WO2020143594A1 - 视频解码方法、视频编码方法、装置、设备及存储介质 - Google Patents
视频解码方法、视频编码方法、装置、设备及存储介质 Download PDFInfo
- Publication number
- WO2020143594A1 WO2020143594A1 PCT/CN2020/070592 CN2020070592W WO2020143594A1 WO 2020143594 A1 WO2020143594 A1 WO 2020143594A1 CN 2020070592 W CN2020070592 W CN 2020070592W WO 2020143594 A1 WO2020143594 A1 WO 2020143594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- code stream
- video
- knowledge image
- knowledge
- stream
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 187
- 230000015654 memory Effects 0.000 claims description 86
- 238000012545 processing Methods 0.000 description 84
- 238000013139 quantization Methods 0.000 description 74
- 239000000872 buffer Substances 0.000 description 37
- 238000004891 communication Methods 0.000 description 36
- 239000013598 vector Substances 0.000 description 25
- 230000008569 process Effects 0.000 description 23
- 238000010586 diagram Methods 0.000 description 22
- 208000037170 Delayed Emergence from Anesthesia Diseases 0.000 description 17
- 238000004590 computer program Methods 0.000 description 13
- 238000005070 sampling Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 10
- 230000003044 adaptive effect Effects 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000003491 array Methods 0.000 description 7
- 238000004422 calculation algorithm Methods 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 230000011218 segmentation Effects 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000013500 data storage Methods 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 230000000750 progressive effect Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000002146 bilateral effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 1
- 241000023320 Luma <angiosperm> Species 0.000 description 1
- 238000012952 Resampling Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/58—Motion compensation with long-term prediction, i.e. the reference frame for a current frame not being the temporally closest one
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/117—Filters, e.g. for pre-processing or post-processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/124—Quantisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/172—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/184—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/44—Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/46—Embedding additional information in the video signal during the compression process
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/503—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
- H04N19/51—Motion estimation or motion compensation
- H04N19/513—Processing of motion vectors
- H04N19/517—Processing of motion vectors by encoding
- H04N19/52—Processing of motion vectors by encoding by predictive encoding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/625—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using discrete cosine transform [DCT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/70—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/91—Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/96—Tree coding, e.g. quad-tree coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/234—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
- H04N21/2343—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
- H04N21/234327—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements by decomposing into layers, e.g. base layer and one or more enhancement layers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/235—Processing of additional data, e.g. scrambling of additional data or processing content descriptors
- H04N21/2353—Processing of additional data, e.g. scrambling of additional data or processing content descriptors specifically adapted to content descriptors, e.g. coding, compressing or processing of metadata
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/44—Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
- H04N21/4402—Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/80—Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
- H04N21/83—Generation or processing of protective or descriptive data associated with content; Content structuring
- H04N21/845—Structuring of content, e.g. decomposing content into time segments
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/80—Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
- H04N21/83—Generation or processing of protective or descriptive data associated with content; Content structuring
- H04N21/845—Structuring of content, e.g. decomposing content into time segments
- H04N21/8451—Structuring of content, e.g. decomposing content into time segments using Advanced Video Coding [AVC]
Definitions
- the present application relates to the technical field of encoding and decoding, and in particular to a video decoding method, a video encoding method, a device, a device, and a storage medium.
- the encoding and decoding method based on knowledge base is one of them.
- the encoding end After the encoding end encodes the video, the knowledge image code stream and the video code stream referring to the knowledge image code stream will be obtained.
- the decoding end needs to decode the knowledge image code stream and the video code stream to realize the restoration of the video.
- the related art provides a decoding method. After acquiring the knowledge image code stream and the video code stream encoded at the encoding end, the first decoder is called to decode the knowledge image code stream to obtain the decoded knowledge image code stream. After that, the second decoder is called, and the video code stream is decoded with reference to the decoded knowledge image code stream.
- the related art needs to call two decoders to decode the knowledge image code stream and the video code stream respectively. Therefore, the decoding process of the related art is not flexible enough and the decoding efficiency is not high.
- the embodiments of the present application provide a video decoding method, a video encoding method, a device, a device, and a storage medium, to solve the problems that the related art encoding process is not flexible enough and the decoding efficiency is not high.
- an embodiment of the present application provides a video decoding method, including: parsing a first identifier from a video code stream while allowing a video code stream to be decoded with reference to a knowledge image corresponding to a knowledge image code stream; When the value of the first identifier is the first value, the value of the target parameter in the sequence header of the video stream and the value of the target parameter in the sequence header of the knowledge image stream referenced by the video stream the same.
- the method may further include: when the value of the first identifier is the first value, using the value of the target parameter in the sequence header of the video stream as the video stream Reference the value of the target parameter of the knowledge image code stream, and according to the value of the target parameter of the knowledge image code stream referenced by the video code stream and the knowledge image code stream referenced by the video code stream, reconstruct the The knowledge image corresponding to the knowledge image code stream referenced by the video code stream.
- the video code stream In the case where the video code stream is allowed to be decoded with reference to the knowledge image corresponding to the knowledge image code stream, it can be replaced with the case where the video code stream needs to be decoded with reference to the knowledge image corresponding to the knowledge image code stream.
- the decoder of the video codestream decodes the knowledge image codestream referenced by the video codestream, and reconstructs the knowledge image corresponding to the knowledge image codestream referenced by the video codestream.
- the method further includes: reconstructing the video corresponding to the video code stream according to the knowledge image corresponding to the knowledge image code stream referenced by the video code stream and the video code stream image.
- the first identifier is located in the sequence header of the video code stream.
- the first identifier includes the same parameter identifier, and the same parameter identifier is used to indicate whether the value of the target parameter of the knowledge image code stream referenced by the video code stream is the same as the video code
- the value of the target parameter in the sequence header of the stream is the same.
- the target parameter in the sequence header of the video stream includes decoding capability information of the video stream.
- the value identified by the same parameter is the first value, which is used to indicate the value of the target parameter of the knowledge image code stream and the target parameter in the sequence header of the video code stream Has the same value.
- the value identified by the same parameter is the second value, which is used to indicate that the value of the target parameter of the knowledge image code stream and the value of the target parameter in the sequence header of the video code stream may be different, or , Used to indicate that the value of the target parameter of the image stream that is not mandatory or not required to be the same as the value of the target parameter in the sequence header of the video stream, or to indicate that the value of the target parameter of the stream of the knowledge image is the same as the video The value of the target parameter in the sequence header of the code stream is different.
- the target parameter includes decoding capability information, the value of the target parameter of the knowledge image code stream referenced by the video code stream and the knowledge image code referenced by the video code stream Stream, reconstructing the knowledge image corresponding to the knowledge image code stream referenced by the video code stream, including: determining whether the decoding capability of the decoder to be used meets the decoding capability of the knowledge image code stream referenced by the video code stream The requirements indicated by the value of the information; when the decoding capability of the decoder to be used meets the requirements indicated by the value of the decoding capability information of the knowledge image bitstream referenced by the video stream, the decoder to be used Parse the knowledge image code stream referenced by the video code stream, and reconstruct the knowledge image corresponding to the knowledge image code stream referenced by the video code stream.
- parsing the first identifier from the video code stream includes: Parse the knowledge image reference identifier in which is used to indicate whether to allow reference to the knowledge image corresponding to the knowledge image code stream to decode the video stream; the value of the knowledge image reference identifier indicates that the reference is allowed
- the first identifier is parsed from the video code stream.
- the knowledge image reference identifier may also be used to indicate whether decoding of the video code stream requires reference to the indication image corresponding to the knowledge image code stream. Further, in a case where the value of the knowledge image reference identifier indicates that decoding of the video code stream needs to refer to the indication image corresponding to the knowledge image code stream, the first identifier is parsed from the video code stream.
- the video code stream includes a knowledge image identifier
- the value of the knowledge image identifier is a second value
- the knowledge image identifier is a second value used to indicate that the video code stream is not It is a stream of knowledge images. It should be noted that the knowledge image identifier may be located in the sequence header of the video code stream.
- the method further includes: acquiring a knowledge image identifier in the current code stream; only when the value of the knowledge image identifier indicates that the video code stream is not a knowledge image code stream Use the current code stream as the video code stream, and perform the parsing of the knowledge image reference identifier from the video code stream.
- the target parameter includes decoding capability information
- the method further includes: parsing the decoding capability information of the knowledge image code stream from the video parameter set VPS of the video code stream; or, Parsing the decoding capability information of the knowledge image code stream from the sequence parameter set SPS of the video code stream; or parsing the decoding capability information of the knowledge image code stream from the sequence header of the video code stream.
- the method further includes: parsing the target parameters of the knowledge image code stream from the video parameter set VPS of the video code stream; or, from the sequence parameter set of the video code stream
- the target parameters of the knowledge image code stream are parsed in SPS; or, the target parameters of the knowledge image code stream are parsed from the sequence header of the video code stream.
- the target parameter includes decoding capability information
- the decoding capability information of the video stream includes a class identifier and a class identifier
- the class identifier is used to indicate the class to which the video stream belongs
- the level identifier is used to indicate the level to which the video stream belongs
- using the target parameter value of the video stream as the target parameter value of the knowledge image stream includes:
- the level identifier is decoding capability information of the knowledge image code stream referred to by the video code stream.
- a video encoding method includes: referring to a knowledge image corresponding to a knowledge image code stream to encode a video image, referring to a knowledge image pair corresponding to the knowledge image code stream Encoding the video image to obtain encoded data; adding a first identifier to the encoded data to obtain a video stream, when the value of the first identifier is the first value, it is used to indicate the sequence of the video stream
- the value of the target parameter in the header is used as the value of the target parameter of the knowledge image code stream referenced by the video code stream.
- the value of the first identifier may also be used to indicate the value of the target parameter in the sequence header of the video stream as the sequence header of the knowledge image stream referred to by the video stream
- the value of the target parameter in is the same.
- the first identifier is located in the sequence header of the video code stream.
- the encoded data includes decoding capability information.
- the first identifier includes the same parameter identifier, and the same parameter identifier is used to indicate whether the value of the target parameter of the knowledge image code stream referenced by the video code stream is the same as the video code
- the value of the target parameter in the sequence header of the stream is the same; the value identified by the same parameter is the first value used to indicate the value of the target parameter of the knowledge image code stream and the value of the sequence header in the video code stream
- the value of the target parameter is the same.
- the target parameter in the sequence header of the video stream may include decoding capability information of the video stream.
- the video code stream further includes a knowledge image reference identifier, and the knowledge image reference identifier is used to indicate whether to allow reference to the knowledge image corresponding to the knowledge image code stream to decode the video code stream .
- the video code stream further includes: a knowledge image identifier, and the value of the knowledge image identifier is a second value, which is used to indicate that the video code stream is not a knowledge image code stream.
- the target parameter includes decoding capability information, which is located in the video parameter set VPS of the encoded data, or in the sequence parameter set SPS of the encoded data, so The decoding capability information is located in the sequence header of the video code stream.
- the target parameter is located in the video parameter set VPS of the encoded data, or the target parameter is located in the sequence parameter set SPS of the encoded data, and the target parameter is located in the In the sequence header of the video stream.
- the target parameter includes decoding capability information
- the decoding capability information includes a class identifier and a class identifier
- the class identifier is used to indicate the class to which the knowledge image code stream belongs
- the class The identifier is used to indicate the level to which the knowledge image code stream belongs.
- the class identifier and the class identifier are used to indicate the decoding capability information of the knowledge image code stream.
- a video decoding device comprising: a parsing module for parsing from the video bitstream while allowing the video bitstream to be decoded with reference to a knowledge image corresponding to the known image bitstream
- the first identifier in the case where the value of the first identifier is the first value, the value of the target parameter in the sequence header of the video stream and the sequence header of the knowledge image stream referenced by the video stream The value of the target parameter in is the same.
- the parsing module is also used for parsing the first identifier from the video code stream when the video code stream is decoded with reference to the knowledge image corresponding to the known image code stream;
- the value is the first value
- the value of the target parameter in the sequence header of the video code stream is used as the value of the target parameter of the knowledge image code stream referenced by the video code stream.
- the apparatus may further include: a reconstruction module, configured to use the value of the target parameter in the sequence header of the video stream as the value of the first identifier as the first value
- a reconstruction module configured to use the value of the target parameter in the sequence header of the video stream as the value of the first identifier as the first value
- the target parameter value of the knowledge image code stream referenced by the video code stream and according to the value of the target parameter of the knowledge image code stream referenced by the video code stream and the knowledge image code stream referenced by the video code stream to reconstruct the knowledge image corresponding to the knowledge image code stream referenced by the video code stream.
- the reconstruction module may also be used to reconstruct the obtained based on the value of the target parameter of the knowledge image code stream referenced by the video code stream and the knowledge image code stream referenced by the video code stream The knowledge image corresponding to the knowledge image code stream referenced by the video code stream.
- the reconstruction module is further configured to reconstruct the video code stream according to the knowledge image corresponding to the knowledge image code stream referenced by the video code stream and the video code stream Corresponding video image.
- the first identifier is located in the sequence header of the video code stream.
- the first identifier includes the same parameter identifier, and the same parameter identifier is used to indicate whether the value of the target parameter of the knowledge image code stream referenced by the video code stream is the same as the video code
- the value of the target parameter in the sequence header of the stream is the same; the value identified by the same parameter is the first value used to indicate the value of the target parameter of the knowledge image code stream and the value of the sequence header in the video code stream
- the value of the target parameter is the same.
- the target parameter includes decoding capability information
- the reconstruction module is configured to determine whether the decoding capability of the decoder to be used satisfies the knowledge image code stream referenced by the video code stream The requirement indicated by the value of the decoding capability information; when the decoding capability of the decoder to be used meets the requirement indicated by the value of the decoding capability information of the knowledge image bitstream referenced by the video bitstream, the The decoder parses the knowledge image code stream referenced by the video code stream, and reconstructs the knowledge image corresponding to the knowledge image code stream referenced by the video code stream.
- the parsing module is configured to parse a knowledge image reference identifier from the video code stream, and the knowledge image reference identifier is used to indicate whether reference to the knowledge image pair corresponding to the knowledge image code stream is allowed Decoding the video code stream; when the value of the knowledge image reference identifier indicates that it is allowed to decode the video code stream with reference to the knowledge image corresponding to the knowledge image code stream, parsing from the video code stream The first identifier.
- a knowledge image identifier is parsed in the video code stream, the value of the knowledge image identifier is a second value, and the knowledge image identifier is a second value used to indicate that the video code stream is not It is a stream of knowledge images.
- the parsing module is further used to obtain the knowledge image identifier in the current code stream; when the value of the knowledge image identifier indicates that the video code stream is not a knowledge image code stream Before the current code stream is used as the video code stream, and the parsing of the knowledge image reference identifier from the video code stream is performed.
- the target parameter includes decoding capability information
- the parsing module is further configured to parse the decoding capability information of the knowledge image code stream from the video parameter set VPS of the video code stream; Or, parsing the decoding capability information of the knowledge image code stream from the sequence parameter set SPS of the video code stream; or parsing the decoding capability information of the knowledge image code stream from the sequence header of the video code stream .
- the parsing module is further configured to parse the target parameters of the knowledge image code stream from the video parameter set VPS of the video code stream; or, from the sequence of the video code stream
- the target parameter of the knowledge image code stream is parsed in the parameter set SPS; or, the target parameter of the knowledge image code stream is parsed from the sequence header of the video code stream.
- the target parameter includes decoding capability information
- the decoding capability information of the video stream includes a class identifier and a class identifier
- the class identifier is used to indicate the class to which the video stream belongs
- the level identifier is used to indicate the level to which the video code stream belongs
- the parsing module is used to use the class identifier and the level identifier as decoding capability information of the knowledge image code stream referenced by the video code stream.
- a video encoding apparatus includes: an encoding module configured to refer to the corresponding knowledge image code stream under the condition that the video image is encoded with reference to the knowledge image corresponding to the knowledge image code stream The knowledge image encodes the video image to obtain encoded data; an addition module is used to add a first identifier to the encoded data to obtain a video stream.
- an encoding module configured to refer to the corresponding knowledge image code stream under the condition that the video image is encoded with reference to the knowledge image corresponding to the knowledge image code stream
- the knowledge image encodes the video image to obtain encoded data
- an addition module is used to add a first identifier to the encoded data to obtain a video stream.
- the value of the first identifier may also be used to indicate the value of the target parameter in the sequence header of the video stream as the sequence header of the knowledge image stream referred to by the video stream
- the value of the target parameter in is the same.
- the first identifier is located in the sequence header of the video code stream.
- the first identifier includes the same parameter identifier, and the same parameter identifier is used to indicate whether the value of the target parameter of the knowledge image code stream referenced by the video code stream is the same as the video code
- the value of the target parameter in the sequence header of the stream is the same; the value identified by the same parameter is the first value used to indicate the value of the target parameter of the knowledge image code stream and the value of the sequence header in the video code stream
- the value of the target parameter is the same.
- the video code stream further includes a knowledge image reference identifier, and the knowledge image reference identifier is used to indicate whether to allow reference to the knowledge image corresponding to the knowledge image code stream to decode the video code stream .
- the video code stream further includes: a knowledge image identifier, and the value of the knowledge image identifier is a second value, which is used to indicate that the video code stream is not a knowledge image code stream.
- the target parameter includes decoding capability information that is located in the video parameter set VPS of the encoded data, or in the sequence parameter set SPS of the encoded data, or ,
- the decoding capability information is located in the sequence header of the video stream.
- the target parameter includes decoding capability information
- the target parameter is located in a video parameter set VPS of the encoded data
- the target parameter is located in a sequence parameter set SPS of the encoded data
- the target parameter is located in the sequence header of the video stream.
- the target parameter includes decoding capability information
- the decoding capability information includes a class identifier and a class identifier
- the class identifier is used to indicate the class to which the knowledge image code stream belongs
- the class The identifier is used to indicate the level to which the knowledge image code stream belongs.
- an embodiment of the present application provides a video decoding device, including: a memory and a processor; at least one instruction is stored in the memory, and the at least one instruction is loaded and executed by the processor to implement the present application
- a video decoding device including: a memory and a processor; at least one instruction is stored in the memory, and the at least one instruction is loaded and executed by the processor to implement the present application
- an embodiment of the present application provides a video encoding device, including: a memory and a processor; at least one instruction is stored in the memory, and the at least one instruction is loaded and executed by the processor to implement the present application
- a video encoding device including: a memory and a processor; at least one instruction is stored in the memory, and the at least one instruction is loaded and executed by the processor to implement the present application
- processors there are one or more processors and one or more memories.
- the memory may be integrated with the processor, or the memory and the processor are provided separately.
- the memory may be non-transitory (non-transitory) memory, such as read-only memory (read only memory (ROM), which may be integrated with the processor on the same chip, or may be set in different On the chip, the embodiments of the present application do not limit the type of memory and the manner of setting the memory and the processor.
- ROM read only memory
- a computer program includes: computer program code.
- the computer program code When the computer program code is executed by a computer, the computer is caused to perform the method in the above aspects.
- a readable storage medium stores a program or an instruction.
- the program or the instruction runs on a computer, the methods in the above aspects are executed.
- a chip including a processor for calling and running instructions stored in the memory from a memory, so that a communication device mounted with the chip executes the method in the above aspects.
- another chip including: an input interface, an output interface, a processor, and a memory.
- the input interface, the output interface, the processor, and the memory are connected by an internal connection path, and the processing
- the processor is used to execute the code in the memory, and when the code is executed, the processor is used to execute the methods in the above aspects.
- an embodiment of the present application provides a video decoding method, including: parsing a knowledge image reference identifier from the video bitstream, where the knowledge image reference identifier is used to indicate the location where the knowledge image reference identifier is located Whether the decoding of the video code stream allows reference to the knowledge image corresponding to the knowledge image code stream; when the knowledge image reference flag indicates that the decoding of the video code stream allows reference to the knowledge image corresponding to the knowledge image code stream, obtain the A knowledge image corresponding to the knowledge image code stream, and decoding the video code stream according to the knowledge image corresponding to the knowledge image code stream.
- the acquiring the knowledge image corresponding to the knowledge image code stream includes: parsing the same standard identifier from the video code stream, where the same standard is used to indicate the knowledge image code stream Whether the standard adopted for decoding is the same as the decoding of the video bitstream; when the same standard indicates that the decoding of the knowledge image bitstream is the same as the standard adopted for the decoding of the video bitstream, acquiring the knowledge image Code stream, and decode the knowledge image code stream to obtain a knowledge image corresponding to the knowledge image code stream.
- the same standard identifier is located in a video parameter set (video parameters) set of the video code stream, a sequence parameter set (sequence parameters) set of the video code stream or the video code The sequence header of the stream.
- the acquiring the knowledge image corresponding to the knowledge image code stream includes: acquiring the knowledge image code stream, and decoding the knowledge image code stream to obtain the knowledge corresponding to the knowledge image code stream image.
- the decoding the knowledge image code stream to obtain the knowledge image corresponding to the knowledge image code stream includes: parsing the decoding capability information of the knowledge image code stream from the video code stream.
- the knowledge image code stream is decoded to obtain a knowledge image corresponding to the knowledge image code stream.
- the decoding capability information includes a class to which the knowledge image code stream belongs and/or a class to which the knowledge image code stream belongs, and the decoding capability information includes the knowledge image code stream to And/or the class to which the knowledge image code stream belongs is used to instruct the instruction to decode the decoding capability required by the instruction image code stream.
- the video code stream includes a knowledge image identifier or information of the knowledge image identifier, the information of the knowledge image identifier is used to indicate the knowledge image identifier, and the value of the knowledge image identifier It is used to indicate that the video code stream is not a knowledge image code stream.
- the parsing of the knowledge image reference identifier from the video code stream is performed.
- the video code stream includes the same parameter identifier, and the value of the same parameter identifier is used to indicate the value of a parameter other than the knowledge image identifier in the sequence header of the knowledge image code stream Are the values of the parameters other than the knowledge image identification in the sequence header of the video code stream the same?
- the knowledge image reference identifier is located in a video parameter set (video parameters) set of the video bitstream, a sequence parameter set (sequence parameters) set of the video bitstream, or the video In the sequence header of the code stream.
- an embodiment of the present application provides a video decoding method, including: parsing decoding capability information of a knowledge image code stream from the video code stream; a decoder that currently performs decoding of the video code stream When the decoding capability meets the requirements of the decoding capability information, the knowledge image corresponding to the knowledge image code stream is acquired, and the video code stream is decoded according to the knowledge image corresponding to the knowledge image code stream.
- an embodiment of the present application provides a video decoding device, including several functional units for implementing the method provided by the method of the first aspect.
- the video decoding device may include: a parsing unit for parsing a knowledge image reference identifier from the video code stream, where the knowledge image reference identifier is used to indicate the video code stream where the knowledge image reference identifier is located Whether the decoding allows to refer to the knowledge image corresponding to the knowledge image code stream; the reconstruction unit is used to obtain all the knowledge images corresponding to the knowledge image code stream when the knowledge image reference flag indicates that the decoding of the video code stream is allowed to reference The knowledge image corresponding to the knowledge image code stream, and decoding the video code stream according to the knowledge image corresponding to the knowledge image code stream.
- an embodiment of the present application provides a video decoding device, including several functional units for implementing the method provided by the method of the second aspect.
- the video decoding device may include: a parsing unit for parsing decoding capability information of the knowledge image code stream from the video code stream; and a reconstruction unit for a decoder currently performing decoding of the video code stream
- the decoding capability of the device meets the requirements of the decoding capability information, acquire the knowledge image corresponding to the knowledge image code stream, and decode the video code stream according to the knowledge image corresponding to the knowledge image code stream.
- an embodiment of the present application provides a decoding device, including: a nonvolatile memory and a processor coupled to each other, and the processor calls program codes stored in the memory to perform the first aspect or the first Part or all of the steps of the two-sided method.
- an embodiment of the present application provides a computer-readable storage medium that stores program code, where the program code includes a portion for performing the method of the first aspect or the second aspect Or instructions for all steps.
- an embodiment of the present application provides a computer program product that, when the computer program product runs on a computer, causes the computer to perform part or all of the steps of the method of the eleventh aspect or the twelfth aspect.
- This application uses the video bitstream to carry the decoding capability information.
- the first identifier is parsed from the video bitstream, and the first identifier is the first
- the value of the target parameter in the sequence header of the video code stream is used as the value of the target parameter of the knowledge image code stream, so that the knowledge image is reconstructed according to the value of the target parameter of the knowledge image code stream and the knowledge image code stream.
- the video image corresponding to the video code stream can be reconstructed based on the knowledge image and the video code stream.
- FIG. 1A is a block diagram of an example of a video encoding and decoding system 10 for implementing embodiments of the present application;
- FIG. 1B is a block diagram of an example of a video decoding system 40 for implementing an embodiment of the present application
- FIG. 2 is a block diagram of an example structure of an encoder 20 for implementing an embodiment of the present application
- FIG. 3 is a block diagram of an example structure of a decoder 30 for implementing an embodiment of the present application
- FIG. 4 is a block diagram of an example of a video decoding device 400 for implementing an embodiment of the present application
- FIG. 5 is a block diagram of another example of an encoding device or a decoding device used to implement an embodiment of the present application
- FIG. 6 is a schematic diagram of a relationship between a video code stream and a knowledge code stream used to implement an embodiment of the present application
- FIG. 7 is a flowchart for implementing a video decoding method according to an embodiment of the present application.
- 8A is a schematic diagram of a position of decoding capability information in a bitstream used to implement an embodiment of the present application
- 8B is a schematic diagram of a position of decoding capability information in a bit stream used to implement an embodiment of the present application
- FIG. 9 is a flowchart for implementing a video encoding method according to an embodiment of the present application.
- FIG. 10 is a schematic structural diagram of a video decoding device for implementing an embodiment of the present application.
- FIG. 11 is a schematic structural diagram for implementing a video encoding device in the implementation of this application.
- FIG. 12 is a schematic diagram of a structure for implementing a content supply system in an embodiment of the present application.
- FIG. 13 is a schematic structural diagram of a terminal device used to implement the embodiment of the present application.
- the corresponding device may include one or more units such as functional units to perform the one or more method steps described (eg, one unit performs one or more steps , Or multiple units, each of which performs one or more of multiple steps), even if such one or more units are not explicitly described or illustrated in the drawings.
- the corresponding method may include a step to perform the functionality of one or more units (eg, one step executes one or more units Functionality, or multiple steps, each of which performs the functionality of one or more of the multiple units), even if such one or more steps are not explicitly described or illustrated in the drawings.
- the features of the exemplary embodiments and/or aspects described herein may be combined with each other.
- Video coding generally refers to processing a sequence of pictures that form a video or video sequence.
- the terms "picture”, "frame” or “image” may be used as synonyms.
- video coding is performed on the source side, and usually includes processing (for example, by compressing) a picture sequence to reduce the amount of data required to represent the picture sequence, thereby storing and/or transmitting more efficiently.
- Video decoding is performed on the destination side and usually involves inverse processing relative to the encoder to reconstruct the picture sequence.
- the picture may be divided into slices, and the slices are further divided into blocks.
- Video coding is performed in units of blocks.
- the concept of blocks is further expanded.
- the macro block can be further divided into multiple prediction blocks that can be used for predictive coding.
- basic concepts such as coding unit (CU), prediction unit (PU) and transform unit (TU) are adopted, and a variety of block units are functionally divided and new The description is based on the tree structure.
- the CU can be divided into smaller CUs according to the quadtree, and the smaller CUs can be further divided to form a quadtree structure.
- the CU is the basic unit for dividing and coding the encoded image.
- PU can correspond to the prediction block and is the basic unit of predictive coding.
- the CU is further divided into multiple PUs according to the division mode.
- the TU can correspond to the transform block and is the basic unit for transforming the prediction residual.
- CU, PU or TU they all belong to the concept of block (or image block) in essence.
- the CTU is split into multiple CUs by using a quadtree structure represented as a coding tree.
- a decision is made at the CU level whether to use inter-picture (temporal) or intra-picture (spatial) prediction to encode picture regions.
- Each CU can be further split into one, two, or four PUs according to the PU split type.
- the same prediction process is applied within a PU, and related information is transmitted to the decoder on the basis of the PU.
- the CU may be divided into TUs according to other quadtree structures similar to the coding tree used for the CU.
- quad-tree and binary-tree quad-tree and binary-tree (quad-tree and binary tree, QTBT) split frames are used to split the coding blocks.
- the CU may be square or rectangular.
- the image block to be encoded in the current encoded image may be referred to as the current block.
- the reference block is a block that provides a reference signal for the current block, where the reference signal represents a pixel value within the image block.
- the block in the reference image that provides the prediction signal for the current block may be a prediction block, where the prediction signal represents a pixel value or a sample value or a sample signal within the prediction block. For example, after traversing multiple reference blocks, the best reference block is found. This best reference block will provide a prediction for the current block. This block is called a prediction block.
- the original picture sequence can be reconstructed, that is, the reconstructed picture sequence has the same quality as the original picture sequence (assuming no transmission loss or other data loss during storage or transmission).
- further compression is performed by, for example, quantization to reduce the amount of data required to represent the picture sequence, but the decoder side cannot fully reconstruct the picture sequence, that is, the quality of the reconstructed picture sequence is better than the original picture sequence The quality is lower or worse.
- Video codec standards of H.261 belong to "lossy hybrid video codec” (ie, combining spatial and temporal prediction in the sample domain with 2D transform coding used to apply quantization in the transform domain).
- Each picture of a video sequence is usually divided into non-overlapping block sets, which are usually encoded at the block level.
- the encoder side usually processes the encoded video at the block (video block) level.
- the prediction block is generated by spatial (intra-picture) prediction and temporal (inter-picture) prediction.
- the encoder duplicates the decoder processing loop so that the encoder and decoder generate the same prediction (eg, intra-frame prediction and inter-frame prediction) and/or reconstruction for processing, ie encoding subsequent blocks.
- FIG. 1A exemplarily shows a schematic block diagram of a video encoding and decoding system 10 applied in an embodiment of the present application.
- the video encoding and decoding system 10 may include a source device 12 and a destination device 14, the source device 12 generates encoded video data, and therefore, the source device 12 may be referred to as a video encoding device.
- the destination device 14 may decode the encoded video data generated by the source device 12, and therefore, the destination device 14 may be referred to as a video decoding device.
- Various implementations of source device 12, destination device 14, or both may include one or more processors and a memory coupled to the one or more processors.
- Source device 12 and destination device 14 may include various devices, including desktop computers, mobile computing devices, notebook (eg, laptop) computers, tablet computers, set-top boxes, telephone handsets such as so-called "smart" phones, etc. Devices, televisions, cameras, display devices, digital media players, video game consoles, in-vehicle computers, wireless communication devices, or the like.
- FIG. 1A depicts the source device 12 and the destination device 14 as separate devices
- device embodiments may also include both the source device 12 and the destination device 14 or the functionality of both, ie the source device 12 or the corresponding And the destination device 14 or the corresponding functionality.
- the same hardware and/or software may be used, or separate hardware and/or software, or any combination thereof may be used to implement the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality .
- a communication connection can be made between the source device 12 and the destination device 14 via the link 13, and the destination device 14 can receive the encoded video data from the source device 12 via the link 13.
- Link 13 may include one or more media or devices capable of moving the encoded video data from source device 12 to destination device 14.
- link 13 may include one or more communication media that enable source device 12 to transmit encoded video data directly to destination device 14 in real time.
- the source device 12 may modulate the encoded video data according to a communication standard (eg, a wireless communication protocol), and may transmit the modulated video data to the destination device 14.
- the one or more communication media may include wireless and/or wired communication media, such as a radio frequency (RF) spectrum or one or more physical transmission lines.
- RF radio frequency
- the one or more communication media may form part of a packet-based network, such as a local area network, a wide area network, or a global network (eg, the Internet).
- the one or more communication media may include routers, switches, base stations, or other devices that facilitate communication from source device 12 to destination device 14.
- the source device 12 includes an encoder 20.
- the source device 12 may further include a picture source 16, a picture pre-processor 18, and a communication interface 22.
- the encoder 20, the picture source 16, the picture pre-processor 18, and the communication interface 22 may be hardware components in the source device 12, or may be software programs in the source device 12. They are described as follows:
- Picture source 16 which can include or can be any type of picture capture device, for example, for capturing real-world pictures, and/or any type of picture or comment (for screen content encoding, some text on the screen is also considered to be encoded Part of the picture or image) generation device, for example, a computer graphics processor for generating computer animation pictures, or for acquiring and/or providing real-world pictures, computer animation pictures (for example, screen content, virtual reality, VR) pictures) in any category of equipment, and/or any combination thereof (eg, augmented reality (AR) pictures).
- the picture source 16 may be a camera for capturing pictures or a memory for storing pictures.
- the picture source 16 may also include any type of (internal or external) interface that stores previously captured or generated pictures and/or acquires or receives pictures.
- the picture source 16 When the picture source 16 is a camera, the picture source 16 may be, for example, a local or integrated camera integrated in the source device; when the picture source 16 is a memory, the picture source 16 may be a local or integrated, for example, integrated in the source device Memory.
- the interface When the picture source 16 includes an interface, the interface may be, for example, an external interface that receives pictures from an external video source.
- the external video source is, for example, an external picture capture device, such as a camera, an external memory, or an external picture generation device.
- the external picture generation device for example It is an external computer graphics processor, computer or server.
- the interface may be any type of interface according to any proprietary or standardized interface protocol, such as a wired or wireless interface, an optical interface.
- the picture can be regarded as a two-dimensional array or matrix of pixels.
- the pixels in the array can also be called sampling points.
- the number of sampling points in the horizontal and vertical directions (or axes) of the array or picture defines the size and/or resolution of the picture.
- three color components are usually used, that is, a picture can be represented or contain three sampling arrays.
- the picture includes corresponding red, green, and blue sampling arrays.
- each pixel is usually expressed in a luminance/chrominance format or color space.
- YUV format picture it includes the luminance component indicated by Y (sometimes also indicated by L) and the two indicated by U and V.
- the luma component Y represents luminance or gray-scale horizontal intensity (for example, both are the same in gray-scale pictures), and the two chroma components U and V represent chroma or color information components.
- the picture in the YUV format includes a luminance sampling array of luminance sampling values (Y), and two chrominance sampling arrays of chrominance values (U and V). RGB format pictures can be converted or transformed into YUV format and vice versa, this process is also called color transformation or conversion. If the picture is black and white, the picture may include only the brightness sampling array.
- the picture transmitted from the picture source 16 to the picture processor may also be referred to as original picture data 17.
- the picture pre-processor 18 is configured to receive the original picture data 17 and perform pre-processing on the original picture data 17 to obtain the pre-processed picture 19 or the pre-processed picture data 19.
- the pre-processing performed by the picture pre-processor 18 may include trimming, color format conversion (eg, conversion from RGB format to YUV format), color toning, or denoising.
- the encoder 20 (or video encoder 20) is used to receive the pre-processed picture data 19, and process the pre-processed picture data 19 using a related prediction mode (such as the prediction mode in various embodiments herein), thereby
- the encoded picture data 21 is provided (the structural details of the encoder 20 will be further described below based on FIG. 2 or FIG. 4 or FIG. 5).
- the encoder 20 may be used to execute various embodiments described below to implement the video encoding method described in this application.
- the communication interface 22 can be used to receive the encoded picture data 21, and can transmit the encoded picture data 21 to the destination device 14 or any other device (such as a memory) through the link 13 for storage or direct reconstruction.
- the other device may be any device used for decoding or storage.
- the communication interface 22 may be used, for example, to encapsulate the encoded picture data 21 into a suitable format, such as a data packet, for transmission on the link 13.
- the destination device 14 includes a decoder 30, and optionally, the destination device 14 may further include a communication interface 28, a picture post-processor 32, and a display device 34. They are described as follows:
- the communication interface 28 may be used to receive the encoded picture data 21 from the source device 12 or any other source, such as a storage device, such as an encoded picture data storage device.
- the communication interface 28 can be used to transmit or receive the encoded picture data 21 via the link 13 between the source device 12 and the destination device 14 or via any type of network.
- the link 13 is, for example, a direct wired or wireless connection.
- the category of network is, for example, a wired or wireless network or any combination thereof, or any category of private network and public network, or any combination thereof.
- the communication interface 28 may be used, for example, to decapsulate the data packet transmitted by the communication interface 22 to obtain the encoded picture data 21.
- Both the communication interface 28 and the communication interface 22 can be configured as a one-way communication interface or a two-way communication interface, and can be used, for example, to send and receive messages to establish a connection, confirm and exchange any other communication link and/or for example encoded picture data Information about data transmission.
- the decoder 30 (or referred to as the decoder 30) is used to receive the encoded picture data 21 and provide the decoded picture data 31 or the decoded picture 31 (hereinafter, the decoder 30 will be further described based on FIG. 3 or FIG. 4 or FIG. 5 Structural details). In some embodiments, the decoder 30 may be used to execute various embodiments described below to implement the video decoding method described in this application.
- the post-picture processor 32 is configured to perform post-processing on the decoded picture data 31 (also referred to as reconstructed picture data) to obtain post-processed picture data 33.
- the post-processing performed by the image post-processor 32 may include: color format conversion (for example, conversion from YUV format to RGB format), color adjustment, retouching or resampling, or any other processing, and may also be used to convert the post-processed image data 33transmitted to the display device 34.
- the display device 34 is used to receive post-processed picture data 33 to display pictures to a user or viewer, for example.
- the display device 34 may be or may include any type of display for presenting reconstructed pictures, for example, an integrated or external display or monitor.
- the display may include a liquid crystal display (liquid crystal display (LCD), organic light emitting diode (OLED) display, plasma display, projector, micro LED display, liquid crystal on silicon (LCoS), Digital light processor (digital light processor, DLP) or any other type of display.
- FIG. 1A illustrates the source device 12 and the destination device 14 as separate devices
- device embodiments may also include the functionality of the source device 12 and the destination device 14 or both, ie, the source device 12 or The corresponding functionality and the destination device 14 or corresponding functionality.
- the same hardware and/or software may be used, or separate hardware and/or software, or any combination thereof may be used to implement the source device 12 or corresponding functionality and the destination device 14 or corresponding functionality .
- Source device 12 and destination device 14 may include any of a variety of devices, including any type of handheld or stationary devices, such as notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
- handheld or stationary devices such as notebook or laptop computers, mobile phones, smartphones, tablets or tablet computers, cameras, desktops Computers, set-top boxes, televisions, cameras, in-vehicle devices, display devices, digital media players, video game consoles, video streaming devices (such as content service servers or content distribution servers), broadcast receiver devices, broadcast transmitter devices And so on, and can not use or use any kind of operating system.
- Both the encoder 20 and the decoder 30 may be implemented as any of various suitable circuits, for example, one or more microprocessors, digital signal processors (DSPs), application-specific integrated circuits (application-specific integrated circuits) circuit, ASIC), field-programmable gate array (FPGA), discrete logic, hardware, or any combination thereof.
- DSPs digital signal processors
- ASIC application-specific integrated circuits
- FPGA field-programmable gate array
- the device may store the instructions of the software in a suitable non-transitory computer-readable storage medium, and may use one or more processors to execute the instructions in hardware to perform the techniques of the present disclosure . Any one of the foregoing (including hardware, software, a combination of hardware and software, etc.) may be regarded as one or more processors.
- the video encoding and decoding system 10 shown in FIG. 1A is only an example, and the technology of the present application may be applied to video encoding settings that do not necessarily include any data communication between encoding and decoding devices (for example, video encoding or video decoding).
- data may be retrieved from local storage, streamed on the network, and so on.
- the video encoding device may encode the data and store the data to the memory, and/or the video decoding device may retrieve the data from the memory and decode the data.
- encoding and decoding are performed by devices that do not communicate with each other but only encode data to and/or retrieve data from memory and decode the data.
- FIG. 1B is an explanatory diagram of an example of a video coding system 40 including the encoder 20 of FIG. 2 and/or the decoder 30 of FIG. 3 according to an exemplary embodiment.
- the video decoding system 40 can implement a combination of various technologies in the embodiments of the present application.
- the video decoding system 40 may include an imaging device 41, an encoder 20, a decoder 30 (and/or a video encoder/decoder implemented by the logic circuit 47 of the processing unit 46), an antenna 42 , One or more processors 43, one or more memories 44, and/or display devices 45.
- the imaging device 41, the antenna 42, the processing unit 46, the logic circuit 47, the encoder 20, the decoder 30, the processor 43, the memory 44, and/or the display device 45 can communicate with each other.
- the video coding system 40 is shown with the encoder 20 and the decoder 30, in different examples, the video coding system 40 may include only the encoder 20 or only the decoder 30.
- antenna 42 may be used to transmit or receive an encoded bitstream of video data.
- the display device 45 may be used to present video data.
- the logic circuit 47 may be implemented by the processing unit 46.
- the processing unit 46 may include ASIC logic, a graphics processor, a general-purpose processor, and the like.
- the video decoding system 40 may also include an optional processor 43, which may similarly include an application specific integrated circuit ASIC logic, a graphics processor, a general-purpose processor, and the like.
- the logic circuit 47 may be implemented by hardware, such as dedicated hardware for video encoding, and the processor 43 may be implemented by general-purpose software, an operating system, and so on.
- the memory 44 may be any type of memory, such as volatile memory (for example, static random access memory (static random access memory, SRAM), dynamic random access memory (dynamic random access memory, DRAM), etc.) or non-volatile Memory (for example, flash memory, etc.), etc.
- volatile memory for example, static random access memory (static random access memory, SRAM), dynamic random access memory (dynamic random access memory, DRAM), etc.
- non-volatile Memory for example, flash memory, etc.
- the memory 44 may be implemented by cache memory.
- the logic circuit 47 can access the memory 44 (eg, to implement an image buffer).
