WO2020143241A1 - 一种离心风轮及其制造方法和应用其的离心风机 - Google Patents

一种离心风轮及其制造方法和应用其的离心风机 Download PDF

Info

Publication number
WO2020143241A1
WO2020143241A1 PCT/CN2019/104617 CN2019104617W WO2020143241A1 WO 2020143241 A1 WO2020143241 A1 WO 2020143241A1 CN 2019104617 W CN2019104617 W CN 2019104617W WO 2020143241 A1 WO2020143241 A1 WO 2020143241A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
plastic shell
wind wheel
blade
centrifugal wind
Prior art date
Application number
PCT/CN2019/104617
Other languages
English (en)
French (fr)
Inventor
徐海明
Original Assignee
中山宜必思科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910028924.5A external-priority patent/CN109595200A/zh
Priority claimed from CN201920048794.7U external-priority patent/CN209687789U/zh
Application filed by 中山宜必思科技有限公司 filed Critical 中山宜必思科技有限公司
Publication of WO2020143241A1 publication Critical patent/WO2020143241A1/zh
Priority to US17/027,666 priority Critical patent/US11306732B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/626Mounting or removal of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • the invention relates to a centrifugal wind wheel, a manufacturing method thereof and a centrifugal fan using the same.
  • the conventional backward centrifugal wind wheel is mainly composed of three parts: a wheel disc, a wheel cover, and a blade.
  • Conventional backward centrifugal wind wheels are divided into two types. One is an injection molding process, which is made of plastic, referred to as a P-type wind wheel; the other is a stamping, riveting, and welding process, which is made of metal sheet metal material. Referred to as M-type wind wheel.
  • the structure of the M-type backward centrifugal wind wheel is shown in FIG. 1 and FIG. 2 and includes a wheel cover A1, a wheel disk A2, and a number of wind blades A3 installed between the wheel cover A1 and the wheel disk A2.
  • the wheel cover A1 An air inlet A11 is provided, a motor mounting position is provided at the center of the wheel A2, and an air duct A31 is formed between two adjacent wind blades A3, and the wind blades A3 are respectively connected to the wheel cover A1 and the wheel A2
  • a number of positioning blocks A32 protrude from the end surface of the wheel, and the first mounting hole A12 and the second mounting hole A22 through which the positioning block A32 passes are provided on the wheel cover A1 and the wheel disc A2 respectively, and the wheel cover A1 is made by welding or riveting ,
  • the wheel A2 and the wind blade A3 are fixed together, because the wind blade A3 is limited by the stamping process, the wind blade A3 can only be formed with the same thickness, from an aerodynamic point of view, this type of blade can not be well adapted to the air yoke
  • the complex flow of the body cannot meet the requirements of high performance.
  • the main body of the P-type centrifugal wind wheel is made of plastic materials. This structure is easy to deform and aging under the harsh working environment, and the structural strength is low, resulting in poor stability and low reliability.
  • Aerodynamic performance In general, the aerodynamic performance and reliability of conventional backward centrifugal wind wheels are difficult to meet market requirements. Aerodynamic performance: For M-type wind wheels, due to the limitation of the stamping process, the blades can only be presented in the shape of equal thickness; from the aerodynamic point of view, such blades cannot be well adapted to the complex flow of gas and cannot meet the high performance Claim. For the P-type wind wheel, due to many uncontrollable factors in the injection molding process, such as being restricted by injection mold ejection, ejection, and shrinkage of the wind wheel blades, air bubbles, etc., it is impossible to design various types of blade shapes to adapt to complex With the gas flowing, the aerodynamic performance of the wind wheel is still not improved.
  • the main body of the wind wheel is made of plastic material, which is easy to deform, aging, and low strength. It cannot be guaranteed in terms of operating stability, life, and reliability. Therefore, it is used in large-scale general projects, anti-riot projects, etc. It cannot be promoted and applied.
  • the existing centrifugal wind wheel manufacturing method needs to redesign the entire centrifugal wind wheel in order to meet the different needs put forward by different customers, including redesigning and designing multiple parameters including the wheel cover, disk and wind blade. It is complicated and has many modified elements, which is not convenient for production.
  • An object of the present invention is to provide a centrifugal wind wheel and a centrifugal fan using the same, which can meet the structural strength and aerodynamic performance requirements of the backward centrifugal wind wheel at the same time, improve high reliability and working efficiency, and have a short development period. Low development and production costs.
  • Another object of the present invention is a manufacturing method of a centrifugal wind wheel, which simplifies the design, only needs to change the parameters of the wind blade, and has few modification elements, which greatly shortens the development cycle, reduces the development cost, and is simple and efficient to manufacture.
  • a centrifugal wind wheel includes a wheel cover made of sheet metal, a wheel plate made of sheet metal, and a number of wind blades made of composite material installed between the wheel cover and the wheel disc.
  • the wheel cover is provided with an air inlet.
  • a motor mounting position is provided at the center of the roulette, an air duct is formed between two adjacent wind blades, and an air outlet is formed at the end of the air duct.
  • several wind blades made of the composite material include a metal skeleton and Installed on the plastic shell of the blade frame, the upper and lower ends of the metal frame are installed and connected to the wheel cover and the wheel disc respectively.
  • the thickness H of the plastic shell is changed to improve the airflow fluidity.
  • the plastic shell is molded with the metal frame In one piece, the plastic shell wraps at least a part of the metal skeleton.
  • Hmax is equal to the range of Ho to 8Ho.
  • the above-mentioned metal skeleton includes a skeleton body part and a plurality of positioning blocks protruding from the upper and lower end surfaces of the skeleton body part, a plurality of first mounting holes are provided on the wheel cover, and a plurality of second installation holes are provided on the wheel disc.
  • a plurality of positioning blocks protruding from the upper and lower end surfaces of the part respectively pass through the first mounting hole and the second mounting hole, and the wheel cover, the wheel disc and the metal skeleton are fixedly installed together by welding or riveting.
  • the above-mentioned metal skeleton is formed by stamping a metal plate of equal thickness.
  • the centerline of the metal skeleton is the blade-shaped centerline A.
  • the upper surface curve and the lower surface curve of the plastic shell section are symmetrical or asymmetrical about the blade-shaped centerline A.
  • the thickness of the middle part of the above-mentioned plastic shell is the largest, and the thickness from the air inlet end to the middle part gradually changes from small to large, and the thickness from the middle part to the air outlet end gradually changes from large to small.
  • the above-mentioned plastic shell only wraps part of the skeleton body at the air inlet, and the rest of the skeleton body is bare.
