材30は、第1ハウジング56の第1ハウジング他端側端面64と対向するリンク部材一側端面82を有している。 The link member 30 has a link member one end surface 82 that faces the first housing other end side end surface 64 of the first housing 56.
 リンク部材一側端面82は、気筒列方向(第2制御軸24軸方向)におけるリンク部材30の一方の側(図5における矢印A方向)の側面81aにおいて、リンク部材30の他端の先端部分に形成された突出部の先端面である。つまり、リンク部材一側端面82は、側面81aの一部分に形成されている。リンク部材一側端面82は、側面81aと平行または略平行となるよう形成されている。なお、図4中における符号81bは、気筒列方向(第2制御軸24軸方向)におけるリンク部材30の他方の側(図5における矢印B方向)の側面である。 The link member one-side end surface 82 is a tip portion of the other end of the link member 30 on the side surface 81a on one side (the arrow A direction in FIG. 5) of the link member 30 in the cylinder row direction (the second control shaft 24 axis direction). It is the tip surface of the protruding portion formed in. That is, the one end surface 82 of the link member is formed on a part of the side surface 81a. The one end surface 82 of the link member is formed to be parallel or substantially parallel to the side surface 81a. Note that reference numeral 81b in FIG. 4 is a side surface on the other side (direction of arrow B in FIG. 5) of the link member 30 in the cylinder row direction (second control shaft 24 axis direction).
 そして、第3実施例の内燃機関(可変圧縮比内燃機関)においては、第2制御軸24及びリンク部材30が第2制御軸24の軸方向の位置を規制可能な機能を有している。 In the internal combustion engine (variable compression ratio internal combustion engine) of the third embodiment, the second control shaft 24 and the link member 30 have a function of restricting the axial position of the second control shaft 24.
 すなわち、第3実施例においては、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで、第2制御軸24の第2制御軸24軸方向の位置が規制されている。換言すると、第3実施例においては、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで、第2制御軸24軸方向に沿ったスラスト荷重を支持可能となっている。 That is, in the third embodiment, the position of the second control shaft 24 in the axial direction of the second control shaft 24 is restricted by the second control shaft first end face 39 contacting the first housing one end side end face 63. .. In other words, in the third embodiment, the second control shaft first end surface 39 is in contact with the first housing one end side end surface 63 to support the thrust load along the second control shaft 24 axial direction. ..
 詳述すると、第3実施例においては、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで、第2制御軸24の気筒列方向他端側(図5における矢印B方向)への移動が規制される。つまり、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで、第2制御軸24に作用する気筒列方向他端側(図5における矢印B方向)へ向かうスラスト荷重を支持できる。 More specifically, in the third embodiment, the second control shaft first end surface 39 contacts the first housing one end side end surface 63, so that the other end side of the second control shaft 24 in the cylinder row direction (arrow B in FIG. 5). Movement is restricted. That is, since the second control shaft first end surface 39 contacts the first housing one end side end surface 63, the thrust load acting on the second control shaft 24 toward the other end side in the cylinder row direction (direction of arrow B in FIG. 5) is applied. Can support.
 また、第3実施例においては、リンク部材一側端面82が第1ハウジング他端側端面64に接することで、第2制御軸24の第2制御軸24軸方向の位置が規制されている。換言すると、第3実施例においては、リンク部材一側端面82が第1ハウジング他端側端面64に接することで、第2制御軸24軸方向に沿ったスラスト荷重を支持可能となっている。 Further, in the third embodiment, the position of the second control shaft 24 in the axial direction of the second control shaft 24 is restricted by the one end face 82 of the link member being in contact with the end face 64 of the other end of the first housing. In other words, in the third embodiment, the one end face 82 of the link member is in contact with the other end face 64 of the first housing, so that the thrust load along the axial direction of the second control shaft 24 can be supported.
 詳述すると、第3実施例においては、リンク部材一側端面82が第1ハウジング他端側端面64に接することで、第2制御軸24の気筒列方向一端側(図5における矢印A方向)への移動が規制される。つまり、リンク部材一側端面82が第1ハウジング他端側端面64に接することで、第2制御軸24に作用する気筒列方向一端側(図5における矢印A方向)へ向かうスラスト荷重を支持できる。 More specifically, in the third embodiment, the one end surface 82 of the link member is in contact with the end surface 64 of the other end of the first housing, so that one end side of the second control shaft 24 in the cylinder row direction (direction of arrow A in FIG. 5). Is restricted to travel. That is, since the one end surface 82 of the link member contacts the other end surface 64 of the first housing, the thrust load acting on the second control shaft 24 toward the one end side in the cylinder row direction (direction of arrow A in FIG. 5) can be supported. ..
