WO2020142898A1 - 一种可调控的磁性斯格明子材料及其制备方法和用途 - Google Patents

一种可调控的磁性斯格明子材料及其制备方法和用途 Download PDF

Info

Publication number
WO2020142898A1
WO2020142898A1 PCT/CN2019/070841 CN2019070841W WO2020142898A1 WO 2020142898 A1 WO2020142898 A1 WO 2020142898A1 CN 2019070841 W CN2019070841 W CN 2019070841W WO 2020142898 A1 WO2020142898 A1 WO 2020142898A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
optionally
stigmine
dimensional
semiconductor substrate
Prior art date
Application number
PCT/CN2019/070841
Other languages
English (en)
French (fr)
Inventor
王干
陈俊树
何洪涛
叶飞
梅佳伟
周良
王琳晶
Original Assignee
南方科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学 filed Critical 南方科技大学
Priority to PCT/CN2019/070841 priority Critical patent/WO2020142898A1/zh
Publication of WO2020142898A1 publication Critical patent/WO2020142898A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present application belongs to the field of magnetic materials, and relates to an adjustable magnetic stigmine material and its preparation method and use.
  • Magnetic stigmine is a topological magnetic configuration structure.
  • a topological magnetic structure is called magnetic skyrmion.
  • magnetic skyrmions In terms of classification, magnetic skyrmions have two topologically equivalent configurations, one is Bloch configuration skyrmion (as shown in Figure 1a), and the other is Neel configuration skyrmion (as shown in Figure 1b) ), the difference between the two configurations is the difference in the path in which the orientation of the magnetic moment is reversed.
  • magnetic stigmine can be driven by physical conditions such as current, heat, light, etc. in the span of micrometers to nanometers; in the process of interaction, it can also be superlattice array. Forms exist in ferromagnetic materials.
  • the topological magnetic configuration of the magnetic stigmine enhances its interaction with the current. Specifically, when electrons propagate in the stigmine, the torque caused by the magnetic interaction will be generated, so that the magnetic Skegmiko's drive.
  • Track memory is a storage technology based on magnetic domain wall movement. It does not involve mechanical movement in the process of storing and reading data. Therefore, it has technical advantages such as high stability, low energy consumption, and high density. Therefore, in the field of information technology , Is considered to be the rising star of the new generation of information storage technology.
  • the purpose of this application is to provide an adjustable magnetic stigmine material and its preparation method and use.
  • the magnetic stigmine material provided by this application has low cost, adjustable size, and high density of stigmine array.
  • the present application provides a magnetic stigmine material, which is mainly composed of a magnetic material and a two-dimensional elemental nanosheet embedded in the magnetic material.
  • the magnetic stigmine material provided by this application transforms the ordinary magnetic thin film into a magnetic stigmine material by using a two-dimensional elemental nanosheet doping technique with strong spin orbit coupling elements, which significantly reduces the cost of the stigmine material and can By controlling the size of the two-dimensional nanosheets to adjust the size of the stigmine, it is easy to produce a three-dimensional stigmine array with an average diameter of 10 nm uniformly distributed in the magnetic film.
  • the magnetic stigmine material provided by the present application can be adjusted by adjusting two-dimensional elemental nanosheets, so it is a tunable magnetic stigmine material.
  • the magnetic material is a compound formed of a metal element and a chalcogen element, and the metal element includes any one of Fe element, Mn element, or Cr element.
  • the chalcogen element is Te.
  • the magnetic material is Cr 2 Te 3 .
  • the two-dimensional elemental nanoplates are elementary two-dimensional nanoplates with strong spin orbit coupling elements.
  • the strong spin orbit coupling element includes Bi and/or Sb, optionally Bi.
  • the Bi and/or Sb refers to Bi, Sb, or a combination of Bi and Sb.
  • the stigmines in the magnetic stigmine material are arranged in an array.
  • the diameter of the stigmine in the magnetic stigmine material is 10-80nm, such as 10nm, 20nm, 30nm, 40nm, 50nm, 60nm, 70nm or 80nm, etc., but it is not limited to the listed values, the Other values not listed in the value range also apply.
  • Such a size of the stigmine subunit can obtain a high-density stigmine array.
  • the magnetic stigmine material further includes a protective layer, and the protective layer covers the surface of the magnetic material.
  • the protective layer can prevent the stigmine material from reacting with oxygen or water in the air.
  • the protective layer is an inert material layer.
  • the inert material includes metal materials and/or semiconductor materials.
  • the metal material and/or semiconductor material refers to a metal material, a semiconductor material, or a combination of a metal material and a semiconductor material.
  • the inert material is ZnSe.
  • the present application provides a method for preparing a magnetic stigmine material according to the first aspect, the method includes the following steps:
  • a buffer layer is epitaxially grown on the surface of the semiconductor substrate
  • a magnetic material embedded in a two-dimensional elemental nanoplate is epitaxially grown on the surface of the buffer layer in step (1) to obtain the magnetic stigmine material.
  • the surface of the buffer layer prepared in step (1) is relatively flat, which is more conducive to the subsequent steps.
  • step (2) the epitaxial growth of the magnetic material and the two-dimensional nanosheets is obtained as described in this application.
  • the preparation method of the present application incorporates a two-dimensional nanosheet with strong spin-orbit coupling properties into the magnetic film, and introduces a sheet-like "seed" that can produce skyrmion, thereby transforming the ordinary ferromagnetic film into a magnetic sky Mingzi film.
  • the preparation method provided by the present application can realize the adjustment of the magnetic stigmine material by adjusting the two-dimensional elemental nanosheets.
  • the vacuum degree of the ultra-high vacuum is below 10 -7 Pa.
  • the semiconductor substrate is a GaAs single crystal semiconductor substrate, optionally a GaAs (111) single crystal semiconductor substrate.
  • the buffer layer in step (1) includes a ZnSe layer.
  • the temperature of the epitaxial growth buffer layer in step (1) is 200-230°C, such as 200°C, 205°C, 210°C, 215°C, 220°C, 225°C, or 230°C, etc., but it is not limited to Values listed, other values not listed in the value range are also applicable.
