WO2020143116A1 - 一种六维力传感器标定装置及其标定的方法 - Google Patents

一种六维力传感器标定装置及其标定的方法 Download PDF

Info

Publication number
WO2020143116A1
WO2020143116A1 PCT/CN2019/079179 CN2019079179W WO2020143116A1 WO 2020143116 A1 WO2020143116 A1 WO 2020143116A1 CN 2019079179 W CN2019079179 W CN 2019079179W WO 2020143116 A1 WO2020143116 A1 WO 2020143116A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
drive mechanism
sensor
output
rotating
Prior art date
Application number
PCT/CN2019/079179
Other languages
English (en)
French (fr)
Inventor
杨述焱
陈望隆
胡权
孙东杰
李丹若
宋爱国
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2020143116A1 publication Critical patent/WO2020143116A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L25/00Testing or calibrating of apparatus for measuring force, torque, work, mechanical power, or mechanical efficiency

Definitions

  • a positioning pile is provided on the upper end of the force-bearing shaft, and the positioning pile includes a positioning disc and a clockwise rotating positioning rod and a counterclockwise rotating positioning rod connected to the outer edge of the positioning disc; the third force is applied
  • the lower end surface of the arm is in contact with the upper end surface of the positioning disc, and the lower end of the third force applying arm is also provided with an L-shaped positioning hook; the lower bottom edge of the L-shaped positioning hook is in contact with the lower end surface of the positioning disc
  • the maximum relative rotation angle of the vertical side of the L-shaped positioning hook between the positioning rod rotating clockwise and the positioning rod counterclockwise along the outer edge of the positioning disc is 90°; when the first hook is located on the upper force disc When the clockwise straight through the slot, the vertical side of the L-shaped positioning hook is connected to the clockwise rotating positioning rod; when the first hook is located in the counterclockwise straight through slot of the upper force plate, the vertical side of the L-shaped positioning hook Connect with counter-clockwise rotating positioning rod.
  • the rotating platform is a gear disc;
  • the rotating mechanism further includes a rotating platform driving motor fixed on the supporting platform and a rotating platform driving gear fixed on the output shaft of the rotating platform driving motor;
  • the rotating platform driving gear It is connected with the external teeth of the rotating platform;
  • the control system sends out a control signal to control the switch and steering of the driving motor of the rotating platform.
  • first driving mechanism, the second driving mechanism, the third driving mechanism, the fourth driving mechanism and the fifth driving mechanism are linear screw stepper motors
  • the first force applying arm further includes a first spring connected to the left end of the first hook, and the left end of the first spring is connected to the drive shaft of the first drive mechanism; the first force sensor is disposed at the drive shaft of the first drive mechanism and the first spring between;
  • the third force applying arm includes a connecting portion fixed to the upper end of the force receiving shaft and a third spring fixed to the upper end of the connecting portion, the upper end of the third spring is connected to the transverse arm; the third force sensor and the torque sensor It is sequentially arranged between the third spring and the cross arm.
  • the two vertical poles of the portal bracket are provided with vertical chutes in the up-down direction and vertical sliders sliding along the vertical chutes, and between the vertical chutes and the vertical sliders are also provided There are positioning bolts; the first drive mechanism is arranged on the vertical slide of the left column of the portal bracket, and the second drive mechanism is arranged on the vertical slide of the right column of the portal bracket.
  • the horizontal beam of the portal bracket is provided with a horizontal slide groove in the left-right direction and a horizontal slide block sliding along the horizontal slide groove, and positioning bolts are also provided between the horizontal slide groove and the horizontal slide block;
  • the three drive mechanism, the fourth drive mechanism and the fifth drive mechanism are provided on the horizontal slider.
  • the control system operates the rotating platform to rotate clockwise until the limit plate is connected to the clockwise rotating baffle, and the first hook is located in the clockwise straight through slot of the upper force plate, and the second hook is located at the lower end of the force plate Straight through the clockwise slot, the vertical side of the L-shaped positioning hook is connected to the clockwise rotating positioning rod; set this position as the initial position, set the right side of the sensor elastic body in the initial position state to the x-axis positive, rear The side is the y-axis positive direction, the upper side is the z-axis positive direction;
  • the control system operates the rotating platform to rotate counterclockwise by 90° until the limit plate is connected to the counterclockwise rotating baffle, and the first hook is located in the counterclockwise straight groove of the upper force plate, and the second hook is located at the lower end The counterclockwise straight groove of the force plate, the vertical side of the L-shaped positioning hook is connected to the counterclockwise rotating positioning rod;
  • the present invention achieves accurate determination of the force/torque input/output relationship of each dimension by synchronously loading both ends of the elastic body of the six-dimensional force sensor;
  • the rotary platform of the present invention is electrically rotated and automatically limited.
  • the loading device and the shaft can rotate synchronously without disassembly.
  • the entire calibration process does not require any manual adjustment. After the assembly is completed, it can be automatically calibrated by the host computer control. Greatly reduces the difficulty of manual operation, reduces the workload of calibration, avoids human error, and the repeatability of calibration is better;
  • FIG. 2 is a schematic view of the stereoscopic structure of the invention from a side-down perspective
  • FIG. 3 is a schematic structural view of the rotating mechanism of the present invention.
  • FIG. 4 is a schematic structural view of the force receiving device of the present invention.
  • FIG. 5 is a partial schematic view of the structure of the upper end force disc of the present invention.
  • FIG. 6 is a top view of the upper end force disc of the present invention.
  • FIG. 7 is a schematic structural diagram of a first loading device of the present invention.
  • FIG. 8 is a schematic structural diagram of a third loading device of the present invention.
  • FIG. 9 is a schematic structural view of the connection between the force-bearing shaft and the third force-applying arm of the present invention.
  • Fig. 10 is a plan view of the force receiving shaft of the present invention.
  • the present invention provides a six-dimensional force sensor calibration device.
  • the six-dimensional force sensor includes a sensor elastic body.
  • a force receiving hole is provided at the center of the sensor elastic body.
  • the six-dimensional force sensor calibration device It includes a frame, a rotating mechanism, a force device, a first loading device, a second loading device, a third loading device and a control system.
  • the orientation of this manual is based on Figure 1, and the sensor elastic body in the position of Figure 1 is set to the positive x-axis direction, the rear y-axis direction, and the upper z-axis direction.
  • the rack includes a supporting platform 1, a supporting leg 2 and a door-type bracket 3 fixed on the supporting platform 1.
  • the force receiving device includes a force receiving shaft 6 fixed in the force receiving hole, and the midpoint of the force receiving shaft 6 is located at the center of the force receiving hole.
  • the first loading device includes a first driving mechanism A01 capable of generating a lateral force, a first force applying arm (A02), and a first force sensor A03 for measuring the lateral force of the first driving mechanism A01;
  • the first The driving mechanism A01 is fixed on the left column of the portal bracket 3 and above the supporting platform 2;
  • the left end of the first force applying arm A02 is connected to the output end of the first driving mechanism A01, and the right end of the first force applying arm A02 is connected to the The upper end of the force receiving shaft 6 is connected, and a lateral force is applied to the force receiving shaft 6.
  • the second loading device and the first loading device are arranged symmetrically along the midpoint of the axis of force;
  • the second loading device includes a second driving mechanism B01, a second force applying arm B02 and a A second force sensor B03 for measuring the left-right force of the second driving mechanism B01;
  • the second driving mechanism B01 is fixed to the right-hand column of the portal bracket 3 and is located below the supporting platform 1;
  • the right end of the second force applying arm B02 Connected to the output end of the second driving mechanism B01, the left end of the second force applying arm B02 is connected to the lower end of the force receiving shaft 6 to apply a left-right force to the force receiving shaft 6.
  • the first driving mechanism A01 and the second driving mechanism B01 simultaneously apply the same-direction force to the force-bearing shaft, and the force-bearing shaft applies the x-axis to the force-bearing hole of the six-dimensional force sensor Force, and through the first force sensor A03 and the second force sensor B03 detection and calculation, used to calibrate the six-dimensional force sensor x-axis force; the first drive mechanism A01 and the second drive mechanism B01 to the force axis Reverse force is applied, and the force axis applies a positive and negative rotation torque about the y axis as the axis of the force hole of the six-dimensional force sensor, and the detection and calculation are performed by the first force sensor A03 and the second force sensor B03 for Calibrate the forward and reverse rotation torque of the six-dimensional force sensor with the y-axis as the axis.
  • the force axis at the original position and the force receiving hole of the six-dimensional force sensor rotate along the y-axis contact surface to the x-axis direction.
  • the first driving mechanism A01 and the second driving mechanism B01 simultaneously apply the same-direction force to the force-bearing shaft.
  • the force-bearing shaft exerts a y-axis force on the force receiving hole of the six-dimensional force sensor, and passes through the first force sensor A03 and
  • the second force sensor B03 performs detection and calculation, and is used to calibrate the y-axis force of the six-dimensional force sensor; the first driving mechanism A01 and the second driving mechanism B01 simultaneously apply a reverse force to the force-bearing shaft.
  • the force hole of the force sensor applies positive and negative rotation torque with the x axis as the axis, and is detected and calculated by the first force sensor A03 and the second force sensor B03, used to calibrate the six-dimensional force sensor with the x axis as the axis