 つまり、第3実施例においては、第2制御軸第1端面39が第1支持面となり、ハウジング第1支持面としての第1ハウジング一端側端面63に接する構成となっている。また、この第3実施例においては、リンク部材一側端面82が第2支持面となりハウジング第2支持面としての第1ハウジング他端側端面64に接する構成となっている。 That is, in the third embodiment, the second control shaft first end surface 39 serves as the first support surface and is in contact with the first housing one end side end surface 63 as the housing first support surface. Further, in the third embodiment, the end surface 82 on one side of the link member serves as a second supporting surface and is in contact with the end surface 64 on the other end side of the first housing as the second supporting surface of the housing.
 また、この第3実施例においては、リンク部材一側端面82と第1ハウジング他端側端面64との接触面積が、第2制御軸第1端面39と第1ハウジング一端側端面63との接触面積よりも大きくなるよう設定されている。 In addition, in the third embodiment, the contact area between the link member one end surface 82 and the first housing other end side end surface 64 is the contact area between the second control shaft first end surface 39 and the first housing one end side end surface 63. It is set to be larger than the area.
 第2制御軸第1端面39が第1ハウジング一端側端面63に接することで規制される第2制御軸24の移動方向は、リンク部材一側端面82が第1ハウジング他端側端面64に接することで規制される第2制御軸24の移動方向に対して、第2制御軸24軸方向で逆方向(180°反対方向)となっている。換言すれば、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで支持されるスラスト荷重の方向は、リンク部材一側端面82が第1ハウジング他端側端面64に接することで支持されるスラスト荷重の方向に対して、第2制御軸24軸方向で逆方向(180°反対方向)となっている。 In the moving direction of the second control shaft 24, which is regulated by the second control shaft first end face 39 contacting the first housing one end side end face 63, the link member one side end face 82 contacts the first housing other end side end face 64. Therefore, the movement direction of the second control shaft 24, which is restricted by this, is the opposite direction (180° opposite direction) in the axial direction of the second control shaft 24. In other words, the direction of the thrust load supported by the second control shaft first end face 39 contacting the first housing one end side end face 63 is such that the link member one side end face 82 contacts the first housing other end side end face 64. Therefore, the direction of the thrust load supported is opposite to the axial direction of the second control shaft 24 (180° opposite direction).
 このような第3実施例においても上述した第1実施例と略同様の作用効果を奏することができる。 In such a third embodiment as well, it is possible to obtain substantially the same operational effects as the above-described first embodiment.
 また、第3実施例においては、第1ハウジング他端側端面64とリンク部材一側端面82との接触面積を容易に大きく設定することが可能となる。そのため、第3実施例においては、第1ハウジング他端側端面64にリンク部材一側端面82が押し付けられた際の面圧を低減することが可能となる。 Further, in the third embodiment, it is possible to easily set the contact area between the end surface 64 on the other end side of the first housing and the end surface 82 on one side of the link member to be large. Therefore, in the third embodiment, it is possible to reduce the surface pressure when the link member one end face 82 is pressed against the other end side end face 64 of the first housing.
 図6を用いて、本発明の第4実施例の内燃機関について説明する。図6は、本発明の第4実施例におけるアクチュエータユニット21の要部を拡大して示す断面図である。 An internal combustion engine according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 6 is an enlarged sectional view showing a main part of the actuator unit 21 according to the fourth embodiment of the present invention.
 第4実施例の内燃機関は、上述した第1実施例の内燃機関と略同一構成となっているが、第2制御軸24軸方向の位置を規制可能な機能を第2アーム部26ではなくリンク部材30が有している。 The internal combustion engine of the fourth embodiment has substantially the same configuration as the internal combustion engine of the first embodiment described above, but has a function of restricting the axial position of the second control shaft 24, not the second arm portion 26. The link member 30 has.
 この第4実施例においては、第2アーム部26が平板状に形成されている。そして、第4実施例におけるリンク部材30は、他端が第2アーム部26の先端を挟み込めるように二股状に形成されている。 In the fourth embodiment, the second arm portion 26 is formed in a flat plate shape. Then, the link member 30 in the fourth embodiment is formed in a bifurcated shape so that the other end can sandwich the tip end of the second arm portion 26.
