WO2020143083A1 - 一种基于增强现实技术的手持式工件误差自修正铣削装置 - Google Patents

一种基于增强现实技术的手持式工件误差自修正铣削装置 Download PDF

Info

Publication number
WO2020143083A1
WO2020143083A1 PCT/CN2019/073480 CN2019073480W WO2020143083A1 WO 2020143083 A1 WO2020143083 A1 WO 2020143083A1 CN 2019073480 W CN2019073480 W CN 2019073480W WO 2020143083 A1 WO2020143083 A1 WO 2020143083A1
Authority
WO
WIPO (PCT)
Prior art keywords
device based
augmented reality
base
reality technology
milling
Prior art date
Application number
PCT/CN2019/073480
Other languages
English (en)
French (fr)
Inventor
谭泳宗
Original Assignee
谭泳宗
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谭泳宗 filed Critical 谭泳宗
Publication of WO2020143083A1 publication Critical patent/WO2020143083A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C1/00Milling machines not designed for particular work or special operations
    • B23C1/20Portable devices or machines; Hand-driven devices or machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2404Arrangements for improving direct observation of the working space, e.g. using mirrors or lamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/248Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods
    • B23Q17/249Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves using special electromagnetic means or methods using image analysis, e.g. for radar, infrared or array camera images
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25HWORKSHOP EQUIPMENT, e.g. FOR MARKING-OUT WORK; STORAGE MEANS FOR WORKSHOPS
    • B25H1/00Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby
    • B25H1/0021Stands, supports or guiding devices for positioning portable tools or for securing them to the work
    • B25H1/0078Guiding devices for hand tools
    • B25H1/0092Guiding devices for hand tools by optical means

Definitions

  • the invention relates to the field of processing machinery and equipment, in particular to a hand-held workpiece error self-correcting milling device based on augmented reality technology.
  • the cutting work on the workpiece is usually roughed out by manual or low-precision cutting machinery, and then finished by the finishing machining machine.
  • manual machining and common processing machinery generally have the problem of low accuracy , Especially for high-volume workpiece processing with high precision requirements, CNC machine tools, machining centers and other finishing machines are indispensable.
  • these finishing machines are often bulky, expensive, and complicated to operate. For small batches For individuals or factories that produce individual high-precision workpieces, it is obviously not practical to purchase expensive, bulky, and complicated finishing machinery, so it is necessary to design a miniaturized, intelligent, and high-precision handheld milling device.
  • a handheld workpiece error self-correcting milling device based on augmented reality technology which has a reasonable structure, a simple structure, convenient use, and a high degree of intelligence , High precision, small size, strong practicability and other advantages, effectively solve the problem of low accuracy of existing handheld processing machinery.
  • a handheld workpiece error self-correcting milling device based on augmented reality technology, which includes a base, a control box, a milling mechanism, a control handle, and a direction distance detection mechanism.
  • One end is provided with a transparent plate
  • the other end of the base is provided with a through groove and a screw hole
  • the middle of the base is provided with mutually perpendicular slide grooves, a groove body and a supporting platform provided on the groove body
  • the chute is an inverted T-shaped structure, and the I-shaped slider is respectively arranged in the chute, and the electric cylinder is fixedly arranged on the I-shaped slider, and the main shaft of the electric cylinder is fixedly connected to the side of the supporting platform;
  • the bottom of the support platform is provided with a number of rolling balls connected to it;
  • the control box is arranged above the transparent board, and a controller, a battery, and a display are sequentially arranged from bottom to top in the control box; the controller is integrated with a camera and a lighting lamp, and the camera and the lighting lamp are directly opposite the transparent board;
  • the milling mechanism is provided in the middle of the base.
  • the milling mechanism includes a housing, a motor disposed above the through slot, a rotating drum with a thread on the surface, and a support rod; the motor is fixedly disposed in the housing and the motor
  • the main shaft is sequentially connected with an electromagnetic clutch, a chuck, and a milling cutter; the rotating drum is hinged to the casing, and the rotating drum and the electromagnetic clutch are connected to each other through a transmission belt;
  • the supporting rod is vertically arranged on a supporting platform ,
  • the housing is slidingly connected with the support rod, and the support rod is provided with a rack and the threads on the rotating drum are driven to connect with each other;
  • the control handle is symmetrically fixed on the two ends of the middle of the base, and the control handle is provided with a number of control buttons;
  • the direction distance detection mechanism includes a first ⁇ -shaped plate, an angle sensor, a tension spring, and a second ⁇ -shaped plate , Runner
  • One end of the first zigzag plate is fixedly connected with the screw hole, the angle sensor is fixedly arranged at the other end of the first zigzag plate; the rotating wheel is arranged in the through slot, and the rotating wheel is provided with a rotary encoder ;
  • One end of the second ⁇ -shaped plate and the detection end of the angle sensor are sleeved with each other, the other end of the second ⁇ -shaped plate is connected with the rotary encoder, the tension spring is sleeved on the detection end of the angle sensor; The two ends of the tension spring are respectively in contact with the second zigzag plate and the angle sensor.
  • the support platform is provided with a plurality of first distance sensors, and the detection end of the first distance sensor is directly facing the side wall of the tank.
  • the transparent plate is embedded in the base, and the upper and lower surfaces of the transparent plate are flush with the upper and lower surfaces of the base.
  • the chuck includes a spring chuck connected to the motor main shaft, a magnetic sleeve sleeved in the inner cavity of the spring chuck, and a lock nut threadedly connected to the spring chuck.
  • the magnetic sleeve includes a flexible plate and a plurality of magnetic arc plates fixedly arranged on the flexible plate, and the milling cutter is sleeved in the inner cavity of the magnetic sleeve.
  • a second distance sensor is provided on the casing.
  • controller is electrically connected to the electric cylinder, battery, display, camera, lighting, motor, electromagnetic clutch, control button, angle sensor, rotary encoder, first distance sensor, and second distance sensor, respectively .
  • a handheld workpiece error self-correcting milling device based on augmented reality technology, including a base, a control box, a milling mechanism, a control handle, and a direction distance detection mechanism, the base is closely attached to the workpiece processing surface, and the controller automatically Planning the travel route or the operator manually plans the route by marking on the surface of the workpiece.
  • the control handle is used to push the base to travel along the planned route and send control commands to the controller.
  • the camera in the control box scans the surface mark and/or direction of the workpiece
  • the distance detection mechanism measures and detects the error generated during the travel through the sensor, overlays the route map planned in the controller and the surface of the workpiece to guide the travel path, and the milling mechanism controlled by the controller automatically corrects the travel error and then performs the milling operation on the workpiece.
  • the structure is reasonable, with the advantages of simple structure, convenient use, high degree of intelligence, high precision, small size, strong practicability, etc., and effectively solves the problem of low accuracy of existing handheld processing machinery.
  • FIG. 1 is a schematic diagram of the overall structure of a handheld workpiece error self-correcting milling device based on augmented reality technology according to the present invention
  • FIG. 2 is a schematic structural view of the base of a handheld workpiece error self-correcting milling device based on augmented reality technology according to the present invention
  • FIG. 3 is a schematic view of the lateral cross-sectional structure of a handheld workpiece error self-correcting milling device based on augmented reality technology according to the present invention
  • FIG. 4 is a schematic structural view of a base, a control box, and a control handle of a handheld workpiece error self-correcting milling device based on augmented reality technology according to the present invention
  • FIG. 5 is a schematic diagram of a connection structure of a control box and a base of a handheld workpiece error self-correcting milling device based on augmented reality technology according to the present invention
  • FIG. 6 is a schematic view of a part of a milling mechanism of a handheld workpiece error self-correcting milling device based on augmented reality technology according to the present invention
  • FIG. 7 is a schematic view of a chuck structure of a handheld workpiece error self-correcting milling device based on augmented reality technology according to the present invention.
  • FIG. 8 is a schematic diagram of a magnetic sleeve structure of a handheld workpiece error self-correcting milling device based on augmented reality technology according to the present invention
  • FIG. 9 is a schematic diagram of a connection structure between a directional distance detection mechanism and a base of a handheld workpiece error self-correcting milling device based on augmented reality technology according to the present invention.
  • a hand-held workpiece error self-correcting milling device based on augmented reality technology includes a base 1, a control box 2, a milling mechanism 3, a control handle 4, and a direction distance detection mechanism 5.
  • the base 1 is provided with a transparent plate 11 at one end, a through slot 13 and a screw hole 14 are provided at the other end of the base 1, and a sliding slot 15, a groove body 18 and The support platform 12 provided on the tank 18.
  • the chute 15 has an inverted T-shaped structure, and the I-shaped slider 17 is provided in the chute 15 respectively.
  • the I-shaped slider 17 is fixedly provided with an electric cylinder 16
  • the main shaft is fixedly connected to the side of the supporting platform 12; the bottom of the supporting platform 12 is provided with a plurality of balls 122 that are connected to the rolling platform.
  • the control box 2 is installed above the transparent plate 11, and a controller 21, a battery 22, and a display 23 are provided in this order from bottom to top; the controller 21 Integrated camera 212, illuminating lamp 213, camera 212, illuminating lamp 213 are facing transparent plate 11; in one embodiment, illuminating lamp 213 provides illumination for camera 212, and the mark is manually set on the workpiece, camera 212 scans the The sign identifies the travel route.
  • the sign may be a complete straight line or several line segments with an interval not exceeding the scanning diameter of the camera 212. Of course, a symbol such as an arrow may be provided on the straight line or the line segment to enrich the identification content.
  • the milling mechanism 3 is disposed in the middle of the base 1.
  • the milling mechanism 3 includes a housing 31, a motor 32 disposed above the through slot 13, and a rotating drum 33 with threads on the surface. Support rod 34; the motor 32 is fixedly disposed in the housing 31, and the main shaft of the motor 32 is sequentially connected with an electromagnetic clutch 321, a collet 322, and a milling cutter 323;
  • the rotating drum 33 is hinged to the casing 31, and the rotating drum 33 and the electromagnetic clutch 321 are connected to each other through a transmission belt; the casing 31 is slidably connected to the support rod 34, and the support rod 34 is provided with a rack 341 The threads on the rotating drum 33 are connected to each other by driving.
  • the support rod 34 is vertically arranged on the support platform 12.
  • control handle 4 is symmetrically fixed at both ends of the middle of the base 1, and the control handle 4 is provided with a number of control buttons 41; the control buttons 41 are used to send control commands to the controller 21, Control the operation of each component individually or completely.
  • the directional distance detection mechanism 5 includes a first zigzag plate 51, an angle sensor 52, a tension spring 53, a second zigzag plate 54, and a runner 55;
  • the angle sensor 52 is fixedly arranged at the other end of the first zigzag plate 51; the runner 55 is arranged in the through slot 13, the runner 55 is provided with a rotary encoder 56; one end of the second zigzag plate 54 and the detection end of the angle sensor 52 are sleeved with each other, and the other end of the second zigzag plate 54 is connected with the rotary encoder 56 to tension the spring 53 is sleeved on the detection end of the angle sensor 52; both ends of the tension spring 53 are in contact with the second zigzag plate 54 and the angle sensor 52, respectively.
  • the angle sensor 52 is used to measure the rotation angle of the base relative to the machining start direction, and the rotary encoder 56 is used to detect the distance traveled relative to the machining start position.
  • the supporting platform 12 is provided with a plurality of first distance sensors 121, the detection end of the first distance sensor 121 is facing the side wall of the tank 18, and the number of the first distance sensors 121 with the detection ends facing different directions should not be less than Two, the function of which is to measure the distance between the supporting platform 12 and the side wall of the tank 18, and to indirectly derive the horizontal position of the supporting rod 34 from this.
  • two first distance sensors 121 are provided on the supporting platform 12, and the detection ends of the two first distance sensors 121 are at a right angle of 90°.
  • the transparent plate 11 is embedded in the base 1, and the upper and lower sides of the transparent plate 11 are flush with the upper and lower sides of the base 1 to avoid the accumulation of milled debris on the transparent Below the board 11 hinders the normal operation of the camera 212.
  • the transparent board 11 is embedded in the base 1, and the transparent board 11 is only flush with the bottom surface of the base 1.
  • the chuck 322 includes a spring chuck 3221 connected to the main shaft of the motor 32, a magnetic sleeve 3222 sleeved in the inner cavity of the spring chuck 3221, and a lock nut threadedly connected to the spring chuck 3221. 3223.
  • the magnetic sleeve 3222 includes a flexible plate 3224, a plurality of magnetic arc plates 3225 fixedly arranged on the flexible plate 3224, and the milling cutter 323 is sleeved on the magnetic sleeve
  • the magnetic arc plate 3225 fixed on the flexible plate 3224 on the magnetic sleeve 3222 gradually contracts toward the center and clamps the milling cutter 323, when When the load on the milling tool 323 is greater than the magnetic force between the magnetic arc plate 3225 and the inner wall of the spring chuck 3221, the magnetic sleeve 3222 rotates to prevent the milling tool 323 from breaking and hurting people.
  • the housing 31 is provided with a second distance sensor 311.
  • the second distance sensor 311 is used to detect the vertical distance between the milling tool 323 and the surface of the workpiece, combining the data of the first distance sensor 121 and the length data of the milling tool 323 , You can calculate the position data of the cutting edge of the milling tool 323.
  • the controller 21 is connected to the electric cylinder 16, the battery 22, the display 23, the camera 212, the lighting 213, the motor 32, the electromagnetic clutch 321, the control button 41, the angle sensor 52, the rotary encoder 56, the first distance sensor 121 2.
  • the second distance sensors 311 are electrically connected to each other.
  • the data collected by the camera 212, the control button 41, the angle sensor 52, the rotary encoder 56, the first distance sensor 121, and the second distance sensor 311 are collectively processed by the controller 21, and the controller 21 uses the processed data Control the operation of the display 23, the light 213, the electromagnetic clutch 321, the electric cylinder 16, and the motor 32; when the controller 21 plans a route, if a drawing containing the processing path of the workpiece is input into the controller 21, the controller 21 follows the drawing The path of the machining path is planned. If the path is manually marked, the camera 212 scans the mark and travels along the mark.
  • the above two methods can also be used in combination, such as marking the initial processing position on the workpiece and using the processing position Mark as the starting point and follow the path of the drawing.
  • a handheld workpiece error self-correcting milling device based on augmented reality technology includes a base, a control box, a milling mechanism, a control handle, and a direction distance detection mechanism.
  • the base is closely attached to the workpiece processing surface, and the controller automatically plans the travel The route or operator manually plans the route by marking on the surface of the workpiece.
  • the control handle is used to push the base to travel along the planned route and send control instructions to the controller.
  • the camera in the control box scans the surface of the workpiece and/or detects the direction distance
  • the mechanism measures and detects the errors generated during the travel through the sensor, overlays the route map and the workpiece surface planned in the controller to guide the travel route, and the milling mechanism is controlled by the controller to automatically correct the travel errors and then perform the milling operation on the workpiece.
  • the structure is reasonable, with the advantages of simple structure, convenient use, high degree of intelligence, high precision, small size, strong practicability, etc., and effectively solves the problem of low accuracy of existing handheld processing machinery.

Abstract

一种基于增强现实技术的手持式工件误差自修正铣削装置,包括底座(1)、控制箱(2)、铣削机构(3)、控制手柄(4)、方向距离检测机构(5),底座(1)设有透明板(11)、通槽(13)、螺孔(14)、滑槽(15)、槽体(18)、支撑平台(12);控制箱(2)内从下往上依次设置有控制器(21)、蓄电池(22)、显示器(23);铣削机构(3)包括壳体(31)、电机(32)、转筒(33)、支撑杆(34);控制手柄(4)上分别设置有若干控制按钮(41);方向距离检测机构(5)包括第一ㄟ字形板材(51)、角度传感器(52)、张紧弹簧(53)、第二ㄟ字形板材(54)、转轮(55)。基于增强现实技术的手持式工件误差自修正铣削装置,其结构合理,具有结构简单、使用方便、智能化程度高、精度高、体积小、实用性强等优点,有效解决现有手持加工机械精度低的问题。

Description

一种基于增强现实技术的手持式工件误差自修正铣削装置 技术领域
本发明涉及加工机械设备领域,尤其是涉及一种基于增强现实技术的手持式工件误差自修正铣削装置。
背景技术
现有技术中,对工件的切削作业通常由手工或者精度不高的切削机械粗加工出毛坯,再用精加工机械进行精加工,其原因在于手工加工以及普通加工机械普遍存在精度不高的问题,特别是对于精度要求较高的大批量工件加工而言,数控机床、加工中心等精加工机械更是不可或缺,然而这些精加工机械往往体积庞大,价格昂贵,且操作复杂,对于小批量生产个别高精度工件的个人或者工厂而言,购买价格昂贵、体积庞大且操作复杂的精加工机械显然是不实际的,所以有必要设计一种小型化、智能化、高精度的手持铣削装置。
发明内容
本发明要解决的技术问题是:为了克服上述中存在的问题,提供了一种基于增强现实技术的手持式工件误差自修正铣削装置,其结构合理,具有结构简单、使用方便、智能化程度高、精度高、体积小、实用性强等优点,有效解决现有手持加工机械精度低的问题。
本发明解决其技术问题所采用的技术方案是:一种基于增强现实技术的手持式工件误差自修正铣削装置,包括底座、控制箱、铣削机构、控制手柄、方向距离检测机构,所述的底座一端设有透明板,底座的另一端设有通槽以及螺孔,底座的中部设有相互垂直的滑槽、槽体以及设置在槽体上的支撑平台;
所述的滑槽是倒T字形结构,滑槽内分别设置有工字型滑块,工字型滑块 上固定设置有电动缸,电动缸的主轴是与支撑平台的侧面相互固定连接;所述的支撑平台底部设置有与之滚动连接的若干滚珠;
所述的控制箱是设置于透明板上方,控制箱内从下往上依次设置有控制器、蓄电池、显示器;所述的控制器上集成摄像头、照明灯,摄像头、照明灯正对透明板;
所述的铣削机构是设置于底座的中部,铣削机构包括壳体、设置于通槽上方的电机、表面设有螺纹的转筒、支撑杆;所述的电机是固定设置于壳体内,电机的主轴上依次连接有电磁离合器、夹头、铣削刀具;所述的转筒是铰接于壳体上,转筒与电磁离合器通过传动带相互传动连接;所述的支撑杆是竖直设置在支撑平台上,所述壳体是与支撑杆相互滑动连接,支撑杆上设置有齿条与转筒上的螺纹相互传动连接;
所述的控制手柄对称固定设置在底座中部两端,控制手柄上分别设置有若干控制按钮;所述的方向距离检测机构包括第一ㄟ字形板材、角度传感器、张紧弹簧、第二ㄟ字形板材、转轮;
所述的第一ㄟ字形板材的一端与螺孔相互固定连接,角度传感器固定设置在第一ㄟ字形板材的另一端;所述的转轮设置于通槽内,转轮上设置有旋转编码器;所述第二ㄟ字形板材的一端与角度传感器的检测端相互套接,第二ㄟ字形板材的另一端与旋转编码器相互连接,张紧弹簧是套设在角度传感器的检测端;所述的张紧弹簧的两端分别与第二ㄟ字形板材、角度传感器相互抵接。
进一步地,所述的支撑平台上设有若干第一距离传感器,第一距离传感器的检测端正对槽体的侧壁。
进一步地,所述的透明板是嵌入底座,且透明板的上下两面与底座的上下两面平齐。
进一步地,所述的夹头包括与电机主轴相互连接的弹簧夹头、套设在弹簧夹头内腔的磁性套筒、与弹簧夹头螺纹连接的锁定螺母。
进一步地,所述的磁性套筒包括柔性板、相间固定设置在柔性板上的若干磁性弧形板,铣削刀具是套设在磁性套筒的内腔。
进一步地,所述的壳体上设置有第二距离传感器。
进一步地,所述的控制器分别与电动缸、蓄电池、显示器、摄像头、照明灯、电机、电磁离合器、控制按钮、角度传感器、旋转编码器、第一距离传感器、第二距离传感器相互电性连接。
本发明的有益效果是:一种基于增强现实技术的手持式工件误差自修正铣削装置,包括底座、控制箱、铣削机构、控制手柄、方向距离检测机构,底座紧贴工件加工表面,控制器自动规划行进路线或者操作人员通过在工件表面进行标识手动规划路线,控制手柄用于推动底座沿着规划好的路线行进并向控制器发送控制指令,控制箱内的摄像头扫描工件表面标识和/或方向距离检测机构通过传感器测量检测行进时产生的误差,将控制器中规划的路线图和工件表面进行重叠显示以指引行进路线,并由控制器控制铣削机构自动修正行进误差后对工件进行铣削作业。其结构合理,具有结构简单、使用方便、智能化程度高、精度高、体积小、实用性强等优点,有效解决现有手持加工机械精度低的问题。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明所述一种基于增强现实技术的手持式工件误差自修正铣削装置的整体结构示意图;
图2是本发明所述一种基于增强现实技术的手持式工件误差自修正铣削装置的底座俯视结构示意图;
图3是本发明所述一种基于增强现实技术的手持式工件误差自修正铣削装置的底座横向剖面结构示意图;
图4是本发明所述一种基于增强现实技术的手持式工件误差自修正铣削装置的底座、控制箱、控制手柄结构示意图;
图5是本发明所述一种基于增强现实技术的手持式工件误差自修正铣削装置的控制箱、底座连接结构示意图;
图6是本发明所述一种基于增强现实技术的手持式工件误差自修正铣削装置的铣削机构部分结构示意图;
图7是本发明所述一种基于增强现实技术的手持式工件误差自修正铣削装置的夹头结构示意图;
图8是本发明所述一种基于增强现实技术的手持式工件误差自修正铣削装置的磁性套筒结构示意图;
图9是本发明所述一种基于增强现实技术的手持式工件误差自修正铣削装置的方向距离检测机构与底座连接结构示意图。
附图中标记分述如下:1、底座,11、透明板,12、支撑平台,121、第一距离传感器,122、滚珠,13、通槽,14、螺孔,15、滑槽,16、电动缸,17、工字型滑块,18、槽体,2、控制箱,21、控制器,212、摄像头,213、照明灯,22、蓄电池,23、显示器,3、铣削机构,31、壳体,311、第二距离传感器,32、电机,321、电磁离合器,322、夹头,3221、弹簧夹头,3222、磁性套筒,3223、锁定螺母,3224、柔性板,3225、磁性弧形板,323、铣削刀具,33、转筒,34、支撑杆,341、齿条,4、控制手柄,41、控制按钮,5、方向距离检测机构,51、第一ㄟ字形板材,52、角度传感器,53、张紧弹簧,54、第二ㄟ字形板材,55、转轮,56、旋转编码器。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图1所示的一种基于增强现实技术的手持式工件误差自修正铣削装置,包括底座1、控制箱2、铣削机构3、控制手柄4、方向距离检测机构5。
如图2所示,所述的底座1一端设有透明板11,底座1的另一端设有通槽13以及螺孔14,底座1的中部设有相互垂直的滑槽15、槽体18以及设置在槽体18上的支撑平台12。
如图3所示,所述的滑槽15是倒T字形结构,滑槽15内分别设置有工字型滑块17,工字型滑块17上固定设置有电动缸16,电动缸16的主轴是与支撑平台12的侧面相互固定连接;所述的支撑平台12底部设置有与之滚动连接的若干滚珠122。
如图4、图8所示,所述的控制箱2是设置于透明板11上方,控制箱2内从下往上依次设置有控制器21、蓄电池22、显示器23;所述的控制器21上集成摄像头212、照明灯213,摄像头212、照明灯213正对透明板11;在一种实施例中,照明灯213为摄像头212提供照明,工件上手工设置标识,摄像头212通过扫描工件上的标识识别行进路线,所述的标识可以是完整的直线或者间隔不超过摄像头212扫描直径的若干线段组成,当然直线或者线段上也可以设置箭头等符号用于丰富标识内容。
如图1、图6所示,所述的铣削机构3是设置于底座1的中部,铣削机构3包括壳体31、设置于通槽13上方的电机32、表面设有螺纹的转筒33、支撑杆34;所述的电机32是固定设置于壳体31内,电机32的主轴上依次连接有电磁离合器321、夹头322、铣削刀具323;
所述的转筒33是铰接于壳体31上,转筒33与电磁离合器321通过传动带相互传动连接;所述壳体31是与支撑杆34相互滑动连接,支撑杆34上设置有齿条341与转筒33上的螺纹相互传动连接。
如图3所示,所述的支撑杆34是竖直设置在支撑平台12上。
如图1、图4所示,所述的控制手柄4对称固定设置在底座1中部两端,控制手柄4上分别设置有若干控制按钮41;控制按钮41用于向控制器21发送控制指令,单独或全部控制各部件的运行。
如图9所示,所述的方向距离检测机构5包括第一ㄟ字形板材51、角度传感器52、张紧弹簧53、第二ㄟ字形板材54、转轮55;
所述的第一ㄟ字形板材51的一端与螺孔14相互固定连接,角度传感器52固定设置在第一ㄟ字形板材51的另一端;所述的转轮55设置于通槽13内,转轮55上设置有旋转编码器56;所述第二ㄟ字形板材54的一端与角度传感器52的检测端相互套接,第二ㄟ字形板材54的另一端与旋转编码器56相互连接,张紧弹簧53是套设在角度传感器52的检测端;所述的张紧弹簧53的两端分别与第二ㄟ字形板材54、角度传感器52相互抵接。
角度传感器52用于测量底座相对加工开始方向的旋转角度,旋转编码器56用于检测相对于加工开始位置所行进的路程。
所述的支撑平台12上设有若干第一距离传感器121,第一距离传感器121的检测端正对槽体18的侧壁,且检测端朝向不同方向的第一距离传感器121的数量应不少于两个,其作用在于测量支撑平台12与槽体18侧壁之间的距离,并以此间接得出支撑杆34的水平位置。在一种实施例中,支撑平台12上设置有两个第一距离传感器121,且两个第一距离传感器121的检测端所朝方向成90°直角。
在如图5所示的一种实施例中,所述的透明板11是嵌入底座1,且透明板11的上下两面与底座1的上下两面平齐,以避免铣削下来的碎屑堆积在透明板11下方阻碍摄像头212的正常工作。在另一种可能的实施例中,透明板11是嵌入底座1,且透明板11仅与底座1的底面平齐。
如图7所示,所述的夹头322包括与电机32主轴相互连接的弹簧夹头3221、套设在弹簧夹头3221内腔的磁性套筒3222、与弹簧夹头3221螺纹连接的锁定螺母3223。
在如图8所示的一种实施例中,所述的磁性套筒3222包括柔性板3224、相间固定设置在柔性板3224上的若干磁性弧形板3225,铣削刀具323是套设在磁性套筒3222的内腔,在弹簧夹头3221逐渐被锁定螺母3223锁定的过程中,磁性套筒3222上固定在柔性板3224上的磁性弧形板3225逐渐向中心收缩并夹紧铣削刀具323,当铣削刀具323承受的负载大于磁性弧形板3225与弹簧夹头3221内壁之间的磁力时磁性套筒3222转动,避免铣削刀具323折断伤人。
所述的壳体31上设置有第二距离传感器311,第二距离传感器311用于检测得到铣削刀具323的与工件表面的垂直距离,结合第一距离传感器121的数据和铣削刀具323的长度数据,便可以计算出铣削刀具323刀口的位置数据。
所述的控制器21分别与电动缸16、蓄电池22、显示器23、摄像头212、照明灯213、电机32、电磁离合器321、控制按钮41、角度传感器52、旋转编码器56、第一距离传感器121、第二距离传感器311相互电性连接。
所述的摄像头212、控制按钮41、角度传感器52、旋转编码器56、第一距离传感器121、第二距离传感器311收集到的数据由控制器21统一处理,控制器21借由处理后的数据控制显示器23、照明灯213、电磁离合器321、电动缸16、电机32的动作;控制器21规划路线时,如控制器21中输入了含有工件加 工路径的图纸,则控制器21沿着图纸上的加工路径规划路径运动,如果人工标识路径,则由摄像头212通过扫描标识,并沿着标识行进,当然,以上两种方法也可结合使用,如在工件上标识加工初始位置,并以加工位置标识为起点,依照图纸路径行进。
本发明所述的一种基于增强现实技术的手持式工件误差自修正铣削装置,包括底座、控制箱、铣削机构、控制手柄、方向距离检测机构,底座紧贴工件加工表面,控制器自动规划行进路线或者操作人员通过在工件表面进行标识手动规划路线,控制手柄用于推动底座沿着规划好的路线行进并向控制器发送控制指令,控制箱内的摄像头扫描工件表面标识和/或方向距离检测机构通过传感器测量检测行进时产生的误差,将控制器中规划的路线图和工件表面进行重叠显示以指引行进路线,并由控制器控制铣削机构自动修正行进误差后对工件进行铣削作业。其结构合理,具有结构简单、使用方便、智能化程度高、精度高、体积小、实用性强等优点,有效解决现有手持加工机械精度低的问题。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (7)

  1. 一种基于增强现实技术的手持式工件误差自修正铣削装置,其特征在于:包括底座(1)、控制箱(2)、铣削机构(3)、控制手柄(4)、方向距离检测机构(5),所述的底座(1)一端设有透明板(11),底座(1)的另一端设有通槽(13)以及螺孔(14),底座(1)的中部设有相互垂直的滑槽(15)、槽体(18)以及设置在槽体(18)上的支撑平台(12);
    所述的滑槽(15)是倒T字形结构,滑槽(15)内分别设置有工字型滑块(17),工字型滑块(17)上固定设置有电动缸(16),电动缸(16)的主轴是与支撑平台(12)的侧面相互固定连接;所述的支撑平台(12)底部设置有与之滚动连接的若干滚珠(122);
    所述的控制箱(2)是设置于透明板(11)上方,控制箱(2)内从下往上依次设置有控制器(21)、蓄电池(22)、显示器(23);所述的控制器(21)上集成摄像头(212)、照明灯(213),摄像头(212)、照明灯(213)正对透明板(11);
    所述的铣削机构(3)是设置于底座(1)的中部,铣削机构(3)包括壳体(31)、设置于通槽(13)上方的电机(32)、表面设有螺纹的转筒(33)、支撑杆(34);所述的电机(32)是固定设置于壳体(31)内,电机(32)的主轴上依次连接有电磁离合器(321)、夹头(322)、铣削刀具(323);所述的转筒(33)是铰接于壳体(31)上,转筒(33)与电磁离合器(321)通过传动带相互传动连接;所述的支撑杆(34)是竖直设置在支撑平台(12)上,所述壳体(31)是与支撑杆(34)相互滑动连接,支撑杆(34)上设置有齿条(341)与转筒(33)上的螺纹相互传动连接;
    所述的控制手柄(4)对称固定设置在底座(1)中部两端,控制手柄(4)上分别设置有若干控制按钮(41);所述的方向距离检测机构(5)包括第一ㄟ 字形板材(51)、角度传感器(52)、张紧弹簧(53)、第二ㄟ字形板材(54)、转轮(55);
    所述的第一ㄟ字形板材(51)的一端与螺孔(14)相互固定连接,角度传感器(52)固定设置在第一ㄟ字形板材(51)的另一端;所述的转轮(55)设置于通槽(13)内,转轮(55)上设置有旋转编码器(56);所述第二ㄟ字形板材(54)的一端与角度传感器(52)的检测端相互套接,第二ㄟ字形板材(54)的另一端与旋转编码器(56)相互连接,张紧弹簧(53)是套设在角度传感器(52)的检测端;所述的张紧弹簧(53)的两端分别与第二ㄟ字形板材(54)、角度传感器(52)相互抵接。
  2. 根据权利要求1所述的一种基于增强现实技术的手持式工件误差自修正铣削装置,其特征在于:所述的支撑平台(12)上设有若干第一距离传感器(121),第一距离传感器(121)的检测端正对槽体(18)的侧壁。
  3. 根据权利要求1所述的一种基于增强现实技术的手持式工件误差自修正铣削装置,其特征在于:所述的透明板(11)是嵌入底座(1),且透明板(11)的上下两面与底座(1)的上下两面平齐。
  4. 根据权利要求1所述的一种基于增强现实技术的手持式工件误差自修正铣削装置,其特征在于:所述的夹头(322)包括与电机(32)主轴相互连接的弹簧夹头(3221)、套设在弹簧夹头(3221)内腔的磁性套筒(3222)、与弹簧夹头(3221)螺纹连接的锁定螺母(3223)。
  5. 根据权利要求4所述的一种基于增强现实技术的手持式工件误差自修正铣削装置,其特征在于:所述的磁性套筒(3222)包括柔性板(3224)、相间固定设置在柔性板(3224)上的若干磁性弧形板(3225),铣削刀具(323)是套设在磁性套筒(3222)的内腔。
  6. 根据权利要求1所述的一种基于增强现实技术的手持式工件误差自修正铣削装置,其特征在于:所述的壳体(31)上设置有第二距离传感器(311)。
  7. 根据权利要求1、2、6任一权利要求所述的一种基于增强现实技术的手持式工件误差自修正铣削装置,其特征在于:所述的控制器(21)分别与电动缸(16)、蓄电池(22)、显示器(23)、摄像头(212)、照明灯(213)、电机(32)、电磁离合器(321)、控制按钮(41)、角度传感器(52)、旋转编码器(56)、第一距离传感器(121)、第二距离传感器(311)相互电性连接。
PCT/CN2019/073480 2019-01-09 2019-01-28 一种基于增强现实技术的手持式工件误差自修正铣削装置 WO2020143083A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910020509.5 2019-01-09
CN201910020509.5A CN109909528B (zh) 2019-01-09 2019-01-09 一种基于增强现实技术的手持式工件误差自修正铣削装置

Publications (1)

Publication Number Publication Date
WO2020143083A1 true WO2020143083A1 (zh) 2020-07-16

Family

ID=66960219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073480 WO2020143083A1 (zh) 2019-01-09 2019-01-28 一种基于增强现实技术的手持式工件误差自修正铣削装置

Country Status (3)

Country Link
US (1) US20200215715A1 (zh)
CN (1) CN109909528B (zh)
WO (1) WO2020143083A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113341877B (zh) * 2021-06-08 2023-12-01 珠海市立胜机械有限公司 一种自动修正加工误差的铣削装置
WO2023048728A1 (en) * 2021-09-27 2023-03-30 Lm Wind Power A/S Control system and method for controlling operation of a machine in an industrial environment
CN114465910B (zh) * 2022-02-10 2022-09-13 北京为准智能科技有限公司 一种基于增强现实技术的机械加工设备校准方法
CN115846731B (zh) * 2022-10-14 2024-02-20 山东天智信息科技有限公司 一种便于薄壁件固定加工的智能数控平台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223148A (ja) * 1994-02-07 1995-08-22 Sanyo Electric Co Ltd Nc工作機械における工具チェック装置
CN101633059A (zh) * 2009-08-03 2010-01-27 北京二七轨道交通装备有限责任公司 一种激光切割前预穿孔装置
CN201543874U (zh) * 2009-11-17 2010-08-11 安徽省海安机械制造有限公司 数控轻型铣床
CN203076669U (zh) * 2013-01-15 2013-07-24 中机建重工有限公司 一种全自动手持便携式铣磨机
CN205764077U (zh) * 2016-05-26 2016-12-07 天津市嘉德宇通科技发展有限公司 一种自动铣床
CN206241737U (zh) * 2016-08-27 2017-06-13 王雪 一种机床自动控制辅助装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2630151A (en) * 1950-05-22 1953-03-03 American Mfg Company Inc Portable track-guided tilt router
US3269270A (en) * 1964-05-04 1966-08-30 Gleason Works Gear machine or the like
US5101557A (en) * 1990-11-14 1992-04-07 General Electric Company Method for machining rotors
US5207253A (en) * 1992-03-20 1993-05-04 Ryobi Motor Products, Corp Plunge router
CN201208661Y (zh) * 2008-06-23 2009-03-18 丁东 一种手推电动铣床机
CN201220335Y (zh) * 2008-06-23 2009-04-15 丁东 一种铝门窗组角机
CN201446271U (zh) * 2009-08-11 2010-05-05 丁东 一种仿形铣床
US9174283B2 (en) * 2012-04-25 2015-11-03 Milwaukee Electric Tool Corporation Magnetic drill press
CN203030898U (zh) * 2012-12-27 2013-07-03 金湖县常盛动力机械配件有限公司 基于仪表车床加工滚轮体壳体上键槽的夹持进给装置
CN204094202U (zh) * 2014-08-25 2015-01-14 贝朗医疗(苏州)有限公司 用于医用钳的可摆动切割装置
CN206343933U (zh) * 2016-12-30 2017-07-21 东莞市华洋特钢制品有限公司 一种模板侧铣机
CN207971461U (zh) * 2017-12-01 2018-10-16 九江精博精密科技有限公司 一种小五金厂用简易自动铣床
CN209986293U (zh) * 2019-01-09 2020-01-24 谭泳宗 一种手持式工件误差自修正铣削装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07223148A (ja) * 1994-02-07 1995-08-22 Sanyo Electric Co Ltd Nc工作機械における工具チェック装置
CN101633059A (zh) * 2009-08-03 2010-01-27 北京二七轨道交通装备有限责任公司 一种激光切割前预穿孔装置
CN201543874U (zh) * 2009-11-17 2010-08-11 安徽省海安机械制造有限公司 数控轻型铣床
CN203076669U (zh) * 2013-01-15 2013-07-24 中机建重工有限公司 一种全自动手持便携式铣磨机
CN205764077U (zh) * 2016-05-26 2016-12-07 天津市嘉德宇通科技发展有限公司 一种自动铣床
CN206241737U (zh) * 2016-08-27 2017-06-13 王雪 一种机床自动控制辅助装置

Also Published As

Publication number Publication date
CN109909528A (zh) 2019-06-21
US20200215715A1 (en) 2020-07-09
CN109909528B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
WO2020143083A1 (zh) 一种基于增强现实技术的手持式工件误差自修正铣削装置
US20230405753A1 (en) Position feedback control method and power tool
US8336223B2 (en) Roundness measuring apparatus
US6776076B2 (en) Angle gauge
US20070220764A1 (en) Precision electronic combination square
CN209986293U (zh) 一种手持式工件误差自修正铣削装置
JP2009244128A (ja) ネジ測定装置、ネジ測定方法、及びネジ測定装置を備えた工作機械
CN211764528U (zh) 一种便于定位的角尺
CN101963483B (zh) 一种用于光学元件检测的三轴旋转工作平台
KR20090122588A (ko) 디지털 보링헤드
CN201907159U (zh) 带定位卡尺的电圆锯
CN203109933U (zh) 划线辅助装置
US2794362A (en) Tap analyzer
CN105500125B (zh) 一种异形工具磨床
CN112526922A (zh) 机床的定位系统及所述系统提供的定位方法
CN108581843A (zh) 抛光修整装置及研磨抛光设备
CN202592127U (zh) 适用于光学对刀仪投影系统的位置调节装置
US1228791A (en) Micrometer-gage.
CN101628388A (zh) 用于对工具机进行校准的装置
CN206230503U (zh) 一种应用于柴油发动机零件加工的多功能手动划线仪
CN219044239U (zh) 一种工程用的图纸测量尺
US2337697A (en) Work-setting indicator
CN211717404U (zh) 刀口形直尺工作棱边直线度检定用可旋转式夹持定位装置
CN209588903U (zh) 一种滑块快速测量工具
CN220161624U (zh) 一种钢结构制作用定位对齐装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 31.08.2021)