WO2020143386A1 - 节能信号的传输方法、终端和网络侧设备 - Google Patents

节能信号的传输方法、终端和网络侧设备 Download PDF

Info

Publication number
WO2020143386A1
WO2020143386A1 PCT/CN2019/124796 CN2019124796W WO2020143386A1 WO 2020143386 A1 WO2020143386 A1 WO 2020143386A1 CN 2019124796 W CN2019124796 W CN 2019124796W WO 2020143386 A1 WO2020143386 A1 WO 2020143386A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
sequence
energy
saving
indication information
Prior art date
Application number
PCT/CN2019/124796
Other languages
English (en)
French (fr)
Inventor
王加庆
杨美英
赵铮
罗晨
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP19908638.0A priority Critical patent/EP3911026A4/en
Priority to US17/422,165 priority patent/US20220116877A1/en
Priority to KR1020217023874A priority patent/KR102470742B1/ko
Priority to JP2021540303A priority patent/JP7208406B2/ja
Publication of WO2020143386A1 publication Critical patent/WO2020143386A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to an energy-saving signal transmission method, terminal, and network-side device.
  • the terminal needs to detect the downlink control channel in the idle state (RRC_IDLE), inactive state (RRC_Inactive), and connected state (RRC_Connected).
  • RRC_IDLE idle state
  • RRC_Inactive inactive state
  • RRC_Connected connected state
  • the detection positions for detecting the downlink control channel are all pre-configured, and many detection positions will be configured in advance, and the terminal needs to perform detection at each detection position.
  • the terminal needs to detect the downlink control channel at each activation time (Onduration) period. Therefore, a power saving signal is introduced in the NR system, but the current power saving signal cannot carry multiple power saving information, resulting in a poor energy saving effect.
  • Embodiments of the present disclosure provide an energy-saving signal transmission method, terminal, and network-side device to solve the problem of poor energy-saving effect.
  • An embodiment of the present disclosure provides a method for transmitting energy-saving signals, including:
  • the terminal receives the energy-saving signal sent by the network-side device
  • the energy-saving signal is a multi-level sequence
  • the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and level indication information of the multi-level sequence.
  • the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving area
  • the energy-saving area is an area indicated by the energy-saving area identifier; or
  • the energy saving signal includes a first level energy saving signal and a second level energy saving signal, wherein the first level energy saving signal and the second level energy saving signal respectively carry different energy saving information.
  • the level indication information of the multi-level sequence includes:
  • the first level sequence in the multilevel sequence does not carry level indication information, and the level indication information carried by the remaining level sequences; or
  • the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence.
  • the level indication information includes:
  • Level index information or group index information are examples of levels.
  • the multi-level sequence also carries at least one of the following:
  • Partial bandwidth (BWP) index Partial bandwidth (BWP) index, carrier index, physical layer downlink control channel (Physical Downlink Control Channel, PDCCH) detection cycle number indication information, and resource information of the energy-saving signal.
  • PDCCH Physical Downlink Control Channel
  • the carrier index is a carrier index in at least one carrier index semi-statically configured on the network side;
  • the number of PDCCH detection cycles that need to be skipped is one of the skipped numbers of at least one PDCCH detection cycle semi-statically configured on the network side.
  • the multi-level sequence is a multi-level sequence without a scrambling sequence
  • each level sequence in the multi-level sequence is a gold sequence, the energy-saving identifier, the energy-saving area identifier, and the multi-level sequence
  • the level indication information is a function of the initial phase of the gold sequence.
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the multi-level sequence carries the energy-saving area identifier and the level indication information, and the basic sequence of the multi-level sequence Carry the energy-saving logo; or
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the next-level sequence in the multi-level sequence carries level indication information of the previous level or the previous multi-level sequence.
  • the basic sequence carries the energy-saving identifier.
  • the scrambling code sequence of the multi-level sequence carries the energy-saving region identifier and the level indication information
  • the scrambling code sequence of each level sequence in the multi-level sequence is different, and the The scrambling sequence of multiple sequences is the same;
  • the scrambling code sequence of the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence
  • the scrambling code sequence of each level sequence in the multi-level sequence is different.
  • the multi-level sequence includes at least a first-level sequence and a second-level sequence
  • the basic sequences of the first-level sequence and the second-level sequence are the same type of sequence, and the same type of sequence is an orthogonal sequence, a gold sequence, a ZC sequence position or a Kasami sequence; or
  • the basic sequence of the first-level sequence is one of the orthogonal sequence, the gold sequence, and the Kasami sequence at the ZC sequence position
  • the basic sequence of the second-level sequence is the orthogonal sequence, the gold sequence, and Kasami at the ZC sequence position. The other in the sequence.
  • the energy-saving signal carries binary indication information composed of various energy-saving information corresponding to the sequence index of the multi-level sequence; wherein, the plurality of energy-saving information includes at least the energy-saving identifier and the energy-saving region identifier And the level indication information of the multi-level sequence; and/or
  • the second-level sequence is only detected when the terminal detects the first-level sequence
  • the superimposed result performs subcarrier mapping, performs Inverse Fast Fourier Transform (IFFT) operation and adds a cyclic prefix (Cyclic Prefix, CP), and then maps to corresponding transmission resources.
  • IFFT Inverse Fast Fourier Transform
  • CP Cyclic Prefix
  • different fields of the sequence index of the multi-level sequence correspond to different energy-saving information.
  • the first-level energy-saving signal carries energy-saving information that does not require blind inspection
  • the second-level energy saving signal carries at least energy saving information that cannot be predicted in advance.
  • the first-level energy-saving signal is transmitted in a discontinuous reception sleep (Opportunity for DRX, DRX, OFF) period; the second-level energy-saving signal is in DRX OFF or discontinuous reception activation (DRX Onduration, DRX On) ) Transmission within the period; and/or
  • the first-level energy-saving signal is a single-level sequence or a multi-level sequence
  • the second level energy saving signal is an energy saving signal based on the physical downlink control channel PDCCH.
  • the candidate position for sending the second-level energy saving signal in the DRX On period is a semi-static configuration, or the network-side device and the terminal have agreed in advance.
  • An embodiment of the present disclosure also provides an energy-saving signal transmission method, including:
  • the network-side device sends an energy-saving signal to the terminal
  • the energy-saving signal is a multi-level sequence
  • the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and level indication information of the multi-level sequence.
  • the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving area
  • the energy-saving area is an area indicated by the energy-saving area identifier; or
  • the energy saving signal includes a first level energy saving signal and a second level energy saving signal, wherein the first level energy saving signal and the second level energy saving signal respectively carry different energy saving information.
  • the level indication information of the multi-level sequence includes:
  • the first level sequence in the multilevel sequence does not carry level indication information, and the level indication information carried by the remaining level sequences; or
  • the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence.
  • the level indication information includes:
  • Level index information or group index information are examples of levels.
  • the multi-level sequence also carries at least one of the following:
  • BWP index BWP index, carrier index, indication information of the number of PDCCH detection cycles to be skipped, and resource information of the energy-saving signal.
  • the carrier index is a carrier index in at least one carrier index semi-statically configured on the network side;
  • the number of PDCCH detection cycles that need to be skipped is one of the skipped numbers of at least one PDCCH detection cycle semi-statically configured on the network side.
  • the multi-level sequence is a multi-level sequence without a scrambling sequence
  • each level sequence in the multi-level sequence is a gold sequence, the energy-saving identifier, the energy-saving area identifier, and the multi-level sequence
  • the level indication information is a function of the initial phase of the gold sequence.
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the multi-level sequence carries the energy-saving area identifier and the level indication information, and the basic sequence of the multi-level sequence Carry the energy-saving logo; or
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the next-level sequence in the multi-level sequence carries level indication information of the previous level or the previous multi-level sequence.
  • the basic sequence carries the energy-saving identifier.
  • the scrambling code sequence of the multi-level sequence carries the energy-saving region identifier and the level indication information
  • the scrambling code sequence of each level sequence in the multi-level sequence is different, and the The scrambling sequence of multiple sequences is the same;
  • the scrambling code sequence of the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence
  • the scrambling code sequence of each level sequence in the multi-level sequence is different.
  • the multi-level sequence includes at least a first-level sequence and a second-level sequence
  • the basic sequences of the first-level sequence and the second-level sequence are the same type of sequence, and the same type of sequence is an orthogonal sequence, a gold sequence, a ZC sequence position or a Kasami sequence; or
  • the basic sequence of the first-level sequence is one of the orthogonal sequence, the gold sequence, and the Kasami sequence at the ZC sequence position
  • the basic sequence of the second-level sequence is the orthogonal sequence, the gold sequence, and Kasami at the ZC sequence position. The other in the sequence.
  • the energy-saving signal carries binary indication information composed of various energy-saving information corresponding to the sequence index of the multi-level sequence; wherein, the plurality of energy-saving information includes at least the energy-saving identifier and the energy-saving region identifier And the level indication information of the multi-level sequence; and/or
  • the second-level sequence is only detected when the terminal detects the first-level sequence
  • the superimposed result performs subcarrier mapping, performs IFFT operation and adds CP, and then maps to corresponding transmission resources.
  • different fields of the sequence index of the multi-level sequence correspond to different energy-saving information.
  • the first-level energy-saving signal carries energy-saving information that does not require blind inspection
  • the second-level energy saving signal carries at least energy saving information that cannot be predicted in advance.
  • the first-level energy-saving signal is transmitted in a discontinuous reception sleep DRX OFF cycle; the second-level energy-saving signal is transmitted in a DRX OFF or discontinuous reception activated DRX On cycle; and/or
  • the first-level energy-saving signal is a single-level sequence or a multi-level sequence
  • the second level energy saving signal is an energy saving signal based on the physical downlink control channel PDCCH.
  • the candidate position for sending the second-level energy saving signal in the DRX On period is a semi-static configuration, or the network-side device and the terminal have agreed in advance.
  • An embodiment of the present disclosure also provides a terminal, including:
  • the receiving module is used to receive the energy-saving signal sent by the network side device
  • the energy-saving signal is a multi-level sequence
  • the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and level indication information of the multi-level sequence.
  • the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving area
  • the energy-saving area is an area indicated by the energy-saving area identifier; or
  • the energy saving signal includes a first level energy saving signal and a second level energy saving signal, wherein the first level energy saving signal and the second level energy saving signal respectively carry different energy saving information.
  • the level indication information of the multi-level sequence includes:
  • the first level sequence in the multilevel sequence does not carry level indication information, and the level indication information carried by the remaining level sequences; or
  • the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence.
  • the multi-level sequence also carries at least one of the following:
  • Partial bandwidth BWP index Partial bandwidth BWP index, carrier index, indication information of the number of PDCCH detection cycles to be skipped, and resource information of the energy-saving signal.
  • the energy-saving signal carries binary indication information composed of various energy-saving information corresponding to the sequence index of the multi-level sequence; wherein, the plurality of energy-saving information includes at least the energy-saving identifier and the energy-saving region identifier And the level indication information of the multi-level sequence; and/or
  • the second-level sequence is only detected when the terminal detects the first-level sequence
  • the superimposed result performs subcarrier mapping, performs IFFT operation and adds CP, and then maps to corresponding transmission resources.
  • An embodiment of the present disclosure also provides a network-side device, including:
  • the sending module is used to send energy-saving signals to the terminal
  • the energy-saving signal is a multi-level sequence
  • the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and level indication information of the multi-level sequence.
  • the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving area
  • the energy-saving area is an area indicated by the energy-saving area identifier; or
  • the energy saving signal includes a first level energy saving signal and a second level energy saving signal, wherein the first level energy saving signal and the second level energy saving signal respectively carry different energy saving information.
  • the level indication information of the multi-level sequence includes:
  • the first level sequence in the multilevel sequence does not carry level indication information, and the level indication information carried by the remaining level sequences; or
  • the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence.
  • the multi-level sequence also carries at least one of the following:
  • Partial bandwidth BWP index Partial bandwidth BWP index, carrier index, indication information of the number of PDCCH detection cycles to be skipped, and resource information of the energy-saving signal.
  • the energy-saving signal carries binary indication information composed of various energy-saving information corresponding to the sequence index of the multi-level sequence; wherein, the plurality of energy-saving information includes at least the energy-saving identifier and the energy-saving region identifier And the level indication information of the multi-level sequence; and/or
  • the second-level sequence is only detected when the terminal detects the first-level sequence
  • the superimposed result performs subcarrier mapping, performs IFFT operation and adds CP, and then maps to corresponding transmission resources.
  • An embodiment of the present disclosure also provides a terminal, including: a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor,
  • the transceiver is used to receive the energy-saving signal sent by the network side device
  • the energy-saving signal is a multi-level sequence
  • the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and level indication information of the multi-level sequence.
  • the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving area
  • the energy-saving area is an area indicated by the energy-saving area identifier; or
  • the energy saving signal includes a first level energy saving signal and a second level energy saving signal, wherein the first level energy saving signal and the second level energy saving signal respectively carry different energy saving information.
  • the level indication information of the multi-level sequence includes:
  • the first level sequence in the multilevel sequence does not carry level indication information, and the level indication information carried by the remaining level sequences; or
  • the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence.
  • the multi-level sequence also carries at least one of the following:
  • Partial bandwidth BWP index Partial bandwidth BWP index, carrier index, indication information of the number of PDCCH detection cycles to be skipped, and resource information of the energy-saving signal.
  • the energy-saving signal carries binary indication information composed of various energy-saving information corresponding to the sequence index of the multi-level sequence; wherein, the plurality of energy-saving information includes at least the energy-saving identifier and the energy-saving region identifier And the level indication information of the multi-level sequence; and/or
  • the second-level sequence is only detected when the terminal detects the first-level sequence
  • the superimposed result performs subcarrier mapping, performs IFFT operation and adds CP, and then maps to corresponding transmission resources.
  • An embodiment of the present disclosure also provides a network-side device, including: a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor,
  • the transceiver is used to send energy-saving signals to the terminal;
  • the energy-saving signal is a multi-level sequence
  • the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and level indication information of the multi-level sequence.
  • the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving area
  • the energy-saving area is an area indicated by the energy-saving area identifier; or
  • the energy saving signal includes a first level energy saving signal and a second level energy saving signal, wherein the first level energy saving signal and the second level energy saving signal respectively carry different energy saving information.
  • the level indication information of the multi-level sequence includes:
  • the first level sequence in the multilevel sequence does not carry level indication information, and the level indication information carried by the remaining level sequences; or
  • the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence.
  • the multi-level sequence also carries at least one of the following:
  • Partial bandwidth BWP index Partial bandwidth BWP index, carrier index, indication information of the number of PDCCH detection cycles to be skipped, and resource information of the energy-saving signal.
  • the energy-saving signal carries binary indication information composed of various energy-saving information corresponding to the sequence index of the multi-level sequence; wherein, the plurality of energy-saving information includes at least the energy-saving identifier and the energy-saving region identifier And the level indication information of the multi-level sequence; and/or
  • the second-level sequence is only detected when the terminal detects the first-level sequence
  • the superimposed result performs subcarrier mapping, performs IFFT operation and adds CP, and then maps to corresponding transmission resources.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, which is characterized in that when the program is executed by a processor, the steps in the method for transmitting an energy-saving signal on the terminal side provided by the embodiment of the present disclosure are implemented Or, when the program is executed by the processor, the steps in the method for transmitting energy-saving signals on the network side device side provided by the embodiments of the present disclosure are implemented.
  • a terminal receives an energy-saving signal sent by a network-side device; wherein, the energy-saving signal is a multi-level sequence, and the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and a level indication of the multi-level sequence Information, the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving region, and the energy-saving region is an area indicated by the energy-saving region identifier; or the energy-saving signal includes a first-level energy-saving signal and a second-level energy-saving signal, wherein, The first-level energy-saving signal and the second-level energy-saving signal respectively carry different energy-saving information. In this way, multiple energy-saving information can be carried, thereby improving the energy-saving effect.
  • FIG. 1 is a schematic diagram of a network structure applicable to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of an energy-saving signal transmission method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of an energy-saving signal provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of another energy-saving signal provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another energy-saving signal provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of another energy-saving signal provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another energy-saving signal provided by an embodiment of the present disclosure.
  • FIG. 9 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • FIG. 10 is a structural diagram of a network side device provided by an embodiment of the present disclosure.
  • FIG. 11 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • FIG. 12 is a structural diagram of another network-side device provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram of a network structure applicable to an embodiment of the present disclosure.
  • the terminal 11 may be a user terminal (User Equipment, UE) or other terminals Devices, such as mobile phones, tablet computers (Tablet Personal Computer), laptop computers (Laptop Computer), personal digital assistants (personal digital assistants, PDAs), mobile Internet devices (Mobile Internet Devices (MID) or wearable devices ( Wearable Devices) and other terminal-side devices.
  • UE User Equipment
  • PDAs personal digital assistants
  • mobile Internet devices Mobile Internet Devices (MID) or wearable devices ( Wearable Devices) and other terminal-side devices.
  • MID Mobile Internet Devices
  • Wearable Devices wearable devices
  • the network-side device 12 may be a base station, such as a macro station, LTE eNB, 5G NR, etc.; the network-side device 12 may also be a small station, such as a low-power node (LPN), pico, femto, etc., or
  • the network-side device can be an access point (access point, AP); the base station can also be a network node composed of a central unit (central unit, CU) and multiple transmission and reception points (Transmission Reception Point, TRP) managed and controlled by it.
  • LTE low-power node
  • AP access point
  • the base station can also be a network node composed of a central unit (central unit, CU) and multiple transmission and reception points (Transmission Reception Point, TRP) managed and controlled by it.
  • TRP Transmission Reception Point
  • FIG. 2 is a flowchart of an energy-saving signal transmission method according to an embodiment of the present disclosure. As shown in FIG. 2, the method includes the following steps:
  • the terminal receives the energy saving signal (power saving signal) sent by the network side device;
  • the energy-saving signal is a multi-level sequence
  • the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and level indication information of the multi-level sequence.
  • the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving area
  • the energy-saving area is an area indicated by the energy-saving area identifier; or
  • the energy saving signal includes a first level energy saving signal and a second level energy saving signal, wherein the first level energy saving signal and the second level energy saving signal respectively carry different energy saving information.
  • the above energy-saving signal may include an energy-saving signal before DRX on, and may also include an energy-saving signal within a DRX on cycle.
  • the energy-saving signal may be a signal used to wake up one or more terminals, for example, the energy-saving signal may be a wake-up signal (Wakeup Signal, WUS), or a power-saving signal wider than the WUS concept, which is not limited, for example :
  • WUS wake-up Signal
  • the above energy-saving signal may also be other signals defined in the protocol, or other signals previously agreed between the network-side device and the terminal.
  • the above energy-saving identifier may be a wake ID, and the above energy-saving region identifier may be a wake ID.
  • the energy-saving signal may include one or more energy-saving identifiers.
  • one energy-saving identifier corresponds to one terminal, or different combinations between the plurality of energy-saving identifiers correspond to different terminals.
  • the energy-saving area identifier may refer to the home area identifier of the terminal corresponding to the energy-saving identifier.
  • the cell ID cell ID
  • the tracking area ID Track area
  • ID a smaller wakeup area obtained by dividing the tracking area into multiple areas.
  • the level indication information of the multi-level sequence may be level indication information of each level sequence, or level indication information of a partial level sequence, for example, used to indicate the number of levels of each level sequence or partial level sequence of the multi-level sequence.
  • the above-mentioned level indication information may be to determine the number of levels of the received sequence, so as to avoid the waste of power consumption caused by the detection of the second-level sequence without receiving the first-level sequence.
  • one or more terminals can be awakened through the above energy-saving identifier, energy-saving region identifier and the level indication information of the multi-level sequence, thereby improving the energy-saving effect. For example, if the terminal is located in the energy-saving area and the energy-saving identifier corresponds to the terminal, the terminal may enter a wake-up state.
  • the energy-saving identifier, the energy-saving area identifier, and the level indication information are all energy-saving information, that is, the above multi-level sequence can carry at least three types of energy-saving information. And the above reception can be called detection.
  • carrying can be understood as an indication, that is to say, the energy-saving signal carried by the energy-saving signal can be referred to as an energy-saving signal indicating energy-saving information.
  • the energy-saving signal carrying energy-saving information may be understood as that the terminal can obtain the corresponding energy-saving information by parsing the energy-saving signal.
  • the energy-saving signal may include a first-level energy-saving signal and a second-level energy-saving signal, and the first-level energy-saving signal and the second-level energy-saving signal respectively carry different energy-saving information, so that the energy-saving signal can also be carried more often Kinds of energy saving information to improve energy saving effect.
  • the level indication information of the multi-level sequence includes:
  • the first level sequence in the multilevel sequence does not carry level indication information, and the level indication information carried by the remaining level sequences; or
  • the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence.
  • the terminal can accurately determine the number of levels of the received sequence.
  • the first level sequence in the above multiple level sequences does not carry level indication information
  • the level indication information carried by the remaining level sequences, or the latter level sequence in the multilevel sequence carries the level indication information of the previous level or the previous multilevel sequence , which can save the cost of energy-saving signals.
  • the above-mentioned multi-level sequence has a certain order
  • the first-level sequence is the first level among the multiple sequences
  • the second-level sequence is the level after the first-level sequence.
  • the tertiary sequence is the sequence after the second sequence, and so on.
  • the second level sequence carries the level indication information of the first level sequence
  • the third level sequence carries the level indication information of the second level sequence.
  • the level indication information includes:
  • Level index information (stage index) or group index information.
  • Each level sequence needs to carry the level indication information of the multi-level sequence.
  • the initial phase of the first-level gold sequence needs to contain 1-bit level index information, such as bit 0, the first
  • the initial phase of the second-level gold sequence also contains 1-bit initial phase information, such as bit 1, if there are more levels of the sequence, the number of bits indicating the level index naturally increases.
  • Example 2 The next-level (gold) sequence needs to carry the level indication information (for example: group index information) carried by the previous level or multi-level (gold) sequence, for example, taking the two-level sequence as an example, the first-level gold sequence
  • level indication information for example: group index information
  • Each specific sequence carries information related to a specific wake ID. If all possible sequences of the first-level sequence are regarded as a group of sequences, the group of sequences can be grouped again to obtain S subgroups. index can be used as a kind of grouping index information.
  • the second-level gold sequence needs to carry the index information of the first-level sequence and the grouping. This information may be a function of the initial phase of the second-level gold sequence. Since the first-level sequence is grouped, the subgroup index is passed to the second-level sequence.
  • the minimum value of the subgroup S can be 1 and the maximum value of S can be as many as the number of all sequences in the level sequence, that is, The number of sequences in each sub-group is only 1; when the S value is 1, it is equivalent to the level index of the first-level sequence without the multi-level sequence, and the second-level multi-level sequence contains a common (for example, 1 bit)
  • the level index of the first level sequence is a special case of the level 1 sequence mentioned above. Obviously, a larger S value is more beneficial to reduce the false alarm probability of sequence detection. Of course, a smaller S value is more beneficial to improve the multi-user multiplexing performance of special sequences such as orthogonal sequences.
  • the above multi-level sequence also carries at least one of the following:
  • BWP index BWP index, carrier index, indication information of the number of PDCCH detection cycles to be skipped, and resource information of the energy-saving signal.
  • N_skip The number of PDCCH detection cycles that need to be skipped.
  • the above resource information may be time or frequency information related to resources transmitting energy saving signals.
  • the energy-saving signal can carry more energy-saving information to further improve the energy-saving effect.
  • the above carrier index may be a carrier index in at least one carrier index semi-statically configured on the network side;
  • the number of PDCCH detection cycles to be skipped may be one of the skipped numbers of at least one PDCCH detection cycle semi-statically configured on the network side.
  • the energy-saving signal only needs to indicate that the carrier index is one of the at least one carrier index semi-statically configured on the network side, so that the energy-saving signal overhead can be saved.
  • the energy-saving signal only needs to indicate that the number of the PDCCH detection cycles to be skipped is one of the numbers configured on the network side, thereby saving the energy-saving signal overhead.
  • the multi-level sequence is a multi-level sequence without a scrambling sequence
  • each level sequence in the multi-level sequence is a gold sequence
  • the energy-saving identifier the energy-saving area identifier
  • the level indication information of the multi-level sequence is a function of the initial phase of the gold sequence.
  • the multi-level sequence scrambling code obtained by concatenating multiple gold sequences can reduce the complexity and can also carry a variety of energy-saving information.
  • the energy-saving information may also be a function of the initial phase of the gold sequence.
  • each level sequence in the multi-level sequence has the following characteristics:
  • the superimposed result performs subcarrier mapping, performs IFFT operation and adds CP, and then maps to corresponding transmission resources.
  • the base sequence (Base seq) M1+1 to the base sequence (Base seq) M are superimposed, and then, sub-carrier mapping (Sub-carrier mapping), IFFT operation, adding cyclic prefix (Cyclic Prefix, CP), and finally mapped to the corresponding Symbol (Symbol) transmission, that is, the second level sequence (for example: WUS2).
  • the multi-level sequence is a multi-level sequence in which a scrambling code sequence exists, and the scrambling code sequence of the multi-level sequence carries the energy-saving region identifier and the level indication information.
  • the basic sequence of the level sequence carries the energy-saving identifier; or
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the next-level sequence in the multi-level sequence carries level indication information of the previous level or the previous multi-level sequence.
  • the basic sequence carries the energy-saving identifier.
  • the energy-saving area identifier and the level indication information through a scrambling code sequence, and the basic sequence carries the energy-saving identifier, so that the energy-saving signal consumes excessive resources and power consumption to save transmission resources And power consumption effects.
  • the scrambling code sequence of the multi-level sequence carries the energy-saving region identifier and the level indication information
  • the scrambling code sequence of each level sequence in the multi-level sequence is different, and the The scrambling sequence of multiple sequences is the same;
  • the scrambling code sequence of the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence
  • the scrambling code sequence of each level sequence in the multi-level sequence is different.
  • the multi-level sequence may include at least a first-level sequence and a second-level sequence
  • the basic sequence of the first-level sequence and the second-level sequence may be the same type sequence, and the same type sequence is an orthogonal sequence, a gold sequence, a ZC sequence position or a Kasami sequence; or
  • the basic sequence of the first-level sequence may be one of an orthogonal sequence, a gold sequence, and a Kasami sequence at the ZC sequence position
  • the basic sequence of the second-level sequence is an orthogonal sequence, a gold sequence, or a ZC sequence position. The other one in the Kasami sequence.
  • base sequence (Base seq) 1 to base sequence (Base seq) M1 are superimposed, and scrambling sequence (Scrambling sequence) scrambling sequence operation (for example: multiplication), and then divided to generate At least one sub-sequence (Sub sequence) generation, then, sub-carrier mapping (Sub-carrier mapping), IFFT operation, adding a cyclic prefix (Cyclic Prefix, CP), and finally mapped to the corresponding symbol (Symbol) transmission, that is The first level sequence (for example: WUS1);
  • Base sequence (Base seq) M1+1 to base sequence (Base seq) M are superimposed, and scrambling sequence (Scrambling sequence) scrambling operations (for example: multiplication), and then divided to generate at least one subsequence (Sub sequence), after that, perform sub-carrier mapping, IFFT operation, add cyclic prefix (CP), and finally map to the corresponding symbol (Symbol) for transmission, that is, get the second-level sequence (for example : WUS2).
  • scrambling sequence scrambling sequence
  • the scrambling code sequence carries wake ID and multi-level sequence level indication information, and the multi-level basic sequence indicates wake ID. Moreover, the scrambling sequence of each level is different, but the scrambling sequence of multiple sequences within each level is the same.
  • the basic sequence is preferably an orthogonal sequence or a ZC, gold sequence.
  • the base sequence (Base seq) 1 to the base sequence (Base seq) M1 are superimposed, and scrambling sequence (Scrambling sequence) scrambling operation (for example: multiplication), and then divided to Generate at least one sub-sequence (Sub sequence), then perform sub-carrier mapping (Sub-carrier mapping), IFFT operation, add cyclic prefix (Cyclic Prefix, CP), and finally map to the corresponding symbol (Symbol) transmission, that is Get the first level sequence (for example: WUS1);
  • the base sequence (Base seq) M1+1 to the base sequence (Base seq) M are scrambled with the scrambling sequence (Scrambling sequence) (for example: multiplication), and then superimposed, and then divided to generate at least one subsequence (Sub) sequence, afterwards, perform sub-carrier mapping, IFFT operation, add cyclic prefix (Cyclic Prefix, CP), and finally map to the corresponding symbol (Symbol) for transmission, that is, get the second-level sequence ( For example: WUS2).
  • the scrambling sequence for example: multiplication
  • the scrambling code sequence carries the wake ID and the information related to the wake ID of the previous level or multi-level sequence; the multi-level basic sequence indicates the wake ID.
  • the scrambling code sequences of each level are different.
  • the scrambling code sequences of multiple sequences in the first level may be the same, and the scrambling code sequences of multiple sequences in other levels may be different.
  • each level sequence is gold, for example: gold+gold for two-level sequence; in another scheme, each level sequence is Hadarmad sequence (H for short), for example: H+H for two-level sequence;
  • the first-level sequence is H
  • the second-level sequence is a gold sequence (referred to as g), that is, H+g can be expressed.
  • H Gold sequence
  • g gold sequence
  • the energy-saving signal carries binary indication information composed of multiple energy-saving information corresponding to the sequence index of the multi-level sequence; wherein the multiple energy-saving information includes at least all The energy-saving identifier, the energy-saving region identifier and the level indication information of the multi-level sequence.
  • the binary indication information composed of multiple energy-saving information carried by the energy-saving signal and the sequence index of the multi-level sequence may correspond to the decimal expression and multi-level sequence of the binary indication information composed of multiple energy-saving information carried by the energy-saving signal Corresponds to the sequence index.
  • the correspondence may be that the sequence index of the multi-level sequence may represent the binary indication information composed of multiple energy-saving information carried by the energy-saving signal, or the correspondence may be binary indication information composed of multiple energy-saving information carried by the energy-saving signal
  • the decimal expression of is in one-to-one correspondence with the sequence index of the multilevel sequence.
  • different fields of the sequence index of the above multi-level sequence correspond to different energy-saving information.
  • different energy-saving information can be determined through different fields.
  • the five fields constitute n1+n2+n3+n4+n5 bits, and the sequence index of the multi-level sequence corresponding to 2 (n1+n2+n3+n4+n5) .
  • Wake Up ID related information may be used to indicate Wake Up ID.
  • Wake Up ID may be indicated through a combination of multi-level sequences, for example: the first level sequence carries Wake Up ID Part of the information, the second-level sequence carries the other part of the Wakeup ID. Of course, it can also be indicated separately by a certain-level sequence.
  • the first-level sequence carries all the information of the WakeupID, which is not limited.
  • the energy-saving information of the above five fields that need to be pointed out is just an example, and more or less information is not excluded, such as time or frequency information related to the resources that transmit energy-saving signals, and the ordering of the multiple fields in the above table is also just An example does not exclude other sequences of multiple fields.
  • the information related to wake ID can be located in the most significant bit (Most Significant Bit, MSB) as shown in the table, or in the least significant bit (Least Significant Bit, LSB).
  • the second level sequence is executed only when the terminal detects the first-level sequence Level sequence detection.
  • the terminal since the terminal detects the first-level sequence, the second-level sequence is detected. This can prevent the terminal from performing the second-level sequence without detecting the first-level sequence. The power consumption caused by the sequence detection is wasted.
  • the first-level energy-saving signal carries energy-saving information that does not require blind detection
  • the second-level energy saving signal carries at least energy saving information that cannot be predicted in advance.
  • the energy-saving information that does not require blind detection may be energy-saving information that can be detected by the terminal without blind detection.
  • the energy-saving information that does not require blind detection may also be energy-saving information known to the terminal, for example: Wake up ID, wake up area ID, sequence-level instruction information (if it is a multi-level sequence).
  • the energy-saving information that cannot be predicted in advance may be energy-saving information unknown to the terminal, such as: BWP index, Carrier index, the number of PDCCH detection cycles N_skip that need to be skipped, and resource information for transmitting energy-saving signals.
  • the terminal can be awakened with low energy consumption, while the second-level energy-saving signal carries at least energy-saving information that cannot be predicted in advance, which can realize the two levels of energy-saving The signal carries a lot of energy-saving information to improve the energy-saving effect.
  • the first-level energy-saving signal is transmitted in a discontinuous reception sleep DRX OFF period and the second-level energy-saving signal is transmitted in a DRX OFF or discontinuous reception activated DRX On period.
  • the first-level energy-saving signal can be used to wake up the terminal in the DRX OFF period, and the second-level energy-saving signal is transmitted in the DRX OFF or DRX On period to transmit at least energy-saving information that cannot be predicted in advance.
  • the first-level energy-saving signal is transmitted in the DRX OFF period, and the second-level energy-saving signal is transmitted in the DRX OFF period; where, in the drawing, Stage 1 WUS indicates the first level energy-saving signal, and Stage 2 WUS represents the second level energy saving signal.
  • the first-level energy-saving signal DRX is transmitted in the OFF period
  • the second-level energy-saving signal is transmitted in the DRX ON period.
  • the sequence-based WUS sequence-based WUS
  • Stage 2 WUS represents the second-level energy-saving signal.
  • the candidate position for sending the second-level energy saving signal in the DRX On period may be a semi-static configuration, or the network-side device and the terminal have agreed in advance.
  • the second energy-saving signal is transmitted at the starting position in the DRX ON cycle.
  • the first-level energy-saving signal is a single-level sequence or a multi-level sequence.
  • the second level energy saving signal is an energy saving signal based on the physical downlink control channel PDCCH.
  • the above-mentioned first-level energy saving signal is a single-level sequence or a multi-level sequence may be a sequence-based single-level sequence or a multi-level sequence, that is, the first-level energy-saving signal may be called a sequence-based power saving signal.
  • the multi-level sequence reference may be made to the multi-level sequence described above in the embodiments of the present disclosure, and details are not described here.
  • the energy saving signal of the second level energy saving signal is the PDCCH energy saving signal may be called a PDCCH-based power saving signal, or a DCI-based power saving signal.
  • the first-level sequence generation method is as follows: the frequency domain sequence on the base station side: sequence 1, sequence 2, sequence 3, ... sequence M1 is accumulated, and then IFFT and CP addition operations of the sum sequence are mapped to m1 OFDM symbols in the time domain to obtain The first-level sequence; the second-level sequence generation method is similar to the first-level sequence generation method.
  • the minimum value of the OFDM symbol index in the figure is 1 and is continuous. It is just an example.
  • the starting point of the OFDM symbol index can be any value that meets the requirements.
  • the OFDM symbol index can be distributed, that is, there is no continuous relationship, the number of OFDM symbols m It can be equal to 1.
  • the two-level sequence is actually a frequency-sequence sequence; the two-level sequence shown in the figure is only a specific example given for convenience of description.
  • Frequency domain sequences 1, 2, ... M are pseudo-random sequences, such as the commonly used m sequence and its gold sequence or Kasami sequence. As mentioned above, considering that the power saving signal needs to carry more information, preferably, the frequency domain sequences 1, 2, ... M are all gold sequences or Kasami sequences.
  • the gold sequence c(n) with a register length of 31 for the downlink reference signal can be used in the NR standard, which is defined as follows:
  • x 1 (n+31) (x 1 (n+3)+x 1 (n)) mod2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n)) mod2
  • the number of information bits carried in practice is generally less than 31, which also depends on how long the specific sequence is. There is a certain relationship. Assume that the number of information bits carried in the gold sequence is InforNum ⁇ 31.
  • the aforementioned multiple types of information that require the power saving indication are carried in multi-level sequences.
  • the UE-specific power saving signal must carry information related to wake ID and wake ID (also called As wake ID).
  • wake ID also called As wake ID
  • the first sequence of the two-level sequence of user 1 and the second sequence of the two-level sequence of user 2 are simultaneously
  • User 1 may detect User 2's sequence as its own sequence.
  • the mandatory multi-level sequence needs to carry the indication information for distinguishing the different levels of the multi-level sequence.
  • the specific scheme may be as follows:
  • Each level sequence needs to carry the level indication information of the multi-level sequence.
  • the initial phase of the first-level gold sequence needs to contain 1-bit stage index information, such as bit 0,
  • wake ID also called wake ID
  • Wakeup ID-related information occupies 8 bits, the first-stage sequence stage index information (1 bit); the second-stage gold sequence initial phase can carry wake-related ID information (10-bit), second-stage sequence The stage index information (accounting for 1 bit), the second-level sequence carries wake-related ID information (occupying 8 bits), and the two-level sequence supports up to 256*256 wake ID information. It should be noted that the information related to the wake ID carried in each sequence may be complete wake ID information or partial wake ID information.
  • the last-level (gold) sequence needs to carry the information related to the wake ID carried by the previous-level or multi-level (gold) sequence, for example, taking the two-level sequence as an example, each specific one in the first-level gold sequence Sequences carry information related to a specific wake ID. If all possible sequences of the first-level sequence are regarded as a group of sequences, the group of sequences can be grouped again to obtain S subgroups. The index of each subgroup (that is, grouping Index information) can be used as a kind of information related to wake ID.
  • the second-level gold sequence needs to carry information related to the wake ID in the first-level sequence (eg, packet index information), and this information may be a function of the initial phase of the second-level gold sequence.
  • the minimum value of the subgroup S can be 1 and the maximum value of S can be as many as the number of all sequences in the level sequence, that is, The number of sequences in each sub-group is only 1; when the S value is 1, it is equivalent to the level index of the first-level sequence without the multi-level sequence, and the second-level multi-level sequence contains a common (for example, 1 bit)
  • the level index of the first-level sequence of bits is a special case of scheme 1, where each level sequence carries a level index. Obviously, a larger S value is more beneficial to reduce the false alarm probability of sequence detection. Of course, a smaller S value is more beneficial to improve the multi-user multiplexing performance of special sequences such as orthogonal sequences.
  • the multi-level sequence can also carry one or more of the time or frequency information related to the BWP index, carrier index, and resources that transmit power saving signals.
  • the initial phase of the first-level (gold) sequence can carry information related to wake ID (10 bits) and wake ID (7 bits), stage indication information (1 bit), BWP index related information (2 bits), Carrier index related information (4 bits);
  • the second level sequence carries wake ID (10 bits), wake ID information (9 bits), level indication Information (1 bit), the two-level sequence supports a total of 2 ⁇ 16 wake IDs, can activate 15 carriers, switch 4 BWP, skip 4 possible PDCCH detection cycles.
  • the terminal will detect the second-level sequence only when it detects the first-level sequence. If the first-level sequence fails, it will not detect the second-level sequence. As long as the terminal detects the first-level sequence, it will perform a wake-up process, that is, perform PDCCH detection in the subsequent DRX ON cycle to reduce the probability of missed detection.
  • the multi-level sequence in the above example is preferably obtained based on the gold sequence, but it is not excluded that it may be other PN sequences, such as the Kasami sequence that is very close to the performance of the gold sequence.
  • the multi-level sequence may use different sequences, such as a The level sequence uses the gold sequence, and the other level sequence uses the Kasami sequence.
  • each level sequence can be obtained based on the gold sequence or Kasami sequence.
  • the power saving signal can be considered based on the orthogonal sequence.
  • the sequence of the unscrambling code is only applicable when the register of the gold sequence is very long. The following describes how to support scrambling code sequences. Multi-level sequences carry a variety of information.
  • the two-level WUS sequence constitutes a power saving signal with the same generating principle.
  • Each level of WUS is generated by superimposing the basic sequence in the frequency domain, scrambling the sum sequence, and performing IFFT and other operations to convert to m symbols in the time domain.
  • M can be equal to 1 and the multi-level sequence is frequency domain concatenation.
  • the multi-level basic sequence corresponds to wake ID information
  • the scrambling code sequence corresponds to wake ID information.
  • the preferred basic sequence may be an orthogonal sequence such as cyclic shift of Hadamard/wash sequence/ZC sequence, etc.
  • the best is the gold sequence, such as the gold sequence of the 31-order register used in NR in Embodiment 1.
  • two-level WUS sequences can be cascaded to obtain M1*M1 sequences, which are in the same wakeuparea.
  • the M1*M1 sequences all use the same scrambling code sequence corresponding to wake ID information.
  • the scrambling code sequence of the power saving signal also needs to carry different levels of indication information of the multi-level sequence.
  • the scrambling code sequence At least the wake ID also needs to carry a function of indicating information of different levels of the multi-level sequence, and the scrambling sequence of each level of the multi-level sequence is inconsistent.
  • the two-level WUS sequence constitutes a power saving signal, which is generated as follows:
  • the first-level sequence is generated as follows: frequency-domain basic sequence 1, basic sequence 2, basic sequence 3, ... basic sequence M1 is accumulated, and then a common sequence is used for the sum sequence
  • the scrambling code sequence is scrambled, and then the carrier sequence is mapped to the subcarrier mapping IFFT and the CP operation is mapped to m1 OFDM symbols in the time domain to obtain the first-level sequence;
  • the second-level sequence is inconsistent with the first-level generation method, specifically : Each basic sequence in the frequency domain is first subjected to an independent scrambling operation.
  • the scrambling sequence is related to the group index of the grouping of the first-level sequence, and then the M-M1 sequences after the scrambling are added, and each of the second-level sequences
  • the scrambling codes of the basic sequence are independent of each other, and then subcarrier mapping IFFT is performed on the sum sequence and CP operations are added to map m-m1 OFDM symbols in the time domain.
  • m1 can be equal to 1
  • the multi-level sequence is frequency division multiplexing.
  • the power saving signal of the above structure must carry wake ID, wake ID, and the next-level sequence needs to carry the information related to the wake ID of the previous level or multi-level sequence (for example: group index information).
  • group index information for example: group index information.
  • the definition of the information related to the wake ID of the previous level or multi-level sequence is similar to the related description of Option 2 of Embodiment 1. If all possible sequences of the first-level sequence are regarded as a group of sequences, the group of sequences can be grouped again to obtain S subgroups, and the index of each subgroup can be used as information related to wake ID.
  • the present disclosure groups possible sequences of the previous level sequence, and passes the subgroup index to the second level sequence, that is, carries the group index information of the first level sequence in the scrambling sequence of the second level sequence, and the S value
  • the minimum value can be 1, and the maximum S value can be as many as the number of all sequences in the sequence, that is, the number of sequences in each sub-group is only 1.
  • the S value is 1, this is equivalent to the disturbance of the first sequence
  • the scrambling code sequence of the second level multilevel sequence contains a common level index such as 1 bit, which is a special case in Scheme 1.
  • a larger S value is more beneficial to reduce the false alarm probability of sequence detection, and a smaller S value is more beneficial to improve the multi-user multiplexing performance of special sequences such as orthogonal sequences.
  • the sequence combination formed by the two-level basic sequence corresponds to the wake ID information, and the wake ID information is carried by the scrambling sequence.
  • the first level sequence uses a common scrambling code sequence to carry wake ID information, while the second level sequence scrambling code sequence also carries the group index information of the previous level sequence in addition to the wake area ID information.
  • the information that needs to be carried is a function of the scrambling sequence.
  • the basic sequence may be an orthogonal sequence such as a cyclic shift of a Hadamard/wash sequence/ZC sequence or a gold sequence or a ZC sequence of different roots, etc.
  • the scrambling sequence is preferably a gold sequence, such as the 31 order used by NR in Embodiment 1. The gold sequence of registers.
  • the basic sequence of the first-level sequence and the basic sequence of the second-level sequence are both gold sequences or Kasami sequences, while the scrambling sequence is still a long gold sequence, as described above, the register length is 31 gold sequence c(n ).
  • the more specific first-level basic sequence and second-level basic sequence take the SSS sequence in the NR.
  • the two-level sequence of the scheme is a gold sequence.
  • the advantages of the number of users supported are many. The disadvantage is that if the number of users is particularly large when multiple sequences are superimposed, performance will be seriously lost.
  • the basic sequence of the first-level sequence and the basic sequence of the second-level sequence are orthogonal sequences or ZC sequences, while the scrambling code sequence is still a long gold sequence, as described above, the register length is 31 gold sequence c ( n). More specifically, for example, the first-level basic sequence takes the Hadarmad sequence, and the second-level basic sequence also takes the Hadarmad sequence. It is assumed that the length of the single-level sequence is 128, and the two-level SSS sequence has 128*128 sequence combinations, so the number of users supported is far less than SSS+SSS, but the first-level sequence of the scheme is an orthogonal sequence, and because the second-level sequence Subgroup.
  • the first-level basic sequence is an orthogonal sequence or a ZC sequence
  • the second-level basic sequence is a gold sequence or Kasami sequence
  • the scrambling code sequence is still a long gold sequence, as described above, the register length is 31 Gold sequence c(n).
  • a more specific first-level basic sequence is a Hadarmad or ZC sequence
  • a second-level basic sequence is a gold sequence such as an SSS sequence. It is assumed that the length of a single-level sequence is 128, and the two-level SSS sequence has 128*1008 sequence combinations, so more users are supported than two-level sequences are orthogonal sequences, and less than two-level sequences are gold sequences, but the performance is better than the two.
  • the level sequences are all gold sequences, which are similar to the orthogonal sequences of the two level sequences.
  • the first-level sequence is an orthogonal sequence such as Hadarmad
  • the second-level sequence is gold such as an SSS sequence
  • the base station can configure the number of power saving signal levels according to the application scenario, such as a scenario with a small number of users, You can only configure the first-level sequence to be all orthogonal sequences, and the performance of multi-user superposition will be greatly improved.
  • two-level signals can be configured.
  • the action of the base station is that there is a semi-static signaling carried by the RRC or the system information indicates the level index of the power saving signal used. Of course, it can also be dynamic signaling such as DCI or MAC.
  • the following scheme can be adopted.
  • the binary indication information composed of multiple kinds of power saving information carried in the power saving signal corresponds one-to-one to the sequence index of the multi-level sequence.
  • n1+n2+n3+n4+n5 bits corresponding to the sequence index of the multilevel sequence is 2 (n1+n2+n3+n4+n5)
  • the power saving information of the above four fields that need to be pointed out is just an example, it does not exclude more or less information, such as the time or frequency information related to the resource transmitting the power saving signal, the order of the multiple fields in the above table It is just an example, and other order of multiple fields is not excluded.
  • the information related to wake ID can be located in the MSB or LSB as shown in the table.
  • the scrambling code sequence carries at least wake ID information, but it should be noted that when the scrambling code sequence is a gold or Kasami sequence, its initial phase must carry wake ID information and other power saving information.
  • the scrambling sequence can also be a function of the time or frequency information of the power saving signal, such as the initial phase and the slot index or power of the power saving signal transmission starting point
  • the index of the frequency configuration of the saving signal transmission, such as the power saving information can be used as the input of the initial phase.
  • the terminal behavior can be: wake up area is known to the terminal.
  • the terminal first receives the power saving signal at the corresponding location, the terminal first performs the descrambling code operation, and performs correlation detection on the received signal after the descrambling code with the corresponding basic sequence known by itself to determine whether there is a corresponding power saving signal.
  • the terminal needs to perform blind inspection or hypothesis testing based on the possible value of BWP index. If the terminal detects the corresponding power saving signal, it executes wakeup to perform PDCCH detection in the subsequent DRX ON, otherwise it continues to sleep.
  • Embodiments 1 and 2 can realize that power saving carries various other power saving information besides wake ID and wake ID. But if the information it carries is unknown, such as BWP index information, if the BWP index is unknown, the terminal needs to perform a blind check or hypothesis test on the BWP index. This will undoubtedly increase UE detection power consumption.
  • Another method is as follows:
  • the network-side device first sends a sequence-based power saving signal in DRX OFF, such as the multi-level sequence shown in Embodiments 1 and 2, or the first-level sequence in the multi-level sequence based on the orthogonal sequence described in Example 2, That is, single-level sequence, the sequence-based power saving signal preferably carries only power saving information that does not require blind detection, such as wake ID, wake ID, and multi-level sequence level indication information (if it is a multi-level sequence), Known information related to energy saving channel (power saving channel). If the network-side device sends a first-level power saving signal that wakes up a wake ID, the base station will send a PDCCH-based signal within the DRX OFF period for the wake ID.
  • a sequence-based power saving signal in DRX OFF such as the multi-level sequence shown in Embodiments 1 and 2, or the first-level sequence in the multi-level sequence based on the orthogonal sequence described in Example 2, That is, single-level sequence, the sequence-based power saving
  • the frequency domain position of the PDCCH-based power saving signal can be the same as the sequence-based energy-saving signal (sequence-based power saving signal), and preferably can be the same as the frequency domain resource configured by the PDCCH in the DRX ON.
  • Figure 7 shows an example where the second-level DCI-based power saving signal is sent in DRX ON. Similar to Figure 6, the first-level sequence-based power saving signal is sent in DRX OFF to wake up the terminal.
  • the PDCCH-based power saving signal carries more
  • the previously mentioned power saving information is in DRX ON, and is preferably sent in the early stage of DRX, such as in the first L slots of the DRX ON cycle (for example, L is less than or equal to a certain value such as 8), because it is in DRX
  • one or more candidate transmission positions for transmitting the second-level PDCCH-based power saving signal can be pre-booked or semi-statically configured by the base station through RRC signaling, and the UE detects the second-level PDCCH based on the corresponding location power saving signal.
  • the difference between the second-level PDCCH-based power saving signal and the PDCCH in the related art is that it carries a specially defined DCI for carrying power saving information.