 つまり、第4実施例おいては、第2アーム部26がリンク部材30の他端によって挟み込まれている。 That is, in the fourth embodiment, the second arm portion 26 is sandwiched by the other end of the link member 30.
 リンク部材30の側面81は、リンク部材30が第2アーム部26と連結された状態において、第2制御軸24と直交する平面と平行または略平行となっている。 The side surface 81 of the link member 30 is parallel or substantially parallel to the plane orthogonal to the second control shaft 24 when the link member 30 is connected to the second arm portion 26.
 リンク部材30は、第1ハウジング56の第1ハウジング他端側端面64と対向するリンク部材一側端面82を有している。 The link member 30 has a link member one end surface 82 that faces the first housing other end side end surface 64 of the first housing 56.
 リンク部材一側端面82は、リンク部材30の他端において、気筒列方向(第2制御軸24軸方向)におけるリンク部材30の一方の側(図6における矢印A方向)の側面81aの略全体に形成されている。なお、図6中における符号81bは、気筒列方向(第2制御軸24軸方向)におけるリンク部材30の他方の側(図5における矢印B方向)の側面である。 The link member one-side end surface 82 is, at the other end of the link member 30, substantially the entire side surface 81a on one side (the arrow A direction in FIG. 6) of the link member 30 in the cylinder row direction (the second control shaft 24 axis direction). Is formed in. In addition, reference numeral 81b in FIG. 6 is a side surface on the other side (direction of arrow B in FIG. 5) of the link member 30 in the cylinder column direction (second control shaft 24 axis direction).
 第4実施例の内燃機関(可変圧縮比内燃機関)においては、上述した第3実施例と同様に、第2制御軸24及びリンク部材30が第2制御軸24の軸方向の位置を規制可能な機能を有している。 In the internal combustion engine (variable compression ratio internal combustion engine) of the fourth embodiment, the second control shaft 24 and the link member 30 can regulate the axial position of the second control shaft 24, as in the above-described third embodiment. It has various functions.
 すなわち、第4実施例においては、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで、第2制御軸24の第2制御軸24軸方向の位置が規制されている。換言すると、第4実施例においては、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで、第2制御軸24軸方向に沿ったスラスト荷重を支持可能となっている。 That is, in the fourth embodiment, the position of the second control shaft 24 in the axial direction of the second control shaft 24 is restricted by the second control shaft first end surface 39 contacting the first housing one end side end surface 63. .. In other words, in the fourth embodiment, the second control shaft first end surface 39 is in contact with the first housing one end side end surface 63, so that the thrust load along the second control shaft 24 axial direction can be supported. ..
 詳述すると、第4実施例においては、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで、第2制御軸24の気筒列方向他端側(図6における矢印B方向)への移動が規制される。つまり、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで、第2制御軸24に作用する気筒列方向他端側(図6における矢印B方向)へ向かうスラスト荷重を支持できる。 More specifically, in the fourth embodiment, the second control shaft first end surface 39 contacts the first housing one end side end surface 63, so that the other end side of the second control shaft 24 in the cylinder row direction (arrow B in FIG. 6). Movement is restricted. That is, the second control shaft first end surface 39 is in contact with the first housing one end side end surface 63, so that the thrust load acting on the second control shaft 24 toward the other end side in the cylinder row direction (direction of arrow B in FIG. 6) is applied. Can support.
 また、第4実施例においては、リンク部材一側端面82が第1ハウジング他端側端面64に接することで、第2制御軸24の第2制御軸24軸方向の位置が規制されている。換言すると、第4実施例においては、リンク部材一側端面82が第1ハウジング他端側端面64に接することで、第2制御軸24軸方向に沿ったスラスト荷重を支持可能となっている。 Further, in the fourth embodiment, the position of the second control shaft 24 in the axial direction of the second control shaft 24 is restricted by the one end face 82 of the link member contacting the end face 64 of the other end of the first housing. In other words, in the fourth embodiment, the one end face 82 of the link member is in contact with the other end face 64 of the first housing, so that the thrust load along the axial direction of the second control shaft 24 can be supported.