  • the growth rate of the epitaxial growth buffer layer in step (1) is 1-10 nm/min, such as 1 nm/min, 2 nm/min, 3 nm/min, 4 nm/min, 5 nm/min, 6 nm/min, 7 nm /min, 8nm/min, 9nm/min, 10nm/min, etc., but not limited to the listed values, other values not listed in the value range are also applicable.
  • the method for epitaxially growing the buffer layer in step (1) is to vapor-deposit the buffer layer material onto the surface of the semiconductor substrate.
  • the evaporation is performed with an evaporation source.
  • step (2) the vacuum degree of the ultra-high vacuum is below 10 -7 Pa.
  • the temperature of the epitaxially grown magnetic material embedded in the two-dimensional elemental nanoplates in step (2) is 240-280°C, such as 240°C, 250°C, 260°C, 270°C or 280°C, etc., but it is not limited to The listed values and other unrecited values within the value range are also applicable.
  • the temperature can be used to regulate the distribution of the two-dimensional elemental nanosheets; the growth rate of the magnetic material is not sensitive to the temperature. This temperature can be adjusted by the temperature of the semiconductor substrate.
  • the growth rate of the epitaxial growth of the magnetic material embedded in the two-dimensional elemental nanosheets in step (2) is 0.5-5nm/min, such as 0.5nm/min, 1nm/min, 2nm/min, 3nm/min, 4nm /min, 5nm/min, etc., but not limited to the listed values, other unrecited values within the value range are also applicable.
  • the magnetic material in step (2) is a compound formed of a metal element and a chalcogen element, and the metal element includes any one of Fe element, Mn element, or Cr element.
  • the chalcogen element is Te.
  • the magnetic material in step (2) is Cr 2 Te 3 .
  • the two-dimensional elemental nanoplate is a simple spin-orbit coupling element elementary two-dimensional nanoplate.
  • the strong spin orbit coupling element includes Bi and/or Sb, optionally Bi.
  • the Bi and/or Sb refers to Bi, Sb, or a combination of Bi and Sb.
  • step (2) the method for epitaxially growing the magnetic material embedded in the two-dimensional elemental nanosheet is to simultaneously vapor-deposit the raw material constituting the magnetic material and the raw material of the two-dimensional elemental nanosheet to the step (1) On the surface of the buffer layer, a magnetic material embedded in a two-dimensional elemental nanosheet is generated.
  • the two-dimensional elementary nanoplates are embedded in the magnetic material through a competitive reaction.
  • the evaporation is performed with an evaporation source.
  • step (1) further includes: pre-treating the semiconductor substrate before epitaxially growing the buffer layer onto the surface of the semiconductor substrate.
  • the pretreatment of the semiconductor substrate can remove the oxide on the surface of the semiconductor substrate to expose the surface of the single crystal wafer.
  • the pretreatment method includes: heating the semiconductor substrate under ultra-high vacuum conditions to obtain a pretreated semiconductor substrate.
  • the heating temperature is 550-600°C, such as 550°C, 560°C, 570°C, 580°C, 590°C, or 600°C, etc., but it is not limited to the listed values. The listed values are also applicable, optional 580°C;
  • the vacuum degree of the ultra-high vacuum is below 10 -7 Pa.
  • the preparation method further includes step (3): under ultra-high vacuum conditions, a protective layer is vapor-deposited on the surface of the magnetic stigmine material in step (2).
  • the vacuum degree of the ultra-high vacuum in step (3) is below 10 -7 Pa.
  • the protective layer in step (3) is an inert material layer.
  • the inert material includes metal materials and/or semiconductor materials.
  • the metal material and/or semiconductor material refers to a metal material, a semiconductor material, or a combination of a metal material and a semiconductor material.
  • the inert material is ZnSe.
  • the preparation method is performed in a molecular beam epitaxial growth device.
  • the method includes the following steps:
  • the GaAs single crystal semiconductor substrate is heated to 580°C under a vacuum condition of 10 -7 Pa or less to obtain a pretreated semiconductor substrate;
  • step (1) Maintain the vacuum of step (1), at 200-230°C, perform vapor deposition on the surface of the semiconductor substrate pretreated in step (1) with a ZnSe evaporation source, and epitaxially grow at a growth rate of 1-10 nm/min Growth of ZnSe buffer layer;
  • step (3) Maintain the vacuum degree of step (1), at 240-280 °C, on the surface of the ZnSe buffer layer in step (2), Cr evaporation source, Te evaporation source and Bi evaporation source are simultaneously vapor-deposited, epitaxial growth embedded Bi-dimensional nano material sheet Cr 2 Te 3, the growth rate of production rate material Cr 2 Te 3 and Bi-dimensional nano-sheets is independently 0.5-5nm / min, to give the sub-Si Geming magnetic material;
  • step (1) Maintain the degree of vacuum in step (1), and deposit a protective layer on the surface of the magnetic stigmine material in step (3) to obtain a magnetic stigmine material with a protective layer.
  • the present application provides a use of the magnetic stigmine material according to the first aspect, the magnetic stigmine material is used in the preparation of a track memory.
  • the magnetic stigmine material provided in this application significantly reduces the cost of the stigmine material, and in the magnetic stigmine material provided in this application, the diameter of the stigmine is small, the size and distribution are adjustable, and the stigmine array The density is high, and the diameter of the stigmine in the magnetic stigmine material provided in this application can be adjusted in the range of 10-80 nm.
  • the preparation method provided by the present application is simple in operation and short in flow.
  • the doping of the two-dimensional nanosheets to transform the ordinary magnetic film into a carrier of stigmine is suitable for large-scale industrial production.
  • FIG. 1a is a simulation structure diagram of the Bloch configuration skyrmion in the background technology
  • FIG. 1b is a simulation structure diagram of Neel configuration skyrmion in the background technology
  • 2a is a schematic structural diagram of a molecular beam epitaxial growth device used in an embodiment of the present application, wherein 1-evaporation source, 2-heating coil, 3-electron gun, 4-substrate, 5-beam current monitoring, 6-ion gauge, 7-low temperature panel, 8-RHEED screen;
  • HAADF high-angle annular dark field
  • HAADF high-angle annular dark field
  • HAADF high-angle annular dark field
  • HAADF high-angle annular dark field
  • Example 4a is a topological Hall effect diagram of the magnetic stigmine material prepared in Example 2 of the present application when it is below 100K;
  • 4b is a distribution diagram of the topological Hall resistivity of the magnetic stigmine material prepared in Example 2 of the present application with magnetic field and temperature;
  • Fig. 5a is a calculation simulation result diagram of the change of the stigmine in the magnetic stigmine material prepared in Example 2 of the present application with the applied magnetic field.