  • a terminal receives an energy-saving signal sent by a network-side device; wherein, the energy-saving signal is a multi-level sequence, and the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and a level indication of the multi-level sequence Information, the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving region, and the energy-saving region is an area indicated by the energy-saving region identifier; or the energy-saving signal includes a first-level energy-saving signal and a second-level energy-saving signal, wherein, The first-level energy-saving signal and the second-level energy-saving signal respectively carry different energy-saving information. In this way, multiple energy-saving information can be carried, thereby improving the energy-saving effect.
  • FIG. 8 is a flowchart of another energy-saving signal transmission method according to an embodiment of the present disclosure. As shown in FIG. 8, it includes the following steps:
  • the network side device sends an energy-saving signal to the terminal
  • the energy-saving signal is a multi-level sequence
  • the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and level indication information of the multi-level sequence.
  • the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving area
  • the energy-saving area is an area indicated by the energy-saving area identifier; or
  • the energy saving signal includes a first level energy saving signal and a second level energy saving signal, wherein the first level energy saving signal and the second level energy saving signal respectively carry different energy saving information.
  • the level indication information of the multi-level sequence includes:
  • the first level sequence in the multilevel sequence does not carry level indication information, and the level indication information carried by the remaining level sequences; or
  • the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence.
  • the level indication information includes:
  • Level index information or group index information are examples of levels.
  • the multi-level sequence also carries at least one of the following:
  • BWP index BWP index, carrier index, indication information of the number of PDCCH detection cycles to be skipped, and resource information of the energy-saving signal.
  • the carrier index is a carrier index in at least one carrier index semi-statically configured on the network side;
  • the number of PDCCH detection cycles that need to be skipped is one of the skipped numbers of at least one PDCCH detection cycle semi-statically configured on the network side.
  • the multi-level sequence is a multi-level sequence without a scrambling sequence
  • each level sequence in the multi-level sequence is a gold sequence, the energy-saving identifier, the energy-saving area identifier, and the multi-level sequence
  • the level indication information is a function of the initial phase of the gold sequence.
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the multi-level sequence carries the energy-saving area identifier and the level indication information, and the basic sequence of the multi-level sequence Carry the energy-saving logo; or
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the next-level sequence in the multi-level sequence carries level indication information of the previous level or the previous multi-level sequence.
  • the basic sequence carries the energy-saving identifier.
  • the scrambling code sequence of the multi-level sequence carries the energy-saving region identifier and the level indication information
  • the scrambling code sequence of each level sequence in the multi-level sequence is different, and the The scrambling sequence of multiple sequences is the same;
  • the scrambling code sequence of the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence
  • the scrambling code sequence of each level sequence in the multi-level sequence is different.
  • the multi-level sequence includes at least a first-level sequence and a second-level sequence
  • the basic sequences of the first-level sequence and the second-level sequence are the same type of sequence, and the same type of sequence is an orthogonal sequence, a gold sequence, a ZC sequence position or a Kasami sequence; or
  • the basic sequence of the first-level sequence is one of the orthogonal sequence, the gold sequence, and the Kasami sequence at the ZC sequence position
  • the basic sequence of the second-level sequence is the orthogonal sequence, the gold sequence, and Kasami at the ZC sequence position. The other in the sequence.
  • the energy-saving signal carries binary indication information composed of various energy-saving information corresponding to the sequence index of the multi-level sequence; wherein, the plurality of energy-saving information includes at least the energy-saving identifier and the energy-saving region identifier And the level indication information of the multi-level sequence; and/or
  • the second-level sequence is only detected when the terminal detects the first-level sequence
  • the superimposed result performs sub-carrier mapping, and performs an IFFT operation and adds a cyclic prefix CP, and then maps it to the corresponding transmission resource.
  • different fields of the sequence index of the multi-level sequence correspond to different energy-saving information.
  • the first-level energy-saving signal carries energy-saving information that does not require blind inspection
  • the second-level energy saving signal carries at least energy saving information that cannot be predicted in advance.
  • the first-level energy-saving signal is transmitted in a discontinuous reception sleep DRX OFF cycle; the second-level energy-saving signal is transmitted in a DRX OFF or discontinuous reception activated DRX On cycle; and/or
  • the first-level energy-saving signal is a single-level sequence or a multi-level sequence
  • the second level energy saving signal is an energy saving signal based on the physical downlink control channel PDCCH.
  • the candidate position for sending the second-level energy saving signal in the DRX On period is a semi-static configuration, or the network-side device and the terminal have agreed in advance.
  • this embodiment is an implementation of the network side device corresponding to the embodiment shown in FIG. 2.
  • the network side device corresponding to the embodiment shown in FIG. 2.
  • this embodiment will not go into details, and the same beneficial effects can also be achieved.
  • FIG. 9 is a structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the terminal 900 includes:
  • the receiving module 901 is used to receive the energy-saving signal sent by the network side device;
  • the energy-saving signal is a multi-level sequence
  • the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and level indication information of the multi-level sequence.
  • the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving area
  • the energy-saving area is an area indicated by the energy-saving area identifier; or
  • the energy saving signal includes a first level energy saving signal and a second level energy saving signal, wherein the first level energy saving signal and the second level energy saving signal respectively carry different energy saving information.
  • the level indication information of the multi-level sequence includes:
  • the first level sequence in the multilevel sequence does not carry level indication information, and the level indication information carried by the remaining level sequences; or
  • the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence.
  • the level indication information includes:
  • Level index information or group index information are examples of levels.
  • the multi-level sequence also carries at least one of the following:
  • Partial bandwidth BWP index Partial bandwidth BWP index, carrier index, indication information of the number of physical layer downlink control channel PDCCH detection cycles to be skipped, and resource information of the energy-saving signal.
  • the carrier index is a carrier index in at least one carrier index semi-statically configured on the network side;
  • the number of PDCCH detection cycles that need to be skipped is one of the skipped numbers of at least one PDCCH detection cycle semi-statically configured on the network side.
  • the multi-level sequence is a multi-level sequence without a scrambling sequence
  • each level sequence in the multi-level sequence is a gold sequence, the energy-saving identifier, the energy-saving area identifier, and the multi-level sequence
  • the level indication information is a function of the initial phase of the gold sequence.
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the multi-level sequence carries the energy-saving area identifier and the level indication information, and the basic sequence of the multi-level sequence Carry the energy-saving logo; or
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the next-level sequence in the multi-level sequence carries level indication information of the previous level or the previous multi-level sequence.
  • the basic sequence carries the energy-saving identifier.
  • the scrambling code sequence of the multi-level sequence carries the energy-saving region identifier and the level indication information
  • the scrambling code sequence of each level sequence in the multi-level sequence is different, and the The scrambling sequence of multiple sequences is the same;
  • the scrambling code sequence of the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence
  • the scrambling code sequence of each level sequence in the multi-level sequence is different.
  • the multi-level sequence includes at least a first-level sequence and a second-level sequence
  • the basic sequences of the first-level sequence and the second-level sequence are the same type of sequence, and the same type of sequence is an orthogonal sequence, a gold sequence, a ZC sequence position or a Kasami sequence; or
  • the basic sequence of the first-level sequence is one of the orthogonal sequence, the gold sequence, and the Kasami sequence at the ZC sequence position
  • the basic sequence of the second-level sequence is the orthogonal sequence, the gold sequence, and Kasami at the ZC sequence position. The other in the sequence.
  • the energy-saving signal carries binary indication information composed of various energy-saving information corresponding to the sequence index of the multi-level sequence; wherein, the plurality of energy-saving information includes at least the energy-saving identifier and the energy-saving region identifier And the level indication information of the multi-level sequence; and/or
  • the second-level sequence is only detected when the terminal detects the first-level sequence
  • the superimposed result is sub-carrier mapped, and the inverse fast Fourier transform IFFT operation and the cyclic prefix CP are added, and then mapped onto the corresponding transmission resources.
  • different fields of the sequence index of the multi-level sequence correspond to different energy-saving information.
  • the first-level energy-saving signal carries energy-saving information that does not require blind inspection
  • the second-level energy saving signal carries at least energy saving information that cannot be predicted in advance.
  • the first-level energy-saving signal is transmitted in a discontinuous reception sleep DRX OFF cycle; the second-level energy-saving signal is transmitted in a DRX OFF or discontinuous reception activated DRX On cycle; and/or
  • the first-level energy-saving signal is a single-level sequence or a multi-level sequence
  • the second-level energy-saving signal is a PDCCH-based energy-saving signal.
  • the candidate position for sending the second-level energy saving signal in the DRX On period is a semi-static configuration, or the network-side device and the terminal have agreed in advance.
  • the above-mentioned terminal 900 in this embodiment may be a terminal of any implementation manner in the method embodiment in the embodiment of the present disclosure. Any implementation of the terminal in the method embodiment in the embodiment of the present disclosure may be used in this embodiment. The implementation of the foregoing terminal 900 and the same beneficial effects will not be repeated here.
  • FIG. 10 is a structural diagram of a network-side device according to an embodiment of the present disclosure.
  • the network-side device 1000 includes:
  • the sending module 1001 is used to send an energy-saving signal to the terminal;
  • the energy-saving signal is a multi-level sequence
  • the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and level indication information of the multi-level sequence.
  • the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving area
  • the energy-saving area is an area indicated by the energy-saving area identifier; or
  • the energy saving signal includes a first level energy saving signal and a second level energy saving signal, wherein the first level energy saving signal and the second level energy saving signal respectively carry different energy saving information.
  • the level indication information of the multi-level sequence includes:
  • the first level sequence in the multilevel sequence does not carry level indication information, and the level indication information carried by the remaining level sequences; or
  • the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence.
  • the level indication information includes:
  • Level index information or group index information are examples of levels.
  • the multi-level sequence also carries at least one of the following:
  • BWP index BWP index, carrier index, indication information of the number of PDCCH detection cycles to be skipped, and resource information of the energy-saving signal.
  • the carrier index is a carrier index in at least one carrier index semi-statically configured on the network side;
  • the number of PDCCH detection cycles that need to be skipped is one of the skipped numbers of at least one PDCCH detection cycle semi-statically configured on the network side.
  • the multi-level sequence is a multi-level sequence without a scrambling sequence
  • each level sequence in the multi-level sequence is a gold sequence, the energy-saving identifier, the energy-saving area identifier, and the multi-level sequence
  • the level indication information is a function of the initial phase of the gold sequence.
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the multi-level sequence carries the energy-saving area identifier and the level indication information, and the basic sequence of the multi-level sequence Carry the energy-saving logo; or
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the next-level sequence in the multi-level sequence carries level indication information of the previous level or the previous multi-level sequence.
  • the basic sequence carries the energy-saving identifier.
  • the scrambling code sequence of the multi-level sequence carries the energy-saving region identifier and the level indication information
  • the scrambling code sequence of each level sequence in the multi-level sequence is different, and the The scrambling sequence of multiple sequences is the same;
  • the scrambling code sequence of the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence
  • the scrambling code sequence of each level sequence in the multi-level sequence is different.
  • the multi-level sequence includes at least a first-level sequence and a second-level sequence
  • the basic sequences of the first-level sequence and the second-level sequence are the same type of sequence, and the same type of sequence is an orthogonal sequence, a gold sequence, a ZC sequence position or a Kasami sequence; or
  • the basic sequence of the first-level sequence is one of the orthogonal sequence, the gold sequence, and the Kasami sequence at the ZC sequence position
  • the basic sequence of the second-level sequence is the orthogonal sequence, the gold sequence, and Kasami at the ZC sequence position. The other in the sequence.
  • the energy-saving signal carries binary indication information composed of various energy-saving information corresponding to the sequence index of the multi-level sequence; wherein, the plurality of energy-saving information includes at least the energy-saving identifier and the energy-saving region identifier And the level indication information of the multi-level sequence; and/or
  • the second-level sequence is only detected when the terminal detects the first-level sequence
  • the superimposed result performs sub-carrier mapping, and performs an IFFT operation and adds a cyclic prefix CP, and then maps it to the corresponding transmission resource.
  • different fields of the sequence index of the multi-level sequence correspond to different energy-saving information.
  • the first-level energy-saving signal carries energy-saving information that does not require blind inspection
  • the second-level energy saving signal carries at least energy saving information that cannot be predicted in advance.
  • the first-level energy-saving signal is transmitted in a discontinuous reception sleep DRX OFF cycle; the second-level energy-saving signal is transmitted in a DRX OFF or discontinuous reception activated DRX On cycle; and/or
  • the first-level energy-saving signal is a single-level sequence or a multi-level sequence
  • the second level energy saving signal is an energy saving signal based on the physical downlink control channel PDCCH.
  • the candidate position for sending the second-level energy saving signal in the DRX On period is a semi-static configuration, or the network-side device and the terminal have agreed in advance.
  • the above network side device 1000 in this embodiment may be a terminal of any implementation manner in the method embodiment in the embodiment of the present disclosure. Any implementation manner of the network side device in the method embodiment in the embodiment of the present disclosure may be used in this embodiment.
  • the above-mentioned network-side device 1000 in the embodiment is implemented and achieves the same beneficial effects, which will not be repeated here.
  • FIG. 11 is a structural diagram of another terminal provided by an embodiment of the present disclosure.
  • the terminal includes: a transceiver 1110, a memory 1120, a processor 1100, and stored on the memory 1120 And a program that can run on the processor 1200, where:
  • the transceiver 1110 is configured to receive the energy-saving signal sent by the network-side device
  • the energy-saving signal is a multi-level sequence
  • the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and level indication information of the multi-level sequence.
  • the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving area
  • the energy-saving area is an area indicated by the energy-saving area identifier; or
  • the energy saving signal includes a first level energy saving signal and a second level energy saving signal, wherein the first level energy saving signal and the second level energy saving signal respectively carry different energy saving information.
  • the transceiver 1110 can be used to receive and send data under the control of the processor 1100.
  • the bus architecture may include any number of interconnected buses and bridges, specifically, one or more processors represented by the processor 1100 and various circuits of the memory represented by the memory 1120 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 1110 may be a plurality of elements, including a transmitter and a receiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 1100 is responsible for managing the bus architecture and general processing, and the memory 1120 may store data used by the processor 1100 in performing operations.
  • the memory 1120 is not limited to the terminal, and the memory 1120 and the processor 1100 may be separated in different geographic locations.
  • the level indication information of the multi-level sequence includes:
  • the first level sequence in the multilevel sequence does not carry level indication information, and the level indication information carried by the remaining level sequences; or
  • the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence.
  • the level indication information includes:
  • Level index information or group index information are examples of levels.
  • the multi-level sequence also carries at least one of the following:
  • Partial bandwidth BWP index Partial bandwidth BWP index, carrier index, indication information of the number of physical layer downlink control channel PDCCH detection cycles to be skipped, and resource information of the energy-saving signal.
  • the carrier index is a carrier index in at least one carrier index semi-statically configured on the network side;
  • the number of PDCCH detection cycles that need to be skipped is one of the skipped numbers of at least one PDCCH detection cycle semi-statically configured on the network side.
  • the multi-level sequence is a multi-level sequence without a scrambling sequence
  • each level sequence in the multi-level sequence is a gold sequence, the energy-saving identifier, the energy-saving area identifier, and the multi-level sequence
  • the level indication information is a function of the initial phase of the gold sequence.
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the multi-level sequence carries the energy-saving area identifier and the level indication information, and the basic sequence of the multi-level sequence Carry the energy-saving logo; or
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the next-level sequence in the multi-level sequence carries level indication information of the previous level or the previous multi-level sequence.
  • the basic sequence carries the energy-saving identifier.
  • the scrambling code sequence of the multi-level sequence carries the energy-saving region identifier and the level indication information
  • the scrambling code sequence of each level sequence in the multi-level sequence is different, and the The scrambling sequence of multiple sequences is the same;
  • the scrambling code sequence of the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence
  • the scrambling code sequence of each level sequence in the multi-level sequence is different.
  • the multi-level sequence includes at least a first-level sequence and a second-level sequence
  • the basic sequences of the first-level sequence and the second-level sequence are the same type of sequence, and the same type of sequence is an orthogonal sequence, a gold sequence, a ZC sequence position or a Kasami sequence; or
  • the basic sequence of the first-level sequence is one of the orthogonal sequence, the gold sequence, and the Kasami sequence at the ZC sequence position
  • the basic sequence of the second-level sequence is the orthogonal sequence, the gold sequence, and Kasami at the ZC sequence position. The other in the sequence.
  • the energy-saving signal carries binary indication information composed of various energy-saving information corresponding to the sequence index of the multi-level sequence; wherein, the plurality of energy-saving information includes at least the energy-saving identifier and the energy-saving region identifier And the level indication information of the multi-level sequence; and/or
  • the second-level sequence is only detected when the terminal detects the first-level sequence
  • the superimposed result is sub-carrier mapped, and the inverse fast Fourier transform IFFT operation and the cyclic prefix CP are added, and then mapped onto the corresponding transmission resources.
  • different fields of the sequence index of the multi-level sequence correspond to different energy-saving information.
  • the first-level energy-saving signal carries energy-saving information that does not require blind inspection
  • the second-level energy saving signal carries at least energy saving information that cannot be predicted in advance.
  • the first-level energy-saving signal is transmitted in a discontinuous reception sleep DRX OFF cycle; the second-level energy-saving signal is transmitted in a DRX OFF or discontinuous reception activated DRX On cycle; and/or
  • the first-level energy-saving signal is a single-level sequence or a multi-level sequence
  • the second-level energy-saving signal is a PDCCH-based energy-saving signal.
  • the candidate position for sending the second-level energy saving signal in the DRX On period is a semi-static configuration, or the network-side device and the terminal have agreed in advance.
  • the above-mentioned terminal in this embodiment may be a terminal of any implementation manner in the method embodiment in the embodiment of the present disclosure. Any implementation of the terminal in the method embodiment in this embodiment of the present disclosure may be used as described above in this embodiment. The realization of the terminal and the same beneficial effects will not be repeated here.
  • FIG. 12 is a structural diagram of another network-side device provided by an embodiment of the present disclosure.
  • the network-side device includes: a transceiver 1210, a memory 1220, a processor 1200, and stored in the The program on the memory 1220 and executable on the processor, wherein:
  • the transceiver 1210 is used to send an energy-saving signal to a terminal
  • the energy-saving signal is a multi-level sequence
  • the multi-level sequence carries at least an energy-saving identifier, an energy-saving area identifier, and level indication information of the multi-level sequence.
  • the energy-saving identifier corresponds to a terminal that needs to be awakened in the energy-saving area
  • the energy-saving area is an area indicated by the energy-saving area identifier; or
  • the energy saving signal includes a first level energy saving signal and a second level energy saving signal, wherein the first level energy saving signal and the second level energy saving signal respectively carry different energy saving information.
  • the transceiver 1210 can be used to receive and send data under the control of the processor 1200.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 1200 and various circuits of the memory represented by the memory 1220 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 1210 may be a plurality of elements, including a transmitter and a receiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 1200 is responsible for managing the bus architecture and general processing, and the memory 1220 may store data used by the processor 1200 in performing operations.
  • the memory 1220 is not limited to only on the network side device, and the memory 1220 and the processor 1200 may be separated in different geographic locations.
  • the level indication information of the multi-level sequence includes:
  • the first level sequence in the multilevel sequence does not carry level indication information, and the level indication information carried by the remaining level sequences; or
  • the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence.
  • the level indication information includes:
  • Level index information or group index information are examples of levels.
  • the multi-level sequence also carries at least one of the following:
  • BWP index BWP index, carrier index, indication information of the number of PDCCH detection cycles to be skipped, and resource information of the energy-saving signal.
  • the carrier index is a carrier index in at least one carrier index semi-statically configured on the network side;
  • the number of PDCCH detection cycles that need to be skipped is one of the skipped numbers of at least one PDCCH detection cycle semi-statically configured on the network side.
  • the multi-level sequence is a multi-level sequence without a scrambling sequence
  • each level sequence in the multi-level sequence is a gold sequence, the energy-saving identifier, the energy-saving area identifier, and the multi-level sequence
  • the level indication information is a function of the initial phase of the gold sequence.
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the multi-level sequence carries the energy-saving area identifier and the level indication information, and the basic sequence of the multi-level sequence Carry the energy-saving logo; or
  • the multi-level sequence is a multi-level sequence with a scrambling code sequence, and the scrambling code sequence of the next-level sequence in the multi-level sequence carries level indication information of the previous level or the previous multi-level sequence.
  • the basic sequence carries the energy-saving identifier.
  • the scrambling code sequence of the multi-level sequence carries the energy-saving region identifier and the level indication information
  • the scrambling code sequence of each level sequence in the multi-level sequence is different, and the The scrambling sequence of multiple sequences is the same;
  • the scrambling code sequence of the next-level sequence in the multi-level sequence carries the level indication information of the previous level or the previous multi-level sequence
  • the scrambling code sequence of each level sequence in the multi-level sequence is different.
  • the multi-level sequence includes at least a first-level sequence and a second-level sequence
  • the basic sequences of the first-level sequence and the second-level sequence are the same type of sequence, and the same type of sequence is an orthogonal sequence, a gold sequence, a ZC sequence position or a Kasami sequence; or
  • the basic sequence of the first-level sequence is one of the orthogonal sequence, the gold sequence, and the Kasami sequence at the ZC sequence position
  • the basic sequence of the second-level sequence is the orthogonal sequence, the gold sequence, and Kasami at the ZC sequence position. The other in the sequence.
  • the energy-saving signal carries binary indication information composed of various energy-saving information corresponding to the sequence index of the multi-level sequence; wherein, the plurality of energy-saving information includes at least the energy-saving identifier and the energy-saving region identifier And the level indication information of the multi-level sequence; and/or
  • the second-level sequence is only detected when the terminal detects the first-level sequence
  • the superimposed result performs sub-carrier mapping, and performs an IFFT operation and adds a cyclic prefix CP, and then maps it to the corresponding transmission resource.
  • different fields of the sequence index of the multi-level sequence correspond to different energy-saving information.
  • the first-level energy-saving signal carries energy-saving information that does not require blind inspection
  • the second-level energy saving signal carries at least energy saving information that cannot be predicted in advance.
  • the first-level energy-saving signal is transmitted in a discontinuous reception sleep DRX OFF cycle; the second-level energy-saving signal is transmitted in a DRX OFF or discontinuous reception activated DRX On cycle; and/or
  • the first-level energy-saving signal is a single-level sequence or a multi-level sequence
  • the second level energy saving signal is an energy saving signal based on the physical downlink control channel PDCCH.
  • the candidate position for sending the second-level energy saving signal in the DRX On period is a semi-static configuration, or the network-side device and the terminal have agreed in advance.
  • the above network side device may be a network side device in any implementation manner in the method embodiment in the embodiment of the present disclosure, and any implementation manner of the network side device in the method embodiment in the present disclosure embodiment may be It is achieved by the above network-side device in this embodiment, and the same beneficial effects are achieved, which will not be repeated here.
  • An embodiment of the present disclosure also provides a computer-readable storage medium on which a computer program is stored, which is characterized in that when the program is executed by a processor, the steps in the method for transmitting an energy-saving signal on the terminal side provided by the embodiment of the present disclosure are implemented Or, when the program is executed by the processor, the steps in the method for transmitting energy-saving signals on the network side device side provided by the embodiments of the present disclosure are implemented.
  • the disclosed method and apparatus may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the above integrated unit implemented in the form of a software functional unit may be stored in a computer-readable storage medium.
  • the above software functional unit is stored in a storage medium, and includes several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) to perform part of the processing method of the information data blocks described in various embodiments of the present disclosure step.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种节能信号的传输方法、终端和网络侧设备,该方法包括:终端接收网络侧设备发送的节能信号;其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。