 詳述すると、第4実施例においては、リンク部材一側端面82が第1ハウジング他端側端面64に接することで、第2制御軸24の気筒列方向一端側(図6における矢印A方向)への移動が規制される。つまり、リンク部材一側端面82が第1ハウジング他端側端面64に接することで、第2制御軸24に作用する気筒列方向一端側(図6における矢印A方向)へ向かうスラスト荷重を支持できる。 More specifically, in the fourth embodiment, the one end surface 82 of the link member contacts the other end surface 64 of the first housing, so that one end side of the second control shaft 24 in the cylinder row direction (direction of arrow A in FIG. 6). Is restricted to travel. That is, since the one end surface 82 of the link member is in contact with the other end surface 64 of the first housing, it is possible to support the thrust load acting on the second control shaft 24 toward the one end side in the cylinder row direction (direction of arrow A in FIG. 6 ). ..
 つまり、第4実施例においては、第2制御軸第1端面39が第1支持面となり、ハウジング第1支持面としての第1ハウジング一端側端面63に接する構成となっている。また、この第4実施例においては、リンク部材一側端面82が第2支持面となりハウジング第2支持面としての第1ハウジング他端側端面64に接する構成となっている。 That is, in the fourth embodiment, the second control shaft first end surface 39 serves as the first support surface and is in contact with the first housing one end side end surface 63 as the housing first support surface. Further, in the fourth embodiment, the end surface 82 on one side of the link member serves as a second supporting surface and is in contact with the end surface 64 on the other end side of the first housing as the second supporting surface of the housing.
 また、この第4実施例においては、リンク部材一側端面82と第1ハウジング他端側端面64との接触面積が、第2制御軸第1端面39と第1ハウジング一端側端面63との接触面積よりも大きくなるよう設定されている。 Further, in the fourth embodiment, the contact area between the link member one end surface 82 and the first housing other end side end surface 64 is larger than the contact area between the second control shaft first end surface 39 and the first housing one end side end surface 63. It is set to be larger than the area.
 第2制御軸第1端面39が第1ハウジング一端側端面63に接することで規制される第2制御軸24の移動方向は、リンク部材一側端面82が第1ハウジング他端側端面64に接することで規制される第2制御軸24の移動方向に対して、第2制御軸24軸方向で逆方向(180°反対方向)となっている。換言すれば、第2制御軸第1端面39が第1ハウジング一端側端面63に接することで支持されるスラスト荷重の方向は、リンク部材一側端面82が第1ハウジング他端側端面64に接することで支持されるスラスト荷重の方向に対して、第2制御軸24軸方向で逆方向(180°反対方向)となっている。 In the moving direction of the second control shaft 24, which is regulated by the second control shaft first end face 39 contacting the first housing one end side end face 63, the link member one side end face 82 contacts the first housing other end side end face 64. Therefore, the movement direction of the second control shaft 24, which is restricted by this, is the opposite direction (180° opposite direction) in the axial direction of the second control shaft 24. In other words, the direction of the thrust load supported by the second control shaft first end face 39 contacting the first housing one end side end face 63 is such that the link member one side end face 82 contacts the first housing other end side end face 64. Therefore, the direction of the thrust load supported is opposite to the axial direction of the second control shaft 24 (180° opposite direction).
 このような第4実施例においても上述した第1実施例と略同様の作用効果を奏することができる。 In such a fourth embodiment as well, it is possible to obtain substantially the same operational effects as the above-described first embodiment.
 第4実施例においては、第1ハウジング他端側端面64とリンク部材一側端面82との接触面積を容易に大きく設定することが可能となる。そのため、第4実施例においては、第1ハウジング他端側端面64にリンク部材一側端面82が押し付けられた際の面圧を低減することが可能となる。 In the fourth embodiment, the contact area between the other end face 64 of the first housing and the one end face 82 of the link member can be easily set large. Therefore, in the fourth embodiment, it is possible to reduce the surface pressure when the link member one side end surface 82 is pressed against the other end side end surface 64 of the first housing.