  • FIG. 5b is a simulation result diagram of the three-dimensional spatial structure of the stigmine in the magnetic stigmine material prepared in Example 2 of the present application.
  • the molecular beam epitaxial growth device includes an evaporation source 1, a heating coil 2, an electron gun 3, a substrate 4, a beam current monitor 5, and an ion gauge 6 , Low-temperature panel 7 and RHEED (reflection high-energy electron diffusion) screen 8.
  • the three thermal evaporation sources of Cr, Te and Bi are turned on at the same time, and the growth conditions described in the examples are adjusted, and the corresponding atoms are sprayed onto the surface of the gallium arsenide semiconductor wafer.
  • the epitaxial growth of black phosphorus phase bismuth nanoplates are used in various embodiments of the present application.
  • the magnetic stigmine material is prepared according to the following method:
  • step (1) Maintain the vacuum of step (1), reduce the surface temperature of the GaAs substrate to 210°C, turn on the evaporation source of ZnSe for vapor deposition, and epitaxially grow a ZnSe thin film buffer layer on the semiconductor surface at a rate of 5 nm/min.
  • step (1) Maintain the vacuum degree of step (1), increase the surface temperature of the GaAs substrate to 275°C, and simultaneously open the three evaporation sources of chromium, tellurium, and bismuth for vapor deposition, and epitaxial the surface of the ZnSe thin film buffer layer at a rate of 1 nm/min A Cr 2 Te 3 magnetic thin film doped with bismuth nanoplates is grown.
  • step (1) Maintain the vacuum degree of step (1), and vapor-deposit a ZnSe protective layer on the surface of the Cr 2 Te 3 magnetic thin film embedded in the bismuth nanosheet to obtain the magnetic stigmine material.
  • a bismuth two-dimensional nanosheet as an insert is embedded in a Cr 2 Te 3 magnetic thin film, and the surface of the bismuth-doped Cr 2 Te 3 magnetic thin film is covered with a ZnSe protective layer.
  • the stigmines in the magnetic stigmine material are arranged in an array, and the diameters of the stigmines are 10-20 nm.
  • the production rate of the medium bismuth nanosheets of the magnetic stigmine material is greatly affected by the substrate temperature.
  • the density of the bismuth nanosheets is very low.
  • the topological Hall resistivity of the magnetic stigmine material obtained in this example is about 20n ⁇ cm.
  • Fig. 3a is a high-angle annular dark field (HAADF) scanning transmission electron microscope image of the magnetic stigmine material prepared in this example.
  • the bright white line shown in the chromium telluride lattice is a two-dimensional bismuth nanoplate.
  • step (3) the surface temperature of the GaAs substrate is changed to 250°C, and three evaporation sources of chromium, tellurium, and bismuth are simultaneously turned on for evaporation, at 1 nm/min. Cr 2 Te 3 magnetic thin film doped with bismuth nanoplates was grown epitaxially.
  • the magnetic stigmine material obtained in this application a large amount of bismuth two-dimensional nanosheets as an insert are embedded in the Cr 2 Te 3 magnetic film, and the surface of the bismuth-doped Cr 2 Te 3 magnetic film is covered with a ZnSe protective layer .
  • the stigmines in the magnetic stigmine material are arranged in an array, and the diameters of the stigmines are 10-50 nm.
  • the topological Hall resistivity of the magnetic stigmine material obtained in this example is about 1300 n ⁇ cm.
  • Fig. 2b is the electron diffraction pattern monitored during the epitaxial growth of the Cr 2 Te 3 film in this example.
  • the electron diffraction pattern indicates that the Cr 2 Te 3 film grown by the above molecular beam epitaxy method has high-quality surface flatness And lattice perfection.
  • FIG. 2c is an X-ray diffraction pattern of the magnetic stigmine material prepared in this example. The diffraction pattern further confirmed the lattice structure and quality of the Cr 2 Te 3 thin film grown by the above molecular beam epitaxy method.
  • FIG. 3b High-angle annular dark field (HAADF) scanning transmission electron microscope image of the magnetic stigmine material prepared in this example.
  • the bright white line in the chromium telluride lattice is a two-dimensional bismuth nanosheet.
  • Figure 3d is a high-angle annular dark field (HAADF) scanning transmission electron microscope enlarged image of two-dimensional bismuth nanosheets doped in the magnetic stigmine material prepared in this example.
  • Bismuth atoms with higher brightness are formed in the figure A two-dimensional structure of the black phosphorus phase, the figure also shows that the black phosphorus phase bismuth nanoplates are chromium telluride atoms above and below, forming a black phosphorus phase bismuth nanoplate/Cr 2 Te 3 composite interface.
  • Figure 4a is the Hall effect diagram of the magnetic stigmine material prepared in this example when it is below 100K, which shows the topological Hall transport effect of Bi-doped Cr 2 Te 3 thin film, which appears in the critical magnetic field
  • the peak near H C reflects the topological Hall effect of the thin film.
  • the peak position of the topological Hall resistance in the critical magnetic field in the figure confirms the existence of the abnormal Hall effect caused by magnetic skyrmions.
  • the chromium telluride film doped with black phosphorus phase bismuth under an appropriate magnetic field, due to the strong spin-orbit coupling effect of the bismuth atom, the magnetic interaction at the interface will cause the topological magnetic stigmine Produced at the interface of the bismuth double layer and chromium telluride, this state different from the ferromagnetic phase is called the skyrmion phase.
  • FIG. 4b is the distribution diagram of the topological Hall resistivity of the magnetic stigmine material prepared in this example with the magnetic field and temperature, from which the existence of the stigmine array in the magnetic stigmine material prepared in this example can be seen ,
  • the array can be maintained from 2K to 115K.
  • FIG. 5a is a calculation simulation result diagram of the change of the stigmine in the magnetic stigmine material prepared in this example with the applied magnetic field, which shows the evolution process of the magnetic stigmine in accordance with the change of the external field intensity.
  • Fig. 5b is a simulation result diagram of the three-dimensional spatial structure of the stigmine in the magnetic stigmine material prepared in the examples of the present application.
  • the spatial multi-layer distribution enhances the topological Hall effect of this embodiment.
  • step (3) the surface temperature of the GaAs substrate is reduced to 240°C, and three evaporation sources of chromium, tellurium, and bismuth are simultaneously turned on for evaporation, at a rate of 1 nm/min.
  • Velocity epitaxial growth of Cr 2 Te 3 magnetic thin film doped with bismuth nanoplates embedded Bi nanoplates have negligible effect on film thickness, Cr 2 Te 3 growth rate is insensitive to substrate temperature).
  • the magnetic stigmine material obtained in this application a large amount of bismuth two-dimensional nanosheets as an insert are embedded in the Cr 2 Te 3 magnetic film, and the surface of the bismuth-doped Cr 2 Te 3 magnetic film is covered with ZnSe protection Floor.
  • the stigmines in the magnetic stigmine material are arranged in an array, and the diameter of the stigmines is 10 to 80 nm.
  • the topological Hall resistivity of the magnetic stigmine material obtained in this example is one tenth of that in Example 2, which is about 130 n ⁇ cm.
  • FIG. 3c is a high-angle annular dark field (HAADF) scanning transmission electron microscope image of the magnetic stigmine material prepared in this example.
  • the bright white line shown in the chromium telluride lattice is a two-dimensional bismuth nanoplate.
  • Example 1 The specific method of this comparative example refers to Example 1. The difference is that in step (3), only the Cr 2 Te 3 magnetic film is grown, and at the same time, the bismuth nanoplate is grown, that is, the bismuth nanoplate and the Cr 2 Te 3 magnetic film are not grown at the same time. .

Abstract

本文公开了一种可调控的磁性斯格明子材料及其制备方法和用途。所述磁性斯格明子材料主要由磁性材料和嵌入在磁性材料中的二维单质纳米片组成。所述制备方法包括以下步骤:(1)超高真空条件下,在半导体基片表面外延生长缓冲层;(2)超高真空条件下,在步骤(1)所述缓冲层表面外延生长嵌入二维单质纳米片的磁性材料,得到所述磁性斯格明子材料。

Description

一种可调控的磁性斯格明子材料及其制备方法和用途 技术领域
本申请属于磁性材料领域,涉及一种可调控的磁性斯格明子材料及其制备方法和用途。
背景技术
磁性斯格明子是一种拓扑的磁构型结构。在一个磁斯格明子的磁结构区域内,相邻格点上的磁矩取向之间存在着小的夹角,使得区域中心磁矩与外部磁矩呈反平行排列状态,由此规则定义的一个拓扑磁结构被人们称之为磁斯格明子。在分类上,磁斯格明子具有两种拓扑等价的构型,一种为Bloch构型斯格明子(如图1a所示),一种是Neel构型斯格明子(如图1b所示),两种构型的差异在于磁矩取向实现翻转的路径的差异。磁性斯格明子作为一种拓扑的磁准粒子,其大小可以从微米跨度到纳米尺度,可被电流、热、光等物理条件所驱动;在相互作用过程中,也可以以超晶格阵列的形式存在于铁磁性材料中。实验中,人们发现磁性斯格明子的拓扑磁构型增强了其与电流的相互作用,具体表现为,电子在斯格明子中传播时,会产生由磁相互作用引起的力矩,从而实现对磁性斯格明子的驱动。2013年,诺贝尔物理学奖得主Albert Fert教授提出,可以利用磁性斯格明子的存在和消失两种状态定义磁存储中的“1”和“0”状态,进一步结合电流驱动磁斯格明子实现新型的赛道磁存储器(参见文献A.Fert,N.Reyren,V.Cros,Magnetic skyrmions:advances in physics and potential applications.Nat Rev Mater 2,(2017).)。赛道存储器是一种基于磁畴壁运动的存储技术,在存储和读取数据过程中不涉及机械运动,因此,具有高稳定性、低能耗、高密度等技术优势,因此,在信息技术领域,被认为是新一代信息存储技术的明日 之星。