  • the above-mentioned plastic shell wraps the entire skeleton body.
  • the thickness of the plastic shell near the air inlet is the largest, and the thickness gradually decreases toward the air outlet.
  • the above-mentioned skeleton main body is provided with a plurality of through holes or a plurality of ribs or teeth protruding from the surface, and the plastic shell covers a plurality of through holes or a plurality of ribs or teeth.
  • the above-mentioned blade centerline A consists of a circular arc with a chord length of L.
  • the equation can be written as:
  • is the bending angle of the blade centerline
  • x and y are the coordinates of a point on the blade centerline.
  • is the bending angle of the blade centerline
  • x and y are the coordinates of a point on the blade centerline.
  • lobe centerline A consists of a parabola with a chord length of L, and its equation is:
  • is the bending angle of the blade centerline
  • x and y are the coordinates of a point on the blade centerline.
  • the coordinate value of any point on the upper surface and lower surface curve of the section of the plastic shell is determined by:
  • x,y are the coordinates of a point on the midline of the leaf shape
  • x u , y u are the coordinates of the upper surface of the blade section
  • x 1 , y 1 are the coordinates of the lower surface of the blade section.
  • a manufacturing method of centrifugal wind wheel the special feature is: according to the different performance requirements of customers, after selecting a suitable original wind wheel, the original wind wheel is the above-mentioned centrifugal wind wheel, which is designed in the original wind wheel On the basis, the shape of the wheel, wheel cover and metal skeleton of the original wind wheel is not changed, and the shape of the plastic shell is changed to meet the customization needs of customers for aerodynamic performance.
  • a centrifugal fan includes a centrifugal wind wheel, a motor and a volute, the volute is provided with a second cavity that can accommodate the centrifugal wind wheel, the volute includes an air inlet and an air outlet, the air inlet and the outlet
  • the tuyere communicates with the second cavity, the centrifugal wind wheel is mounted on the motor and driven by the motor, and is characterized in that the centrifugal wind wheel is the above-mentioned centrifugal wind wheel.
  • the present invention has the following effects:
  • the present invention includes a wheel cover made of sheet metal, a wheel made of sheet metal, and a plurality of wind blades made of a composite material installed between the wheel cover and the wheel disc.
  • the plurality of wind blades made of the composite material include a metal skeleton
  • the plastic shell installed on the blade frame, the upper and lower ends of the metal frame are installed and connected with the wheel cover and the wheel disc respectively, the thickness H of the plastic shell is changed to improve the airflow fluidity, the plastic shell is injected with the metal frame
  • at least a part of the metal skeleton wrapped by the plastic shell not only ensures the structural strength of the connection, but also uses the plastic shell to meet the aerodynamic performance requirements on the market, and has high reliability;
  • the shape of the original wind wheel's wheel disc, wheel cover and metal skeleton will not be changed, and the shape of the plastic shell will be changed to meet the customer's customized needs.
  • the wind blades are independent blades, the shape of the metal skeleton of the internal structure does not change, and the shape of the external plastic shell can be designed according to different performance customization needs to meet user requirements . This can shorten the development cycle, save development costs (because only need to design plastic shell molds), reduce processing and manufacturing costs, and labor costs; improve the competitiveness of enterprises;
  • the metal skeleton is stamped and formed with a metal plate of equal thickness.
  • the blade skeleton made of metal can be reused repeatedly to meet the requirements of environmental protection;
  • the thickness of the middle part of the plastic shell is the largest.
  • the thickness from the air inlet to the middle part is from small to large.
  • the thickness from the middle part to the air outlet is from large to small. It can effectively improve the aerodynamic performance and meet different market needs. , Low cost, simple structure, flexible and convenient;
  • the plastic shell wraps the entire skeleton body, which can effectively improve the aerodynamic performance, meet different market demands, low cost, simple structure, flexible and convenient;
  • the thickness of the plastic shell near the air inlet is the largest, and the thickness gradually decreases toward the air outlet, which can effectively improve the aerodynamic performance, meet different market needs, low cost, simple structure, flexible and convenient;
  • the main body of the frame is provided with a number of through holes or a number of ribs or teeth protruding from the surface, and the plastic shell is covered with a number of through holes or a number of ribs or teeth, which can improve the binding force of the blade frame and the plastic shell and improve Structural strength;
  • the plastic shell is designed into different shapes according to the requirements of starting performance, flexible and changeable, to meet the different requirements of the market for aerodynamic performance.
  • the original wind wheel adopts the above-mentioned centrifugal wind wheel.
  • the shape of the original wind wheel's wheel disc, wheel cover, and metal skeleton is not changed, and the shape of the plastic shell is changed to meet the customer's customized needs for aerodynamic performance.
  • the design is greatly simplified, which can shorten the development cycle and save development costs. Reduce processing and manufacturing costs, and labor costs; improve the competitiveness of enterprises.
  • Figure 1 is a perspective view of the prior art
  • FIG. 3 is a perspective view of a fully covered centrifugal wind wheel of Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a fully covered structure of a centrifugal wind wheel according to Embodiment 1 of the present invention.
  • FIG. 5 is an exploded perspective view of a fully covered centrifugal wind wheel of Embodiment 1 of the present invention.
  • FIG. 6 is a perspective view of a centrifugal wind turbine stroke blade according to Embodiment 1 of the present invention.
  • FIG. 7 is an exploded view of a centrifugal wind turbine stroke blade in Embodiment 1 of the present invention.
  • FIG. 8 is a front view of a centrifugal wind turbine stroke blade according to Embodiment 1 of the present invention.
  • FIG. 9 is a cross-sectional view of A-A in FIG. 8.
  • FIG. 10 is a perspective view of a partial coating of a centrifugal wind wheel according to Embodiment 2 of the present invention.
  • FIG. 11 is a schematic view of a partial coating structure of a centrifugal wind wheel according to Embodiment 2 of the present invention.
  • FIG. 12 is a partially exploded perspective view of the centrifugal wind wheel of the second embodiment of the present invention.
  • FIG. 13 is a perspective view of a centrifugal wind turbine stroke blade in Embodiment 2 of the present invention.
  • FIG. 14 is a front view of the centrifugal wind turbine stroke blades in Embodiment 2 of the present invention.
  • FIG. 15 is a cross-sectional view of B-B in FIG. 14;
  • 16 is the first schematic diagram of the center line L of the airfoil blade of the centrifugal wind wheel of the present invention.
  • 17 is a second schematic diagram of the airfoil centerline L of the centrifugal wind turbine stroke blade of the present invention.
  • FIG. 18 is a third schematic diagram of the airfoil centerline L of the centrifugal wind turbine stroke blade of the present invention.
  • FIG. 19 is a cross-sectional view of a centrifugal wind turbine stroke blade of the present invention.
  • 20 is a schematic diagram of the structure of the upper surface and the lower surface of the cross section of the wind blade of the centrifugal wind wheel of the present invention.
  • this embodiment is a centrifugal wind wheel, which includes a wheel cover 1 made of sheet metal, a wheel 2 made of sheet metal, and a composite material installed between the wheel cover 1 and the wheel 2
  • a wheel cover 1 made of sheet metal
  • a wheel 2 made of sheet metal
  • a composite material installed between the wheel cover 1 and the wheel 2
  • an air inlet 11 is provided on the wheel cover 1
  • a motor mounting position 21 is provided on the center position of the wheel disc 2
  • an air passage 31 is formed between two adjacent wind blades 3.
  • An air outlet 12 is formed at the end of the channel 31, and is characterized in that the plurality of wind blades 3 made of the composite material include a metal skeleton 32 and a plastic shell 33 installed on the metal skeleton 32.
  • the upper and lower ends of the metal skeleton 32 are respectively connected to the wheel cover 1 To be connected with the wheel 2, the thickness H of the plastic shell 33 is changed to improve the air flow.
  • the plastic shell 33 is injection-molded with the metal skeleton 32, and the plastic shell 33 wraps at least a part of the metal skeleton 32.
  • Hmax is equal to the range of Ho to 8Ho, so that while ensuring sufficient structural strength, the outer surface of the plastic shell 33 can be contoured
  • the line type is reasonably designed to optimize the aerodynamic performance.
  • the metal frame 32 includes a frame body 320 and a plurality of positioning blocks 321 protruding from the upper and lower end faces of the frame body 320, a number of first mounting holes 13 are provided on the wheel cover 1, and a number of second mountings are provided on the wheel 2 Hole 22, a number of positioning blocks 321 protruding from the upper and lower end faces of the main body 320 of the skeleton respectively pass through the first mounting hole 12 and the second mounting hole 22, and the wheel cover 1, the wheel disc 2 and the metal skeleton are welded or riveted 32 fixedly installed together.
  • the metal frame 32 is formed by stamping a metal plate of equal thickness.
  • the center line of the metal frame 32 is the blade center line A.
  • the upper surface curve 334 and the lower surface curve 335 of the plastic shell are symmetrical about the blade center line A Or asymmetric.
  • the thickness of the plastic shell 33 near the air inlet 11 is the largest, and the thickness gradually decreases toward the air outlet 12.
  • the plastic shell 33 wraps the entire skeleton body 320.
  • the thickness of the plastic shell 33 near the air inlet 11 is the largest, and the thickness gradually decreases from the air inlet 11 to the air outlet 12.
  • the shape of the plastic shell is designed according to different performance requirements.
  • the outer thickness of the plastic shell is changed with equal thickness or unequal thickness.
  • the maximum thickness can be achieved at any radius on the blade in the gas flow channel.
  • the skeleton body portion 320 is provided with a plurality of through holes 322 or a plurality of ribs or teeth protruding from the surface, and the plastic shell 33 covers the plurality of through holes 322 or a plurality of ribs or teeth. It can improve the bonding force between the blade skeleton and the plastic shell and improve the structural strength;
  • the centerline A of the airfoil can be composed of a circular arc with a chord length of L.
  • the equation can be written as:
  • is the bending angle of the blade centerline
  • x and y are the coordinates of a point on the blade centerline.
  • the blade centerline A can also be composed of multiple arcs with a chord length of L.
  • O 1 and O 2 are the centers of the two arcs
  • R1 and R2 are the arcs of the two arcs.
  • the radius, the equation is:
  • is the bending angle of the blade centerline
  • x and y are the coordinates of a point on the blade centerline.
  • the blade centerline A can also be composed of a parabola with a chord length of L, and its equation is:
  • is the bending angle of the blade centerline
  • x and y are the coordinates of a point on the blade centerline.
  • the coordinate value of any point on the upper surface curve 334 and the lower surface curve 335 of the cross section of the plastic shell 33 is determined by the following equation:
  • x,y are the coordinates of a point on the midline of the leaf shape
  • x u , y u are the coordinates of the upper surface of the blade section
  • x 1 , y 1 are the coordinates of the lower surface of the blade section.
  • y ex is the vertical distance from any point on the upper surface curve 334 or lower surface curve 335 of the cross-section of the plastic shell 33 to the blade centerline L, which can be calculated by the following formula:
  • a 0, a 1, a 2 , a 3 ......... a n - is a coefficient, depending on the specific number of n may be the airfoil.
  • this embodiment is further improved on the basis of Embodiment 1.
  • the plastic shell 33 only wraps part of the skeleton body 320 at the air inlet 11 and the remaining skeleton body 320 is bare.
  • the thickness of the middle part 332 of the plastic shell 33 is the largest, and the thickness from the air flow inlet end 331 to the middle part 332 is gradually changed from small to large, and the thickness from the middle part 332 to the air flow outlet end 333 is gradually changed from large to small.
  • the outer thickness of the plastic shell changes with equal thickness or unequal thickness. The maximum thickness can be achieved at any radius on the blade in the gas flow channel.
  • a centrifugal fan includes a centrifugal wind wheel, a motor and a volute, the volute is provided with a second cavity that can accommodate the centrifugal wind wheel, the volute includes an air inlet and an air outlet, the air inlet and the outlet The tuyere communicates with the second cavity, and the centrifugal wind wheel is mounted on the motor and driven by the motor.
  • the centrifugal wind wheel is the centrifugal wind wheel described in any one of the above Embodiment 1 or Embodiment 2.
  • a method of manufacturing a centrifugal wind wheel according to the customer's performance requirements for the fan, choose a suitable wind wheel model, the wind wheel model is the centrifugal wind wheel described in any one of the first embodiment or the second embodiment, Based on the design of the wind wheel model, the shape of the wheel disk, wheel cover and metal skeleton of the wind wheel model is not changed, and the shape of the plastic shell is changed to meet the customer's customization needs for aerodynamic performance.
  • the upper surface curve 334 and the lower surface curve 335 of the blade section in FIG. 20 are of an asymmetric design with respect to the airfoil centerline A.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种离心风轮及其制造方法和应用其的离心风机,所述离心风轮包括金属板材制造的轮盖(1)、金属板材制造的轮盘(2)以及安装在轮盖(1)与轮盘(2)之间的复合材料制造的若干风叶片(3),所述复合材料制造的若干风叶片(3)包括金属骨架(32)和安装在金属骨架(32)的塑料壳(33),金属骨架(32)的上下两端分别与轮盖(1)和轮盘(2)安装连接在一起,所述的塑料壳(33)的厚度H是变化的以改善气流流动性,塑料壳(33)与金属骨架(32)注塑成一体,塑料壳(33)包裹至少一部分的金属骨架(32)既保证了连接的结构强度又利用塑料壳(33)满足市场上的气动性能要求,可靠性高。