 また、第4実施例においては、第2制御軸24軸方向の位置を規制可能な機能をリンク部材30の気筒列方向の一端側(図6における矢印A方向)の側面81aの略全体に持たせているので、上述した第3実施例よりも第1ハウジング他端側端面64とリンク部材一側端面82との接触面積を容易に大きく設定することが可能となる。そのため、第4実施例においては、第1ハウジング他端側端面64にリンク部材一側端面82が押し付けられた際の面圧を上述した第3実施例よりも低減することが可能となる。 Further, in the fourth embodiment, the function of restricting the position of the second control shaft 24 in the axial direction is provided on substantially the entire side surface 81a of the link member 30 on one end side in the cylinder row direction (direction of arrow A in FIG. 6). Therefore, it is possible to easily set the contact area between the end face 64 on the other end side of the first housing and the end face 82 on one side of the link member larger than that in the third embodiment. Therefore, in the fourth embodiment, the surface pressure when the link member one-side end surface 82 is pressed against the other end side end surface 64 of the first housing can be reduced as compared with the above-described third embodiment.
 なお、第2制御軸24軸方向の位置を規制可能な機能は、第2アーム部26やリンク部材30ではなく、減速機35に持たせることも可能である。 The function that can regulate the axial position of the second control shaft 24 can be provided to the speed reducer 35 instead of the second arm portion 26 and the link member 30.
 この場合には、減速機35のアウターリング一端側端面51が第2支持面となって、ハウジング第2支持面となる第2ハウジング57の開口端フランジ面70に接することになる。このとき、アウターリング一端側端面51は、アウターリング48の気筒列方向の一端側(例えば図3における矢印A方向)の端面の全面または一部分に設定される。 In this case, the outer ring one end side end surface 51 of the speed reducer 35 serves as the second support surface and contacts the opening end flange surface 70 of the second housing 57 that serves as the housing second support surface. At this time, the outer ring one end side end face 51 is set to the whole or a part of the end face of the outer ring 48 on the one end side in the cylinder column direction (for example, the direction of arrow A in FIG. 3).
 減速機35に第2制御軸24軸方向の位置を規制可能な機能も持たせた場合にも、上述した第1実施例と略同様の作用効果を奏することが可能である。 Even when the speed reducer 35 is provided with a function capable of restricting the position in the axial direction of the second control shaft 24, it is possible to obtain substantially the same operational effects as those of the above-described first embodiment.
 また、第2制御軸24軸方向の位置を規制可能な機能を減速機35に設けた場合、第2ハウジング57の開口端フランジ面70とアウターリング一端側端面51との接触面積は容易に大きく設定することが可能である。 Further, when the speed reducer 35 is provided with a function capable of restricting the axial position of the second control shaft 24, the contact area between the opening end flange surface 70 of the second housing 57 and the outer ring one end side end surface 51 is easily large. It is possible to set.
 そして、第2制御軸24軸方向の位置を規制可能な機能を減速機35に設けた場合、第2制御軸24軸方向の位置を規制可能な機能をアウターリング48の気筒列方向の一端側の端面の全面に設定すれば、第2制御軸24軸方向の位置を規制可能な機能をアウターリング48の気筒列方向の一端側の端面の一部分に設定する場合に比べて、第2ハウジング57の開口端フランジ面70にアウターリング一端側端面51が押し付けられた際の面圧を低減することが可能となる。 When the speed reducer 35 is provided with the function of restricting the position of the second control shaft 24 in the axial direction, the function of restricting the position of the second control shaft 24 in the axial direction is provided with one end side of the outer ring 48 in the cylinder row direction. When the entire end surface of the second control shaft 24 is set, the second housing 57 has a function of restricting the axial position of the second control shaft 24 compared to a case where a part of the end surface of the outer ring 48 on the one end side in the cylinder row direction is set. It is possible to reduce the surface pressure when the outer ring one end side end surface 51 is pressed against the opening end flange surface 70.
 また、上述した各実施例においては、第2支持面となる第2アーム部第1端面43を第2制御軸24周方向に沿ってC字状とすることも可能である。すなわち、第2アーム部第1端面43は、第2制御軸用貫通孔42の外周側に、第2制御軸用貫通孔42の周囲の一部に沿った円弧状に形成することも可能である。 Also, in each of the above-described embodiments, the second arm portion first end surface 43 serving as the second support surface may be C-shaped along the circumferential direction of the second control shaft 24. That is, the second arm portion first end surface 43 may be formed in an arc shape on the outer peripheral side of the second control shaft through hole 42 along a part of the periphery of the second control shaft through hole 42. is there.