  • the positive and negative rotation torque of the heart line is detected and calculated by the first force sensor A03 and the second force sensor B03, used to calibrate the six-dimensional force sensor with the x axis as the axis.
  • the vertical force exerted by the third driving mechanism on the force receiving shaft 6 is detected by the third force sensor C06 and used to calibrate the z-direction force of the six-dimensional force sensor.
  • the fourth drive mechanism C02 and the fifth drive mechanism C03 simultaneously apply thrust to the cross arm C05, and the third force applying arm C04 applies a counterclockwise rotation torque along the axis of the force axis 6 to the force axis 6; the fourth drive mechanism C02 Simultaneously with the fifth drive mechanism C03, the transverse arm C05 is applied with a pulling force, and the third force applying arm C04 applies a clockwise rotation torque to the force receiving shaft 6 along the center line of the force receiving shaft 6 axis.
  • the torque sensor C07 detects counterclockwise rotation torque and clockwise rotation torque, and is used to calibrate the positive and negative rotation torque of the six-dimensional force sensor with z as the axis.
  • the upper end and the lower end of the force receiving shaft 6 are respectively fixed with an upper end force disc 7 and a lower end force disc 8.
  • the upper end force disc 7 and the lower end force disc 8 are respectively provided along the force axis 6
  • Rotating through slots symmetrically arranged at the midpoint; as shown in FIG. 6, the rotating through slots include an arc through slot 9 and a clockwise straight through slot 10 and a counterclockwise straight through slot provided at both ends of the arc through slot 9 respectively 11;
  • the clockwise straight through groove 10 and the counterclockwise straight through groove 11 are perpendicular.
  • the right end of the first force applying arm A02 is provided with a first hook A04 which is hung in the rotating through groove of the upper force receiving disc 7 and can slide along the rotating through groove of the upper force receiving disc 7;
  • the second The left end of the force applying arm B02 is provided with a second hook B04 which is hung in the rotating through slot of the lower force receiving disc 8 and can slide along the rotating through slot of the lower force receiving disc 8.
  • first hook A04 When the first hook A04 is located in the clockwise straight through slot 10 of the upper force disc 7, the second hook B04 is located in the clockwise straight through slot 10 of the lower force disc 8, and the rotating platform 4 rotates counterclockwise by 90°
  • the first hook A04 is located in the counterclockwise straight through slot 11 of the upper force disc 7, and the second hook B04 is located in the counterclockwise straight through slot 11 of the lower force disc 8.
  • the rotating platform 4 is a gear disc; the rotating mechanism further includes a rotating platform driving motor 15 fixed on the supporting platform 1 and a rotating platform driving gear 16 fixed on the output shaft of the rotating platform driving motor 15
  • the rotating platform drive gear 16 is meshed with the external teeth of the rotating platform 4; the control system sends a control signal to control the switching and steering of the rotating platform drive motor 15.
  • the upper end of the rotating platform 4 is provided with a radial clockwise rotating baffle 17 and a counterclockwise rotating baffle 18; the supporting platform 1 is fixed with a clockwise rotating baffle 17 and a counterclockwise rotating baffle 18
  • the limit plate 19 on the rotation path, and the maximum relative rotation angle of the limit plate 19 between the clockwise rotation baffle 17 and the counterclockwise rotation baffle 18 is 90°; when the first hook A04 is located at the upper end When the disc 7 goes straight through the slot 10 clockwise, the limit plate 19 is connected to the clockwise rotating baffle 17; when the first hook A04 is located in the counterclockwise straight slot 11 of the upper force disc 7, the limit plate 19 is Turn the baffle 18 counterclockwise to connect.
  • a groove type photoelectric switch 20 is provided at the end of the limit plate 16, and a partition plate 21 is provided on both the clockwise rotating baffle 17 and the counterclockwise rotating baffle 18; when the rotating platform 4 rotates to When the clockwise rotating baffle 17 is connected to the limit plate 19, the partition plate 21 of the clockwise rotating baffle 17 is inserted into the signal transceiving slot of the slot type photoelectric switch 20 to block the signal of the signal transceiving slot; When the rotating platform 4 rotates until the counterclockwise rotating baffle 18 is connected to the limit plate 19, the partitioning plate 21 of the counterclockwise rotating baffle 18 is inserted into the signal transceiving slot of the slot type photoelectric switch 20 to block the signal The signal of the receiving and sending slot; after receiving the blocking signal of the signal receiving and sending slot, the control system sends a turn signal to the driving motor 13 of the rotating platform.
  • the rotating mechanism is provided with a rotation limit of 90°, so that the rotating platform 4 can automatically rotate within a 90° interval.
  • the first hook A04 and the upper end force disc 7, the second hook B04 and the lower end force disc 8 can rotate relative to each other by 90° synchronously, no need Any disassembly and assembly operations to achieve automated calibration.
  • the first driving mechanism A01, the second driving mechanism B01, the third driving mechanism C01, the fourth driving mechanism C02 and the fifth driving mechanism C03 are linear screw stepper motors.
  • the first force applying arm A02 further includes a first spring A05 connected to the left end of the first hook A04.
  • the left end of the first spring A05 is connected to the drive shaft of the first driving mechanism A01; the first force sensor A03 is provided at The first drive mechanism A01 is between the drive shaft and the first spring A05.
  • the second force applying arm B02 further includes a second spring connected to the right end of the second hook B04, and the right end of the second spring is connected to the drive shaft of the second drive mechanism B01; the second force sensor B03 is provided to be driven by the second drive mechanism B01 Between the shaft and the second spring.
  • a third spring C09 connecting the upper end and the lower end of the third urging arm C04 is provided in the middle of the third urging arm C04, and the upper end of the third spring C09 is connected to the cross arm C05;
  • the third force sensor C06 and the torque sensor C07 are sequentially arranged between the third spring C09 and the cross arm C05.
  • the loading devices of the present invention all use a spring as a force storage element, which avoids the instability error of the motor rotation, and realizes the synchronous calibration of the loading and unloading processes.
  • the two vertical poles of the portal bracket 3 are provided with vertical slide grooves 22 in the up-down direction and vertical sliders 23 sliding along the vertical slide grooves 22, the vertical slide grooves 22 and the vertical slides 23 Positioning bolts are also provided between them; the first drive mechanism A01 is provided on the vertical slider 23 of the left column of the portal bracket 3, and the second drive mechanism B01 is provided on the vertical column of the right column of the portal bracket 3 Straight slider 23.
  • the horizontal beam 24 along the left-right direction and the horizontal slide 25 sliding along the horizontal slide 24 are provided on the beam of the portal bracket 3, and positioning bolts are also provided between the horizontal slide 25 and the horizontal slide 25 ;
  • the third drive mechanism C01, the fourth drive mechanism C02 and the fifth drive mechanism C03 are provided on the horizontal slider 25. This structure is used to adjust the positions of the first loading device, the second loading device, and the third loading device.
  • the control system operates the rotating platform 4 to rotate clockwise until the limit plate 19 is connected to the clockwise rotating baffle 17, and the first hook A04 is located in the clockwise straight through slot 10 of the upper force plate 7, the second hook The B04 is located in the clockwise straight through slot 10 of the lower force plate 8.
  • the vertical edge of the L-shaped positioning hook C08 is connected to the clockwise rotating positioning rod 13; set this position as the initial position and set the sensor in the initial position state
  • the right side of the elastomer is the x-axis positive direction, the back side is the y-axis positive direction, and the upper side is the z-axis positive direction;
  • control system feeds back the pressure value of the first force sensor A03 and the pressure value of the second force sensor B03, feedback Control the first drive mechanism A01 and the second drive mechanism B01 to output multiple sets of force values, and keep the output force values of the first drive mechanism A01 and the second drive mechanism B01 the same; record the first drive mechanism A01 and the second drive mechanism B01 Multiple sets of output force values and the measurement data of the six-dimensional sensor in the corresponding state;
  • control system receives the pressure value of the first force sensor A03 and the pressure value of the second force sensor B03, Feedback control the first drive mechanism A01 and the second drive mechanism B01 to output multiple sets of force values, and keep the output force values of the first drive mechanism A01 and the second drive mechanism B01 the same; record the first drive mechanism A01 and the second drive mechanism B01 Multiple sets of output force values and the measurement data of the six-dimensional sensor in the corresponding state;
  • control system receives the pressure value of the first force sensor A03 and the pressure value of the second force sensor B03, Feedback control the first drive mechanism A01 and the second drive mechanism B01 to output multiple sets of force values, and keep the output force values of the first drive mechanism A01 and the second drive mechanism B01 the same; record the first drive mechanism A01 and the second drive mechanism B01 Multiple sets of output force values and the measurement data of the six-dimensional sensor in the corresponding state;
  • control system receives the pressure value of the first force sensor A03 and the pressure value of the second force sensor B03, Feedback control the first drive mechanism A01 and the second drive mechanism B01 to output multiple sets of force values, and keep the output force values of the first drive mechanism A01 and the second drive mechanism B01 the same; record the first drive mechanism A01 and the second drive mechanism B01 Multiple sets of output force values and the measurement data of the six-dimensional sensor in the corresponding state;
  • control system receives the pressure value of the first force sensor A03 and the pressure value of the second force sensor B03, Feedback control the first drive mechanism A01 and the second drive mechanism B01 to output multiple sets of force values, and keep the output force values of the first drive mechanism A01 and the second drive mechanism B01 the same; record the first drive mechanism A01 and the second drive mechanism B01 Multiple sets of output force values and the measurement data of the six-dimensional sensor in the corresponding state;

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本发明提出一种六维力传感器标定装置,所述六维力传感器包括传感器弹性体,所述传感器弹性体的中心设置有受力孔;所述六维力传感器标定装置包括机架、转动机构、受力装置、第一加载装置、第二加载装置、第三加载装置和控制系统。本发明通过对六维力传感器弹性体两端同步加载,实现了各个维度的力/力矩输入输出的准确测定;采用固定力源、移动待标定传感器的方式,仅使用五个力源,仅对旋转平台进行一次移动,即可完成整个标定;旋转平台电动旋转,自动限位,加载装置与受力轴可同步旋转,降低了人工操作的难度,避免了人为误差,标定的重复性好;采用弹簧作为蓄力元件,避免了电机转动的不稳定性误差,并且实现了加载和卸载过程的同步标定。

Description

一种六维力传感器标定装置及其标定的方法 技术领域
本发明涉及力传感器标定领域,特别是涉及一种六维力传感器标定装置及其标定的方法。
背景技术
六维力传感器作为多维力传感器的最完整形态,能够同时检测空间任意坐标系的三维力分量(Fx,Fy,Fz)和三维力矩分量(Mx,My,Mz),广泛应用于航空航天、机械制造与装配、医学工程、汽车行业、体育竞技等各个领域。对设计和加工完成的传感器进行标定,确定其各个维度的输入输出关系,进而进行求解计算,是传感器研制过程中的重要环节,直接影响着传感器的测量精度。六维力传感器由于维度较多,维间耦合影响较大,因而难以使用传统单维力传感器的标定装置和标定方法进行标定。因此,对六维力传感器的标定装置及标定方法进行研究和设计具有非常重要的应用价值。
目前多维力传感器的标定装置主要有砝码加载式、龙门式和减速机式等。中国专利公开号CN103604561A公开了一种砝码加载式标定装置,通过砝码和滑轮组对传感器进行标定试验,具有力值稳定的优点,但不能进行自动标定,工作量大,且容易引入人为操作误差。中国专利公开号CN103196629A公开了一种利用减速机和高精度单维力传感器进行标定的装置,通过光栅控制移动的位移和角度,进而实现传感器各个方向的自动标定,但不能实现力矩的单独加载。中国专利公开号CN103616128A公开了一种以伺服电机与弹簧组合作为加载单元的标定装置,可以实现多个维度间的单独和组合标定,但加载单元数量极大,操作复杂,且同样不能实现所有方向上的力和力矩的完全分离。
发明内容
为解决上述问题,本发明提出一种六维力传感器标定装置及其标定的方法,自动化精确定位和精确加载,六个维度的力和力矩分离标定,标定精度高,操作简易。
技术方案:本发明提出一种六维力传感器标定装置,所述六维力传感器包括传感器弹性体,所述传感器弹性体的中心设置有受力孔;所述六维力传感器标定装置包括机架、转动机构、受力装置、第一加载装置、第二加载装置、第三加载装置和控制系统;
所述机架包括支撑平台、支撑腿和固定在支撑平台上的门式支架;
所述转动机构包括设置在支撑平台上方的旋转平台,所述旋转平台的旋转中心位于门式支架横梁中点的正下方,并且旋转平台的旋转中心处设置有用于固定传感器弹性体的安装孔;
所述受力装置包括穿过固定在受力孔内的受力轴,并且受力轴的中点位于受力孔中心处;
所述第一加载装置包括可产生左右向力的第一驱动机构、第一施力臂和用于测量第一驱动机构左右向力的第一力传感器;所述第一驱动机构固定在门式支架左侧立柱且位于支撑平台上方;所述第一施力臂的左端连接在第一驱动机构输出端,右端与所述受力轴上端连接,向受力轴施加左右向力;
所述第二加载装置与第一加载装置沿受力轴的中点对称布置;第二加载装置包括可产生左右向力的第二驱动机构、第二施力臂和用于测量第二驱动机构左右向力的第二力传感器;所述第二驱动机构固定在门式支架右侧立柱且位于支撑平台下方;所述第二施力臂的右端连接在第二驱动机构输出端,左端与所述受力轴下端连接,向受力轴施加左右向力;
所述第三加载装置包括可产生上下向力的第三驱动机构、可产生前后向力的第四驱动机构、可产生前后向力的第五驱动机构和第三施力臂;所述第三驱动机构、第四驱动机构和第五驱动机构均固定在门式支架横梁上;所述第三施力臂的上端面与第三驱动机构的输出端相连;第三施力臂的上端还设置有一个平行于门式支架横梁的横臂;所述横臂的前端面的右侧与所述第四驱动机构输出端相连,所述横臂后端面的左侧与第五驱动机构输出端相连;所述第三施力臂的下端与所述受力轴上端连接,向受力轴施加上下向力和沿受力轴轴心线的旋转 力;所述第三加载装置还包括用于测量所述第三施力臂向受力轴施加的上下向力的第三力传感器和用于测量所述第三施力臂向受力轴施加的沿受力轴轴心线的旋转力的扭矩传感器;
所述控制系统根据接收到的第一力传感器、第二力传感器、第三力传感器的信号,发出控制信号控制第一驱动机构、第二驱动机构和第三驱动机构的输出力;控制系统根据接收到的扭矩传感器的信号,发出控制信号控制第四驱动机构和第五驱动机构的输出力。
进一步,所述受力轴的上端和下端分别固定有上端受力盘和下端受力盘,所述上端受力盘和下端受力盘分别设置有沿受力轴中点对称布置的旋转通槽;所述旋转通槽包括一个圆弧通槽以及分别设置在圆弧通槽圆弧两端的顺时针直线通槽和逆时针直线通槽;所述顺时针直线通槽和逆时针直线通槽垂直;
所述第一施力臂的右端设置有一个挂在上端受力盘旋转通槽内并可沿上端受力盘旋转通槽滑动的第一挂钩;所述第二施力臂的左端设置有一个挂在下端受力盘旋转通槽内并可沿下端受力盘旋转通槽滑动的第二挂钩;
当第一挂钩位于上端受力盘的顺时针直线通槽时,第二挂钩位于下端受力盘的顺时针直线通槽,且所述旋转平台逆时针旋转90°后,第一挂钩位于上端受力盘的逆时针直线通槽处,第二挂钩位于下端受力盘的逆时针直线通槽。
进一步,所述受力轴的上端设置有定位桩,所述定位桩包括一个定位圆盘以及连接在定位圆盘外缘的顺时针旋转定位杆和逆时针旋转定位杆;所述第三施力臂的下端面与定位圆盘的上端面相接,并且第三施力臂的下端还设置有L型定位钩;所述L型定位钩的下底边与所述定位圆盘的下端面相接;所述L型定位钩的竖直边在顺时针旋转定位杆和逆时针旋转定位杆之间沿定位圆盘外缘的最大相对转动角度为90°;当第一挂钩位于上端受力盘的顺时针直线通槽时,L型定位钩的竖直边与顺时针旋转定位杆相接;当第一挂钩位于上端受力盘的逆时针直线通槽时,L型定位钩的竖直边与逆时针旋转定位杆相接。
进一步,所述旋转平台是一齿轮圆盘;所述转动机构还包括固定在支撑平台上的旋转平台驱动电机和固定在旋转平台驱动电机输出轴上的旋转平台驱动齿轮;所述旋转平台驱动齿轮与旋转平台的外齿啮合相连;所述控制系统发出控制信号控制旋转平台驱动电机的开关和转向。
进一步,所述旋转平台的上端设置有径向的顺时针转动挡板和逆时针转动挡板;所述支撑平台上固定有设置在顺时针转动挡板和逆时针转动挡板的转动路径上的限位板,并且所述限位板在顺时针转动挡板和逆时针转动挡板之间的最大相对旋转角度为90°;当第一挂钩位于上端受力盘的顺时针直线通槽时,限位板与顺时针转动挡板相接;当第一挂钩位于上端受力盘的逆时针直线通槽时,限位板与逆时针转动挡板相接。
进一步,所述限位板的端部设置有槽型光电开关,所述顺时针转动挡板和逆时针转动挡板上均设置有分隔板;当所述旋转平台转动至顺时针转动挡板与限位板相接时,所述顺时针转动挡板的分隔板插入所述槽型光电开关的信号收发槽内阻断信号收发槽的信号;当所述旋转平台转动至逆时针转动挡板与限位板相接时,所述逆时针转动挡板的分隔板插入所述槽型光电开关的信号收发槽内阻断信号收发槽的信号;所述控制系统接收信号收发槽的阻断信号后,向旋转平台驱动电机发出转向信号。
进一步,所述第一驱动机构、第二驱动机构、第三驱动机构、第四驱动机构和第五驱动机构是直线丝杆步进电机;
所述第一施力臂还包括连接在第一挂钩左端的第一弹簧,第一弹簧左端连接第一驱动机构驱动轴;所述第一力传感器设置在第一驱动机构驱动轴和第一弹簧之间;
所述第二施力臂包括连接在第二挂钩右端的第二弹簧,第二弹簧右端连接第二驱动机构驱动轴;所述第二力传感器设置在第二驱动机构驱动轴和第二弹簧之间;
所述第三施力臂包括与受力轴上端固定的连接部和固定在连接部上端的第三弹簧,所述 第三弹簧的上端与横臂相接;所述第三力传感器和扭矩传感器依次设置在第三弹簧和横臂之间。
进一步,所述门式支架的两个立柱上均设置有上下方向的竖直滑槽和沿竖直滑槽滑动的竖直滑块,所述竖直滑槽和竖直滑块之间还设置有定位螺栓;所述第一驱动机构设置在门式支架左侧立柱的竖直滑块上,所述第二驱动机构设置在门式支架右侧立柱的竖直滑块上。
进一步,所述门式支架的横梁上设置有沿左右方向的水平滑槽和沿水平滑槽滑动的水平滑块,所述水平滑槽和水平滑块之间还设置有定位螺栓;所述第三驱动机构、第四驱动机构和第五驱动机构设置在水平滑块上。
使用如前所述的六维力传感器标定装置进行六维力传感器标定的方法包括以下步骤:
S1.控制系统操作旋转平台顺时针旋转至限位板与顺时针转动挡板相接,同时所述第一挂钩位于上端受力盘的顺时针直线通槽,第二挂钩位于下端受力盘的顺时针直线通槽,L型定位钩的竖直边与顺时针旋转定位杆相接;设定此位置为初始位置,设定初始位置状态下的传感器弹性体右侧为x轴正向,后侧为y轴正向,上侧为z轴正向;
S2.控制第一驱动机构转出,第二驱动机构转入,施加x轴正向力Fx+;控制系统通过接收第一力传感器的压力值和第二力传感器的压力值,反馈控制第一驱动机构和第二驱动机构输出多组力值,并保持第一驱动机构和第二驱动机构的输出力值相同;记录第一驱动机构和第二驱动机构的多组输出力值以及对应状态下六维传感器的测视数据;
S3.控制第一驱动机构转入,第二驱动机构转出,施加x轴负向力Fx-;控制系统通过接收第一力传感器的压力值和第二力传感器的压力值,反馈控制第一驱动机构和第二驱动机构输出多组力值,并保持第一驱动机构和第二驱动机构的输出力值相同;记录第一驱动机构和第二驱动机构的多组输出力值以及对应状态下六维传感器的测视数据;
S4.控制第一驱动机构转出,第二驱动机构转出,施加y轴正向力矩My+;控制系统通过接收第一力传感器的压力值和第二力传感器的压力值,反馈控制第一驱动机构和第二驱动机构输出多组力值,并保持第一驱动机构和第二驱动机构的输出力值相同;记录第一驱动机构和第二驱动机构的多组输出力值以及对应状态下六维传感器的测视数据;
S5.控制第一驱动机构转入,第二驱动机构转入,施加y轴负向力矩My-;控制系统通过接收第一力传感器的压力值和第二力传感器的压力值,,反馈控制第一驱动机构和第二驱动机构输出多组力值,并保持第一驱动机构和第二驱动机构的输出力值相同;记录第一驱动机构和第二驱动机构的多组输出力值以及对应状态下六维传感器的测视数据;
S6.控制第三驱动机构转入,施加z轴正向力Fz+;控制系统通过接收第三力传感器的压力值,反馈控制第三驱动机构输出多组力值;记录第三驱动机构的输出力值以及对应状态下六维传感器的测视数据;
S7.控制第三驱动机构转出,施加z轴负向力Fz-;控制系统通过接收第三力传感器的压力值,反馈控制第三驱动机构输出多组力值;记录第三驱动机构的输出力值以及对应状态下六维传感器的测视数据;
S8.控制第四驱动机构转出,第五驱动机构转出,施加z轴正向力矩Mz+;控制系统通过接收扭矩传感器的测量值,反馈控制第四驱动机构和第五驱动机构输出多组力值;记录第四驱动机构和第五驱动机构的多组输出力值以及对应状态下六维传感器的测视数据;
S9.控制系统操作旋转平台逆时针旋转90°,至限位板与逆时针转动挡板相接,同时所述第一挂钩位于上端受力盘的逆时针直线通槽,第二挂钩位于下端受力盘的逆时针直线通槽,L型定位钩的竖直边与逆时针旋转定位杆相接;
S10.控制第四驱动机构转入,第五驱动机构转入,施加z轴负向力矩Mz-;控制系统通过接收扭矩传感器的测量值,反馈控制第四驱动机构和第五驱动机构输出多组力值;记录第四驱动机构和第五驱动机构的多组输出力值以及对应状态下六维传感器的测视数据;
S11.控制第一驱动机构转出,第二驱动机构转入,施加y轴负向力Fy-;控制系统通过接收第一力传感器的压力值和第二力传感器的压力值,反馈控制第一驱动机构和第二驱动机构输出多组力值,并保持第一驱动机构和第二驱动机构的输出力值相同;记录第一驱动机构和第二驱动机构的多组输出力值以及对应状态下六维传感器的测视数据;
S12.控制第一驱动机构转入,第二驱动机构转出,施加y轴正向力Fy+;控制系统通过接收第一力传感器的压力值和第二力传感器的压力值,反馈控制第一驱动机构和第二驱动机构输出多组力值,并保持第一驱动机构和第二驱动机构的输出力值相同;记录第一驱动机构和第二驱动机构的多组输出力值以及对应状态下六维传感器的测视数据;
S13.控制第一驱动机构转出,第二驱动机构转出,施加x轴正向力矩Mx+;控制系统通过接收第一力传感器的压力值和第二力传感器的压力值,反馈控制第一驱动机构和第二驱动机构输出多组力值,并保持第一驱动机构和第二驱动机构的输出力值相同;记录第一驱动机构和第二驱动机构的多组输出力值以及对应状态下六维传感器的测视数据;
S14.控制第一驱动机构转入,第二驱动机构转入,施加x轴负向力矩Mx-;控制系统通过接收第一力传感器的压力值和第二力传感器的压力值,反馈控制第一驱动机构和第二驱动机构输出多组力值,并保持第一驱动机构和第二驱动机构的输出力值相同;记录第一驱动机构和第二驱动机构的多组输出力值以及对应状态下六维传感器的测视数据;
S15.将上述步骤采集的数据进行运算处理,标定六维力传感器精度。
有益效果:(1)本发明通过对六维力传感器弹性体两端进行同步加载,实现了各个维度的力/力矩输入输出关系的准确测定;
(2)本发明采用固定力源、移动待标定传感器的方式,仅使用五个力源,仅对旋转平台进行一次移动,即可完成整个标定任务,使得装置结构更为精简,成本更低,稳定性更好;
(3)本发明的旋转平台电动旋转,自动限位,加载装置与受力轴可同步旋转,不需拆装,整个标定过程无需任何手动调整,装配完成之后即可由上位机控制进行自动化标定,大大降低了人工操作的难度,减小了标定工作量,避免了人为误差,标定的重复性更好;
(4)本发明采用弹簧作为蓄力元件,避免了电机转动的不稳定性误差,并且实现了加载和卸载过程的同步标定;
(5)本发明的加载装置的位置可通过滑块进行相应的修正和匹配,可用于对不同量程、不同尺寸的六维力传感器进行标定,具有较高的普适性。
附图说明
图1为本发明侧上方视角的立体结构示意图;
图2为本发明侧下方视角的立体结构示意图;
图3为本发明的转动机构结构示意图;
图4为本发明的受力装置结构示意图;
图5为本发明的上端受力盘处的局部结构示意图;
图6为本发明的上端受力盘处的俯视图;
图7为本发明的第一加载装置结构示意图;
图8为本发明的第三加载装置结构示意图;
图9为本发明的受力轴与第三施力臂连接处的结构示意图;
图10为本发明的受力轴的俯视图。
具体实施方式
如图1所示,本发明提出一种六维力传感器标定装置,所述六维力传感器包括传感器弹性体,所述传感器弹性体的中心设置有受力孔,所述六维力传感器标定装置包括机架、转动机构、受力装置、第一加载装置、第二加载装置、第三加载装置和控制系统。本说明书的方 位以图1为基准,并且设定图1位置状态下的传感器弹性体右侧为x轴正向,后侧为y轴正向,上侧为z轴正向。
所述机架包括支撑平台1、支撑腿2和固定在支撑平台1上的门式支架3。
所述转动机构包括设置在支撑平台上方的旋转平台4,所述旋转平台4的旋转中心位于门式支架横梁中点的正下方,并且旋转平台4的旋转中心处设置有用于固定传感器弹性体的安装孔5。本说明书中描述的旋转平台4的顺时针旋转与逆时针旋转以俯视支撑平台1的视角为准。
所述受力装置包括穿过固定在受力孔内的受力轴6,并且受力轴6的中点位于受力孔中心处。
所述第一加载装置包括可产生左右向力的第一驱动机构A01、第一施力臂(A02)和用于测量第一驱动机构A01左右向力的第一力传感器A03;所述第一驱动机构A01固定在门式支架3左侧立柱且位于支撑平台2上方;所述第一施力臂A02的左端连接在第一驱动机构A01输出端,第一施力臂A02的右端与所述受力轴6上端连接,向受力轴6施加左右向力。
如图2,所述第二加载装置与第一加载装置沿受力轴的中点对称布置;第二加载装置包括可产生左右向力的第二驱动机构B01、第二施力臂B02和用于测量第二驱动机构B01左右向力的第二力传感器B03;所述第二驱动机构B01固定在门式支架3右侧立柱且位于支撑平台1下方;所述第二施力臂B02的右端连接在第二驱动机构B01输出端,第二施力臂B02左端与所述受力轴6下端连接,向受力轴6施加左右向力。
当旋转平台4旋转至某一位置,所述第一驱动机构A01和第二驱动机构B01同时向受力轴施加同向力,受力轴对六维力传感器的受力孔施加x轴向的力,并且通过第一力传感器A03和第二力传感器B03进行检测计算,用于标定六维力传感器x轴向的力;所述第一驱动机构A01和第二驱动机构B01同时向受力轴施加反向力,受力轴对六维力传感器的受力孔施加以y轴为轴心线的正反旋转力矩,并且通过第一力传感器A03和第二力传感器B03进行检测计算,用于标定六维力传感器以y轴为轴心线的正反旋转力矩。
当旋转平台4从该位置旋转90°,则原位置处受力轴与六维力传感器的受力孔沿y轴的接触面旋转至x轴方向。所述第一驱动机构A01和第二驱动机构B01同时向受力轴施加同向力,受力轴对六维力传感器的受力孔施加y轴向的力,并且通过第一力传感器A03和第二力传感器B03进行检测计算,用于标定六维力传感器y轴向的力;所述第一驱动机构A01和第二驱动机构B01同时向受力轴施加反向力,受力轴对六维力传感器的受力孔施加以x轴为轴心线的正反旋转力矩,并且通过第一力传感器A03和第二力传感器B03进行检测计算,用于标定六维力传感器以x轴为轴心线的正反旋转力矩。
所述第三加载装置包括可产生上下向力的第三驱动机构C01、可产生前后向力的第四驱动机构C02、可产生前后向力的第五驱动机构C03和第三施力臂C04;所述第三驱动机构C01、第四驱动机构C02和第五驱动机构C03均固定在门式支架3横梁上;所述第三施力臂C04的上端面与第三驱动机构C01的输出端相连;第三施力臂C04的上端还设置有一个平行于门式支架3横梁的横臂C05;所述横臂C05的前端面的右侧与所述第四驱动机构C02输出端相连,所述横臂C05后端面的左侧与第五驱动机构C03输出端相连;所述第三施力臂C04的下端与所述受力轴6上端连接,向受力轴6施加上下向力和沿受力轴6轴心线的旋转力;所述第三加载装置还包括用于测量所述第三施力臂C04向受力轴6施加的上下向力的第三力传感器C06和用于测量所述第三施力臂C04向受力轴6施加的沿受力轴6轴心线的旋转力的扭矩传感器C07。
第三驱动机构对受力轴6施加的上下向力,并且通过第三力传感器C06进行检测,用于标定六维力传感器z向的力。
第四驱动机构C02和第五驱动机构C03对横臂C05同时施加推力,第三施力臂C04向受 力轴6施加沿受力轴6轴心线的逆时针旋转力矩;第四驱动机构C02和第五驱动机构C03对横臂C05同时施加拉力,第三施力臂C04向受力轴6施加沿受力轴6轴心线的顺时针旋转力矩。通过扭矩传感器C07检测逆时针旋转力矩和顺时针旋转力矩,用于标定六维力传感器以z为轴心线的正负旋转力矩。
所述控制系统根据接收到的第一力传感器A03、第二力传感器B03、第三力传感器C03的信号,发出控制信号控制第一驱动机构A01、第二驱动机构B01和第三驱动机构C01的输出力;控制系统根据接收到的扭矩传感器C07的信号,发出控制信号控制第四驱动机构C02和第五驱动机构C03的输出力。
如图4,所述受力轴6的上端和下端分别固定有上端受力盘7和下端受力盘8,所述上端受力盘7和下端受力盘8分别设置有沿受力轴6中点对称布置的旋转通槽;如图6,所述旋转通槽包括一个圆弧通槽9以及分别设置在圆弧通槽9圆弧两端的顺时针直线通槽10和逆时针直线通槽11;所述顺时针直线通槽10和逆时针直线通槽11垂直。
如图5,所述第一施力臂A02的右端设置有一个挂在上端受力盘7旋转通槽内并可沿上端受力盘7旋转通槽滑动的第一挂钩A04;所述第二施力臂B02的左端设置有一个挂在下端受力盘8旋转通槽内并可沿下端受力盘8旋转通槽滑动的第二挂钩B04。
当第一挂钩A04位于上端受力盘7的顺时针直线通槽10时,第二挂钩B04位于下端受力盘8的顺时针直线通槽10,且所述旋转平台4逆时针旋转90°后,第一挂钩A04位于上端受力盘7的逆时针直线通槽11处,第二挂钩B04位于下端受力盘8的逆时针直线通槽11。
如图9和图10,所述受力轴6的上端设置有定位桩,所述定位桩包括一个定位圆盘12以及连接在定位圆盘12外缘的顺时针旋转定位杆13和逆时针旋转定位杆14;所述第三施力臂C04的下端面与定位圆盘12的上端面相接,并且第三施力臂C04的下端还设置有L型定位钩C08;所述L型定位钩C08的下底边与所述定位圆盘12的下端面相接;所述L型定位钩C08的竖直边在顺时针旋转定位杆13和逆时针旋转定位杆14之间沿定位圆盘12外缘的最大相对转动角度为90°;当第一挂钩A04位于上端受力盘7的顺时针直线通槽10时,L型定位钩C08的竖直边与顺时针旋转定位杆13相接;当第一挂钩A04位于上端受力盘7的逆时针直线通槽11时,L型定位钩C08的竖直边与逆时针旋转定位杆14相接。
如图3,所述旋转平台4是一齿轮圆盘;所述转动机构还包括固定在支撑平台1上的旋转平台驱动电机15和固定在旋转平台驱动电机15输出轴上的旋转平台驱动齿轮16;所述旋转平台驱动齿轮16与旋转平台4的外齿啮合相连;所述控制系统发出控制信号控制旋转平台驱动电机15的开关和转向。
所述旋转平台4的上端设置有径向的顺时针转动挡板17和逆时针转动挡板18;所述支撑平台1上固定有设置在顺时针转动挡板17和逆时针转动挡板18的转动路径上的限位板19,并且所述限位板19在顺时针转动挡板17和逆时针转动挡板18之间的最大相对旋转角度为90°;当第一挂钩A04位于上端受力盘7的顺时针直线通槽10时,限位板19与顺时针转动挡板17相接;当第一挂钩A04位于上端受力盘7的逆时针直线通槽11时,限位板19与逆时针转动挡板18相接。
所述限位板16的端部设置有槽型光电开关20,所述顺时针转动挡板17和逆时针转动挡板18上均设置有分隔板21;当所述旋转平台4转动至顺时针转动挡板17与限位板19相接时,所述顺时针转动挡板17的分隔板21插入所述槽型光电开关20的信号收发槽内阻断信号收发槽的信号;当所述旋转平台4转动至逆时针转动挡板18与限位板19相接时,所述逆时针转动挡板18的分隔板21插入所述槽型光电开关20的信号收发槽内阻断信号收发槽的信号;所述控制系统接收信号收发槽的阻断信号后,向旋转平台驱动电机13发出转向信号。
所述转动机构设置90°的旋转限位,实现旋转平台4自动在一个90°区间内旋转。旋转平台4在旋转过程中,第一挂钩A04与上端受力盘7,第二挂钩B04与下端受力盘8,第三施 力臂C04与受力轴均可同步相对旋转90°,不需要任何拆装操作,实现自动化标定。
所述第一驱动机构A01、第二驱动机构B01、三驱动机构C01、第四驱动机构C02和第五驱动机构C03是直线丝杆步进电机。
如图7,所述第一施力臂A02还包括连接在第一挂钩A04左端的第一弹簧A05,第一弹簧A05左端连接第一驱动机构A01驱动轴;所述第一力传感器A03设置在第一驱动机构A01驱动轴和第一弹簧A05之间。
所述第二施力臂B02还包括连接在第二挂钩B04右端的第二弹簧,第二弹簧右端连接第二驱动机构B01驱动轴;所述第二力传感器B03设置在第二驱动机构B01驱动轴和第二弹簧之间。
如图8,所述第三施力臂C04的中部设置有一个连接第三施力臂C04上端部和下端部的第三弹簧C09,所述第三弹簧C09的上端与横臂C05相接;所述第三力传感器C06和扭矩传感器C07依次设置在第三弹簧C09和横臂C05之间。
本发明的加载装置均采用弹簧作为蓄力元件,避免了电机转动的不稳定性误差,并且实现了加载和卸载过程的同步标定。
所述门式支架3的两个立柱上均设置有上下方向的竖直滑槽22和沿竖直滑槽22滑动的竖直滑块23,所述竖直滑槽22和竖直滑块23之间还设置有定位螺栓;所述第一驱动机构A01设置在门式支架3左侧立柱的竖直滑块23上,所述第二驱动机构B01设置在门式支架3右侧立柱的竖直滑块23上。
所述门式支架3的横梁上设置有沿左右方向的水平滑槽24和沿水平滑槽24滑动的水平滑块25,所述水平滑槽25和水平滑块25之间还设置有定位螺栓;所述第三驱动机构C01、第四驱动机构C02和第五驱动机构C03设置在水平滑块25上。该结构用于调节第一加载装置、第二加载装置和第三加载装置的位置。
使用本实施例的六维力传感器标定装置进行六维力传感器标定的方法,包括以下步骤:
S1.控制系统操作旋转平台4顺时针旋转至限位板19与顺时针转动挡板17相接,同时所述第一挂钩A04位于上端受力盘7的顺时针直线通槽10,第二挂钩B04位于下端受力盘8的顺时针直线通槽10,L型定位钩C08的竖直边与顺时针旋转定位杆13相接;设定此位置为初始位置,设定初始位置状态下的传感器弹性体右侧为x轴正向,后侧为y轴正向,上侧为z轴正向;
S2.控制第一驱动机构A01转出,第二驱动机构B01转入,施加x轴正向力Fx+;控制系统通过接收第一力传感器A03的压力值和第二力传感器B03的压力值,反馈控制第一驱动机构A01和第二驱动机构B01输出多组力值,并保持第一驱动机构A01和第二驱动机构B01的输出力值相同;记录第一驱动机构A01和第二驱动机构B01的多组输出力值以及对应状态下六维传感器的测视数据;
S3.控制第一驱动机构A01转入,第二驱动机构B01转出,施加x轴负向力Fx-;控制系统通过接收第一力传感器A03的压力值和第二力传感器B03的压力值,反馈控制第一驱动机构A01和第二驱动机构B01输出多组力值,并保持第一驱动机构A01和第二驱动机构B01的输出力值相同;记录第一驱动机构A01和第二驱动机构B01的多组输出力值以及对应状态下六维传感器的测视数据;
S4.控制第一驱动机构A01转出,第二驱动机构B01转出,施加y轴正向力矩My+;控制系统通过接收第一力传感器A03的压力值和第二力传感器B03的压力值,反馈控制第一驱动机构A01和第二驱动机构B01输出多组力值,并保持第一驱动机构A01和第二驱动机构B01的输出力值相同;记录第一驱动机构A01和第二驱动机构B01的多组输出力值以及对应状态下六维传感器的测视数据;
S5.控制第一驱动机构A01转入,第二驱动机构B01转入,施加y轴负向力矩My-;控 制系统通过接收第一力传感器A03的压力值和第二力传感器B03的压力值,反馈控制第一驱动机构A01和第二驱动机构B01输出多组力值,并保持第一驱动机构A01和第二驱动机构B01的输出力值相同;记录第一驱动机构A01和第二驱动机构B01的多组输出力值以及对应状态下六维传感器的测视数据;
S6.控制第三驱动机构C01转入,施加z轴正向力Fz+;控制系统通过接收第三力传感器C06的压力值,反馈控制第三驱动机构C01输出多组力值;记录第三驱动机构C01的输出力值以及对应状态下六维传感器的测视数据;
S7.控制第三驱动机构C01转出,施加z轴负向力Fz-;控制系统通过接收第三力传感器C06的压力值,反馈控制第三驱动机构C01输出多组力值;记录第三驱动机构C01的输出力值以及对应状态下六维传感器的测视数据;
S8.控制第四驱动机构C02转出,第五驱动机构C03转出,施加z轴正向力矩Mz+;控制系统通过接收扭矩传感器C07的测量值,反馈控制第四驱动机构C02和第五驱动机构C03输出多组力值;记录第四驱动机构C02和第五驱动机构C03的多组输出力值以及对应状态下六维传感器的测视数据;
S9.控制系统操作旋转平台4逆时针旋转90°,至限位板19与逆时针转动挡板18相接,同时所述第一挂钩A04位于上端受力盘7的逆时针直线通槽11,第二挂钩B04位于下端受力盘8的逆时针直线通槽11,L型定位钩C08的竖直边与逆时针旋转定位杆14相接;
S10.控制第四驱动机构C02转入,第五驱动机构C03转入,施加z轴负向力矩Mz-;控制系统通过接收扭矩传感器C07的测量值,反馈控制第四驱动机构C02和第五驱动机构C03输出多组力值;记录第四驱动机构C02和第五驱动机构C03的多组输出力值以及对应状态下六维传感器的测视数据;
S11.控制第一驱动机构A01转出,第二驱动机构B01转入,施加y轴负向力Fy-;控制系统通过接收第一力传感器A03的压力值和第二力传感器B03的压力值,反馈控制第一驱动机构A01和第二驱动机构B01输出多组力值,并保持第一驱动机构A01和第二驱动机构B01的输出力值相同;记录第一驱动机构A01和第二驱动机构B01的多组输出力值以及对应状态下六维传感器的测视数据;
S12.控制第一驱动机构A01转入,第二驱动机构B01转出,施加y轴正向力Fy+;控制系统通过接收第一力传感器A03的压力值和第二力传感器B03的压力值,反馈控制第一驱动机构A01和第二驱动机构B01输出多组力值,并保持第一驱动机构A01和第二驱动机构B01的输出力值相同;记录第一驱动机构A01和第二驱动机构B01的多组输出力值以及对应状态下六维传感器的测视数据;
S13.控制第一驱动机构A01转出,第二驱动机构B01转出,施加x轴正向力矩Mx+;控制系统通过接收第一力传感器A03的压力值和第二力传感器B03的压力值,反馈控制第一驱动机构A01和第二驱动机构B01输出多组力值,并保持第一驱动机构A01和第二驱动机构B01的输出力值相同;记录第一驱动机构A01和第二驱动机构B01的多组输出力值以及对应状态下六维传感器的测视数据;
S14.控制第一驱动机构A01转入,第二驱动机构B01转入,施加x轴负向力矩Mx-;控制系统通过接收第一力传感器A03的压力值和第二力传感器B03的压力值,反馈控制第一驱动机构A01和第二驱动机构B01输出多组力值,并保持第一驱动机构A01和第二驱动机构B01的输出力值相同;记录第一驱动机构A01和第二驱动机构B01的多组输出力值以及对应状态下六维传感器的测视数据;
S15.将上述步骤采集的数据进行运算处理,标定六维力传感器精度。

Claims (10)

  1. 一种六维力传感器标定装置,所述六维力传感器包括传感器弹性体,所述传感器弹性体的中心设置有受力孔,其特征在于:包括机架、转动机构、受力装置、第一加载装置、第二加载装置、第三加载装置和控制系统;
    所述机架包括支撑平台(1)、支撑腿(2)和固定在支撑平台(1)上的门式支架(3);
    所述转动机构包括设置在支撑平台上方的旋转平台(4),所述旋转平台(4)的旋转中心位于门式支架横梁中点的正下方,并且旋转平台(4)的旋转中心处设置有用于固定传感器弹性体的安装孔(5);
    所述受力装置包括穿过固定在受力孔内的受力轴(6),并且受力轴(6)的中点位于受力孔中心处;
    所述第一加载装置包括可产生左右向力的第一驱动机构(A01)、第一施力臂(A02)和用于测量第一驱动机构(A01)左右向力的第一力传感器(A03);所述第一驱动机构(A01)固定在门式支架(3)左侧立柱且位于支撑平台(2)上方;所述第一施力臂(A02)的左端连接在第一驱动机构(A01)输出端,第一施力臂(A02)的右端与所述受力轴(6)上端连接,向受力轴(6)施加左右向力;
    所述第二加载装置与第一加载装置沿受力轴的中点对称布置;第二加载装置包括可产生左右向力的第二驱动机构(B01)、第二施力臂(B02)和用于测量第二驱动机构(B01)左右向力的第二力传感器(B03);所述第二驱动机构(B01)固定在门式支架(3)右侧立柱且位于支撑平台(1)下方;所述第二施力臂(B02)的右端连接在第二驱动机构(B01)输出端,第二施力臂(B02)左端与所述受力轴(6)下端连接,向受力轴(6)施加左右向力;
    所述第三加载装置包括可产生上下向力的第三驱动机构(C01)、可产生前后向力的第四驱动机构(C02)、可产生前后向力的第五驱动机构(C03)和第三施力臂(C04);所述第三驱动机构(C01)、第四驱动机构(C02)和第五驱动机构(C03)均固定在门式支架(3)横梁上;所述第三施力臂(C04)的上端面与第三驱动机构(C01)的输出端相连;第三施力臂(C04)的上端还设置有一个平行于门式支架(3)横梁的横臂(C05);所述横臂(C05)的前端面的右侧与所述第四驱动机构(C02)输出端相连,所述横臂(C05)后端面的左侧与第五驱动机构(C03)输出端相连;所述第三施力臂(C04)的下端与所述受力轴(6)上端连接,向受力轴(6)施加上下向力和沿受力轴(6)轴心线的旋转力;所述第三加载装置还包括用于测量所述第三施力臂(C04)向受力轴(6)施加的上下向力的第三力传感器(C06)和用于测量所述第三施力臂(C04)向受力轴(6)施加的沿受力轴(6)轴心线的旋转力的扭矩传感器(C07);
    所述控制系统根据接收到的第一力传感器(A03)、第二力传感器(B03)、第三力传感器(C03)的信号,发出控制信号控制第一驱动机构(A01)、第二驱动机构(B01)和第三驱动机构(C01)的输出力;控制系统根据接收到的扭矩传感器(C07)的信号,发出控制信号控制第四驱动机构(C02)和第五驱动机构(C03)的输出力。
  2. 根据权利要求1所述的六维力传感器标定装置,其特征在于:所述受力轴(6)的上端和下端分别固定有上端受力盘(7)和下端受力盘(8),所述上端受力盘(7)和下端受力盘(8)分别设置有沿受力轴(6)中点对称布置的旋转通槽;所述旋转通槽包括一个圆弧通槽(9)以及分别设置在圆弧通槽(9)圆弧两端的顺时针直线通槽(10)和逆时针直线通槽(11);所述顺时针直线通槽(10)和逆时针直线通槽(11)垂直;
    所述第一施力臂(A02)的右端设置有一个挂在上端受力盘(7)旋转通槽内并可沿上端受力盘(7)旋转通槽滑动的第一挂钩(A04);所述第二施力臂(B02)的左端设置有一个挂在下端受力盘(8)旋转通槽内并可沿下端受力盘(8)旋转通槽滑动的第二挂钩(B04);
    当第一挂钩(A04)位于上端受力盘(7)的顺时针直线通槽(10)时,第二挂钩(B04)位于下端受力盘(8)的顺时针直线通槽(10),且所述旋转平台(4)逆时针旋转90°后,第一挂钩(A04)位于上端受力盘(7)的逆时针直线通槽(11)处,第二挂钩(B04)位于下端受力盘(8)的逆时针直线通槽(11)。
  3. 根据权利要求2所述的六维力传感器标定装置,其特征在于:所述受力轴(6)的上端设置有定位桩,所述定位桩包括一个定位圆盘(12)以及连接在定位圆盘(12)外缘的顺时针旋转定位杆(13)和逆时针旋转定位杆(14);所述第三施力臂(C04)的下端面与定位圆盘(12)的上端面相接,并且第三施力臂(C04)的下端还设置有L型定位钩(C08);所述L型定位钩(C08)的下底边与所述定位圆盘(12)的下端面相接;所述L型定位钩(C08)的竖直边在顺时针旋转定位杆(13)和逆时针旋转定位杆(14)之间沿定位圆盘(12)外缘的最大相对转动角度为90°;当第一挂钩(A04)位于上端受力盘(7)的顺时针直线通槽(10)时,L型定位钩(C08)的竖直边与顺时针旋转定位杆(13)相接;当第一挂钩(A04)位于上端受力盘(7)的逆时针直线通槽(11)时,L型定位钩(C08)的竖直边与逆时针旋转定位杆(14)相接。
  4. 根据权利要求3所述的六维力传感器标定装置,其特征在于:所述旋转平台(4)是一齿轮圆盘;所述转动机构还包括固定在支撑平台(1)上的旋转平台驱动电机(15)和固定在旋转平台驱动电机(15)输出轴上的旋转平台驱动齿轮(16);所述旋转平台驱动齿轮(16)与旋转平台(4)的外齿啮合相连;所述控制系统发出控制信号控制旋转平台驱动电机(15)的开关和转向。
  5. 根据权利要求4所述的六维力传感器标定装置,其特征在于:所述旋转平台(4)的上端设置有径向的顺时针转动挡板(17)和逆时针转动挡板(18);所述支撑平台(1)上固定有设置在顺时针转动挡板(17)和逆时针转动挡板(18)的转动路径上的限位板(19),并且所述限位板(19)在顺时针转动挡板(17)和逆时针转动挡板(18)之间的最大相对旋转角度为90°;当第一挂钩(A04)位于上端受力盘(7)的顺时针直线通槽(10)时,限位板(19)与顺时针转动挡板(17)相接;当第一挂钩(A04)位于上端受力盘(7)的逆时针直线通槽(11)时,限位板(19)与逆时针转动挡板(18)相接。
  6. 根据权利要求5所述的六维力传感器标定装置,其特征在于:所述限位板(16)的端部设置有槽型光电开关(20),所述顺时针转动挡板(17)和逆时针转动挡板(18)上均设置有分隔板(21);当所述旋转平台(4)转动至顺时针转动挡板(17)与限位板(19)相接时,所述顺时针转动挡板(17)的分隔板(21)插入所述槽型光电开关(20)的信号收发槽内阻断信号收发槽的信号;当所述旋转平台(4)转动至逆时针转动挡板(18)与限位板(19)相接时,所述逆时针转动挡板(18)的分隔板(21)插入所述槽型光电开关(20)的信号收发槽内阻断信号收发槽的信号;所述控制系统接收信号收发槽的阻断信号后,向旋转平台驱动电机(13)发出转向信号。
  7. 根据权利要求2-6任意一项所述的六维力传感器标定装置,其特征在于:所述第一驱动机构(A01)、第二驱动机构(B01)、三驱动机构(C01)、第四驱动机构(C02)和第五驱动机构(C03)是直线丝杆步进电机;
    所述第一施力臂(A02)还包括连接在第一挂钩(A04)左端的第一弹簧(A05),第一弹簧(A05)左端连接第一驱动机构(A01)驱动轴;所述第一力传感器(A03)设置在第一驱动机构(A01)驱动轴和第一弹簧(A05)之间;
    所述第二施力臂(B02)还包括连接在第二挂钩(B04)右端的第二弹簧,第二弹簧右端连接第二驱动机构(B01)驱动轴;所述第二力传感器(B03)设置在第二驱动机构(B01)驱动轴和第二弹簧之间;
    所述第三施力臂(C04)的中部设置有一个连接第三施力臂(C04)上端部和下端部的第三弹簧(C09),所述第三弹簧(C09)的上端与横臂(C05)相接;所述第三力传感器(C06)和扭矩传感器(C07)依次设置在第三弹簧(C09)和横臂(C05)之间。
  8. 根据权利要求1所述的六维力传感器标定装置,其特征在于:所述门式支架(3)的两个立柱上均设置有上下方向的竖直滑槽(22)和沿竖直滑槽(22)滑动的竖直滑块(23),所述竖直滑槽(22)和竖直滑块(23)之间还设置有定位螺栓;所述第一驱动机构(A01)设置在门式支架(3)左侧立柱的竖直滑块(23)上,所述第二驱动机构(B01)设置在门式支架(3)右侧立柱的竖直滑块(23)上。
  9. 根据权利要求8所述的六维力传感器标定装置,其特征在于:所述门式支架(3)的横梁上设置有沿左右方向的水平滑槽(24)和沿水平滑槽(24)滑动的水平滑块(25),所述水平滑槽(25)和水平滑块(25)之间还设置有定位螺栓;所述第三驱动机构(C01)、第四驱动机构(C02)和第五驱动机构(C03)设置在水平滑块(25)上。
  10. 一种使用权利要求1-9任意一项所述的六维力传感器标定装置进行六维力传感器标定的方法,其特征在于:包括以下步骤
    S1.控制系统操作旋转平台(4)顺时针旋转至限位板(19)与顺时针转动挡板(17)相接,同时所述第一挂钩(A04)位于上端受力盘(7)的顺时针直线通槽(10),第二挂钩(B04)位于下端受力盘(8)的顺时针直线通槽(10),L型定位钩(C08)的竖直边与顺时针旋转定位杆(13)相接;设定此位置为初始位置,设定初始位置状态下的传感器弹性体右侧为x轴正向,后侧为y轴正向,上侧为z轴正向;
    S2.控制第一驱动机构(A01)转出,第二驱动机构(B01)转入,施加x轴正向力Fx+;控制系统通过接收第一力传感器(A03)的压力值和第二力传感器(B03)的压力值,反馈控制第一驱动机构(A01)和第二驱动机构(B01)输出多组力值,并保持第一驱动机构(A01)和第二驱动机构(B01)的输出力值相同;记录第一驱动机构(A01)和第二驱动机构(B01)的多组输出力值以及对应状态下六维传感器的测视数据;
    S3.控制第一驱动机构(A01)转入,第二驱动机构(B01)转出,施加x轴负向力Fx-;控制系统通过接收第一力传感器(A03)的压力值和第二力传感器(B03)的压力值,反馈控制第一驱动机构(A01)和第二驱动机构(B01)输出多组力值,并保持第一驱动机构(A01)和第二驱动机构(B01)的输出力值相同;记录第一驱动机构(A01)和第二驱动机构(B01)的多组输出力值以及对应状态下六维传感器的测视数据;
    S4.控制第一驱动机构(A01)转出,第二驱动机构(B01)转出,施加y轴正向力矩My+;控制系统通过接收第一力传感器(A03)的压力值和第二力传感器(B03)的压力值,反馈控制第一驱动机构(A01)和第二驱动机构(B01)输出多组力值,并保持第一驱动机构(A01)和第二驱动机构(B01)的输出力值相同;记录第一驱动机构(A01)和第二驱动机构(B01)的多组输出力值以及对应状态下六维传感器的测视数据;
    S5.控制第一驱动机构(A01)转入,第二驱动机构(B01)转入,施加y轴负向力矩My-;控制系统通过接收第一力传感器(A03)的压力值和第二力传感器(B03)的压力值,反馈控制第一驱动机构(A01)和第二驱动机构(B01)输出多组力值,并保持第一驱动机构(A01)和第二驱动 机构(B01)的输出力值相同;记录第一驱动机构(A01)和第二驱动机构(B01)的多组输出力值以及对应状态下六维传感器的测视数据;
    S6.控制第三驱动机构(C01)转入,施加z轴正向力Fz+;控制系统通过接收第三力传感器(C06)的压力值,反馈控制第三驱动机构(C01)输出多组力值;记录第三驱动机构(C01)的输出力值以及对应状态下六维传感器的测视数据;
    S7.控制第三驱动机构(C01)转出,施加z轴负向力Fz-;控制系统通过接收第三力传感器(C06)的压力值,反馈控制第三驱动机构(C01)输出多组力值;记录第三驱动机构(C01)的输出力值以及对应状态下六维传感器的测视数据;
    S8.控制第四驱动机构(C02)转出,第五驱动机构(C03)转出,施加z轴正向力矩Mz+;控制系统通过接收扭矩传感器(C07)的测量值,反馈控制第四驱动机构(C02)和第五驱动机构(C03)输出多组力值;记录第四驱动机构(C02)和第五驱动机构(C03)的多组输出力值以及对应状态下六维传感器的测视数据;
    S9.控制系统操作旋转平台(4)逆时针旋转90°,至限位板(19)与逆时针转动挡板(18)相接,同时所述第一挂钩(A04)位于上端受力盘(7)的逆时针直线通槽(11),第二挂钩(B04)位于下端受力盘(8)的逆时针直线通槽(11),L型定位钩(C08)的竖直边与逆时针旋转定位杆(14)相接;
    S10.控制第四驱动机构(C02)转入,第五驱动机构(C03)转入,施加z轴负向力矩Mz-;控制系统通过接收扭矩传感器(C07)的测量值,反馈控制第四驱动机构(C02)和第五驱动机构(C03)输出多组力值;记录第四驱动机构(C02)和第五驱动机构(C03)的多组输出力值以及对应状态下六维传感器的测视数据;
    S11.控制第一驱动机构(A01)转出,第二驱动机构(B01)转入,施加y轴负向力Fy-;控制系统通过接收第一力传感器(A03)的压力值和第二力传感器(B03)的压力值,反馈控制第一驱动机构(A01)和第二驱动机构(B01)输出多组力值,并保持第一驱动机构(A01)和第二驱动机构(B01)的输出力值相同;记录第一驱动机构(A01)和第二驱动机构(B01)的多组输出力值以及对应状态下六维传感器的测视数据;
    S12.控制第一驱动机构(A01)转入,第二驱动机构(B01)转出,施加y轴正向力Fy+;控制系统通过接收第一力传感器(A03)的压力值和第二力传感器(B03)的压力值,反馈控制第一驱动机构(A01)和第二驱动机构(B01)输出多组力值,并保持第一驱动机构(A01)和第二驱动机构(B01)的输出力值相同;记录第一驱动机构(A01)和第二驱动机构(B01)的多组输出力值以及对应状态下六维传感器的测视数据;
    S13.控制第一驱动机构(A01)转出,第二驱动机构(B01)转出,施加x轴正向力矩Mx+;控制系统通过接收第一力传感器(A03)的压力值和第二力传感器(B03)的压力值,反馈控制第一驱动机构(A01)和第二驱动机构(B01)输出多组力值,并保持第一驱动机构(A01)和第二驱动机构(B01)的输出力值相同;记录第一驱动机构(A01)和第二驱动机构(B01)的多组输出力值以及对应状态下六维传感器的测视数据;
    S14.控制第一驱动机构(A01)转入,第二驱动机构(B01)转入,施加x轴负向力矩Mx-;控制系统通过接收第一力传感器(A03)的压力值和第二力传感器(B03)的压力值,反馈控制第一驱动机构(A01)和第二驱动机构(B01)输出多组力值,并保持第一驱动机构(A01)和第二驱动机构(B01)的输出力值相同;记录第一驱动机构(A01)和第二驱动机构(B01)的多组输出力值以及对应状态下六维传感器的测视数据;
    S15.将上述步骤采集的数据进行运算处理,标定六维力传感器精度。
PCT/CN2019/079179 2019-01-10 2019-03-22 一种六维力传感器标定装置及其标定的方法 WO2020143116A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910022049.XA CN109580089B (zh) 2019-01-10 2019-01-10 一种六维力传感器标定装置及其标定的方法
CN201910022049.X 2019-01-10