Description

一种离心风轮及其制造方法和应用其的离心风机 技术领域:
本发明涉及一种离心风轮及其制造方法和应用其的离心风机。
背景技术:
常规后向离心风轮主要由轮盘、轮盖、叶片三部分组成。常规后向离心风轮分为两种,一种是采用注塑工艺,以塑料加工而成,简称P类风轮;另一种是采用冲压、铆接、焊接工艺,以金属板金材料加工而成,简称M类风轮。M类后向离心风轮的结构如图1和图2所示,包括轮盖A1、轮盘A2以及安装在轮盖A1与轮盘A2之间的若干风叶片A3,所述轮盖A1上设有进风口A11,所述轮盘A2的中心位置上设有电机安装位,相邻的两风叶片A3之间形成风道A31,所述风叶片A3分别与轮盖A1和轮盘A2连接的端面上凸出若干定位块A32,轮盖A1和轮盘A2上分别设有与定位块A32穿过的第一安装孔A12和第二安装孔A22面并通过焊接或铆压使轮盖A1、轮盘A2和风叶片A3固定在一起,由于风叶片A3在受到冲压工艺的限制,风叶片A3只能以等厚度的形成呈现,从气动角度上来讲,这类叶片不能很好地适应气轭体的复杂流动,无法满足高性能的要求。
对于P类后向离心风轮,由于注塑工艺中会出现很多不可控因素,如受注塑模具脱模、顶出以及风轮叶片缩水、气泡的限制等,以至于无法设计成各类叶片形状来适应复杂的气体流动,风轮的气动性能仍然得不到较好的提升。另外P类离心风轮主体是通过塑料材料制成的,这种结构在环境恶劣的工作环境下,容易变形和老化,结构强度低,导致稳定性差,可靠性低。
综合来说,常规后向离心风轮在气动性能、可靠性难以满足市场要求。气动性能上:对于M类风轮,由于冲压工艺的限制,叶片只能以等厚度的形状呈现;从气动角度上来讲,这类叶片不能很好地适应气体的复杂流动,无法满足高性能的要求。对于P类风轮,由于注塑工艺中会出现很多不可控因素,如受注塑模具脱模、顶出以及风轮叶片缩水、气泡的限制等,以至于无法设计成 各类叶片形状来适应复杂的气体流动,风轮的气动性能仍然得不到较好的提升。稳定性上:对于P类风轮,风轮主体为塑料材料,易变形、易老化、低强度,在运行稳定性、寿命及可靠性方面无法得到保证,因此在大型通用工程、防暴工程等项目上无法得到推广和运用。
另外,在实际产品开发过程中,针对不同的客户提出的不同需求,设计开发人员评估后,一般会有三种解决方案:1、提供现有的能满足客户需求的风机;2、现有风机的性能与客户需求相差不远的情况下,在现有风机上对离心风轮作小幅度改进;3、没有性能相近或匹配的现有风机,设计开发人员需重新设计开发一款风机。对于第2、第3种方案需要重新开发离心风轮。这种方式开发周期长,开发成本高。目前市场上对风机的需求量增大,不同的客户对风机会有不同的性能需求;在没有现有匹配机型的情况下,设计开发人员需要根据解决方案2、3来定制风机,开发好的风机在加工制造时需要根据不同的盘盖型线及叶片型线设计不同的模具,甚至需要额外增加流水线及人工成本。这一方面会增加设计开发的成本,另一方面会增加加工制造成本,以及人工成本;这势必降低企业的竞争力。
此外,现有的离心风轮的制造方法,为了满足不同的客户提出的不同需求,需要对整个离心风轮进行重新设计,包括轮盖、轮盘及风叶片等多个参数进行重新设计,设计复杂,修改的要素多,不便于生产。
发明内容:
本发明的一个目的是提供一种离心风轮及应用其的离心风机,它能够同时满足对后向离心风轮的结构强度和气动性能要求,提高可靠性高和工作效率,且开发周期短,开发及生产成本低。
本发明的另一个目的是一种离心风轮的制造方法,它简化设计,只需更改风叶片的参数,修改要素少,大大缩短开发周期,降低开发成本,制造简单高效。
本发明的目的是通过下述技术方案予以实现的:
一种离心风轮,包括金属板材制造的轮盖、金属板材制造的轮盘以及安装在轮盖与轮盘之间的复合材料制造的若干风叶片,所述轮盖上设有进风口,所述轮盘的中心位置上设有电机安装位,相邻的两风叶片之间形成风道,风道的末端形成出风口,其特征在于:所述复合材料制造的若干风叶片包括金属骨架和安装在叶片骨架的塑料壳,金属骨架的上下两端分别与轮盖和轮盘安装连接在一起,所述的塑料壳的厚度H是变化的以改善气流流动性,塑料壳与金属骨架注塑成一体,塑料壳包裹至少一部分的金属骨架。
上述的塑料壳的最大厚度Hmax与金属骨架的厚度Ho的关系是:Hmax等于Ho至8Ho的范围。
上述所述的金属骨架包括骨架主体部和从骨架主体部的上下端面各凸出若干定位块,轮盖上设置若干第一安装孔,轮盘上设有若干第二安装孔,所述骨架主体部的上下端面各凸出若干定位块分别穿过第一安装孔和二安装孔,并通过焊接或铆压使轮盖、轮盘和金属骨架固定安装在一起。
上述的金属骨架是采用等厚度的金属板冲压成型,金属骨架的中心线是叶型中心线A,塑料壳截面的上表面曲线、下表面曲线关于叶型中心线A是对称的或者不对称。
上述的塑料壳中间部位厚度最大,从气流入口端到中间部位的厚度是由小到大渐变,从中间部位到气流出口端厚度是由大到小渐变。
上述的塑料壳只包裹住进风口处的部分骨架主体部,其余骨架主体部是裸露。
上述的塑料壳包裹整个骨架主体部。
上述的塑料壳靠近进风口的一处厚度最大,往出风口的方向厚度逐渐变小。
上述所述骨架主体部上设有若干通孔或表面上凸出若干筋条或者齿,塑料壳包覆若干通孔或若干筋条或者齿。
上述的叶型中心线A:由一段圆弧构成,弦长为L,其方程可写成:
Figure PCTCN2019104617-appb-000001
其中:θ为叶型中线的折弯角,x,y为叶型中线上某一点的坐标。
上述的叶型中心线A由多段圆弧组成,弦长为L,其方程为:
x≤0.45时,
Figure PCTCN2019104617-appb-000002
x>0.45时,
Figure PCTCN2019104617-appb-000003
其中:θ为叶型中线的折弯角,x,y为叶型中线上某一点的坐标。
上述的叶型中心线A,由抛物线组成,弦长为L,其方程为:
Figure PCTCN2019104617-appb-000004
其中:θ为叶型中线的折弯角,x,y为叶型中线上某一点的坐标。
所述的塑料壳的截面的上表面、下表面曲线上任一点的坐标值由下确定:
叶片上表面:
Figure PCTCN2019104617-appb-000005
叶片下表面:
Figure PCTCN2019104617-appb-000006
其中:
Figure PCTCN2019104617-appb-000007
式中
Figure PCTCN2019104617-appb-000008
为叶型中线某一点的切线与x轴的夹角,
x,y为叶型中线上某一点的坐标,
x u,y u为叶片截面的上表面的坐标,
x 1,y 1为叶片截面的下表面的坐标。
一种离心风轮的制造方法,其特种在于:针对客户不同的性能需求,在选择好合适的原风轮后,所述的原风轮是采用上述所述的离心风轮,在原风轮设计基础上,不改变原风轮的轮盘、轮盖、金属骨架的形状,通过改变塑料壳的 形状来满足客户对气动性能的定制需求。
一种离心风机,包括离心风轮、电机和蜗壳,所述蜗壳设有可容置离心风轮的第二空腔,所述蜗壳包括进风口和出风口,所述进风口和出风口分别与第二空腔连通,离心风轮安装在电机上并由电机驱动,其特征在于:所述的离心风轮是上述所述的离心风轮。
本发明与现有技术相比,具有如下效果:
1)本发明的包括金属板材制造的轮盖、金属板材制造的轮盘以及安装在轮盖与轮盘之间的复合材料制造的若干风叶片,所述复合材料制造的若干风叶片包括金属骨架和安装在叶片骨架的塑料壳,金属骨架的上下两端分别与轮盖和轮盘安装连接在一起,所述的塑料壳的厚度H是变化的以改善气流流动性,塑料壳与金属骨架注塑成一体,塑料壳包裹至少一部分的金属骨架既保证了连接的结构强度又利用塑料壳满足市场上的气动性能要求,且可靠性高;
2)针对不同的性能需求,在选择好合适的原风机后,不改变原有风轮的轮盘、轮盖、金属骨架的形状,通过改变塑料壳的形状来满足客户的定制需求。风叶片为独立叶片,内部结构金属骨架的型线不改变,外部塑料壳的形状可根据不同的性能定制需求进行设计,以达到用户要求 这样可以缩短开发周期,节约开发成本(因为只需要设计塑料壳的模具就可以了),降低加工制造成本,以及人工成本;提高企业的竞争力;
3)复合材料制造的若干风叶片剥离塑料壳后,金属骨架是采用等厚度的金属板冲压成型,金属制造的叶片骨架可以重复再用,满足环保的要求;
4)塑料壳中间部位厚度最大,从气流入口端到中间部位的厚度是由小到大渐变,从中间部位到气流出口端厚度是由大到小渐变,可以有效提高气动性能,满足市场不同需求,成本低,结构简单,灵活方便;
5)塑料壳只包裹住进风口处的部分骨架主体部,其余骨架主体部是裸露,结构简单,制造容易,成本更低;
6)塑料壳包裹整个骨架主体部,可以有效提高气动性能,满足市场不同需求,成本低,结构简单,灵活方便;
7)塑料壳靠近进风口的一处厚度最大,往出风口的方向厚度逐渐变小,可以有效提高气动性能,满足市场不同需求,成本低,结构简单,灵活方便;
8)所述骨架主体部上设有若干通孔或表面上凸出若干筋条或者齿,塑料壳包覆若干通孔或若干筋条或者齿,可以提高叶片骨架与塑料壳的结合力,提高结构强度;
9)塑料壳根据启动性能的要求设计成不同的形状,灵活多变,满足市场对气动性能的不同要求。
10)本发明的一种离心风轮的制造方法,针对客户不同的性能需求,在选择好合适的原风轮后,所述的原风轮是采用上述所述的离心风轮,在原风轮设计基础上,不改变原风轮的轮盘、轮盖、金属骨架的形状,通过改变塑料壳的形状来满足客户对气动性能的定制需求,设计大大简化,可以缩短开发周期,节约开发成本,降低加工制造成本,以及人工成本;提高企业的竞争力。
附图说明:
图1是现有技术中的立体图;
图2是现有技术中的立体分解图;
图3是本发明实施例一的离心风轮的全包覆的立体图;
图4是本发明实施例一的离心风轮的全包覆的结构示意图;
图5是本发明实施例一的离心风轮的全包覆的立体分解图;
图6是本发明实施例一的离心风轮中风叶片的立体图;
图7是本发明实施例一的离心风轮中风叶片的分解图;
图8是本发明实施例一离心风轮中风叶片的正视图;
图9是图8中A-A的剖视图;
图10是本发明实施例二离心风轮的局部包覆的立体图;
图11是本发明实施例二离心风轮的局部包覆的结构示意图;
图12是本发明实施例二离心风轮的局部包覆的立体分解图;
图13是本发明实施例二离心风轮中风叶片的立体图;
图14是本发明实施例二离心风轮中风叶片的正视图;
图15是图14中B-B的剖视图;
图16是本发明的离心风轮中风叶片的叶型中心线L第一种示意图;
图17是本发明的离心风轮中风叶片的叶型中心线L第二种示意图;
图18是本发明的离心风轮中风叶片的叶型中心线L第三种示意图;
图19是本发明的离心风轮中风叶片的截面图;
图20是本发明的离心风轮中风叶片的截面的上表面和下表面的结构示意图。
具体实施方式:
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
实施例一:
如图3至图9所示,本实施例是一种离心风轮,包括金属板材制造的轮盖1、金属板材制造的轮盘2以及安装在轮盖1与轮盘2之间的复合材料制造的若干风叶片3,所述轮盖1上设有进风口11,所述轮盘2的中心位置上设有电机安装位21,相邻的两风叶片3之间形成风道31,风道31的末端形成出风口12,其特征在于:所述复合材料制造的若干风叶片3包括金属骨架32和安装在金属骨架32的塑料壳33,金属骨架32的上下两端分别与轮盖1和轮盘2安装连接在一起,所述的塑料壳33的厚度H是变化的以改善气流流动性,塑料壳33与金属骨架32注塑成一体,塑料壳33包裹至少一部分的金属骨架32。
如图19所示,塑料壳33的最大厚度Hmax与金属骨架32的厚度Ho的关系是:Hmax等于Ho至8Ho的范围,这样保证有足够结构强度的同时,可以对塑料壳33的轮廓外表面的线型进行合理设计,优化气动性能。
所述的金属骨架32包括骨架主体部320和从骨架主体部320的上下端面各凸出若干定位块321,轮盖1上设置若干第一安装孔13,轮盘2上设有若干第二安装孔22,所述骨架主体部320的上下端面各凸出若干定位块321分别穿过 第一安装孔12和二安装孔22,并通过焊接或铆压使轮盖1、轮盘2和金属骨架32固定安装在一起。
所述的金属骨架32是采用等厚度的金属板冲压成型,金属骨架32的中心线是叶型中心线A,塑料壳截的上表面曲线334、下表面曲线335关于叶型中心线A是对称的或者不对称。
塑料壳33靠近进风口11的一处厚度最大,往出风口12的方向厚度逐渐变小。
塑料壳33包裹整个骨架主体部320。
塑料壳33靠近进风口11处厚度最大,从进风口11往出风口12的方向厚度逐渐变小。塑料壳的外形根据不同的性能要求进行设计,塑料壳外部厚度进行等厚变化或者不等厚变化,最大厚度可在气体流道内叶片上任一半径处实现。
所述骨架主体部320上设有若干通孔322或表面上凸出若干筋条或者齿,塑料壳33包覆若干通孔322或若干筋条或者齿。可以提高叶片骨架与塑料壳的结合力,提高结构强度;
如图16所示,叶型中心线A可以由一段圆弧构成,弦长为L,其方程可写成:
Figure PCTCN2019104617-appb-000009
其中:θ为叶型中线的折弯角,x,y为叶型中线上某一点的坐标。
如图17所示,叶型中心线A也可以由多段圆弧组成,弦长为L,图中O 1、O 2分别为两段圆弧的中心,R1、R2分别为两段圆弧的半径,其方程为:
x≤0.45时,
Figure PCTCN2019104617-appb-000010
x>0.45时,
Figure PCTCN2019104617-appb-000011
其中:θ为叶型中线的折弯角,x,y为叶型中线上某一点的坐标。
如图18所示,叶型中心线A也可以由抛物线组成,弦长为L,其方程为:
Figure PCTCN2019104617-appb-000012
其中:θ为叶型中线的折弯角,x,y为叶型中线上某一点的坐标。
如图19、图20所示,塑料壳33的截面的上表面曲线334和下表面曲线335上任意一点的坐标值由如下方程确定:
叶片上表面:
Figure PCTCN2019104617-appb-000013
叶片下表面:
Figure PCTCN2019104617-appb-000014
其中:
Figure PCTCN2019104617-appb-000015
式中
Figure PCTCN2019104617-appb-000016
为叶型中线某一点的切线与x轴的夹角,
x,y为叶型中线上某一点的坐标,
x u,y u为叶片截面的上表面的坐标,
x 1,y 1为叶片截面的下表面的坐标。
y ex是塑料壳33的截面的上表面曲线334或者下表面曲线335上的任一点到叶型中心线L的垂直距离,可以通过如下公式计算:
Figure PCTCN2019104617-appb-000017
式中a 0、a 1、a 2、a 3………a n—为系数,次数n视具体翼型而定。
以上只是塑料壳33的截面的上表面曲线334或者下表面曲线335的线型的一种计算方式,还可以根据实际情况以其它数学模型计算。
实施例二:
如图10至图15所示,本实施例是根据实施例一的基础上进一步改进,塑料壳33只包裹住进风口11处的部分骨架主体部320,其余骨架主体部320是裸露。
塑料壳33中间部位332厚度最大,从气流入口端331到中间部位332的厚度是由小到大渐变,从中间部位332到气流出口端333厚度是由大到小渐变。 塑料壳外部厚度进行等厚变化或者不等厚变化,最大厚度可在气体流道内叶片上任一半径处实现。
实施例三:
一种离心风机,包括离心风轮、电机和蜗壳,所述蜗壳设有可容置离心风轮的第二空腔,所述蜗壳包括进风口和出风口,所述进风口和出风口分别与第二空腔连通,离心风轮安装在电机上并由电机驱动,所述的离心风轮是上述实施例一或实施例二任意一项所述的离心风轮。
实施例四:
一种离心风轮的制造方法,针对客户对风机的性能需求,选择好合适的风轮模型,所述的风轮模型是采用实施例一或实施例二任意一项所述的离心风轮,在风轮模型设计基础上,不改变风轮模型的轮盘、轮盖、金属骨架的形状,通过改变塑料壳的形状来满足客户对气动性能的定制需求。
如图19、图20所示,设计时,首先确定叶型中心线A,在叶型中心线A的两侧各增加2mm作为金属骨架,然后再金属骨架注塑出叶片截面的上表面曲线334和下表面曲线335的就可以。
图20中叶片截面的上表面曲线334和下表面曲线335相对叶型中心线A是非对称设计。
以上实施例为本发明的较佳实施方式,但本发明的实施方式不限于此,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本发明的保护范围之内。

Claims (15)

  1. 一种离心风轮,包括金属板材制造的轮盖(1)、金属板材制造的轮盘(2)以及安装在轮盖(1)与轮盘(2)之间的复合材料制造的若干风叶片(3),所述轮盖(1)上设有进风口(11),所述轮盘(2)的中心位置上设有电机安装位(21),相邻的两风叶片(3)之间形成风道(31),风道(31)的末端形成出风口(12),其特征在于:所述复合材料制造的若干风叶片(3)包括金属骨架(32)和安装在金属骨架(32)的塑料壳(33),金属骨架(32)的上下两端分别与轮盖(1)和轮盘(2)安装连接在一起,所述的塑料壳(33)的厚度H是变化的以改善气流流动性,塑料壳(33)与金属骨架(32)注塑成一体,塑料壳(33)包裹至少一部分的金属骨架(32)。
  2. 根据权利要求1所述的一种离心风轮,其特征在于:塑料壳(33)的最大厚度Hmax与金属骨架(32)的厚度Ho的关系是:Hmax等于Ho至8Ho的范围。
  3. 根据权利要求1所述的一种离心风轮,其特征在于:所述的金属骨架(32)包括骨架主体部(320)和从骨架主体部(320)的上下端面各凸出若干定位块(321),轮盖(1)上设置若干第一安装孔(13),轮盘(2)上设有若干第二安装孔(22),所述骨架主体部(320)的上下端面各凸出若干定位块(321)分别穿过第一安装孔(12)和二安装孔(22),并通过焊接或铆压使轮盖(1)、轮盘(2)和金属骨架(32)固定安装在一起。
  4. 根据权利要求1或2或3所述的一种离心风轮,其特征在于:金属骨架(32)是采用等厚度的金属板冲压成型,金属骨架(32)的中心线是叶型中心线A,塑料壳截面的上表面曲线(334)、下表面曲线(335)关于叶型中心线A是对称的或者不对称。
  5. 根据权利要求4所述的一种离心风轮,其特征在于:塑料壳(33)中间部位(332)厚度最大,从气流入口端(331)到中间部位(332)的厚度是由小到大渐变,从中间部位(332)到气流出口端(333)厚度是由大到小渐变。
  6. 根据权利要求5所述的一种离心风轮,其特征在于:塑料壳(33)只包 裹住进风口(11)处的部分骨架主体部(320),其余骨架主体部(320)是裸露。
  7. 根据权利要求4所述的一种离心风轮,其特征在于:塑料壳(33)包裹整个骨架主体部(320)。
  8. 根据权利要求7所述的一种离心风轮,其特征在于:塑料壳(33)靠近进风口(11)的一处厚度最大,往出风口(12)的方向厚度逐渐变小。
  9. 根据权利要求7所述的一种离心风轮,其特征在于:所述骨架主体部(320)上设有若干通孔(322)或表面上凸出若干筋条或者齿,塑料壳(33)包覆若干通孔(322)或若干筋条或者齿。
  10. 根据权利要求4所述的一种离心风轮,其特征在于:叶型中心线A:由一段圆弧构成,弦长为L,其方程可写成:
    Figure PCTCN2019104617-appb-100001
    其中:θ为叶型中线的折弯角,x,y为叶型中线上某一点的坐标。
  11. 根据权利要求4所述的一种离心风轮,其特征在于:叶型中心线A由多段圆弧组成,弦长为L,其方程为:
    x≤0.45时,
    Figure PCTCN2019104617-appb-100002
    x>0.45时,
    Figure PCTCN2019104617-appb-100003
    其中:θ为叶型中线的折弯角,x,y为叶型中线上某一点的坐标。
  12. 根据权利要求4所述的一种离心风轮,其特征在于:叶型中心线A由抛物线组成,弦长为L,其方程为:
    Figure PCTCN2019104617-appb-100004
    其中:θ为叶型中线的折弯角,x,y为叶型中线上某一点的坐标。
  13. 根据权利要求10或11或12所述的一种离心风轮,其特征在于:塑料壳截面上表面、下表面曲线上任一点的坐标值由下确定:
    叶片上表面:
    Figure PCTCN2019104617-appb-100005
    叶片下表面:
    Figure PCTCN2019104617-appb-100006
    其中:
    Figure PCTCN2019104617-appb-100007
    式中
    Figure PCTCN2019104617-appb-100008
    为叶型中线某一点的切线与x轴的夹角,
    x,y为叶型中线上某一点的坐标,
    x u,y u为叶片截面的上表面的坐标,
    x 1,y 1为叶片截面的下表面的坐标。
  14. 一种离心风轮的制造方法,其特种在于:针对客户对风机的性能需求,选择好合适的风轮模型,所述的风轮模型是采用权利要求1至13任意一项所述的离心风轮,在风轮模型设计基础上,不改变风轮模型的轮盘、轮盖、金属骨架的形状,通过改变塑料壳的形状来满足客户对气动性能的定制需求。
  15. 一种离心风机,包括离心风轮、电机和蜗壳,所述蜗壳设有可容置离心风轮的第二空腔,所述蜗壳包括进风口和出风口,所述进风口和出风口分别与第二空腔连通,离心风轮安装在电机上并由电机驱动,其特征在于:所述的离心风轮是上述权利要求1至权利要求13任意一项所述的离心风轮。
PCT/CN2019/104617 2019-01-12 2019-09-06 一种离心风轮及其制造方法和应用其的离心风机 WO2020143241A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/027,666 US11306732B2 (en) 2019-01-12 2020-09-21 Centrifugal impeller and centrifugal fan comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910028924.5 2019-01-12
CN201920048794.7 2019-01-12
CN201910028924.5A CN109595200A (zh) 2019-01-12 2019-01-12 一种离心风轮及其制造方法和应用其的离心风机
CN201920048794.7U CN209687789U (zh) 2019-01-12 2019-01-12 一种离心风轮及应用其的离心风机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/027,666 Continuation-In-Part US11306732B2 (en) 2019-01-12 2020-09-21 Centrifugal impeller and centrifugal fan comprising the same