Claims (9)

  1.  第1制御軸の回転位置に応じて圧縮比を変更する可変圧縮比機構と、
     上記第1制御軸を回転駆動するアクチュエータユニットと、を有し、
     上記アクチュエータユニットは、第2制御軸と、減速機を介して上記第2制御軸を回転駆動する駆動源と、上記第2制御軸の回転を上記第1制御軸に伝達するリンク部材と、を有し、
     上記第1制御軸は、当該第1制御軸から径方向に突出する第1アーム部を有し、
     上記第2制御軸は、当該第2制御軸から径方向に突出する第2アーム部を有し、
     上記リンク部材は、一端が上記第1アーム部に回転可能に連結され、他端が上記第2アーム部に回転可能に連結され、
     上記第2制御軸と、上記第2アーム部、上記リンク部材または上記減速機のいずれかとが、上記第2制御軸の軸方向の位置を規制可能な機能を有する内燃機関。
    A variable compression ratio mechanism that changes the compression ratio according to the rotational position of the first control shaft;
    An actuator unit that rotationally drives the first control shaft,
    The actuator unit includes a second control shaft, a drive source that rotationally drives the second control shaft via a speed reducer, and a link member that transmits the rotation of the second control shaft to the first control shaft. Have,
    The first control shaft has a first arm portion that radially projects from the first control shaft,
    The second control shaft has a second arm portion that radially projects from the second control shaft,
    One end of the link member is rotatably connected to the first arm portion, and the other end thereof is rotatably connected to the second arm portion,
    An internal combustion engine having a function of allowing the second control shaft and any one of the second arm portion, the link member, and the speed reducer to regulate the axial position of the second control shaft.
  2.  上記第2制御軸は、上記第2制御軸に設けられた第1支持面が上記アクチュエータユニットのハウジングに設けられたハウジング第1支持面に接することで上記第2制御軸の軸方向の位置を規制し、
     上記第2アーム部、上記リンク部材または上記減速機のいずれか一つは、自身に設けられた第2支持面が上記ハウジングに設けられたハウジング第2支持面に接することで上記第2制御軸の軸方向の位置を規制する請求項1に記載の内燃機関。
    The second control shaft has a first support surface provided on the second control shaft in contact with a housing first support surface provided on a housing of the actuator unit so that the second control shaft is positioned in the axial direction. Regulate,
    Any one of the second arm portion, the link member, and the speed reducer has a second supporting surface provided on itself, which is in contact with a housing second supporting surface provided on the housing. The internal combustion engine according to claim 1, wherein the axial position of the engine is restricted.
  3.  上記第1支持面が上記ハウジング第1支持面に接することにより規制される方向は、上記第2支持面が上記ハウジング第2支持面に接することにより規制される方向に対して逆方向となっている請求項2に記載の内燃機関。 The direction regulated by the first support surface contacting the housing first support surface is opposite to the direction regulated by the second support surface contacting the housing second support surface. The internal combustion engine according to claim 2, wherein
  4.  上記第2支持面は、上記第2アーム部の側面、上記リンク部材の他端の側面、または上記減速機の構成要素の側面のいずれかに形成されている請求項2または3に記載の内燃機関。 The internal combustion engine according to claim 2 or 3, wherein the second support surface is formed on a side surface of the second arm portion, a side surface of the other end of the link member, or a side surface of a component of the speed reducer. organ.
  5.  上記第2支持面は、上記第2アーム部の側面、上記リンク部材の他端の側面、または上記減速機の構成要素の側面のいずれかの一部分に形成されている請求項2または3に記載の内燃機関。 The said 2nd support surface is formed in any one part of the side surface of the said 2nd arm part, the side surface of the other end of the said link member, or the side surface of the component of the said reduction gear. Internal combustion engine.
  6.  上記第2アーム部は、上記リンク部材の他端を挟み込めるように二股状に形成され、
     上記第2支持面が上記第2アーム部に形成されている請求項2~5のいずれかに記載の内燃機関。
    The second arm portion is formed in a bifurcated shape so as to sandwich the other end of the link member,
    The internal combustion engine according to any one of claims 2 to 5, wherein the second support surface is formed on the second arm portion.
  7.  上記リンク部材の他端は、上記第2アーム部を挟み込めるように二股状に形成され、
     上記第2支持面が上記リンク部材の他端に形成されている請求項2~5のいずれかに記載の内燃機関。
    The other end of the link member is formed in a bifurcated shape so as to sandwich the second arm portion,
    The internal combustion engine according to any one of claims 2 to 5, wherein the second support surface is formed at the other end of the link member.