- the logic circuit 47 and/or the processing unit 46 may include memory (eg, cache, etc.) for implementing image buffers and the like.
- the encoder 20 implemented by logic circuits may include an image buffer (eg, implemented by the processing unit 46 or the memory 44) and a graphics processing unit (eg, implemented by the processing unit 46).
- the graphics processing unit may be communicatively coupled to the image buffer.
- the graphics processing unit may include the encoder 20 implemented by a logic circuit 47 to implement the various modules discussed with reference to FIG. 2 and/or any other encoder system or subsystem described herein.
- Logic circuits can be used to perform the various operations discussed herein.
- decoder 30 may be implemented by logic circuit 47 in a similar manner to implement the various modules discussed with reference to decoder 30 of FIG. 3 and/or any other decoder systems or subsystems described herein.
- the decoder 30 implemented by the logic circuit may include an image buffer (implemented by the processing unit 2820 or the memory 44) and a graphics processing unit (for example, implemented by the processing unit 46).
- the graphics processing unit may be communicatively coupled to the image buffer.
- the graphics processing unit may include a decoder 30 implemented by a logic circuit 47 to implement various modules discussed with reference to FIG. 3 and/or any other decoder system or subsystem described herein.
- antenna 42 may be used to receive an encoded bitstream of video data.
- the encoded bitstream may include data related to encoded video frames, indicators, index values, mode selection data, etc. discussed herein, such as data related to encoded partitions (eg, transform coefficients or quantized transform coefficients , (As discussed) optional indicators, and/or data defining the code segmentation).
- the video coding system 40 may also include a decoder 30 coupled to the antenna 42 and used to decode the encoded bitstream.
- the display device 45 is used to present video frames.
- the decoder 30 may be used to perform the reverse process.
- the decoder 30 may be used to receive and parse such syntax elements and decode the relevant video data accordingly.
- encoder 20 may entropy encode syntax elements into an encoded video bitstream. In such instances, decoder 30 may parse such syntax elements and decode the relevant video data accordingly.
- the encoder 20 and the decoder 30 in the embodiment of the present application may be H.263, H.264, HEVC, moving picture experts group (MPEG)-2, MPEG-4, VP8 , VP9 and other video standard protocols corresponding to the codec/decoder, or can be H.266 or audio and video coding standard (audio video encoding standard (AVS) 3) and other next-generation video standard protocol corresponding codec/decoder.
- MPEG moving picture experts group
- MPEG-4 MPEG-4
- VP8 VP9
- other video standard protocols corresponding to the codec/decoder
- H.266 or audio and video coding standard (audio video encoding standard (AVS) 3) and other next-generation video standard protocol corresponding codec/decoder.
- AVS audio video encoding standard
- FIG. 2 shows a schematic/conceptual block diagram of an example of an encoder 20 for implementing an embodiment of the present application.
- the encoder 20 includes a residual calculation unit 204, a transform processing unit 206, a quantization unit 208, an inverse quantization unit 210, an inverse transform processing unit 212, a reconstruction unit 214, a buffer 216, a loop filter Unit 220, decoded picture buffer (DPB) 230, prediction processing unit 260, and entropy encoding unit 270.
- the prediction processing unit 260 may include an inter prediction unit 244, an intra prediction unit 254, and a mode selection unit 262.
- the inter prediction unit 244 may include a motion estimation unit and a motion compensation unit (not shown).
- the encoder 20 shown in FIG. 2 may also be referred to as a hybrid video encoder or a video encoder based on a hybrid video codec.
- the residual calculation unit 204, the transform processing unit 206, the quantization unit 208, the prediction processing unit 260, and the entropy encoding unit 270 form the forward signal path of the encoder 20, while, for example, the inverse quantization unit 210, the inverse transform processing unit 212, the heavy
- the construction unit 214, the buffer 216, the loop filter 220, the DPB 230, and the prediction processing unit 260 form the backward signal path of the encoder, where the backward signal path of the encoder corresponds to the signal path of the decoder (see FIG. 3 Decoder 30).
- the encoder 20 receives a picture 201 or an image block 203 of the picture 201 through, for example, an input 202, for example, a picture in a picture sequence forming a video or a video sequence.
- the image block 203 may also be referred to as a current picture block or a picture block to be coded
- the picture 201 may be referred to as a current picture or a picture to be coded (especially when the current picture is distinguished from other pictures in video coding, other pictures such as the same video sequence That is, the previously encoded and/or decoded pictures in the video sequence of the current picture are also included).
- An embodiment of the encoder 20 may include a segmentation unit (not shown in FIG. 2) for segmenting the picture 201 into a plurality of blocks such as image blocks 203, usually into a plurality of non-overlapping blocks.
- the segmentation unit can be used to use the same block size and corresponding grids that define the block size for all pictures in the video sequence, or to change the block size between pictures or subsets or picture groups, and divide each picture into The corresponding block.
- the prediction processing unit 260 of the encoder 20 may be used to perform any combination of the above-mentioned segmentation techniques.
- image block 203 is also or can be regarded as a two-dimensional array or matrix of sampling points with sample values, although its size is smaller than picture 201.
- the image block 203 may include, for example, one sampling array (for example, the brightness array in the case of black and white pictures 201) or three sampling arrays (for example, one brightness array and two chromaticity arrays in the case of color pictures) or An array of any other number and/or category depending on the color format applied.
- the number of sampling points in the horizontal and vertical directions (or axes) of the image block 203 defines the size of the image block 203.
- the encoder 20 shown in FIG. 2 is used to encode the picture 201 block by block, for example, to perform encoding and prediction on each image block 203.
- the residual calculation unit 204 is used to calculate the residual block 205 based on the picture image block 203 and the prediction block 265 (other details of the prediction block 265 are provided below), for example, by subtracting the sample value of the picture image block 203 sample by sample (pixel by pixel) The sample values of the block 265 are depredicted to obtain the residual block 205 in the sample domain.
- the transform processing unit 206 is used to apply a transform such as discrete cosine transform (DCT) or discrete sine transform (DST) to the sample values of the residual block 205 to obtain transform coefficients 207 in the transform domain .
- the transform coefficient 207 may also be called a transform residual coefficient, and represents a residual block 205 in the transform domain.
- the transform processing unit 206 may be used to apply integer approximations of DCT/DST, such as the transform specified by HEVC/H.265. Compared with the orthogonal DCT transform, this integer approximation is usually scaled by a factor. In order to maintain the norm of the residual block processed by the forward and inverse transform, an additional scaling factor is applied as part of the transform process.
- the scaling factor is usually selected based on certain constraints, for example, the scaling factor is a power of two used for the shift operation, the bit depth of the transform coefficient, the accuracy, and the trade-off between implementation cost, and so on.
- a specific scaling factor can be specified for the inverse transform by the inverse transform processing unit 212 on the decoder 30 side (and a corresponding inverse transform by the inverse transform processing unit 212 on the encoder 20 side), and accordingly, The 20 side specifies the corresponding scaling factor for the positive transform by the transform processing unit 206.
- the quantization unit 208 is used to quantize the transform coefficient 207 by, for example, applying scalar quantization or vector quantization to obtain the quantized transform coefficient 209.
- the quantized transform coefficient 209 may also be referred to as the quantized residual coefficient 209.
- the quantization process can reduce the bit depth associated with some or all of the transform coefficients 207. For example, n-bit transform coefficients can be rounded down to m-bit transform coefficients during quantization, where n is greater than m.
- the degree of quantization can be modified by adjusting quantization parameters (QP). For example, for scalar quantization, different scales can be applied to achieve thinner or coarser quantization.
- QP quantization parameters
- a smaller quantization step size corresponds to a finer quantization
- a larger quantization step size corresponds to a coarser quantization.
- the appropriate quantization step size can be indicated by QP.
- the quantization parameter may be an index of a predefined set of suitable quantization steps.
- smaller quantization parameters may correspond to fine quantization (smaller quantization step size)
- larger quantization parameters may correspond to coarse quantization (larger quantization step size)
- the quantization may include dividing by the quantization step size and the corresponding quantization or inverse quantization performed by, for example, inverse quantization 210, or may include multiplying the quantization step size.
- Embodiments according to some standards such as HEVC may use quantization parameters to determine the quantization step size.
- the quantization step size can be calculated based on the quantization parameter using a fixed-point approximation including an equation of division. Additional scaling factors can be introduced for quantization and inverse quantization to restore the norm of the residual block that may be modified due to the scale used in fixed-point approximation of the equations for quantization step size and quantization parameter.
- the scale of inverse transform and inverse quantization may be combined.
- a custom quantization table can be used and signaled from the encoder to the decoder in a bitstream, for example. Quantization is a lossy operation, where the larger the quantization step, the greater the loss.
- the inverse quantization unit 210 is used to apply the inverse quantization of the quantization unit 208 on the quantized coefficients to obtain the inverse quantized coefficients 211, for example, based on or using the same quantization step size as the quantization unit 208, apply the quantization scheme applied by the quantization unit 208 Inverse quantization scheme.
- the inverse quantized coefficient 211 may also be referred to as an inverse quantized residual coefficient 211, which corresponds to the transform coefficient 207, although the loss due to quantization is usually not the same as the transform coefficient.
- the inverse transform processing unit 212 is used to apply the inverse transform of the transform applied by the transform processing unit 206, for example, DCT or DST, to obtain the inverse transform block 213 in the sample domain.
- the inverse transform block 213 may also be referred to as an inverse transform dequantized block 213 or an inverse transform residual block 213.
- the reconstruction unit 214 (eg, summer 214) is used to add the inverse transform block 213 (ie, the reconstructed residual block 213) to the prediction block 265 to obtain the reconstructed block 215 in the sample domain, for example, The sample values of the reconstructed residual block 213 and the sample values of the prediction block 265 are added.
- a buffer unit 216 (or simply "buffer" 216), such as a line buffer 216, is used to buffer or store the reconstructed block 215 and corresponding sample values for, for example, intra prediction.
- the encoder may be used to use the unfiltered reconstructed blocks and/or corresponding sample values stored in the buffer unit 216 for any type of estimation and/or prediction, such as intra prediction.
- an embodiment of the encoder 20 may be configured such that the buffer unit 216 is used not only to store the reconstructed block 215 for intra prediction 254, but also for the loop filter unit 220 (not shown in FIG. 2) Out), and/or, for example, causing the buffer unit 216 and the decoded picture buffer unit 230 to form a buffer.
- Other embodiments may be used to use the filtered block 221 and/or blocks or samples from the decoded picture buffer 230 (neither shown in FIG. 2) as an input or basis for intra prediction 254.
- the loop filter unit 220 (or simply “loop filter” 220) is used to filter the reconstructed block 215 to obtain the filtered block 221, so as to smoothly perform pixel conversion or improve video quality.
- the loop filter unit 220 is intended to represent one or more loop filters, such as deblocking filters, sample-adaptive offset (SAO) filters, or other filters, such as bilateral filters, self-adaptive filters Adaptive loop filter (adaptive loop filter, ALF), or sharpening or smoothing filter, or collaborative filter.
- the loop filter unit 220 is shown as an in-loop filter in FIG. 2, in other configurations, the loop filter unit 220 may be implemented as a post-loop filter.
- the filtered block 221 may also be referred to as the filtered reconstructed block 221.
- the decoded picture buffer 230 may store the reconstructed coding block after the loop filter unit 220 performs a filtering operation on the reconstructed coding block.
- Embodiments of the encoder 20 may be used to output loop filter parameters (eg, sample adaptive offset information), for example, directly output or by the entropy encoding unit 270 or any other
- the entropy coding unit outputs after entropy coding, for example, so that the decoder 30 can receive and apply the same loop filter parameters for decoding.
- the DPB 230 may be a reference picture memory for storing reference picture data for the encoder 20 to encode video data.
- DPB230 can be formed by any of a variety of memory devices, such as DRAM (including synchronous DRAM (SDRAM), magnetoresistive RAM (MRAM)), resistive RAM (resistive RAM, RRAM)), or other types Memory device.
- DRAM including synchronous DRAM (SDRAM), magnetoresistive RAM (MRAM)), resistive RAM (resistive RAM, RRAM)), or other types Memory device.
- the DPB 230 and the buffer 216 may be provided by the same memory device or separate memory devices.
- the DPB 230 is used to store the filtered block 221.
- the decoded picture buffer 230 may be further used to store other previous filtered blocks of the same current picture or different pictures such as previous reconstructed pictures, such as the previously reconstructed and filtered block 221, and may provide the complete previous The reconstructed ie decoded pictures (and corresponding reference blocks and samples) and/or partially reconstructed current pictures (and corresponding reference blocks and samples), for example for inter prediction.
- the DPB 230 is used to store the reconstructed block 215.
- the prediction processing unit 260 also known as the block prediction processing unit 260, is used to receive or acquire the image block 203 (current image block 203 of the current picture 201) and reconstructed picture data, such as the same (current) picture from the buffer 216 Reference samples and/or reference picture data 231 of one or more previously decoded pictures from the decoded picture buffer 230, and used to process such data for prediction, that is, to provide an inter prediction block 245 or The prediction block 265 of the intra prediction block 255.
- the mode selection unit 262 may be used to select a prediction mode (eg, intra or inter prediction mode) and/or the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
- a prediction mode eg, intra or inter prediction mode
- the corresponding prediction block 245 or 255 used as the prediction block 265 to calculate the residual block 205 and reconstruct the reconstructed block 215.
- An embodiment of the mode selection unit 262 may be used to select a prediction mode (for example, from those prediction modes supported by the prediction processing unit 260), which provides the best match or the minimum residual (the minimum residual means Better compression in transmission or storage), or provide minimum signaling overhead (minimum signaling overhead means better compression in transmission or storage), or consider or balance both at the same time.
- the mode selection unit 262 may be used to determine a prediction mode based on rate distortion optimization (RDO), that is, to select a prediction mode that provides minimum bit rate distortion optimization, or to select a prediction mode in which the related rate distortion at least meets the prediction mode selection criteria .
- RDO rate distortion optimization
- the encoder 20 is used to determine or select the best or optimal prediction mode from the (predetermined) prediction mode set.
- the set of prediction modes may include, for example, intra prediction modes and/or inter prediction modes.
- the intra prediction mode set may include 35 different intra prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in H.265, or may include 67 Different intra prediction modes, for example, non-directional modes such as DC (or mean) mode and planar mode, or directional modes as defined in the developing H.266.
- non-directional modes such as DC (or mean) mode and planar mode
- directional modes as defined in the developing H.266.
- the set of inter prediction modes depends on the available reference pictures (ie, for example, the aforementioned at least partially decoded pictures stored in DPB 230) and other inter prediction parameters, for example, depending on whether the entire reference picture is used or only Use a part of the reference picture, for example the search window area surrounding the area of the current block, to search for the best matching reference block, and/or for example depending on whether pixel interpolation such as half-pixel and/or quarter-pixel interpolation is applied
- the set of inter prediction modes may include advanced motion vector (Advanced Motion Vector Prediction, AMVP) mode and merge mode.
- AMVP Advanced Motion Vector Prediction
- the set of inter prediction modes may include the control point-based AMVP mode improved in the embodiment of the present application, and the improved control point-based merge mode.
- the intra prediction unit 254 may be used to perform any combination of inter prediction techniques described below.
- the embodiments of the present application may also apply skip mode and/or direct mode.
- the prediction processing unit 260 may be further used to split the image block 203 into smaller block partitions or sub-blocks, for example, iteratively using quad-tree (QT) segmentation, binary-tree (BT) segmentation Or triple-tree (TT) partitioning, or any combination thereof, and for performing predictions for each of block partitions or sub-blocks, for example, where mode selection includes selecting the tree structure of the divided image block 203 and selecting applications The prediction mode for each of the block partitions or sub-blocks.
- QT quad-tree
- BT binary-tree
- TT triple-tree
- the inter prediction unit 244 may include a motion estimation (ME) unit (not shown in FIG. 2) and a motion compensation (MC) unit (not shown in FIG. 2).
- the motion estimation unit is used to receive or acquire a picture image block 203 (current picture image block 203 of the current picture 201) and a decoded picture 231, or at least one or more previously reconstructed blocks, for example, one or more other/different
- the reconstructed block of the previously decoded picture 231 is used for motion estimation.
- the video sequence may include the current picture and the previously decoded picture 31, or in other words, the current picture and the previously decoded picture 31 may be part of or form a sequence of pictures that form the video sequence.
- the encoder 20 may be used to select a reference block from multiple reference blocks of the same or different pictures in multiple other pictures, and provide a reference picture and/or provide a reference to a motion estimation unit (not shown in FIG. 2)
- the offset (spatial offset) between the position of the block (X, Y coordinates) and the position of the current block is used as an inter prediction parameter. This offset is also called motion vector (MV).
- the motion compensation unit is used to obtain inter prediction parameters and perform inter prediction based on or using the inter prediction parameters to obtain inter prediction blocks 245.
- the motion compensation performed by the motion compensation unit may include extracting or generating a prediction block based on a motion/block vector determined by motion estimation (possibly performing interpolation of sub-pixel accuracy). Interpolation filtering can generate additional pixel samples from known pixel samples, potentially increasing the number of candidate prediction blocks that can be used to encode picture blocks.
- the motion compensation unit 246 may locate the prediction block pointed to by the motion vector in a reference picture list. Motion compensation unit 246 may also generate syntax elements associated with blocks and video slices for use by decoder 30 when decoding picture blocks of video slices.
- the above inter prediction unit 244 may transmit a syntax element to the entropy encoding unit 270, where the syntax element includes inter prediction parameters (such as an inter prediction mode selected for the current block prediction after traversing multiple inter prediction modes Instructions).
- inter prediction parameters such as an inter prediction mode selected for the current block prediction after traversing multiple inter prediction modes Instructions.
- the decoding terminal 30 may directly use the default prediction mode for decoding. It can be understood that the inter prediction unit 244 may be used to perform any combination of inter prediction techniques.
- the intra prediction unit 254 is used to acquire, for example, a picture block 203 (current picture block) that receives the same picture and one or more previously reconstructed blocks, such as reconstructed neighboring blocks, for intra estimation.
- the encoder 20 may be used to select an intra prediction mode from a plurality of (predetermined) intra prediction modes.
- Embodiments of the encoder 20 may be used to select an intra prediction mode based on optimization criteria, for example, based on a minimum residual (eg, an intra prediction mode that provides the prediction block 255 most similar to the current picture block 203) or minimum rate distortion.
- a minimum residual eg, an intra prediction mode that provides the prediction block 255 most similar to the current picture block 203
- minimum rate distortion e.g., a minimum rate distortion
- the intra prediction unit 254 is further used to determine the intra prediction block 255 based on the intra prediction parameters of the intra prediction mode as selected. In any case, after selecting the intra-prediction mode for the block, the intra-prediction unit 254 is also used to provide the intra-prediction parameters to the entropy encoding unit 270, that is, to provide an indication of the selected intra-prediction mode for the block Information. In one example, the intra prediction unit 254 may be used to perform any combination of intra prediction techniques.
- the above-mentioned intra-prediction unit 254 may transmit a syntax element to the entropy encoding unit 270, where the syntax element includes intra-prediction parameters (such as the intra-prediction mode selected for the current block prediction after traversing multiple intra-prediction modes) Instructions).
- the intra prediction parameters may not be carried in the syntax element.
- the decoding terminal 30 may directly use the default prediction mode for decoding.
- the entropy coding unit 270 is used to convert the entropy coding algorithm or scheme (for example, variable length coding (VLC) scheme, context adaptive VLC (context adaptive VLC, CAVLC) scheme, arithmetic coding scheme, context adaptive binary arithmetic) Encoding (context adaptive) binary arithmetic coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability interval entropy (probability interval interpartitioning entropy, PIPE) encoding or other entropy Coding method or technique) applied to a single or all of the quantized residual coefficients 209, inter prediction parameters, intra prediction parameters, and/or loop filter parameters (or not applied) to obtain the output 272 to For example, the encoded picture data 21 output in the form of an encoded bit stream 21.
- VLC variable length coding
- CABAC context adaptive binary arithmetic
- SBAC syntax-based context-adaptive binary arithmetic coding
- the encoded bitstream can be transmitted to the video decoder 30 or archived for later transmission or retrieval by the video decoder 30.
- the entropy encoding unit 270 may also be used to entropy encode other syntax elements of the current video slice being encoded.
- video encoder 20 may be used to encode video streams.
- the non-transform based encoder 20 may directly quantize the residual signal without the transform processing unit 206 for certain blocks or frames.
- the encoder 20 may have a quantization unit 208 and an inverse quantization unit 210 combined into a single unit.
- the video encoder 20 may directly quantize the residual signal without processing by the transform processing unit 206, and accordingly, without processing by the inverse transform processing unit 212; or, for some For image blocks or image frames, the video encoder 20 does not generate residual data, and accordingly does not need to be processed by the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212; or, the video encoder 20 may convert The reconstructed image block is directly stored as a reference block without being processed by the filter 220; alternatively, the quantization unit 208 and the inverse quantization unit 210 in the video encoder 20 may be merged together.
- the loop filter 220 is optional, and in the case of lossless compression encoding, the transform processing unit 206, quantization unit 208, inverse quantization unit 210, and inverse transform processing unit 212 are optional. It should be understood that the inter prediction unit 244 and the intra prediction unit 254 may be selectively enabled according to different application scenarios.
- FIG. 3 shows a schematic/conceptual block diagram of an example of a decoder 30 for implementing an embodiment of the present application.
- the video decoder 30 is used to receive encoded picture data (eg, encoded bitstream) 21, for example, encoded by the encoder 20, to obtain the decoded picture 231.
- encoded picture data eg, encoded bitstream
- video decoder 30 receives video data from video encoder 20, such as an encoded video bitstream and associated syntax elements representing picture blocks of the encoded video slice.
- the decoder 30 includes an entropy decoding unit 304, an inverse quantization unit 310, an inverse transform processing unit 312, a reconstruction unit 314 (such as a summer 314), a buffer 316, a loop filter 320, a The decoded picture buffer 330 and the prediction processing unit 360.
- the prediction processing unit 360 may include an inter prediction unit 344, an intra prediction unit 354, and a mode selection unit 362.
- video decoder 30 may perform a decoding pass that is generally inverse to the encoding pass described with reference to video encoder 20 of FIG. 2.
- the entropy decoding unit 304 is used to perform entropy decoding on the encoded picture data 21 to obtain, for example, quantized coefficients 309 and/or decoded encoding parameters (not shown in FIG. 3), for example, inter prediction, intra prediction parameters , Any or all of the loop filter parameters and/or other syntax elements (decoded).
- the entropy decoding unit 304 is further used to forward inter prediction parameters, intra prediction parameters, and/or other syntax elements to the prediction processing unit 360.
- Video decoder 30 may receive syntax elements at the video slice level and/or the video block level.
- the inverse quantization unit 310 may be functionally the same as the inverse quantization unit 110
- the inverse transform processing unit 312 may be functionally the same as the inverse transform processing unit 212
- the reconstruction unit 314 may be functionally the same as the reconstruction unit 214
- the buffer 316 may be functionally
- the loop filter 320 may be functionally the same as the loop filter 220
- the decoded picture buffer 330 may be functionally the same as the decoded picture buffer 230.
- the prediction processing unit 360 may include an inter prediction unit 344 and an intra prediction unit 354, where the inter prediction unit 344 may be similar in function to the inter prediction unit 244, and the intra prediction unit 354 may be similar in function to the intra prediction unit 254 .
- the prediction processing unit 360 is generally used to perform block prediction and/or obtain the prediction block 365 from the encoded data 21, and to receive or obtain prediction-related parameters and/or information about the entropy decoding unit 304 (explicitly or implicitly). Information about the selected prediction mode.
- the intra prediction unit 354 of the prediction processing unit 360 is used to signal-based the intra prediction mode and the previous decoded block from the current frame or picture Data to generate a prediction block 365 for the picture block of the current video slice.
- the inter prediction unit 344 eg, motion compensation unit
- Other syntax elements generate a prediction block 365 for the video block of the current video slice.
- a prediction block may be generated from a reference picture in a reference picture list.
- the video decoder 30 may construct the reference frame lists: list 0 and list 1 using default construction techniques based on the reference pictures stored in the DPB 230.
- the prediction processing unit 360 is used to determine the prediction information for the video block of the current video slice by parsing the motion vector and other syntax elements, and use the prediction information to generate the prediction block for the current video block being decoded.
- the prediction processing unit 360 uses some received syntax elements to determine the prediction mode (eg, intra or inter prediction) of the video block used to encode the video slice, and the inter prediction slice type ( For example, B slice, P slice, or GPB slice), construction information for one or more of the reference picture lists for slices, motion vectors for each inter-coded video block for slices, The inter prediction status and other information of each inter-coded video block of the slice to decode the video block of the current video slice.
- the prediction mode eg, intra or inter prediction
- the inter prediction slice type For example, B slice, P slice, or GPB slice
- the syntax elements received by the video decoder 30 from the bitstream include an adaptive parameter set (adaptive parameter set, APS), a sequence parameter set (SPS), and a picture parameter set (picture parameter (set, PPS) or the syntax element in one or more of the stripe headers.
- an adaptive parameter set adaptive parameter set
- SPS sequence parameter set
- PPS picture parameter set
- the inverse quantization unit 310 may be used to inverse quantize (ie, inverse quantize) the quantized transform coefficients provided in the bitstream and decoded by the entropy decoding unit 304.
- the inverse quantization process may include using the quantization parameters calculated by the video encoder 20 for each video block in the video slice to determine the degree of quantization that should be applied and also determine the degree of inverse quantization that should be applied.
- the inverse transform processing unit 312 is used to apply an inverse transform (eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process) to the transform coefficients to generate a residual block in the pixel domain.
- an inverse transform eg, inverse DCT, inverse integer transform, or conceptually similar inverse transform process
- the reconstruction unit 314 (eg, summer 314) is used to add the inverse transform block 313 (ie, the reconstructed residual block 313) to the prediction block 365 to obtain the reconstructed block 315 in the sample domain, for example by The sample values of the reconstructed residual block 313 and the sample values of the prediction block 365 are added.
- the loop filter unit 320 (during the encoding cycle or after the encoding cycle) is used to filter the reconstructed block 315 to obtain the filtered block 321 to smoothly perform pixel conversion or improve video quality.
- the loop filter unit 320 may be used to perform any combination of filtering techniques described below.
- the loop filter unit 320 is intended to represent one or more loop filters, such as deblocking filters, SAO filters, or other filters, such as bilateral filters, ALF, or sharpening or smoothing filters, or collaborative filtering Device.
- the loop filter unit 320 is shown as an in-loop filter in FIG. 3, in other configurations, the loop filter unit 320 may be implemented as a post-loop filter.
- the decoded video block 321 in a given frame or picture is then stored in a decoded picture buffer 330 that stores reference pictures for subsequent motion compensation.
- the decoder 30 is used, for example, to output the decoded picture 31 through the output 332 for presentation to the user or for the user to view.
- video decoder 30 may be used to decode the compressed bitstream.
- the decoder 30 may generate the output video stream without the loop filter unit 320.
- the non-transform based decoder 30 may directly inversely quantize the residual signal without the inverse transform processing unit 312 for certain blocks or frames.
- the video decoder 30 may have an inverse quantization unit 310 and an inverse transform processing unit 312 combined into a single unit.
- the decoder 30 is used to implement the video decoding method described in the embodiments below.
- video decoder 30 may be used to decode the encoded video codestream.
- the video decoder 30 may generate an output video stream without processing by the filter 320; or, for some image blocks or image frames, the entropy decoding unit 304 of the video decoder 30 does not decode the quantized coefficients, and accordingly does not It needs to be processed by the inverse quantization unit 310 and the inverse transform processing unit 312.
- the loop filter 320 is optional; and for lossless compression, the inverse quantization unit 310 and the inverse transform processing unit 312 are optional.
- the inter prediction unit and the intra prediction unit may be selectively enabled.
- the processing results for a certain link can be further processed and output to the next link, for example, in interpolation filtering, motion vector derivation or loop filtering, etc. After the link, the processing results of the corresponding link are further clipped or shifted.
- the motion vectors of the control points of the current image block derived from the motion vectors of adjacent affine coding blocks, or the motion vectors of the sub-blocks of the current image block derived may be further processed, and this application does not do this limited.
- the value range of the motion vector is constrained to be within a certain bit width. Assuming that the allowed bit width of the motion vector is bitDepth, the range of the motion vector is -2 ⁇ (bitDepth-1)-2 ⁇ (bitDepth-1)-1, where the " ⁇ " symbol represents a power. If bitDepth is 16, the value range is -32768-32767. If bitDepth is 18, the value range is -131072-131071.
- the values of the motion vectors are constrained so that the maximum difference between the integer parts of the four 4x4 sub-blocks MV does not exceed N pixels, for example no more than one pixel.
- ux (vx+2 bitDepth )%2 bitDepth
- vx is the horizontal component of the motion vector of the image block or the sub-block of the image block
- vy is the vertical component of the motion vector of the image block or the sub-block of the image block
- ux and uy are intermediate values
- bitDepth represents the bit width
- the value of vx is -32769, and 32767 is obtained by the above formula. Because in the computer, the value is stored in the form of two's complement, the complement of -32769 is 1,0111,1111,1111,1111 (17 bits), the computer handles the overflow as discarding the high bit, then the value of vx If it is 0111,1111,1111,1111, it is 32767, which is consistent with the result obtained by formula processing.
- vx Clip3(-2 bitDepth-1 ,2 bitDepth-1 -1,vx)
- vx is the horizontal component of the motion vector of the image block or the sub-block of the image block
- vy is the vertical component of the motion vector of the image block or the sub-block of the image block
- x, y, and z respectively correspond to the MV clamp
- FIG. 4 is a schematic structural diagram of a video decoding device 400 (for example, a video encoding device 400 or a video decoding device 400) provided by an embodiment of the present application.
- the video coding device 400 is suitable for implementing the embodiments described herein.
- the video coding device 400 may be a video decoder (eg, decoder 30 of FIG. 1A) or a video encoder (eg, encoder 20 of FIG. 1A).
- the video decoding device 400 may be one or more components in the decoder 30 of FIG. 1A or the encoder 20 of FIG. 1A described above.
- the video decoding device 400 includes: an inlet port 410 for receiving data and a receiving unit (Rx) 420, a processor, a logic unit or a central processing unit (CPU) 430 for processing data, for transmitting data Transmitter unit (Tx) 440 and outlet port 450, and a memory 460 for storing data.
- the video decoding device 400 may further include a photoelectric conversion component and an electro-optical (EO) component coupled to the inlet port 410, the receiver unit 420, the transmitter unit 440, and the outlet port 450 for the outlet or inlet of the optical signal or the electrical signal.
- EO electro-optical
- the processor 430 is implemented by hardware and software.
- the processor 430 may be implemented as one or more CPU chips, cores (eg, multi-core processors), FPGA, ASIC, and DSP.
- the processor 430 communicates with the inlet port 410, the receiver unit 420, the transmitter unit 440, the outlet port 450, and the memory 460.
- the processor 430 includes a decoding module 470 (for example, an encoding module 470 or a decoding module 470).
- the encoding/decoding module 470 implements the embodiments disclosed herein to implement the chroma block prediction method provided by the embodiments of the present application. For example, the encoding/decoding module 470 implements, processes, or provides various encoding operations.
- the encoding/decoding module 470 provides a substantial improvement in the function of the video decoding device 400 and affects the conversion of the video decoding device 400 to different states.
- the encoding/decoding module 470 is implemented with instructions stored in the memory 460 and executed by the processor 430.
- the memory 460 includes one or more magnetic disks, tape drives, and solid-state drives, and can be used as an overflow data storage device for storing programs when these programs are selectively executed, as well as instructions and data read during program execution.
- the memory 460 may be volatile and/or non-volatile, and may be read only memory (ROM), random access memory (RAM), random access memory (ternary content-addressable memory (TCAM), and/or static Random Access Memory (SRAM).
- FIG. 5 is a simplified block diagram of an apparatus 500 that can be used as either or both of the source device 12 and the destination device 14 in FIG. 1A according to an exemplary embodiment.
- the device 500 can implement the technology of the present application.
- FIG. 5 is a schematic block diagram of an implementation manner of an encoding device or a decoding device (referred to simply as a decoding device 500) according to an embodiment of the present application.
- the decoding device 500 may include a processor 510, a memory 530, and a bus system 550.
- the processor and the memory are connected through a bus system, the memory is used to store instructions, and the processor is used to execute the instructions stored in the memory.
- the memory of the decoding device stores program codes, and the processor can call the program codes stored in the memory to perform various video encoding or decoding methods described in this application, especially various new video decoding methods. In order to avoid repetition, they are not described in detail here.
- the processor 510 may be a CPU, and the processor 510 may also be other general-purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), and off-the-shelf programmable gate arrays (FPGAs). Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
- the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
- the memory 530 may include a read-only memory (ROM) device or a random access memory (RAM) device. Any other suitable type of storage device may also be used as the memory 530.
- the memory 530 may include code and data 531 accessed by the processor 510 using the bus 550.
- the memory 530 may further include an operating system 533 and an application program 535 including at least one program that allows the processor 510 to perform the video encoding or decoding method described in this application (in particular, the video decoding method described in this application).
- the application program 535 may include applications 1 to N, which further include a video encoding or decoding application (referred to as a video decoding application) that performs the video encoding or decoding method described in this application.
- the bus system 550 may also include a power bus, a control bus, and a status signal bus. However, for clarity, various buses are marked as the bus system 550 in the figure.
- the decoding device 500 may also include one or more output devices, such as a display 570.
- the display 570 may be a tactile display that merges the display with a tactile unit that operably senses touch input.
- the display 570 may be connected to the processor 510 via the bus 550.
- the video is composed of a sequence of images, which includes one or more frames of images.
- the encoder or decoder
- the encoder may refer to an image with texture or content similar to the image to be encoded (or image to be decoded) to complete the encoding (or decoding )
- the referenced image is called a knowledge image
- the database that stores the image is called a knowledge base.
- the method of encoding and decoding at least one frame of image in this video with reference to at least one frame of knowledge image is called video coding and decoding based on knowledge base (library-based video coding) method.
- knowledge base-based video coding method to encode a video sequence will generate a knowledge image code stream and a video code stream containing each frame image of the video sequence.
- the reference relationship between the two layers of code streams is shown in Figure 6. It can be seen that the video code stream depends on the knowledge image code stream according to the non-aligned time period.
- the first decoder may be called to decode the knowledge image code stream to obtain the decoded knowledge image.
- the second decoder is called, and the video code stream is decoded with reference to the decoded knowledge image. You can also call the same decoder to decode the video stream and knowledge image stream.
- An embodiment of the present application provides a video decoding method, which can be applied to the implementation environment shown in FIGS. 1A, 1B, 3, 4, and 5. As shown in Figure 7, the method includes:
- Step 701 in a case where the video code stream is decoded with reference to the knowledge image corresponding to the knowledge image code stream, the first identifier is parsed from the video code stream.
- a code stream to be decoded is obtained in a decoding scenario, and the code stream to be decoded is a bit string.
- the code stream based on the knowledge base is used for encoding to obtain the code stream to be decoded, and then the code stream to be decoded is one of a knowledge image code stream or a video code stream that refers to the knowledge image code stream. Since the knowledge image code stream and the reference knowledge image code stream need different decoding methods for the video code stream, after obtaining the code stream to be decoded, the video code stream is allowed to be decoded with reference to the knowledge image corresponding to the knowledge image code stream. In this case, before parsing the first identifier from the video code stream, the type of the code stream to be decoded needs to be confirmed, so as to implement decoding of the code stream to be decoded using a corresponding decoding method.
- parsing the first identifier from the video code stream includes: parsing the knowledge image from the video code stream Reference mark, the knowledge image reference mark is used to indicate whether to allow the knowledge image corresponding to the knowledge image code stream to decode the video code stream; the value in the knowledge image reference mark indicates that the knowledge image corresponding to the knowledge image code stream is allowed to refer to the video code stream
- the first identifier is parsed from the video code stream.
- the reference may be allowed. It is allowed to refer to the knowledge image corresponding to the knowledge image code stream to decode the video code stream, that is, the decoding of the video code stream needs to refer to the knowledge image corresponding to the knowledge image code stream.
- the knowledge image reference identifier can indicate whether the decoding of the video code stream is allowed (or required) by reference to the knowledge image corresponding to the knowledge image code stream in a numerical form.
- the value of the knowledge image reference identifier is the first value, which is used to indicate that the knowledge image corresponding to the knowledge image code stream is allowed to be decoded with reference to the knowledge image code stream.
- the value of the knowledge image reference identifier is the second value, which is used to indicate that the knowledge image corresponding to the knowledge image code stream is not allowed to decode the video code stream, or used to indicate that the reference corresponding to the knowledge image code stream is not mandatory or required to be allowed.
- the knowledge image decodes the video stream. Among them, the first value and the second value of the knowledge image reference identification are different.
- the first value of the knowledge image reference identifier can be 1, indicating that the knowledge image corresponding to the knowledge image code stream can be referenced to decode the video stream;
- the second value of the knowledge image reference identifier can be 0, indicating that it is not allowed Decode the video code stream by referring to the knowledge image corresponding to the knowledge image code stream. Therefore, when it is parsed from the video code stream that the knowledge image reference flag is 1, it can be determined that the decoding of the video code stream allows reference to the knowledge image corresponding to the knowledge image code stream.
- this embodiment does not limit the values of the first value and the second value used for the reference mark of the knowledge image.
- the first value may be 0, and the second value may be 1.
- a value of 0 indicates that the knowledge image corresponding to the knowledge image code stream is allowed to decode the video code stream
- a value of 1 indicates that the knowledge image corresponding to the knowledge image code stream is not allowed to refer to the video code stream decoding.
- the knowledge image reference identifier may also be used to indicate whether the decoding of the video code stream needs to refer to the knowledge image corresponding to the knowledge image code stream; the value of the knowledge image reference identifier indicates that the decoding of the video code stream needs reference In the case of a knowledge image corresponding to the knowledge image code stream, the first identifier is parsed from the video code stream.
- the knowledge image reference identifier can indicate whether the decoding of the video code stream needs to refer to the knowledge image corresponding to the knowledge image code stream in a numerical form.
- the value of the knowledge image reference identifier is the first value, which is used to indicate that the decoding of the video code stream needs to refer to the knowledge image corresponding to the knowledge image code stream;
- the value of the knowledge image reference identifier is the second value, which is used to indicate the value of the video code stream
- the decoding does not need to refer to the knowledge image corresponding to the knowledge image code stream, or to indicate that the decoding of the video stream that is not required or not required to refer to the knowledge image corresponding to the knowledge image code stream.
- the first value of the knowledge image reference identifier is 1, indicating that the decoding of the video stream needs to refer to the knowledge image corresponding to the knowledge image stream;
- the second value of the knowledge image reference identifier is 0, indicating that the decoding of the video stream is not You need to refer to the knowledge image corresponding to the knowledge image code stream. Therefore, when it is parsed from the video code stream that the knowledge image reference identifier is 1, it can be determined that the decoding of the video code stream needs to refer to the knowledge image corresponding to the knowledge image code stream.
- this embodiment does not limit the values of the first value and the second value used by the knowledge image reference mark.
- the first value of the knowledge image reference mark may be 0, and the second value of the knowledge image reference mark may be 1, you can indicate that the decoding of the video stream needs to refer to the knowledge image corresponding to the knowledge image stream when the value of the knowledge image reference flag is 0, and that the decoding of the video stream does not need to be when the value of the knowledge image reference flag is 1.
- the first identifier may include the same parameter identifier, which is used to indicate whether the value of the target parameter of the knowledge image code stream referenced by the video code stream is the same as the value of the target parameter in the sequence header of the video code stream .
- the target parameter in the sequence header of the video stream may include decoding capability information of the video stream.
- the value of the same parameter identifier is the first value, which is used to indicate that the value of the target parameter of the knowledge image code stream is the same as the value of the target parameter in the sequence header of the video code stream.
- the value of the same parameter identifier is the first value, which is used to indicate that the value of the target parameter of the knowledge image code stream and the value of the target parameter in the sequence header of the video code stream may be different, or that it is used to indicate that it is not mandatory or It is not required that the value of the target parameter of the knowledge image stream is the same as the value of the target parameter in the sequence header of the video stream, or that the value of the target parameter used to indicate the knowledge image stream is the same as the value of the sequence header in the video stream The value of the target parameter is different.
- the knowledge image bitstream and the video bitstream allowed to be referenced by the video bitstream can be further determined Whether the adopted standards are the same, and if the adopted standards are the same, the target parameters of the video stream (which may include decoding capability information) are used as the target parameters of the knowledge image stream (which may include decoding capability information).
- the standard refers to video codec standards, such as audio and video coding standards (AVS), high efficiency video coding (HEVC), H.264 and other video codec standards.
- the same standard identifier can also indicate in numerical form whether the knowledge image code stream allowed to refer to the video code stream is the same as the standard adopted by the video code stream, for example, when the same standard identifier is the first value, it is used to indicate The knowledge image code stream allowed to be referenced by the video code stream is the same as the standard adopted by the video code stream; when the same standard is identified as the second value, it is used to indicate the knowledge image code stream and the video code stream allowed to be referenced by the video code stream.
- the adopted standards are different, or it is used to indicate that the knowledge image code stream allowed to refer to the video code stream is not mandatory or required to be the same as the standard adopted by the video code stream.
- the first value of the same standard identifier is 1, indicating that the knowledge image code stream allowed to be referenced by the video code stream is the same as the standard used by the video code stream; the second value of the same standard identifier is 0, indicating the video code
- the knowledge image code stream allowed to refer to the stream is different from the standard adopted by the video code stream.
- the values of the first value and the second value adopted by the same standard identifier are not limited.
- the first value of the same standard identifier may be 0, and the second value of the same standard identifier may be 1, then
- the value of the same standard identifier is 0, it indicates that the knowledge image code stream allowed to refer to the video stream is the same as the standard used by the video stream, and when the value of the same standard identifier is 1, it indicates that the video stream is allowed to refer to.
- the knowledge image code stream is different from the standard used by the video code stream.
- the knowledge image code stream allowed to be referenced by the video code stream is different from the standard adopted by the video code stream, it may cause that even if the video code stream is parsed to obtain the target parameters of the knowledge image code stream (which may include decoding Capability information), it is also impossible to decode the knowledge image code stream, which not only occupies the resources of the decoder of the video code stream, causes a waste of resources, but also reduces the decoding efficiency.
- the indication content of the same parameter identifier can also be expanded to include the following meanings, and the same parameter identifier can be further used to indicate whether the standards adopted by the knowledge image code stream and the video code stream are the same.
- the same parameter identifier as an example to indicate by numerical value
- the value of the same parameter identifier is the first value (for example, it can be 1)
- the adopted standards are the same; when the value identified by the same parameter is the second value (for example, it can be 0), it further indicates that the standards adopted by the knowledge image code stream and the video code stream are different.
- the solution provided in this embodiment is that the decoder of the video code stream outputs the standard information used by the knowledge image code stream, so that the call can be decoded
- the decoder of the standard code stream is used to decode the knowledge image code stream.
- the first identifier may also include the same standard identifier, and the same standard identifier is used to indicate whether the knowledge image code stream referenced by the video code stream is the same as the standard adopted by the video code stream.
- the value of the same standard identifier is the first value, which is used to indicate that the knowledge image code stream referenced by the video code stream is the same as the standard adopted by the video code stream.
- the same standard is identified as the second value, which is used to indicate that the knowledge image code stream referenced by the video code stream is different from the standard adopted by the video code stream, or to indicate that the referenced video stream is not mandatory or required
- the knowledge image code stream is the same as the video code stream.
- the method may further include: parsing the knowledge image identifier from the video code stream,
- the value of the knowledge image identifier is a second value (may be 0 or 1), which is used to indicate that the video code stream is not a knowledge image code stream.
- the knowledge image reference identifier is only parsed from the video code stream when the value of the knowledge image identifier indicates that the video code stream is not the knowledge image code stream.
- the knowledge image identifier is a first value (may be 0 or 1, the first value is different from the second value), which is used to indicate that the code stream where the knowledge image identifier is located is the knowledge image code stream.
- the acquired code stream is a knowledge image code stream or a video code Stream (can be determined by parsing the value of the knowledge image identifier in the code stream), and after determining that the acquired code stream is not the knowledge image code stream but the video code stream, it is further determined whether the reference is allowed (or, if necessary)
- the knowledge image corresponding to the knowledge image code stream decodes the video code stream (it can be determined by parsing the value of the knowledge image reference identifier in the video code stream).
- the knowledge image reference identifier is parsed from the video code stream. If the knowledge image reference identifier indicates that decoding of the video code stream allows reference to the knowledge image corresponding to the knowledge image code stream, the first identifier is parsed from the video code stream. The value of the first identifier determines whether the value of the target parameter of the knowledge image code stream referenced by the video code stream is the same as the value of the target parameter in the sequence header of the video code stream.
- First category If the knowledge image identifier indicates that the code stream is a knowledge image code stream, it can be determined that the code stream is a knowledge image code stream.
- the second category if the knowledge image identifier indicates that the code stream is not a knowledge image code stream but a video code stream, and the knowledge image reference identifier indicates that decoding of the video code stream does not allow reference to the knowledge image corresponding to the knowledge image code stream, then it can be determined
- the video code stream is obtained by encoding the image sequence in the video, and decoding the code stream does not allow reference to the knowledge image corresponding to the knowledge image code stream.
- the knowledge image identifier indicates that the codestream is not a knowledge image codestream but a video codestream
- the knowledge image reference identifier indicates that the decoding of the video codestream allows reference to the knowledge image corresponding to the knowledge image codestream
- the The video code stream is a code stream obtained by encoding the image sequence in the video, and decoding the video code stream allows reference to the knowledge image corresponding to the knowledge image code stream.
- the acquired code stream is a knowledge image code stream
- the code stream of the image code stream actually includes the above-mentioned first type and second type code streams. Therefore, by determining whether the video code stream is a knowledge image code stream, the acquired video code stream can be more accurately distinguished, that is, the first category and the second category described above can be further distinguished.
- the knowledge image identifier can also indicate whether the video code stream is a knowledge image code stream in the form of a value. Since the above has been described in detail, it will not be repeated here.
- Step 702 When the value of the first identifier is the first value, use the value of the target parameter in the sequence header of the video code stream as the value of the target parameter of the knowledge image code stream referenced by the video code stream.
- the value of the target parameter of the video stream (which may include decoding capability information) is taken as The value of the target parameter (which may include decoding capability information) of the knowledge image code stream referenced by the video code stream.
- the target parameter includes decoding capability information, which is used to indicate the decoding capability required for the code stream to be decoded. According to the decoding capability information, a decoder whose decoding capability is not lower than the decoding capability indicated by the decoding capability information is invoked. The code stream is decoded.
- the decoding capability information includes but is not limited to information such as the maximum code rate of the code stream, the minimum decoded image buffer size required to decode the code stream, and the like.
- the methods that can be adopted in this embodiment include but are not limited to the following five types:
- the first acquisition method parsing the decoding capability information of the knowledge image code stream from the video parameter sets (VPS) of the video code stream.
- VPS video parameter sets
- a video stream using HEVC or VVC encoding includes a video parameter set (video parameters set, VPS), a sequence parameter set (sequence parameters set, SPS), and stripe-related data obtained by encoding a picture sequence constituting a video .
- Stripe related data includes stripe header and stripe data.
- the decoding capability information of the knowledge image code stream is located in the VPS of the video code stream, then the syntax table of the VPS can be found in Table 1:
- vps_library_picture_enable_flag is an example included in the knowledge image reference identifier: when the value is the first value (for example, it can be 1), it means that the decoding of the video bitstream allows or needs to refer to the knowledge image corresponding to the knowledge image bitstream; When the value is the second value (for example, it can be 0), it means that the decoding of the current codestream does not allow reference to the knowledge image corresponding to the knowledge image codestream, or that it does not force or require the decoding of the current codestream to allow reference to the knowledge image code The knowledge image corresponding to the stream.
- vps_library_same_standard_flag is an example of the same standard identification: when the value is the first value (for example, it can be 1), it means that the knowledge image code stream referenced by the video code stream is the same standard as the video code stream; when the value is When the second value (for example, it can be 0), it means that the knowledge image code stream referenced by the video code stream is different from the standard used by the video code stream, or that the knowledge image code stream that does not require or require the video code stream reference is the same as The standard used by the video stream is the same.
- profile_tier_level is an example included in the decoding capability information of the knowledge image code stream.
- the decoder parses as follows:
- profile_tier_level in the VPS is used to describe the decoding capability information of the knowledge image code stream.
- the profile_tier_level including the decoding capability information of the knowledge image code stream may be independent of the profile_tier_level of the decoding capability information of the video code stream, or may be further expanded on the basis of the profile_tier_level of the decoding capability information of the video code stream.
- a knowledge image identifier may be further added to the grammar table to indicate whether the code stream where the knowledge image identifier is located is a knowledge image code stream.
- the decoder of the current codestream can be used to decode the knowledge image codestream.
- the decoder When the external knowledge codestream referenced by the current codestream (that is, the knowledge image codestream) does not meet this standard or the decoding capability of the decoder of the current codestream does not meet the needs of the decoding capability information required by the knowledge image codestream, it is regarded as a possible In the selected step, the decoder outputs the information of the standard that the knowledge image code stream conforms to, so as to facilitate the system to call the corresponding decoder to decode the knowledge image code stream.
- the encoder encodes as follows:
- the encoding-side method may further include: determining whether encoding of the current image to be encoded is allowed (or required) to refer to the knowledge image corresponding to the knowledge image code stream. Specifically, it may be determined according to the rate-distortion cost or other indicators that measure coding efficiency or coding performance.
- the referenced knowledge image code stream is the same as the encoded data obtained after encoding, add the decoding capability information of the knowledge image code stream (for example, profile_tier_level) and the knowledge image reference identifier (for example, It can be vps_library_picture_enable_flag) to get the video stream.
- profile_tier_level is used to indicate decoding capability information of the knowledge image code stream
- profile_tier_level is located in the VPS of the encoded data.
- the encoded data refers to data obtained by encoding the image sequence constituting the video
- the encoded data includes video parameter sets VPS, SPS, and stripe-related data.
- the way to add profile_tier_level to the encoded data may be: update the first profile_tier_level in the encoded data according to the decoding capability information of the knowledge image code stream, obtain the updated profile_tier_level, and overwrite the updated profile_tier_level with the first profile_tier_level to achieve the addition.
- the adding method may be: determining the second profile_tier_level according to the decoding capability information of the knowledge image code stream, and adding the second profile_tier_level to the encoded data, that is, the first profile_tier_level and the second profile_tier_level coexist in the encoded data, thereby achieving the addition.
- the second acquisition method parsing the decoding capability information of the knowledge image code stream from the SPS of the video code stream.
- the parsing method can also be applied to the video stream using the HEVC or VVC standard, but the decoding capability information of the knowledge image stream is located in the SPS of the video stream, then the SPS syntax table is shown in Table 2:
- sps_library_picture_enable_flag is an example included in the knowledge image reference identification: when the value is the first value (for example, it can be 1), it means that the decoding of the video bitstream allows or needs to refer to the knowledge image corresponding to the knowledge image bitstream; when When the value is the second value (for example, it can be 0), it means that the decoding of the video bitstream does not allow or does not need to refer to the knowledge image corresponding to the knowledge image bitstream, or it means that the decoding reference knowledge of the current bitstream is not mandatory or required The knowledge image corresponding to the image code stream.
- sps_library_same_standard_flag is an example of the same standard identification: when the value is the first value (for example, it can be 1), it means that the standard used by the video stream referred to by the knowledge image stream is the same as the video stream adopted; When the value is the second value (for example, it can be 0), it indicates that the video image stream refers to the knowledge image code stream that uses a different standard than the video code stream, or it indicates that the video code stream is not mandatory or required
- the standard of the reference image stream is the same as the standard of the video stream.
- profile_tier_level is an example included in the decoding capability information of the knowledge image code stream.
- the decoder parses as follows:
- profile_tier_level in the SPS is used to describe the decoding capability information of the knowledge image code stream.
- the profile_tier_level including the decoding capability information of the knowledge image code stream may be independent of the profile_tier_level carrying the decoding capability information of the video code stream, or may be further expanded on the basis of the profile_tier_level carrying the decoding capability information of the video code stream.
- the grammar table may further include a knowledge image identifier to indicate whether the code stream where the knowledge image identifier is located is a knowledge image code stream.
- the decoder of the current codestream can be used to decode the knowledge image codestream.
- the decoder When the external knowledge codestream referenced by the current codestream (that is, the knowledge image codestream) does not meet this standard or the decoding capability of the decoder of the current codestream does not meet the needs of the decoding capability information required by the knowledge image codestream, it is regarded as a possible In the selected step, the decoder outputs the information of the standard that the knowledge image code stream conforms to, so as to facilitate the system to call the corresponding decoder to decode the knowledge image code stream.
- the encoder encodes as follows:
- the encoding-side method may further include: determining whether encoding of the current image to be encoded is allowed (or required) to refer to the knowledge image corresponding to the knowledge image code stream. Specifically, it can be determined according to the rate-distortion cost or other indicators that measure coding efficiency or coding performance.
- the referenced knowledge image code stream is the same as the encoded data obtained after encoding, add the decoding capability information of the knowledge image code stream (for example, profile_tier_level) and the knowledge image reference identifier (for example, It can be sps_library_picture_enable_flag) to get the video stream.
- profile_tier_level is used to indicate decoding capability information of the knowledge image code stream
- profile_tier_level is located in the SPS of the encoded data.
- the profile_tier_level can expand the structure of the decoding capability information of the video stream, so that it can not only describe the decoding capability information of the knowledge image stream, but also It is used to describe the decoding capability information of the knowledge image code stream that is allowed or required for decoding the video code stream.
- the syntax table of the profile_tier_level is shown in Table 3:
- library_picture_enable_flag is an example included in the knowledge image reference identifier: used to indicate whether decoding of the video bitstream is allowed (or required) to refer to the knowledge image corresponding to the knowledge image bitstream. It can be seen that the function of library_picture_enable_flag is the same as vps_library_picture_enable_flag in the first analysis mode and sps_library_picture_enabale_flag in the second analysis mode.
- the value is the second value (for example, it can be 0)
- library_same_standard_flag is an example included in the first logo, that is, an example included in the same standard logo: used to indicate whether the knowledge image code stream referenced by the video code stream is the same as the standard used by the video code stream, and whether it is in the video
- the code stream carries the decoding capability information of the knowledge image code stream.
- library_level_present_flag used to indicate whether profile_tier_level contains the level of the knowledge image code stream.
- the level is used to indicate the relevant parameters of the knowledge image code stream, such as sampling rate and resolution rate.
- the value is the first value (for example, it can be 1), it indicates that profile_tier_level contains the level of knowledge image code stream; when the value is the second value (for example, it can be 0), it indicates that profile_tier_level does not contain the level of knowledge image code stream , Or it is not mandatory or required that profile_tier_level contains the level of the knowledge image code stream.
- library_profile_space used to specify the definition of library_profile_idc and library_profile_compatibility_flag[j]. It should be noted that when the knowledge image code stream and the video code stream adopt the same standard, the value of library_profile_space should be 0.
- library_tier_flag indicates the definition of library_profile_idc.
- library_profile_idc When the value of library_profile_space is 0, it is used to indicate the level of the video stream, that is, the class to which the knowledge image stream belongs. Among them, the profile indicates the algorithm and other information used in the video stream, the value of library_profile_idc is different, and the profile indicated is also different.
- library_profile_compatibility_flag[j] If the value of library_profile_space is 0, the value of library_profile_compatibility_flag[j] should be 1, to indicate that the video stream conforms to the grade indicated by library_profile_idc.
- library_progressive_source_flag and library_interlaced_source_flag used to indicate the source scan type of the pictures in the video stream.
- library_progressive_source_flag is equal to 1 and library_interlaced_source_flag is equal to 0, it indicates that the source scan type of the picture is progressive (progressive); when library_progressive_source_flag is equal to 0 and library_interlaced_source_flag is equal to 1, it indicates that the source scan type of the picture is interlaced (progressive)
- library_interlaced_source_flag is equal to 0, it indicates that the source scan type of the picture is unknown; when library_progressive_source_flag and library_interlaced_source_flag are both equal to 1, it indicates that the source scan type of the picture will be defined by other statements.
- source_scan_type can be used to define the source scan type of the picture.
- library_non_packed_constraint_flag Used to indicate whether the frame-level packing and segmentation rectangles are arranged with additional enhancement information in the video bitstream. When the value is 1, it indicates that no additional enhancement information is arranged for the frame level packing and division rectangle in the video stream; when the value is 0, it indicates that the frame level packing or frame level division rectangle in the video stream is arranged with additional enhancement information.
- library_frame_only_constraint_flag Used to indicate whether the video stream contains field images. When the value is 1, it indicates that the video stream does not contain field images; when the value is 0, it indicates that the video stream may contain field images.
- profilePresentFlag is equal to 1, the value range of library_profile_idc is not 4-7, if the value range of j is 4-7 at this time, library_profile_compatibility_flag[j] is not equal to 1, indicating that the level of the video stream is not Meet the profile indicated by library_profile_idc.
- library_reserved_zero_43bits If the knowledge image code stream and the video code stream adopt the same standard, the value of library_reserved_zero_43bits is 0.
- library_inbld_flag Used to indicate whether the independent non-low layer decoding capability needs to decode the level applied by profile_tier_level.
- profilePresentFlag the value range of library_profile_idc is not 1-5. If the range of j is 1-5 at this time, library_profile_compatibility_flag[j] is not equal to 1, which indicates that the level of the video stream does not meet library_profile_idc The grade indicated. Then, the value of library_inbld_flag is 0. At this time, library_inbld_flag indicates that the independent non-low layer decoding capability does not need to decode the level applied by profile_tier_level.
- the independent non-low layer decoding capability refers to the ability to independently decode non-low layer code streams.
- library_reserved_zero_bit If the knowledge image code stream and the video code stream use the same standard, the value of library_reserved_zero_43bits is 0.
- library_level_idc Used to indicate the level of the video stream. When the value of library_level_idc is different, the level indicated by library_level_idc is also different.
- the knowledge image bitstream is obtained through Table 3.
- the decoding capability information of the knowledge image code stream can be obtained by parsing library_level_present_flag in Table 3 and each syntax element located under library_level_present_flag in Table 3.
- the encoder determines the value of each syntax element in profile_tier_level according to the knowledge image code stream, so as to obtain the decoding capability information of the knowledge image code stream described by profile_tier_level.
- the third method of obtaining parsing the class identifier from the video stream, the class identifier is used to indicate the class to which the knowledge image stream belongs; parsing the class identifier from the video stream, the class identifier is used to indicate the class to which the knowledge image stream belongs;
- the decoding capability information indicated by the class identification and the class identification is used as the decoding capability information of the knowledge image code stream.
- the decoding capability information of the video code stream is located in the sequence header of the video code stream, and the decoding capability information of the video code stream includes a class identifier and a class identifier.
- the decoding capability information of the video stream includes but is not limited to information such as the maximum bit rate of the video stream, the minimum decoded image buffer size required to decode the stream.
- the class identifier and the class identifier can be determined by information such as the maximum bit rate of the video code stream and the minimum decoded image buffer size required to decode the code stream. In this analysis mode, it can be applied to the video stream using the AVS3 standard. See FIG. 8B.
- the video stream includes a sequence header and image-related data obtained by encoding the sequence of pictures constituting the video.
- the image-related data includes images. Header and image data. Among them, the decoding capability information of the knowledge image code stream is indicated by the class identifier and the class identifier in the sequence header of the video code stream.
- the syntax table of the sequence header of the video code stream please refer to the following Table 4:
- library_picture_enable_flag is an example included in the knowledge image reference identifier: when the value is the first value (for example, it can be 1), it indicates that the decoding of the video bitstream allows or needs to refer to the knowledge image corresponding to the knowledge image bitstream; when When the value is the second value (for example, it can be 0), it means that the decoding of the video stream does not allow reference to the knowledge image corresponding to the knowledge image stream, or it means that the decoding of the video stream does not require or require reference to the knowledge image stream Corresponding knowledge image.
- the first value for example, it can be 1
- the second value for example, it can be 0
- library_same_standard_flag is an example of the same standard identification: when the value is the first value (for example, it can be 1), it means that the knowledge image code stream referenced by the video code stream is the same standard as the video code stream; when the value is When the second value (for example, it can be 0), it means that the knowledge image code stream referenced by the video code stream is different from the standard used by the video code stream, or that the knowledge image code stream that does not require or require the video code stream reference is the same as The standard used by the video stream is the same.
- profile_id_library is an example included in the class identifier: used to indicate the class to which the knowledge image code stream referred to by the video code stream belongs.
- level_id_library is an example included in the level identifier, and is used to indicate the level to which the knowledge image code stream referred to by the video code stream belongs.
- the decoder parses as follows:
- parse library_same_standard_flag to determine whether the video bitstream needs to be referenced or the allowed reference of the knowledge image bitstream is the same as the standard used by the video bitstream ;
- the encoder encodes as follows:
- the encoding-side method may further include: determining whether encoding of the current image to be encoded is allowed (or required) to refer to the knowledge image corresponding to the knowledge image code stream. Specifically, it may be determined according to the rate-distortion cost or other indicators that measure coding efficiency or coding performance.
- the referenced knowledge image code stream is the same as the standard used for the encoded data, add the knowledge image reference ID, the same standard ID, the class ID, and the level ID (for example, level_id_library and profile_id_library) to the encoded data.
- the class identifier and the class identifier are used to indicate the decoding capability information of the knowledge image code stream, the class identifier is used to indicate the class to which the knowledge image code stream belongs, and the class identifier is used to indicate the class to which the knowledge image code stream belongs.
- the grammar table may further include a knowledge image identifier to indicate whether the video stream is a knowledge image.
- the first identifier is located in the sequence header of the video stream, the first identifier includes the same parameter identifier, the same parameter identifier of the knowledge image stream is parsed from the sequence header of the video stream, and the same parameter identifier is used to indicate Whether the value of the target parameter of the knowledge image code stream is the same as the value of the target parameter in the sequence header of the video code stream.
- the target parameter in the sequence header of the video code stream may include decoding capability information of the video code stream; in the case where the same parameter identifier is the first value, the same parameter identifier is used to indicate the value of the target parameter of the knowledge image code stream and The value of the target parameter in the sequence header of the video stream is the same; in the case where the same parameter identifier is the second value, the value of the same parameter identifier used to indicate the target parameter of the knowledge image stream can be the same as that in the sequence header of the video stream.
- the value of the target parameter of is not the same, or it is not mandatory that the value of the target parameter of the knowledge image code stream is the same as the value of the target parameter in the sequence header of the video code stream, or that it is used to indicate the value of the target parameter of the knowledge image code stream
- the value of the target parameter in the sequence header of the video stream is different.
- This parsing method can also be applied to the video stream using the AVS3 standard, except that the target parameters of the knowledge image stream (which can include decoding capability information) are indicated by the parameters in the sequence header of the video stream, and the sequence header of the video stream.
- the syntax table can be seen in Table 5:
- is_libiary_stream_flag is an example included in the knowledge image identification: when the value is the first value (for example, can be 1), it means that the current code stream is the knowledge image code stream; when the value is the second value (for example, 0) indicates that the current code stream is not a knowledge image code stream.
- library_picture_enable_flag is an example included in the knowledge image reference identification: when the value is the first value (for example, it can be 1), it means that the decoding of the current code stream is allowed or needs to refer to the knowledge image corresponding to the knowledge image code stream; when the value is When the second value (for example, it can be 0), it means that the decoding of the current code stream does not allow reference to the knowledge image corresponding to the knowledge image code stream, or it means that the decoding of the current code stream is not mandatory or required to allow the reference knowledge image code stream to correspond Knowledge image.
- library_stream_using_same_standard_flag is an example of the same parameter identification: when the value is the first value (for example, it can be 1), it is used to indicate the value of the target parameter of the knowledge image code stream referenced by the video code stream and that of the video code stream The value of the target parameter in the sequence header is the same; when the value is the second value (for example, it can be 0), it is used to indicate the value of the target parameter of the knowledge image code stream referenced by the video code stream and the sequence header of the video code stream The value of the target parameter in is different, or the value of the target parameter used to indicate that the knowledge image code stream referenced by the video code stream is not mandatory or required is the same as the value of the target parameter in the sequence header of the video code stream.
- the target parameter is not limited in this application.
- the target parameter may be all parameters except the knowledge image identifier (for example, is_libiary_stream_flag) in the sequence header of the video stream, or the target parameter may also be the video stream One or more of all parameters except the knowledge image identifier (for example, may be is_libiary_stream_flag) in the sequence header of.
- the decoder parses as follows:
- the first identifier includes the same parameter identifier, and the same parameter identifier is used to indicate whether the value of the target parameter of the knowledge image code stream referenced by the video code stream is the same as the value of the target parameter in the sequence header of the video code stream .
- the target parameter in the sequence header of the video code stream includes decoding capability information of the video code stream.
- the decoding capability information of the knowledge image code stream can be used as the decoding capability information of the knowledge image bitstream, so as to realize the decoding capability information of the knowledge image bitstream from the video bitstream.
- the target parameter may be a parameter other than the knowledge image identifier (for example, may be is_libiary_stream_flag) in the sequence header of the reference knowledge image code stream of the video code stream, or all parameters.
- the target parameter may also be a parameter other than the knowledge image identifier in the sequence header of the video code stream, or all parameters.
- the decoder When all the parameter values in the sequence header of the knowledge image code stream referenced by the video code stream except the video code stream are different from the corresponding parameter values in the video code stream, as an optional step, the decoder outputs the knowledge image The information that the code stream conforms to facilitate the system to call the corresponding decoder to decode the knowledge code stream. As another optional step, according to the parameters in the sequence header of the knowledge image code stream, the decoding capability required by the knowledge code stream is obtained. When the decoding capability required by the knowledge image code stream does not exceed the decoding capability required by the video code stream, use The decoder of the video code stream to decode the knowledge layer code stream.
- the decoder when the decoding ability required by the knowledge image code stream exceeds the decoding ability required by the video code stream, as an optional step, the decoder outputs the information that the knowledge code stream conforms to to facilitate the system to call the corresponding decoder to decode the knowledge Image code stream.
- the encoder encodes as follows:
- the value of the knowledge image identifier (for example, it can be is_library_stream_flag); it should be understood that the value of the knowledge image identifier can also be determined after obtaining the code stream corresponding to the current image to be encoded Whether the current code stream corresponding to the image to be encoded is obtained from the knowledge image code stream is not limited herein.
- the knowledge image reference identifier for example, library_picture_enable_flag
- the encoding-side method may further include: determining whether encoding of the current image to be encoded is allowed (or required) to refer to the knowledge image corresponding to the knowledge image code stream. Specifically, it may be determined according to the rate-distortion cost or other indicators that measure coding efficiency or coding performance.
- the video image is encoded to obtain encoded data, and a knowledge image identifier, a knowledge image reference identifier, and the same parameter identifier are added to the encoded data, thereby obtaining a video code stream.
- the same parameter identifier is used to indicate whether the value of the target parameter of the knowledge image code stream is the same as the value of the target parameter in the sequence header of the encoded data.
- the target parameter of the knowledge image code stream may be located in the sequence header of the knowledge image code stream, then the same parameter identifier is used to indicate whether the value of the target parameter in the sequence header of the knowledge image code stream is in the sequence header of the encoded data Has the same value as the target parameter.
- the decoding of the video code stream can be triggered according to the obtained decoding capability information of the knowledge image code stream.
- Step 703 Reconstruct the knowledge image corresponding to the knowledge image code stream referenced by the video code stream according to the target parameter value of the knowledge image code stream referenced by the video code stream and the knowledge image code stream referenced by the video code stream.
- the knowledge image referenced by the video code stream is reconstructed
- the knowledge image corresponding to the code stream includes: determining whether the decoding capability of the decoder to be used meets the requirements indicated by the decoding capability information of the knowledge image code stream referenced by the video code stream; the decoding capability of the decoder to be used meets the video code
- the knowledge image code stream referenced by the video code stream is parsed by the decoder to be used, and the corresponding knowledge image referenced by the video code stream is reconstructed.
- the decoder of the video stream predicts the knowledge image stream referenced by the video stream Obtain a knowledge image, or use the same kernel or algorithm as the decoder called by the decoder of the video codestream to predict the knowledge image codestream referenced by the video codestream to obtain the knowledge image. Then, decode the video code stream according to the knowledge image corresponding to the knowledge image code stream referenced by the video code stream, that is, reconstruct the video code stream corresponding to the knowledge image and video code stream corresponding to the knowledge image code stream referenced by the video code stream Video image.
- parsing the decoding capability information of the knowledge image code stream referenced by the video code stream from the video code stream can determine whether the decoding capability of the decoder of the video code stream satisfies the knowledge image referenced by the video code stream According to the determination result of the code stream decoding capability information, the knowledge image code stream referenced by the video code stream is decoded.
- the decoder of the video bitstream can pair the knowledge image bitstream referenced by the video bitstream.
- the knowledge image corresponding to the knowledge image code stream referenced by the video code stream is predicted, and the video image corresponding to the video code stream is reconstructed according to the knowledge image and the video code stream, thereby completing the decoding of the video code stream.
- the decoding capability of the decoder of the video stream does not meet the requirements of the decoding capability information of the knowledge image stream referenced by the video stream.
- the decoder of the video stream outputs the reference of the video stream The decoding capability information of the knowledge image code stream in order to call a decoder that meets the requirements of the decoding capability information of the knowledge image code stream referenced by the video code stream to decode the knowledge image code stream referenced by the video code stream.
- two decoders need to be called to respectively decode the knowledge image code stream and the video code stream.
- the decoder can only obtain the decoding ability information of the video stream when parsing the video stream, and the decoding ability information of the video stream and the decoding ability information of the knowledge image stream are not necessarily the same. If the parsing video code is used directly The decoder of the stream to decode the knowledge image code stream, it may lead to the knowledge image code when the decoding capability information required by the knowledge image code stream is higher than the decoding capability required by the video code stream. Stream decoding failed. Therefore, the related art calls two decoders to separately obtain the decoding capability information of the knowledge image code stream and the decoding capability information of the video code stream, and decode the knowledge image code stream and the video code stream respectively.
- the video code stream not only carries the decoding capability information of the video code stream itself, but also carries the decoding capability information of the knowledge image code stream referenced by the video code stream. Therefore, the decoder can obtain the decoding ability information of the video stream and the decoding ability information of the image stream referenced by the video stream by parsing the video stream, so as to determine whether the decoder meets the knowledge referenced by the video stream.
- the decoding capability required for the decoding capability information of the image bitstream also meets the decoding capability required for the decoding capability information of the video bitstream.
- the decoder can be used to decode both the knowledge image code stream and the video code stream referenced by the video code stream, so as to realize the alternate decoding of the knowledge image code stream and the video code stream referenced by the video code stream. For example, the decoder sequentially decodes the first piece of knowledge image code stream, the video code stream referring to the first piece of knowledge image code stream, the second piece of knowledge image code stream, and the video code stream referring to the second piece of knowledge image code stream. If not, other decoders are used to decode the knowledge image code stream referenced by the video code stream.
- this method can also choose another decoding method: use the same kernel or algorithm as the decoder called by the video code stream decoder to predict the knowledge referenced by the video code stream.
- the image code stream obtains the knowledge image, and the video image corresponding to the video code stream is reconstructed according to the knowledge image and the video code stream.
- the kernel or algorithm called by the decoder of the video stream is the same, using the same kernel or algorithm called by the decoder of the video stream to decode the knowledge image stream referenced by the video stream will satisfy the video
- the decoding capability required by the decoding capability information of the knowledge image code stream referenced by the code stream also meets the decoding capability required by the decoding capability information of the video code stream.
- this application uses the video stream to carry the target parameters of the knowledge image stream.
- the first stream is parsed from the video stream. Mark, and in the case where the first mark is the first value, the value of the target parameter of the video bitstream is used as the value of the target parameter of the knowledge image bitstream referenced by the video bitstream, thereby according to the knowledge referenced by the video bitstream.
- the target parameter value of the image code stream and the knowledge image code stream referenced by the video code stream are reconstructed to obtain a knowledge image.
- the video image corresponding to the video stream can be reconstructed based on the knowledge image and the video stream corresponding to the knowledge image stream referenced by the video stream.
- the solution provided by the embodiments of the present application can implement the knowledge image stream and video
- the shared parameters of the code stream make the decoding method more flexible and the decoding efficiency high.
- the embodiments of the present application also provide a video encoding method, which can be applied to the implementation environment shown in FIG. 1A, FIG. 1B, FIG. 2, FIG. 4, and FIG. 5.
- the method includes:
- Step 901 in the case that the video image is encoded with reference to the knowledge image corresponding to the knowledge image code stream, the video image is encoded with reference to the knowledge image corresponding to the knowledge image code stream to obtain encoded data.
- the encoding-side method may further include: determining whether encoding of the current image to be encoded is allowed (or required) to refer to the knowledge image corresponding to the knowledge image code stream. Specifically, it may be determined according to the rate-distortion cost or other indicators that measure coding efficiency or coding performance.
- Step 902 Add a first identifier to the encoded data to obtain a video stream.
- the value of the first identifier is the first value, it is used to indicate that the value of the target parameter in the sequence header of the video stream is used as the reference for the video stream The value of the target parameter of the knowledge image code stream.
- the first identifier is located in the sequence header of the video code stream.
- the first identifier includes the same parameter identifier, and the same parameter identifier is used to indicate whether the value of the target parameter of the knowledge image code stream referenced by the video code stream is the same as the value of the target parameter in the sequence header of the video code stream;
- the value of the parameter identifier is the first value used to indicate that the value of the target parameter of the knowledge image code stream is the same as the value of the target parameter in the sequence header of the video code stream.
- the video code stream further includes a knowledge image reference identifier, and the knowledge image reference identifier is used to indicate whether to allow reference to the knowledge image corresponding to the knowledge image code stream to decode the video code stream.
- the video code stream further includes: a knowledge image identifier.
- a knowledge image identifier When the value of the knowledge image identifier is the second value, it is used to indicate that the video code stream is not a knowledge image code stream.
- the target parameter includes decoding capability information
- the decoded capability information is located in the video parameter set VPS of the encoded data, or is located in the sequence parameter set SPS of the encoded data, or the decoding capability information is located in the sequence of the video code stream In the head.
- the target parameter includes decoding capability information
- the decoding capability information includes a class identifier and a class identifier
- the class identifier and the class identifier are used to indicate decoding capability information of the knowledge image code stream
- the class identifier is used to indicate the knowledge image code The class to which the stream belongs
- the class identifier is used to indicate the class to which the knowledge image code stream belongs.
- each step and the information involved in the steps can refer to the related content in the above video decoding method, and no more details are provided here.
- the present application carries the target parameters of the knowledge image code stream through the video code stream. Therefore, the target parameters of the knowledge image code stream can be obtained by parsing the video code stream, so that the decoding can predict the value of the target parameter of the knowledge image code stream The knowledge image corresponding to the knowledge image code stream, thereby reconstructing the video image corresponding to the video code stream based on the knowledge image and the video code stream, and realizing the contribution parameters of the knowledge image code stream and the video code stream.
- Implementing this application to perform decoding is more flexible and has high decoding efficiency.
- the embodiments of the present application also provide a video decoding device, which can be applied to the destination device 14 shown in FIG. 1A, the decoder 30 shown in FIG. 1B, and FIG.
- a video decoding device which can be applied to the destination device 14 shown in FIG. 1A, the decoder 30 shown in FIG. 1B, and FIG.
- the decoder 30 shown in 3 the video decoding device 400 shown in FIG. 4, the decoding device 500 shown in FIG. 5, or the video decoder 3206 shown in FIG.
- the device includes: an analysis module 1001 and a reconstruction module 1002.
- the analysis module 1001 and the reconstruction module 1002 can be applied to the decoder 30 of the destination device 14 shown in FIG. 1A, the decoder 30 shown in FIG. 1B, the decoder 30 shown in FIG. 3, and the one shown in FIG. 4.
- the parsing module 1001 is configured to parse the first identifier from the video stream when the video stream is decoded by referring to the knowledge image corresponding to the known image stream; when the value of the first identifier is the first value , The value of the target parameter in the sequence header of the video bitstream is used as the value of the target parameter of the knowledge image bitstream referenced by the video bitstream;
- the reconstruction module 1002 is configured to reconstruct the corresponding knowledge image code stream referenced by the video code stream according to the target parameter value of the knowledge image code stream referenced by the video code stream and the knowledge image code stream referenced by the video code stream Knowledge image.
- the reconstruction module 1002 is further configured to reconstruct the video image corresponding to the video code stream according to the knowledge image and the video code stream corresponding to the knowledge image code stream referenced by the video code stream.
- the first identifier is located in the sequence header of the video code stream.
- the first identifier includes the same parameter identifier, and the same parameter identifier is used to indicate whether the value of the target parameter of the knowledge image code stream referenced by the video code stream is the same as the value of the target parameter in the sequence header of the video code stream;
- the value of the same parameter identifier is the first value used to indicate that the value of the target parameter of the knowledge image code stream is the same as the value of the target parameter in the sequence header of the video code stream.
- the target parameter includes decoding capability information
- the reconstruction module 1002 is configured to determine whether the decoding capability of the decoder to be used meets the requirements indicated by the decoding capability information of the knowledge image code stream referenced by the video code stream; When the decoding capability of the decoder to be used meets the requirements of the decoding capability information indicated by the knowledge image code stream referenced by the video code stream, the knowledge image code stream referenced by the video code stream is parsed by the decoder to be used to reconstruct the video The knowledge image corresponding to the knowledge image referenced by the code stream.
- the parsing module 1001 is used to parse the knowledge image reference identifier from the video code stream, and the knowledge image reference identifier is used to indicate whether to allow reference to the knowledge image corresponding to the knowledge image code stream to decode the video code stream; in the knowledge image reference The value of the identifier indicates that when the video code stream is decoded with reference to the knowledge image corresponding to the knowledge image code stream, the first identifier is parsed from the video code stream.
- the knowledge image identifier is parsed in the video code stream, the value of the knowledge image identifier is the second value, and the knowledge image identifier is the second value used to indicate that the video code stream is not the knowledge image code stream.
- the parsing module 1001 is also used to obtain the knowledge image identifier in the current code stream; only when the value of the knowledge image identifier indicates that the video code stream is not the knowledge image code stream, the current code stream is used as the video code stream , And perform parsing knowledge image reference identification from the video bitstream.
- the target parameter includes decoding capability information
- the parsing module 1001 is also used to parse the decoding capability information of the knowledge image code stream from the video parameter set VPS of the video code stream; or, the sequence parameter set from the video code stream In SPS, the decoding capability information of the knowledge image code stream is parsed; or, the decoding capability information of the knowledge image code stream is parsed from the sequence header of the video code stream.
- the target parameter includes decoding capability information
- the decoding capability information of the video stream includes a class identifier and a class identifier
- the class identifier is used to indicate the class to which the video stream belongs
- the class identifier is used to indicate the class to which the video stream belongs
- the parsing module is used to use the class identifier and the class identifier as decoding capability information of the knowledge image code stream referenced by the video code stream.
- An embodiment of the present application also provides a video encoding device, which can be applied to the source device 12 shown in FIG. 1A, the video decoding system 40 shown in FIG. 1B, and the encoder 20 shown in FIG. 2, In the video decoding apparatus 400 shown in FIG. 4 or the decoding apparatus 500 shown in FIG. 5.
- the device includes: an encoding module 1101 and an addition module 1102 can be applied to the encoder 20 shown in FIG. 1A or 1B or 2 or the encoding/decoding module 430 shown in FIG. 4.
- the encoding module 1101 is configured to encode the video image with reference to the knowledge image corresponding to the knowledge image code stream when encoding the video image with reference to the knowledge image corresponding to the knowledge image code stream, to obtain encoded data;
- the adding module 1102 is used to add a first identifier to the encoded data to obtain a video stream.
- the value of the first identifier is the first value, it is used to indicate the target parameter in the sequence header of the video stream
- the value is used as the value of the target parameter of the knowledge image code stream referenced by the video code stream.
- the first identifier is located in the sequence header of the video code stream.
- the first identifier includes the same parameter identifier, and the same parameter identifier is used to indicate whether the value of the target parameter of the knowledge image code stream referenced by the video code stream is in the sequence header of the video code stream The value of the target parameter is the same;
- the value identified by the same parameter is the first value used to indicate that the value of the target parameter of the knowledge image code stream is the same as the value of the target parameter in the sequence header of the video code stream.
- the video code stream further includes a knowledge image reference identifier, and the knowledge image reference identifier is used to indicate whether to allow reference to the knowledge image corresponding to the knowledge image code stream to decode the video code stream.
- the video code stream further includes: a knowledge image identifier, and the value of the knowledge image identifier is a second value, which is used to indicate that the video code stream is not a knowledge image code stream.
- the target parameter includes decoding capability information, which is located in the video parameter set VPS of the encoded data, or is located in the sequence parameter set SPS of the encoded data, and the decoding capability information is located In the sequence header of the video stream.
- the target parameter includes decoding capability information
- the decoding capability information includes a class identifier and a class identifier
- the class identifier is used to indicate the class to which the knowledge image code stream belongs
- the class identifier is used to indicate the Describe the level to which the knowledge image code stream belongs.
- FIG. 10 and FIG. 11 realize their functions, they are only exemplified by the division of the above functional modules. In practical applications, the above functions can be allocated by different functional modules as needed. That is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
- the device and method embodiments provided in the above embodiments belong to the same concept. For the specific implementation process, see the method embodiments, and details are not described here.
- An embodiment of the present application further provides a video decoding device, including: a memory and a processor; at least one instruction is stored in the memory, and at least one instruction is loaded and executed by the processor to implement any of the above-mentioned ones provided in the embodiments of the present application Video decoding method.
- the processor may be the decoder 30 shown in FIG. 1A, the decoder 30 shown in FIG. 1B, the decoder 30 shown in FIG. 3, the processor 430 shown in FIG. 4, or the processing shown in FIG. ⁇ 510.
- An embodiment of the present application also provides a video encoding device, including: a memory and a processor; at least one instruction is stored in the memory, and at least one instruction is loaded and executed by the processor to implement any of the foregoing provided by the embodiments of the present application Video encoding method.
- the processor may be the encoder 20 shown in FIG. 1A, the encoder 20 shown in FIG. 1B, the encoder 20 shown in FIG. 2, the processor 430 shown in FIG. 4, and the processing shown in FIG. ⁇ 510.
- the memory may be the memory 44 in FIG. 1B or the memory 530 in FIG. 5.
- An embodiment of the present application further provides a computer program (product), the computer program (product) includes: computer program code, and when the computer program code is executed by the computer, the computer is caused to execute the method in the above aspects.
- the computer program (product) can be applied to the decoder 30 shown in FIG. 1A, the decoder 30 shown in FIG. 1B, the decoder 30 shown in FIG. 3, the encoder 20 shown in FIG. 1A, and the computer shown in FIG. 1B.