当下,实现室温下稳定的纳米尺寸的高密度磁性斯格明子材料是技术突破的重要目标。近些年,科学家在以MnSi为代表的手性体材料中观察到室温磁性斯格明子阵列(参见文献Y.Li et al.,Robust formation of Skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi.Phys Rev Lett 110,117202(2013).,文献A.Neubauer et al.,Topological Hall effect in the A phase of MnSi.Phys Rev Lett 102,186602(2009).,以及文献A.Tonomura et al.,Real-space observation of skyrmion lattice in helimagnet MnSi thin samples.Nano Lett 12,1673-1677(2012).),但是,手性体材中的斯格明子尺寸较大,且难以通过微电子技术实现对其的有效操控,尚无法被直接应用于赛道存储器的研发。进一步的,科学家在Ir单晶表面外延生长的Pd/Fe双原子层中观察到半径尺寸为3.5纳米的斯格明子,并通过自旋极化的隧穿电流实现了对斯格明子操控(参见文献N.Romming et al.,Writing and Deleting Single Magnetic Skyrmions.Science 341,636-639(2013).)。应该说,这种在外延薄膜中实现的斯格明子阵列是有利于赛道存储器的研发的,但是,在以上薄膜中产生和操纵斯格明子的条件极为苛刻,需要在极低温(8K),强磁场(2T)的环境中进行,而且,Ir是极为昂贵的稀有金属材料,这些缺点都是通向赛道存储器研发的重要困难。针对这些问题,科学家通过构建更多的薄膜斯格明子材料体系(例如拓扑异质结Cr x(Bi 1-ySb y) 2-xTe 3/(Bi 1-ySb y) 2-xTe 3)、B20铁磁系统(MnSi,FeGe)以及其他的铁磁层与强自旋轨道耦合作用层的多层结构(Fe/Ir,Pt/Co/Ir等)(参见文献W.Jiang et al.,Skyrmions in magnetic multilayers.Physics Reports 704,1-49(2017).),将薄膜中的斯格明子实现条件进一步优化提升,但仍旧无法满足实际应用的需 求。
因此,开发一种成本低廉,制备方法简单的斯格明子材料,对于本领域有重要的意义。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于提供一种可调控的磁性斯格明子材料及其制备方法和用途。本申请提供的磁性斯格明子材料成本低廉,尺寸可调,斯格明子阵列密度高。
为达此目的,本申请采用以下技术方案:
第一方面,本申请提供一种磁性斯格明子材料,所述磁性斯格明子材料主要由磁性材料和嵌入在磁性材料中的二维单质纳米片组成。
本申请提供的磁性斯格明子材料通过使用强自旋轨道耦合元素的二维单质纳米片掺杂技术将普通磁性薄膜转变为磁性斯格明子材料,显著降低了斯格明子材料的成本,并且可以通过控制二维纳米片的尺寸实现对斯格明子尺寸的调控,容易产生平均直径为10nm的、均匀的分布在磁性薄膜中的三维斯格明子阵列。
本申请提供的磁性斯格明子材料可通过调整二维单质纳米片实现对斯格明子的调控,因此是一种可调控的磁性斯格明子材料。
作为本申请可选的技术方案,所述磁性材料为金属元素与硫族元素形成的化合物,所述金属元素包括Fe元素、Mn元素或Cr元素中的任意一种。
可选地,所述硫族元素为Te。
可选地,所述磁性材料为Cr 2Te 3
可选地,所述二维单质纳米片为强自旋轨道耦合元素单质的二维纳米片。
可选地,所述强自旋轨道耦合元素包括Bi和/或Sb,可选为Bi。本申请中,所述Bi和/或Sb是指,可以为Bi,也可以为Sb,还可以为Bi和Sb的组合。
可选地,所述磁性斯格明子材料中的斯格明子呈阵列排布。
可选地,所述磁性斯格明子材料中的斯格明子直径为10-80nm,例如10nm、20nm、30nm、40nm、50nm、60nm、70nm或80nm等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。这种斯格明子单体的尺寸可以获得高密度斯格明子阵列。
作为本申请可选的技术方案,所述磁性斯格明子材料还包括保护层,所述保护层覆盖在磁性材料的表面。保护层可以防止斯格明子材料与空气中的氧气或水发生反应。
可选地,所述保护层为惰性材料层。
可选地,所述惰性材料包括金属材料和/或半导体材料。本申请中,所述金属材料和/或半导体材料是指可以为金属材料,也可以为半导体材料,还可以为金属材料和半导体材料的组合。
可选地,所述惰性材料为ZnSe。
第二方面,本申请提供一种如第一方面所述的磁性斯格明子材料的制备方法,所述方法包括以下步骤:
(1)超高真空条件下,在半导体基片表面外延生长缓冲层;
(2)超高真空条件下,在步骤(1)所述缓冲层表面外延生长嵌入二维单质纳米片的磁性材料,得到所述磁性斯格明子材料。
本申请提供的制备方法中,步骤(1)制备得到的缓冲层表面比较平整,更有利于后续步骤的进行,步骤(2)中同时外延生长磁性材料和二维纳米片是得到本申请所述磁性斯格明子材料的关键。本申请的制备方法通过向磁性薄膜中掺入具有强自旋轨道耦合属性的二维纳米片,引入可以产生斯格明子的片状“种子”,从而将普通的铁磁性薄膜改造为磁性斯格明子薄膜。
本申请提供的制备方法可以通过对二维单质纳米片的调节实现对所述磁性斯格明子材料的调控。
作为本申请可选的技术方案,步骤(1)中,所述超高真空的真空度在10 -7Pa以下。
可选地,步骤(1)中,所述半导体基片为GaAs单晶半导体基片,可选为GaAs(111)单晶半导体基片。
可选地,步骤(1)所述缓冲层包括ZnSe层。
可选地,步骤(1)所述外延生长缓冲层的温度为200-230℃,例如200℃、205℃、210℃、215℃、220℃、225℃或230℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(1)所述外延生长缓冲层的生长速度为1-10nm/min,例如1nm/min、2nm/min、3nm/min、4nm/min、5nm/min、6nm/min、7nm/min、8nm/min、9nm/min或10nm/min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(1)所述外延生长缓冲层的方法为将缓冲层材料蒸镀到半导体基片表面。
可选地,所述蒸镀用蒸发源进行。
作为本申请可选的技术方案,步骤(2)中,所述超高真空的真空度在10 -7Pa以下。
可选地,步骤(2)所述外延生长嵌入二维单质纳米片的磁性材料的温度为240-280℃,例如240℃、250℃、260℃、270℃或280℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。本申请中,通过该温度可以对二维单质纳米片的分布起到调控作用;而磁性材料的生长速率对该温度不敏感。该温度可以通过半导体基片的温度进行调节。
可选地,步骤(2)所述外延生长嵌入二维单质纳米片的磁性材料的生长速度为0.5-5nm/min,例如0.5nm/min、1nm/min、2nm/min、3nm/min、4nm/min或5nm/min等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,步骤(2)所述磁性材料为金属元素与硫族元素形成的化合物,所述金属元素包括Fe元素、Mn元素或Cr元素中的任意一种。
可选地,所述硫族元素为Te。
可选地,步骤(2)所述磁性材料为Cr 2Te 3
可选地,步骤(2)所述二维单质纳米片为强自旋轨道耦合元素单质的二维纳米片。
可选地,所述强自旋轨道耦合元素包括Bi和/或Sb,可选为Bi。本申请中,所述Bi和/或Sb是指,可以为Bi,也可以为Sb,还可以为Bi和Sb的组合。
可选地,步骤(2)中,所述外延生长嵌入二维单质纳米片的磁性材料的方法为同时将组成磁性材料的原料和二维单质纳米片的原料蒸镀到步骤(1)所述缓冲层表面,产生嵌入二维单质纳米片的磁性材料。
本申请中,同时将组成磁性材料的原料和二维单质纳米片的原料蒸镀到步骤(1)所述缓冲层表面后,通过竞争反应,会使二维单质纳米片嵌入到磁性材料中。
可选地,所述蒸镀用蒸发源进行。
作为本申请可选的技术方案,步骤(1)中,还包括:向半导体基片表面外延生长缓冲层前,对半导体基片进行预处理。
本申请中,预处理半导体基片可以去除半导体基片表面的氧化物,露出单晶晶圆表面。
可选地,所述预处理的方法包括:在超高真空条件下,加热半导体基片,得到预处理的半导体基片。
可选地,所述加热的温度为550-600℃,例如550℃、560℃、570℃、580℃、590℃或600℃等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,可选为580℃;
可选地,所述超高真空的真空度在10 -7Pa以下。
作为本申请可选的技术方案,所述制备方法还包括步骤(3):超高真空条件下,在步骤(2)所述磁性斯格明子材料表面蒸镀保护层。
可选地,步骤(3)所述超高真空的真空度在10 -7Pa以下。
可选地,步骤(3)所述保护层为惰性材料层。
可选地,所述惰性材料包括金属材料和/或半导体材料。本申请中,所述金属材料和/或半导体材料是指可以为金属材料,也可以为半导体材料,还可以为金属材料和半导体材料的组合。
可选地,所述惰性材料为ZnSe。
可选地,所述制备方法在分子束外延生长设备中进行。
作为本申请所述制备方法的可选技术方案,所述方法包括以下步骤:
(1)在分子束外延生长设备中,10 -7Pa以下的真空度条件下将GaAs单晶半导体基片加热至580℃,得到预处理的半导体基片;
(2)保持步骤(1)的真空度,200-230℃下,在步骤(1)所述预处理的半导体基片表面用ZnSe蒸发源进行蒸镀,以1-10nm/min的生长速度外延生长ZnSe缓冲层;
(3)保持步骤(1)的真空度,240-280℃下,在步骤(2)所述ZnSe缓冲层表面用Cr蒸发源、Te蒸发源和Bi蒸发源同时进行蒸镀,以外延生长嵌入二维Bi纳米片的磁性材料Cr 2Te 3,磁性材料Cr 2Te 3的生长速度和二维Bi纳米片的产生速度独立地为0.5-5nm/min,得到所述磁性斯格明子材料;
(4)保持步骤(1)的真空度,在步骤(3)所述磁性斯格明子材料表面蒸镀保护层,得到带保护层的磁性斯格明子材料。
第三方面,本申请提供一种如第一方面所述磁性斯格明子材料的用途,所述磁性斯格明子材料用于赛道存储器的制备。
与相关技术相比,本申请具有以下有益效果:
(1)本申请提供的磁性斯格明子材料显著降低了斯格明子材料的成本,且本申请提供的磁性斯格明子材料中斯格明子的直径小,尺寸和分布可调,斯格明子阵列密度高,本申请提供的磁性斯格明子材料中的斯格明子直径可以在10-80nm范围内调节。
(2)本申请提供的制备方法操作简单,流程短,通过二维纳米片的掺杂将普通磁性薄膜改造为斯格明子的载体,适于进行大规模产业化生产。
在阅读并理解了详细描述和附图后,可以明白其他方面。
附图说明
图1a为背景技术中的Bloch构型斯格明子的模拟结构图;
图1b为背景技术中的Neel构型斯格明子的模拟结构图;
图2a为本申请实施例中使用的分子束外延生长设备的结构示意图,其中1-蒸发源,2-加热线圈,3-电子枪,4-衬底,5-束流监控,6-离子规,7-低温面板,8-RHEED屏;
图2b为本申请实施例2中Cr 2Te 3薄膜外延生长过程中监控到的电子衍射图案;
图2c为本申请实施例2制备的磁性斯格明子材料的X射线衍射图谱;
图3a为本申请实施例1制备的磁性斯格明子材料的高角环形暗场(HAADF)扫描透射电子显微镜图像;
图3b为本申请实施例2制备的磁性斯格明子材料的高角环形暗场(HAADF)扫描透射电子显微镜图像;
图3c为本申请实施例3制备的磁性斯格明子材料的高角环形暗场(HAADF)扫描透射电子显微镜图像;
图3d为本申请实施例2制备的磁性斯格明子材料中掺入的二维铋纳米片的高角环形暗场(HAADF)扫描透射电子显微镜放大图像和晶格模拟图;
图4a为本申请实施例2制备的磁性斯格明子材料在100K以下时的拓扑霍尔效应图;
图4b为本申请实施例2制备的磁性斯格明子材料的拓扑霍尔电阻率随磁场和温度的分布图;
图5a为本申请实施例2制备的磁性斯格明子材料中的斯格明子随外加磁场变化的计算模拟结果图。
图5b为本申请实施例2制备的磁性斯格明子材料中的斯格明子三维空间结构模拟结果图。
具体实施方式
为更好地说明本申请,便于理解本申请的技术方案,下面对本申请进一步详细说明。但下述的实施例仅仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请保护范围以权利要求书为准。
图2a为本申请各实施例中使用的分子束外延生长设备的结构示意图,该分子束外延生长设备包括蒸发源1,加热线圈2,电子枪3,衬底4,束流监控5,离子规6,低温面板7和RHEED(reflection high-energy electron diffraction,反射高能电子衍射)屏8。通过在外延生长碲化铬薄膜的过程中,同时打开Cr、Te、Bi三个热蒸发源,并调节到实施例记载的生长条件,向砷化镓半导体晶圆表面喷射相应原子,即可进行黑磷相铋纳米片的外延生长。
以下为本申请典型但非限制性实施例:
实施例1
本实施例按照如下方法制备磁性斯格明子材料:
1.将一个GaAs(111)单晶半导体基片放入到分子束外延生长设备的生长室中,调节真空度为10 -7Pa以下,加热GaAs(111)单晶半导体基片表面温度至580℃,去除表面氧化物,露出单晶晶圆表面。
2.保持步骤(1)的真空度,将GaAs基片表面温度降至210℃,打开ZnSe的蒸发源进行蒸镀,以5nm/min的速度在半导体表面外延生长ZnSe薄膜缓冲层。
3.保持步骤(1)的真空度,将GaAs基片表面温度提高至275℃,同时打开铬、碲、铋三个蒸发源进行蒸镀,以1nm/min的速度在ZnSe薄膜缓冲层表面外延生长掺有铋纳米片的Cr 2Te 3磁性薄膜。
4.保持步骤(1)的真空度,在铋纳米片嵌入的Cr 2Te 3磁性薄膜表面蒸镀ZnSe保护层,得到所述磁性斯格明子材料。
本申请得到的磁性斯格明子材料中,作为嵌入物的铋二维纳米片嵌入在Cr 2Te 3磁性薄膜中,并且在铋掺杂的Cr 2Te 3磁性薄膜表面覆盖有ZnSe保护层。该磁性斯格明子材料中的斯格明子呈阵列排布,斯格明子直径为10~20nm。
磁性斯格明子材料的中铋纳米片产生速率受基底温度影响较大,在本实施例中,由于较高的衬底温度,铋纳米片密度很低。
本实施例得到的磁性斯格明子材料的拓扑霍尔电阻率约为20nΩcm。
图3a为本实施例制备的磁性斯格明子材料的高角环形暗场(HAADF)扫描透射电子显微镜图像,图中碲化铬晶格内部所表现的白色亮线即为二维铋纳米片。
实施例2
本实施例的具体方法参照实施例1,区别在于,步骤(3)中,将GaAs基片表面温度改变到250℃,同时打开铬、碲、铋三个蒸发源进行蒸镀,以1nm/min的速度外延生长掺有铋纳米片的Cr 2Te 3磁性薄膜。
本申请得到的磁性斯格明子材料中,作为嵌入物的铋二维纳米片大量的嵌入在Cr 2Te 3磁性薄膜中,并且在铋掺杂的Cr 2Te 3磁性薄膜表面覆盖有ZnSe保护层。该磁性斯格明子材料中的斯格明子呈阵列排布,斯格明子直径为10~50nm。
本实施例得到的磁性斯格明子材料的拓扑霍尔电阻率约为1300nΩcm。
图2b为本实施例中Cr 2Te 3薄膜外延生长过程中监控到的电子衍射图案,该电子衍射图案表明采用上述分子束外延方法所生长的Cr 2Te 3薄膜,具有高质量的表面平整度和晶格完美度。
图2c为本实施例制备的磁性斯格明子材料的X射线衍射图谱,该衍射图案进一步证实了采用上述分子束外延方法所生长的Cr 2Te 3薄膜的晶格结构和质量。
图3b本实施例制备的磁性斯格明子材料的高角环形暗场(HAADF)扫描透射电子显微镜图像,图中碲化铬晶格内部所表现的白色亮线即为二维铋纳米片。
图3d为本实施例制备的磁性斯格明子材料中掺入的二维铋纳米片的的高角环形暗场(HAADF)扫描透射电子显微镜放大图像,具有较高亮度的铋原子在图中构成了一个黑磷相的二维结构,该图还表明黑磷相铋纳米片上下均为碲化铬原子,构成了一个黑磷相铋纳米片/Cr 2Te 3的复合界面。
图4a为本实施例制备的磁性斯格明子材料在100K以下时的霍尔效应图,该图展示了Bi掺杂的Cr 2Te 3薄膜的拓扑霍尔输运效应,图中出现在临界磁场H C附近的峰反映了薄膜的拓扑霍尔效应,图中出现的拓扑霍尔电阻在临界磁场的峰位证实了磁斯格明子所导致的反常霍尔效应的存在。根据图3b,掺入黑磷相铋的碲化铬薄膜,在外加一个适当的磁场下,由于铋原子有很强的自旋轨道耦合效应,界面的磁相互作用会导致拓扑的磁斯格明子在铋双层与碲化铬的界面处产生,该种不同于铁磁相的状态被称为斯格明子相。
图4b为本实施例制备的磁性斯格明子材料的拓扑霍尔电阻率随磁场和温度的分布图,由该图可以看出本实施例制备的磁性斯格明子材料中斯格明子阵列的存在,该阵列可以从2K维持到115K。
图5a为本实施例制备的磁性斯格明子材料中的斯格明子随外加磁场变化的计算模拟结果图,该图展现出磁斯格明子随着外场强度变化的演化过程。在外加场H=0.104特斯拉的情况下,Cr 2Te 3中形成斯格明子,每个斯格明子的直径由黑磷相铋纳米片的尺寸决定。
图5b为本申请实施例制备的磁性斯格明子材料中的斯格明子三维空间结构模拟结果图。其空间上的多层分布加强了本实施例的拓扑霍尔效应。
实施例3
本实施例的具体方法参照实施例1,区别在于,步骤(3)中,降低GaAs基片表面温度到240℃,同时打开铬、碲、铋三个蒸发源进行蒸镀,以1nm/min的速度外延生长掺有铋纳米片的Cr 2Te 3磁性薄膜(嵌入的Bi纳米片对膜厚影响可忽略不计,Cr 2Te 3生长速率对衬底温度不敏感)。
本申请得到的磁性斯格明子材料中,作为嵌入物的铋二维纳米片更大量的嵌入在Cr 2Te 3磁性薄膜中,并且在铋掺杂的Cr 2Te 3磁性薄膜表面覆盖有ZnSe保护层。该磁性斯格明子材料中的斯格明子呈阵列排布,斯格明子直径为10~80nm。
本实施例得到的磁性斯格明子材料的拓扑霍尔电阻率为实施例2中的十分之一,即约为130nΩcm。
图3c为本实施例制备的磁性斯格明子材料的高角环形暗场(HAADF)扫描透射电子显微镜图像,图中碲化铬晶格内部所表现的白色亮线即为二维铋纳米片。
对比例1
本对比例的具体方法参照实施例1,区别在于,步骤(3)中,只生长Cr 2Te 3 磁性薄膜,不同时生长铋纳米片,即铋纳米片和Cr 2Te 3磁性薄膜没有同时生长。
其结果为本对比例得到的磁性材料无斯格明子阵列产生。