Description

节能信号的传输方法、终端和网络侧设备
相关申请的交叉引用
本申请主张在2019年1月11日在中国提交的中国专利申请号No.201910025858.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种节能信号的传输方法、终端和网络侧设备。
背景技术
在5G新空口(New Radio,NR)系统中,支持更大的带宽,更高的吞吐,更复杂的业务以及与其匹配的更复杂的处理技术。另外,终端在空闲态(RRC_IDLE)、非激活态(RRC_Inactive)和连接态(RRC_Connected)均需要检测下行控制信道。目前通信系统中,检测下行控制信道的检测位置均是预先配置好的,且预先会配置很多个检测位置,终端需要在每个检测位置均进行检测。例如:在非连续接收(Discontinuous Reception,DRX)场景,终端需要在每个激活时间(On duration)周期都需要检测下行控制信道。因此,NR系统中引入了节能(power saving)信号,但目前的节能信号无法携带多个节能信息,从而导致节能效果比较差。
发明内容
本公开实施例提供一种节能信号的传输方法、终端和网络侧设备,以解决节能效果比较差的问题。
本公开实施例提供一种节能信号的传输方法,包括:
终端接收网络侧设备发送的节能信号;
其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
可选的,所述多级序列的级指示信息包括:
每级序列携带的级指示信息;或者
所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
可选的,所述级指示信息包括:
级索引信息或者分组索引信息。
可选的,所述多级序列还携带有如下至少一项:
部分带宽(Bandwidth part,BWP)索引、载波索引、需要跳过的物理层下行控制信道(Physical downlink control channel,PDCCH)检测周期的个数的指示信息、所述节能信号的资源信息。
可选的,所述载波索引为网络侧半静态配置的至少一个载波索引中的载波索引;和/或
所述需要跳过的PDCCH检测周期的个数为网络侧半静态配置的至少一个的PDCCH检测周期的跳过个数中的一个。
可选的,所述多级序列为不存在扰码序列的多级序列,且所述多级序列中每级序列为gold序列,所述节能标识、所述节能区域标识和所述多级序列的级指示信息是gold序列初始相位的函数。
可选的,所述多级序列为存在扰码序列的多级序列,且所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息,所述多级序列的基础序列携带所述节能标识;或者
所述多级序列为存在扰码序列的多级序列,且所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息,所述多级序列的基础序列携带所述节能标识。
可选的,在所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息的情况下,所述多级序列中每级序列的扰码序列不同,且同一级内的多个序列的扰码序列相同;或者
在所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息的情况下,所述多级序列中每级序列的扰码序列不同。
可选的,所述多级序列至少包括第一级序列和第二级序列;
其中,所述第一级序列和所述第二级序列的基础序列为同一类型的序列,所述同一类型的序列为正交序列、gold序列、ZC序列位或者Kasami序列;或者
所述第一级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的一者,所述第二级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的另一者。
可选的,所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
所述多级序列中的每一级序列存在如下特征:
一个或者多个基础序列叠加;
所述叠加后的结果进行子载波映射,并执行快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT)操作和添加循环前缀(Cyclic Prefix,CP),再映射至相应的传输资源上。
可选的,所述多级序列的序列索引不同的字段对应不同的节能信息。
可选的,所述第一级节能信号携带不需要盲检的节能信息;
所述第二级节能信号至少携带无法提前预知的节能信息。
可选的,所述第一级节能信号在非连续接收睡眠(Opportunity for DRX,DRX OFF)周期内传输;所述第二级节能信号在DRX OFF或者非连续接收激活(DRX On duration,DRX On)周期内传输;和/或
所述第一级节能信号为单级序列或者多级序列;和/或
所述第二级节能信号为基于物理下行控制信道PDCCH的节能信号。
可选的,所述DRX On周期内发送所述第二级节能信号的候选位置为半静态配置,或者所述网络侧设备与所述终端预先约定。
本公开实施例还提供一种节能信号的传输方法,包括:
网络侧设备向终端发送节能信号;
其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
可选的,所述多级序列的级指示信息包括:
每级序列携带的级指示信息;或者
所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
可选的,所述级指示信息包括:
级索引信息或者分组索引信息。
可选的,所述多级序列还携带有如下至少一项:
BWP索引、载波索引、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
可选的,所述载波索引为网络侧半静态配置的至少一个载波索引中的载波索引;和/或
所述需要跳过的PDCCH检测周期的个数为网络侧半静态配置的至少一个的PDCCH检测周期的跳过个数中的一个。
可选的,所述多级序列为不存在扰码序列的多级序列,且所述多级序列中每级序列为gold序列,所述节能标识、所述节能区域标识和所述多级序列的级指示信息是gold序列初始相位的函数。
可选的,所述多级序列为存在扰码序列的多级序列,且所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息,所述多级序列的基础序列携带所述节能标识;或者
所述多级序列为存在扰码序列的多级序列,且所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息,所述多级序列的基 础序列携带所述节能标识。
可选的,在所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息的情况下,所述多级序列中每级序列的扰码序列不同,且同一级内的多个序列的扰码序列相同;或者
在所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息的情况下,所述多级序列中每级序列的扰码序列不同。
可选的,所述多级序列至少包括第一级序列和第二级序列;
其中,所述第一级序列和所述第二级序列的基础序列为同一类型的序列,所述同一类型的序列为正交序列、gold序列、ZC序列位或者Kasami序列;或者
所述第一级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的一者,所述第二级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的另一者。
可选的,所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
所述多级序列中的每一级序列存在如下特征:
一个或者多个基础序列叠加;
所述叠加后的结果进行子载波映射,并执行IFFT操作和添加CP,再映射至相应的传输资源上。
可选的,所述多级序列的序列索引不同的字段对应不同的节能信息。
可选的,所述第一级节能信号携带不需要盲检的节能信息;
所述第二级节能信号至少携带无法提前预知的节能信息。
可选的,所述第一级节能信号在非连续接收睡眠DRX OFF周期内传输;所述第二级节能信号在DRX OFF或者非连续接收激活DRX On周期内传输;和/或
所述第一级节能信号为单级序列或者多级序列;和/或
所述第二级节能信号为基于物理下行控制信道PDCCH的节能信号。
可选的,所述DRX On周期内发送所述第二级节能信号的候选位置为半静态配置,或者所述网络侧设备与所述终端预先约定。
本公开实施例还提供一种终端,包括:
接收模块,用于接收网络侧设备发送的节能信号;
其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
可选的,所述多级序列的级指示信息包括:
每级序列携带的级指示信息;或者
所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
可选的,所述多级序列还携带有如下至少一项:
部分带宽BWP索引、载波索引、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
可选的,所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
所述多级序列中的每一级序列存在如下特征:
一个或者多个基础序列叠加;
所述叠加后的结果进行子载波映射,并执行IFFT操作和添加CP,再映射至相应的传输资源上。
本公开实施例还提供一种网络侧设备,包括:
发送模块,用于向终端发送节能信号;
其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
可选的,所述多级序列的级指示信息包括:
每级序列携带的级指示信息;或者
所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
可选的,所述多级序列还携带有如下至少一项:
部分带宽BWP索引、载波索引、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
可选的,所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
所述多级序列中的每一级序列存在如下特征:
一个或者多个基础序列叠加;
所述叠加后的结果进行子载波映射,并执行IFFT操作和添加CP,再映射至相应的传输资源上。
本公开实施例还提供一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述收发机,用于接收网络侧设备发送的节能信号;
其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一 级节能信号和所述第二级节能信号分别携带不同的节能信息。
可选的,所述多级序列的级指示信息包括:
每级序列携带的级指示信息;或者
所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
可选的,所述多级序列还携带有如下至少一项:
部分带宽BWP索引、载波索引、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
可选的,所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
所述多级序列中的每一级序列存在如下特征:
一个或者多个基础序列叠加;
所述叠加后的结果进行子载波映射,并执行IFFT操作和添加CP,再映射至相应的传输资源上。
本公开实施例还提供一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
所述收发机,用于向终端发送节能信号;
其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
可选的,所述多级序列的级指示信息包括:
每级序列携带的级指示信息;或者
所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指 示信息;或者
所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
可选的,所述多级序列还携带有如下至少一项:
部分带宽BWP索引、载波索引、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
可选的,所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
所述多级序列中的每一级序列存在如下特征:
一个或者多个基础序列叠加;
所述叠加后的结果进行子载波映射,并执行IFFT操作和添加CP,再映射至相应的传输资源上。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现本公开实施例提供的终端侧的节能信号的传输方法中的步骤,或者该程序被处理器执行时实现本公开实施例提供的网络侧设备侧的节能信号的传输方法中的步骤。
本公开实施例中,终端接收网络侧设备发送的节能信号;其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。这样可以携带多个节能信息,从而提高节能效果。
附图说明
图1是本公开实施例可应用的网络结构示意图;
图2是本公开实施例提供的一种节能信号传输方法的流程图;
图3是本公开实施例提供的一种节能信号的示意图;
图4是本公开实施例提供的另一种节能信号的示意图;
图5是本公开实施例提供的另一种节能信号的示意图;
图6是本公开实施例提供的另一种节能信号的示意图;
图7是本公开实施例提供的另一种节能信号的示意图;
图8是本公开实施例提供的另一种节能信号传输方法的流程图;
图9是本公开实施例提供的一种终端的结构图;
图10是本公开实施例提供的一种网络侧设备的结构图;
图11是本公开实施例提供的另一种终端的结构图;
图12是本公开实施例提供的另一种网络侧设备的结构图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
参见图1,图1是本公开实施例可应用的网络结构示意图,如图1所示,包括终端11和网络侧设备12,其中,终端11可以是用户终端(User Equipment,UE)或者其他终端设备,例如:手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(personal digital assistant,PDA)、移动上网装置(Mobile Internet Device,MID)或可穿戴式设备(Wearable Device)等终端侧设备,需要说明的是,在本公开实施例中并不限定终端的具体类型。网络侧设备12可以是基站,例如:宏站、LTE eNB、5G NR NB等;网络侧设备也可以是小站,如低功率节点(low power node,LPN)、pico、femto等小站,或者网络侧设备可以接入点(access point,AP);基站也可以是中央单元(central unit,CU)与其管理和控制的多个传输接收点(Transmission Reception Point,TRP)共同组成的网络节点。需要说明的是,在本公开实施例中并不限定网络侧设备的具体类型。
请参见图2,图2是本公开实施例提供的一种节能信号传输方法的流程图,如图2所示,包括以下步骤:
201、终端接收网络侧设备发送的节能信号(power saving信号);
其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
其中,上述节能信号可以包括DRX on之前的节能信号,又可以包括DRX on周期之内的节能信号。另外,上述节能信号可以是用于唤醒一个或者多个终端的信号,例如:上述节能信号可以是唤醒信号(Wakeup Signal,WUS),或者比WUS概念更宽的节能信号,对此不作限定,例如:上述节能信号还可以是协议中定义的其他信号,或者网络侧设备与终端预先约定的其他信号。
上述节能标识可以是wake up ID,而上述节能区域标识可以是wake up area ID。另外,上述节能信号可以包括一个或者多个节能标识,在一些实施方式中,一个节能标识对应一个终端,或者多个节能标识之间不同组合对应不同的终端。
而节能区域标识可以是指的是节能标识对应终端的归属区域标识,比如在RRC-Connected状态下可以是指小区标识(cell ID),在RRC-Idle态下可以是指跟踪区标识(Track area ID)或者把跟踪区(Track area)分割为多个区域得到的更小的唤醒区域。
而上述多级序列的级指示信息可以是每级序列的级指示信息,或者部分级序列的级指示信息,例如:用于指示上述多级序列每个级序列或者部分级序列的级数。通过上述级指示信息可以是确定接收到的序列的级数,以避免第一级序列没有接收到,而对第二级序列进行检测导致的功耗浪费。
本公开实施例中,通过上述节能标识、节能区域标识和所述多级序列的级指示信息可以实现唤醒一个或者多个终端,从而提高节能效果。例如:若所述终端位于所述节能区域,且所述节能标识与所述终端对应,则所述终端可以进入唤醒状态。
需要说明的是,上述节能标识、节能区域标识和级指示信息均是节能信息,即上述多级序列至少可以携带3种节能信息。且上述接收可以称作检测。
还需要说明的是,本公开实施例中,携带可以理解为指示,也就是说,上 述节能信号携带节能信息可以称作节能信号指示节能信息。具体可以是,节能信号携带节能信息可以理解为,终端通过解析节能信号能够获取到相应的节能信息。
另外,由于节能信号可以包括第一级节能信号和第二级节能信号,且所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息,从而也可以实现节能信号携带多种节能信息,以提高节能效果。
作为一种可选的实施方式,上述多级序列的级指示信息包括:
每级序列携带的级指示信息;或者
所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
该实施方式,由于每级序列可以携带的级指示信息,从而终端可以准确地确定接收到的序列的级数。
而上述多个级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息,或者所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息,这样可以节约节能信号的开销。
需要说明的是,本公开实施例中,上述多级序列存在一定顺序,第一级序列为多个序列中最前面的一级,第二级序列为第一级序列的后一级序列,第三级序列为第二级序列的后一级序列,以此类推。例如:第二级序列携带第一级序列的级指示信息,第三级序列携带第二级序列的级指示信息。
可选的,所述级指示信息包括:
级索引信息(stage index)或者分组索引信息。
下面以两个例子对,上述实施方式进行举例说明:
例1:每一级序列都需要携带多级序列的级指示信息,以本实施例中两级序列为例,第一级gold序列初始相位需要包含1比特的级索引信息,如比特0,第二级gold序列初始相位同样包含1比特初始相位信息,如比特1,如果更多级的序列,指示级索引的比特数自然增加。例如:节能(power saving)信息携带最多信息比特个数为InforNum=24,第一级(gold)序列初始相位可携 带wake up area ID相关信息(占10比特)与wake up ID相关信息(占8个比特),第一级序列的stage index信息(占1个比特);第二级gold序列初始相位可携带wake up area ID相关信息(占10比特),第二级序列的stage index信息(占1个比特),第二级序列携带的wake up ID相关信息(占8比特),两级序列最多支持256*256个wake up ID信息。需要注意的是每一序列中携带的与wake up ID相关信息可以是完整的wake up ID信息,也可以是部分wake up ID信息。
例2:后一级(gold)序列需要携带前一级或者多级(gold)序列携带的级指示信息(例如:分组索引信息),例如以两级序列为例,第一级gold序列中的每个特定的序列都携带与特定wake up ID相关的信息,如果将第一级序列所有的可能的序列视为一组序列,可以将该组序列再进行分组得到S个子组,每个子组的index可以作为一种分组索引信息。第二级gold序列需要携带与第一级序列中与分组索引信息,该信息可以是第二级gold序列的初始相位的函数。由于对第一级序列进行了分组,将子组index传给了第二级序列,子分组数S值最小可以取1,S值最大可与该级序列中所有序列个数一样多,即每个子分组中序列个数只有1;当S值取1时,等价于第一级序列中没有多级序列的级index,而第二级多级序列中包含一个公共的(例如1比特)第一级序列的级index,这是上述例1,各级序列携带级index的一个特例。显然S值越大越有利于降低序列检测的虚警概率,当然S值越小则越有利于提高特殊序列如正交序列的多用户复用性能。
作为一种可选的实施方式,上述多级序列还携带有如下至少一项:
BWP索引、载波索引(Carrier index)、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
上述需要跳过的PDCCH检测周期的个数可以用N_skip表示,即终端需要skip掉的PDCCH检测周期的个数N_skip。
其中,上述资源信息可以是传输节能信号的资源相关的时间或者频率信息。
该实施方式中,可以实现上述节能信号携带更多的节能信息,以进一步提高节能效果。
进一步的,上述载波索引可以为网络侧半静态配置的至少一个载波索引中的载波索引;和/或
所述需要跳过的PDCCH检测周期的个数可以为网络侧半静态配置的至少一个的PDCCH检测周期的跳过个数中的一个。
该实施方式中,可以实现节能信号只需要指示载波索引为网络侧半静态配置的至少一个载波索引中的某一个载波索引即可,从而可以节约节能信号的开销。同理,可以实现节能信号只需要指示上述需要跳过的PDCCH检测周期的个数为上述网络侧配置的个数中的某一个即可,从而可以节约节能信号的开销。
作为一种可选的实施方式,所述多级序列为不存在扰码序列的多级序列,且所述多级序列中每级序列为gold序列,所述节能标识、所述节能区域标识和所述多级序列的级指示信息是gold序列初始相位的函数。
该实施方式中,通过多个gold序列级联得到的多级序列无扰码,这样可以降低复杂度,且还可以携带多种节能信息。
该实施方式中,如果上述节能信号还携带其他节能信息,例如:BWP索引、载波索引等,这些节能信息同样可以是gold序列初始相位的函数。
作为一种可选的实施方式,所述多级序列中的每一级序列存在如下特征:
一个或者多个基础序列叠加;
所述叠加后的结果进行子载波映射,并执行IFFT操作和添加CP,再映射至相应的传输资源上。
例如:如图3所示:基础序列(Base seq)1至基础序列(Base seq)M1叠加,之后,进行子载波映射(Sub-carrier mapping)、IFFT操作、添加循环前缀(Cyclic Prefix,CP),最后映射到相应的符号(Symbol)上传输,即得到第一级序列(例如:WUS1);
基础序列(Base seq)M1+1至基础序列(Base seq)M叠加,之后,进行子载波映射(Sub-carrier mapping)、IFFT操作、添加循环前缀(Cyclic Prefix,CP),最后映射到相应的符号(Symbol)上传输,即得到第二级序列(例如:WUS2)。
作为一种可选的实施方式,所述多级序列为存在扰码序列的多级序列, 且所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息,所述多级序列的基础序列携带所述节能标识;或者
所述多级序列为存在扰码序列的多级序列,且所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息,所述多级序列的基础序列携带所述节能标识。
该实施方式中,可以实现通过扰码序列携带所述节能区域标识和所述级指示信息,而基础序列携带节能标识,从而可以实现节能信号消耗过多的资源与功耗,以达到节约传输资源和功耗的效果。
可选的,在所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息的情况下,所述多级序列中每级序列的扰码序列不同,且同一级内的多个序列的扰码序列相同;或者
在所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息的情况下,所述多级序列中每级序列的扰码序列不同。
进一步的,所述多级序列至少可以包括可第一级序列和第二级序列;
其中,所述第一级序列和所述第二级序列的基础序列可以为同一类型的序列,所述同一类型的序列为正交序列、gold序列、ZC序列位或者Kasami序列;或者
所述第一级序列的基础序列可以为正交序列、gold序列、ZC序列位的Kasami序列中的一者,所述第二级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的另一者。
例如:如图4所示:基础序列(Base seq)1至基础序列(Base seq)M1叠加,并与扰码序列(Scrambling sequence)进行扰码操作(例如:相乘),再进行分割以生成至少一个子序列(Sub sequence generation),之后,进行子载波映射(Sub-carrier mapping)、IFFT操作、添加循环前缀(Cyclic Prefix,CP),最后映射到相应的符号(Symbol)上传输,即得到第一级序列(例如:WUS1);
基础序列(Base seq)M1+1至基础序列(Base seq)M叠加,并与扰码序列(Scrambling sequence)进行扰码操作(例如:相乘),再进行分割以生成至少一个子序列(Sub sequence generation),之后,进行子载波映射(Sub-carrier mapping)、IFFT操作、添加循环前缀(Cyclic Prefix,CP),最后映射到相应 的符号(Symbol)上传输,即得到第二级序列(例如:WUS2)。
在图4所示的方案中,扰码序列携带wake up area ID和多级序列的级指示信息,而多级基础序列指示wake up ID。且每一级扰码序列不同,但是每一级内多个序列的扰码序列相同。基础序列较佳为正交序列或者ZC,gold序列。
又例如:如图5所示:基础序列(Base seq)1至基础序列(Base seq)M1叠加,并与扰码序列(Scrambling sequence)进行扰码操作(例如:相乘),再进行分割以生成至少一个子序列(Sub sequence generation),之后,进行子载波映射(Sub-carrier mapping)、IFFT操作、添加循环前缀(Cyclic Prefix,CP),最后映射到相应的符号(Symbol)上传输,即得到第一级序列(例如:WUS1);
基础序列(Base seq)M1+1至基础序列(Base seq)M分别与扰码序列(Scrambling sequence)进行扰码操作(例如:相乘),之后叠加,再进行分割以生成至少一个子序列(Sub sequence generation),之后,进行子载波映射(Sub-carrier mapping)、IFFT操作、添加循环前缀(Cyclic Prefix,CP),最后映射到相应的符号(Symbol)上传输,即得到第二级序列(例如:WUS2)。
在图5所示的方案,扰码序列携带wake up area ID和前一级或者多级序列的与wake ID相关的信息;多级基础序列指示wake up ID。且每一级扰码序列不同,可选的,第一级内多个序列的扰码序列可以相同,而其它级内多个序列扰码序列可以不同。一种方案中,每级序列为gold,例如:针对两级序列为gold+gold;另一种方案中,每级序列为Hadarmad序列(简称H),例如:针对两级序列为H+H;另一种方案中,第一级序列为H,第二级序列为gold序列(简称g),即可以表示H+g,当然,这里仅是举例,具体可以可支持根据网络侧设备指示各级采用的序列。
作为一种可选的实施方式,所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引(sequence index)对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息。
其中,上述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应可以是,节能信号携带的多种节能信息构成的二元指示 信息的十进制表达与多级序列的序列索引对应。
另外,上述对应可以是,上述多级序列的序列索引可以表示上述节能信号携带多种节能信息构成的二元指示信息,或者上述对应可以是节能信号携带的多种节能信息构成的二元指示信息的十进制表达与多级序列的序列索引一一对应。
可选的,上述多级序列的序列索引不同的字段对应不同的节能信息。这样可以通过不同的字段确定不同的节能信息。
一个简单例子,如下表所示:
Figure PCTCN2019124796-appb-000001
其中,五个字段构成n1+n2+n3+n4+n5个比特对应多级序列的序列索引为2 (n1+n2+n3+n4+n5)
需要说明的是,上述Wake up ID相关信息可以是用于指示Wake up ID,另外,本公开实施例中,Wake up ID可以通过多级序列组合指示,例如:第一级序列携带Wake up ID的部分信息,第二级序列携带该Wake up ID的另部分信息,当然,也可以通过某一级序列单独指示,例如:第一级序列携带一些Wake up ID的全部信息,对此不作限定。
需要指出的上述五个字段的节能信息只是一个例子,不排除有更多或者更少的信息,如与传输节能信号的资源相关的时间或者频率信息,上述表格中多个字段的排序方式也只是个示例,不排除多个字段的其它顺序,比如wake up ID相关信息可以如表格所示位于指最高有效位(Most Significant Bit,MSB)也可以位于最低有效位(Least Significant Bit,LSB)。
作为一种可选的实施方式,在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测。
该实施方式中,由于终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测,这样可以避免终端在没有检测到第一级序列的情况下, 进行第二级序列的检测而产生的功耗浪费。
作为一种可选的实施方式,所述第一级节能信号携带不需要盲检的节能信息;
所述第二级节能信号至少携带无法提前预知的节能信息。
其中,上述不需要盲检的节能信息可以是终端不通过盲检测能够检测到的节能信息,另外,上述不需要盲检的节能信息也可以是对于终端来说是已知的节能信息,例如:wake up ID、wake up area ID、序列级的指示信息(如果是多级序列)。
而上述无法提前预知的节能信息可以是对于终端来说是未知的节能信息,例如:BWP index、Carrier index、需要skip掉的PDCCH检测周期的个数N_skip、传输节能信号的资源信息。
该实施方式中,由于第一级节能信号携带不需要盲检的节能信息,从而可以低能耗地唤醒终端,而第二级节能信号至少携带无法提前预知的节能信息,这样可以实现这两级节能信号携带大量的节能信息,以提高节能效果。
可选的,所述第一级节能信号在非连续接收睡眠DRX OFF周期内传输所述第二级节能信号在DRX OFF或者非连续接收激活DRX On周期内传输。
该实施方式中,可以实现第一级节能信号在DRX OFF周期内唤醒终端,而第二级节能信号在DRX OFF或者DRX On周期内传输,以传输至少携带无法提前预知的节能信息。
例如:如图6所示,第一级节能信号DRX OFF周期内传输,第二级节能信号在DRX OFF周期内传输;其中,附图中以Stage 1 WUS表示第一级节能信号,以Stage 2 WUS表示第二级节能信号.
或者如图7所示,第一级节能信号DRX OFF周期内传输,第二级节能信号在DRX ON周期内传输。其中,附图中以基于序列的WUS(sequence based WUS)表示第一级节能信号,以Stage 2 WUS表示第二级节能信号。
可选的,所述DRX On周期内发送所述第二级节能信号的候选位置可以为半静态配置,或者所述网络侧设备与所述终端预先约定。可选的,第二级节能信号在DRX ON周期内起始位置传输。
可选的,所述第一级节能信号为单级序列或者多级序列;和/或
所述第二级节能信号为基于物理下行控制信道PDCCH的节能信号。
其中,上述第一级节能信号为单级序列或者多级序列可以是基于序列的单级序列或者多级序列,即第一级节能信号可以称作sequence based power saving信号。且该多级序列可以参见本公开实施例上面描述的多级序列,此处不作赘述。
而上述第二级节能信号为PDCCH的节能信号可以称作PDCCH based power saving信号,或者称作DCI based power saving信号。
需要说明的是,本公开实施例提供的上述多种可选的实施方式可以单独实现,也可以相互结合实现,下面以多级序列为两级序列对本公开实施例提供的节能信号的传输方法进行举例说明:
实施例1:
一种基于多级序列的power saving信号例子图3所示,为叙述简单期间,假定为两级序列构成的power saving信号。第一级序列生成方式如下:基站侧频域序列:序列1,序列2,序列3,…序列M1相累加,然后对和序列进行IFFT与添加CP操作映射为时域的m1个OFDM符号,得到第一级序列;第二级序列生成方式与第一级生成方式是类似的,频域序列M1+1,序列M1+2,序列M1+3,…序列M相累加,然后对和序列进行IFFT和添加CP操作映射时域的m-m1个OFDM符号,得到第二级序列,两级序列共同构成power saving信号。图中OFDM符号索引的最小值是1且为连续的,只是个例子,OFDM符号索引起点可以是满足要求的任何值,OFDM符号索引可以分布式的,即不存在连续关系,OFDM符号个数m可以等于1,此时该两级序列实际上是频分序列;图中所示的两级序列只是为了描述方便而给出的具体例子,对3级及以上的多级序列原理一致,都属于本公开保护的内容。频域序列1,2,…M皆为伪随机序列,如常用的m序列及其gold序列或者Kasami序列。如前所述考虑到power saving信号需要携带较多的信息,较佳的,频域序列1,2,…M皆为gold序列或者Kasami序列。
一个具体例子,可以采用NR标准用于下行参考信号的寄存器长为31的gold序列c(n),定义如下:
c(n)=(x 1(n+N C)+x 2(n+N C))mod2
x 1(n+31)=(x 1(n+3)+x 1(n))mod2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2
其中,标准中定义可以为N C=1600,该值也可以是预先约定的其它值,NR标准中第一个序列x 1(n)初始化为x 1(0)=1,x 1(n)=0,n=1,2,...,30。第二个序列x 2(n),初始化为
Figure PCTCN2019124796-appb-000002
取决于具体用途。通过上述可知gold序列实际上由两个m序列在二元域对应相累加得到,对于NR采用的寄存器长为31的gold序列,除去全零序列,共有2 31-1个不同的初始相位,对应2 31-1个不同的gold序列。所以该gold序列最多可以携带31比特信息,由于实际中所采用的gold序列长度无法达到2 31-1,所以实际中所携带的信息比特个数一般要小于31,这也与具体序列取多长有一定关系。假定gold序列携带的信息比特个数为InforNum<31。
本公开实施例中,将前面所述的需要power saving信号指示的多种信息分别用多级序列携带,首先UE specific的power saving信号必须携带wake up area ID与wake up ID相关信息(也可以称作wake up ID)。是为了避免在相同的资源上错误的唤醒其它级序列对应的wake up ID,比如时隙1,有用户1的两级序列的第一级序列与用户2的两级序列的第二级序列同时发送,用户1可能将用户2的序列检测为自己的序列。必选的多级序列中需要携带区分多级序列的不同级的指示信息,具体方案可以如下:
方案1:每一级序列都需要携带多级序列的级指示信息,以本实施例中两级序列为例,第一级gold序列初始相位需要包含1比特的stage index信息,如比特0,第二级gold序列初始相位同样包含1比特初始相位信息,如比特1,如果更多级的序列,指示stage index的比特数自然增加。更具体的,比如power saving信息携带最多信息比特个数为InforNum=24,第一级(gold)序列初始相位可携带wake up area ID相关信息(也可以称作wake up area ID)占10比特与wake up ID相关信息占8个比特,第一级序列的stage index信息(占1个比特);第二级gold序列初始相位可携带wake up area ID相关信息(占10比特),第二级序列的stage index信息(占1个比特),第二级序列携带的wake up ID相关信息(占8比特),两级序列最多支持256*256个wake up  ID信息。需要注意的是每一序列中携带的与wake up ID相关信息可以是完整的wake up ID信息,也可以是部分wake up ID信息。
方案2:后一级(gold)序列需要携带前一级或者多级(gold)序列携带的与wake up ID相关信息,例如以两级序列为例,第一级gold序列中的每个特定的序列都携带与特定wake up ID相关的信息,如果将第一级序列所有的可能的序列视为一组序列,可以将该组序列再进行分组得到S个子组,每个子组的index(即分组索引信息)可以作为一种与wake up ID相关的信息。第二级gold序列需要携带与第一级序列中与wake up ID相关的信息(例如:分组索引信息),该信息可以是第二级gold序列的初始相位的函数。由于对第一级序列进行了分组,将子组index传给了第二级序列,子分组数S值最小可以取1,S值最大可与该级序列中所有序列个数一样多,即每个子分组中序列个数只有1;当S值取1时,等价于第一级序列中没有多级序列的级index,而第二级多级序列中包含一个公共的(例如1比特)比特的第一级序列的级index,这是方案1,各级序列携带级index的一个特例。显然S值越大越有利于降低序列检测的虚警概率,当然S值越小则越有利于提高特殊序列如正交序列的多用户复用性能。
多级序列除了要携带wake up area ID,wake up ID,级指示信息外,还可以携带BWP index、Carrier index和传输power saving信号的资源相关的时间或者频率信息中的一种或者多种。例如:仍假定InforNum=24,第一级(gold)序列初始相位可携带wake up area ID(占10比特)与wake up ID相关信息(占7个比特),stage指示信息(1个比特),BWP index相关信息(占2个比特),Carrier index相关信息(占4个比特);第二级序列携带wake up area ID(占10比特),wake up ID相关信息(占9比特),级指示信息(1个比特),两级序列共支持2^16个wake up ID,可激活15个载波,切换4个BWP,skip掉4种可能的PDCCH检测周期。
终端只有检测出第一级序列才会检测第二级序列,如果第一级序列检测失败就不再检测第二级序列。终端只要检测出第一级序列就会执行wake up过程,即在后续的DRX ON周期内执行PDCCH检测,以降低漏检概率。
上述例子中的多级序列较佳的基于gold序列得到,但并不排除可能是其 它PN序列,如与gold序列性能非常接近的Kasami序列,当然也可以是多级序列分别采用不同的序列,如一级序列采用gold序列,另一级序列采用Kasami序列。
实施例2:
实施例1中的多级序列,由于gold序列或者Kasami序列输入参数可以携带多个比特,故每一级序列可都基于gold序列或者Kasami序列得到。但是gold序列或者Kasami序列在相同资源上复用的用户数较多时,性能会因为相互间干扰变大,而变差。所以可以基于正交序列考虑power saving信号。而且无扰码的序列只有gold序列的寄存器很长时采适用。下面叙述有扰码序列时如何支持,多级序列携带多种信息。
还是以two-stage的power saving序列为例,
方案1:如图4所示。两级WUS序列构成一个power saving信号,产生原理相同,每一级WUS生成方式都是先对频域基本序列进行叠加,然后对和序列扰码,然后进行IFFT等操作转换到时域m个符号,m可以等于1此时多级序列为频域级联。其中多级基础序列对应wake up ID信息,而扰码序列对应wake up area ID信息,较佳的基础序列可以是正交序列如Hadamard/wash序列/ZC序列的循环移位等,扰码序列较佳的为gold序列,如实施例1中NR采用的31阶寄存器的gold序列。例如第一级WUS最多支持M1=256个序列,第二级WUS也最多支持M1=256个序列,则两级WUS序列级联后可以得到M1*M1个序列,同一个wake up area内的这M1*M1个序列都采用相同的扰码序列与wake up area ID信息相对应,power saving信号的扰码序列除了携带wake up area ID还需要携带多级序列的不同级的指示信息,扰码序列至少是wake up area ID还需要携带多级序列的不同级的指示信息的函数,多级序列每一级的扰码序列不一致。
方案2:如图5所示。两级WUS序列构成一个power saving信号,产生方式如下:第一级序列产生方式为:频域基础序列1,基础序列2,基础序列3,…基础序列M1相累加,然后对和序列利用一个公共扰码序列进行扰码,然后对和序列进行子载波映射IFFT与添加CP操作映射为时域的m1个OFDM符号,得到第一级序列;第二级序列与第一级产生方法不一致,具体 为:每个频域基础序列先进行独立的扰码操作,扰码序列与第一级序列的分组的组index相关,然后将扰码后的M-M1个序列相加,第二级序列每个基础序列的扰码间相互独立,然后对和序列进行子载波映射IFFT与添加CP操作映射时域的m-m1个OFDM符号。注意m1可以等于1,此时多级序列为频分复用。
上述结构的power saving信号必须携带wake up area ID,wake up ID,而且后一级序列需要携带前一级或者多级序列的与wake up ID相关的信息(例如:分组索引信息),所述的前一级或者多级序列的与wake up ID相关的信息的定义与实施例1方案2的相关描述类似。如果将第一级序列所有的可能的序列视为一组序列,可以将该组序列再进行分组得到S个子组,每个子组的index可以作为一种与wake up ID相关的信息。本公开对前一级序列可能的序列进行了分组,将子组index传给了第二个级序列,即在第二级序列的扰码序列中携带第一级序列的组index信息,S值最小可以取1,S值最大可与该级序列中所有序列个数一样多,即每个子分组中序列个数只有1,当S值取1时,这等价于第一级序列的扰码序列中没有多级序列的级index,而第二级多级序列的扰码序列中包含一个公共的如1比特的级index,这便是方案1中的一个特例。显然S值越大越有利于降低序列检测的虚警概率,S值越小则越有利于提高特殊序列如正交序列的多用户复用性能。
上述描述中,两级基础序列构成的序列组合对应wake up ID信息,wake up area ID信息由扰码序列携带。第一级序列采用的一个公共扰码序列来携带wake up area ID信息,而第二级序列的扰码序列除了携带wake up area ID信息还要携带前一级序列的组index信息,所谓携带,较佳的指需要携带的信息是扰码序列的函数。基础序列可以是正交序列如Hadamard/wash序列/ZC序列的循环移位或者gold序列或者不同根的ZC序列等,扰码序列较佳的为gold序列,如实施例1中NR采用的31阶寄存器的gold序列。
更具体的有如下方案:
方案1:第一级序列的基础序列,与第二级基础序列都为gold序列或者Kasami序列,而扰码序列仍然为长gold序列,如前面所述的寄存器长为31的gold序列c(n)。更具体的第一级基础序列与第二级基础序列取NR中的SSS 序列。SSS序列有1008个序列,两级SSS序列有1008*1008=1016064个序列组合,可以支持最多1016064个用户,携带接近20比特的信息。由于两级序列为SSS+SSS,UE可以利用SSS序列进行时频同步,注意到SSS序列有扰码存在所以不会与legacy SSB(同步信号block)发生混淆。该方案两级序列都为gold序列优点支持的用户数多,缺点是多序列叠加时如果用户数特别多,性能会损失严重。
方案2:第一级序列的基础序列,与第二级基础序列都为正交序列或者ZC序列,而扰码序列仍然为长gold序列,如前面所述的寄存器长为31的gold序列c(n)。更具体的例如第一级基础序列取Hadarmad序列,第二级基础序列同样取Hadarmad。假定单级序列长度为128,两级SSS序列有128*128个序列组合,所以支持的用户远少于SSS+SSS,但该方案的第一级序列为正交序列,而且由于第二级序列的子组。
方案3:第一级基础序列都为正交序列或者ZC序列,第二级基础序列都为gold序列或者Kasami序列,而扰码序列仍然为长gold序列,如前面所述的寄存器长为31的gold序列c(n)。更具体的第一级基础序列取Hadarmad或ZC序列,第二级基础序列取gold序列如SSS序列。假定单级序列长度为128,两级SSS序列有128*1008个序列组合,所以支持的用户多于两级序列都为正交序列,少于两级序列都为gold序列,但性能优于两级序列都为gold序列,与两级序列都为正交序列相仿。假定第一级序列为如Hadarmad的正交序列,第二级序列为gold如SSS序列,还有一个好处在于,基站可以根据应用场景配置power saving信号的级数,比如用户数较少的场景,可以只配置第一级序列全为正交序列,多用户叠加的性能会大大提高,如果用户数很多可以配置两级信号。基站动作是,有一个RRC携带的半静态信令或者系统信息指示所采用的power saving信号的级index,当然也可以是DCI或者MAC CE等动态信令。
Power saving信号除了要携带wake up area ID,wake up ID,前一级或者多级序列的wake up ID,有时还需要携带其他power saving信息,则可以采用如下方案。
power saving信号携带的多种power saving信息构成的二元指示信息(的 十进制表达)与多级序列的序列索引(sequence index)一一对应。一个简单例子,如下表所示
Figure PCTCN2019124796-appb-000003
五个字段构成n1+n2+n3+n4+n5个比特对应多级序列的序列index为2 (n1+n2+n3+n4+n5)
需要指出的上述四个字段的power saving信息只是一个例子,不排除有更多或者更少的信息,如与传输power saving信号的资源相关的时间或者频率信息,上述表格中多个字段的排序方式也只是个示例,不排除多个字段的其它顺序,比如wake up ID相关信息可以如表格所示位于MSB也可以位于LSB。
上述方案可以解决多级序列中所包含的序列组合如何携带power saving信息。如前所述该扰码序列至少携带wake up area ID信息,但是注意的是扰码序列为gold或者Kasami序列时,其初始相位除了必须携带wake up area ID信息还可以携带其它的power saving信息,例如gold序列初始相位可以是wake up ID相关信息与BWP index的函数,这样由于BWP index被扰码序列携带,N_MS=M1*M1个序列可以携带更多的其它信息,比如更多的wake up ID信息,或者更多需要skip的PDCCH检测周期的个数的信息;扰码序列也可以是power saving信号所处的时间或者频率信息的函数,例如初始相位与power saving信号发送起点的slot index或者power saving信号发送频率配置的index相关,如这些power saving信息可以作为初始相位的输入。
而终端行为可以是:wake up area对终端来说是已知的。终端首先在对应位置上接收power saving信号,终端首先执行解扰码操作,将去扰码后的接收信号与自己已知的对应的基础序列执行相关性检测,从而确定该资源上是否存在对应的power saving信号。需要指出的是对于无法预先已知的power saving信息,如BWP index没有先验信息是未知的,终端需要根据BWP index可能的值执行盲检或者假设检验。如果终端检测到对应的power saving信号 则执行wake up在后续DRX ON内执行PDCCH检测,否则继续睡眠。
实施例3:
实施例1与2所述的方法可以实现power saving携带除了wake up area ID与wake up ID外的其它多种power saving信息。但是如果其携带的信息如果是未知的比如BWP index信息,如果BWP index是未知的则终端则需要对BWP index进行盲检或者假设检验。这无疑会增大UE检测功耗。另外一种方法如下:
网络侧设备在DRX OFF内首先发送基于序列的power saving信号,比如实施例1与2所示的多级序列,也可以是实例2所述基于正交序列的多级序列中的一级序列,即单级序列,基于序列的power saving信号较佳的只携带不需要盲检的power saving信息,比如wake up ID,wake up area ID,多级序列的级指示信息(如果是多级序列),节能信道(power saving channel)相关的已知信息,如果网络侧设备发送了唤醒某个wake up ID的第一级power saving信号,基站会在针对该wake up ID在DRX OFF周期内发送基于PDCCH的节能信号(PDCCH based power saving信号),即在DRX OFF内发送一个PDCCH其DCI携带了UE无法提前预知的前面所述的power saving信息,如BWP index,如图6所示。该PDCCH based power saving信号发送频域位置可以与基于序列的节能信号(sequence based power saving信号)相同,较佳可以与DRX ON内PDCCH配置的频域资源相同。
而图7表示第二级DCI based power saving信号在DRX ON内发送的例子,与图6相同,第一级sequence based power saving信号在DRX OFF内发送用于唤醒终端,PDCCH based power saving信号携带多种前面所述的power saving信息在DRX ON内,且较佳的在DRX ON初期发送,如在DRX ON周期的前L个slot内发送(例如L小于等于确定值如8),由于是在DRX on内,为了避免盲检PDCCH,可以提前预定或者由基站通过RRC信令半静态配置一个或者多个发送第二级PDCCH based power saving信号的候选发送位置,UE在相应位置检测第二级PDCCH based power saving信号。其中第二级PDCCH based power saving信号与相关技术中的PDCCH的区别在于,其携带了一个特殊定义的DCI用于承载power saving信息。
本公开实施例中,终端接收网络侧设备发送的节能信号;其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。这样可以携带多个节能信息,从而提高节能效果。
请参见图8,图8是本公开实施例提供的另一种节能信号的传输方法的流程图,如图8所示,包括以下步骤:
801、网络侧设备向终端发送节能信号;
其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
可选的,所述多级序列的级指示信息包括:
每级序列携带的级指示信息;或者
所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
可选的,所述级指示信息包括:
级索引信息或者分组索引信息。
可选的,所述多级序列还携带有如下至少一项:
BWP索引、载波索引、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
可选的,所述载波索引为网络侧半静态配置的至少一个载波索引中的载波索引;和/或
所述需要跳过的PDCCH检测周期的个数为网络侧半静态配置的至少一个的PDCCH检测周期的跳过个数中的一个。
可选的,所述多级序列为不存在扰码序列的多级序列,且所述多级序列中每级序列为gold序列,所述节能标识、所述节能区域标识和所述多级序列的级指示信息是gold序列初始相位的函数。
可选的,所述多级序列为存在扰码序列的多级序列,且所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息,所述多级序列的基础序列携带所述节能标识;或者
所述多级序列为存在扰码序列的多级序列,且所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息,所述多级序列的基础序列携带所述节能标识。
可选的,在所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息的情况下,所述多级序列中每级序列的扰码序列不同,且同一级内的多个序列的扰码序列相同;或者
在所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息的情况下,所述多级序列中每级序列的扰码序列不同。
可选的,所述多级序列至少包括第一级序列和第二级序列;
其中,所述第一级序列和所述第二级序列的基础序列为同一类型的序列,所述同一类型的序列为正交序列、gold序列、ZC序列位或者Kasami序列;或者
所述第一级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的一者,所述第二级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的另一者。
可选的,所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
所述多级序列中的每一级序列存在如下特征:
一个或者多个基础序列叠加;
所述叠加后的结果进行子载波映射,并执行IFFT操作和添加循环前缀 CP,再映射至相应的传输资源上。
可选的,所述多级序列的序列索引不同的字段对应不同的节能信息。
可选的,所述第一级节能信号携带不需要盲检的节能信息;
所述第二级节能信号至少携带无法提前预知的节能信息。
可选的,所述第一级节能信号在非连续接收睡眠DRX OFF周期内传输;所述第二级节能信号在DRX OFF或者非连续接收激活DRX On周期内传输;和/或
所述第一级节能信号为单级序列或者多级序列;和/或
所述第二级节能信号为基于物理下行控制信道PDCCH的节能信号。
可选的,所述DRX On周期内发送所述第二级节能信号的候选位置为半静态配置,或者所述网络侧设备与所述终端预先约定。
需要说明的是,本实施例作为与图2所示的实施例中对应的网络侧设备的实施方式,其具体的实施方式可以参见图2所示的实施例的相关说明,为了避免重复说明,本实施例不再赘述,且还可以达到相同有益效果。
请参见图9,图9是本公开实施例提供的一种终端的结构图,如图9所示,终端900,包括:
接收模块901,用于接收网络侧设备发送的节能信号;
其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
可选的,所述多级序列的级指示信息包括:
每级序列携带的级指示信息;或者
所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
可选的,所述级指示信息包括:
级索引信息或者分组索引信息。
可选的,所述多级序列还携带有如下至少一项:
部分带宽BWP索引、载波索引、需要跳过的物理层下行控制信道PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
可选的,所述载波索引为网络侧半静态配置的至少一个载波索引中的载波索引;和/或
所述需要跳过的PDCCH检测周期的个数为网络侧半静态配置的至少一个的PDCCH检测周期的跳过个数中的一个。
可选的,所述多级序列为不存在扰码序列的多级序列,且所述多级序列中每级序列为gold序列,所述节能标识、所述节能区域标识和所述多级序列的级指示信息是gold序列初始相位的函数。
可选的,所述多级序列为存在扰码序列的多级序列,且所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息,所述多级序列的基础序列携带所述节能标识;或者
所述多级序列为存在扰码序列的多级序列,且所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息,所述多级序列的基础序列携带所述节能标识。
可选的,在所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息的情况下,所述多级序列中每级序列的扰码序列不同,且同一级内的多个序列的扰码序列相同;或者
在所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息的情况下,所述多级序列中每级序列的扰码序列不同。
可选的,所述多级序列至少包括第一级序列和第二级序列;
其中,所述第一级序列和所述第二级序列的基础序列为同一类型的序列,所述同一类型的序列为正交序列、gold序列、ZC序列位或者Kasami序列;或者
所述第一级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的一者,所述第二级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的另一者。
可选的,所述节能信号携带多种节能信息构成的二元指示信息与所述多 级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
所述多级序列中的每一级序列存在如下特征:
一个或者多个基础序列叠加;
所述叠加后的结果进行子载波映射,并执行快速傅里叶逆变换IFFT操作和添加循环前缀CP,再映射至相应的传输资源上。
可选的,所述多级序列的序列索引不同的字段对应不同的节能信息。
可选的,所述第一级节能信号携带不需要盲检的节能信息;
所述第二级节能信号至少携带无法提前预知的节能信息。
可选的,所述第一级节能信号在非连续接收睡眠DRX OFF周期内传输;所述第二级节能信号在DRX OFF或者非连续接收激活DRX On周期内传输;和/或
所述第一级节能信号为单级序列或者多级序列;和/或
所述第二级节能信号为基于PDCCH的节能信号。
可选的,所述DRX On周期内发送所述第二级节能信号的候选位置为半静态配置,或者所述网络侧设备与所述终端预先约定。
需要说明的是,本实施例中上述终端900可以是本公开实施例中方法实施例中任意实施方式的终端本公开实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端900所实现,以及达到相同的有益效果,此处不再赘述。
请参见图10,图10是本公开实施例提供的一种网络侧设备的结构图,如图10所示,网络侧设备1000包括:
发送模块1001,用于向终端发送节能信号;
其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一 级节能信号和所述第二级节能信号分别携带不同的节能信息。
可选的,所述多级序列的级指示信息包括:
每级序列携带的级指示信息;或者
所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
可选的,所述级指示信息包括:
级索引信息或者分组索引信息。
可选的,所述多级序列还携带有如下至少一项:
BWP索引、载波索引、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
可选的,所述载波索引为网络侧半静态配置的至少一个载波索引中的载波索引;和/或
所述需要跳过的PDCCH检测周期的个数为网络侧半静态配置的至少一个的PDCCH检测周期的跳过个数中的一个。
可选的,所述多级序列为不存在扰码序列的多级序列,且所述多级序列中每级序列为gold序列,所述节能标识、所述节能区域标识和所述多级序列的级指示信息是gold序列初始相位的函数。
可选的,所述多级序列为存在扰码序列的多级序列,且所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息,所述多级序列的基础序列携带所述节能标识;或者
所述多级序列为存在扰码序列的多级序列,且所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息,所述多级序列的基础序列携带所述节能标识。
可选的,在所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息的情况下,所述多级序列中每级序列的扰码序列不同,且同一级内的多个序列的扰码序列相同;或者
在所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息的情况下,所述多级序列中每级序列的扰码序列不同。
可选的,所述多级序列至少包括第一级序列和第二级序列;
其中,所述第一级序列和所述第二级序列的基础序列为同一类型的序列,所述同一类型的序列为正交序列、gold序列、ZC序列位或者Kasami序列;或者
所述第一级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的一者,所述第二级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的另一者。
可选的,所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
所述多级序列中的每一级序列存在如下特征:
一个或者多个基础序列叠加;
所述叠加后的结果进行子载波映射,并执行IFFT操作和添加循环前缀CP,再映射至相应的传输资源上。
可选的,所述多级序列的序列索引不同的字段对应不同的节能信息。
可选的,所述第一级节能信号携带不需要盲检的节能信息;
所述第二级节能信号至少携带无法提前预知的节能信息。
可选的,所述第一级节能信号在非连续接收睡眠DRX OFF周期内传输;所述第二级节能信号在DRX OFF或者非连续接收激活DRX On周期内传输;和/或
所述第一级节能信号为单级序列或者多级序列;和/或
所述第二级节能信号为基于物理下行控制信道PDCCH的节能信号。
可选的,所述DRX On周期内发送所述第二级节能信号的候选位置为半静态配置,或者所述网络侧设备与所述终端预先约定。
需要说明的是,本实施例中上述网络侧设备1000可以是本公开实施例中方法实施例中任意实施方式的终端本公开实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备1000所实现,以及达 到相同的有益效果,此处不再赘述。
请参见图11,图11是本公开实施例提供的另一种终端的结构图,如图11所示,该终端包括:收发机1110、存储器1120、处理器1100及存储在所述存储器1120上并可在所述处理器1200上运行的程序,其中:
所述收发机1110,用于接收网络侧设备发送的节能信号;
其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
其中,收发机1110,可以用于在处理器1100的控制下接收和发送数据。
在图11中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1100代表的一个或多个处理器和存储器1120代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1110可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1100负责管理总线架构和通常的处理,存储器1120可以存储处理器1100在执行操作时所使用的数据。
需要说明的是,存储器1120并不限定只在终端上,可以将存储器1120和处理器1100分离处于不同的地理位置。
可选的,所述多级序列的级指示信息包括:
每级序列携带的级指示信息;或者
所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
可选的,所述级指示信息包括:
级索引信息或者分组索引信息。
可选的,所述多级序列还携带有如下至少一项:
部分带宽BWP索引、载波索引、需要跳过的物理层下行控制信道PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
可选的,所述载波索引为网络侧半静态配置的至少一个载波索引中的载波索引;和/或
所述需要跳过的PDCCH检测周期的个数为网络侧半静态配置的至少一个的PDCCH检测周期的跳过个数中的一个。
可选的,所述多级序列为不存在扰码序列的多级序列,且所述多级序列中每级序列为gold序列,所述节能标识、所述节能区域标识和所述多级序列的级指示信息是gold序列初始相位的函数。
可选的,所述多级序列为存在扰码序列的多级序列,且所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息,所述多级序列的基础序列携带所述节能标识;或者
所述多级序列为存在扰码序列的多级序列,且所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息,所述多级序列的基础序列携带所述节能标识。
可选的,在所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息的情况下,所述多级序列中每级序列的扰码序列不同,且同一级内的多个序列的扰码序列相同;或者
在所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息的情况下,所述多级序列中每级序列的扰码序列不同。
可选的,所述多级序列至少包括第一级序列和第二级序列;
其中,所述第一级序列和所述第二级序列的基础序列为同一类型的序列,所述同一类型的序列为正交序列、gold序列、ZC序列位或者Kasami序列;或者
所述第一级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的一者,所述第二级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的另一者。
可选的,所述节能信号携带多种节能信息构成的二元指示信息与所述多 级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
所述多级序列中的每一级序列存在如下特征:
一个或者多个基础序列叠加;
所述叠加后的结果进行子载波映射,并执行快速傅里叶逆变换IFFT操作和添加循环前缀CP,再映射至相应的传输资源上。
可选的,所述多级序列的序列索引不同的字段对应不同的节能信息。
可选的,所述第一级节能信号携带不需要盲检的节能信息;
所述第二级节能信号至少携带无法提前预知的节能信息。
可选的,所述第一级节能信号在非连续接收睡眠DRX OFF周期内传输;所述第二级节能信号在DRX OFF或者非连续接收激活DRX On周期内传输;和/或
所述第一级节能信号为单级序列或者多级序列;和/或
所述第二级节能信号为基于PDCCH的节能信号。
可选的,所述DRX On周期内发送所述第二级节能信号的候选位置为半静态配置,或者所述网络侧设备与所述终端预先约定。
需要说明的是,本实施例中上述终端可以是本公开实施例中方法实施例中任意实施方式的终端本公开实施例中方法实施例中终端的任意实施方式都可以被本实施例中的上述终端所实现,以及达到相同的有益效果,此处不再赘述。
请参见图12,图12是本公开实施例提供的另一种网络侧设备的结构图,如图12所示,该网络侧设备包括:收发机1210、存储器1220、处理器1200及存储在所述存储器1220上并可在所述处理器上运行的程序,其中:
所述收发机1210,用于向终端发送节能信号;
其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
其中,收发机1210,可以用于在处理器1200的控制下接收和发送数据。
在图12中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1200代表的一个或多个处理器和存储器1220代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1210可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器1200负责管理总线架构和通常的处理,存储器1220可以存储处理器1200在执行操作时所使用的数据。
需要说明的是,存储器1220并不限定只在网络侧设备上,可以将存储器1220和处理器1200分离处于不同的地理位置。
可选的,所述多级序列的级指示信息包括:
每级序列携带的级指示信息;或者
所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
可选的,所述级指示信息包括:
级索引信息或者分组索引信息。
可选的,所述多级序列还携带有如下至少一项:
BWP索引、载波索引、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
可选的,所述载波索引为网络侧半静态配置的至少一个载波索引中的载波索引;和/或
所述需要跳过的PDCCH检测周期的个数为网络侧半静态配置的至少一个的PDCCH检测周期的跳过个数中的一个。
可选的,所述多级序列为不存在扰码序列的多级序列,且所述多级序列 中每级序列为gold序列,所述节能标识、所述节能区域标识和所述多级序列的级指示信息是gold序列初始相位的函数。
可选的,所述多级序列为存在扰码序列的多级序列,且所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息,所述多级序列的基础序列携带所述节能标识;或者
所述多级序列为存在扰码序列的多级序列,且所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息,所述多级序列的基础序列携带所述节能标识。
可选的,在所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息的情况下,所述多级序列中每级序列的扰码序列不同,且同一级内的多个序列的扰码序列相同;或者
在所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息的情况下,所述多级序列中每级序列的扰码序列不同。
可选的,所述多级序列至少包括第一级序列和第二级序列;
其中,所述第一级序列和所述第二级序列的基础序列为同一类型的序列,所述同一类型的序列为正交序列、gold序列、ZC序列位或者Kasami序列;或者
所述第一级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的一者,所述第二级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的另一者。
可选的,所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
所述多级序列中的每一级序列存在如下特征:
一个或者多个基础序列叠加;
所述叠加后的结果进行子载波映射,并执行IFFT操作和添加循环前缀CP,再映射至相应的传输资源上。
可选的,所述多级序列的序列索引不同的字段对应不同的节能信息。
可选的,所述第一级节能信号携带不需要盲检的节能信息;
所述第二级节能信号至少携带无法提前预知的节能信息。
可选的,所述第一级节能信号在非连续接收睡眠DRX OFF周期内传输;所述第二级节能信号在DRX OFF或者非连续接收激活DRX On周期内传输;和/或
所述第一级节能信号为单级序列或者多级序列;和/或
所述第二级节能信号为基于物理下行控制信道PDCCH的节能信号。
可选的,所述DRX On周期内发送所述第二级节能信号的候选位置为半静态配置,或者所述网络侧设备与所述终端预先约定。
需要说明的是,本实施例中上述网络侧设备可以是本公开实施例中方法实施例中任意实施方式的网络侧设备,本公开实施例中方法实施例中网络侧设备的任意实施方式都可以被本实施例中的上述网络侧设备所实现,以及达到相同的有益效果,此处不再赘述。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现本公开实施例提供的终端侧的节能信号的传输方法中的步骤,或者该程序被处理器执行时实现本公开实施例提供的网络侧设备侧的节能信号的传输方法中的步骤。
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述信息数据块的处理方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (45)

  1. 一种节能信号的传输方法,包括:
    终端接收网络侧设备发送的节能信号;
    其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
    所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
  2. 如权利要求1所述的方法,其中,所述多级序列的级指示信息包括:
    每级序列携带的级指示信息;或者
    所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
    所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
  3. 如权利要求2所述的方法,其中,所述级指示信息包括:
    级索引信息或者分组索引信息。
  4. 如权利要求1所述的方法,其中,所述多级序列还携带有如下至少一项:
    部分带宽BWP索引、载波索引、需要跳过的物理层下行控制信道PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
  5. 如权利要求4所述的方法,其中,所述载波索引为网络侧半静态配置的至少一个载波索引中的载波索引;和/或
    所述需要跳过的PDCCH检测周期的个数为网络侧半静态配置的至少一个的PDCCH检测周期的跳过个数中的一个。
  6. 如权利要求1所述的方法,其中,所述多级序列为不存在扰码序列的多级序列,且所述多级序列中每级序列为gold序列,所述节能标识、所述节能区域标识和所述多级序列的级指示信息是gold序列初始相位的函数。
  7. 如权利要求1所述的方法,其中,所述多级序列为存在扰码序列的多级序列,且所述多级序列的扰码序列携带所述节能区域标识和所述级指示信 息,所述多级序列的基础序列携带所述节能标识;或者
    所述多级序列为存在扰码序列的多级序列,且所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息,所述多级序列的基础序列携带所述节能标识。
  8. 如权利要求7所述的方法,其中,在所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息的情况下,所述多级序列中每级序列的扰码序列不同,且同一级内的多个序列的扰码序列相同;或者
    在所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息的情况下,所述多级序列中每级序列的扰码序列不同。
  9. 如权利要求8所述的方法,其中,所述多级序列至少包括第一级序列和第二级序列;
    其中,所述第一级序列和所述第二级序列的基础序列为同一类型的序列,所述同一类型的序列为正交序列、gold序列、ZC序列位或者Kasami序列;或者
    所述第一级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的一者,所述第二级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的另一者。
  10. 如权利要求1至9中任一项所述的方法,其中,
    所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
    在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
    所述多级序列中的每一级序列存在如下特征:
    一个或者多个基础序列叠加;
    所述叠加后的结果进行子载波映射,并执行快速傅里叶逆变换IFFT操作和添加循环前缀CP,再映射至相应的传输资源上。
  11. 如权利要求10所述的方法,其中,所述多级序列的序列索引不同的字段对应不同的节能信息。
  12. 如权利要求1所述的方法,其中,所述第一级节能信号携带不需要盲检的节能信息;
    所述第二级节能信号至少携带无法提前预知的节能信息。
  13. 如权利要求1或12所述的方法,其中,
    所述第一级节能信号在非连续接收睡眠DRX OFF周期内传输;所述第二级节能信号在DRX OFF或者非连续接收激活DRX On周期内传输;和/或
    所述第一级节能信号为单级序列或者多级序列;和/或
    所述第二级节能信号为基于PDCCH的节能信号。
  14. 如权利要求13所述的方法,其中,所述DRX On周期内发送所述第二级节能信号的候选位置为半静态配置,或者所述网络侧设备与所述终端预先约定。
  15. 一种节能信号的传输方法,包括:
    网络侧设备向终端发送节能信号;
    其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
    所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
  16. 如权利要求15所述的方法,其中,所述多级序列的级指示信息包括:
    每级序列携带的级指示信息;或者
    所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
    所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
  17. 如权利要求16所述的方法,其中,所述级指示信息包括:
    级索引信息或者分组索引信息。
  18. 如权利要求15所述的方法,其中,所述多级序列还携带有如下至少一项:
    BWP索引、载波索引、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
  19. 如权利要求18所述的方法,其中,所述载波索引为网络侧半静态配置的至少一个载波索引中的载波索引;和/或
    所述需要跳过的PDCCH检测周期的个数为网络侧半静态配置的至少一个的PDCCH检测周期的跳过个数中的一个。
  20. 如权利要求15所述的方法,其中,所述多级序列为不存在扰码序列的多级序列,且所述多级序列中每级序列为gold序列,所述节能标识、所述节能区域标识和所述多级序列的级指示信息是gold序列初始相位的函数。
  21. 如权利要求15所述的方法,其中,所述多级序列为存在扰码序列的多级序列,且所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息,所述多级序列的基础序列携带所述节能标识;或者
    所述多级序列为存在扰码序列的多级序列,且所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息,所述多级序列的基础序列携带所述节能标识。
  22. 如权利要求21所述的方法,其中,在所述多级序列的扰码序列携带所述节能区域标识和所述级指示信息的情况下,所述多级序列中每级序列的扰码序列不同,且同一级内的多个序列的扰码序列相同;或者
    在所述多级序列中后一级序列的扰码序列携带前一级或者前多级序列的级指示信息的情况下,所述多级序列中每级序列的扰码序列不同。
  23. 如权利要求22所述的方法,其中,所述多级序列至少包括第一级序列和第二级序列;
    其中,所述第一级序列和所述第二级序列的基础序列为同一类型的序列,所述同一类型的序列为正交序列、gold序列、ZC序列位或者Kasami序列;或者
    所述第一级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的一者,所述第二级序列的基础序列为正交序列、gold序列、ZC序列位的Kasami序列中的另一者。
  24. 如权利要求15至23中任一项所述的方法,其中,
    所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能 区域标识和所述多级序列的级指示信息;和/或
    在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
    所述多级序列中的每一级序列存在如下特征:
    一个或者多个基础序列叠加;
    所述叠加后的结果进行子载波映射,并执行IFFT操作和添加循环前缀CP,再映射至相应的传输资源上。
  25. 如权利要求24所述的方法,其中,所述多级序列的序列索引不同的字段对应不同的节能信息。
  26. 如权利要求15所述的方法,其中,所述第一级节能信号携带不需要盲检的节能信息;
    所述第二级节能信号至少携带无法提前预知的节能信息。
  27. 如权利要求15或26所述的方法,其中,
    所述第一级节能信号在非连续接收睡眠DRX OFF周期内传输;所述第二级节能信号在DRX OFF或者非连续接收激活DRX On周期内传输;和/或
    所述第一级节能信号为单级序列或者多级序列;和/或
    所述第二级节能信号为基于物理下行控制信道PDCCH的节能信号。
  28. 如权利要求27所述的方法,其中,所述DRX On周期内发送所述第二级节能信号的候选位置为半静态配置,或者所述网络侧设备与所述终端预先约定。
  29. 一种终端,包括:
    接收模块,用于接收网络侧设备发送的节能信号;
    其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
    所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
  30. 如权利要求29所述的终端,其中,所述多级序列的级指示信息包括:
    每级序列携带的级指示信息;或者
    所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
    所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
  31. 如权利要求29所述的终端,其中,所述多级序列还携带有如下至少一项:
    部分带宽BWP索引、载波索引、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
  32. 如权利要求29至31中任一项所述的终端,其中,
    所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
    在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
    所述多级序列中的每一级序列存在如下特征:
    一个或者多个基础序列叠加;
    所述叠加后的结果进行子载波映射,并执行IFFT操作和添加CP,再映射至相应的传输资源上。
  33. 一种网络侧设备,包括:
    发送模块,用于向终端发送节能信号;
    其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
    所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
  34. 如权利要求33所述的网络侧设备,其中,所述多级序列的级指示信息包括:
    每级序列携带的级指示信息;或者
    所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
    所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
  35. 如权利要求33所述的网络侧设备,其中,所述多级序列还携带有如下至少一项:
    部分带宽BWP索引、载波索引、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
  36. 如权利要求33至35中任一项所述的网络侧设备,其中,
    所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
    在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
    所述多级序列中的每一级序列存在如下特征:
    一个或者多个基础序列叠加;
    所述叠加后的结果进行子载波映射,并执行IFFT操作和添加CP,再映射至相应的传输资源上。
  37. 一种终端,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
    所述收发机,用于接收网络侧设备发送的节能信号;
    其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
    所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
  38. 如权利要求37所述的终端,其中,所述多级序列的级指示信息包括:
    每级序列携带的级指示信息;或者
    所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
    所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
  39. 如权利要求37所述的终端,其中,所述多级序列还携带有如下至少 一项:
    部分带宽BWP索引、载波索引、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
  40. 如权利要求37至39中任一项所述的终端,其中,
    所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
    在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
    所述多级序列中的每一级序列存在如下特征:
    一个或者多个基础序列叠加;
    所述叠加后的结果进行子载波映射,并执行快速傅里叶逆变换IFFT操作和添加循环前缀CP,再映射至相应的传输资源上。
  41. 一种网络侧设备,包括:收发机、存储器、处理器及存储在所述存储器上并可在所述处理器上运行的程序,
    所述收发机,用于向终端发送节能信号;
    其中,所述节能信号为多级序列,且所述多级序列至少携带节能标识、节能区域标识和所述多级序列的级指示信息,所述节能标识与节能区域内需要唤醒的终端对应,所述节能区域为所述节能区域标识指示的区域;或者
    所述节能信号包括第一级节能信号和第二级节能信号,其中,所述第一级节能信号和所述第二级节能信号分别携带不同的节能信息。
  42. 如权利要求41所述的网络侧设备,其中,所述多级序列的级指示信息包括:
    每级序列携带的级指示信息;或者
    所述多级序列中第一级序列不携带级指示信息,其余级序列携带的级指示信息;或者
    所述多级序列中后一级序列携带前一级或者前多级序列的级指示信息。
  43. 如权利要求41所述的网络侧设备,其中,所述多级序列还携带有如下至少一项:
    部分带宽BWP索引、载波索引、需要跳过的PDCCH检测周期的个数的指示信息、所述节能信号的资源信息。
  44. 如权利要求41至43中任一项所述的网络侧设备,其中,
    所述节能信号携带多种节能信息构成的二元指示信息与所述多级序列的序列索引对应;其中,所述多种节能信息至少包括所述节能标识、所述节能区域标识和所述多级序列的级指示信息;和/或
    在所述多级序列包括第一级序列和第二级序列的情况下,所述终端检测到所述第一级序列的情况下,才执行所述第二级序列的检测;和/或
    所述多级序列中的每一级序列存在如下特征:
    一个或者多个基础序列叠加;
    所述叠加后的结果进行子载波映射,并执行快速傅里叶逆变换IFFT操作和添加循环前缀CP,再映射至相应的传输资源上。
  45. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1至14中任一项所述的节能信号的传输方法中的步骤,或者该程序被处理器执行时实现如权利要求15至28中任一项所述的节能信号的传输方法中的步骤。
PCT/CN2019/124796 2019-01-11 2019-12-12 节能信号的传输方法、终端和网络侧设备 WO2020143386A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19908638.0A EP3911026A4 (en) 2019-01-11 2019-12-12 POWER SAVING SIGNAL TRANSMISSION METHOD, TERMINAL AND NETWORK SIDE DEVICE
US17/422,165 US20220116877A1 (en) 2019-01-11 2019-12-12 Method for transmitting power saving signal, terminal, and network device
KR1020217023874A KR102470742B1 (ko) 2019-01-11 2019-12-12 절전 신호의 전송 방법, 단말 및 네트워크측 기기
JP2021540303A JP7208406B2 (ja) 2019-01-11 2019-12-12 省電力信号の伝送方法、端末及びネットワーク側機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910025858.6A CN111436093B (zh) 2019-01-11 2019-01-11 一种节能信号的传输方法、终端和网络侧设备
CN201910025858.6 2019-01-11