- An embodiment of the present application further provides a readable storage medium, where the readable storage medium stores a program or an instruction.
- the readable storage medium can be applied to the decoder 30 shown in FIG. 1A, the decoder 30 shown in FIG. 1B, the decoder 30 shown in FIG. 3, the encoder 20 shown in FIG. 1A, and the one shown in FIG. 1B Encoder 20, encoder 20 shown in FIG. 2, processor 430 shown in FIG. 4, or processor 510 shown in FIG.
- An embodiment of the present application further provides a chip, including a processor, for calling and running instructions stored in the memory from the memory, so that the communication device on which the chip is installed executes the methods in the above aspects.
- the chip may be applied to the source device 12 shown in FIG. 1A, and the processor may be the encoder 20 shown in FIG. 1A.
- the chip may be applied to the destination device 14 shown in FIG. 1A, and the processor may be the decoder 30 shown in FIG. 1A.
- the chip may be applied to the video decoding system 40 shown in FIG. 1B, and the processor may be the decoder 30 or the encoder 20 shown in FIG. 1B.
- the processor may be the encoder 20 shown in FIG.
- the chip may be applied to the video decoding device 400 shown in FIG. 4, and the processor may be the processor 510 shown in FIG. 4.
- the chip may be applied to the decoding device 500 shown in FIG. 5, and the processor may be the processor 430 shown in FIG. 5.
- An embodiment of the present application further provides another chip, including: an input interface, an output interface, a processor, and a memory.
- the input interface, the output interface, the processor, and the memory are connected through an internal connection path, and the processor is used to execute code in the memory When the code is executed, the processor is used to perform the methods in the above aspects.
- the chip can be applied to the source device 12 shown in FIG. 1A
- the output interface is the communication interface 22 shown in FIG. 1A
- the processor is the encoder 20 shown in FIG. 1A.
- the chip may be applied to the destination device 14 shown in FIG. 1A
- the input interface is the communication interface 28 in FIG. 1A
- the processor includes the decoder 30 shown in FIG. 1A.
- the chip may be applied to the video decoding system 40 shown in FIG. 1B, and the processor is the encoder 20 or the decoder 30 shown in FIG. 1B.
- the processor may be the encoder 20 shown in FIG. 2, or the processor may be the decoder 30 shown in FIG. 3.
- This memory is the memory 44 shown in FIG. 1B.
- the chip can be applied to the video decoding device 400 shown in FIG. 4, the processor is the processor 430 in FIG. 4, the input interface is the inlet port 410 in FIG. 4, and the output interface is the one in FIG. Outlet port 450, the memory is memory 460 in FIG.
- the chip may be applied to the decoding device 500 shown in FIG. 5, the processor is the processor 510 in FIG. 5, and the memory is the memory 530 in FIG. 5.
- FIG. 12 is a block diagram showing a content supply system 3100 for implementing content distribution services.
- This content supply system 3100 includes a capture device 3102, a terminal device 3106, and optionally a display 3126.
- the capture device 3102 communicates with the terminal device 3106 through the communication link 3104.
- the communication link may include the communication channel 13 described above.
- the communication link 3104 includes but is not limited to WIFI, Ethernet, wired, wireless (3G/4G/5G), USB, or any combination thereof.
- the capturing device 3102 generates data, and can encode the data by the encoding method as shown in the above embodiment.
- the capturing device 3102 may distribute the data to a streaming server (not shown in FIG. 12), and the server encodes the data and transmits the encoded data to the terminal device 3106.
- the capture device 3102 includes, but is not limited to, a camera, a smartphone or a tablet computer, a computer or a notebook computer, a video conferencing system, a PDA, an in-vehicle device, or a combination of any of them.
- the capture device 3102 may include the source device 12 as described above.
- the video encoder 20 included in the capture device 3102 may actually perform the video encoding process.
- the audio encoder included in the capture device 3102 may actually perform audio encoding processing.
- the capturing device 3102 distributes the encoded video data and the encoded audio data by multiplexing the encoded video data and the encoded audio data together.
- encoded audio data and encoded video data are not multiplexed.
- the capture device 3102 distributes the encoded audio data and the encoded video data to the terminal device 3106, respectively.
- the terminal device 310 receives and reproduces the encoded data.
- the terminal device 3106 may be a device with data reception and recovery capabilities, such as a smartphone or tablet 3108, a computer or laptop 3110, a network video recorder (network video recorder (NVR)/digital video recorder (digital video recorder, DVR) 3112 , TV 3114, set top box (STB) 3116, video conferencing system 3118, video surveillance system 3120, personal digital assistant (personal digital assistant (PDA) 3122, in-vehicle device 3124, or above devices that can decode the encoded data Any combination, etc.
- the terminal device 3106 may include the destination device 14 as described above.
- the encoded data includes video
- the video decoder 30 included in the terminal device is prioritized to perform video decoding.
- the audio decoder included in the terminal device is prioritized to perform audio decoding processing.
- the terminal device can feed the decoded data to its display.
- NVR network video recorder
- DVR digital video recorder
- PDA personal digital assistant
- the terminal device can feed the decoded data to its display.
- an external display 3126 is connected to receive and display decoded data.
- the image encoding device or the image decoding device as shown in the above-described embodiment may be used.
- the protocol processing unit 3202 analyzes the transmission protocol of the stream.
- the protocols include but are not limited to Real Time Streaming Protocol (Real Time Streaming Protocol, RTSP), Hyper Text Transfer Protocol (Hyper Text Transfer Protocol, HTTP), HTTP Real Time Streaming Protocol (HTTP Live Streaming Protocol, HLS), MPEG-DASH , Real-time transport protocol (Real-time Transport protocol, RTP), real-time message transport protocol (real time messaging protocol, RTMP), or any combination of these.
- a stream file is generated.
- the file is output to the demultiplexing unit 3204.
- the demultiplexing unit 3204 can separate the multiplexed data into encoded audio data and encoded video data. As mentioned above, for other practical scenarios, such as in a video conference system, encoded audio data and encoded video data are not multiplexed. In this case, the encoded data is transmitted to the video decoder 3206 and the audio decoder 3208 without passing through the demultiplexing unit 3204.
- video elementary streams (elementary streams, ES), audio ES and optional subtitles are generated.
- the video decoder 3206 including the video decoder 30 as explained in the above embodiment, decodes the video ES by the decoding method as shown in the above embodiment to generate a video frame, and feeds this data to the synchronization unit 3212.
- the audio decoder 3208 decodes the audio ES to generate audio frames, and feeds this data to the synchronization unit 3212.
- the video frames may be stored in a buffer (not shown in FIG. 13) before being fed to the synchronization unit 3212.
- the audio frames may be stored in a buffer (not shown in FIG. 13) before being fed to the synchronization unit 3212.
- the synchronization unit 3212 synchronizes the video frame and the audio frame, and provides the video/audio to the video/audio display 3214. For example, the synchronization unit 3212 synchronizes the presentation of video and audio information. Information can be grammatically encoded using timestamps related to the presentation of encoded audio and visual data and timestamps related to the transmission of the data stream itself.
- the subtitle decoder 3210 decodes the subtitle, synchronizes the subtitle with the video frame and the audio frame, and provides the video/audio/subtitle to the video/audio/subtitle display 3216.
- the present application is not limited to the above-mentioned system, and the image encoding device or the image decoding device in the above-described embodiments may be incorporated into other systems, such as automobile systems.
- the encoder when encoding (or decoding) an image, the encoder (or decoder) can select the current encoded image (or Decoded images) Images with similar texture content are used as reference images.
- This reference image is called a knowledge base image, and the database that stores the collection of reference images is called a knowledge base. At least one image in this video refers to at least one knowledge base image.
- the method of encoding and decoding is called video encoding based on knowledge base (English: library-based video encoding).
- Encoding a video sequence using knowledge-based video coding will generate a knowledge layer code stream containing the knowledge base image coding code stream and a video layer code stream containing the code stream obtained by referring to the knowledge base image coding for each frame image of the video sequence
- the reference relationship between the two layers of code streams is shown in Figure 6.
- These two code streams are similar to the basic layer code stream and the enhancement layer code stream generated by scalable video coding (SVC), that is, the sequence layer code stream depends on the knowledge layer code stream.
- SVC scalable video coding
- the dependency relationship between the dual-stream organization of video coding based on the knowledge base and the hierarchical stream of SVC's hierarchical stream organization is different. The difference is that the dual-stream hierarchy of SVC is based on certain The alignment time period is dependent, and the video layer-dependent knowledge layer in the dual code stream based on knowledge-based video coding is dependent on the non-aligned time period.
- the code stream generated by encoding records the decoding capability information required by the code stream to be decoded, including the maximum bit rate of the code stream, the minimum decoded image buffer size required to decode the code stream, and other information. According to the decoding capability information , The decoder provides enough decoding capabilities to ensure the correct and real-time decoding of the code stream.
- the position of the decoding capability information of HEVC or VVC in the bit stream is shown in FIG. 8A, and the profile level may be located in at least one of VPS and SPS.
- the profile includes the decoding capability information of at least one of the video layer code stream and the knowledge layer code stream.
- FIG. 8B the position of the decoding capability information of AVS3 in the bit stream is shown in FIG. 8B.
- the decoding of the video main code stream must rely on the knowledge layer code stream, when the same decoder is used for the knowledge layer code stream and the video main code stream, the decoding capability of the decoder needs to be able to support the decoding of the knowledge layer code stream and the video main code stream. Therefore, the knowledge layer code stream and The total decoding capability of the main video stream.
- the present invention provides several implementations.
- the main video stream, the current video layer code stream, and the current code stream can all be understood as video code streams.
- Knowledge layer code stream, knowledge code stream, external knowledge code stream, external knowledge layer code stream, external knowledge code stream and external knowledge layer code stream can be understood as knowledge image code stream
- Embodiment 1 of the present invention is a diagrammatic representation of Embodiment 1 of the present invention.
- the vps syntax can be as follows.
- vps_library_picture_enable_flag (may also be referred to as knowledge image reference flag): 1-bit identifier.
- the value is 1, it means that the current code stream (or called the current video layer code stream) refers to the external knowledge code stream (the knowledge code stream can also be called the knowledge layer code stream); when the value is 0, it means the current code stream Does not refer to the knowledge stream.
- vps_library_same_standard_flag may also be called the same standard flag: 1-bit identifier. When the value is 1, it means that the external knowledge codestream referenced by the current codestream conforms to the same codec standard as the current codestream; when the value is 0, it means that the external knowledge codestream referenced by the current codestream does not conform to this standard.
- the operations performed by the decoder can be as follows:
- profile_tier_level When the external knowledge codestream referenced by the current codestream conforms to this standard, parse profile_tier_level to obtain the decoding capability information required by the knowledge layer codestream; it should be noted that the profile_tier_level containing the decoding capability information required by the knowledge layer codestream can be located in vps . Further, the profile_tier_level including the decoding capability information required by the knowledge layer code stream may be independent of the existing profile_tier_level, or may be a further expansion of the existing profile_tier_level.
- the decoder of the current codestream can be used to decode the knowledge layer codestream. It is worth noting that this will increase the decoder's requirements for decoding capabilities, such as the number of frames decoded per unit time.
- the decoder When the external knowledge codestream referenced by the current codestream does not meet this standard or the decoding capability of the decoder of the current codestream does not meet the needs of the decoding capability information required by the knowledge layer codestream, as an optional step, the decoder outputs The standard information that the knowledge code stream conforms to facilitate the system to call the corresponding decoder to decode the knowledge code stream.
- the operations performed by the encoder can be as follows:
- the encoder When the external knowledge codestream referenced by the current codestream does not comply with this standard, as an optional step, the encoder outputs information about the standards to which the knowledge codestream conforms, so that the system can call the corresponding encoder to decode the knowledge codestream.
- profile_tier_level containing the decoding capability information required by the knowledge layer code stream may be a profile_tier_level that adds the decoding capability information required by the knowledge layer code stream to the existing profile_tier_level, or it may be independent of the existing profile_tier_level's profile_tier_level.
- Embodiment 2 of the present invention is a diagrammatic representation of Embodiment 2 of the present invention.
- the syntax of the sps is as follows.
- sps_library_picture_enable_flag (may also be referred to as knowledge image reference flag): 1-bit identifier. When the value is 1, it means that the current code stream refers to the external knowledge code stream; when the value is 0, it means that the current code stream does not refer to the knowledge code stream.
- sps_library_same_standard_flag may also be called the same standard flag: 1-bit identifier.
- the value is 1, it means that the external knowledge codestream referenced by the current codestream conforms to the same codec standard as the current codestream; when the value is 0, it means that the external knowledge codestream referenced by the current codestream does not conform to this standard.
- the operations performed by the decoder can be as follows:
- the decoder of the current codestream When the external knowledge codestream referenced by the current codestream meets this standard, parse profile_tier_level(1,0) to obtain the decoding capability information required by the knowledge layer codestream; as an optional step, the decoder of the current codestream When the decoding capability of the software satisfies the decoding capability information required by the knowledge layer code stream, the decoder of the current code stream can be used to further decode the knowledge layer code stream. It is worth noting that this will increase the decoder's requirements for decoding capabilities, such as the number of frames decoded per unit time. It should be noted that the decoding capability information profile_tier_level containing the knowledge layer code stream may be located in the sps. Further, the profile_tier_level including the decoding capability information required by the knowledge layer code stream may be independent of the existing profile_tier_level, or may be a further expansion of the existing profile_tier_level.
- the decoder When the external knowledge codestream referenced by the current codestream does not meet this standard or the decoding capability of the decoder of the current codestream does not meet the needs of the decoding capability information required by the knowledge layer codestream, an optional step is taken and the decoder outputs The standard information that the knowledge code stream conforms to facilitate the system to call the corresponding decoder to decode the knowledge code stream.
- the operations performed by the encoder can be as follows:
- the encoder When the external knowledge codestream referenced by the current codestream does not comply with this standard, as an optional step, the encoder outputs information about the standards to which the knowledge codestream conforms, so that the system can call the corresponding encoder to decode the knowledge codestream.
- profile_tier_level containing the decoding capability information required by the knowledge layer code stream may be a profile_tier_level that adds the decoding capability information required by the knowledge layer code stream to the existing profile_tier_level, or it may be independent of the existing profile_tier_level's profile_tier_level.
- Embodiment 3 of the present invention is a diagrammatic representation of Embodiment 3 of the present invention.
- library_picture_enable_flag (may also be referred to as knowledge image reference flag): 1-bit identifier. When the value is 1, it means that the current code stream refers to the external knowledge code stream; when the value is 0, it means that the current code stream does not refer to the knowledge code stream. (This identifier is already in AVS3)
- library_same_standard_flag (may also be called the same standard flag): 1-bit identifier. When the value is 1, it means that the external knowledge codestream referenced by the current codestream conforms to the same codec standard as the current codestream; when the value is 0, it means that the external knowledge codestream referenced by the current codestream does not conform to this standard.
- profile_id_library fixed-length unsigned integer (for example, 8-bit length, 9-bit length). Represents the class that the external knowledge code stream referenced by the current code stream corresponds to, or represents the class described in the external knowledge code stream.
- level_id_library fixed-length bit unsigned integer (for example, 8-bit length, 9-bit length). Represents the level of the external knowledge code stream that the current code stream refers to, or represents the level described by the external knowledge code stream.
- the operations that the decoder can perform are as follows:
- parse library_same_standard_flag When the current code stream refers to an external knowledge code stream, parse library_same_standard_flag to determine whether the external knowledge layer code stream referenced by the current code stream conforms to this standard;
- profile_id_library and level_id_library are parsed to obtain the decoding capability information required by the knowledge layer codestream; as an optional step, the decoding capability of the decoder of the current codestream
- the decoder of the current code stream may be further used to decode the knowledge layer code stream. It is worth noting that this will increase the decoder's requirements for decoding capabilities, such as the number of frames decoded per unit time.
- the decoder When the external knowledge codestream referenced by the current codestream does not meet this standard or the decoding capability of the decoder of the current codestream does not meet the needs of the decoding capability information required by the knowledge layer codestream, as an optional step, the decoder outputs The standard information that the knowledge code stream conforms to facilitate the system to call the corresponding decoder to decode the knowledge code stream.
- the operations that the encoder can perform are as follows:
- the profile_id_library and level_id_library corresponding to the decoding capability information required by the knowledge layer codestream are described in the codestream; as an optional step, the encoding of the current codestream is used To encode the knowledge layer code stream. It is worth noting that this will increase the requirements of the encoder's decoding capability, such as the number of frames encoded per unit time.
- the encoder When the external knowledge codestream referenced by the current codestream does not comply with this standard, as an optional step, the encoder outputs information about the standards to which the knowledge codestream conforms, so that the system can call the corresponding encoder to decode the knowledge codestream.
- profile_tier_level containing the decoding capability information required by the knowledge layer code stream may be a profile_tier_level that adds the decoding capability information required by the knowledge layer code stream to the existing profile_tier_level, or it may be independent of the existing profile_tier_level's profile_tier_level.
- Embodiment 4 of the present invention is a diagrammatic representation of Embodiment 4 of the present invention.
- is_libiary_stream_flag also known as knowledge image flag: 1-bit identifier.
- a value of '1' indicates that the current codestream is a knowledge image codestream, and only images that use only intra-frame coding (such as I-pictures) and images that use inter-frame coding (such as P-pictures or B) are not allowed in the codestream.
- Image a value of '0' indicates that the current bitstream is a non-knowledge image bitstream, ie the main bitstream.
- library_picture_enable_flag (may also be referred to as knowledge image reference flag): 1-bit identifier. When the value is 1, it means that the current code stream refers to the external knowledge code stream; when the value is 0, it means that the current code stream does not refer to the knowledge code stream. (This identifier is already in AVS3)
- library_stream_using_same_standard_flag (can also be called the same parameter identifier): a value of '1' means that all parameter values in the sequence header of the external knowledge image code stream referenced by the current main stream except for is_libiary_stream_flag should be the same as the parameters in the current main stream The value is the same; a value of '0' means that all parameter values in the sequence header of the knowledge image code stream referenced by the current main stream except for is_libiary_stream_flag may be different from the parameter values in the sequence header of the current main stream.
- library_stream_using_same_standard_flag can also be the meaning of library_same_standard_flag.
- the operations that the decoder can perform are as follows:
- parse library_picture_enable_flag When the current code stream is a non-knowledge code stream, parse library_picture_enable_flag to determine whether the current code stream refers to an external knowledge code stream;
- parse library_stream_using_same_standard_flag to determine whether all parameter values except the is_libiary_stream_flag in the sequence header of the external knowledge layer code stream referenced by the current code stream correspond to the corresponding ones in the current main code stream
- the parameter value is the same;
- the decoder When all the parameter values of the external knowledge codestream referenced by the current codestream except is_libiary_stream_flag are different from the corresponding parameter values in the current main codestream, as an optional step, the decoder outputs the standard that the knowledge codestream conforms to Information to facilitate the system to call the corresponding decoder to decode the knowledge stream.
- the decoding capability required by the knowledge code stream is obtained.
- the current code stream When the decoding capability required by the knowledge code stream does not exceed the decoding capability required by the current code stream, the current code stream’s decoding capability is used.
- the decoder decodes the knowledge layer code stream. It is worth noting that this will increase the decoder's requirements for decoding capabilities, such as the number of frames decoded per unit time. Therefore, when the decoding capability required by the knowledge stream exceeds the decoding capability required by the current stream, as an optional step, the decoder outputs information about the standards that the knowledge stream conforms to, so that the system can call the corresponding decoder to decode Knowledge stream.
- the decoder of the current code stream is used to decode the knowledge layer code stream.
- the decoder outputs information about the standards that the knowledge code stream complies with to facilitate the system to call the corresponding decoder to decode the knowledge code flow.
- the operations that the encoder can perform are as follows:
- the encoder of the current code stream is used to Encoding knowledge code stream. It is worth noting that this will increase the requirements of the encoder's encoding capabilities, such as the number of frames encoded per unit time.
- the encoder When all the parameter values of the external knowledge codestream referenced by the current codestream except is_libiary_stream_flag are different from the corresponding parameter values in the current main codestream, as an optional step, the encoder outputs the standard that the knowledge codestream conforms to Information to facilitate the system to call the corresponding encoder to encode the knowledge code stream.
- the encoder of the current code stream is used to encode the knowledge layer code stream . It is worth noting that this will increase the requirements of the encoder's encoding capabilities, such as the number of frames encoded per unit time.
- the new profile_tier_level in HEVC and VVC.
- the new profile_tier_level also includes the decoding capability information of the knowledge layer code stream referenced by the corresponding code stream.
- the new profile_tier_level can be a further expansion of the existing profile_tier_level, and its syntax can be as follows:
- grammar table may be combined with the first, second, or third embodiments, or may be an independent solution, for example, combined with the existing technology, directly replacing the profile_tier_level in the prior art, or a function with a profile_tier_level function.
- the library_picture_enable_flag in the above syntax may be vps_library_picture_enable_flag, sps_library_picture_enabale_flag or library_picture_enable_flag in the above embodiment.
- the library_same_standard_flag in the above syntax may be vps_library_same_standard_flag, sps_library_same_standard_flag or library_same_standard_flag in the above embodiment.
- semantics of the newly added syntax element may be as follows:
- library_same_standard_flag indicates whether the current profile contains the level of knowledge code stream. When the value is 1, it means that the external knowledge code stream referenced by the current code stream conforms to the same codec standard as the current code stream, and the decoding capability information of the knowledge code stream is described in the current code stream; when the value is 0, it means the current The external knowledge codestream referenced by the codestream does not comply with this standard and does not describe the decoding capability information of the knowledge codestream in the current codestream.
- library_level_present_flag indicates whether the current profile contains the level of knowledge code stream. When the value is 1, it means that the current profile contains the level of the external knowledge codestream referenced by the current codestream; when the value is 0, it means that the current profile does not contain the level of the external knowledge codestream referenced by the current codestream.
- library_profile_space Used to specify the context of library_profile_idc and library_profile_compatibility_flag[j] for j in the range 0 to 31. This value should be equal to 0 in this version of the stream that meets the standard. Other values are reserved for future ITU-T or ISO/IEC use. The decoder should ignore this encoded video sequence if the value is not equal to zero.
- library_tier_flag indicates the hierarchical context explained by library_profile_idc.
- library_profile_idc When library_profile_space is equal to 0, it indicates a profile that conforms to the previously defined encoded video sequence. The stream should not contain the library_profile_idc value that was not previously defined. Other values are reserved for future ITU-T or ISO/IEC use.
- library_profile_compatibility_flag[j] When library_profile_space is equal to 0, the value should be equal to 1, indicating that this encoded video sequence conforms to the previously defined profile when library_profile_idc is equal to j. When library_profile_space is equal to 0, the value of library_profile_compatibility_flag[library_profile_idc] should be equal to 1. For j that corresponds to library_profile_idc that was not previously defined, the value of library_profile_compatibility_flag[j] should be equal to 0.
- library_progressive_source_flag and library_interlaced_source_flag are explained as follows:
- library_progressive_source_flag 0 and library_interlaced_source_flag is equal to 1, the source scan type of pictures in this encoded video sequence can only be interlaced.
- library_non_packed_constraint_flag when the value is equal to 1, it indicates that there is no additional packaging arrangement information at the frame level in this encoded video sequence, nor there is no additional packaging arrangement enhancement information after the frame-level divided rectangle. When the value is equal to 0, it indicates that there may be one or more packaging arrangement additional enhancement information at the frame level or packaging arrangement additional enhancement information after the frame-divided rectangle in this encoded video sequence.
- library_frame_only_constraint_flag When this value is equal to 1, it indicates that field_seq_flag is equal to 0, when this value is equal to 0, it indicates that field_seq_flag may or may not be equal to 0.
- library_max_12bit_constraint_flag library_max_10bit_constraint_flag, library_max_8bit_constraint_flah, library_max_422chroma_constraint_flag, library_max_420chroma_constraint_flag, library_max_monochrome_constraint_flag,library_brig_lig
- the library_profile_idc and library_profile_compatibility_flag[j] of the profile are in conformity with the previously defined profile, and have the semantics that have been previously defined.
- peofilePresentFlag is equal to 1
- library_profile_idc is not in the range of 4 to 7
- j is in the range of 4 to 7
- library_profile_compatibility_flag[j] is not equal to 1
- none of these syntax elements appear and can be presumed to be 0 .
- library_profile_idc is not in the range 4 to 7, and when j is in the range of 4 to 7, library_profile_compatibility_flag[j] is not equal to 1, the value of these syntax elements should be 0.
- library_reserved_zero_43bits when present, this value should be equal to 0 in this version of the stream that conforms to the standard. Other values are reserved for future ITU-T or ISO/IEC use. The decoder should ignore this syntax.
- library_inbld_flag When this value is equal to 1, it indicates that the independent non-low-level decoding capability as previously defined is required to decode the level of profile_tier_level() syntax structure application. When the value is equal to 0, it indicates that the independent non-underlying decoding capability as previously defined does not require decoding of the level to which the profile_tier_level() syntax structure is applied.
- peofilePresentFlag When peofilePresentFlag is equal to 1, library_profile_idc is not in the range of 1 to 5, and when j is in the range of 1 to 5, library_profile_compatibility_flag[j] is not equal to 1, at this time, this syntax element will not appear and can be presumed to be 0. When library_profile_idc is not in the range 1 to 5, and when j is in the range of 1 to 5, library_profile_compatibility_flag[j] is not equal to 1, the value of this syntax element should be 0.
- library_reserved_zero_bit When it appears, the value should be equal to 0 in this version of the stream that meets the standard. The value 1 is reserved for future ITU-T or ISO/IEC use. The decoder should ignore this syntax.
- library_level_idc indicates a level that conforms to the previously defined encoded video sequence.
- the code stream should not contain the library_level_idc value that was not previously defined. Other values are reserved for future ITU-T or ISO/IEC use.
- the "previous definition" is defined in Appendix A or F in HEVC and VVC.
- the above new profile grammar adds a set of decoding capability information for describing the knowledge bitstream referenced by the current bitstream on the basis of the existing profile grammar definitions of HEVC and VVC. Therefore, the semantics of the above newly added syntax elements can be
- the semantics of the syntax elements in the existing profile in VVC are one-to-one, the only difference is that the newly added syntax element describes the decoding capability information of the external knowledge codestream referenced by the current codestream, and the semantics of library_same_standard_flag is expanded to When the value is 1, it means that the external knowledge code stream referenced by the current code stream conforms to the same codec standard as the current code stream, and the decoding capability information of the knowledge code stream is described in the current code stream; when the value is 0, it means the current code The external knowledge stream referenced by the stream does not conform to this standard, and does not describe the decoding capability information of the knowledge stream in the current stream.
- the operations performed by the decoder can be as follows:
- the profile syntax elements describing the external knowledge code stream are parsed according to the existing profile analysis method of HEVC or VVC to obtain the decoding capability information required by the knowledge layer code stream;
- the decoder of the current code stream may be used to decode the knowledge layer code stream. It is worth noting that this will increase the decoder's requirements for decoding capabilities, such as the number of frames decoded per unit time.
- the decoder When the external knowledge codestream referenced by the current codestream does not comply with this standard, as an optional step, the decoder outputs information about the standards to which the knowledge codestream conforms, so that the system can call the corresponding decoder to decode the knowledge codestream.
- the operations performed by the encoder can be as follows:
- the encoder of the current code stream may be further used to encode the knowledge layer code stream. It is worth noting that this will increase the requirements of the encoder's decoding capability, such as the number of frames encoded per unit time.
- the encoder When the external knowledge codestream referenced by the current codestream does not comply with this standard, as an optional step, the encoder outputs information about the standards to which the knowledge codestream conforms, so that the system can call the corresponding encoder to decode the knowledge codestream.
- Computer readable media may include computer readable storage media, which corresponds to tangible media, such as data storage media, or communication media including any medium that facilitates transfer of a computer program from one place to another (eg, according to a communication protocol).
- computer-readable media may generally correspond to (1) non-transitory tangible computer-readable storage media, or (2) communication media, such as signals or carrier waves.
- Data storage media may be any available media that can be accessed by one or more computers or one or more processors to retrieve instructions, code and/or data structures for implementation of the techniques described in this application.
- the computer program product may include a computer-readable medium.
- Such computer-readable storage media may include RAM, ROM, EEPROM, CD-ROM or other optical disk storage devices, magnetic disk storage devices or other magnetic storage devices, flash memory, or may be used to store instructions or data structures
- the desired program code in the form of and any other medium that can be accessed by the computer. And, any connection is properly called a computer-readable medium.
- coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, radio, and microwave are used to transmit instructions from a website, server, or other remote source
- coaxial cable Wire, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of media.
- the computer-readable storage media and data storage media do not include connections, carrier waves, signals, or other temporary media, but are actually directed to non-transitory tangible storage media.
- magnetic disks and optical discs include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), and Blu-ray discs, where magnetic discs usually reproduce data magnetically, while optical discs reproduce optically using lasers data. Combinations of the above should also be included within the scope of computer-readable media.
- DSPs digital signal processors
- ASICs application specific integrated circuits
- FPGAs field programmable logic arrays
- processors may refer to any of the foregoing structure or any other structure suitable for implementation of the techniques described herein.
- the functions described in the various illustrative logical blocks, modules, and steps described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or in combination Into the combined codec.
- the techniques can be fully implemented in one or more circuits or logic elements.
- the technology of the present application may be implemented in a variety of devices or equipment, including wireless handsets, integrated circuits (ICs), or a set of ICs (eg, chipsets).
- ICs integrated circuits
- a set of ICs eg, chipsets
- Various components, modules or units are described in this application to emphasize the functional aspects of the device for performing the disclosed technology, but do not necessarily need to be implemented by different hardware units.
- various units may be combined in a codec hardware unit in combination with suitable software and/or firmware, or by interoperating hardware units (including one or more processors as described above) provide.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Library & Information Science (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
本申请公开了一种视频编码方法、视频解码方法、装置、设备及存储介质,包括:在允许参考知识图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识;在所述第一标识的值为第一值的情况下,将所述视频码流的目标参数的值作为所述视频码流所参考的知识图像码流的目标参数的值;根据所述视频码流所参考的知识图像码流的目标参数的值和所述视频码流所参考的知识图像码流,重构得到所述视频码流所参考的知识图像码流对应的知识图像。本申请提供的技术方案解码较为灵活,解码效率高。
Description
本申请要求于2019年1月8日提交的申请号为201910018725.6、发明名称为“视频编码器、视频解码器及相应方法”的中国专利申请的优先权,以及于2019年9月19日提交的申请号为201910888383.3、发明名称为“视频解码方法、视频编码方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及编解码技术领域,特别涉及一种视频解码方法、视频编码方法、装置、设备及存储介质。
随着视频编解码技术的发展,对视频进行编解码的方法也越来越多,基于知识库的编解码方法便是其中一种。其中,编码端对视频进行编码后,会得到知识图像码流和参考该知识图像码流的视频码流。相应地,解码端需要对知识图像码流和视频码流进行解码,以实现视频的还原。
相关技术提供一种解码方法,该方法在获取编码端编码的知识图像码流和视频码流后,调用第一解码器对知识图像码流进行解码,得到解码后的知识图像码流。之后,调用第二解码器,参考解码后的知识图像码流对视频码流进行解码。
可以看出,相关技术需要调用两个解码器分别对知识图像码流和视频码流进行解码,因此,相关技术的解码过程不够灵活,解码效率不高。
发明内容
本申请实施例提供一种视频解码方法、视频编码方法、装置、设备及存储介质,以解决相关技术编码过程不够灵活、解码效率不高的问题。
第一方面,本申请实施例提供了一种视频解码方法,包括:在允许参考知识图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识;在所述第一标识的值为第一值的情况下,所述视频码流的序列头中的目标参数的值与所述视频码流所参考的知识图像码流的序列头中目标参数的值相同。
可选的,所述方法还可以进一步包括:在所述第一标识的值为第一值的情况下,将所述视频码流的序列头中的目标参数的值作为所述视频码流所参考的知识图像码流的目标参数的值,并根据所述视频码流所参考的知识图像码流的目标参数的值和所述视频码流所参考的知识图像码流,重构得到所述视频码流所参考的知识图像码流对应的知识图像。
需要说明的是,所参考的可以被替换为所允许参考的。
在允许参考知识图像码流对应的知识图像对视频码流进行解码的情况下,可以被替换为在需要参考知识图像码流对应的知识图像对视频码流进行解码的情况下。
可选的,对于目标参数为解码能力信息的情况,在所述第一标识的值为第一值的情况下, 也可以不根据知识图像码流的解码能力信息的值,而是直接调用所述视频码流的解码器对所述视频码流所参考的知识图像码流解码,重构得到所述视频码流所参考的知识图像码流对应的知识图像。
在一种示例性实施例中,所述方法还包括:根据所述视频码流所参考的知识图像码流对应的知识图像和所述视频码流,重构得到所述视频码流对应的视频图像。
在一种示例性实施例中,所述第一标识位于所述视频码流的序列头中。
在一种示例性实施例中,所述第一标识包括相同参数标识,所述相同参数标识用于指示所述视频码流所参考的知识图像码流的目标参数的值是否与所述视频码流的序列头中的目标参数的值相同。其中,所述视频码流的序列头中的目标参数包括所述视频码流的解码能力信息。
在一种示例性实施例中,所述相同参数标识的值为所述第一值,用于指示所述知识图像码流的目标参数的值与所述视频码流的序列头中的目标参数的值相同。
在一种示例性实施例中,相同参数标识的值为第二值,用于指示知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值可以不相同,或者说,用于指示不强制或不要求知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值相同,或者说,用于指示知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值不相同。
在一种示例性实施例中,所述目标参数包括解码能力信息,所述根据所述视频码流所参考的知识图像码流的目标参数的值和所述视频码流所参考的知识图像码流,重构得到所述视频码流所参考的知识图像码流对应的知识图像,包括:确定待使用的解码器的解码能力是否满足所述视频码流所参考的知识图像码流的解码能力信息的值指示的要求;在所述待使用的解码器的解码能力满足所述视频码流所参考的知识图像码流的解码能力信息的值指示的要求时,通过所述待使用的解码器解析所述视频码流所参考的知识图像码流,重构得到所述视频码流所参考的知识图像码流对应的知识图像。
在一种示例性实施例中,所述在允许参考知识图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识,包括:从所述视频码流中解析知识图像参考标识,所述知识图像参考标识用于指示是否允许参考知识图像码流对应的知识图像对所述视频码流进行解码;在所述知识图像参考标识的值指示允许参考所述知识图像码流对应的知识图像对所述视频码流进行解码的情况下,从所述视频码流中解析所述第一标识。
作为另一种示例性实施例,所述知识图像参考标识也可以用于指示视频码流的解码是否需要参考知识图像码流对应的指示图像。进一步的,在所述知识图像参考标识的值指示视频码流的解码需要参考知识图像码流对应的指示图像的情况下,从所述视频码流中解析所述第一标识。
在一种示例性实施例中,所述视频码流中包括知识图像标识,所述知识图像标识的值为第二值,所述知识图像标识为第二值用于指示所述视频码流不为知识图像码流。需要说明的是,知识图像标识可以位于视频码流的序列头中。
在一种示例性实施例中,所述方法还包括:获取当前码流中的知识图像标识;在所述知识图像标识的值指示所述视频码流不为知识图像码流的情况下,才将所述当前码流作为所述视频码流,并执行所述从所述视频码流中解析知识图像参考标识。
在一种示例性实施例中,所述目标参数包括解码能力信息,所述方法还包括:从所述视 频码流的视频参数集VPS中解析所述知识图像码流的解码能力信息;或者,从所述视频码流的序列参数集SPS中解析所述知识图像码流的解码能力信息;或者,从所述视频码流的序列头中解析得到所述知识图像码流的解码能力信息。
在一种示例性实施例中,所述方法还包括:从所述视频码流的视频参数集VPS中解析所述知识图像码流的目标参数;或者,从所述视频码流的序列参数集SPS中解析所述知识图像码流的目标参数;或者,从所述视频码流的序列头中解析得到所述知识图像码流的目标参数。
在一种示例性实施例中,所述目标参数包括解码能力信息,所述视频码流的解码能力信息包括类标识和级标识,所述类标识用于指示所述视频码流所属的类,所述级标识用于指示所述视频码流所属的级,所述将所述视频码流的目标参数的值作为所述知识图像码流的目标参数的值,包括:将所述类标识和所述级标识作为所述视频码流所参考的知识图像码流的解码能力信息。
第二方面,提供了一种视频编码方法,所述方法包括:在允许参考知识图像码流对应的知识图像对视频图像进行编码的情况下,参考所述知识图像码流对应的知识图像对所述视频图像进行编码,得到编码数据;在所述编码数据中添加第一标识,得到视频码流,所述第一标识的值为第一值时,用于指示将所述视频码流的序列头中的目标参数的值作为所述视频码流所参考的知识图像码流的目标参数的值。
可选的,所述第一标识的值为第一值也可以用于指示所述视频码流的序列头中的目标参数的值作为所述视频码流所参考的知识图像码流的序列头中目标参数的值相同。
在一种示例性实施例中,所述第一标识位于所述视频码流的序列头中。
在一种示例性实施例中,所述编码数据包括解码能力信息。
在一种示例性实施例中,所述第一标识包括相同参数标识,所述相同参数标识用于指示所述视频码流所参考的知识图像码流的目标参数的值是否与所述视频码流的序列头中的目标参数的值相同;所述相同参数标识的值为所述第一值用于指示所述知识图像码流的目标参数的值与所述视频码流的序列头中的目标参数的值相同。其中,所述视频码流的序列头中的目标参数可以包括所述视频码流的解码能力信息。
在一种示例性实施例中,所述视频码流中还包括知识图像参考标识,所述知识图像参考标识用于指示是否允许参考知识图像码流对应的知识图像对所述视频码流进行解码。
在一种示例性实施例中,所述视频码流中还包括:知识图像标识,所述知识图像标识的值为第二值,用于指示所述视频码流不为知识图像码流。
在一种示例性实施例中,所述目标参数包括解码能力信息,所述解码能力信息位于所述编码数据的视频参数集VPS中,或者,位于所述编码数据的序列参数集SPS中,所述解码能力信息位于所述视频码流的序列头中。
在一种示例性实施例中,所述目标参数位于所述编码数据的视频参数集VPS中,或者,所述目标参数位于所述编码数据的序列参数集SPS中,所述目标参数位于所述视频码流的序列头中。
在一种示例性实施例中,所述目标参数包括解码能力信息,所述解码能力信息包括类标识和级标识,所述类标识用于指示所述知识图像码流所属的类,所述级标识用于指示所述知识图像码流所属的级。其中,所述类标识和级标识用于指示所述知识图像码流的解码能力信 息。
第三方面,还提供了一种视频解码装置,所述装置包括:解析模块,用于在允许参考知图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识;在所述第一标识的值为第一值的情况下,所述视频码流的序列头中的目标参数的值与所述视频码流所参考的知识图像码流的序列头中目标参数的值相同。
可选的,所述解析模块,也用于在允许参考知图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识;在所述第一标识的值为第一值的情况下,将所述视频码流的序列头中的目标参数的值作为所述视频码流所参考的知识图像码流的目标参数的值。
可选的,所述装置还可以进一步包括:重构模块,用于在所述第一标识的值为第一值的情况下,将所述视频码流的序列头中的目标参数的值作为所述视频码流所参考的知识图像码流的目标参数的值,并根据所述视频码流所参考的知识图像码流的目标参数的值和所述视频码流所参考的知识图像码流,重构得到所述视频码流所参考的知识图像码流对应的知识图像。
可选的,所述重构模块,也可以用于根据所述视频码流所参考的知识图像码流的目标参数的值和所述视频码流所参考的知识图像码流,重构得到所述视频码流所参考的知识图像码流对应的知识图像。
在一种示例性实施例中,所述重构模块,还用于根据所述视频码流所参考的知识图像码流对应的知识图像和所述视频码流,重构得到所述视频码流对应的视频图像。
在一种示例性实施例中,所述第一标识位于所述视频码流的序列头中。
在一种示例性实施例中,所述第一标识包括相同参数标识,所述相同参数标识用于指示所述视频码流所参考的知识图像码流的目标参数的值是否与所述视频码流的序列头中的目标参数的值相同;所述相同参数标识的值为所述第一值用于指示所述知识图像码流的目标参数的值与所述视频码流的序列头中的目标参数的值相同。
在一种示例性实施例中,所述目标参数包括解码能力信息,所述重构模块,用于确定待使用的解码器的解码能力是否满足所述视频码流所参考的知识图像码流的解码能力信息的值指示的要求;在所述待使用的解码器的解码能力满足所述视频码流所参考的知识图像码流的解码能力信息的值指示的要求时,通过所述待使用的解码器解析所述视频码流所参考的知识图像码流,重构得到所述视频码流所参考的知识图像码流对应的知识图像。
在一种示例性实施例中,所述解析模块,用于从所述视频码流中解析知识图像参考标识,所述知识图像参考标识用于指示是否允许参考知识图像码流对应的知识图像对所述视频码流进行解码;在所述知识图像参考标识的值指示允许参考所述知识图像码流对应的知识图像对所述视频码流进行解码的情况下,从所述视频码流中解析所述第一标识。
在一种示例性实施例中,所述视频码流中解析知识图像标识,所述知识图像标识的值为第二值,所述知识图像标识为第二值用于指示所述视频码流不为知识图像码流。
在一种示例性实施例中,所述解析模块,还用于获取当前码流中的知识图像标识;在所述知识图像标识的值指示所述视频码流不为知识图像码流的情况下,才将所述当前码流作为所述视频码流,并执行所述从所述视频码流中解析知识图像参考标识。
在一种示例性实施例中,所述目标参数包括解码能力信息,所述解析模块,还用于从所 述视频码流的视频参数集VPS中解析所述知识图像码流的解码能力信息;或者,从所述视频码流的序列参数集SPS中解析所述知识图像码流的解码能力信息;或者,从所述视频码流的序列头中解析得到所述知识图像码流的解码能力信息。
在一种示例性实施例中,所述解析模块,还用于从所述视频码流的视频参数集VPS中解析所述知识图像码流的目标参数;或者,从所述视频码流的序列参数集SPS中解析所述知识图像码流的目标参数;或者,从所述视频码流的序列头中解析得到所述知识图像码流的目标参数。
在一种示例性实施例中,所述目标参数包括解码能力信息,所述视频码流的解码能力信息包括类标识和级标识,所述类标识用于指示所述视频码流所属的类,所述级标识用于指示所述视频码流所属的级,所述解析模块,用于将所述类标识和级标识作为所述视频码流所参考的知识图像码流的解码能力信息。
第四方面,提供了一种视频编码装置,所述装置包括:编码模块,用于在允许参考知识图像码流对应的知识图像对视频图像进行编码的情况下,参考所述知识图像码流对应的知识图像对所述视频图像进行编码,得到编码数据;添加模块,用于在所述编码数据中添加第一标识,得到视频码流,所述第一标识的值为第一值时,用于指示将所述视频码流的序列头中的目标参数的值作为所述视频码流所参考的知识图像码流的目标参数的值。
可选的,所述第一标识的值为第一值也可以用于指示所述视频码流的序列头中的目标参数的值作为所述视频码流所参考的知识图像码流的序列头中目标参数的值相同。
在一种示例性实施例中,所述第一标识位于所述视频码流的序列头中。
在一种示例性实施例中,所述第一标识包括相同参数标识,所述相同参数标识用于指示所述视频码流所参考的知识图像码流的目标参数的值是否与所述视频码流的序列头中的目标参数的值相同;所述相同参数标识的值为所述第一值用于指示所述知识图像码流的目标参数的值与所述视频码流的序列头中的目标参数的值相同。
在一种示例性实施例中,所述视频码流中还包括知识图像参考标识,所述知识图像参考标识用于指示是否允许参考知识图像码流对应的知识图像对所述视频码流进行解码。
在一种示例性实施例中,所述视频码流中还包括:知识图像标识,所述知识图像标识的值为第二值,用于指示所述视频码流不为知识图像码流。
在一种示例性实施例中,所述目标参数包括解码能力信息,所述解码能力信息位于所述编码数据的视频参数集VPS中,或者,位于所述编码数据的序列参数集SPS中,或者,所述解码能力信息位于所述视频码流的序列头中。
在一种示例性实施例中,所述目标参数包括解码能力信息,所述目标参数位于所述编码数据的视频参数集VPS中,或者,所述目标参数位于所述编码数据的序列参数集SPS中,或者,所述目标参数位于所述视频码流的序列头中。
在一种示例性实施例中,所述目标参数包括解码能力信息,所述解码能力信息包括类标识和级标识,所述类标识用于指示所述知识图像码流所属的类,所述级标识用于指示所述知识图像码流所属的级。
第五方面,本申请实施例提供一种视频解码设备,包括:存储器及处理器;所述存储器中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行,以实现本申请实施例 第一方面及第一方面的任一种可能的实施方式中的方法。
第六方面,本申请实施例提供一种视频编码设备,包括:存储器及处理器;所述存储器中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行,以实现本申请实施例第二方面及第二方面的任一种可能的实施方式中的方法。
可选地,所述处理器为一个或多个,所述存储器为一个或多个。
可选地,所述存储器可以与所述处理器集成在一起,或者所述存储器与处理器分离设置。
在具体实现过程中,存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(read only memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。
第七方面,提供了一种计算机程序(产品),所述计算机程序(产品)包括:计算机程序代码,当所述计算机程序代码被计算机运行时,使得所述计算机执行上述各方面中的方法。
第八方面,提供了一种可读存储介质,可读存储介质存储程序或指令,当所述程序或指令在计算机上运行时,上述各方面中的方法被执行。
第九方面,提供了一种芯片,包括处理器,用于从存储器中调用并运行所述存储器中存储的指令,使得安装有所述芯片的通信设备执行上述各方面中的方法。
第十方面,提供另一种芯片,包括:输入接口、输出接口、处理器和存储器,所述输入接口、输出接口、所述处理器以及所述存储器之间通过内部连接通路相连,所述处理器用于执行所述存储器中的代码,当所述代码被执行时,所述处理器用于执行上述各方面中的方法。
应当理解的是,本申请实施例的第二方面至第十方面与本申请实施例的第一方面的技术方案一致,各方面及对应的可行实施方式所取得的有益效果相似,不再赘述。
第十一方面,本申请实施例提供了一种视频解码方法,包括:从所述视频码流中解析知识图像参考标识,所述知识图像参考标识用于指示所述知识图像参考标识所在的所述视频码流的解码是否允许参考知识图像码流对应的知识图像;在所述知识图像参考标识指示所述视频码流的解码允许参考所述知识图像码流对应的知识图像时,获取所述知识图像码流对应的知识图像,并根据所述知识图像码流对应的知识图像,解码所述视频码流。
在一种示例性实施例中,所述获取所述知识图像码流对应的知识图像包括:从所述视频码流中解析相同标准标识,所述相同标准用于指示所述知识图像码流的解码与所述视频码流的解码所采用的标准是否相同;在所述相同标准指示所述知识图像码流的解码与所述视频码流的解码所采用的标准相同时,获取所述知识图像码流,并解码所述知识图像码流得到所述知识图像码流对应的知识图像。
在一种示例性实施例中,所述相同标准标识位于所述视频码流的视频参数集(video parameters set)中,所述视频码流的序列参数集(sequence parameters set)或者所述视频码流的序列头(sequence header)中。
在一种示例性实施例中,所述获取所述知识图像码流对应的知识图像包括:获取所述知识图像码流,并解码所述知识图像码流得到所述知识图像码流对应的知识图像。
在一种示例性实施例中,所述解码所述知识图像码流得到所述知识图像码流对应的知识图像包括:从所述视频码流中解析知识图像码流的解码能力信息,在当前执行所述视频码流的解码的解码器的解码能力满足所述解码能力信息的要求时,解码所述知识图像码流得到所述知识图像码流对应的知识图像。
在一种示例性实施例中,所述解码能力信息包括所述知识图像码流所属的类和/或所述知识图像码流所属的级,所述解码能力信息包括所述知识图像码流所属的类和/或所述知识图像码流所属的级用于指示所述指示解码所述指示图像码流所需的解码能力。
在一种示例性实施例中,所述视频码流包括知识图像标识或者所述知识图像标识的信息,所述知识图像标识的信息用于指示所述知识图像标识,所述知识图像标识的值用于指示所述视频码流不是知识图像码流。
在一种示例性实施例中,在所述知识图像标识的值用于指示所述视频码流不是知识图像码流时,才执行所述从所述视频码流中解析知识图像参考标识。
在一种示例性实施例中,所述视频码流包括相同参数标识,所述相同参数标识的值用于指示所述知识图像码流的序列头中的除知识图像标识之外的参数的值与所述视频码流的序列头中的除知识图像标识之外的参数的值是否相同。
在一种示例性实施例中,所述知识图像参考标识位于所述视频码流的视频参数集(video parameters set)中,所述视频码流的序列参数集(sequence parameters set)或者所述视频码流的序列头(sequence header)中。
第十二方面,本申请实施例提供了一种视频解码方法,包括:从所述视频码流中解析知识图像码流的解码能力信息;在当前执行所述视频码流的解码的解码器的解码能力满足所述解码能力信息的要求时,获取所述知识图像码流对应的知识图像,并根据所述知识图像码流对应的知识图像,解码所述视频码流。
第十三方面,本申请实施例提供一种视频解码设备,包括用于实施第一方面方法提供的方法的若干个功能单元。
举例来说,视频解码设备可以包括:解析单元,用于从所述视频码流中解析知识图像参考标识,所述知识图像参考标识用于指示所述知识图像参考标识所在的所述视频码流的解码是否允许参考知识图像码流对应的知识图像;重建单元,用于在所述知识图像参考标识指示所述视频码流的解码允许参考所述知识图像码流对应的知识图像时,获取所述知识图像码流对应的知识图像,并根据所述知识图像码流对应的知识图像,解码所述视频码流。
第十四方面,本申请实施例提供一种视频解码设备,包括用于实施第二方面方法提供的方法的若干个功能单元。举例来说,视频解码设备可以包括:解析单元,用于从所述视频码流中解析知识图像码流的解码能力信息;重建单元,用于在当前执行所述视频码流的解码的解码器的解码能力满足所述解码能力信息的要求时,获取所述知识图像码流对应的知识图像,并根据所述知识图像码流对应的知识图像,解码所述视频码流。
第十五方面,本申请实施例提供一种解码设备,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第一方面或第二方面方法的部分或全部步骤。
第十六方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储了程序代码,其中,所述程序代码包括用于执行第一方面或第二方面方法的部分或全部步骤的指令。
第十七方面,本申请实施例提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行第十一方面或第十二方面方法的部分或全部步骤。
综上所述,本申请提供的技术方案带来的有益效果至少包括:
本申请通过视频码流来携带解码能力信息,在视频码流的解码允许参考知识图像码流对应的知识图像的情况下,从视频码流中解析第一标识,且在第一标识为第一值的情况下,将视频码流的序列头中的目标参数的值作为知识图像码流的目标参数的值,从而根据知识图像码流的目标参数的值和知识图像码流重构得到知识图像,之后还可基于知识图像和视频码流来重构视频码流对应的视频图像,本申请实施例提供的方案可实现知识图像码流与视频码流的参数共享,解码效率高。
图1A是用于实现本申请实施例的视频编码及解码系统10实例的框图;
图1B是用于实现本申请实施例的视频译码系统40实例的框图;
图2是用于实现本申请实施例的编码器20实例结构的框图;
图3是用于实现本申请实施例的解码器30实例结构的框图;
图4是用于实现本申请实施例的视频译码设备400实例的框图;
图5是用于实现本申请实施例的另一种编码装置或解码装置实例的框图;
图6是用于实现本申请实施例的一种视频码流与知识码流的关系示意图;
图7是用于实现本申请实施例的视频解码方法的流程图;
图8A是用于实现本申请实施例的一种解码能力信息在比特流中的位置示意图;
图8B是用于实现本申请实施例的一种解码能力信息在比特流中的位置示意图;
图9是用于实现本申请实施例的视频编码方法的流程图;
图10是用于实现本申请实施例的视频解码装置的结构示意图;
图11是用于实现本申请实施里的视频编码装置的结构示意图;
图12是用于实现本申请实施例里的内容供应系统的结构示意图;
图13是用于实现本申请实施例里的终端设备的结构示意图。
下面结合本申请实施例中的附图对本申请实施例进行描述。以下描述中,参考形成本公开一部分并以说明之方式示出本申请实施例的具体方面或可使用本申请实施例的具体方面的附图。应理解,本申请实施例可在其它方面中使用,并可包括附图中未描绘的结构或逻辑变化。因此,以下详细描述不应以限制性的意义来理解,且本申请的范围由所附权利要求书界定。例如,应理解,结合所描述方法的揭示内容可以同样适用于用于执行所述方法的对应设备或系统,且反之亦然。例如,如果描述一个或多个具体方法步骤,则对应的设备可以包含如功能单元等一个或多个单元,来执行所描述的一个或多个方法步骤(例如,一个单元执行一个或多个步骤,或多个单元,其中每个都执行多个步骤中的一个或多个),即使附图中未明确描述或说明这种一个或多个单元。另一方面,例如,如果基于如功能单元等一个或多个单元描述具体装置,则对应的方法可以包含一个步骤来执行一个或多个单元的功能性(例如,一个步骤执行一个或多个单元的功能性,或多个步骤,其中每个执行多个单元中一个或多个单元的功能性),即使附图中未明确描述或说明这种一个或多个步骤。进一步,应理解的是,除非另外明确提出,本文中所描述的各示例性实施例和/或方面的特征可以相互组合。
本申请实施例所涉及的技术方案不仅可能应用于视频编解码标准中,如H.264、高效率视频编码(high efficiency video coding,HEVC)等标准,还可能应用于未来的视频编解码标准中,如H.266标准。本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。下面先对本申请实施例可能涉及的一些概念进行简单介绍。
视频编码通常是指处理形成视频或视频序列的图片序列。在视频编码领域,术语“图片(picture)”、“帧(frame)”或“图像(image)”可以用作同义词。其中,视频编码在源侧执行,通常包括处理(例如,通过压缩)图片序列以减少表示该图片序列所需的数据量,从而更高效地存储和/或传输。视频解码在目的地侧执行,通常包括相对于编码器作逆处理,以重构图片序列。
进一步地,图片可以被划分为切片(slice),切片再被划分为块(block)。视频编码以块为单位进行编码处理,在一些新的视频编码标准中,块的概念被进一步扩展。比如,在H.264标准中有宏块(macro block,MB),宏块可进一步划分成多个可用于预测编码的预测块(partition)。在HEVC标准中,采用编码单元(coding unit,CU),预测单元(prediction unit,PU)和变换单元(transform unit,TU)等基本概念,从功能上划分了多种块单元,并采用全新的基于树结构进行描述。比如CU可以按照四叉树进行划分为更小的CU,而更小的CU还可以继续划分,从而形成一种四叉树结构,CU是对编码图像进行划分和编码的基本单元。对于PU和TU也有类似的树结构,PU可以对应预测块,是预测编码的基本单元。对CU按照划分模式进一步划分成多个PU。TU可以对应变换块,是对预测残差进行变换的基本单元。然而,无论CU,PU还是TU,本质上都属于块(或称图像块)的概念。
例如在HEVC中,通过使用表示为编码树的四叉树结构将CTU拆分为多个CU。在CU层级处作出是否使用图片间(时间)或图片内(空间)预测对图片区域进行编码的决策。每个CU可以根据PU拆分类型进一步拆分为一个、两个或四个PU。一个PU内应用相同的预测过程,并在PU基础上将相关信息传输到解码器。在通过基于PU拆分类型应用预测过程获取残差块之后,可以根据类似于用于CU的编码树的其它四叉树结构将CU分割成TU。在视频压缩技术的发展中,使用四叉树和二叉树(quad-tree and binary tree,QTBT)分割帧来分割编码块。在QTBT块结构中,CU可以为正方形或矩形。
本文中,为了便于描述和理解,可将当前编码图像中待编码的图像块称为当前块,例如在编码中,指当前正在编码的块;在解码中,指当前正在解码的块。将参考图像中用于对当前块进行预测的已解码的图像块称为参考块,即参考块是为当前块提供参考信号的块,其中,参考信号表示图像块内的像素值。可将参考图像中为当前块提供预测信号的块为预测块,其中,预测信号表示预测块内的像素值或者采样值或者采样信号。例如,在遍历多个参考块以后,找到了最佳参考块,此最佳参考块将为当前块提供预测,此块称为预测块。
无损视频编码情况下,可以重构原始图片序列,即经重构图片序列具有与原始图片序列相同的质量(假设存储或传输期间没有传输损耗或其它数据丢失)。在有损视频编码情况下,通过例如量化执行进一步压缩,来减少表示图片序列所需的数据量,而解码器侧无法完全重构图片序列,即经重构图片序列的质量相比原始图片序列的质量较低或较差。
H.261的几个视频编解码标准属于“有损混合型视频编解码”(即,将样本域中的空间和时间预测与变换域中用于应用量化的2D变换编码结合)。视频序列的每个图片通常分割成不 重叠的块集合,通常在块层级上进行编码。换句话说,编码器侧通常在块(视频块)层级处理亦即编码视频,例如,通过空间(图片内)预测和时间(图片间)预测来产生预测块,从当前块(当前处理或待处理的块)减去预测块以获取残差块,在变换域变换残差块并量化残差块,以减少待传输(压缩)的数据量,而解码器侧将相对于编码器的逆处理部分应用于经编码或经压缩块,以重构用于表示的当前块。另外,编码器复制解码器处理循环,使得编码器和解码器生成相同的预测(例如帧内预测和帧间预测)和/或重构,用于处理亦即编码后续块。
下面描述本申请实施例所应用的系统架构。参见图1A,图1A示例性地给出了本申请实施例所应用的视频编码及解码系统10的示意性框图。如图1A所示,视频编码及解码系统10可包括源设备12和目的地设备14,源设备12产生经编码视频数据,因此,源设备12可被称为视频编码装置。目的地设备14可对由源设备12所产生的经编码的视频数据进行解码,因此,目的地设备14可被称为视频解码装置。源设备12、目的地设备14或两个的各种实施方案可包含一或多个处理器以及耦合到所述一或多个处理器的存储器。所述存储器可包含但不限于RAM、ROM、EEPROM、快闪存储器或可用于以可由计算机存取的指令或数据结构的形式存储所要的程序代码的任何其它媒体,如本文所描述。源设备12和目的地设备14可以包括各种装置,包含桌上型计算机、移动计算装置、笔记型(例如,膝上型)计算机、平板计算机、机顶盒、例如所谓的“智能”电话等电话手持机、电视机、相机、显示装置、数字媒体播放器、视频游戏控制台、车载计算机、无线通信设备或其类似者。
虽然图1A将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
源设备12和目的地设备14之间可通过链路13进行通信连接,目的地设备14可经由链路13从源设备12接收经编码视频数据。链路13可包括能够将经编码视频数据从源设备12移动到目的地设备14的一或多个媒体或装置。在一个实例中,链路13可包括使得源设备12能够实时将经编码视频数据直接发射到目的地设备14的一或多个通信媒体。在此实例中,源设备12可根据通信标准(例如无线通信协议)来调制经编码视频数据,且可将经调制的视频数据发射到目的地设备14。所述一或多个通信媒体可包含无线和/或有线通信媒体,例如射频(RF)频谱或一或多个物理传输线。所述一或多个通信媒体可形成基于分组的网络的一部分,基于分组的网络例如为局域网、广域网或全球网络(例如,因特网)。所述一或多个通信媒体可包含路由器、交换器、基站或促进从源设备12到目的地设备14的通信的其它设备。
源设备12包括编码器20,另外可选地,源设备12还可以包括图片源16、图片预处理器18、以及通信接口22。具体实现形态中,所述编码器20、图片源16、图片预处理器18、以及通信接口22可能是源设备12中的硬件部件,也可能是源设备12中的软件程序。分别描述如下:
图片源16,可以包括或可以为任何类别的图片捕获设备,用于例如捕获现实世界图片,和/或任何类别的图片或评论(对于屏幕内容编码,屏幕上的一些文字也认为是待编码的图片 或图像的一部分)生成设备,例如,用于生成计算机动画图片的计算机图形处理器,或用于获取和/或提供现实世界图片、计算机动画图片(例如,屏幕内容、虚拟现实(virtual reality,VR)图片)的任何类别设备,和/或其任何组合(例如,实景(augmented reality,AR)图片)。图片源16可以为用于捕获图片的相机或者用于存储图片的存储器,图片源16还可以包括存储先前捕获或产生的图片和/或获取或接收图片的任何类别的(内部或外部)接口。当图片源16为相机时,图片源16可例如为本地的或集成在源设备中的集成相机;当图片源16为存储器时,图片源16可为本地的或例如集成在源设备中的集成存储器。当所述图片源16包括接口时,接口可例如为从外部视频源接收图片的外部接口,外部视频源例如为外部图片捕获设备,比如相机、外部存储器或外部图片生成设备,外部图片生成设备例如为外部计算机图形处理器、计算机或服务器。接口可以为根据任何专有或标准化接口协议的任何类别的接口,例如有线或无线接口、光接口。
其中,图片可以视为像素点(picture element)的二维阵列或矩阵。阵列中的像素点也可以称为采样点。阵列或图片在水平和垂直方向(或轴线)上的采样点数目定义图片的尺寸和/或分辨率。为了表示颜色,通常采用三个颜色分量,即图片可以表示为或包含三个采样阵列。例如在RBG格式或颜色空间中,图片包括对应的红色、绿色及蓝色采样阵列。但是,在视频编码中,每个像素通常以亮度/色度格式或颜色空间表示,例如对于YUV格式的图片,包括Y指示的亮度分量(有时也可以用L指示)以及U和V指示的两个色度分量。亮度(luma)分量Y表示亮度或灰度水平强度(例如,在灰度等级图片中两者相同),而两个色度(chroma)分量U和V表示色度或颜色信息分量。相应地,YUV格式的图片包括亮度采样值(Y)的亮度采样阵列,和色度值(U和V)的两个色度采样阵列。RGB格式的图片可以转换或变换为YUV格式,反之亦然,该过程也称为色彩变换或转换。如果图片是黑白的,该图片可以只包括亮度采样阵列。本申请实施例中,由图片源16传输至图片处理器的图片也可称为原始图片数据17。
图片预处理器18,用于接收原始图片数据17并对原始图片数据17执行预处理,以获取经预处理的图片19或经预处理的图片数据19。例如,图片预处理器18执行的预处理可以包括整修、色彩格式转换(例如,从RGB格式转换为YUV格式)、调色或去噪。
编码器20(或称视频编码器20),用于接收经预处理的图片数据19,采用相关预测模式(如本文各个实施例中的预测模式)对经预处理的图片数据19进行处理,从而提供经编码图片数据21(下文将进一步基于图2或图4或图5描述编码器20的结构细节)。在一些实施例中,编码器20可以用于执行后文所描述的各个实施例,以实现本申请所描述的视频编码方法。
通信接口22,可用于接收经编码图片数据21,并可通过链路13将经编码图片数据21传输至目的地设备14或任何其它设备(如存储器),以用于存储或直接重构,所述其它设备可为任何用于解码或存储的设备。通信接口22可例如用于将经编码图片数据21封装成合适的格式,例如数据包,以在链路13上传输。
目的地设备14包括解码器30,另外可选地,目的地设备14还可以包括通信接口28、图片后处理器32和显示设备34。分别描述如下:
通信接口28,可用于从源设备12或任何其它源接收经编码图片数据21,所述任何其它源例如为存储设备,存储设备例如为经编码图片数据存储设备。通信接口28可以用于藉由源设备12和目的地设备14之间的链路13或藉由任何类别的网络传输或接收经编码图片数据 21,链路13例如为直接有线或无线连接,任何类别的网络例如为有线或无线网络或其任何组合,或任何类别的私网和公网,或其任何组合。通信接口28可以例如用于解封装通信接口22所传输的数据包以获取经编码图片数据21。
通信接口28和通信接口22都可以配置为单向通信接口或者双向通信接口,以及可以用于例如发送和接收消息来建立连接、确认和交换任何其它与通信链路和/或例如经编码图片数据传输的数据传输有关的信息。
解码器30(或称为解码器30),用于接收经编码图片数据21并提供经解码图片数据31或经解码图片31(下文将进一步基于图3或图4或图5描述解码器30的结构细节)。在一些实施例中,解码器30可以用于执行后文所描述的各个实施例,以实现本申请所描述视频解码方法。
图片后处理器32,用于对经解码图片数据31(也称为经重构图片数据)执行后处理,以获得经后处理图片数据33。图片后处理器32执行的后处理可以包括:色彩格式转换(例如,从YUV格式转换为RGB格式)、调色、整修或重采样,或任何其它处理,还可用于将将经后处理图片数据33传输至显示设备34。
显示设备34,用于接收经后处理图片数据33以向例如用户或观看者显示图片。显示设备34可以为或可以包括任何类别的用于呈现经重构图片的显示器,例如,集成的或外部的显示器或监视器。例如,显示器可以包括液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light emitting diode,OLED)显示器、等离子显示器、投影仪、微LED显示器、硅基液晶(liquid crystal on silicon,LCoS)、数字光处理器(digital light processor,DLP)或任何类别的其它显示器。
虽然,图1A将源设备12和目的地设备14绘示为单独的设备,但设备实施例也可以同时包括源设备12和目的地设备14或同时包括两者的功能性,即源设备12或对应的功能性以及目的地设备14或对应的功能性。在此类实施例中,可以使用相同硬件和/或软件,或使用单独的硬件和/或软件,或其任何组合来实施源设备12或对应的功能性以及目的地设备14或对应的功能性。
本领域技术人员基于描述明显可知,不同单元的功能性或图1A所示的源设备12和/或目的地设备14的功能性的存在和(准确)划分可能根据实际设备和应用有所不同。源设备12和目的地设备14可以包括各种设备中的任一个,包含任何类别的手持或静止设备,例如,笔记本或膝上型计算机、移动电话、智能手机、平板或平板计算机、摄像机、台式计算机、机顶盒、电视机、相机、车载设备、显示设备、数字媒体播放器、视频游戏控制台、视频流式传输设备(例如内容服务服务器或内容分发服务器)、广播接收器设备、广播发射器设备等,并可以不使用或使用任何类别的操作系统。
编码器20和解码器30都可以实施为各种合适电路中的任一个,例如,一个或多个微处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application-specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)、离散逻辑、硬件或其任何组合。如果部分地以软件实施所述技术,则设备可将软件的指令存储于合适的非暂时性计算机可读存储介质中,且可使用一或多个处理器以硬件执行指令从而执行本公开的技术。前述内容(包含硬件、软件、硬件与软件的组合等)中的任一者可视为一或多个处理器。
在一些情况下,图1A中所示视频编码及解码系统10仅为示例,本申请的技术可以适用于不必包含编码和解码设备之间的任何数据通信的视频编码设置(例如,视频编码或视频解码)。在其它实例中,数据可从本地存储器检索、在网络上流式传输等。视频编码设备可以对数据进行编码并且将数据存储到存储器,和/或视频解码设备可以从存储器检索数据并且对数据进行解码。在一些实例中,由并不彼此通信而是仅编码数据到存储器和/或从存储器检索数据且解码数据的设备执行编码和解码。
参见图1B,图1B是根据一示例性实施例的包含图2的编码器20和/或图3的解码器30的视频译码系统40的实例的说明图。视频译码系统40可以实现本申请实施例的各种技术的组合。在所说明的实施方式中,视频译码系统40可以包含成像设备41、编码器20、解码器30(和/或藉由处理单元46的逻辑电路47实施的视频编/解码器)、天线42、一个或多个处理器43、一个或多个存储器44和/或显示设备45。
如图1B所示,成像设备41、天线42、处理单元46、逻辑电路47、编码器20、解码器30、处理器43、存储器44和/或显示设备45能够互相通信。如所论述,虽然用编码器20和解码器30绘示视频译码系统40,但在不同实例中,视频译码系统40可以只包含编码器20或只包含解码器30。
在一些实例中,天线42可以用于传输或接收视频数据的经编码比特流。另外,在一些实例中,显示设备45可以用于呈现视频数据。在一些实例中,逻辑电路47可以通过处理单元46实施。处理单元46可以包含ASIC逻辑、图形处理器、通用处理器等。视频译码系统40也可以包含可选的处理器43,该可选处理器43类似地可以包含专用集成电路ASIC逻辑、图形处理器、通用处理器等。在一些实例中,逻辑电路47可以通过硬件实施,如视频编码专用硬件等,处理器43可以通过通用软件、操作系统等实施。另外,存储器44可以是任何类型的存储器,例如易失性存储器(例如,静态随机存取存储器(static random access memory,SRAM)、动态随机存储器(dynamic random access memory,DRAM)等)或非易失性存储器(例如,闪存等)等。在非限制性实例中,存储器44可以由超速缓存内存实施。在一些实例中,逻辑电路47可以访问存储器44(例如用于实施图像缓冲器)。在其它实例中,逻辑电路47和/或处理单元46可以包含存储器(例如,缓存等)用于实施图像缓冲器等。
在一些实例中,通过逻辑电路实施的编码器20可以包含(例如,通过处理单元46或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的编码器20,以实施参照图2和/或本文中所描述的任何其它编码器系统或子系统所论述的各种模块。逻辑电路可以用于执行本文所论述的各种操作。
在一些实例中,解码器30可以以类似方式通过逻辑电路47实施,以实施参照图3的解码器30和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。在一些实例中,逻辑电路实施的解码器30可以包含(通过处理单元2820或存储器44实施的)图像缓冲器和(例如,通过处理单元46实施的)图形处理单元。图形处理单元可以通信耦合至图像缓冲器。图形处理单元可以包含通过逻辑电路47实施的解码器30,以实施参照图3和/或本文中所描述的任何其它解码器系统或子系统所论述的各种模块。
在一些实例中,天线42可以用于接收视频数据的经编码比特流。如所论述,经编码比特 流可以包含本文所论述的与编码视频帧相关的数据、指示符、索引值、模式选择数据等,例如与编码分割相关的数据(例如,变换系数或经量化变换系数,(如所论述的)可选指示符,和/或定义编码分割的数据)。视频译码系统40还可包含耦合至天线42并用于解码经编码比特流的解码器30。显示设备45用于呈现视频帧。
应理解,本申请实施例中对于参考编码器20所描述的实例,解码器30可以用于执行相反过程。关于信令语法元素,解码器30可以用于接收并解析这种语法元素,相应地解码相关视频数据。在一些例子中,编码器20可以将语法元素熵编码成经编码视频比特流。在此类实例中,解码器30可以解析这种语法元素,并相应地解码相关视频数据。
需要说明的是,本申请实施例中的编码器20和解码器30可以是H.263、H.264、HEVC、动态图像专家组(moving picture experts group,MPEG)-2、MPEG-4、VP8、VP9等视频标准协议对应的编/解码器,或者可以是H.266或者音视频编码标准(audio video coding standard,AVS)3等下一代视频标准协议对应的编/解码器。
参见图2,图2示出用于实现本申请实施例的编码器20的实例的示意性/概念性框图。在图2的实例中,编码器20包括残差计算单元204、变换处理单元206、量化单元208、逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器单元220、经解码图片缓冲器(decoded picture buffer,DPB)230、预测处理单元260和熵编码单元270。预测处理单元260可以包含帧间预测单元244、帧内预测单元254和模式选择单元262。帧间预测单元244可以包含运动估计单元和运动补偿单元(未图示)。图2所示的编码器20也可以称为混合型视频编码器或根据混合型视频编解码器的视频编码器。
例如,残差计算单元204、变换处理单元206、量化单元208、预测处理单元260和熵编码单元270形成编码器20的前向信号路径,而例如逆量化单元210、逆变换处理单元212、重构单元214、缓冲器216、环路滤波器220、经DPB 230、预测处理单元260形成编码器的后向信号路径,其中编码器的后向信号路径对应于解码器的信号路径(参见图3中的解码器30)。
编码器20通过例如输入202,接收图片201或图片201的图像块203,例如,形成视频或视频序列的图片序列中的图片。图像块203也可以称为当前图片块或待编码图片块,图片201可以称为当前图片或待编码图片(尤其是在视频编码中将当前图片与其它图片区分开时,其它图片例如同一视频序列亦即也包括当前图片的视频序列中的先前经编码和/或经解码图片)。
编码器20的实施例可以包括分割单元(图2中未绘示),用于将图片201分割成多个例如图像块203的块,通常分割成多个不重叠的块。分割单元可以用于对视频序列中所有图片使用相同的块大小以及定义块大小的对应栅格,或用于在图片或子集或图片群组之间更改块大小,并将每个图片分割成对应的块。
在一个实例中,编码器20的预测处理单元260可以用于执行上述分割技术的任何组合。
如图片201,图像块203也是或可以视为具有采样值的采样点的二维阵列或矩阵,虽然其尺寸比图片201小。换句话说,图像块203可以包括,例如,一个采样阵列(例如黑白图片201情况下的亮度阵列)或三个采样阵列(例如,彩色图片情况下的一个亮度阵列和两个色度阵列)或依据所应用的色彩格式的任何其它数目和/或类别的阵列。图像块203的水平和 垂直方向(或轴线)上采样点的数目定义图像块203的尺寸。
如图2所示的编码器20用于逐块编码图片201,例如,对每个图像块203执行编码和预测。
残差计算单元204用于基于图片图像块203和预测块265(下文提供预测块265的其它细节)计算残差块205,例如,通过逐样本(逐像素)将图片图像块203的样本值减去预测块265的样本值,以在样本域中获取残差块205。
变换处理单元206用于在残差块205的样本值上应用例如离散余弦变换(discrete cosine transform,DCT)或离散正弦变换(discrete sine transform,DST)的变换,以在变换域中获取变换系数207。变换系数207也可以称为变换残差系数,并在变换域中表示残差块205。
变换处理单元206可以用于应用DCT/DST的整数近似值,例如为HEVC/H.265指定的变换。与正交DCT变换相比,这种整数近似值通常由某一因子按比例缩放。为了维持经正变换和逆变换处理的残差块的范数,应用额外比例缩放因子作为变换过程的一部分。比例缩放因子通常是基于某些约束条件选择的,例如,比例缩放因子是用于移位运算的2的幂、变换系数的位深度、准确性和实施成本之间的权衡等。例如,在解码器30侧通过例如逆变换处理单元212为逆变换(以及在编码器20侧通过例如逆变换处理单元212为对应逆变换)指定具体比例缩放因子,以及相应地,可以在编码器20侧通过变换处理单元206为正变换指定对应比例缩放因子。
量化单元208用于例如通过应用标量量化或向量量化来量化变换系数207,以获取经量化变换系数209。经量化变换系数209也可以称为经量化残差系数209。量化过程可以减少与部分或全部变换系数207有关的位深度。例如,可在量化期间将n位变换系数向下舍入到m位变换系数,其中n大于m。可通过调整量化参数(quantization parameter,QP)修改量化程度。例如,对于标量量化,可以应用不同的标度来实现较细或较粗的量化。较小量化步长对应较细量化,而较大量化步长对应较粗量化。可以通过QP指示合适的量化步长。例如,量化参数可以为合适的量化步长的预定义集合的索引。例如,较小的量化参数可以对应精细量化(较小量化步长),较大量化参数可以对应粗糙量化(较大量化步长),反之亦然。量化可以包含除以量化步长以及例如通过逆量化210执行的对应的量化或逆量化,或者可以包含乘以量化步长。根据例如HEVC的一些标准的实施例可以使用量化参数来确定量化步长。一般而言,可以基于量化参数使用包含除法的等式的定点近似来计算量化步长。可以引入额外比例缩放因子来进行量化和反量化,以恢复可能由于在用于量化步长和量化参数的等式的定点近似中使用的标度而修改的残差块的范数。在一个实例实施方式中,可以合并逆变换和反量化的标度。或者,可以使用自定义量化表并在例如比特流中将其从编码器通过信号发送到解码器。量化是有损操作,其中量化步长越大,损耗越大。
逆量化单元210用于在经量化系数上应用量化单元208的逆量化,以获取经反量化系数211,例如,基于或使用与量化单元208相同的量化步长,应用量化单元208应用的量化方案的逆量化方案。经反量化系数211也可以称为经反量化残差系数211,对应于变换系数207,虽然由于量化造成的损耗通常与变换系数不相同。
逆变换处理单元212用于应用变换处理单元206应用的变换的逆变换,例如,DCT或DST,以在样本域中获取逆变换块213。逆变换块213也可以称为逆变换经反量化块213或逆变换残差块213。
重构单元214(例如,求和器214)用于将逆变换块213(即经重构残差块213)添加至预测块265,以在样本域中获取经重构块215,例如,将经重构残差块213的样本值与预测块265的样本值相加。
可选地,例如线缓冲器216的缓冲器单元216(或简称“缓冲器”216)用于缓冲或存储经重构块215和对应的样本值,用于例如帧内预测。在其它的实施例中,编码器可以用于使用存储在缓冲器单元216中的未经滤波的经重构块和/或对应的样本值来进行任何类别的估计和/或预测,例如帧内预测。
例如,编码器20的实施例可以经配置以使得缓冲器单元216不只用于存储用于帧内预测254的经重构块215,也用于环路滤波器单元220(在图2中未示出),和/或,例如使得缓冲器单元216和经解码图片缓冲器单元230形成一个缓冲器。其它实施例可以用于将经滤波块221和/或来自经解码图片缓冲器230的块或样本(图2中均未示出)用作帧内预测254的输入或基础。
环路滤波器单元220(或简称“环路滤波器”220)用于对经重构块215进行滤波以获取经滤波块221,从而顺利进行像素转变或提高视频质量。环路滤波器单元220旨在表示一个或多个环路滤波器,例如去块滤波器、样本自适应偏移(sample-adaptive offset,SAO)滤波器或其它滤波器,例如双边滤波器、自适应环路滤波器(adaptive loop filter,ALF),或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元220在图2中示出为环内滤波器,但在其它配置中,环路滤波器单元220可实施为环后滤波器。经滤波块221也可以称为经滤波的经重构块221。经解码图片缓冲器230可以在环路滤波器单元220对经重构编码块执行滤波操作之后存储经重构编码块。
编码器20(对应地,环路滤波器单元220)的实施例可以用于输出环路滤波器参数(例如,样本自适应偏移信息),例如,直接输出或由熵编码单元270或任何其它熵编码单元熵编码后输出,例如使得解码器30可以接收并应用相同的环路滤波器参数用于解码。
经DPB 230可以为存储参考图片数据供编码器20编码视频数据之用的参考图片存储器。DPB230可由多种存储器设备中的任一个形成,例如DRAM(包含同步DRAM(synchronous DRAM,SDRAM)、磁阻式RAM(magnetoresistive RAM,MRAM))、电阻式RAM(resistive RAM,RRAM))或其它类型的存储器设备。可以由同一存储器设备或单独的存储器设备提供DPB230和缓冲器216。在某一实例中,经DPB 230用于存储经滤波块221。经解码图片缓冲器230可以进一步用于存储同一当前图片或例如先前经重构图片的不同图片的其它先前的经滤波块,例如先前经重构和经滤波块221,以及可以提供完整的先前经重构亦即经解码图片(和对应参考块和样本)和/或部分经重构当前图片(和对应参考块和样本),例如用于帧间预测。在某一实例中,如果经重构块215无需环内滤波而得以重构,则经DPB 230用于存储经重构块215。
预测处理单元260,也称为块预测处理单元260,用于接收或获取图像块203(当前图片201的当前图像块203)和经重构图片数据,例如来自缓冲器216的同一(当前)图片的参考样本和/或来自经解码图片缓冲器230的一个或多个先前经解码图片的参考图片数据231,以及用于处理这类数据进行预测,即提供可以为经帧间预测块245或经帧内预测块255的预测块265。
模式选择单元262可以用于选择预测模式(例如帧内或帧间预测模式)和/或对应的用作 预测块265的预测块245或255,以计算残差块205和重构经重构块215。
模式选择单元262的实施例可以用于选择预测模式(例如,从预测处理单元260所支持的那些预测模式中选择),所述预测模式提供最佳匹配或者说最小残差(最小残差意味着传输或存储中更好的压缩),或提供最小信令开销(最小信令开销意味着传输或存储中更好的压缩),或同时考虑或平衡以上两者。模式选择单元262可以用于基于码率失真优化(rate distortion optimization,RDO)确定预测模式,即选择提供最小码率失真优化的预测模式,或选择相关码率失真至少满足预测模式选择标准的预测模式。
下文将详细解释编码器20的实例(例如,通过预测处理单元260)执行的预测处理和(例如,通过模式选择单元262)执行的模式选择。
如上文所述,编码器20用于从(预先确定的)预测模式集合中确定或选择最好或最优的预测模式。预测模式集合可以包括例如帧内预测模式和/或帧间预测模式。
帧内预测模式集合可以包括35种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如H.265中定义的方向性模式,或者可以包括67种不同的帧内预测模式,例如,如DC(或均值)模式和平面模式的非方向性模式,或如正在发展中的H.266中定义的方向性模式。
在可能的实现中,帧间预测模式集合取决于可用参考图片(即,例如前述存储在DPB 230中的至少部分经解码图片)和其它帧间预测参数,例如取决于是否使用整个参考图片或只使用参考图片的一部分,例如围绕当前块的区域的搜索窗区域,来搜索最佳匹配参考块,和/或例如取决于是否应用如半像素和/或四分之一像素内插的像素内插,帧间预测模式集合例如可包括先进运动矢量(Advanced Motion Vector Prediction,AMVP)模式和融合(merge)模式。具体实施中,帧间预测模式集合可包括本申请实施例改进的基于控制点的AMVP模式,以及,改进的基于控制点的merge模式。在一个实例中,帧内预测单元254可以用于执行下文描述的帧间预测技术的任意组合。
除了以上预测模式,本申请实施例也可以应用跳过模式和/或直接模式。
预测处理单元260可以进一步用于将图像块203分割成较小的块分区或子块,例如,通过迭代使用四叉树(quad-tree,QT)分割、二进制树(binary-tree,BT)分割或三叉树(triple-tree,TT)分割,或其任何组合,以及用于例如为块分区或子块中的每一个执行预测,其中模式选择包括选择分割的图像块203的树结构和选择应用于块分区或子块中的每一个的预测模式。
帧间预测单元244可以包含运动估计(motion estimation,ME)单元(图2中未示出)和运动补偿(motion compensation,MC)单元(图2中未示出)。运动估计单元用于接收或获取图片图像块203(当前图片201的当前图片图像块203)和经解码图片231,或至少一个或多个先前经重构块,例如,一个或多个其它/不同先前经解码图片231的经重构块,来进行运动估计。例如,视频序列可以包括当前图片和先前经解码图片31,或换句话说,当前图片和先前经解码图片31可以是形成视频序列的图片序列的一部分,或者形成该图片序列。
例如,编码器20可以用于从多个其它图片中的同一或不同图片的多个参考块中选择参考块,并向运动估计单元(图2中未示出)提供参考图片和/或提供参考块的位置(X、Y坐标)与当前块的位置之间的偏移(空间偏移)作为帧间预测参数。该偏移也称为运动向量(motion vector,MV)。
运动补偿单元用于获取帧间预测参数,并基于或使用帧间预测参数执行帧间预测来获取 帧间预测块245。由运动补偿单元(图2中未示出)执行的运动补偿可以包含基于通过运动估计(可能执行对子像素精确度的内插)确定的运动/块向量取出或生成预测块。内插滤波可从已知像素样本产生额外像素样本,从而潜在地增加可用于编码图片块的候选预测块的数目。一旦接收到用于当前图片块的PU的运动向量,运动补偿单元246可以在一个参考图片列表中定位运动向量指向的预测块。运动补偿单元246还可以生成与块和视频条带相关联的语法元素,以供解码器30在解码视频条带的图片块时使用。
具体的,上述帧间预测单元244可向熵编码单元270传输语法元素,所述语法元素包括帧间预测参数(比如遍历多个帧间预测模式后选择用于当前块预测的帧间预测模式的指示信息)。可能应用场景中,如果帧间预测模式只有一种,那么也可以不在语法元素中携带帧间预测参数,此时解码端30可直接使用默认的预测模式进行解码。可以理解的,帧间预测单元244可以用于执行帧间预测技术的任意组合。
帧内预测单元254用于获取,例如接收同一图片的图片块203(当前图片块)和一个或多个先前经重构块,例如经重构相相邻块,以进行帧内估计。例如,编码器20可以用于从多个(预定)帧内预测模式中选择帧内预测模式。
编码器20的实施例可以用于基于优化标准选择帧内预测模式,例如基于最小残差(例如,提供最类似于当前图片块203的预测块255的帧内预测模式)或最小码率失真。
帧内预测单元254进一步用于基于如所选择的帧内预测模式的帧内预测参数确定帧内预测块255。在任何情况下,在选择用于块的帧内预测模式之后,帧内预测单元254还用于向熵编码单元270提供帧内预测参数,即提供指示所选择的用于块的帧内预测模式的信息。在一个实例中,帧内预测单元254可以用于执行帧内预测技术的任意组合。
具体的,上述帧内预测单元254可向熵编码单元270传输语法元素,所述语法元素包括帧内预测参数(比如遍历多个帧内预测模式后选择用于当前块预测的帧内预测模式的指示信息)。可能应用场景中,如果帧内预测模式只有一种,那么也可以不在语法元素中携带帧内预测参数,此时解码端30可直接使用默认的预测模式进行解码。
熵编码单元270用于将熵编码算法或方案(例如,可变长度编码(variable length coding,VLC)方案、上下文自适应VLC(context adaptive VLC,CAVLC)方案、算术编码方案、上下文自适应二进制算术编码(context adaptive binary arithmetic coding,CABAC)、基于语法的上下文自适应二进制算术编码(syntax-based context-adaptive binary arithmetic coding,SBAC)、概率区间分割熵(probability interval partitioning entropy,PIPE)编码或其它熵编码方法或技术)应用于经量化残差系数209、帧间预测参数、帧内预测参数和/或环路滤波器参数中的单个或所有上(或不应用),以获取可以通过输出272以例如经编码比特流21的形式输出的经编码图片数据21。可以将经编码比特流传输到视频解码器30,或将其存档稍后由视频解码器30传输或检索。熵编码单元270还可用于熵编码正被编码的当前视频条带的其它语法元素。
视频编码器20的其它结构变型可用于编码视频流。例如,基于非变换的编码器20可以在没有针对某些块或帧的变换处理单元206的情况下直接量化残差信号。在另一实施方式中,编码器20可具有组合成单个单元的量化单元208和逆量化单元210。
应当理解的是,视频编码器20的其它的结构变化可用于编码视频流。例如,对于某些图像块或者图像帧,视频编码器20可以直接地量化残差信号而不需要经变换处理单元206处理, 相应地也不需要经逆变换处理单元212处理;或者,对于某些图像块或者图像帧,视频编码器20没有产生残差数据,相应地不需要经变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212处理;或者,视频编码器20可以将经重构图像块作为参考块直接地进行存储而不需要经滤波器220处理;或者,视频编码器20中量化单元208和逆量化单元210可以合并在一起。环路滤波器220是可选的,以及针对无损压缩编码的情况下,变换处理单元206、量化单元208、逆量化单元210和逆变换处理单元212是可选的。应当理解的是,根据不同的应用场景,帧间预测单元244和帧内预测单元254可以是被选择性的启用。
参见图3,图3示出用于实现本申请实施例的解码器30的实例的示意性/概念性框图。视频解码器30用于接收例如由编码器20编码的经编码图片数据(例如,经编码比特流)21,以获取经解码图片231。在解码过程期间,视频解码器30从视频编码器20接收视频数据,例如表示经编码视频条带的图片块的经编码视频比特流及相关联的语法元素。
在图3的实例中,解码器30包括熵解码单元304、逆量化单元310、逆变换处理单元312、重构单元314(例如求和器314)、缓冲器316、环路滤波器320、经解码图片缓冲器330以及预测处理单元360。预测处理单元360可以包含帧间预测单元344、帧内预测单元354和模式选择单元362。在一些实例中,视频解码器30可执行大体上与参照图2的视频编码器20描述的编码遍次互逆的解码遍次。
熵解码单元304用于对经编码图片数据21执行熵解码,以获取例如经量化系数309和/或经解码的编码参数(图3中未示出),例如,帧间预测、帧内预测参数、环路滤波器参数和/或其它语法元素中(经解码)的任意一个或全部。熵解码单元304进一步用于将帧间预测参数、帧内预测参数和/或其它语法元素转发至预测处理单元360。视频解码器30可接收视频条带层级和/或视频块层级的语法元素。
逆量化单元310功能上可与逆量化单元110相同,逆变换处理单元312功能上可与逆变换处理单元212相同,重构单元314功能上可与重构单元214相同,缓冲器316功能上可与缓冲器216相同,环路滤波器320功能上可与环路滤波器220相同,经解码图片缓冲器330功能上可与经解码图片缓冲器230相同。
预测处理单元360可以包括帧间预测单元344和帧内预测单元354,其中帧间预测单元344功能上可以类似于帧间预测单元244,帧内预测单元354功能上可以类似于帧内预测单元254。预测处理单元360通常用于执行块预测和/或从经编码数据21获取预测块365,以及从例如熵解码单元304(显式地或隐式地)接收或获取预测相关参数和/或关于所选择的预测模式的信息。
当视频条带经编码为经帧内编码(I)条带时,预测处理单元360的帧内预测单元354用于基于信号表示的帧内预测模式及来自当前帧或图片的先前经解码块的数据来产生用于当前视频条带的图片块的预测块365。当视频帧经编码为经帧间编码(即B或P)条带时,预测处理单元360的帧间预测单元344(例如,运动补偿单元)用于基于运动向量及从熵解码单元304接收的其它语法元素生成用于当前视频条带的视频块的预测块365。对于帧间预测,可从一个参考图片列表内的一个参考图片中产生预测块。视频解码器30可基于存储于DPB230中的参考图片,使用默认建构技术来建构参考帧列表:列表0和列表1。
预测处理单元360用于通过解析运动向量和其它语法元素,确定用于当前视频条带的视 频块的预测信息,并使用预测信息产生用于正经解码的当前视频块的预测块。在本申请的一实例中,预测处理单元360使用接收到的一些语法元素确定用于编码视频条带的视频块的预测模式(例如,帧内或帧间预测)、帧间预测条带类型(例如,B条带、P条带或GPB条带)、用于条带的参考图片列表中的一个或多个的建构信息、用于条带的每个经帧间编码视频块的运动向量、条带的每个经帧间编码视频块的帧间预测状态以及其它信息,以解码当前视频条带的视频块。在本公开的另一实例中,视频解码器30从比特流接收的语法元素包含接收自适应参数集(adaptive parameter set,APS)、序列参数集(sequence parameter set,SPS)、图片参数集(picture parameter set,PPS)或条带标头中的一个或多个中的语法元素。
逆量化单元310可用于逆量化(即,反量化)在比特流中提供且由熵解码单元304解码的经量化变换系数。逆量化过程可包含使用由视频编码器20针对视频条带中的每一视频块所计算的量化参数来确定应该应用的量化程度并同样确定应该应用的逆量化程度。
逆变换处理单元312用于将逆变换(例如,逆DCT、逆整数变换或概念上类似的逆变换过程)应用于变换系数,以便在像素域中产生残差块。
重构单元314(例如,求和器314)用于将逆变换块313(即经重构残差块313)添加到预测块365,以在样本域中获取经重构块315,例如通过将经重构残差块313的样本值与预测块365的样本值相加。
环路滤波器单元320(在编码循环期间或在编码循环之后)用于对经重构块315进行滤波以获取经滤波块321,从而顺利进行像素转变或提高视频质量。在一个实例中,环路滤波器单元320可以用于执行下文描述的滤波技术的任意组合。环路滤波器单元320旨在表示一个或多个环路滤波器,例如去块滤波器、SAO滤波器或其它滤波器,例如双边滤波器、ALF,或锐化或平滑滤波器,或协同滤波器。尽管环路滤波器单元320在图3中示出为环内滤波器,但在其它配置中,环路滤波器单元320可实施为环后滤波器。
随后将给定帧或图片中的经解码视频块321存储在存储用于后续运动补偿的参考图片的经解码图片缓冲器330中。
解码器30用于例如,藉由输出332输出经解码图片31,以向用户呈现或供用户查看。
视频解码器30的其它变型可用于对压缩的比特流进行解码。例如,解码器30可以在没有环路滤波器单元320的情况下生成输出视频流。例如,基于非变换的解码器30可以在没有针对某些块或帧的逆变换处理单元312的情况下直接逆量化残差信号。在另一实施方式中,视频解码器30可以具有组合成单个单元的逆量化单元310和逆变换处理单元312。
具体的,在本申请实施例中,解码器30用于实现后文实施例中描述的视频解码方法。
应当理解的是,视频解码器30的其它结构变化可用于解码经编码视频码流。例如,视频解码器30可以不经滤波器320处理而生成输出视频流;或者,对于某些图像块或者图像帧,视频解码器30的熵解码单元304没有解码出经量化的系数,相应地不需要经逆量化单元310和逆变换处理单元312处理。环路滤波器320是可选的;以及针对无损压缩的情况下,逆量化单元310和逆变换处理单元312是可选的。应当理解的是,根据不同的应用场景,帧间预测单元和帧内预测单元可以是被选择性的启用。
应当理解的是,本申请的编码器20和解码器30中,针对某个环节的处理结果可以经过进一步处理后,输出到下一个环节,例如,在插值滤波、运动矢量推导或环路滤波等环节之 后,对相应环节的处理结果进一步进行修改(clip)或移位(shift)等操作。
例如,按照相邻仿射编码块的运动矢量推导得到的当前图像块的控制点的运动矢量,或者推导得到的当前图像块的子块的运动矢量,可以经过进一步处理,本申请对此不做限定。例如,对运动矢量的取值范围进行约束,使其在一定的位宽内。假设允许的运动矢量的位宽为bitDepth,则运动矢量的范围为-2^(bitDepth-1)-2^(bitDepth-1)-1,其中“^”符号表示幂次方。如bitDepth为16,则取值范围为-32768-32767。如bitDepth为18,则取值范围为-131072-131071。又例如,对运动矢量(例如一个8x8图像块内的四个4x4子块的运动矢量MV)的取值进行约束,使得所述四个4x4子块MV的整数部分之间的最大差值不超过N个像素,例如不超过一个像素。
可以通过以下两种方式进行约束,使其在一定的位宽内:
方式1,将运动矢量溢出的高位去除:
ux=(vx+2
bitDepth)%2
bitDepth
vx=(ux>=2
bitDepth-1)%(ux-2
bitDepth):ux
uy=(vy+2
bitDepth)%2
bitDepth
vy=(uy>=2
bitDepth-1)%(uy-2
bitDepth):uy
其中,vx为图像块或所述图像块的子块的运动矢量的水平分量,vy为图像块或所述图像块的子块的运动矢量的垂直分量,ux和uy为中间值;bitDepth表示位宽。
例如vx的值为-32769,通过以上公式得到的为32767。因为在计算机中,数值是以二进制的补码形式存储的,-32769的二进制补码为1,0111,1111,1111,1111(17位),计算机对于溢出的处理为丢弃高位,则vx的值为0111,1111,1111,1111,则为32767,与通过公式处理得到的结果一致。
方法2,将运动矢量进行Clipping,如以下公式所示:
vx=Clip3(-2
bitDepth-1,2
bitDepth-1-1,vx)
vy=Clip3(-2
bitDepth-1,2
bitDepth-1-1,vy)
其中vx为图像块或所述图像块的子块的运动矢量的水平分量,vy为图像块或所述图像块的子块的运动矢量的垂直分量;其中,x、y和z分别对应MV钳位过程Clip3的三个输入值,所述Clip3的定义为,表示将z的值钳位到区间[x,y]之间:
参见图4,图4是本申请实施例提供的视频译码设备400(例如视频编码设备400或视频解码设备400)的结构示意图。视频译码设备400适于实施本文所描述的实施例。在一个实施例中,视频译码设备400可以是视频解码器(例如图1A的解码器30)或视频编码器(例如图1A的编码器20)。在另一个实施例中,视频译码设备400可以是上述图1A的解码器30 或图1A的编码器20中的一个或多个组件。
视频译码设备400包括:用于接收数据的入口端口410和接收单元(Rx)420,用于处理数据的处理器、逻辑单元或中央处理器(Central Processing Unit,CPU)430,用于传输数据的发射器单元(Tx)440和出口端口450,以及,用于存储数据的存储器460。视频译码设备400还可以包括与入口端口410、接收器单元420、发射器单元440和出口端口450耦合的光电转换组件和电光(EO)组件,用于光信号或电信号的出口或入口。
处理器430通过硬件和软件实现。处理器430可以实现为一个或多个CPU芯片、核(例如,多核处理器)、FPGA、ASIC和DSP。处理器430与入口端口410、接收器单元420、发射器单元440、出口端口450和存储器460通信。处理器430包括译码模块470(例如编码模块470或解码模块470)。编码/解码模块470实现本文中所公开的实施例,以实现本申请实施例所提供的色度块预测方法。例如,编码/解码模块470实现、处理或提供各种编码操作。因此,通过编码/解码模块470为视频译码设备400的功能提供了实质性的改进,并影响了视频译码设备400到不同状态的转换。或者,以存储在存储器460中并由处理器430执行的指令来实现编码/解码模块470。
存储器460包括一个或多个磁盘、磁带机和固态硬盘,可以用作溢出数据存储设备,用于在选择性地执行这些程序时存储程序,并存储在程序执行过程中读取的指令和数据。存储器460可以是易失性和/或非易失性的,可以是只读存储器(ROM)、随机存取存储器(RAM)、随机存取存储器(ternary content-addressable memory,TCAM)和/或静态随机存取存储器(SRAM)。
参见图5,图5是根据一示例性实施例的可用作图1A中的源设备12和目的地设备14中的任一个或两个的装置500的简化框图。装置500可以实现本申请的技术。换言之,图5为本申请实施例的编码设备或解码设备(简称为译码设备500)的一种实现方式的示意性框图。其中,译码设备500可以包括处理器510、存储器530和总线系统550。其中,处理器和存储器通过总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令。译码设备的存储器存储程序代码,且处理器可以调用存储器中存储的程序代码执行本申请描述的各种视频编码或解码方法,尤其是各种新的视频解码的方法。为避免重复,这里不再详细描述。
在本申请实施例中,该处理器510可以是CPU,该处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器530可以包括只读存储器(ROM)设备或者随机存取存储器(RAM)设备。任何其他适宜类型的存储设备也可以用作存储器530。存储器530可以包括由处理器510使用总线550访问的代码和数据531。存储器530可以进一步包括操作系统533和应用程序535,该应用程序535包括允许处理器510执行本申请描述的视频编码或解码方法(尤其是本申请描述的视频解码方法)的至少一个程序。例如,应用程序535可以包括应用1至N,其进一步包括执行在本申请描述的视频编码或解码方法的视频编码或解码应用(简称视频译码应用)。
该总线系统550除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线 等。但是为了清楚说明起见,在图中将各种总线都标为总线系统550。
可选的,译码设备500还可以包括一个或多个输出设备,诸如显示器570。在一个示例中,显示器570可以是触感显示器,其将显示器与可操作地感测触摸输入的触感单元合并。显示器570可以经由总线550连接到处理器510。
接下来,对本申请实施例提供的技术方案进行详细阐述:
随着视频编解码技术的发展,对视频进行编解码的方法也越来越多,基于知识库的编解码方法便是其中一种。视频由图像序列构成,图像序列包括一帧或多帧图像。对待编码的图像进行编码(或对待解码的图像进行解码)时,编码器(或解码器)可以参考与待编码的图像(或待解码的图像)纹理或内容相近的图像来完成编码(或解码),以提高编码(或解码)效率。其中,被参考的图像称为知识图像,存储图像的数据库称为知识库,因此,这种视频中至少一帧图像参考至少一帧知识图像进行编解码的方法称为基于知识库的视频编解码(library-based video coding)方法。采用基于知识库的视频编码方法对一个视频序列进行编码,会产生一个知识图像码流和一个包含视频序列各帧图像的视频码流,两层码流之间的参考关系如图6所示。可以看出,视频码流按照非对齐时间段依赖于知识图像码流。
在获取到视频码流后,可以调用第一解码器对知识图像码流进行解码,得到解码后的知识图像。之后,调用第二解码器,参考解码后的知识图像对视频码流进行解码。也可以调用同一个解码器对视频码流和知识图像码流进行解码。
本申请实施例提供了一种视频解码方法,该方法可应用于图1A、图1B、图3、图4及图5所示的实施环境中。如图7所示,该方法包括:
步骤701,在允许参考知识图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识。
本申请实施例提供的解码方法中,在解码场景下获取待解码的码流,待解码的码流为比特串。采用基于知识库的编码方法进行编码得到该待解码的码流,则该待解码的码流为知识图像码流或者参考知识图像码流的视频码流中的一种。由于知识图像码流与参考知识图像码流的视频码流所需的解码方式不同,因而在获取待解码的码流后,在允许参考知识图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识之前,需要对该待解码的码流的类型进行确认,以采用相应的解码方式实现对该待解码的码流的解码。
在一种示例性实施例中,在允许参考知识图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识,包括:从视频码流中解析知识图像参考标识,知识图像参考标识用于指示是否允许参考知识图像码流对应的知识图像对视频码流进行解码;在知识图像参考标识的值指示允许参考知识图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识。
需要说明的是,所参考的可以是所允许参考的。允许参考知识图像码流对应的知识图像对视频码流进行解码,也即视频码流的解码需要参考知识图像码流对应的知识图像。
知识图像参考标识可以通过数值的形式对视频码流的解码是否允许(或者,是否需要)参考知识图像码流对应的知识图像进行指示。例如,知识图像参考标识的值为第一值,用于指示允许参考知识图像码流对应的知识图像对视频码流进行解码。知识图像参考标识的值为第二值,用于指示不允许参考知识图像码流对应的知识图像对视频码流进行解码,或者,用 于指示不强制或不要求允许参考知识图像码流对应的知识图像对视频码流进行解码。其中,知识图像参考标识的第一值和第二值不同。
例如,该知识图像参考标识的第一值可以为1,则指示允许参考知识图像码流对应的知识图像对视频码流进行解码;知识图像参考标识的第二值可以为0,则指示不允许参考知识图像码流对应的知识图像对视频码流进行解码。因此,在从视频码流中解析到知识图像参考标识为1时,则可以确定该视频码流的解码允许参考知识图像码流对应的知识图像。
当然,本实施例对知识图像参考标识所采用的第一值和第二值的数值不加以限定,例如,第一值可以为0,第二值可以为1,则可以在知识图像参考标识的值为0时指示允许参考知识图像码流对应的知识图像对视频码流进行解码,而在知识图像参考标识的值为1时指示不允许参考知识图像码流对应的知识图像对视频码流进行解码。
在一种示例性实施例中,知识图像参考标识也可以用于指示视频码流的解码是否需要参考知识图像码流对应的知识图像;在知识图像参考标识的值指示视频码流的解码需要参考知识图像码流对应的知识图像的情况下,从视频码流中解析第一标识。
知识图像参考标识可以通过数值的形式对视频码流的解码是否需要参考知识图像码流对应的知识图像进行指示。例如,知识图像参考标识的值为第一值,用于指示视频码流的解码需要参考知识图像码流对应的知识图像;知识图像参考标识的值为第二值,用于指示视频码流的解码不需要参考知识图像码流对应的知识图像,或者,用于指示不要求或不强制视频码流的解码需要参考知识图像码流对应的知识图像。例如,知识图像参考标识的第一值为1,则指示视频码流的解码需要参考知识图像码流对应的知识图像;知识图像参考标识的第二值为0,则指示视频码流的解码不需要参考知识图像码流对应的知识图像。因此,在从视频码流中解析到知识图像参考标识为1时,则可以确定该视频码流的解码需要参考知识图像码流对应的知识图像。
当然,本实施例对知识图像参考标识所采用的第一值和第二值的数值不加以限定,例如,知识图像参考标识的第一值可以为0,知识图像参考标识的第二值可以为1,则可以在知识图像参考标识的值为0时指示视频码流的解码需要参考知识图像码流对应的知识图像,而在知识图像参考标识的值为1时指示视频码流的解码不需要参考知识图像码流对应的知识图像。
可选地,该第一标识可以包括相同参数标识,相同参数标识用于指示视频码流所参考的知识图像码流的目标参数的值是否与视频码流的序列头中的目标参数的值相同。其中,视频码流的序列头中的目标参数可以包括视频码流的解码能力信息。其中,相同参数标识的值为第一值,用于指示知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值相同。其中,相同参数标识的值为第一值,用于指示知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值可以不相同,或者说,用于指示不强制或不要求知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值相同,或者说,用于指示知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值不相同。可选的,在该实施方式下,除了确定视频码流的解码需要允许参考知识图像码流对应的知识图像外,还可以进一步确定该视频码流允许参考的知识图像码流与该视频码流所采用的标准是否相同,如果采用的标准相同,才将视频码流的目标参数(可以包括解码能力信息)作为知识图像码流的目标参数(可以包括解码能力信息)。其中,标准是指视频编解码标准,例如可以是音视频编码标准(audio video coding standard,AVS)、高效率视频编码(high efficiency video coding,HEVC)、H.264等 视频编解码标准。相同标准标识也可以通过数值的形式来对视频码流所允许参考的知识图像码流与该视频码流所采用的标准是否相同进行指示,例如,相同标准标识为第一值时,用于指示视频码流所允许参考的知识图像码流与该视频码流所采用的标准相同;相同标准标识为第二值时,用于指示视频码流所允许参考的知识图像码流与该视频码流所采用的标准不相同,或者,用于指示不强制或不要求视频码流所允许参考的知识图像码流与该视频码流所采用的标准相同。例如,相同标准标识的第一值为1,则指示视频码流所允许参考的知识图像码流与该视频码流所采用的标准相同;相同标准标识的第二值为0,则指示视频码流所允许参考的知识图像码流与该视频码流所采用的标准不相同。
当然,本实施例对相同标准标识所采用的第一值和第二值的数值不加以限定,例如,相同标准标识的第一值可以为0,相同标准标识的第二值可以为1,则可以在相同标准标识的值为0时指示视频码流所允许参考的知识图像码流与该视频码流所采用的标准相同,而在相同标准标识的值为1时指示视频码流所允许参考的知识图像码流与该视频码流所采用的标准不相同。
需要说明的是,若视频码流所允许参考的知识图像码流与该视频码流所采用的标准不同,那么可能会造成即使解析视频码流得到了知识图像码流的目标参数(可以包括解码能力信息)的值,也不能对知识图像码流进行解码,则不仅占用了视频码流的解码器的资源,造成了资源的浪费,还降低了解码效率。
基于上述说明,在本实施例中,还可以将相同参数标识的指示内容也可以扩展为包含以下含义,相同参数标识可以进一步用于指示知识图像码流与视频码流所采用的标准是否相同。以相同参数标识通过数值的形式来进行指示为例,则经过扩展后,当相同参数标识的数值为第一值(例如,可以为1)时,则进一步指示知识图像码流与视频码流所采用的标准相同;当相同参数标识的数值为第二值(例如,可以为0)时,则进一步指示知识图像码流与视频码流所采用的标准不同。
对于知识图像码流与视频码流所采用的标准不同的情况,本实施例给出的解决方案为,视频码流的解码器输出知识图像码流所采用的标准的信息,以便于调用能够解码采用该标准的码流的解码器来对该知识图像码流进行解码。
可选的,该第一标识也可以包括相同标准标识,相同标准标识用于指示视频码流所参考的知识图像码流与视频码流所采用的标准是否相同。其中,相同标准标识的值为第一值,用于指示视频码流所参考的知识图像码流与视频码流所采用的标准相同。其中,相同标准标识为第二值,用于指示视频码流所参考的知识图像码流与视频码流所采用的标准不相同,或者,用于指示不强制或不要求视频码流所参考的知识图像码流与视频码流所采用的标准相同。
在一种可选的实施方式中,在获取待解码的视频码流之后,或者在从视频码流中解析知识图像参考标识之前,该方法还可以包括:从视频码流中解析知识图像标识,知识图像标识的值为第二值(可以为0或1),用于指示视频码流不为知识图像码流。其中,在知识图像标识的值指示该视频码流不是知识图像码流时,才从视频码流中解析知识图像参考标识。其中,知识图像标识为第一值(可以为0或1,第一值与第二值不同),用于指示知识图像标识所在的码流为知识图像码流。
可以看出,在该实施方式中,在确定是否允许(或者,是否需要)参考知识图像码流对应的知识图像对视频码流解码之前,先确定获取的码流为知识图像码流还是视频码流(可以 通过解析该码流中的知识图像标识的值来确定),在确定该获取的码流不是知识图像码流而是视频码流后,才进一步确定是否允许(或者,是否需要)参考知识图像码流对应的知识图像对该视频码流进行解码(可以通过解析该视频码流中的知识图像参考标识的值来确定)。例如,若码流不是知识图像码流而是视频码流,则从视频码流中解析知识图像参考标识。若知识图像参考标识指示视频码流的解码允许参考知识图像码流对应的知识图像,则从视频码流中解析第一标识。通过第一标识的值来确定视频码流所参考的知识图像码流的目标参数的值是否与视频码流的序列头中的目标参数的值相同。通过上述过程,可以将获取的码流确定为以下三个种类中的一个:
第一种类:若知识图像标识指示该码流是知识图像码流,则可以确定该码流是知识图像码流。
第二种类:若知识图像标识指示该码流不是知识图像码流而是视频码流,而知识图像参考标识指示该视频码流的解码不允许参考知识图像码流对应的知识图像,则可以确定该视频码流是对视频中的图像序列编码得到码流,且解码该码流不允许参考知识图像码流对应的知识图像。
第三种类:若知识图像标识指示该码流不是知识图像码流而是视频码流,而知识图像参考标识指示该视频码流的解码允许参考知识图像码流对应的知识图像,则可以确定该视频码流是对视频中的图像序列编码得到的码流,且解码该视频码流允许参考知识图像码流对应的知识图像。
可以看出,若不确定获取的码流是否为知识图像码流,则只能将码流确定为不允许参考知识图像码流的码流和参考知识图像码流的码流,而不参考知识图像码流的码流实际上包括了上述第一种类及第二种类两种码流。因此,通过确定视频码流是否为知识图像码流,可以对获取的视频码流进行更为准确的区分,即进一步区分上述第一种类和第二种类。
需要说明的是,知识图像标识也可以通过数值的形式来对视频码流是否为知识图像码流进行指示,由于上文已进行了详细说明,因而此处不再加以赘述。
步骤702,在第一标识的值为第一值的情况下,将视频码流的序列头中的目标参数的值作为视频码流所参考的知识图像码流的目标参数的值。
在确定视频码流的解码允许参考知识图像码流对应的知识图像,且视频码流的第一标识为第一值后,将该视频码流的目标参数(可以包括解码能力信息)的值作为视频码流参考的知识图像码流的目标参数(可以包括解码能力信息)的值。其中,目标参数包括解码能力信息,解码能力信息用于指示码流被解码所需要的解码能力,根据解码能力信息来调用解码能力不低于解码能力信息所指示的解码能力的解码器,从而对码流进行解码。因此,从视频码流中获取知识图像码流的解码能力信息,便可以确定视频码流的解码器的解码能力是否满足知识图像码流的解码能力信息,并根据确定结果实现知识图像码流的解码。可选地,解码能力信息包括但不限于该码流的最大码率、解码该码流需要的最小的解码图像缓存大小等信息。
具体的,对于步骤701或者步骤702包括的从视频码流中获取知识图像码流的解码能力信息的方式,本实施例可采用的方式包括但不限于以下五种:
第一种获取方式:从视频码流的视频参数集(video parameters set,VPS)中解析知识图像码流的解码能力信息。
该解析方式可应用于采用HEVC或者多功能视频编码(versatile video coding,VVC) 标准的视频码流。参见图8A,采用HEVC或者VVC编码的视频码流包括视频参数集(video parameters set,VPS)、序列参数集(sequence parameters set,SPS)以及对构成视频的图片序列进行编码得到的条带相关数据,条带相关数据包括条带头及条带数据。其中,知识图像码流的解码能力信息位于视频码流的VPS中,则VPS的语法表可参见表1:
表1
其中,vps_library_picture_enable_flag即为知识图像参考标识包括的一种示例:当值为第一值(例如,可以为1)时,表示视频码流的解码允许或需要参考知识图像码流对应的知识图像;当值为第二值(例如,可以为0)时,表示当前码流的解码不允许参考知识图像码流对应的知识图像,或者,表示不强制或不要求当前码流的解码允许参考知识图像码流对应的知识图像。
vps_library_same_standard_flag即为相同标准标识包括的一种示例:当值为第一值(例如,可以为1)时,表示视频码流参考的知识图像码流与视频码流所采用的标准相同;当值为第二值(例如,可以为0)时,表示视频码流参考的知识图像码流与视频码流所采用的标准不同,或者,表示不强制或不要求视频码流参考的知识图像码流与视频码流所采用的标准相同。
profile_tier_level即为知识图像码流的解码能力信息包括的一种示例。
相应地,解码器按照如下的方式进行解析:
1)解析vps_library_picture_enable_flag,确定视频码流的解码是否允许(或者,是否需要)参考知识图像码流对应的知识图像;
2)若视频码流的解码允许或者需要参考知识图像码流对应的知识图像时,解析vps_library_same_standard_flag,确定视频码流所参考或者所允许参考的知识图像码流所采用的标准与视频码流所采用的标准是否相同;
3)若视频码流允许或者需要参考的知识图像码流所采用的标准与视频码流所采用的标准相同,解析profile_tier_level包括的知识图像码流的解码能力信息。
可以看出,在该实施例中通过VPS中的profile_tier_level来描述知识图像码流的解码能力信息。并且,该包含知识图像码流的解码能力信息的profile_tier_level可以独立于视频码流的解码能力信息的profile_tier_level,也可以是在视频码流的解码能力信息的profile_tier_level的基础上进一步的扩充。另外,该语法表中也可进一步添加知识图像标识,来指示知识图像标识所在的码流是否为知识图像码流。
作为一种可选的步骤,进一步的,在当前码流的解码器的解码能力满足知识图像码流需 要的解码能力信息的需求时,可以使用当前码流的解码器来解码知识图像码流。
当当前码流参考的外部知识码流(即知识图像码流)不符合本标准或者当前码流的解码器的解码能力不满足知识图像码流需要的解码能力信息的需求时,作为一种可选的步骤,解码器输出知识图像码流所符合的标准的信息,以方便系统调用对应的解码器解码知识图像码流。
编码器按照如下的方式进行编码:
1)获取当前待编码图像;
2)根据对当前待编码图像进行编码是否允许(或者,是否需要)参考知识图像码流对应的知识图像,确定知识图像参考标识(例如,可以是vps_library_picture_enable_flag)的值;
该编码侧方法还可以包括:确定当前待编码图像进行编码是否允许(或者,是否需要)参考知识图像码流对应的知识图像。具体地,可以根据率失真代价或者其他衡量编码效率或者编码性能的指标确定。
3)若对当前待编码图像进行编码允许(或者,需要)参考知识图像码流对应的知识图像,对当前待编码图像进行编码,得到编码数据,并根据参考的知识图像码流与编码数据所采用的标准是否相同,确定相同标准标识(例如,可以是vps_library_same_standard_flag)的值;
4)若参考的知识图像码流与编码后得到的编码数据所采用的标准相同,在编码数据中添加知识图像码流的解码能力信息(例如,可以是profile_tier_level)和知识图像参考标识(例如,可以是vps_library_picture_enable_flag),得到视频码流。示例性地,profile_tier_level用于指示知识图像码流的解码能力信息,且profile_tier_level位于编码数据的VPS中。
需要说明的是,编码数据是指对构成视频的图像序列进行编码得到的数据,该编码数据包括视频参数集VPS、SPS以及条带相关数据。在编码数据添加profile_tier_level的方式可以为:根据知识图像码流的解码能力信息更新编码数据中的第一profile_tier_level,得到更新的profile_tier_level,将更新的profile_tier_level覆盖该第一profile_tier_level,以实现添加。或者,添加方式也可以为:根据知识图像码流的解码能力信息确定第二profile_tier_level,将第二profile_tier_level添加在编码数据中,即编码数据中第一profile_tier_level与第二profile_tier_level共存,从而实现添加。
第二种获取方式:从视频码流的SPS中解析知识图像码流的解码能力信息。
该解析方式也可应用于采用HEVC或者VVC标准的视频码流中,只不过知识图像码流的解码能力信息位于视频码流的SPS中,则SPS的语法表如表2所示:
表2
其中,sps_library_picture_enable_flag即为知识图像参考标识包括的一种示例:当值为第一值(例如,可以为1)时,表示视频码流的解码允许或需要参考知识图像码流对应的知识图像;当值为第二值(例如,可以为0)时,表示视频码流的解码不允许或不需要参考知识图像码流对应的知识图像,或者,表示不强制或不要求当前码流的解码参考知识图像码流对应的知识图像。
sps_library_same_standard_flag即为相同标准标识包括的一种示例:值为第一值(例如,可以为1)时,表示视频码流参考的知识图像码流所采用的标准与视频码流所采用的标准相同;当值为第二值(例如,可以为0)时,表示视频码流参考的知识图像码流所采用的标准与视频码流所采用的标准不同,或者,表示不强制或不要求视频码流参考的知识图像码流所采用的标准与视频码流所采用的标准相同。
profile_tier_level即为知识图像码流的解码能力信息包括的一种示例。
相应地,解码器按照如下的方式进行解析:
1)解析sps_library_picture_enable_flag,确定码流的解码是否允许(或者,是否需要)参考知识图像码流对应的知识图像;
2)若视频码流的解码允许或者需要参考知识图像码流对应的知识图像,解析sps_library_same_standard_flag,确定视频码流所参考或者所允许参考的知识图像码流所采用的标准与视频码流所采用的标准是否相同;
3)若视频码流允许或者需要参考的知识图像码流所采用的标准与视频码流所采用的标准相同,解析profile_tier_level包括的知识图像码流需要的解码能力信息。
可以看出,在该实施例中通过SPS中的profile_tier_level来描述知识图像码流的解码能力信息。并且,该包含知识图像码流的解码能力信息的profile_tier_level可以独立于携带视频码流的解码能力信息的profile_tier_level,也可以是在携带视频码流的解码能力信息的profile_tier_level的基础上进一步的扩充。另外,该语法表中也可进一步包括知识图像标识,来指示知识图像标识所在的码流是否为知识图像码流。
作为一种可选的步骤,进一步的,在当前码流的解码器的解码能力满足知识图像码流需要的解码能力信息的需求时,可以使用当前码流的解码器来解码知识图像码流。
当当前码流参考的外部知识码流(即知识图像码流)不符合本标准或者当前码流的解码器的解码能力不满足知识图像码流需要的解码能力信息的需求时,作为一种可选的步骤,解码器输出知识图像码流所符合的标准的信息,以方便系统调用对应的解码器解码知识图像码流。
编码器按照如下的方式进行编码:
1)获取当前待编码图像;
2)根据对当前待编码图像进行编码是否允许(或者,是否需要)参考知识图像码流对应的知识图像,确定知识图像参考标识(例如,可以是sps_library_picture_enable_flag)的值;
该编码侧方法还可以包括:确定当前待编码图像进行编码是否允许(或者,是否需要)参考知识图像码流对应的知识图像。具体地,可以根据率失真代价或者其他衡量编码效率或 者编码性能的指标确定。
3)若对当前待编码图像进行编码允许(或者,需要)参考知识图像码流对应的知识图像,对当前待编码图像进行编码,得到编码数据,根据参考的知识图像码流与编码数据所采用的标准是否相同,确定相同标准标识(例如,可以是sps_library_same_standard_flag)的值;
4)若参考的知识图像码流与编码后得到的编码数据所采用的标准相同,在编码数据中添加知识图像码流的解码能力信息(例如,可以是profile_tier_level)和知识图像参考标识(例如,可以是sps_library_picture_enable_flag),得到视频码流。示例性地,profile_tier_level用于指示知识图像码流的解码能力信息,且profile_tier_level位于编码数据的SPS中。
其中,由于添加方式已在第一种情况中进行了说明,因而此处不再加以赘述。
作为第一种解析方式或者第二种解析方式中profile_tier_level的一种示例,该profile_tier_level可以对视频码流的解码能力信息的结构进行扩充,使得不仅可以描述知识图像码流的解码能力信息,还可以用于描述视频码流的解码所允许或者所需要参考知识图像码流的解码能力信息,该profile_tier_level的语法表如表3所示:
表3
其中,表3中的各语句的含义如下:
library_picture_enable_flag即为知识图像参考标识包括的一种示例:用于指示视频码流的解码是否允许(或者,是否需要)参考知识图像码流对应的知识图像。可以看出,library_picture_enable_flag的作用与第一种解析方式中的vps_library_picture_enable_flag及第二种解析方式中的sps_library_picture_enabale_flag相同。当值为第二值(例如,可以为0)时, 表示当前码流的解码不允许参考知识图像码流对应的知识图像,或者,表示不强制或不要求当前码流的解码参考知识图像码流对应的知识图像。
library_same_standard_flag即为第一标识包括的一种示例,也即相同标准标识包括的一种示例:用于指示视频码流参考的知识图像码流与视频码流所采用的标准是否相同,且是否在视频码流中携带知识图像码流的解码能力信息。
library_level_present_flag:用于指示profile_tier_level是否包含知识图像码流的级别。级别用于指示知识图像码流的相关参数,如采样率、分别率等。当值为第一值(例如,可以为1)时,指示profile_tier_level包含知识图像码流的级别;当值为第二值(例如,可以为0)时,指示profile_tier_level不包含知识图像码流的级别,或者不强制或不要求profile_tier_level包含知识图像码流的级别。
library_profile_space:用于指定library_profile_idc及library_profile_compatibility_flag[j]的定义。需要说明的是,在知识图像码流与视频码流所采用的标准相同时,library_profile_space的值应为0。
library_tier_flag:指示library_profile_idc的定义。
library_profile_idc:在library_profile_space的值为0的情况下,用于指示视频码流的档次,即知识图像码流所属的类。其中,档次指示视频码流所使用的算法等信息,library_profile_idc的取值不同,其指示的档次也不同。
library_profile_compatibility_flag[j]:若library_profile_space的值为0,则library_profile_compatibility_flag[j]的值应为1,以指示该视频码流符合library_profile_idc所指示的档次。
library_progressive_source_flag和library_interlaced_source_flag:用于指示视频码流中的图片的源扫描类型。当library_progressive_source_flag等于1而library_interlaced_source_flag等于0时,指示图片的源扫描类型为逐行扫描(progressive);当library_progressive_source_flag等于0而library_interlaced_source_flag等于1时,指示图片的源扫描类型为隔行扫描(interlaced);当library_progressive_source_flag和library_interlaced_source_flag均等于0时,指示图片的源扫描类型未知;当library_progressive_source_flag和library_interlaced_source_flag均等于1时,指示图片的源扫描类型将采用其他语句来定义。例如,可以采用source_scan_type来定义图片的源扫描类型。
library_non_packed_constraint_flag:用于指示视频码流中,帧级的包装及分割矩形是否安排有附加增强信息。当值为1时,指示视频码流中帧级的包装及分割矩形均未安排附加增强信息;当值为0时,指示视频码流中帧级的包装或者帧级的分割矩形安排有附加增强信息。