Publications (1)

Publication Number Publication Date
WO2020143241A1 true WO2020143241A1 (zh) 2020-07-16

Family

ID=71520611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104617 WO2020143241A1 (zh) 2019-01-12 2019-09-06 一种离心风轮及其制造方法和应用其的离心风机

Country Status (2)

Country Link
US (1) US11306732B2 (zh)
WO (1) WO2020143241A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4015836A1 (de) * 2020-12-16 2022-06-22 ebm-papst Mulfingen GmbH & Co. KG Lüfterrad mit verstärkungsring

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD980404S1 (en) * 2019-03-15 2023-03-07 Ziehl-Abegg Se Ventilation fan
USD951301S1 (en) * 2019-04-03 2022-05-10 Eugene Juanatas Hoehn Centrifugal impeller assembly
USD1006056S1 (en) * 2020-02-03 2023-11-28 W.S. Darley & Co. Impeller blade for a pump
USD979607S1 (en) * 2020-02-03 2023-02-28 W.S. Darley & Co. Impeller for a pump
DE102022112022A1 (de) * 2022-05-13 2023-11-16 Ebm-Papst Mulfingen Gmbh & Co. Kg Radial- oder Diagonallaufrad mit modifizierter Schaufelkante
CN117216910B (zh) * 2023-11-07 2024-01-30 陕西空天信息技术有限公司 离心叶轮轮盘模型构建方法及装置、电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1522343A (zh) * 2002-02-28 2004-08-18 ͬ�Ϳ�ҵ��ʽ���� 送风机
US20050106024A1 (en) * 2001-09-28 2005-05-19 Valeo Equipements Electriques Moteur Alternator fan
JP3177191U (ja) * 2012-04-11 2012-07-26 奇▲こう▼科技股▲ふん▼有限公司 ファンの構造
CN203394851U (zh) * 2013-08-01 2014-01-15 浙江马尔风机有限公司 一种风机的叶片
CN104797825A (zh) * 2013-05-10 2015-07-22 Lg电子株式会社 离心风扇的制造方法
CN106917764A (zh) * 2017-03-21 2017-07-04 联想(北京)有限公司 风扇及其制作方法和电子设备
CN206352592U (zh) * 2016-02-03 2017-07-25 台达电子工业股份有限公司 叶轮
CN109595200A (zh) * 2019-01-12 2019-04-09 中山宜必思科技有限公司 一种离心风轮及其制造方法和应用其的离心风机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3225422A (en) * 1962-03-09 1965-12-28 Ametek Inc Method of fabricating centrifugal fan impellers
US4859140A (en) * 1985-01-25 1989-08-22 Brod & Mcclung - Pace Co. Centrifugal fan
JPH07103190A (ja) * 1993-10-06 1995-04-18 Takao Kobayashi 軽量・低騒音型のターボファン用羽根車の構造。
EP0715081B1 (en) * 1994-11-23 2000-09-13 AMETEK Inc. Rotating fan having tapered disk component
US9109605B2 (en) * 2012-04-24 2015-08-18 Asia Vital Components Co., Ltd. Fan impeller structure and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050106024A1 (en) * 2001-09-28 2005-05-19 Valeo Equipements Electriques Moteur Alternator fan
CN1522343A (zh) * 2002-02-28 2004-08-18 ͬ�Ϳ�ҵ��ʽ���� 送风机
JP3177191U (ja) * 2012-04-11 2012-07-26 奇▲こう▼科技股▲ふん▼有限公司 ファンの構造
CN104797825A (zh) * 2013-05-10 2015-07-22 Lg电子株式会社 离心风扇的制造方法
CN203394851U (zh) * 2013-08-01 2014-01-15 浙江马尔风机有限公司 一种风机的叶片
CN206352592U (zh) * 2016-02-03 2017-07-25 台达电子工业股份有限公司 叶轮
CN106917764A (zh) * 2017-03-21 2017-07-04 联想(北京)有限公司 风扇及其制作方法和电子设备
CN109595200A (zh) * 2019-01-12 2019-04-09 中山宜必思科技有限公司 一种离心风轮及其制造方法和应用其的离心风机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4015836A1 (de) * 2020-12-16 2022-06-22 ebm-papst Mulfingen GmbH & Co. KG Lüfterrad mit verstärkungsring

Also Published As

Publication number Publication date
US11306732B2 (en) 2022-04-19
US20210003143A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
WO2020143241A1 (zh) 一种离心风轮及其制造方法和应用其的离心风机
JP2003065291A (ja) ターボファン及びその製造金型
EP2525061A1 (en) Energy saving fan
CN104110401A (zh) 离心式风扇
CN107708891B (zh) 包括大横截面的凸起部分的用于模制涡轮机叶片的单元
CN201148995Y (zh) 低噪音冷却风扇
CN109595200A (zh) 一种离心风轮及其制造方法和应用其的离心风机
CN111156198A (zh) 一种带阶梯变半径蜗舌的蜗壳及离心通风机
CN201679745U (zh) 低噪声空调冷却轴流风机
CN209687789U (zh) 一种离心风轮及应用其的离心风机
CN105275877A (zh) 一种轴流风机叶轮结构
CN112974734B (zh) 一种整体成型的弯掠组合叶片的制造方法
ITPD970050A1 (it) Girante per turbopompe con pale a profilo perfezionato
CN205117800U (zh) 一种用于低速运行鼓风机的三元流闭式铸造叶轮
CN211550075U (zh) 一种具有进气前缘后掠弯曲特征的增压器压气机叶轮
CN210949262U (zh) 一种新型板式轴流风机叶轮
CN207814037U (zh) 一种具有中盘加强结构的离心风机叶轮
CN205225852U (zh) 轴流风机叶轮结构
CN215333611U (zh) 一种离心式气体压缩机的降低气动噪声的结构
KR20100021688A (ko) 자동차의 라디에이터 쿨링팬 조립체
CN218151633U (zh) 风叶结构及轴流风机
CN206001655U (zh) 一种空调软硬拉索出风模式控制固定件
CN212508975U (zh) 一种大流量低速风机的风叶
CN215333612U (zh) 一种离心式气体压缩机的降低气动噪声的结构
CN115186401B (zh) 一种轴流压气机亚音速叶栅造型关键角度参数确定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909102

Country of ref document: EP

Kind code of ref document: A1