Publications (1)

Publication Number Publication Date
WO2020143116A1 true WO2020143116A1 (zh) 2020-07-16

Family

ID=65916151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079179 WO2020143116A1 (zh) 2019-01-10 2019-03-22 一种六维力传感器标定装置及其标定的方法

Country Status (2)

Country Link
CN (1) CN109580089B (zh)
WO (1) WO2020143116A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340526A (zh) * 2021-07-19 2021-09-03 合肥工业大学 一种六维力传感器静、动态标定装置及其标定方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109870269B (zh) * 2019-04-08 2020-08-14 中航飞机起落架有限责任公司 一种三向测力平台校准方法
CN110261034A (zh) * 2019-07-11 2019-09-20 重庆鲁班机器人技术研究院有限公司 一种六维力传感器标定装置及其标定方法
CN110631765B (zh) * 2019-10-30 2023-10-24 南京神源生智能科技有限公司 一种六维力传感器标定装置及标定方法
CN111351615B (zh) * 2020-03-25 2021-07-20 东南大学 空间站机械臂六维力传感器高精度小型化在轨标定装置及标定方法
CN113358274B (zh) * 2021-06-10 2022-09-13 广西大学 一种双力源六维力传感器静态标定装置及标定方法
CN113567042B (zh) * 2021-07-26 2023-03-24 中国船舶重工集团公司第七0三研究所 一种轴向力测力环标定装置
CN117870955B (zh) * 2024-03-12 2024-05-07 中国科学院长春光学精密机械与物理研究所 基于音圈电机的六维力标定装置和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323175A (zh) * 2013-06-07 2013-09-25 济南大学 多功能力加载装置及六维力传感器标定方法
US20130319073A1 (en) * 2012-06-05 2013-12-05 Yonsei University Wonju Industry-Academic Cooperation Foundation Apparatus for measuring shearing force upon sitting
CN104280187A (zh) * 2014-11-03 2015-01-14 大连交通大学 一种六维力传感器标定装置
CN108731875A (zh) * 2018-06-11 2018-11-02 南京航空航天大学 一种六维力传感器标定装置及其标定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101571442B (zh) * 2008-05-01 2010-12-29 中国科学院合肥物质科学研究院 用于中等量程的六维力传感器标定装置的标定方法
CN103604561B (zh) * 2013-11-27 2015-04-08 东南大学 一种六维力/力矩传感器标定装置及标定方法
CN105181236B (zh) * 2015-05-08 2018-04-06 重庆市计量质量检测研究院 六维力传感器标定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130319073A1 (en) * 2012-06-05 2013-12-05 Yonsei University Wonju Industry-Academic Cooperation Foundation Apparatus for measuring shearing force upon sitting
CN103323175A (zh) * 2013-06-07 2013-09-25 济南大学 多功能力加载装置及六维力传感器标定方法
CN104280187A (zh) * 2014-11-03 2015-01-14 大连交通大学 一种六维力传感器标定装置
CN108731875A (zh) * 2018-06-11 2018-11-02 南京航空航天大学 一种六维力传感器标定装置及其标定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340526A (zh) * 2021-07-19 2021-09-03 合肥工业大学 一种六维力传感器静、动态标定装置及其标定方法
CN113340526B (zh) * 2021-07-19 2022-08-19 合肥工业大学 一种六维力传感器静、动态标定装置及其标定方法

Also Published As

Publication number Publication date
CN109580089A (zh) 2019-04-05
CN109580089B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2020143116A1 (zh) 一种六维力传感器标定装置及其标定的方法
CN109015110B (zh) 一种机床回转轴位置误差建模与辨识方法
US20080201005A1 (en) Machine tool having workpiece reference position setting function by contact detection
JPH0549042B2 (zh)
CN107152922A (zh) 一种在位测量圆环形平面形状误差的方法
CN210603720U (zh) 一种对比式六维力传感器标定装置
CN204535922U (zh) 一种质量特性测量辅助夹具
CN112629748A (zh) 一种参考式多维力传感器组合同步校准装置及方法
CN116183110B (zh) 一种质心调节机构用测量装置及测量方法
CN111947925B (zh) 一种高精度的滚动轴承摩擦力矩测试装置及方法
CN114088289B (zh) 一种加载可调的三维力传感器标定装置
CN109443765B (zh) 一种rv减速器倾覆刚性测试装置
CN117232820A (zh) 一种精密行星减速器最大回程误差检测方法及装置
US11988506B2 (en) Error identification method for machine tool, non-transitory computer-readable storage medium, and machine tool
CN107063160B (zh) 大型圆环面形状误差在位测量系统
CN216815843U (zh) 一种比对式多分量力传感器校准装置
CN105798809A (zh) 一种优化小型精密检测用二维翻转装置
CN214869913U (zh) 一种高精度旋转模组
CN211978563U (zh) 剪切力测试装置
CN110346084B (zh) 一种质心检测装置及方法
CN116223849B (zh) 一种石英挠性加速度传感器标度因数测试工装
CN103175461A (zh) 螺母收口槽深度尺寸的检测装置
JPH0740163A (ja) テーブル移送装置及びその制御方法
CN219319462U (zh) 支撑装置和视觉测量设备
CN109262367B (zh) 一种对齿机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908111

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19908111

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.02.2022)