Publications (1)

Publication Number Publication Date
WO2020143386A1 true WO2020143386A1 (zh) 2020-07-16

Family

ID=71521676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124796 WO2020143386A1 (zh) 2019-01-11 2019-12-12 节能信号的传输方法、终端和网络侧设备

Country Status (7)

Country Link
US (1) US20220116877A1 (zh)
EP (1) EP3911026A4 (zh)
JP (1) JP7208406B2 (zh)
KR (1) KR102470742B1 (zh)
CN (1) CN111436093B (zh)
TW (1) TWI742491B (zh)
WO (1) WO2020143386A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4240052A4 (en) * 2020-11-16 2023-11-29 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR SENDING SEQUENCES

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113133090B (zh) * 2019-12-30 2023-03-31 大唐移动通信设备有限公司 信号传输方法及装置
EP4207881A4 (en) * 2020-09-11 2023-11-01 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND APPARATUS
CN118318475A (zh) * 2021-11-30 2024-07-09 Oppo广东移动通信有限公司 信息获取方法、装置、设备及存储介质
WO2024073051A1 (en) * 2022-09-29 2024-04-04 Interdigital Patent Holdings, Inc. Low-power wake up signal associated with drx

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149101A (zh) * 2010-02-10 2011-08-10 中兴通讯股份有限公司 节能管理方法和系统
EP2424290A1 (en) * 2010-08-24 2012-02-29 Alcatel Lucent Grouping of subset of cells of a wirelless telecommunication network
CN102448152A (zh) * 2010-10-13 2012-05-09 中兴通讯股份有限公司 一种基站节能控制方法及系统
CN103347295A (zh) * 2013-07-31 2013-10-09 重庆邮电大学 一种家庭基站网络的节能控制方法
CN105323830A (zh) * 2014-07-24 2016-02-10 中兴通讯股份有限公司 节能补偿方法、节能补偿恢复方法及装置
CN110557815A (zh) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 一种节能信号的传输方法、终端和网络侧设备

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8923249B2 (en) * 2008-03-26 2014-12-30 Qualcomm Incorporated Method and apparatus for scrambling sequence generation in a communication system
EP2702811B1 (en) * 2011-04-29 2015-06-10 BlackBerry Limited Receiving messages in connection with lte wakeup
US9615326B2 (en) * 2011-06-30 2017-04-04 Intel Corporation System and method of improving power efficiency in wireless communication system
WO2013002726A1 (en) * 2011-06-30 2013-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for handling base sequences in a communications network
US9544848B2 (en) * 2012-10-24 2017-01-10 Qualcomm Incorporated Methods and apparatus for communicating short paging messages in a wireless communication network
WO2016015340A1 (zh) * 2014-08-01 2016-02-04 华为技术有限公司 数据传输的方法和用户设备
US10445107B2 (en) * 2016-07-14 2019-10-15 Huawei Technologies Co., Ltd. Security design for a wake up frame
CN109845344B (zh) * 2016-09-20 2022-02-22 马维尔亚洲私人有限公司 用于在无线通信系统中向低功率设备传输唤醒无线电信号的系统和方法
CN107888351B (zh) * 2016-09-29 2020-03-20 华为技术有限公司 参考信号发送方法、参考信号处理方法及设备
US10779312B2 (en) * 2016-11-11 2020-09-15 Qualcomm Incorporated Discontinuous reception and scheduling techniques in wireless communication systems using multiple transmission time intervals
US20180324701A1 (en) * 2017-05-05 2018-11-08 Qualcomm Incorporated Efficient retransmissions for wakeup radios
CN109219113B (zh) * 2017-07-05 2020-07-17 维沃移动通信有限公司 一种盲检测方法、信号发送方法、相关设备和系统
KR102344603B1 (ko) * 2017-09-07 2021-12-28 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 불연속 수신 방법, 네트워크 기기 및 단말 기기
JP2021521670A (ja) * 2018-04-11 2021-08-26 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 節電信号の伝送方法及びデバイス
CN113038577B (zh) * 2018-08-09 2022-07-22 华为技术有限公司 一种控制信息的传输方法及设备
CN115515163A (zh) * 2018-08-10 2022-12-23 华为技术有限公司 监听物理下行控制信道的方法和通信装置
WO2020056745A1 (zh) * 2018-09-21 2020-03-26 北京小米移动软件有限公司 带宽部分的切换触发方法及装置、信息配置方法及装置
CN110972236B (zh) * 2018-09-27 2022-04-08 大唐移动通信设备有限公司 一种节能信号传输方法、终端和网络侧设备
US20220039009A1 (en) * 2018-09-27 2022-02-03 Mohamed Awadin Power saving mechanisms in nr

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149101A (zh) * 2010-02-10 2011-08-10 中兴通讯股份有限公司 节能管理方法和系统
EP2424290A1 (en) * 2010-08-24 2012-02-29 Alcatel Lucent Grouping of subset of cells of a wirelless telecommunication network
CN102448152A (zh) * 2010-10-13 2012-05-09 中兴通讯股份有限公司 一种基站节能控制方法及系统
CN103347295A (zh) * 2013-07-31 2013-10-09 重庆邮电大学 一种家庭基站网络的节能控制方法
CN105323830A (zh) * 2014-07-24 2016-02-10 中兴通讯股份有限公司 节能补偿方法、节能补偿恢复方法及装置
CN110557815A (zh) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 一种节能信号的传输方法、终端和网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3911026A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4240052A4 (en) * 2020-11-16 2023-11-29 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR SENDING SEQUENCES

Also Published As

Publication number Publication date
TW202027540A (zh) 2020-07-16
JP7208406B2 (ja) 2023-01-18
JP2022517986A (ja) 2022-03-11
TWI742491B (zh) 2021-10-11
KR102470742B1 (ko) 2022-11-25
CN111436093B (zh) 2021-10-15
US20220116877A1 (en) 2022-04-14
CN111436093A (zh) 2020-07-21
KR20210103569A (ko) 2021-08-23
EP3911026A1 (en) 2021-11-17
EP3911026A4 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
TWI730320B (zh) 節能信號的傳輸方法、終端和網路側設備
WO2020143386A1 (zh) 节能信号的传输方法、终端和网络侧设备
CN109219113B (zh) 一种盲检测方法、信号发送方法、相关设备和系统
TWI795597B (zh) 節能訊號傳輸方法、終端和網路側設備
TWI744764B (zh) 節能信號的傳輸方法、檢測方法和設備
EP3664520B1 (en) Method for indicating and determining terminal state, base station and terminal
JP2021521670A (ja) 節電信号の伝送方法及びデバイス
WO2021027769A1 (zh) 唤醒信号的传输方法、装置和存储介质
WO2020030161A1 (zh) 信号的发送、接收方法、装置、存储介质及电子装置
WO2020030167A1 (zh) 信号的发送、接收方法、装置、存储介质及处理装置
US20210337477A1 (en) Communication method and apparatus
WO2019237831A1 (zh) 下行控制信道检测方法、终端和网络侧设备
CN111819808A (zh) 一种信道检测方法及装置、计算机存储介质
WO2023116692A1 (zh) 一种通信方法及相关装置
WO2023279909A1 (zh) 通信方法和通信装置
CN117939595A (zh) 信号传输方法、设备及存储介质
CN117377039A (zh) 基于lp-wus的寻呼方法、装置、设备、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540303

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217023874

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019908638

Country of ref document: EP

Effective date: 20210811