  8.  上記第2支持面が上記減速機に形成されている請求項2~5のいずれかに記載の内燃機関。 The internal combustion engine according to any one of claims 2 to 5, wherein the second support surface is formed on the speed reducer.
  9.  上記第2制御軸は、上記ハウジングに回転可能に支持される小径部と、当該小径部よりも大径となる大径部と、を有し、
     上記第1支持面は、上記大径部の端面に設定されている請求項2~8のいずれかに記載の内燃機関。
    The second control shaft has a small diameter portion that is rotatably supported by the housing, and a large diameter portion that is larger in diameter than the small diameter portion,
    The internal combustion engine according to any one of claims 2 to 8, wherein the first support surface is set to an end surface of the large diameter portion.
PCT/JP2019/000420 2019-01-10 2019-01-10 Internal combustion engine WO2020144789A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000420 WO2020144789A1 (en) 2019-01-10 2019-01-10 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000420 WO2020144789A1 (en) 2019-01-10 2019-01-10 Internal combustion engine

Publications (1)

Publication Number Publication Date
WO2020144789A1 true WO2020144789A1 (en) 2020-07-16

Family

ID=71521606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000420 WO2020144789A1 (en) 2019-01-10 2019-01-10 Internal combustion engine

Country Status (1)

Country Link
WO (1) WO2020144789A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069181A (en) * 2003-08-27 2005-03-17 Toyota Motor Corp Variable compression ratio internal combustion engine
US20060048728A1 (en) * 2003-01-02 2006-03-09 Joseph Scalzo Mechanism for internal combustion piston engines
WO2013080673A1 (en) * 2011-11-29 2013-06-06 日産自動車株式会社 Lubrication structure for variable compression ratio internal combustion engine
JP2015145647A (en) * 2014-02-04 2015-08-13 日立オートモティブシステムズ株式会社 Variable compression ratio mechanism actuator and link mechanism actuator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060048728A1 (en) * 2003-01-02 2006-03-09 Joseph Scalzo Mechanism for internal combustion piston engines
JP2005069181A (en) * 2003-08-27 2005-03-17 Toyota Motor Corp Variable compression ratio internal combustion engine
WO2013080673A1 (en) * 2011-11-29 2013-06-06 日産自動車株式会社 Lubrication structure for variable compression ratio internal combustion engine
JP2015145647A (en) * 2014-02-04 2015-08-13 日立オートモティブシステムズ株式会社 Variable compression ratio mechanism actuator and link mechanism actuator

Similar Documents

Publication Publication Date Title
JP6208035B2 (en) Actuator of internal combustion engine link mechanism and actuator of variable compression ratio mechanism
US10883421B2 (en) Actuator of variable compression ratio mechanism and actuator of link mechanism
JP2002364393A (en) Variable compression ratio mechanism for internal combustion engine
JP2002047955A (en) Internal combustion engine provided with variable compression ratio mechanism
WO2014112266A1 (en) Internal combustion engine with variable compression ratio
US20130306035A1 (en) Variable compression ratio internal combustion engine
WO2016121424A1 (en) Actuator of link mechanism for internal combustion engine
JP4092495B2 (en) Double link type piston-crank mechanism for internal combustion engine
JP6451029B2 (en) Actuator of link mechanism for internal combustion engine
JP2004124775A (en) Variable compression ratio mechanism for internal combustion engine
WO2020144789A1 (en) Internal combustion engine
WO2020075665A1 (en) Actuator of variable compression ratio mechanism for internal combustion engines
WO2017013727A1 (en) Internal combustion engine
JP4075600B2 (en) Pin connection structure
JP4702082B2 (en) Variable compression ratio mechanism of internal combustion engine
JP2007232112A (en) Bearing structure of double-link piston crank
JP2009036146A (en) Upper pin connection structure of double-link piston-crank mechanism
JP6488519B2 (en) Actuator of link mechanism for internal combustion engine
JP7107003B2 (en) Multi-link piston crank mechanism for internal combustion engine
JP2020101113A (en) Actuator of variable compression ratio mechanism for internal combustion engine
JP4670342B2 (en) Lower link in piston crank mechanism of internal combustion engine
JP2003097288A (en) Adjustable compression ratio mechanism of internal combustion engine
JP7124571B2 (en) internal combustion engine
JP2008144720A (en) Variable stroke characteristic engine
JP2022100486A (en) Support structure of rolling bearing, and actuator of variable compression ratio mechanism of internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP