WO2020143097A1 - 一种发动机燃气射流尾焰的处理系统 - Google Patents

一种发动机燃气射流尾焰的处理系统 Download PDF

Info

Publication number
WO2020143097A1
WO2020143097A1 PCT/CN2019/075402 CN2019075402W WO2020143097A1 WO 2020143097 A1 WO2020143097 A1 WO 2020143097A1 CN 2019075402 W CN2019075402 W CN 2019075402W WO 2020143097 A1 WO2020143097 A1 WO 2020143097A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
gas jet
introduction
tail flame
processing
Prior art date
Application number
PCT/CN2019/075402
Other languages
English (en)
French (fr)
Inventor
王世琥
张平
吴德乾
霍东兴
南宝江
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2020143097A1 publication Critical patent/WO2020143097A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/08Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
    • F02K9/32Constructional parts; Details not otherwise provided for
    • F02K9/40Cooling arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/96Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof characterised by specially adapted arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/97Rocket nozzles

Definitions

  • the invention relates to the technical field of engines, in particular to a processing system of an engine gas jet tail flame.
  • the ultra-high temperature generally 3000°C, the highest temperature can reach 3500°C
  • ultra-high speed 2 ⁇ 3 Mach, the general speed is 1500m/ s ⁇ 5000m/s
  • ultra-high energy MJ/kg level, generally 6 ⁇ 7MJ/kg
  • solid rocket engines in addition to the aforementioned characteristics of their gas jet tails, also contain aluminum oxide (Al 2 O 3 ) dust and hydrogen chloride (HCl) harmful gases, which also cause serious damage to the surrounding ecological environment of the test and launch site. damage.
  • Al 2 O 3 aluminum oxide
  • HCl hydrogen chloride
  • the water jet cooling method is often used to cool the gas jet tail flame.
  • the general low-pressure jet water injection It is difficult to contact with it and perform effective heat exchange with it. If there is, there is only a small amount of water, which produces some heat exchange in the form of heat radiation. The actual use results show that the efficiency of water injection to reduce the temperature and noise of the gas jet tail flame is extremely low.
  • the water injection cooling of the gas jet tail flame requires a large amount of water, forming a large amount of gas and steam mixture.
  • the test engine is burned due to the congestion of the channel and the test engine is burned, causing damage to the equipment at the test site and the surrounding ecological environment.
  • the existing engine gas jet tail flame treatment system is not only complicated in system, large in energy consumption, high in use and maintenance cost, but also difficult to deal with harmful components in the gas jet tail flame.
  • embodiments of the present invention are proposed in order to provide an engine gas jet tail flame processing system that overcomes the above problems or at least partially solves the above problems.
  • an embodiment of the present invention discloses an engine gas jet tail flame processing system for processing gas jet tail flame injected by an engine, the engine includes a nozzle for gas expansion and speed increase, and the engine gas jet Tail flame treatment system includes: cooling device and supporting device;
  • the cooling device includes at least one introduction module and at least one processing module;
  • the materials of the import module and the processing module are both ice;
  • An introduction channel is provided in the introduction module
  • the processing module is provided with a processing channel
  • the introduction channel is opposite to the nozzle
  • the support device is connected to the cooling device and is used to support the cooling device.
  • the introduction module and the processing module contain alkaline substances.
  • an introduction channel is provided in the introduction module, and the introduction channel includes a first air inlet and a first air outlet, and the first air inlet is opposite to the nozzle;
  • the processing module is provided with a single or multiple processing channels, each processing channel includes a second air inlet and a second air outlet, and each second air inlet is opposite to the first air outlet.
  • a shunt structure is provided on the end face of the processing module;
  • the diversion structure includes a plurality of diversion barriers and an ice cone
  • the shunt partition is arranged between adjacent processing channels in the circumferential direction;
  • the ice cone is an ice core formed by the processing channel around the central area of the processing module axis.
  • the plurality of processing channels are evenly distributed around the processing module axis.
  • the inner diameter of the introduction channel on the introduction module is larger than the inner diameter of the nozzle.
  • the at least one introduction module is connected in series;
  • the at least one processing module is connected in series.
  • the cooling device further includes: at least one inter-stage module; wherein
  • the inter-stage module is disposed between the adjacent import module/processing module and the import module/processing module.
  • the support device includes: an introduction module housing and a processing module housing; wherein
  • the introduction module housing is wrapped around the introduction module
  • the processing module housing is wrapped around the processing module
  • the materials of the introduction module housing and the processing module housing are metal heat insulation materials.
  • the engine gas jet tail flame treatment system further includes: a thermocouple and a pressure sensor; wherein
  • thermocouple is arranged at the second air outlet of the processing channel
  • the pressure sensor is disposed between adjacent processing modules.
  • the gas jet tail flame can enter the introduction channel. Since the material of the introduction module is ice, after the gas jet tail flame enters the introduction channel, not only can it directly contact with water (ice), but the ice cone formed in the middle of the processing module can be directly inserted into the gas jet.
  • the cooling capacity released by evaporation drops rapidly, which is the fundamental reason why the cooling device has a high cooling efficiency for the gas jet tail flame.
  • the cooling device has a significant deceleration and noise reduction effect on the gas jet tail flame.
  • the molten aluminum oxide (Al 2 O 3 ) in the gas jet tail flame rapidly cools into solid particles, and follows the The flow is smoothly discharged from the processing channel or the processing module; the processing module contains an alkaline substance, which can neutralize and react with the harmful gas of hydrogen chloride (HCl) contained in the tail gas of the gas jet in the processing channel.
  • HCl hydrogen chloride
  • the ice introduction module and the processing module in the cooling device provide the required water for cooling, speed reduction, noise reduction and harmlessness of the gas jet tail flame, to meet its energy in the processing module exchange.
  • energy exchange is performed in full compliance with the principle of energy conservation, which is an adaptive process that does not require new energy from the outside. The products after the energy exchange will be smoothly discharged from the processing module. Therefore, when processing the gas jet tail flame, the volume of the cooling device is small, which can not only reduce the water consumption of the cooling device, but also simplify the processing process of the cooling device, greatly reducing the The cost of the cooling device.
  • FIG. 1 is a schematic diagram of the forward structure of an engine gas jet tail flame treatment system of the present invention
  • FIG. 2 is a schematic diagram of the leftward structure of the engine gas jet tail flame treatment system shown in FIG. 1;
  • FIG. 3 is a schematic diagram of the rightward structure of the engine gas jet tail flame treatment system shown in FIG. 1;
  • FIG. 4 is a schematic diagram of the forward structure of an import module of the present invention.
  • FIG. 5 is a schematic diagram of the lateral structure of the introduction module shown in FIG. 4;
  • FIG. 6 is a schematic diagram of the forward structure of a processing module of the present invention.
  • FIG. 7 is a schematic diagram of the lateral structure of the processing module shown in FIG. 6;
  • FIG. 8 is a schematic structural view of a series connection of multiple lead-in modules of the present invention.
  • FIG 9 is an installation schematic diagram of an engine gas jet tail flame treatment system according to an embodiment of the present invention.
  • An embodiment of the present invention provides an engine gas jet tail flame processing system for processing gas jet tail flame injected by an engine
  • the engine may include a nozzle for gas expansion and speed increase, and the engine gas jet tail flame processing system It may include: a cooling device and a supporting device; wherein the cooling device includes at least one introduction module and at least one processing module; the materials of the introduction module and the processing module are both ice; the introduction module is provided with an introduction channel; The processing module is provided with a processing channel; the introduction channel is opposite to the nozzle; and the supporting device is connected to the cooling device for supporting the cooling device.
  • the engine may be a solid rocket engine, a liquid rocket engine, an aero engine, various types of missiles, and other types of engines.
  • the embodiment of the present invention only uses solid rocket engines as an example for description, and other types of engines are implemented by reference. can.
  • the ice for making the introduction module and the processing module in the cooling device may include, but is not limited to, any one of ice bricks, ice cubes, ice slag, and ice and snow.
  • the specific types of ice of the introduction module and the processing module in the cooling device may not be limited.
  • the structural type of the supporting device may be a structure such as a housing, a channel, a tunnel, a diversion channel, a trench, and the like.
  • the supporting device is a shell, channel, tunnel, diversion channel, trench, etc.
  • ice bricks, ice cubes, etc. are stacked in the shell, channel, tunnel, diversion channel, trench, etc. Ice slag or ice and snow can be. That is to say, the engine gas jet tail flame treatment system described in the embodiments of the present invention can be made from local materials, and the processing methods are more abundant, and the processing cost is lower.
  • the materials of the introduction module and the processing module are solid ice, after the gas jet tail flame enters the introduction channel, not only can it directly contact with water (ice), but also in the middle of the processing module
  • the formed ice cone can be inserted directly into the high temperature area of the center of the gas jet tail flame, and at the same time, the ice cone blocks and forces the gas jet tail flame to overflow into the treatment channel and scour the inner and outer surfaces of the treatment channel, causing The gas jet tail flame is in full contact with water (ice) from the inside to the outside.
  • the cooling device also has a significant deceleration and noise reduction effect on the gas jet tail flame.
  • the cooling device can directly contact the gas jet tail flame, so that not only can the cooling device have a higher cooling efficiency for the gas jet tail flame, but also the cooling device can be used for the gas jet. The deceleration and noise reduction effect of the tail flame is more obvious.
  • the cooling device is in direct contact with the gas jet tail flame, the molten aluminum oxide (Al 2 O 3 ) in the gas jet tail flame rapidly cools into solid particles and is smoothly discharged from the fluid
  • the processing channel or the processing module; the processing module contains an alkaline substance, which can neutralize and react with the harmful gas of hydrogen chloride (HCl) contained in the tail gas of the gas jet in the processing channel to realize the gas jet Harmless treatment of tail flames.
  • HCl hydrogen chloride
  • the cooling device since the cooling device has a high cooling efficiency for the gas jet tail flame, the volume of the cooling device can be smaller when the gas jet tail flame is processed, which not only reduces the cooling
  • the water consumption of the device can also simplify the processing technology of the cooling device and greatly reduce the cost of the cooling device.
  • the introduction module and the processing module may contain alkaline substances.
  • the alkaline substance may be a substance such as NaOH or NaHCO 3, and the specific type of the alkaline substance may not be limited in the embodiments of the present invention.
  • the alkaline substance may be (Al 2 O 3), hydrogen chloride (HCl) react with the gas and solid particles in the jet plume, to improve the gas jet plume solid particles (Al 2 O 3), hydrogen chloride (HCl) of Treatment efficiency, to avoid pollution of the environment by solid particles (Al 2 O 3 ) and hydrogen chloride (HCl).
  • FIG. 1 a schematic diagram of the forward structure of an engine gas jet tail flame treatment system of the present invention is shown, and with reference to FIG. 2, a schematic diagram of the left structure of the engine gas jet tail flame treatment system shown in FIG. 1, Referring to FIG. 3, a schematic diagram of the rightward structure of the engine gas jet tail flame treatment system shown in FIG. 1 is shown.
  • the cooling device may include: at least one introduction module 10 and at least one processing module 11; wherein, the introduction module 10 is provided with an introduction channel 101, and the introduction channel 101 may include the first intake air And the first air outlet, the first air inlet is opposite to the nozzle; the processing module 11 is provided with a plurality of split channels 111, each split channel 111 includes a second air inlet and a second air outlet, Each second air inlet is opposite to the first air outlet.
  • the end face of the processing module 11 is provided with a shunt structure, wherein the shunt structure includes a plurality of shunt bars 112 and an ice cone 113.
  • the shunt bars 112 are disposed between adjacent processing channels 111 in the circumferential direction.
  • the ice cone 113 is The processing channel 111 surrounds 11 ice cores formed in the central area of the processing module axis.
  • the supporting device may include: an introduction module casing 12 and a processing module casing 13; wherein, the introduction module casing 12 is wrapped around the introduction module 10; the processing module casing 13 is wrapped around the treatment module 11; the introduction module casing
  • the materials of the body 12 and the processing module housing 13 are metal thermal insulation materials.
  • FIG. 4 a schematic diagram of the forward structure of an induction module of the present invention is shown.
  • FIG. 5 a schematic diagram of the lateral structure of the induction module shown in FIG. 4 is shown.
  • an introduction channel 101 is provided in the introduction module 10.
  • the first air inlet of the introduction channel 101 may be opposed to the nozzle of the engine, so that the gas jet tail flame injected from the nozzle can directly enter the introduction channel.
  • the inner diameter of the introduction channel 101 may be larger than the inner diameter of the nozzle of the engine, so that the gas jet tail flame ejected from the above-mentioned nozzle can easily enter the introduction channel 101 of the introduction module 10 sufficiently .
  • FIG. 6 a schematic diagram of a forward structure of a processing module of the present invention is shown.
  • FIG. 7 a schematic diagram of a large lateral structure of the processing module shown in FIG. 6 is shown.
  • the processing module 11 is provided with a plurality of processing channels 111, and each processing channel 111 may include a second air inlet and a second air outlet, and each second air inlet Opposite the first air outlet.
  • the processing module 11 includes a plurality of processing channels 111, in this way, the contact area between the inner surface of the processing channel 111 and the gas jet tail flame can be increased, and the processing module 11 can improve the gas jet tail flame The cooling efficiency and speed reduction noise reduction effect.
  • the multiple processing channels 111 on the processing module 11 may be uniform on the axis of the processing module 11 distributed.
  • FIGS. 6 and 7 only show an example in which the processing module 11 includes three processing channels 111.
  • the number of processing channels 111 on the processing module 11 may also be other values, for example, 4, 5, or 6, etc.
  • the number of processing channels 111 on the processing module 11, in this embodiment of the present invention There is no limit.
  • a shunt structure may be provided on the end surface of the processing module 11; Between 111, the ice cone 113 is an ice core formed by the processing channel 111 around the central area of the 11 processing module axis.
  • the splitting structure may be used to forcibly split the gas jet tail flame flowing out of the introduction module 10, and split the gas jet tail flame flowing out of the introduction module 10 into each treatment channel 111, And the shunt efficiency is higher.
  • the splitter partition 112 and the ice cone 113 in the splitter structure may be made of ice, so that in the process of splitting the gas jet tail flame by the splitter structure, the The shunt structure can directly contact the center of the gas jet tail flame and exchange heat with the center of the gas jet tail flame, which can greatly increase the cooling speed of the gas jet tail flame.
  • the split structure made of ice can directly contact the gas jet tail
  • the solid particles (Al 2 O 3 ) in the center of the flame contact and shunt the gas jet tail flame into each treatment channel 111, so that the gas jet tail flame fully contacts the inner wall of the treatment channel 111, so that The solid particles (Al 2 O 3 ) carried in the gas jet tail flame are rapidly cooled, condensed, decelerated, and settled, and are discharged at the gas outlet of the processing module 11.
  • the number of the introduction module 10 and the processing module 11 in the engine gas jet tail flame processing system can be set according to actual conditions, and FIG. 1 only shows the engine gas jet tail flame processing system. This includes the case of one import module 10 and two processing modules 11. In practical applications, the number of the introduction module 10 and the processing module 11 in the engine gas jet tail flame processing system may also be other values.
  • the embodiment of the present invention relates to the introduction module in the engine gas jet tail flame processing system 10.
  • the specific number of processing modules 11 is not limited.
  • the multiple introduction modules 10 may be connected in series; similarly, the multiple The processing modules 11 may also be connected in series.
  • the cooling device is divided into at least one introduction module 10 and at least one processing module 11, and the introduction module housing 12 is wrapped around the introduction module 10, and the processing module housing 13 is wrapped around the processing module 11 It can facilitate the modular design of the engine gas jet tail flame treatment system and reduce the processing difficulty and installation difficulty of the engine gas jet tail flame treatment system.
  • the cooling device For example, when processing the gas jet tail flame of a certain type of engine, when the number of introduction modules 10 of the cooling device is 2 and the number of processing modules 11 is 4, the cooling device For the best processing effect, connect two introduction modules 10 in series and four treatment modules 11 in series, and then connect the introduction module 10 and the treatment module 11 in series.
  • the inner diameters of the introduction channels 101 in the plurality of introduction modules 10 may be the same, or Is different.
  • FIG. 8 a schematic structural view of a series connection of a plurality of lead-in modules of the present invention is shown.
  • the inner diameters of the introduction channels 101 in the plurality of introduction modules 10 may be different.
  • the structure of the introduction module 10 may be simpler, and the processing accuracy may be lower, so that the processing difficulty of the introduction module 10 may be reduced.
  • the cost of introducing the module 10 is reduced.
  • the inner diameters of the introduction channels 101 in the plurality of introduction modules 10 may also be the same, and the inner diameters of the introduction channels 101 in the plurality of introduction modules 10 are the same In this case, it is possible to make the introduction module 10 better in guiding the gas jet tail flame.
  • the adjacent introduction module casing 12/processing module casing 13 and the processing module casing 13/processing module casing 12 may be connected by fasteners, or by using snap-fit slots Connection to realize the connection between the adjacent import module 10/processing module 11 and the processing module 11/processing module 10.
  • the introduction module housing 12 can be used to reduce the heat exchange between the introduction module 10 and the outside world, and reduce the melting speed of the introduction module 10.
  • the processing module housing 13 can be used to reduce the heat exchange between the processing module 11 and the outside world, and reduce the melting speed of the processing module 11.
  • the metal heat insulation material may include, but is not limited to, any one of organic heat insulation material, inorganic heat insulation material, and metal heat insulation material.
  • the embodiment of the present invention is specific to the metal heat insulation material. The type can be unlimited.
  • the cooling device may further include: at least one inter-stage module 14; wherein, the inter-stage module 14 is disposed between the adjacent introduction module 10/processing module 11 and the introduction module 10/processing module 11.
  • the inter-stage module 14 can be used to adjust the intake and exhaust of the cooling channel in the cooling device and the outside world, to adjust the flow rate of the gas jet tail flame in the cooling device, and to increase the cooling device for the gas jet Treatment efficiency of tail flame.
  • the inter-stage module 14 may be a grille with a switching device or other types of air intake and exhaust devices.
  • the specific type of the inter-stage module 14 may not be limited in the embodiment of the present invention.
  • the engine gas jet tail flame treatment system may further include: a thermocouple and a pressure sensor; wherein, the thermocouple is disposed at the second air outlet of the treatment channel 111, and the thermocouple may be used for The temperature of the gas discharged from the processing channel 111 is detected; the pressure sensor is disposed between adjacent processing modules 11 and is used to detect the pressure in the processing module 11.
  • the temperature of the gas discharged from the processing channel 111 measured by the thermocouple and the pressure in the processing module 11 measured by the pressure sensor can be used to control the interstage module 14 to adjust the intake and exhaust to adjust The flow rate of the gas jet tail flame in the cooling device improves the processing efficiency of the cooling device for the gas jet tail flame.
  • FIG. 9 shows an installation schematic diagram of an engine gas jet tail flame treatment system according to an embodiment of the present invention.
  • the introduction module housing 12 and the processing module housing 13 in the engine gas jet tail flame system processing system can be respectively installed on the processing device workbench 16 through the fixing bracket 15.
  • the engine 90 may be fixed on the engine hot test bench 92 through an engine fixing bracket 91.
  • One end of the engine 90 is connected to the thrust pier 93, and the other end is provided with a nozzle 94.
  • the introduction channel on the introduction module in the introduction module housing 12 is opposite to the nozzle 94, so that the gas jet tail flame ejected from the nozzle 94 can enter the introduction channel of the introduction module. In this way, not only the cooling efficiency of the cooling device for the gas jet tail flame can be made higher, but also the deceleration and noise reduction effect of the cooling device for the gas jet tail flame can be made more obvious.
  • the engine gas jet tail flame treatment system described in the embodiments of the present invention includes at least the following advantages:
  • the gas jet tail flame when the engine is ignited and the nozzle jets the gas jet tail flame, since the introduction channel of the introduction module in the cooling device is opposed to the nozzle, the gas jet tail flame can directly enter the Describe in the introduction channel. Since the materials of the introduction module and the processing module are solid ice, after the gas jet tail flame enters the introduction channel, not only can it directly contact with water (ice), but also in the middle of the processing module The formed ice cone can be inserted directly into the high temperature area of the center of the gas jet tail flame, and at the same time, the ice cone blocks and forces the gas jet tail flame to overflow into the treatment channel and scour the inner and outer surfaces of the treatment channel, causing the gas The jet tail flame is in full contact with water (ice) from the inside to the outside.
  • the cooling device also has a significant deceleration and noise reduction effect on the gas jet tail flame.
  • the cooling device can directly contact the gas jet tail flame, so that not only can the cooling device have a higher cooling efficiency for the gas jet tail flame, but also the cooling device can be used for the gas jet The deceleration and noise reduction effect of the tail flame is more obvious.
  • the cooling device is in direct contact with the gas jet tail flame, the molten aluminum oxide (Al 2 O 3 ) in the gas jet tail flame rapidly cools into solid particles and is smoothly discharged from the fluid
  • the processing channel or the processing module; the processing module contains an alkaline substance, which can neutralize and react with the harmful gas of hydrogen chloride (HCl) contained in the tail gas of the gas jet in the processing channel to realize the gas jet Harmless treatment of tail flames.
  • HCl hydrogen chloride
  • the cooling device since the cooling device has a high cooling efficiency for the gas jet tail flame, the volume of the cooling device can be smaller when the gas jet tail flame is processed, which not only reduces the cooling
  • the water consumption of the device can also simplify the processing technology of the cooling device and greatly reduce the cost of the cooling device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

一种发动机燃气射流尾焰处理系统,用于处理发动机喷射的燃气射流尾焰。该发动机包括用于燃气膨胀提速的喷管。该发动机燃气射流尾焰处理系统包括:冷却装置以及支撑装置;其中,冷却装置包括至少一个导入模块(10)和至少一个处理模块(11);导入模块(10)和处理模块(11)的材质均为冰;导入模块(10)内设有导入通道(101);处理模块(11)内设有处理通道(111);该导入通道(101)与喷管(94)相对;该支撑装置与该冷却装置连接,用于支撑该冷却装置。该处理系统对于燃气射流尾焰的降温冷却效率高,还使得燃气射流尾焰的减速降噪以及无害化处理效果显著。

Description

一种发动机燃气射流尾焰的处理系统
本申请要求在2019年01月07日提交中国专利局、申请号为201910013136.9、发明名称为“一种发动机燃气射流尾焰的处理系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及发动机技术领域,特别是涉及一种发动机燃气射流尾焰的处理系统。
背景技术
随着太空探索活动的深入开展,越来越多的火箭发动机投入使用。然而,人们在通过火箭发动机获得航天活动中所需要的巨大推进力之外,同时也忍受着其尾焰给生态环境带来的污染与破坏。例如,在进行火箭发动机的地面热性能测试或者发射过程中,火箭发动机点火产生的超高温(一般为3000℃,最高温度可达3500℃)、超高速(2~3马赫,一般速度为1500m/s~5000m/s)、超高能(MJ/kg级,一般为6~7MJ/kg)燃气射流尾焰,同时超高速也带来巨大的噪声。尤其是固体火箭发动机,除了其燃气射流尾具有前述特点之外,还含有三氧化二铝(Al 2O 3)粉尘和氯化氢(HCl)有害气体,对试验、发射场地的周边生态环境亦造成严重破坏。
现有的技术中,在进行火箭发动机点火试验时,为了保护相关实验设备和发射装备,常常采用喷注水冷却的方式对燃气射流尾焰进行降温处理。然而,由于燃气射流尾焰具有超高温、超高速、超高能的特点,在对燃气射流尾焰进行注水冷却的过程中,由于燃气射流尾焰本身所具有的超高能量,一般的低压喷注水是很难与其接触并与其进行有效热交换的。如果说有,也只是很少一部分水,通过热辐射的形式产生一些热交换。实际使用结果表明,对燃气射流尾焰进行注水降温降噪的效率是极低的。对燃气射流尾焰进行注水冷却需要的水量极大,形成大量的燃气和蒸汽的混合物,严重时,因通道拥塞反火,烧毁试车发动机,对试验、发射场地的设备和周边生态环境造成 破坏。除此之外,现有发动机燃气射流尾焰处理系统不仅系统复杂、能耗较大,使用和维护成本高,而且很难对燃气射流尾焰中的有害成分进行处理。
发明内容
鉴于上述问题,提出了本发明实施例以便提供一种克服上述问题或者至少部分地解决上述问题的一种发动机燃气射流尾焰的处理系统。
为了解决上述问题,本发明实施例公开了一种发动机燃气射流尾焰处理系统,用于处理发动机喷射的燃气射流尾焰,所述发动机包括用于燃气膨胀提速的喷管,所述发动机燃气射流尾焰处理系统包括:冷却装置以及支撑装置;其中
所述冷却装置包括至少一个导入模块和至少一个处理模块;
所述导入模块和处理模块的材质均为冰;
所述导入模块内设有导入通道;
所述处理模块内设有处理通道;
所述导入通道与所述喷管相对;
所述支撑装置与所述冷却装置连接,用于支撑所述冷却装置。
可选地,所述导入模块和处理模块内包含碱性物质。
可选地,所述导入模块内设有一个导入通道,所述导入通道包括第一进气口和第一出气口,所述第一进气口和所述喷管相对;
所述处理模块内设有单个或者多个处理通道,每个处理通道包括第二进气口和第二出气口,每个第二进气口与所述第一出气口相对。
可选地,所述处理模块端面上设有分流结构;其中
所述分流结构包括多个分流隔栏和一个冰锥;
所述分流隔栏设置于圆周方向上相邻的处理通道之间;
所述冰锥为处理通道围绕处理模块轴线中心区域形成的冰芯。
可选地,所述多个处理通道围绕所述处理模块轴线均匀分布。
可选地,所述导入模块上的导入通道的内径大于所述喷管的内径。
可选地,所述至少一个导入模块串联连接;
所述至少一个处理模块串联连接。
可选地,所述冷却装置还包括:至少一个级间模块;其中
所述级间模块设置于相邻的导入模块/处理模块与导入模块/处理模块之间。
可选地,所述支撑装置包括:导入模块壳体以及处理模块壳体;其中
所述导入模块壳体包覆在所述导入模块外;
所述处理模块壳体包覆在所述处理模块外;
所述导入模块壳体和所述处理模块壳体的材料为金属保温材料。
可选地,所述发动机燃气射流尾焰处理系统还包括:热电偶以及压力传感器;其中
所述热电偶设置于所述处理通道的第二出气口处;
所述压力传感器设置于相邻的所述处理模块之间。
本发明实施例包括以下优点:
首先,在所述发动机喷管内喷射燃气射流尾焰时,由于所述导入模块上的导入通道与所述喷管相对,所述燃气射流尾焰可以进入所述导入通道内。由于所述导入模块的材质为冰,因此,所述燃气射流尾焰进入所述导入通道后,不仅能够直接与水(冰)接触,而且所述处理模块中间形成的所述冰锥直插燃气射流尾焰中心的高温区,同时所述冰锥阻挡并迫使燃气射流尾焰向所述处理通道分流、冲刷,造成所述燃气射流尾焰由内至外与水充分的接触,吸收水的分解、升华、蒸发释放的冷量迅速降温,这就是所述冷却装置对于所述燃气射流尾焰的冷却效率高的根本原因。所述冷却装置对于所述燃气射流尾焰具有显著的减速降噪效果。
由于在所述处理通道内能够实现冰与所述燃气射流尾焰的直接接触,使得所述燃气射流尾焰中的熔融态三氧化二铝(Al 2O 3)迅速冷却成为固体粒子,并随流动顺利排出所述处理通道或者所述处理模块;所述处理模块内包含碱性物质,可以在所述处理通道内与燃气射流尾焰中含有的氯化氢(HCl)有害气体中和反应,实现对所述燃气射流尾焰的无害化处理。
由于所述冷却装置中冰质导入模块和处理模块为所述燃气射流尾焰的冷却、降速、降噪和无害化提供了所需的水,以满足其在所述处理模块内的 能量交换。在所述处理模块内,能量交换完全遵守能量守恒原理进行,是一种自适应过程,不需要外界补充新的能量。能量交换后的产物都将顺利排出所述处理模块。因此在对所述燃气射流尾焰进行处理时,所述冷却装置的体积小,这样不仅可以减少所述冷却装置的耗水量,还可以简化所述冷却装置的加工工艺,极大的降低所述冷却装置的成本。
附图说明
图1是本发明的一种发动机燃气射流尾焰处理系统的正向结构示意图;
图2是图1所示的发动机燃气射流尾焰处理系统的左向结构示意图;
图3是图1所示的发动机燃气射流尾焰处理系统的右向结构示意图;
图4是本发明的一种导入模块的正向结构示意图;
图5是图4所示的导入模块的侧向结构示意图;
图6是本发明的一种处理模块的正向结构示意图;
图7是图6所示的处理模块的侧向结构示意图;
图8是本发明的一种多个导入模块串联连接的结构示意图;
图9是本发明实施例所述的一种发动机燃气射流尾焰处理系统的安装示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
本发明实施例提供了一种发动机燃气射流尾焰处理系统,用于处理发动机喷射的燃气射流尾焰,所述发动机可以包括用于燃气膨胀提速的喷管,所述发动机燃气射流尾焰处理系统可以包括:冷却装置以及支撑装置;其中,所述冷却装置包括至少一个导入模块和至少一个处理模块;所述导入模块和处理模块的材质均为冰;所述导入模块内设有导入通道;所述处理模块内设有处理通道;所述导入通道与所述喷管相对;所述支撑装置与所述冷却装置连接,用于支撑所述冷却装置。
在实际应用中,所述发动机可以是固体火箭发动机、液体火箭发动机、航空发动机、各类型导弹等类型的发动机,本发明实施例仅以固体火箭发动机为例进行说明,其他类型的发动机参照执行即可。
具体地,制成所述冷却装置中所述导入模块和处理模块的冰,可以包括但不局限于冰砖、冰块、冰渣以及冰雪中的任意一种,本发明实施例对于制成所述冷却装置中所述导入模块和处理模块的冰的具体类型可以不做限定。所述支撑装置的结构类型可以为壳体、通道、隧道、导流槽、壕沟等结构。在实际应用中,在所述支撑装置为壳体、通道、隧道、导流槽、壕沟等结构的情况下,在壳体、通道、隧道、导流槽、壕沟内堆砌冰砖、冰块、冰渣或者冰雪即可。也就是说,本发明实施例所述的发动机燃气射流尾焰处理系统可以就地取材制成,加工方式较为丰富,加工成本较低。
在实际应用中,大量的试验数据表明,所述冷却装置的冷却能力可以达到0.35MJ/kg。所述冷却装置的冷却效率极高,耗水量极低。本发明实施例中,在所述发动机点火,喷管喷射燃气射流尾焰时,由于所述冷却装置中导入模块的的导入通道与所述喷管相对,所述燃气射流尾焰可以直接进入所述导入通道内。由于所述导入模块、所述处理模块的材质均为固体状的冰,因此,所述燃气射流尾焰进入所述导入通道后,不仅能够直接与水(冰)接触,而且所述处理模块中间形成的冰锥可以直插燃气射流尾焰中心的高温区,同时所述冰锥阻挡并迫使燃气射流尾焰向所述处理通道内溢射分流、与在所述处理通道的内外表面冲刷,造成所述燃气射流尾焰由内至外与水(冰)的充分接触。水(冰)在超高温下迅速吸热分解、升华、蒸发,所述燃气尾焰吸收水的分解、升华、蒸发吸收的冷量迅速降温,这就是所述冷却装置对于所述燃气射流尾焰的冷却效率高根本原因。所述冷却装置对于所述燃气射流尾焰亦具有显著的减速降噪效果。所述冷却装置可以直接与所述燃气射流尾焰进行接触,这样,不仅可以使得所述冷却装置对于所述燃气射流尾焰的冷却效率较高,还可以使得所述冷却装置对于所述燃气射流尾焰的减速降噪效果较为明显。
而且,由于所述冷却装置与所述燃气射流尾焰直接接触,使得所述燃气 射流尾焰中的熔融态三氧化二铝(Al 2O 3)迅速冷却成为固体粒子,并随流动顺利排出所述处理通道或者所述处理模块;所述处理模块内包含碱性物质,可以在所述处理通道内与燃气射流尾焰中含有的氯化氢(HCl)有害气体中和反应,实现对所述燃气射流尾焰的无害化处理。
此外,由于所述冷却装置对于所述燃气射流尾焰的冷却效率高,因此,在对所述燃气射流尾焰进行处理时,所述冷却装置的体积可以较小,这样不仅可以减少所述冷却装置的耗水量,还可以简化所述冷却装置的加工工艺,极大的降低所述冷却装置的成本。
在实际应用中,所述导入模块和所述处理模块内可以包含碱性物质。所述碱性物质可以为NaOH或者NaHCO 3等物质,本发明实施例对于所述碱性物质的具体类型可以不做限定。本发明实施例中,由于所述导入模块和所述处理模块内包含碱性物质,在所述导入模块和所述处理模块与所述燃气射流尾焰直接接触的过程中,所述碱性物质可以和所述燃气射流尾焰中的固体粒子(Al 2O 3)、氯化氢(HCl)发生反应,提高对于所述燃气射流尾焰中的固体粒子(Al 2O 3)、氯化氢(HCl)的处理效率,避免固体粒子(Al 2O 3)、氯化氢(HCl)对环境造成污染。
可以理解的是,在实际应用中,根据所述燃气射流尾焰中的所含物质参数成份的不同,所述冷却装置中还可以相应添加其他的物质,以提高所述冷却装置对于所述燃气射流尾焰中的固体粒子和有害成分的处理效率。
参照图1,示出了本发明的一种发动机燃气射流尾焰处理系统的正向结构示意图,参照图2,示出了图1所示的发动机燃气射流尾焰处理系统的左向结构示意图,参照图3,示出了图1所示的发动机燃气射流尾焰处理系统的右向结构示意图。具体可以包括:冷却装置和支撑装置,其中,冷却装置可以包括:至少一个导入模块10和至少一个处理模块11;其中,导入模块10内设有导入通道101,导入通道101可以包括第一进气口和第一出气口,所述第一进气口和所述喷管相对;处理模块11内设有多个分流通道111,每个分流通道111包括第二进气口和第二出气口,每个第二进气口与所述第一出气口相对。处理模块11的端面上设有分流结构,其中,所述分流结构包 括多个分流隔栏112和一个冰锥113,分流隔栏112设置于圆周方向上相邻的处理通道111之间,冰锥113为处理通道111围绕11处理模块轴线中心区域形成的冰芯。所述支撑装置可以包括:导入模块壳体12以及处理模块壳体13;其中,导入模块壳体12包覆在导入模块10外;处理模块壳体13包覆在处理模块11外;导入模块壳体12和处理模块壳体13的材料为金属保温材料。
参照图4,示出了本发明的一种导入模块的正向结构示意图,参照图5,示出了图4所示的导入模块的侧向结构示意图。如图4、图5所示,导入模块10内设有导入通道101。在实际应用中,导入通道101的第一进气口可以与所述发动机的喷管相对,以便于从所述喷管中喷射出来的燃气射流尾焰可以直接进入所述导入通道内。
本发明实施例中,导入通道101的内径可以大于所述发动机的喷管内径,这样,可以便于从上所述喷管内喷射出燃气射流尾焰可以从充分地进入导入模块10的导入通道101内。
参照图6,示出了本发明的一种处理模块的正向结构示意图,参照图7,示出了图6所示的处理模块大的侧向结构示意图。如图6、图7所示,处理模块11内设有多个所述处理通道111,每个所述处理通道111可以包括第二进气口和第二出气口,每个第二进气口与所述第一出气口相对。
在实际应用中,由于处理模块11上包括多个处理通道111,这样,可以增大处理通道111的内表面与所述燃气射流尾焰的接触面积,提高处理模块11对于所述燃气射流尾焰的冷却效率和降速降噪的效果。
在本发明的一种可选实施例中,为了使处理模块11上的多个处理通道111能够充分的与所述燃气射流尾焰接触,多个处理通道111在处理模块11的轴线上可以均匀分布。
可以理解的是,图6、图7中仅示出了处理模块11上包括3个处理通道111的示例。而在实际应用中,处理模块11上的处理通道111的数量还可以为其他的值,例如,4个、5个或者6个等,本发明实施例对于处理模块11上的处理通道111的数量可以不做限定。
本发明实施例中,处理模块11的端面上可以设有分流结构;其中,所述分流结构包括多个分流隔栏112和一个冰锥113,分流隔栏112设置于圆周方向上相邻的处理通道111之间,冰锥113为处理通道111围绕11处理模块轴线中心区域形成的冰芯。
在实际应用中,所述分流结构可以用于对导入模块10的流出的所述燃气射流尾焰进行强制分流,将导入模块10流出的所述燃气射流尾焰分流至每一个处理通道111内,且分流效率较高。
本发明实施例中,所述分流结构中的分流隔栏112和冰锥113可以由冰制成,这样,在所述分流结构对所述燃气射流尾焰进行分流的过程中,由冰制成的所述分流结构可以直接与所述燃气射流尾焰的中心接触,并且与所述燃气射流尾焰的中心进行热量交换,这样就可以极大的提高所述燃气射流尾焰的降温速度。
在实际应用中,由于所述燃气射流尾焰的中心携带有大量固体粒子(Al 2O 3),而本发明实施例中,由冰制成的所述分流结构可以直接与所述燃气射流尾焰的中心的固体粒子(Al 2O 3)接触,并将所述燃气射流尾焰分流至每一个处理通道111内,使得所述燃气射流尾焰充分的与处理通道111的内壁接触,使得所述燃气射流尾焰中携带的固体粒子(Al 2O 3)快速冷却、凝结、减速、沉降,并在处理模块11的出气口排出。
本发明实施例中,所述发动机燃气射流尾焰处理系统中的导入模块10、处理模块11的数量可以根据实际情况进行设定,图1中仅示出了所述发动机燃气射流尾焰处理系统包括一个导入模块10和两个处理模块11的情况。在实际应用中,所述发动机燃气射流尾焰处理系统中的导入模块10、处理模块11的数量还可以为其他的值,本发明实施例对于所述发动机燃气射流尾焰处理系统中的导入模块10、处理模块11的具体数量不做限定。
在实际应用中,在所述发动机燃气射流尾焰处理系统中的导入模块10、处理模块11的数量为多个的情况下,所述多个导入模块10可以串联连接;同理,所述多个处理模块11也可以串联连接。
本发明实施例中,将所述冷却装置分成至少一个导入模块10和至少一 个处理模块11,并在导入模块10外包覆导入模块壳体12,在处理模块11外包覆处理模块壳体13,可以便于所述发动机燃气射流尾焰处理系统的模块话设计,降低所述发动机燃气射流尾焰处理系统的加工难度和安装难度。
例如,若在处理某型号的发动机的燃气射流尾焰时,所述冷却装置的导入模块10为2个、处理模块11的数量为4个时,所述冷却装置对于所述燃气射流尾焰的处理效果最佳,则分别将2个导入模块10串联连接,将4个处理模块11串联连接,然后再将串联后的导入模块10、处理模块11连接即可。
可以理解的是,在所述冷却装置包括多个导入模块10,且这多个导入模块10串联连接的情况下,这多个导入模块10内的导入通道101的内径可以是相同的,也可以是不同的。
参照图8,示出了本发明的一种多个导入模块串联连接的结构示意图。如图8所示,多个导入模块10串联连接的情况下,这多个导入模块10内的导入通道101的内径可以是不同的。在实际应用中,由于多个导入模块10内的导入通道101的内径可以不同,因此,导入模块10的结构可以较为简单,加工精度可以较低,这样,就可以降低导入模块10的加工难度,从而,降低导入模块10的成本。
在实际应用中,多个导入模块10串联连接的情况下,这多个导入模块10内的导入通道101的内径也可以是相同的,在多个导入模块10内的导入通道101的内径相同的情况下,可以使得导入模块10对于所述燃气射流尾焰的导流效果较好。
本发明实施例中,相邻的导入模块壳体12/处理模块壳体13与处理模块壳体13/处理模块壳体12之间可以采用紧固件进行连接,或者,采用卡扣卡槽进行连接,以实现相邻的导入模块10/处理模块11和处理模块11/处理模块10之间的连接。
在实际应用中,由于导入模块壳体12包覆在导入模块10外,处理模块壳体13包覆在处理模块11外,且导入模块壳体12和处理模块壳体13的材料为金属保温材料,因此,导入模块壳体12可以用于减小导入模块10与外 界的热交换,降低导入模块10的熔化速度。同理,处理模块壳体13可以用于减小处理模块11与外界的热交换,降低处理模块11的熔化速度。
具体地,所述金属保温材料可以包括但不局限于有机隔热保温材料、无机隔热保温材料以及金属类隔热保温材料中的任意一种,本发明实施例对于所述金属保温材料的具体类型可以不做限定。
本发明实施例中,所述冷却装置还可以包括:至少一个级间模块14;其中,级间模块14设置于相邻的导入模块10/处理模块11与导入模块10/处理模块11之间。级间模块14可以用于调节所述冷却装置内的冷却通道与外界的进排气,以调节所述燃气射流尾焰在所述冷却装置内的流速,提高所述冷却装置对于所述燃气射流尾焰的处理效率。
在实际应用中,级间模块14可以为带开关装置的格栅或者其他类型的进排气装置,本发明实施例对于级间模块14的具体类型可以不做限定。
本发明实施例中,所述发动机燃气射流尾焰处理系统还可以包括:热电偶以及压力传感器;其中,所述热电偶设置于处理通道111的第二出气口处,所述热电偶可以用于检测处理通道111排出的气体的温度;所述压力传感器设置于相邻的处理模块11之间,用于检测处理模块11内的压强。
在实际应用中,可以通过所述热电偶测得的处理通道111排出的气体的温度以及所述压力传感器测得的处理模块11内的压强,控制级间模块14进行进排气调节,以调节所述燃气射流尾焰在所述冷却装置内的流速,提高所述冷却装置对于所述燃气射流尾焰的处理效率。
参照图9,示出了本发明实施例所述的一种发动机燃气射流尾焰处理系统的安装示意图。如图9所示,所述发动机燃气射流尾焰系统处理系统中的导入模块壳体12、处理模块壳体13可以分别通过固定支架15安装在处理装置工作台16上。发动机90可以通过发动机固定支架91固定在发动机热试工作台92上,发动机90的一端与推力墩93连接,另一端设有喷管94。导入模块壳体12内的导入模块上的导入通道与喷管94相对,以便于从喷管94中喷射出来的燃气射流尾焰可以进入所述导入模块的导入通道内。这样,不仅可以使得所述冷却装置对于所述燃气射流尾焰的冷却效率较高,还可以使 得所述冷却装置对于所述燃气射流尾焰的减速降噪效果较为明显。
综上,本发明实施例所述的发动机燃气射流尾焰处理系统至少包括以下优点:
本发明实施例中,在所述发动机点火,喷管喷射燃气射流尾焰时,由于所述冷却装置中导入模块的的导入通道与所述喷管相对,所述燃气射流尾焰可以直接进入所述导入通道内。由于所述导入模块、所述处理模块的材质均为固体状的冰,因此,所述燃气射流尾焰进入所述导入通道后,不仅能够直接与水(冰)接触,而且所述处理模块中间形成的冰锥可以直插燃气射流尾焰中心的高温区,同时所述冰锥阻挡并迫使燃气射流尾焰向所述处理通道内溢射分流、与所述处理通道的内外表面冲刷,造成所述燃气射流尾焰由内至外与水(冰)的充分接触。水(冰)在超高温下迅速吸热分解、升华、蒸发,所述燃气尾焰吸收水的分解、升华、蒸发吸收的冷量迅速降温,这就是所述冷却装置对于所述燃气射流尾焰的冷却效率高根本原因。所述冷却装置对于所述燃气射流尾焰亦具有显著的减速降噪效果。所述冷却装置可以直接与所述燃气射流尾焰进行接触,这样,不仅可以使得所述冷却装置对于所述燃气射流尾焰的冷却效率较高,还可以使得所述冷却装置对于所述燃气射流尾焰的减速降噪效果较为明显。
而且,由于所述冷却装置与所述燃气射流尾焰直接接触,使得所述燃气射流尾焰中的熔融态三氧化二铝(Al 2O 3)迅速冷却成为固体粒子,并随流动顺利排出所述处理通道或者所述处理模块;所述处理模块内包含碱性物质,可以在所述处理通道内与燃气射流尾焰中含有的氯化氢(HCl)有害气体中和反应,实现对所述燃气射流尾焰的无害化处理。
此外,由于所述冷却装置对于所述燃气射流尾焰的冷却效率高,因此,在对所述燃气射流尾焰进行处理时,所述冷却装置的体积可以较小,这样不仅可以减少所述冷却装置的耗水量,还可以简化所述冷却装置的加工工艺,极大的降低所述冷却装置的成本。
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦 得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本发明所提供的一种发动机燃气射流尾焰的处理系统,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种发动机燃气射流尾焰处理系统,用于处理发动机喷射的燃气射流尾焰,所述发动机包括用于燃气膨胀提速的喷管,其特征在于,所述发动机气射流尾焰处理系统包括:冷却装置以及支撑装置;其中
    所述冷却装置包括至少一个导入模块和至少一个处理模块;
    所述导入模块和处理模块的材质均为冰;
    所述导入模块内设有导入通道;
    所述处理模块内设有处理通道;
    所述导入通道与所述喷管相对;
    所述支撑装置与所述冷却装置连接,用于支撑所述冷却装置。
  2. 根据权利要求1所述的发动机燃气射流尾焰处理系统,其特征在于,所述导入模块和处理模块内可以添加碱性物质。
  3. 根据权利要求1所述的发动机燃气射流尾焰处理系统,其特征在于,所述导入模块内设有一个导入通道,所述导入通道包括第一进气口和第一出气口,所述第一进气口和所述喷管相对;
    所述处理模块内设有单个或者多个处理通道,每个处理通道包括第二进气口和第二出气口,每个第二进气口与所述第一出气口相对。
  4. 根据权利要求3所述的发动机燃气射流尾焰处理系统,其特征在于,所述处理模块端面上设有分流结构;其中
    所述分流结构包括多个分流隔栏和冰锥;
    所述分流隔栏设置于圆周方向上相邻的所述处理通道之间;
    所述冰锥为所述处理通道围绕所述处理模块轴线在中心区域形成的冰芯。
  5. 根据权利要求3所述的发动机燃气射流尾焰处理系统,其特征在于,所述多个处理通道围绕所述处理模块轴线均匀分布。
  6. 根据权利要求1所述的发动机燃气射流尾焰处理系统,其特征在于,所述导入模块上的导入通道的内径大于所述喷管的内径。
  7. 根据权利要求1所述的发动机燃气射流尾焰处理系统,其特征在于,所述至少一个导入模块串联连接;所述至少一个处理模块串联连接。
  8. 根据权利要求1所述的发动机燃气射流尾焰处理系统,其特征在于,所述冷却装置还包括:至少一个级间模块;其中
    所述级间模块设置于相邻的导入模块/处理模块与导入模块/处理模块之间。
  9. 根据权利要求1所述的发动机燃气射流尾焰处理系统,其特征在于,所述支撑装置包括:导入模块壳体以及处理模块壳体;其中
    所述导入模块壳体包覆在所述导入模块外;
    所述处理模块壳体包覆在所述处理模块外;
    所述导入模块壳体和所述处理模块壳体的材料为金属保温材料。
  10. 根据权利要求3所述发动机燃气射流尾焰处理系统,其特征在于,所述发动机燃气射流尾焰处理系统还包括:热电偶以及压力传感器;其中
    所述热电偶设置于所述处理通道的第二出气口处;
    所述压力传感器设置于相邻的所述处理模块之间。
PCT/CN2019/075402 2019-01-07 2019-02-18 一种发动机燃气射流尾焰的处理系统 WO2020143097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910013136.9A CN109538378A (zh) 2019-01-07 2019-01-07 一种发动机燃气射流尾焰的处理系统
CN201910013136.9 2019-01-07

Publications (1)

Publication Number Publication Date
WO2020143097A1 true WO2020143097A1 (zh) 2020-07-16

Family

ID=65834470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075402 WO2020143097A1 (zh) 2019-01-07 2019-02-18 一种发动机燃气射流尾焰的处理系统

Country Status (2)

Country Link
CN (1) CN109538378A (zh)
WO (1) WO2020143097A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111006224B (zh) * 2019-11-08 2021-10-19 西安蓝坤工程科技有限公司 一种废药燃烧系统、方法及装置
CN111577485B (zh) * 2020-04-15 2022-04-12 北京航天试验技术研究所 一种液体发动机降噪装置及液体发动机试验装置
CN111794878A (zh) * 2020-08-06 2020-10-20 北京环境特性研究所 一种火箭发动机冷却与隐身设计装置
CN113006973B (zh) * 2021-04-13 2023-10-31 西安蓝坤工程科技有限公司 一种火箭发动机高空模拟试验的尾焰处理装置及方法
CN112983683A (zh) * 2021-04-13 2021-06-18 西安蓝坤工程科技有限公司 一种用于火箭发动机高空模拟试验的装置及方法
CN113202563B (zh) * 2021-04-22 2022-08-16 沈阳航空航天大学 减弱导弹发射尾焰能量的同轴反转双级涡轮装置
CN114486269B (zh) * 2022-04-15 2022-06-24 中国飞机强度研究所 飞机测试实验室发动机开车温度控制系统及其设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174914A (zh) * 2011-03-10 2011-09-07 西北工业大学 一种研究喷管羽流凝相粒子分布的试验装置
CN106065829A (zh) * 2016-07-20 2016-11-02 西安航天动力测控技术研究所 固体火箭发动机地面试验用壳体腹部防烧穿水喷淋冷却装置
CN108087153A (zh) * 2016-11-22 2018-05-29 江西洪都航空工业集团有限责任公司 一种带有冷却组合的固冲发动机
US10082106B2 (en) * 2013-01-11 2018-09-25 Arianegroup Sas Propellant feed circuit and a cooling method
CN209261697U (zh) * 2019-01-07 2019-08-16 西安交通大学 一种发动机燃气射流尾焰的处理系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19822845C2 (de) * 1998-05-22 2002-10-31 Roger Lo Modulare Feststoffraketentreibsätze mit Ummantelung, Fill-drain System, Kühlung und Aufhängung
EP2376763A2 (en) * 2008-12-08 2011-10-19 Firestar Engineering, LLC Regeneratively cooled porous media jacket
CN103743572B (zh) * 2014-01-08 2016-01-06 北京航空航天大学 小型火箭发动机试验台喷淋装置
CN108132161A (zh) * 2017-09-05 2018-06-08 北京理工大学 一种火箭发动机喷水降温降噪的立式试验平台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102174914A (zh) * 2011-03-10 2011-09-07 西北工业大学 一种研究喷管羽流凝相粒子分布的试验装置
US10082106B2 (en) * 2013-01-11 2018-09-25 Arianegroup Sas Propellant feed circuit and a cooling method
CN106065829A (zh) * 2016-07-20 2016-11-02 西安航天动力测控技术研究所 固体火箭发动机地面试验用壳体腹部防烧穿水喷淋冷却装置
CN108087153A (zh) * 2016-11-22 2018-05-29 江西洪都航空工业集团有限责任公司 一种带有冷却组合的固冲发动机
CN209261697U (zh) * 2019-01-07 2019-08-16 西安交通大学 一种发动机燃气射流尾焰的处理系统

Also Published As

Publication number Publication date
CN109538378A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
WO2020143097A1 (zh) 一种发动机燃气射流尾焰的处理系统
CN204691935U (zh) 一种火箭发动机喷管的气膜冷却结构
JP2010025108A (ja) 排気ガスから熱エネルギーを除去するためのヒートパイプ
WO2004081452A3 (en) Expander cycle rocket engine with staged combustion and heat exchange
JPS5948283B2 (ja) 渦管アセンブリ
WO2004072465A3 (en) Diversion of combustion gas within a rocket engine to preheat fuel
KR20150058383A (ko) 열차폐물의 지지구조물을 냉각시키기 위한 장치 및 열차폐물
KR20060029203A (ko) 고리형 터빈 엔진 연소 챔버
CN209261697U (zh) 一种发动机燃气射流尾焰的处理系统
JP2002529161A (ja) 火炎防止装置
CA2586493A1 (en) Method and spray tower for contacting gases and liquid droplets for mass and/or heat transfer
CN117489489A (zh) 一种再生冷却燃烧室及其缩尺方法
CN111237087A (zh) 一种新型航天动力用微孔板主被动复合冷却结构及冷却方法
CN211623562U (zh) 一种固体推进剂燃烧产物用处理装置
CN113008562B (zh) 一种冲压发动机旋转爆震起爆并快速形成周期流场的方法
US2965463A (en) Regenerative heat exchange process for formation of combustible gas
RU2313403C2 (ru) Теплонасадок шестеренко
CN111927644A (zh) 一种用于高温壁面的冷却热防护装置
JPH0861150A (ja) ハイブリッドロケットのための噴射装置
CN211503359U (zh) 一种用于冰塞冷冻的迷宫式夹套装置
CN111927647B (zh) 一种用于高温头锥的冷却热防护装置
JP2941528B2 (ja) 不活性ガス発生装置
JPH03158619A (ja) ガスタービンの火炎伝播管
US2289900A (en) Explosion turbine
JPH08135505A (ja) 超音速航空機用ジェット推進機関の吸音装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908935

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19908935

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19908935

Country of ref document: EP

Kind code of ref document: A1