library_frame_only_constraint_flag:用于指示视频码流是否包含场图像。当值为1时,指示视频码流不包含场图像;当值为0时,指示视频码流中可能包含场图像。
进一步地,当profilePresentFlag等于1时,library_profile_idc的取值范围不为4-7,若此时j的取值范围为4-7,则library_profile_compatibility_flag[j]不等于1,从而指示视频码流的档次不符合library_profile_idc指示的档次。则library_max_12bit_constraint_flag、library_max_10bit_constraint_flag、library_max_8bit_constraint_flah、library_max_422chroma_constraint_flag、library_max_420chroma_constraint_flag、library_max_monochrome_constraint_flag、library_intra_constraint_flag、 library_one_picture_only_constraint及library_lower_bit_rate_constraint_flag的值均为0。
library_reserved_zero_43bits:若知识图像码流与视频码流所采用的标准相同,则library_reserved_zero_43bits的值为0。
library_inbld_flag:用于指示独立非低层解码能力是否需要对profile_tier_level所应用的层级进行解码。其中,当profilePresentFlag的值为1时,library_profile_idc的取值范围不为1-5,若此时j范围为1-5,则library_profile_compatibility_flag[j]不等于1,从而指示视频码流的档次不符合library_profile_idc指示的档次。则library_inbld_flag的值为0,此时,library_inbld_flag指示独立非低层解码能力不需要对profile_tier_level所应用的层级进行解码。其中,独立非低层解码能力是指对非低层码流进行独立解码的能力。
library_reserved_zero_bit:若知识图像码流与视频码流所采用的标准相同,则library_reserved_zero_43bits的值为0。
library_level_idc:用于指示视频码流的级别。当library_level_idc的取值不同时,library_level_idc指示的级别也不同。
若通过library_picture_enable_flag确定该视频码流的解码允许参考知识图像码流对应的知识图像,且通过library_same_standard_flag确定知识图像码流与视频码流所采用的标准相同,则通过表3来获取知识图像码流的解码能力信息时,可以通过解析表3中的library_level_present_flag及表3中位于library_level_present_flag下面的各语法元素来实现知识图像码流的解码能力信息的获取。相应地,编码器根据知识图像码流来确定profile_tier_level中各语法元素的值,从而得到profile_tier_level所描述的知识图像码流的解码能力信息。
第三种获取方式:从视频码流中解析类标识,类标识用于指示知识图像码流所属的类;从视频码流中解析级标识,级标识用于指示知识图像码流所属的级;将类标识和级标识指示的解码能力信息作为知识图像码流的解码能力信息。
视频码流的解码能力信息位于所述视频码流的序列头中,视频码流的解码能力信息包括类标识和级标识。此外,视频码流的解码能力信息包括但不限于该视频码流的最大码率、解码该码流需要的最小的解码图像缓存大小等信息。类标识和级标识可以通过视频码流的最大码率、解码该码流需要的最小的解码图像缓存大小等信息来确定。该解析方式下,可应用于采用AVS3标准的视频码流,参见图8B,视频码流包括序列头(sequence header)以及对构成视频的图片序列进行编码得到的图像相关数据,图像相关数据包括图像头及图像数据。其中,通过视频码流的序列头中的类标识和级标识来指示知识图像码流的解码能力信息,视频码流的序列头的语法表可参见如下的表4:
表4
其中,library_picture_enable_flag即为知识图像参考标识包括的一种示例:当值为第一值(例如,可以为1)时,表示视频码流的解码允许或需要参考知识图像码流对应的知识图像;当值为第二值(例如,可以为0)时,表示视频码流的解码不允许参考知识图像码流对应的知识图像,或者,表示不强制或不要求视频码流的解码参考知识图像码流对应的知识图像。
library_same_standard_flag即为相同标准标识包括的一种示例:当值为第一值(例如,可以为1)时,表示视频码流参考的知识图像码流与视频码流所采用的标准相同;当值为第二值(例如,可以为0)时,表示视频码流参考的知识图像码流与视频码流所采用的标准不同,或者,表示不强制或不要求视频码流参考的知识图像码流与视频码流所采用的标准相同。
profile_id_library即为类标识包括的一种示例:用于指示视频码流参考的知识图像码流所属的类。
level_id_library即为级标识包括的一种示例,用于指示视频码流参考的知识图像码流所属的级。
相应地,解码器按照如下的方式进行解析:
1)解析library_picture_enable_flag,确定视频码流的解码是否允许(或者,是否需要)参考知识图像码流对应的知识图像;
2)若视频码流的解码允许或者需要参考知识图像码流对应的知识图像时,解析library_same_standard_flag,确定视频码流需要参考或者所允许参考的知识图像码流与视频码流所采用的标准是否相同;
3)若视频码流允许或者需要参考的知识图像码流符合与视频码流所采用的标准相同,则进一步解析profile_id_library和level_id_library包括的知识图像码流的解码能力信息。
编码器按照如下的方式进行编码:
1)获取当前待编码图像;
2)根据对当前待编码图像进行编码是否允许(或者,是否需要)参考知识图像码流对应的知识图像,确定知识图像参考标识(例如,可以是library_picture_enable_flag)的值;
该编码侧方法还可以包括:确定当前待编码图像进行编码是否允许(或者,是否需要)参考知识图像码流对应的知识图像。具体地,可以根据率失真代价或者其他衡量编码效率或者编码性能的指标确定。
3)当对当前待编码图像进行编码允许(或者,需要)参考知识图像码流对应的知识图像时,对当前待编码图像进行编码,得到编码数据,根据参考的知识图像码流与编码数据所采用的标准是否相同,确定相同标准标识(例如,可以是library_same_standard_flag)的值;
4)若参考的知识图像码流与编码数据所采用的标准相同,在编码数据中添加知识图像参考标识、相同标准标识、类标识和级标识(例如,可以是level_id_library和profile_id_library)。 类标识和级标识用于指示知识图像码流的解码能力信息,类标识用于指示知识图像码流所属的类,级标识用于指示知识图像码流所属的级。
其中,由于添加方式已在第一种情况中进行了说明,因而此处不再加以赘述。另外,该语法表中也可进一步包括知识图像标识,来指示该视频码流是否为知识图像。
第四种获取方式:第一标识位于视频码流的序列头中,第一标识包括相同参数标识,从视频码流的序列头中解析知识图像码流的相同参数标识,相同参数标识用于指示知识图像码流的目标参数的值是否与视频码流的序列头中的目标参数的值相同。其中,视频码流的序列头中的目标参数可以包括视频码流的解码能力信息;在相同参数标识为第一值的情况下,相同参数标识用于指示知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值相同;在相同参数标识为第二值的情况下,相同参数标识用于指示知识图像码流的目标参数的值可以与视频码流的序列头中的目标参数的值不相同,或者说不强制知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值相同,或者说用于指示知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值不相同。
该解析方式也可应用于采用AVS3标准的视频码流,只不过,通过视频码流的序列头中参数来指示知识图像码流的目标参数(可以包括解码能力信息),视频码流的序列头的语法表可参见表5:
表5
其中,is_libiary_stream_flag即为知识图像标识包括的一种示例:当值为第一值(例如,可以为1)时,表示当前的码流是知识图像码流;当值为第二值(例如,可以为0)表示当前的码流不是知识图像码流。
library_picture_enable_flag即为知识图像参考标识包括的一种示例:当值为第一值(例如,可以为1)时,表示当前码流的解码允许或需要参考知识图像码流对应的知识图像;当值为第二值(例如,可以为0)时,表示当前码流的解码不允许参考知识图像码流对应的知识图像,或者,表示不强制或不要求当前码流的解码允许参考知识图像码流对应的知识图像。
library_stream_using_same_standard_flag即为相同参数标识包括的一种示例:当值为第一 值(例如,可以是1)时,用于指示视频码流所参考的知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值相同;当值为第二值(例如,可以是0)时,用于指示视频码流所参考的知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值不同,或者,用于指示不强制或不要求视频码流所参考的知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值相同。其中,本申请对于目标参数不加以限定,例如,目标参数可以为视频码流的序列头中除知识图像标识(例如,可以是is_libiary_stream_flag)以外的所有参数,或者,目标参数也可以为视频码流的序列头中除知识图像标识(例如,可以是is_libiary_stream_flag)以外的所有参数中的一个或多个。
相应地,解码器按照如下的方式进行解析:
1)解析知识图像标识,确定当前码流是否为知识图像码流;
2)若当前码流不是知识图像码流,解析知识图像参考标识,确定当前码流的解码是否允许参考知识图像码流对应的知识图像;
3)若当前码流的解码允许参考知识图像码流对应的知识图像时,解析相同参数标识,确定知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值是否相同。
在该实施例中,第一标识包括相同参数标识,相同参数标识用于指示视频码流所参考的知识图像码流的目标参数的值是否与视频码流的序列头中的目标参数的值相同。其中,视频码流的序列头中的目标参数包括视频码流的解码能力信息。因此,若知识图像码流的序列头中的目标参数的值与视频码流的序列头中的目标参数的值均相同,由于目标参数包括解码能力信息,则说明知识图像码流的解码能力信息与视频码流的解码能力信息相同,则可将视频码流的解码能力信息作为知识图像码流的解码能力信息,从而实现从视频码流中解析知识图像码流的解码能力信息。
可选的,目标参数可以是视频码流的所参考的知识图像码流的序列头中除知识图像标识(例如可以是is_libiary_stream_flag)之外的参数,或者所有参数。目标参数也可以是视频码流的序列头中除知识图像标识之外的参数,或者所有参数。
当视频码流参考的知识图像码流的序列头中除知识图像标识(例如可以是is_libiary_stream_flag)之外的所有参数值与视频码流中的对应的参数值相同时,作为一种可选的步骤,使用视频码流的解码器来解码知识层码流。值得注意的是,这会提高解码器解码能力的要求,例如单位时间内解码帧数的要求。
当视频码流参考的知识图像码流的序列头中除视频码流之外的所有参数值与视频码流中的对应的参数值不同时,作为一种可选的步骤,解码器输出知识图像码流所符合的信息,以方便系统调用对应的解码器解码知识码流。作为另一种可选的步骤,根据知识图像码流的序列头中的参数获取知识码流需要的解码能力,当知识图像码流需要的解码能力不超过视频码流需要的解码能力时,使用视频码流的解码器来解码知识层码流。值得注意的是,这会提高解码器解码能力的要求,例如单位时间内解码帧数的要求。所以,当知识图像码流需要的解码能力超过视频码流需要的解码能力时,作为一种可选的步骤,解码器输出知识码流所符合的信息,以方便系统调用对应的解码器解码知识图像码流。编码器按照如下的方式进行编码:
1)获取当前待编码图像;
2)根据当前待编码图像是否为知识图像,确定知识图像标识(例如,可以是is_library_stream_flag)的值;应理解,知识图像标识的值也可以在得到当前待编码图像对应 的码流后,通过判定当前待编码图像对应的码流是否为知识图像码流得到,在此不做限定。
2)若当前待编码图像不是知识图像而是视频图像,根据对视频图像进行编码是否允许(或者,是否需要)参考知识图像码流对应的知识图像,确定知识图像参考标识(例如,可以是library_picture_enable_flag)的值;
该编码侧方法还可以包括:确定当前待编码图像进行编码是否允许(或者,是否需要)参考知识图像码流对应的知识图像。具体地,可以根据率失真代价或者其他衡量编码效率或者编码性能的指标确定。
3)若对视频图像进行编码允许(或者,需要)参考知识图像码流对应的知识图像,基于知识图像码流的目标参数(可以包括解码能力信息)的值确定相同参数标识的值,并对视频图像进行编码,得到编码数据,在编码数据中添加知识图像标识、知识图像参考标识以及相同参数标识,从而得到视频码流。相同参数标识用于指示知识图像码流的目标参数的值是否与编码数据的序列头中的目标参数的值相同。示例性地,知识图像码流的目标参数可以位于知识图像码流的序列头中,则相同参数标识用于指示知识图像码流的序列头中的目标参数的值是否与编码数据的序列头中的目标参数的值相同。
无论采用哪种方式,在从视频码流中得到知识图像码流的解码能力信息,便可触发根据得到的知识图像码流的解码能力信息来完成视频码流的解码。
步骤703,根据视频码流所参考的知识图像码流的目标参数的值和视频码流所参考的知识图像码流,重构得到视频码流所参考的知识图像码流对应的知识图像。
可选地,根据视频码流所参考的知识图像码流的目标参数(可以包括解码能力信息)的值和视频码流所参考的知识图像码流,重构得到视频码流所参考的知识图像码流对应的知识图像,包括:确定待使用的解码器的解码能力是否满足视频码流所参考的知识图像码流的解码能力信息指示的要求;在待使用的解码器的解码能力满足视频码流所参考的知识图像码流的解码能力信息指示的要求时,通过待使用的解码器解析视频码流所参考的知识图像码流,重构得到视频码流所参考的对应的知识图像。
示例性地,若视频码流的解码器的解码能力满足视频码流所参考的知识图像码流的解码能力信息的要求,通过视频码流的解码器预测视频码流所参考的知识图像码流得到知识图像,或者使用与视频码流的解码器调用的内核或算法相同的解码器预测所述视频码流所参考的知识图像码流得到知识图像。之后,根据视频码流所参考的知识图像码流对应的知识图像解码视频码流,即根据视频码流所参考的知识图像码流对应的知识图像和视频码流,重构得到视频码流对应的视频图像。
根据以上说明可以得知,从视频码流中解析视频码流所参考的知识图像码流的解码能力信息,便可以确定视频码流的解码器的解码能力是否满足视频码流所参考的知识图像码流的解码能力信息,根据确定结果实现视频码流所参考的知识图像码流的解码。若视频码流的解码器的解码能力满足视频码流所参考的知识图像码流的解码能力信息的要求,则可以通过该视频码流的解码器对视频码流所参考的知识图像码流对视频码流所参考的知识图像码流对应的知识图像进行预测,根据知识图像和视频码流重构视频码流对应的视频图像,从而完成视频码流的解码。
可选地,对于视频码流的解码器的解码能力不满足视频码流所参考的知识图像码流的解码能力信息的要求,本实施例通过该视频码流的解码器输出视频码流所参考的知识图像码流 的解码能力信息,以便于调用满足视频码流所参考的知识图像码流的解码能力信息的要求的解码器来对视频码流所参考的知识图像码流进行解码。
相关技术中,需要调用两个解码器分别对知识图像码流和视频码流进行解码。其原因在于,解码器解析视频码流只能获取到视频码流自身的解码能力信息,而视频码流的解码能力信息与知识图像码流的解码能力信息不一定相同,若直接使用解析视频码流的解码器来解码知识图像码流,则可能会在知识图像码流的解码能力信息所需要的解码能力高于视频码流的解码能力信息所需要的解码能力的情况下,导致知识图像码流的解码失败。因此,相关技术调用两个解码器分别获取知识图像码流的解码能力信息和视频码流的解码能力信息,并对知识图像码流和视频码流分别进行解码。
相比于相关技术,本实施例提供的方法中,视频码流不仅携带视频码流自身的解码能力信息,还携带了视频码流参考的知识图像码流的解码能力信息。因此,解码器解析视频码流便可以获取视频码流的解码能力信息和视频码流所参考的知识图像码流的解码能力信息,从而可以确定出解码器是否既满足视频码流所参考的知识图像码流的解码能力信息所需要的解码能力、又满足视频码流的解码能力信息所需要的解码能力。
如果是,则可以用该解码器来对视频码流所参考的知识图像码流和视频码流均进行解码,从而实现视频码流所参考的知识图像码流和视频码流的交替解码。例如,通过该解码器依次解码第一段知识图像码流、参考第一段知识图像码流的视频码流、第二段知识图像码流和参考第二段知识图像码流的视频码流。如果不是,才调用其他解码器来实现视频码流所参考的知识图像码流的解码。
在一种可选的实施方式中,若视频码流的解码器的解码能力满足视频码流所参考的知识图像码流的解码能力信息的要求,除了通过视频码流的解码器解码视频码流所参考的知识图像码流得到知识图像的方式外,该方法还可以选择另外一种解码方式:使用与视频码流的解码器调用的内核或算法相同的解码器预测视频码流所参考的知识图像码流得到知识图像,根据知识图像和视频码流重构视频码流对应的视频图像。
其中,由于与视频码流的解码器调用的内核或算法相同,因而使用与视频码流的解码器调用的内核或算法相同的解码器解码视频码流所参考的知识图像码流,既满足视频码流所参考的知识图像码流的解码能力信息所需要的解码能力、又满足视频码流的解码能力信息所需要的解码能力。
综上所述,本申请通过视频码流来携带知识图像码流的目标哦参数,在视频码流的解码允许参考知识图像码流对应的知识图像的情况下,从视频码流中解析第一标识,且在第一标识为第一值的情况下,将视频码流的目标参数的值作为视频码流所参考的知识图像码流的目标参数的值,从而根据视频码流所参考的知识图像码流的目标参数的值和视频码流所参考的知识图像码流重构得到知识图像。进一步地,还可基于视频码流所参考的知识图像码流对应的知识图像和视频码流来重构视频码流对应的视频图像,本申请实施例提供的方案可实现知识图像码流与视频码流的共享参数,因而解码方式较为灵活,解码效率高。
基于相同构思,本申请实施例还提供了一种视频编码方法,该方法可应用于图1A、图1B、图2、图4和图5所示的实施环境中。参见图9,该方法包括:
步骤901,在允许参考知识图像码流对应的知识图像对视频图像进行编码的情况下,参 考知识图像码流对应的知识图像对视频图像进行编码,得到编码数据。
该编码侧方法还可以包括:确定当前待编码图像进行编码是否允许(或者,是否需要)参考知识图像码流对应的知识图像。具体地,可以根据率失真代价或者其他衡量编码效率或者编码性能的指标确定。
步骤902,在编码数据中添加第一标识,得到视频码流,第一标识的值为第一值时,用于指示将视频码流的序列头中的目标参数的值作为视频码流所参考的知识图像码流的目标参数的值。
可选地,第一标识位于视频码流的序列头中。
可选地,第一标识包括相同参数标识,相同参数标识用于指示视频码流所参考的知识图像码流的目标参数的值是否与视频码流的序列头中的目标参数的值相同;相同参数标识的值为第一值用于指示知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值相同。
可选地,视频码流中还包括知识图像参考标识,知识图像参考标识用于指示是否允许参考知识图像码流对应的知识图像对视频码流进行解码。
可选地,视频码流中还包括:知识图像标识,知识图像标识的值为第二值时,用于指示视频码流不为知识图像码流。
可选地,所述目标参数包括解码能力信息,所解码能力信息位于编码数据的视频参数集VPS中,或者,位于编码数据的序列参数集SPS中,或者,解码能力信息位于视频码流的序列头中。
可选地,所述目标参数包括解码能力信息,所述解码能力信息包括类标识和级标识,类标识和级标识用于指示知识图像码流的解码能力信息,类标识用于指示知识图像码流所属的类,级标识用于指示知识图像码流所属的级。
该视频编码方法中,各个步骤及步骤中涉及的信息等均可参考上述视频解码方法中的相关内容,此处不再一一赘述。
综上,本申请通过视频码流来携带知识图像码流的目标参数,因而解析视频码流便能获取知识图像码流的目标参数,使得解码时能够根据知识图像码流的目标参数的值预测知识图像码流对应的知识图像,从而基于知识图像和视频码流来重构视频码流对应的视频图像,实现知识图像码流与视频码流的贡献参数。实施本申请来进行解码较为灵活,解码效率高。
基于与上述方法相同的申请构思,本申请实施例还提供了一种视频解码装置,该视频解码装置可应用于如图1A所示的目的地设备14、图1B所示的解码器30、图3所示的解码器30、图4所示的视频译码设备400、图5所示的译码设备500,或者图13所示的视频解码器3206中。
参见图10,该装置包括:解析模块1001和重构模块1002。该解析模块1001和重构模块1002可应用于如图1A所示的目的地设备14的解码器30、图1B所示的解码器30、图3所示的解码器30、图4所示的编码/解码模块430、图5所示的处理器510,或者图13所示的视频解码器3206中。
解析模块1001,用于在允许参考知图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识;在第一标识的值为第一值的情况下,将视频码流的序列头中的目标参数的值作为视频码流所参考的知识图像码流的目标参数的值;
重构模块1002,用于根据视频码流所参考的知识图像码流的目标参数的值和视频码流所参考的知识图像码流,重构得到视频码流所参考的知识图像码流对应的知识图像。
可选地,重构模块1002,还用于根据视频码流所参考的知识图像码流对应的知识图像和视频码流,重构得到视频码流对应的视频图像。
可选地,第一标识位于视频码流的序列头中。
可选地,第一标识包括相同参数标识,相同参数标识用于指示视频码流所参考的知识图像码流的目标参数的值是否与视频码流的序列头中的目标参数的值相同;
相同参数标识的值为第一值用于指示知识图像码流的目标参数的值与视频码流的序列头中的目标参数的值相同。
可选地,所述目标参数包括解码能力信息,重构模块1002,用于确定待使用的解码器的解码能力是否满足视频码流所参考的知识图像码流的解码能力信息指示的要求;在待使用的解码器的解码能力满足视频码流所参考的知识图像码流指示的解码能力信息的要求时,通过待使用的解码器解析视频码流所参考的知识图像码流,重构得到视频码流所参考的知识图像码流对应的知识图像。
可选地,解析模块1001,用于从视频码流中解析知识图像参考标识,知识图像参考标识用于指示是否允许参考知识图像码流对应的知识图像对视频码流进行解码;在知识图像参考标识的值指示允许参考知识图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识。
可选地,视频码流中解析知识图像标识,知识图像标识的值为第二值,知识图像标识为第二值用于指示视频码流不为知识图像码流。
可选地,解析模块1001,还用于获取当前码流中的知识图像标识;在知识图像标识的值指示视频码流不为知识图像码流的情况下,才将当前码流作为视频码流,并执行从视频码流中解析知识图像参考标识。
可选地,所述目标参数包括解码能力信息,解析模块1001,还用于从视频码流的视频参数集VPS中解析知识图像码流的解码能力信息;或者,从视频码流的序列参数集SPS中解析知识图像码流的解码能力信息;或者,从视频码流的序列头中解析得到知识图像码流的解码能力信息。
可选地,所述目标参数包括解码能力信息,视频码流的解码能力信息包括类标识和级标识,类标识用于指示视频码流所属的类,级标识用于指示视频码流所属的级,解析模块,用于将类标识和级标识作为视频码流所参考的知识图像码流的解码能力信息。
本申请实施例还提供了一种视频编码装置,该视频解码装置可应用于如图1A所示的源设备12、图1B所示的视频译码系统40、图2所示的编码器20、图4所示的视频译码设备400、或图5所示的译码设备500中。如图11所示,该装置包括:编码模块1101和添加模块1102可应用于图1A或图1B或图2所示的编码器20中,或者图4所示的编码/解码模块430中。
编码模块1101,用于在允许参考知识图像码流对应的知识图像对视频图像进行编码的情况下,参考所述知识图像码流对应的知识图像对所述视频图像进行编码,得到编码数据;
添加模块1102,用于在所述编码数据中添加第一标识,得到视频码流,所述第一标识的值为第一值时,用于指示将视频码流的序列头中的目标参数的值作为视频码流所参考的知识 图像码流的目标参数的值。
可选地,第一标识位于所述视频码流的序列头中。
可选地,所述第一标识包括相同参数标识,所述相同参数标识用于指示所述视频码流所参考的知识图像码流的目标参数的值是否与所述视频码流的序列头中的目标参数的值相同;
所述相同参数标识的值为所述第一值用于指示所述知识图像码流的目标参数的值与所述视频码流的序列头中的目标参数的值相同。
可选地,所述视频码流中还包括知识图像参考标识,所述知识图像参考标识用于指示是否允许参考知识图像码流对应的知识图像对所述视频码流进行解码。
可选地,所述视频码流中还包括:知识图像标识,所述知识图像标识的值为第二值,用于指示所述视频码流不为知识图像码流。
可选地,所述目标参数包括解码能力信息,所述解码能力信息位于所述编码数据的视频参数集VPS中,或者,位于所述编码数据的序列参数集SPS中,所述解码能力信息位于所述视频码流的序列头中。
可选地,所述目标参数包括解码能力信息,所述解码能力信息包括类标识和级标识,所述类标识用于指示所述知识图像码流所属的类,所述级标识用于指示所述知识图像码流所属的级。
应理解的是,上述图10和图11提供的装置在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本申请实施例还提供了一种视频解码设备,包括:存储器及处理器;存储器中存储有至少一条指令,至少一条指令由处理器加载并执行,以实现本申请实施例提供的上述任一种视频解码方法。例如,该处理器可以为图1A所示的解码器30、图1B所示的解码器30、图3所示的解码器30、图4所示的处理器430,或图5所示的处理器510。
本申请实施例还提供了一种视频编码设备,包括:存储器及处理器;存储器中存储有至少一条指令,至少一条指令由处理器加载并执行,以实现本申请实施例提供的上述任一种视频编码方法。例如,该处理器可以为图1A所示的编码器20、图1B所示的编码器20、图2所示的编码器20、图4所示的处理器430,以及图5所示的处理器510。存储器可以为图1B中的存储器44或者图5中的存储器530。
本申请实施例还提供了一种计算机程序(产品),计算机程序(产品)包括:计算机程序代码,当计算机程序代码被计算机运行时,使得计算机执行上述各方面中的方法。例如,该计算机程序(产品)可以应用于图1A所示的解码器30、图1B所示的解码器30、图3所示的解码器30、图1A所示的编码器20、图1B所示的编码器20、图2所示的编码器20、图4所示的处理器430,或者图5所示的处理器510。
本申请实施例还提供了一种可读存储介质,可读存储介质存储程序或指令,当程序或指令在计算机上运行时,上述各方面中的方法被执行。例如,该可读存储介质可以应用于图1A 所示的解码器30、图1B所示的解码器30、图3所示的解码器30、图1A所示的编码器20、图1B所示的编码器20、图2所示的编码器20、图4所示的处理器430,或者图5所示的处理器510。
本申请实施例还提供了一种芯片,包括处理器,用于从存储器中调用并运行存储器中存储的指令,使得安装有芯片的通信设备执行上述各方面中的方法。例如,该芯片可应用于图1A所示的源设备12中,该处理器可以为图1A所示的编码器20。又例如,该芯片可应用于图1A所示的目的地设备14中,该处理器可以为图1A所示的解码器30。又例如,该芯片可应用于图1B所示的的视频译码系统40中,该处理器可以为图1B所示的解码器30或者编码器20。或者,该处理器可以为图2所示的编码器20或者图3所示的解码器30。又例如,该芯片可应用于图4所示的的视频译码设备400中,该处理器可以为图4所示的处理器510。又例如,该芯片可应用于图5所示的的译码设备500中,该处理器可以为图5所示的处理器430。
本申请实施例还提供另一种芯片,包括:输入接口、输出接口、处理器和存储器,输入接口、输出接口、处理器以及存储器之间通过内部连接通路相连,处理器用于执行存储器中的代码,当代码被执行时,处理器用于执行上述各方面中的方法。例如,该芯片可应用于图1A所示的源设备12中,则输出接口为图1A所示的通信接口22,处理器为图1A所示的编码器20。又例如,该芯片可应用于图1A所示的目的地设备14中,该输入接口为图1A中的通信接口28,该处理器包括图1A所示的解码器30。又例如,该芯片可应用于图1B所示的视频译码系统40中,该处理器为图1B所示的编码器20或解码器30。或者,该处理器也可以为图2所示的编码器20,或者,该处理器也可以为图3所示的解码器30。该存储器为图1B所示的存储器44。又例如,该芯片可应用于图4所示的视频译码设备400中,该处理器为图4中的处理器430,输入接口为图4中的入口端口410,输出接口为图4中的出口端口450,该存储器为图4中的存储器460。又例如,该芯片可应用于图5所示的译码设备500中,该处理器为图5中的处理器510,该存储器为图5中的存储器530。
下面说明上述实施例中所示的编码方法以及解码方法的应用,以及使用所述编码方法和解码方法的系统。
图12是示出用于实现内容分发服务的内容供应系统3100的框图。此内容供应系统3100包括捕获设备3102、终端设备3106,并且可选地包括显示器3126。捕获设备3102通过通信链路3104与终端设备3106通信。通信链路可以包括上文描述的通信信道13。通信链路3104包括但不限于WIFI、以太网、有线、无线(3G/4G/5G)、USB或其任何种类的组合等。
捕获设备3102生成数据,并可以通过如上述实施例中所示的编码方法对数据进行编码。可替换地,捕获设备3102可以将数据分发到流媒体服务器(图12中未示出),服务器对数据进行编码并将编码数据传输到终端设备3106。捕获设备3102包括但不限于相机、智能手机或平板电脑、计算机或笔记本电脑、视频会议系统、PDA、车载设备,或其中任何一个的组合等。例如,捕获设备3102可以包括如上文所述的源设备12。当数据包括视频时,包括在捕获设备3102中的视频编码器20可以实际执行视频编码处理。当数据包括音频(即,语音)时,包括在捕获设备3102中的音频编码器可以实际执行音频编码处理。对于一些实际场景,捕获设备3102通过将编码视频数据和编码音频数据一起复用来分发编码视频数据和编码音频数据。对于其它实际场景,例如在视频会议系统中,不复用编码音频数据和编码视频数据。捕获设备3102分别将编码音频数据和编码视频数据分发到终端设备3106。
在内容供应系统3100中,终端设备310接收并再现编码数据。终端设备3106可以是具有数据接收和恢复能力的设备,例如智能手机或平板电脑3108、计算机或笔记本电脑3110、网络视频录像机(network video recorder,NVR)/数字视频录像机(digital video recorder,DVR)3112、TV 3114、机顶盒(set top box,STB)3116、视频会议系统3118、视频监控系统3120、个人数字助理(personal digital assistant,PDA)3122、车载设备3124,或能够解码上述编码数据的以上设备中任何一个的组合等。例如,终端设备3106可以包括如上所述的目的地设备14。当编码数据包括视频时,包括在终端设备中的视频解码器30被优先化以执行视频解码。当编码数据包括音频时,包括在终端设备中的音频解码器被优先化以执行音频解码处理。
对于具有其显示器的终端设备,例如,智能手机或平板电脑3108、计算机或笔记本电脑3110、网络视频录像机(network video recorder,NVR)/数字视频录像机(digital video recorder,DVR)3112、TV 3114、个人数字助理(personal digital assistant,PDA)3122或车载设备3124,终端设备可以将解码数据馈送到其显示器。对于不配备显示器的终端设备,例如STB3116、视频会议系统3118或视频监控系统3120,在其中连接外部显示器3126以接收和显示解码数据。
当此系统中的每个设备执行编码或解码时,可以使用如上述实施例中所示的图像编码设备或图像解码设备。
图13是示出终端设备3106的示例的结构的图。在终端设备3106从捕获设备3102接收到流之后,协议处理单元3202分析流的传输协议。所述协议包括但不限于实时流媒体协议(Real Time Streaming Protocol,RTSP)、超文本传送协议(Hyper Text Transfer Protocol,HTTP)、HTTP实时流媒体协议(HTTP Live streaming protocol,HLS)、MPEG-DASH、实时传输协议(Real-time Transport protocol,RTP)、实时消息传输协议(real time messaging protocol,RTMP),或其任何种类的组合等。
在协议处理单元3202处理流之后,生成流文件。文件被输出到解复用单元3204。解复用单元3204可以将复用数据分离成编码音频数据和编码视频数据。如上文所述,对于其它实际场景,例如在视频会议系统中,不复用编码音频数据和编码视频数据。在这种情况下,编码数据被传输到视频解码器3206和音频解码器3208,而不通过解复用单元3204。
通过解复用处理,生成视频基本流(elementary stream,ES)、音频ES和可选的字幕。视频解码器3206,包括如上述实施例中说明的视频解码器30,通过如上述实施例中所示的解码方法对视频ES进行解码以生成视频帧,并将此数据馈送到同步单元3212。音频解码器3208对音频ES进行解码以生成音频帧,并将此数据馈送到同步单元3212。可替换地,在将视频帧馈送到同步单元3212之前可以将视频帧存储在缓冲器(图13中未示出)中。类似地,在将音频帧馈送到同步单元3212之前可以将音频帧存储在缓冲器(图13中未示出)中。
同步单元3212同步视频帧和音频帧,并将视频/音频提供给视频/音频显示器3214。例如,同步单元3212同步视频和音频信息的呈现。信息可以使用与编码音频和视觉数据的呈现有关的时间戳以及与数据流本身的传送有关的时间戳而以语法进行编码。
如果流中包括字幕,则字幕解码器3210对字幕进行解码,使字幕与视频帧和音频帧同步,并将视频/音频/字幕提供给视频/音频/字幕显示器3216。
本申请不限于上述系统,并且上述实施例中的图像编码设备或图像解码设备可以结合到其它系统中,例如汽车系统。
下面详细阐述本申请实施例的方案:
为了挖掘和利用多个随机访问片段之间的图像在编码时相互参考的信息,在编码(或解码)一幅图像时,编码器(或解码器)可以从数据库中选择与当前编码图像(或解码图像)纹理内容相近的图像作为参考图像,这种参考图像称为知识库图像,存储上述参考图像的集合的数据库称为知识库,这种视频中至少一幅图像参考至少一幅知识库图像进行编解码的方法称为基于知识库的视频编码(英文:library-based video coding)。采用基于知识库的视频编码对一个视频序列进行编码会产生一个包含知识库图像编码码流的知识层码流和一个包含视频序列各帧图像参考知识库图像编码得到的码流的视频层码流,两层码流之间的参考关系如图6所示。这两种码流分别类似于可伸缩视频编码(英文:scalable video coding,SVC)产生的基本层码流和增强层码流,即序列层码流依赖于知识层码流。然而,基于知识库的视频编码的双码流组织方式与SVC的分级码流组织方式的层级码流之间的依赖关系不同,不同之处在于,SVC的双码流层级之间是按照一定的对齐时间段依赖的,而基于知识库的视频编码的双码流中视频层依赖知识层是按照非对齐时间段依赖的。
编码产生的码流中记录了该码流被解码所需要的解码能力信息,其中包括了该码流的最大码率、解码该码流需要的最小的解码图像缓存大小等信息,根据解码能力信息,解码器提供足够的解码能力以确保码流的正确和实时解码。
其中,HEVC或者VVC的解码能力信息在比特流中的位置如图8A所示,profile level可以位于VPS和SPS至少一项中。其中,profile level中包括视频层码流和知识层码流至少一项的解码能力信息。
其中,AVS3的解码能力信息在比特流中的位置如图8B所示。
对于使用基于知识库的视频编码方法编码会得到两个码流,知识层码流和视频主码流(或者称为视频层码流),视频主码流的解码必须依赖知识层码流,当知识层码流和视频主码流使用同样的解码器时,解码器的解码能力需要能够同时支持知识层码流和视频主码流的解码,因此,主码流中需要记录知识层码流和视频主码流的总解码能力。对此,本发明提供了几种实现方式。
需要说明的是,在本申请中,视频主码流,当前视频层码流以及当前码流均可以理解为视频码流。知识层码流,知识码流,外部的知识码流,外部的知识层码流,外部知识码流以及外部的知识层码流均可以理解为知识图像码流
本发明实施例一:
在视频主码流中记录该码流需要的解码能力(由profile_tier_level标识),同时,如果其参考的知识层码流使用与视频主码流相同的解码方法(符合同一标准),在视频主码流中记录该知识层码流需要的解码能力(由profile_tier_level标识)。
在HEVC或VVC的基础上,将知识层码流需要的解码能力信息放入视频层码流的vps(video parameters set)中,则vps的语法可以为如下表。
其中新增的语法元素的语义为:
vps_library_picture_enable_flag(也可以称为知识图像参考标识):1比特标识符。当值为1时,表示当前码流(或者称为当前视频层码流)参考外部的知识码流(知识码流也可以称为知识层码流);当值为0时,表示当前码流不参考知识码流。
vps_library_same_standard_flag(也可以称为相同标准标识):1比特标识符。当值为1时,表示当前码流参考的外部知识码流符合与当前码流相同的编解码标准;当值为0时,表示当前码流参考的外部知识码流不符合本标准。
解码器执行的操作可以如下:
1)解析vps_library_picture_enable_flag,判断当前码流是否参考外部的知识码流;
2)当当前码流参考外部的知识码流时,解析vps_library_same_standard_flag,判断当前码流参考的外部知识层码流是否符合本标准;
3)当当前码流参考的外部知识码流符合本标准时,解析profile_tier_level以获得知识层码流需要的解码能力信息;需要说明的是该包含知识层码流需要的解码能力信息profile_tier_level可以位于vps中。进一步的,该包含知识层码流需要的解码能力信息profile_tier_level可以独立于现有的profile_tier_level,也可以是现有的profile_tier_level的进一步的扩充。
作为一种可选的步骤,进一步的,在当前码流的解码器的解码能力满足知识层码流需要的解码能力信息的需求时,可以使用当前码流的解码器来解码知识层码流。值得注意的是,这会提高解码器解码能力的要求,例如单位时间内解码帧数的要求。
当当前码流参考的外部知识码流不符合本标准或者当前码流的解码器的解码能力不满足知识层码流需要的解码能力信息的需求时,作为一种可选的步骤,解码器输出知识码流所符合的标准的信息,以方便系统调用对应的解码器解码知识码流。
编码器执行的操作可以如下:
1)根据当前码流是否参考外部的知识码流,确定码流中vps_library_picture_enable_flag的值;
2)当当前码流参考外部的知识码流时,根据当前码流参考的外部知识层码流是否符合本标准,确定码流中vps_library_same_standard_flag的值;
3)当当前码流参考的外部知识码流符合本标准时,在码流中使用profile_tier_level描述 知识层码流需要的解码能力信息;作为一种可选的步骤,可以进一步使用当前码流的编码器来编码知识层码流。值得注意的是,这会提高编码器解码能力的要求,例如单位时间内编码帧数的要求。
当当前码流参考的外部知识码流不符合本标准时,作为一种可选的步骤,编码器输出知识码流所符合的标准的信息,以方便系统调用对应的编码器解码知识码流。
需要说明的是,上述包含知识层码流需要的解码能力信息的profile_tier_level,可以是在现有的profile_tier_level基础上增加了知识层码流需要的解码能力信息的profile_tier_level,也可以是独立于现有的profile_tier_level的profile_tier_level。
本发明实施例二:
在HEVC或VVC的基础上,将知识层码流需要的解码能力信息放入视频层码流的sps(sequence parameters set)中,则sps的语法为如下表。
其中新增的语法元素的语义为:
sps_library_picture_enable_flag(也可以称为知识图像参考标识):1比特标识符。当值为1时,表示当前码流参考外部的知识码流;当值为0时,表示当前码流不参考知识码流。
sps_library_same_standard_flag(也可以称为相同标准标识):1比特标识符。当值为1时,表示当前码流参考的外部知识码流符合与当前码流相同的编解码标准;当值为0时,表示当前码流参考的外部知识码流不符合本标准。
解码器执行的操作可以为如下:
1)解析sps_library_picture_enable_flag,判断当前码流是否参考外部的知识码流;
2)当当前码流参考外部的知识码流时,解析sps_library_same_standard_flag,判断当前码流参考的外部知识层码流是否符合本标准;
3)当当前码流参考的外部知识码流符合本标准时,解析profile_tier_level(1,0)以获得知识层码流需要的解码能力信息;作为一种可选的步骤,在当前码流的解码器的解码能力满足知识层码流需要的解码能力信息的需求时,进一步的可以使用当前码流的解码器来解码知识层码流。值得注意的是,这会提高解码器解码能力的要求,例如单位时间内解码帧数的要求。需要说明的是该包含知识层码流需要的解码能力信息profile_tier_level可以位于sps中。 进一步的,该包含知识层码流需要的解码能力信息profile_tier_level可以独立于现有的profile_tier_level,也可以是现有的profile_tier_level的进一步的扩充。
当当前码流参考的外部知识码流不符合本标准或者当前码流的解码器的解码能力不满足知识层码流需要的解码能力信息的需求时,作一种可选的步骤,解码器输出知识码流所符合的标准的信息,以方便系统调用对应的解码器解码知识码流。
编码器执行操作可以为如下:
1)根据当前码流是否参考外部的知识码流,确定码流中vps_library_picture_enable_flag的值;
2)当当前码流参考外部的知识码流时,根据当前码流参考的外部知识层码流是否符合本标准,确定码流中vps_library_same_standard_flag的值;
3)当当前码流参考的外部知识码流符合本标准时,在码流中使用profile_tier_level(1,0)描述知识层码流需要的解码能力信息;作为一种可选的步骤,可以进一步的使用当前码流的编码器来编码知识层码流。值得注意的是,这会提高编码器解码能力的要求,例如单位时间内编码帧数的要求。
当当前码流参考的外部知识码流不符合本标准时,作为一种可选的步骤,编码器输出知识码流所符合的标准的信息,以方便系统调用对应的编码器解码知识码流。
需要说明的是,上述包含知识层码流需要的解码能力信息的profile_tier_level,可以是在现有的profile_tier_level基础上增加了知识层码流需要的解码能力信息的profile_tier_level,也可以是独立于现有的profile_tier_level的profile_tier_level。
本发明实施例三:
在AVS3的基础上,将知识层码流需要的解码能力信息放入视频层码流的序列头(sequence header)中,则序列头的语法为如下表。
其中新增的语法元素的语义为:
library_picture_enable_flag(也可以称为知识图像参考标识):1比特标识符。当值为1时,表示当前码流参考外部的知识码流;当值为0时,表示当前码流不参考知识码流。(该标识符在AVS3中已有)
library_same_standard_flag(也可以称为相同标准标识):1比特标识符。当值为1时,表示当前码流参考的外部知识码流符合与当前码流相同的编解码标准;当值为0时,表示当前码流参考的外部知识码流不符合本标准。
profile_id_library:定长比特无符号整数(例如8比特长度,9比特长度)。表示当前码流参考的外部知识码流符合的类,或者表示外部知识码流所述的类。
level_id_library:定长比特无符号整数(例如8比特长度,9比特长度)。表示当前码流参考的外部知识码流符合的级,或者表示外部知识码流所述的级。
需要说明的是,在AVS3中,不同的解码能力对应不同的类,类下面又细分有级,不同的级对应不同的解码能力。
解码器可执行的操作如下:
1)解析library_picture_enable_flag,判断当前码流是否参考外部的知识码流;
2)当当前码流参考外部的知识码流时,解析library_same_standard_flag,判断当前码流参考的外部知识层码流是否符合本标准;
3)当当前码流参考的外部知识码流符合本标准时,解析profile_id_library和level_id_library以获得知识层码流需要的解码能力信息;作为一种可选的步骤,在当前码流的解码器的解码能力满足知识层码流需要的解码能力信息的需求时,可以进一步使用当前码流的解码器来解码知识层码流。值得注意的是,这会提高解码器解码能力的要求,例如单位时间内解码帧数的要求。
当当前码流参考的外部知识码流不符合本标准或者当前码流的解码器的解码能力不满足知识层码流需要的解码能力信息的需求时,作为一种可选的步骤,解码器输出知识码流所符合的标准的信息,以方便系统调用对应的解码器解码知识码流。
编码器可执行的操作如下:
1)根据当前码流是否参考外部的知识码流,确定码流中library_picture_enable_flag的值;
2)当当前码流参考外部的知识码流时,根据当前码流参考的外部知识层码流是否符合本标准,确定码流中library_same_standard_flag的值;
3)当当前码流参考的外部知识码流符合本标准时,在码流中描述知识层码流需要的解码能力信息对应的profile_id_library和level_id_library;作为一种可选的步骤,使用当前码流的编码器来编码知识层码流。值得注意的是,这会提高编码器解码能力的要求,例如单位时间内编码帧数的要求。
当当前码流参考的外部知识码流不符合本标准时,作为一种可选的步骤,编码器输出知识码流所符合的标准的信息,以方便系统调用对应的编码器解码知识码流。
需要说明的是,上述包含知识层码流需要的解码能力信息的profile_tier_level,可以是在现有的profile_tier_level基础上增加了知识层码流需要的解码能力信息的profile_tier_level,也 可以是独立于现有的profile_tier_level的profile_tier_level。
本发明实施例四:
在AVS3的基础上中,将知识层码流需要的解码能力信息放入视频层码流的序列头(sequence header)中,则序列头的语法为如下表。
其中新增的语法元素的语义为:
is_libiary_stream_flag(也可以称为知识图像标识):1比特标识符。值为‘1’表示当前码流是知识图像码流,且码流里只允许出现仅使用帧内编码的图像(例如I图像)、不允许出现使用帧间编码的图像(例如P图像或B图像);值为‘0’表示当前码流是非知识图像码流、即主码流。
library_picture_enable_flag(也可以称为知识图像参考标识):1比特标识符。当值为1时,表示当前码流参考外部的知识码流;当值为0时,表示当前码流不参考知识码流。(该标识符在AVS3中已有)
library_stream_using_same_standard_flag(也可以称为相同参数标识):值为‘1’表示当前主码流所参考的外部知识图像码流的序列头中除is_libiary_stream_flag之外的所有参数值应与当前主码流中的参数值相同;值为‘0’表示当前主码流所参考的知识图像码流的序列头中除is_libiary_stream_flag之外的所有参数值可与当前主码流的序列头中的参数值不同。
需要说明的是library_stream_using_same_standard_flag的含义也可以为library_same_standard_flag的含义。
解码器可执行的操作如下:
1)解析is_library_stream_flag,判断当前码流是知识码流还是非知识码流;
2)当当前码流为非知识码流时,解析library_picture_enable_flag,判断当前码流是否参考外部的知识码流;
3)当当前码流参考外部的知识码流时,解析library_stream_using_same_standard_flag, 判断当前码流参考的外部知识层码流的序列头中除is_libiary_stream_flag之外的所有参数值是否与当前主码流中的对应的参数值相同;
当当前码流参考的外部知识码流除is_libiary_stream_flag之外的所有参数值与当前主码流中的对应的参数值相同时,作为一种可选的步骤,使用当前码流的解码器来解码知识层码流。值得注意的是,这会提高解码器解码能力的要求,例如单位时间内解码帧数的要求。
当当前码流参考的外部知识码流除is_libiary_stream_flag之外的所有参数值与当前主码流中的对应的参数值不同时,作为一种可选的步骤,解码器输出知识码流所符合的标准的信息,以方便系统调用对应的解码器解码知识码流。
作为一种可选的步骤,根据知识码流序列头中的参数获取知识码流需要的解码能力,当知识码流需要的解码能力不超过当前码流需要的解码能力时,使用当前码流的解码器来解码知识层码流。值得注意的是,这会提高解码器解码能力的要求,例如单位时间内解码帧数的要求。所以,当知识码流需要的解码能力超过当前码流需要的解码能力时,作为一种可选的步骤,解码器输出知识码流所符合的标准的信息,以方便系统调用对应的解码器解码知识码流。
作为一种可选的步骤,当当前码流参考的外部知识码流除is_libiary_stream_flag之外的所有参数值与当前主码流中的对应的参数值相同时,根据当前码流序列头中的参数确定知识码流需要的解码能力,当知识码流需要的解码能力不超过当前码流需要的解码能力时,使用当前码流的解码器来解码知识层码流。当知识码流需要的解码能力超过当前码流需要的解码能力时,作为一种可选的步骤,解码器输出知识码流所符合的标准的信息,以方便系统调用对应的解码器解码知识码流。
编码器可执行的操作如下:
1)根据当前码流是知识码流还是非知识码流,确定码流中is_library_stream_flag的值;
2)当当前码流是非知识码流时,根据当前码流是否参考外部的知识码流,确定码流中library_picture_enable_flag的值;
当当前码流参考外部的知识码流时,根据当前码流参考的外部知识层码流的序列头中除is_libiary_stream_flag之外的所有参数值是否与当前主码流中的相应的参数值相同,确定码流中library_stream_using_same_standard_flag的值;
当当前码流参考的外部知识码流的序列头中除is_libiary_stream_flag之外的所有参数值与当前主码流中的参数值相同时,作为一种可选的步骤,使用当前码流的编码器来编码知识层码流。值得注意的是,这会提高编码器编码能力的要求,例如单位时间内编码帧数的要求。
当当前码流参考的外部知识码流除is_libiary_stream_flag之外的所有参数值与当前主码流中的对应的参数值不同时,作为一种可选的步骤,编码器输出知识码流所符合的标准的信息,以方便系统调用对应的编码器编码知识码流。
作为一种可选的步骤,根据知识码流需要的编码能力确定,当知识码流需要的编码能力不超过当前码流需要的编码能力时,使用当前码流的编码器来编码知识层码流。值得注意的是,这会提高编码器编码能力的要求,例如单位时间内编码帧数的要求。
下表是在HEVC和VVC中,定义新的profile_tier_level,新的profile_tier_level中除了包括其对应视频层码流的解码能力信息,还包括其对应码流参考的知识层码流的解码能力信息, 新的profile_tier_level可以是对现有profile_tier_level的进一步扩充,其语法可以如下表:
需要说明的是,上述语法表可以结合实施例一、二或者三,也可以独立为一个方案,例如与现有技术结合,直接替代现有技术中的profile_tier_level,或者具有profile_tier_level功能的函数来实现。
其中,上述语法中的library_picture_enable_flag可以为上述实施例中的vps_library_picture_enable_flag,sps_library_picture_enabale_flag或者library_picture_enable_flag。上述语法中的library_same_standard_flag可以为上述实施例中的vps_library_same_standard_flag,sps_library_same_standard_flag或者library_same_standard_flag。上述语法中的需要说明的是该包含知识层码流需要的解码能力信息profile_tier_level可以位于vps或者sps或者编码码流的序列头中。
其中,具体的,上述新增的语法元素的语义可以为如下:
library_same_standard_flag:表示当前profile是否包含知识码流的档次。当值为1时,表示当前码流参考的外部知识码流符合与当前码流相同的编解码标准,且在当前码流中描述知识码流的解码能力信息;当值为0时,表示当前码流参考的外部知识码流不符合本标准,且不在当前码流中描述知识码流的解码能力信息。
library_level_present_flag:表示当前profile是否包含知识码流的级别。当值为1时,表示 当前profile包含当前码流参考的外部知识码流的级别;当值为0时,表示当前profile不包含当前码流参考的外部知识码流的级别。
library_profile_space:用于指定library_profile_idc和对于范围在0到31的j的library_profile_compatibility_flag[j]解释的上下文。该值在符合标准的该版本码流中应该等于0。其他的值被保留给未来的ITU-T或ISO/IEC使用。解码端应当忽略这个编码视频序列如果该值不等于0。
library_tier_flag:指示library_profile_idc解释的层级上下文。
library_profile_idc:当library_profile_space等于0时,指示的是一个符合先前定义的编码视频序列的档次。码流中不应该包含先前没有定义的library_profile_idc值。其他值被保留给未来的ITU-T或ISO/IEC使用。
library_profile_compatibility_flag[j]:当library_profile_space等于0时,该值应当等于1,指示这个编码视频序列符合library_profile_idc等于j时先前定义的档次。当library_profile_space等于0时,library_profile_compatibility_flag[library_profile_idc]的值应当等于1。对于那些先前没有定义的library_profile_idc对应的j,library_profile_compatibility_flag[j]的值应当等于0。
library_progressive_source_flag和library_interlaced_source_flag以如下方式解释:
--当library_progressive_source_flag等于1,library_interlaced_source_flag等于0时,在这个编码视频序列中图片的源扫描类型只能是progressive的。
--当library_progressive_source_flag等于0,library_interlaced_source_flag等于1时,在这个编码视频序列中图片的源扫描类型只能是interlaced的。
--当library_progressive_source_flag和library_interlaced_source_flag均等于0时,在这个编码视频序列中图片的源扫描类型是未知或者是未定义的。
--当library_progressive_source_flag和library_interlaced_source_flag均等于1时,在这个编码视频序列中图片的源扫描类型将会在图片级用语法元素source_scan_type定义的,该元素存放在图片时序附加增强信息中。
library_non_packed_constraint_flag:当该值等于1时,指示在这个编码视频序列中没有在帧级的包装安排附加增强信息,也没有帧级的分割矩形后的包装安排附加增强信息。当该值等于0时,指示在这个编码视频序列中有可能有一个或多个的在帧级的包装安排附加增强信息或帧级的分割矩形后的包装安排附加增强信息。
library_frame_only_constraint_flag:当该值等于1时,指示field_seq_flag等于0,当该值等于0时,指示field_seq_flag可能也可能不等于0。
library_max_12bit_constraint_flag,library_max_10bit_constraint_flag,library_max_8bit_constraint_flah,library_max_422chroma_constraint_flag,library_max_420chroma_constraint_flag,library_max_monochrome_constraint_flag,library_intra_constraint_flag,library_one_picture_only_constraint和library_lower_bit_rate_constraint_flag:
当这些值存在时,当档次的library_profile_idc和library_profile_compatibility_flag[j]是符合先前定义的档次,有先前已经定义的语义。当peofilePresentFlag等于1时,library_profile_idc不在范围4到7中,而当j在4到7的范围中时,library_profile_compatibility_flag[j]不等 于1,此时,这些语法元素全都不会出现并可以推测值为0。当library_profile_idc不在范围4到7中时,而当j在4到7的范围中,library_profile_compatibility_flag[j]不等于1时,这些语法元素的值都应当为0。
library_reserved_zero_43bits:当出现时,在符合标准的该版本码流中该值应当等于0。其他的值被保留给未来的ITU-T或ISO/IEC使用。解码端应当忽略该语法。
library_inbld_flag:当该值等于1时,指示如先前定义的独立非底层解码能力是需要对profile_tier_level()语法结构应用的层级进行解码。当该值等于0时,指示如先前定义的独立非底层解码能力不需要对profile_tier_level()语法结构应用的层级进行解码。当peofilePresentFlag等于1时,library_profile_idc不在范围1到5中,而当j在1到5的范围中时,library_profile_compatibility_flag[j]不等于1,此时,这个语法元素不会出现并可以推测值为0。当library_profile_idc不在范围1到5中时,而当j在1到5的范围中,library_profile_compatibility_flag[j]不等于1时,这个语法元素的值应当为0。
library_reserved_zero_bit:当出现时,在符合标准的该版本码流中该值应当等于0。值1被保留给未来的ITU-T或ISO/IEC使用。解码端应当忽略该语法。
library_level_idc:指示一个符合先前定义的编码视频序列的级别。码流中不应该包含先前没有定义的library_level_idc值。其他值被保留给未来的ITU-T或ISO/IEC使用。
其中,所述“先前定义”在HEVC和VVC中是在附录A或F中定义的。
上述新的profile语法在HEVC和VVC的已有profile语法定义的基础上增加一套用于描述当前码流参考的知识码流的解码能力信息,因此,上述新增的语法元素的语义可以与HEVC和VVC中已有的profile中的语法元素的语义一一对应,唯一不同的是新增的语法元素面描述的是当前码流参考的外部知识码流的解码能力信息,且library_same_standard_flag的语义扩展为当值为1时,表示当前码流参考的外部知识码流符合与当前码流相同的编解码标准,且在当前码流中描述知识码流的解码能力信息;当值为0时,表示当前码流参考的外部知识码流不符合本标准,且不在当前码流中描述知识码流的解码能力信息。
解码器执行的操作可以为如下:
1)根据vps或sps中的library_picture_enable_flag,判断当前码流是否参考外部的知识码流;
2)当当前码流参考外部的知识码流时,在profile中解析library_same_standard_flag,判断当前码流参考的外部知识层码流是否符合本标准;
3)当当前码流参考的外部知识码流符合本标准时,按照HEVC或VVC已有的profile解析方法解析描述外部知识码流的profile语法元素以获得知识层码流需要的解码能力信息;
作为一种可选的步骤,进一步的可以使用当前码流的解码器来解码知识层码流。值得注意的是,这会提高解码器解码能力的要求,例如单位时间内解码帧数的要求。
当当前码流参考的外部知识码流不符合本标准时,作为一种可选的步骤,解码器输出知识码流所符合的标准的信息,以方便系统调用对应的解码器解码知识码流。
编码器执行操作可以为如下:
1)根据当前码流是否参考外部的知识码流,确定中library_picture_enable_flag的值,并放入码流;
2)当当前码流参考外部的知识码流时,根据当前码流参考的外部知识层码流是否符合本标准,确定码流中library_same_standard_flag的值;
3)当当前码流参考的外部知识码流符合本标准时,在码流中描述知识层码流需要的解码能力信息对应的profile和level的语法元素;
作为一种可选的步骤,可以进一步的使用当前码流的编码器来编码知识层码流。值得注意的是,这会提高编码器解码能力的要求,例如单位时间内编码帧数的要求。
当当前码流参考的外部知识码流不符合本标准时,作为一种可选的步骤,编码器输出知识码流所符合的标准的信息,以方便系统调用对应的编码器解码知识码流。
本领域技术人员能够领会,结合本文公开描述的各种说明性逻辑框、模块和算法步骤所描述的功能可以硬件、软件、固件或其任何组合来实施。如果以软件来实施,那么各种说明性逻辑框、模块、和步骤描述的功能可作为一或多个指令或代码在计算机可读媒体上存储或传输,且由基于硬件的处理单元执行。计算机可读媒体可包含计算机可读存储媒体,其对应于有形媒体,例如数据存储媒体,或包括任何促进将计算机程序从一处传送到另一处的媒体(例如,根据通信协议)的通信媒体。以此方式,计算机可读媒体大体上可对应于(1)非暂时性的有形计算机可读存储媒体,或(2)通信媒体,例如信号或载波。数据存储媒体可为可由一或多个计算机或一或多个处理器存取以检索用于实施本申请中描述的技术的指令、代码和/或数据结构的任何可用媒体。计算机程序产品可包含计算机可读媒体。
作为实例而非限制,此类计算机可读存储媒体可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其它磁性存储装置、快闪存储器或可用来存储指令或数据结构的形式的所要程序代码并且可由计算机存取的任何其它媒体。并且,任何连接被恰当地称作计算机可读媒体。举例来说,如果使用同轴缆线、光纤缆线、双绞线、数字订户线(DSL)或例如红外线、无线电和微波等无线技术从网站、服务器或其它远程源传输指令,那么同轴缆线、光纤缆线、双绞线、DSL或例如红外线、无线电和微波等无线技术包含在媒体的定义中。但是,应理解,所述计算机可读存储媒体和数据存储媒体并不包括连接、载波、信号或其它暂时媒体,而是实际上针对于非暂时性有形存储媒体。如本文中所使用,磁盘和光盘包含压缩光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)和蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘利用激光以光学方式再现数据。以上各项的组合也应包含在计算机可读媒体的范围内。
可通过例如一或多个数字信号处理器(DSP)、通用微处理器、专用集成电路(ASIC)、现场可编程逻辑阵列(FPGA)或其它等效集成或离散逻辑电路等一或多个处理器来执行指令。因此,如本文中所使用的术语“处理器”可指前述结构或适合于实施本文中所描述的技术的任一其它结构中的任一者。另外,在一些方面中,本文中所描述的各种说明性逻辑框、模块、和步骤所描述的功能可以提供于经配置以用于编码和解码的专用硬件和/或软件模块内,或者并入在组合编解码器中。而且,所述技术可完全实施于一或多个电路或逻辑元件中。
本申请的技术可在各种各样的装置或设备中实施,包含无线手持机、集成电路(IC)或一组IC(例如,芯片组)。本申请中描述各种组件、模块或单元是为了强调用于执行所揭示的技 术的装置的功能方面,但未必需要由不同硬件单元实现。实际上,如上文所描述,各种单元可结合合适的软件和/或固件组合在编码解码器硬件单元中,或者通过互操作硬件单元(包含如上文所描述的一或多个处理器)来提供。
在上述实施例中,对各个实施例的描述各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上所述,仅为本申请示例性的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。
Claims (50)
- 一种视频解码方法,其特征在于,所述方法包括:在允许参考知识图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识;在所述第一标识的值为第一值的情况下,将所述视频码流的序列头中的目标参数的值作为所述视频码流所参考的知识图像码流的目标参数的值并根据所述视频码流所参考的知识图像码流的目标参数的值和所述视频码流所参考的知识图像码流,重构得到所述视频码流所参考的知识图像码流对应的知识图像。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:根据所述视频码流所参考的知识图像码流对应的知识图像和所述视频码流,重构得到所述视频码流对应的视频图像。
- 根据权利要求1或2所述的方法,其特征在于,所述第一标识位于所述视频码流的序列头中。
- 根据权利要求1-3任一项所述的方法,其特征在于,所述第一标识包括相同参数标识,所述相同参数标识用于指示所述视频码流所参考的知识图像码流的目标参数的值是否与所述视频码流的序列头中的目标参数的值相同;所述相同参数标识的值为所述第一值用于指示所述知识图像码流的目标参数的值与所述视频码流的序列头中的目标参数的值相同。
- 根据权利要求1-4任一项所述的方法,其特征在于,所述目标参数包括解码能力信息,所述根据所述视频码流所参考的知识图像码流的目标参数的值和所述视频码流所参考的知识图像码流,重构得到所述视频码流所参考的知识图像码流对应的知识图像,包括:确定待使用的解码器的解码能力是否满足所述视频码流所参考的知识图像码流的解码能力信息的值指示的要求;在所述待使用的解码器的解码能力满足所述视频码流所参考的知识图像码流的解码能力信息的值指示的要求时,通过所述待使用的解码器解析所述视频码流所参考的知识图像码流,重构得到所述视频码流所参考的知识图像码流对应的知识图像。
- 根据权利要求1-5任一项所述的方法,其特征在于,所述在允许参考知识图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识,包括:从所述视频码流中解析知识图像参考标识,所述知识图像参考标识用于指示是否允许参考知识图像码流对应的知识图像对所述视频码流进行解码;在所述知识图像参考标识的值指示允许参考所述知识图像码流对应的知识图像对所述视频码流进行解码的情况下,从所述视频码流中解析所述第一标识。
- 根据权利要求6所述的方法,其特征在于,所述视频码流中包括知识图像标识,所述知识图像标识的值为第二值,所述知识图像标识为第二值用于指示所述视频码流不为知识图像码流。
- 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:获取当前码流中的知识图像标识;在所述知识图像标识的值指示所述视频码流不为知识图像码流的情况下,才将所述当前码流作为所述视频码流,并执行所述从所述视频码流中解析知识图像参考标识。
- 根据权利要求1-8任一项所述的方法,其特征在于,所述目标参数包括解码能力信息,所述方法还包括:从所述视频码流的视频参数集VPS中解析所述知识图像码流的解码能力信息;或者,从所述视频码流的序列参数集SPS中解析所述知识图像码流的解码能力信息;或者,从所述视频码流的序列头中解析得到所述知识图像码流的解码能力信息。
- 根据权利要求1-9任一项所述的方法,其特征在于,所述目标参数包括解码能力信息,所述视频码流的解码能力信息包括类标识和级标识,所述类标识用于指示所述视频码流所属的类,所述级标识用于指示所述视频码流所属的级,所述将所述视频码流的序列头中的目标参数的值作为所述知识图像码流的目标参数的值,包括:将所述类标识和所述级标识作为所述视频码流所参考的知识图像码流的解码能力信息。
- 一种视频编码方法,其特征在于,所述方法包括:在允许参考知识图像码流对应的知识图像对视频图像进行编码的情况下,参考所述知识图像码流对应的知识图像对所述视频图像进行编码,得到编码数据;在所述编码数据中添加第一标识,得到视频码流,所述第一标识的值为第一值时,用于指示将所述视频码流的序列头中的目标参数的值作为所述视频码流所参考的知识图像码流的目标参数的值。
- 根据权利要求11所述的方法,其特征在于,所述第一标识位于所述视频码流的序列头中。
- 根据权利要求11或12所述的方法,其特征在于,所述第一标识包括相同参数标识,所述相同参数标识用于指示所述视频码流所参考的知识图像码流的目标参数的值是否与所述视频码流的序列头中的目标参数的值相同;所述相同参数标识的值为所述第一值用于指示所述知识图像码流的目标参数的值与所述视频码流的序列头中的目标参数的值相同。
- 根据权利要求11-13任一项所述的方法,其特征在于,所述视频码流中还包括知识 图像参考标识,所述知识图像参考标识用于指示是否允许参考知识图像码流对应的知识图像对所述视频码流进行解码。
- 根据权利要求11-14任一项所述的方法,其特征在于,所述视频码流中还包括:知识图像标识,所述知识图像标识的值为第二值,用于指示所述视频码流不为知识图像码流。
- 根据权利要求11-15任一项所述的方法,其特征在于,所述目标参数包括解码能力信息,所述解码能力信息位于所述编码数据的视频参数集VPS中,或者,位于所述编码数据的序列参数集SPS中,或者,所述解码能力信息位于所述视频码流的序列头中。
- 根据权利要求11-16任一项所述的方法,其特征在于,所述目标参数包括解码能力信息,所述解码能力信息包括类标识和级标识,所述类标识用于指示所述知识图像码流所属的类,所述级标识用于指示所述知识图像码流所属的级。
- 一种视频解码装置,其特征在于,所述装置包括:解析模块,用于在允许参考知图像码流对应的知识图像对视频码流进行解码的情况下,从视频码流中解析第一标识;在所述第一标识的值为第一值的情况下,将所述视频码流的序列头中的目标参数的值作为所述视频码流所参考的知识图像码流的目标参数的值;重构模块,用于根据所述视频码流所参考的知识图像码流的目标参数的值和所述视频码流所参考的知识图像码流,重构得到所述视频码流所参考的知识图像码流对应的知识图像。
- 根据权利要求18所述的装置,其特征在于,所述重构模块,还用于根据所述视频码流所参考的知识图像码流对应的知识图像和所述视频码流,重构得到所述视频码流对应的视频图像。
- 根据权利要求18或19所述的装置,其特征在于,所述第一标识位于所述视频码流的序列头中。
- 根据权利要求18-20任一项所述的装置,其特征在于,所述第一标识包括相同参数标识,所述相同参数标识用于指示所述视频码流所参考的知识图像码流的目标参数的值是否与所述视频码流的序列头中的目标参数的值相同;所述相同参数标识的值为所述第一值用于指示所述知识图像码流的目标参数的值与所述视频码流的序列头中的目标参数的值相同。
- 根据权利要求18-21任一项所述的装置,其特征在于,所述目标参数包括解码能力信息,所述重构模块,用于确定待使用的解码器的解码能力是否满足所述视频码流所参考的知识图像码流的解码能力信息的值指示的要求;在所述待使用的解码器的解码能力满足所述视频码流所参考的知识图像码流指示的解码能力信息的值指示的要求时,通过所述待使用的解码器解析所述视频码流所参考的知识图像码流,重构得到所述视频码流所参考的知识图像 码流对应的知识图像。
- 根据权利要求18-22任一项所述的装置,其特征在于,所述解析模块,用于从所述视频码流中解析知识图像参考标识,所述知识图像参考标识用于指示是否允许参考知识图像码流对应的知识图像对所述视频码流进行解码;在所述知识图像参考标识的值指示允许参考所述知识图像码流对应的知识图像对所述视频码流进行解码的情况下,从所述视频码流中解析所述第一标识。
- 根据权利要求23所述的装置,其特征在于,所述视频码流中解析知识图像标识,所述知识图像标识的值为第二值,所述知识图像标识为第二值用于指示所述视频码流不为知识图像码流。
- 根据权利要求23或24所述的装置,其特征在于,所述解析模块,还用于获取当前码流中的知识图像标识;在所述知识图像标识的值指示所述视频码流不为知识图像码流的情况下,才将所述当前码流作为所述视频码流,并执行所述从所述视频码流中解析知识图像参考标识。
- 根据权利要求18-25任一项所述的装置,其特征在于,所述目标参数包括解码能力信息,所述解析模块,还用于从所述视频码流的视频参数集VPS中解析所述知识图像码流的解码能力信息;或者,从所述视频码流的序列参数集SPS中解析所述知识图像码流的解码能力信息;或者,从所述视频码流的序列头中解析得到所述知识图像码流的解码能力信息。
- 根据权利要求18-26任一项所述的装置,其特征在于,所述目标参数包括解码能力信息,所述视频码流的解码能力信息包括类标识和级标识,所述类标识用于指示所述视频码流所属的类,所述级标识用于指示所述视频码流所属的级,所述解析模块,用于将所述类标识和级标识作为所述视频码流所参考的知识图像码流的解码能力信息。
- 一种视频编码装置,其特征在于,所述装置包括:编码模块,用于在允许参考知识图像码流对应的知识图像对视频图像进行编码的情况下,参考所述知识图像码流对应的知识图像对所述视频图像进行编码,得到编码数据;添加模块,用于在所述编码数据中添加第一标识,得到视频码流,所述第一标识的值为第一值时,用于指示将所述视频码流的序列头中的目标参数的值作为所述视频码流所参考的知识图像码流的目标参数的值。
- 根据权利要求28所述的装置,其特征在于,所述第一标识位于所述视频码流的序列头中。
- 根据权利要求28或29所述的装置,其特征在于,所述第一标识包括相同参数标识,所述相同参数标识用于指示所述视频码流所参考的知识图像码流的目标参数的值是否与所述 视频码流的序列头中的目标参数的值相同;所述相同参数标识的值为所述第一值用于指示所述知识图像码流的目标参数的值与所述视频码流的序列头中的目标参数的值相同。
- 根据权利要求28-30任一项所述的装置,其特征在于,所述视频码流中还包括知识图像参考标识,所述知识图像参考标识用于指示是否允许参考知识图像码流对应的知识图像对所述视频码流进行解码。
- 根据权利要求28-31任一项所述的装置,其特征在于,所述视频码流中还包括:知识图像标识,所述知识图像标识的值为第二值,用于指示所述视频码流不为知识图像码流。
- 根据权利要求28-32任一项所述的装置,其特征在于,所述目标参数包括解码能力信息,所述解码能力信息位于所述编码数据的视频参数集VPS中,或者,所述解码能力信息位于所述编码数据的序列参数集SPS中,所述解码能力信息位于所述视频码流的序列头中。
- 根据权利要求28-33任一项所述的装置,其特征在于,所述目标参数包括解码能力信息,所述解码能力信息包括类标识和级标识,所述类标识和级标识用于指示所述知识图像码流的解码能力信息,所述类标识用于指示所述知识图像码流所属的类,所述级标识用于指示所述知识图像码流所属的级。
- 一种视频编解码设备,其特征在于,所述设备包括存储器及处理器;所述存储器中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行,以实现权利要求1-34中任一所述的方法。
- 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现权利要求1-34中任一所述的方法。
- 一种视频解码方法,其特征在于,所述方法包括:从所述视频码流中解析知识图像参考标识,所述知识图像参考标识用于指示所述知识图像参考标识所在的所述视频码流的解码是否允许参考知识图像码流对应的知识图像;在所述知识图像参考标识指示所述视频码流的解码允许参考所述知识图像码流对应的知识图像时,获取所述知识图像码流对应的知识图像,并根据所述知识图像码流对应的知识图像,解码所述视频码流。
- 根据权利要求37所述的方法,其特征在于,所述获取所述知识图像码流对应的知识图像包括:从所述视频码流中解析相同标准标识,所述相同标准用于指示所述知识图像码流的解码与所述视频码流的解码所采用的标准是否相同;在所述相同标准指示所述知识图像码流的解码与所述视频码流的解码所采用的标准相同 时,获取所述知识图像码流,并解码所述知识图像码流得到所述知识图像码流对应的知识图像。
- 根据权利要求37所述的方法,其特征在于,所述相同标准标识位于所述视频码流的视频参数集(video parameters set)中,所述视频码流的序列参数集(sequence parameters set)或者所述视频码流的序列头(sequence header)中。
- 根据权利要求38所述的方法,所述获取所述知识图像码流对应的知识图像包括:获取所述知识图像码流,并解码所述知识图像码流得到所述知识图像码流对应的知识图像。
- 根据权利要求38至40任一项所述的方法,所述解码所述知识图像码流得到所述知识图像码流对应的知识图像包括:从所述视频码流中解析知识图像码流的解码能力信息,在当前执行所述视频码流的解码的解码器的解码能力满足所述解码能力信息的要求时,解码所述知识图像码流得到所述知识图像码流对应的知识图像。
- 根据权利要求41所述的方法,其特征在于,所述解码能力信息包括所述知识图像码流所属的类和/或所述知识图像码流所属的级,所述解码能力信息包括所述知识图像码流所属的类和/或所述知识图像码流所属的级用于指示所述指示解码所述指示图像码流所需的解码能力。
- 根据权利要求37至42任一项所述的方法,其特征在于,所述视频码流包括知识图像标识或者所述知识图像标识的信息,所述知识图像标识的信息用于指示所述知识图像标识,所述知识图像标识的值用于指示所述视频码流不是知识图像码流。
- 根据权利要求43所述的方法,其特征在于,在所述知识图像标识的值用于指示所述视频码流不是知识图像码流时,才执行所述从所述视频码流中解析知识图像参考标识。
- 根据权利要求43或44所述的方法,其特征在于,所述视频码流包括相同参数标识,所述相同参数标识的值用于指示所述知识图像码流的序列头中的除知识图像标识之外的参数的值与所述视频码流的序列头中的除知识图像标识之外的参数的值是否相同。
- 根据权利要求37至45任一项所述的方法,其特征在于,所述知识图像参考标识位于所述视频码流的视频参数集(video parameters set)中,所述视频码流的序列参数集(sequence parameters set)或者所述视频码流的序列头(sequence header)中。
- 一种视频解码方法,其特征在于,所述方法包括:从所述视频码流中解析知识图像码流的解码能力信息;在当前执行所述视频码流的解码的解码器的解码能力满足所述解码能力信息的要求时,获取所述知识图像码流对应的知识图像,并根据所述知识图像码流对应的知识图像,解码所述视频码流。
- 一种视频解码设备,其特征在于,所述装置包括:解析单元,用于从所述视频码流中解析知识图像参考标识,所述知识图像参考标识用于指示所述知识图像参考标识所在的所述视频码流的解码是否允许参考知识图像码流对应的知识图像;重建单元,用于在所述知识图像参考标识指示所述视频码流的解码允许参考所述知识图像码流对应的知识图像时,获取所述知识图像码流对应的知识图像,并根据所述知识图像码流对应的知识图像,解码所述视频码流。
- 一种视频解码设备,其特征在于,所述装置包括:解析单元,用于从所述视频码流中解析知识图像码流的解码能力信息;重建单元,用于在当前执行所述视频码流的解码的解码器的解码能力满足所述解码能力信息的要求时,获取所述知识图像码流对应的知识图像,并根据所述知识图像码流对应的知识图像,解码所述视频码流。
- 一种视频编解码设备,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行如权利要求37-47任一项所描述的方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217024788A KR20210107865A (ko) | 2019-01-08 | 2020-01-07 | 비디오 디코딩 방법, 비디오 코딩 방법, 장치, 디바이스, 및 저장 매체 |
EP20738751.5A EP3902274A4 (en) | 2019-01-08 | 2020-01-07 | VIDEO DECODING METHOD, VIDEO CODING METHOD, APPARATUS, DEVICE AND MEDIA |
US17/370,120 US11638003B2 (en) | 2019-01-08 | 2021-07-08 | Video coding and decoding methods and devices using a library picture bitstream |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910018725 | 2019-01-08 | ||
CN201910018725.6 | 2019-01-08 | ||
CN201910888383.3A CN111416976B (zh) | 2019-01-08 | 2019-09-19 | 视频解码方法、视频编码方法、装置、设备及存储介质 |
CN201910888383.3 | 2019-09-19 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/370,120 Continuation US11638003B2 (en) | 2019-01-08 | 2021-07-08 | Video coding and decoding methods and devices using a library picture bitstream |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020143594A1 true WO2020143594A1 (zh) | 2020-07-16 |
Family
ID=71494331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/070592 WO2020143594A1 (zh) | 2019-01-08 | 2020-01-07 | 视频解码方法、视频编码方法、装置、设备及存储介质 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11638003B2 (zh) |
EP (1) | EP3902274A4 (zh) |
KR (1) | KR20210107865A (zh) |
CN (1) | CN111416976B (zh) |
WO (1) | WO2020143594A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4178201A4 (en) * | 2020-08-23 | 2024-01-03 | Tencent Technology (Shenzhen) Company Limited | VIDEO PROCESSING METHOD AND APPARATUS, APPARATUS AND STORAGE MEDIUM |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021121418A1 (en) | 2019-12-19 | 2021-06-24 | Beijing Bytedance Network Technology Co., Ltd. | Joint use of adaptive colour transform and differential coding of video |
JP7436680B2 (ja) * | 2020-01-05 | 2024-02-22 | 北京字節跳動網絡技術有限公司 | 映像コーディングのための一般制約情報 |
CN115176470A (zh) | 2020-01-18 | 2022-10-11 | 抖音视界有限公司 | 图像/视频编解码中的自适应颜色变换 |
CN111988626B (zh) * | 2020-07-22 | 2023-10-27 | 浙江大华技术股份有限公司 | 帧参考方法、设备及存储介质 |
CN112055231B (zh) * | 2020-08-31 | 2021-10-15 | 浙江大华技术股份有限公司 | 视频解码方法、解码装置、解码器及电子设备 |
CN112714320B (zh) * | 2020-12-25 | 2023-05-19 | 杭州海康威视数字技术股份有限公司 | 一种解码方法、解码设备及计算机可读存储介质 |
CN115396678A (zh) * | 2021-05-24 | 2022-11-25 | 腾讯科技(深圳)有限公司 | 多媒体资源中轨道数据的处理方法、装置、介质及设备 |
CN113347424B (zh) * | 2021-05-27 | 2022-08-05 | 上海国茂数字技术有限公司 | 视频编码数据存储方法、装置及可读存储介质 |
CN113973222A (zh) * | 2021-12-02 | 2022-01-25 | 成都统信软件技术有限公司 | 一种视频播放方法、装置及计算设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102238390A (zh) * | 2011-08-05 | 2011-11-09 | 中国科学院深圳先进技术研究院 | 基于图像库的视频和图像的编码解码方法与系统 |
CN105100801A (zh) * | 2015-07-24 | 2015-11-25 | 西安空间无线电技术研究所 | 一种基于大数据的大压缩比数据压缩方法 |
US20160119673A1 (en) * | 2014-10-28 | 2016-04-28 | Aaron William Rees | System and Method for Transmitting, Receiving, and Displaying High Resolution Images |
CN108712655A (zh) * | 2018-05-24 | 2018-10-26 | 西安电子科技大学 | 一种用于相似图像集合并的群体图像编码方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5280003B2 (ja) * | 2003-09-07 | 2013-09-04 | マイクロソフト コーポレーション | 映像コーデックにおけるスライス層 |
WO2012033972A1 (en) * | 2010-09-10 | 2012-03-15 | Thomson Licensing | Methods and apparatus for pruning decision optimization in example-based data pruning compression |
US20140003799A1 (en) * | 2012-06-30 | 2014-01-02 | Divx, Llc | Systems and methods for decoding a video sequence encoded using predictions that include references to frames in reference segments from different video sequences |
WO2015062002A1 (en) * | 2013-10-31 | 2015-05-07 | Mediatek Singapore Pte. Ltd. | Methods for sub-pu level prediction |
WO2015104451A1 (en) * | 2014-01-07 | 2015-07-16 | Nokia Technologies Oy | Method and apparatus for video coding and decoding |
CN104768011B (zh) * | 2015-03-31 | 2018-03-06 | 浙江大学 | 图像编解码方法和相关装置 |
CN107396138A (zh) * | 2016-05-17 | 2017-11-24 | 华为技术有限公司 | 一种视频编解码方法及设备 |
US20220353536A1 (en) * | 2019-08-22 | 2022-11-03 | Sharp Kabushiki Kaisha | Systems and methods for signaling picture information in video coding |
-
2019
- 2019-09-19 CN CN201910888383.3A patent/CN111416976B/zh active Active
-
2020
- 2020-01-07 WO PCT/CN2020/070592 patent/WO2020143594A1/zh unknown
- 2020-01-07 EP EP20738751.5A patent/EP3902274A4/en active Pending
- 2020-01-07 KR KR1020217024788A patent/KR20210107865A/ko not_active Application Discontinuation
-
2021
- 2021-07-08 US US17/370,120 patent/US11638003B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102238390A (zh) * | 2011-08-05 | 2011-11-09 | 中国科学院深圳先进技术研究院 | 基于图像库的视频和图像的编码解码方法与系统 |
US20160119673A1 (en) * | 2014-10-28 | 2016-04-28 | Aaron William Rees | System and Method for Transmitting, Receiving, and Displaying High Resolution Images |
CN105100801A (zh) * | 2015-07-24 | 2015-11-25 | 西安空间无线电技术研究所 | 一种基于大数据的大压缩比数据压缩方法 |
CN108712655A (zh) * | 2018-05-24 | 2018-10-26 | 西安电子科技大学 | 一种用于相似图像集合并的群体图像编码方法 |
Non-Patent Citations (4)
Title |
---|
NUNO, VASCONCELOS: "Library-Based Coding: A Representation for Efficient Video Compression and Retrieval", 6 August 2014 (2014-08-06), XP010218726 * |
See also references of EP3902274A4 |
ZUO, XUGUANG ET AL.: "Library Based Coding for Videos with Repeated Scenes", 2015 PICTURE CODING SYMPOSIUM (PCS), 31 December 2015 (2015-12-31), XP032951341 * |
ZUO, XUGUANG ET AL.: "Scene-Library-Based Video Coding Scheme Exploiting Long-Term Temporal Correlation", JOURNAL OF ELECTRONIC IMAGING, vol. 26, no. 4, 31 December 2017 (2017-12-31), pages 1, XP055439201 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4178201A4 (en) * | 2020-08-23 | 2024-01-03 | Tencent Technology (Shenzhen) Company Limited | VIDEO PROCESSING METHOD AND APPARATUS, APPARATUS AND STORAGE MEDIUM |
Also Published As
Publication number | Publication date |
---|---|
EP3902274A4 (en) | 2022-08-10 |
CN111416976A (zh) | 2020-07-14 |
KR20210107865A (ko) | 2021-09-01 |
US11638003B2 (en) | 2023-04-25 |
US20210344903A1 (en) | 2021-11-04 |
CN111416976B (zh) | 2023-12-08 |
EP3902274A1 (en) | 2021-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11765343B2 (en) | Inter prediction method and apparatus | |
JP7106744B2 (ja) | ルーマおよびクロマ成分についてibc専用バッファおよびデフォルト値リフレッシュを使用するエンコーダ、デコーダおよび対応する方法 | |
WO2020143594A1 (zh) | 视频解码方法、视频编码方法、装置、设备及存储介质 | |
KR102549670B1 (ko) | 크로마 블록 예측 방법 및 디바이스 | |
US11924438B2 (en) | Picture reconstruction method and apparatus | |
JP2022524357A (ja) | エンコーダ、デコーダ、及び対応するインター予測方法 | |
AU2019386917B2 (en) | Encoder, decoder and corresponding methods of most probable mode list construction for blocks with multi-hypothesis prediction | |
WO2020114394A1 (zh) | 视频编解码方法、视频编码器和视频解码器 | |
WO2020143589A1 (zh) | 视频图像解码、编码方法及装置 | |
WO2021159962A1 (en) | An encoder, a decoder and corresponding methods for subpicture signalling in sequence parameter set | |
CN113660489B (zh) | 用于帧内子划分的解码方法、装置、解码器和存储介质 | |
JP2023511206A (ja) | 適応ループフィルタリングのためのエンコーダ、デコーダ、および対応する方法 | |
AU2024201152A1 (en) | An encoder, a decoder and corresponding methods using intra mode coding for intra prediction | |
WO2021185278A1 (en) | An encoder, a decoder and corresponding methods | |
WO2020114393A1 (zh) | 变换方法、反变换方法以及视频编码器和视频解码器 | |
IL295985A (en) | Decoder and methods suitable for separating image signal information into slices | |
RU2787713C2 (ru) | Способ и устройство предсказания блока цветности | |
WO2021057755A1 (en) | An encoder, a decoder and corresponding methods of complexity reduction on intra prediction for the planar mode | |
WO2021008470A1 (en) | An encoder, a decoder and corresponding methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20738751 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020738751 Country of ref document: EP Effective date: 20210721 |
|
ENP | Entry into the national phase |
Ref document number: 20217024788 Country of ref document: KR Kind code of ref document: A |