综合上述实施例和对比例可知,本申请提供的磁性斯格明子制备方法中,同时外延生长磁性材料和二维纳米片是得到本申请所述磁性斯格明子材料的关键,通过向磁性薄膜中掺入具有强自旋轨道耦合属性的二维纳米片,引入可以产生斯格明子的片状“种子”,从而将普通的铁磁性薄膜改造为磁性斯格明子薄膜。对比例没有采用本申请的方案,因而无法取得本申请的优良效果。
申请人声明,本申请通过上述实施例来说明本申请的详细工艺设备和工艺流程,但本申请并不局限于上述详细工艺设备和工艺流程,即不意味着本申请必须依赖上述详细工艺设备和工艺流程才能实施。

Claims (13)

  1. 一种磁性斯格明子材料,其中,所述磁性斯格明子材料主要由磁性材料和嵌入在磁性材料中的二维单质纳米片组成。
  2. 根据权利要求1所述的磁性斯格明子材料,其中,所述磁性斯格明子材料中的斯格明子直径为10-80nm;
    可选地,所述磁性斯格明子材料中的斯格明子呈阵列排布;
    可选地,所述磁性材料为金属元素与硫族元素形成的化合物,所述金属元素包括Fe元素、Mn元素或Cr元素中的任意一种;
    可选地,所述硫族元素为Te;
    可选地,所述磁性材料为Cr 2Te 3
  3. 根据权利要求1或2所述的磁性斯格明子材料,其中,所述二维单质纳米片为强自旋轨道耦合元素单质的二维纳米片;
    可选地,所述强自旋轨道耦合元素包括Bi和/或Sb,可选为Bi。
  4. 根据权利要求1-3任一项所述的磁性斯格明子材料,其中,所述磁性斯格明子材料还包括保护层,所述保护层覆盖在所述磁性材料的表面;
    可选地,所述保护层为惰性材料层;
    可选地,所述惰性材料包括金属材料和/或半导体材料;
    可选地,所述惰性材料为ZnSe。
  5. 一种如权利要求1-4任一项所述的磁性斯格明子材料的制备方法,其中,所述方法包括以下步骤:
    (1)超高真空条件下,在半导体基片表面外延生长缓冲层;
    (2)超高真空条件下,在步骤(1)所述缓冲层表面外延生长嵌入二维单质纳米片的磁性材料,得到所述磁性斯格明子材料。
  6. 根据权利要求5所述的制备方法,其中,步骤(2)中,所述外延生长嵌入二维单质纳米片的磁性材料的方法为:同时将组成磁性材料的原料和二维单质纳米片的原料蒸镀到步骤(1)所述缓冲层表面,产生嵌入二维单质纳米片的磁性材料;
    可选地,所述蒸镀用蒸发源进行。
  7. 根据权利要求5或6所述的制备方法,其中,步骤(2)所述外延生长嵌入二维单质纳米片的磁性材料的温度为240-280℃。
  8. 根据权利要求5-7任一项所述的制备方法,其中,步骤(1)中,所述超高真空的真空度在10 -7Pa以下;
    可选地,步骤(1)中,所述半导体基片为GaAs单晶半导体基片;
    可选地,步骤(1)所述缓冲层包括ZnSe层;
    可选地,步骤(1)所述外延生长缓冲层的温度为200-230℃;
    可选地,步骤(1)所述外延生长缓冲层的生长速度为1-10nm/min;
    可选地,步骤(1)所述外延生长缓冲层的方法为将缓冲层材料蒸镀到半导体基片表面;
    可选地,所述蒸镀用蒸发源进行。
  9. 根据权利要求5-8任一项所述的制备方法,其中,步骤(2)中,所述超高真空的真空度在10 -7Pa以下;
    可选地,步骤(2)所述外延生长嵌入二维单质纳米片的磁性材料的生长速度为0.5-5nm/min;
    可选地,步骤(2)所述磁性材料为金属元素与硫族元素形成的化合物,所述金属元素包括Fe元素、Mn元素或Cr元素中的任意一种;
    可选地,所述硫族元素为Te;
    可选地,步骤(2)所述磁性材料为Cr 2Te 3
    可选地,步骤(2)所述二维单质纳米片为强自旋轨道耦合元素单质的二维纳米片;
    可选地,所述强自旋轨道耦合元素包括Bi和/或Sb,可选为Bi。
  10. 根据权利要求5-9任一项所述的制备方法,其中,步骤(1)中,还包括:向半导体基片表面外延生长缓冲层前,对半导体基片进行预处理;
    可选地,所述预处理的方法包括:在超高真空条件下,加热半导体基片,得到预处理的半导体基片;
    可选地,所述加热的温度为550-600℃,可选为580℃;
    可选地,所述超高真空的真空度在10 -7Pa以下。
  11. 根据权利要求5-10任一项所述的制备方法,其中,所述制备方法还包括步骤(3):超高真空条件下,在步骤(2)所述磁性斯格明子材料表面蒸镀保护层;
    可选地,步骤(3)所述超高真空的真空度在10 -7Pa以下;
    可选地,步骤(3)所述保护层为惰性材料层;
    可选地,所述惰性材料包括金属材料和/或半导体材料;
    可选地,所述惰性材料为ZnSe;
    可选地,所述制备方法在分子束外延生长设备中进行。
  12. 根据权利要求5-11任一项所述的制备方法,其中,所述方法包括以下步骤:
    (1)在分子束外延生长设备中,10 -7Pa以下的真空度条件下将GaAs单晶 半导体基片加热至580℃,得到预处理的半导体基片;
    (2)保持步骤(1)的真空度,200-230℃下,在步骤(1)所述预处理的半导体基片表面用ZnSe蒸发源进行蒸镀,以1-10nm/min的生长速度外延生长ZnSe缓冲层;
    (3)保持步骤(1)的真空度,240-280℃下,在步骤(2)所述ZnSe缓冲层表面用Cr蒸发源、Te蒸发源和Bi蒸发源同时进行蒸镀,以外延生长嵌入二维Bi纳米片的磁性材料Cr 2Te 3,磁性材料Cr 2Te 3的生长速度和二维Bi纳米片的产生速度独立地为0.5-5nm/min,得到所述磁性斯格明子材料;
    (4)保持步骤(1)的真空度,在步骤(3)所述磁性斯格明子材料表面蒸镀保护层,得到带保护层的磁性斯格明子材料。
  13. 一种如权利要求1-4任一项所述的磁性斯格明子材料的用途,其中,所述磁性斯格明子材料用于赛道存储器的制备。
PCT/CN2019/070841 2019-01-08 2019-01-08 一种可调控的磁性斯格明子材料及其制备方法和用途 WO2020142898A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/070841 WO2020142898A1 (zh) 2019-01-08 2019-01-08 一种可调控的磁性斯格明子材料及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/070841 WO2020142898A1 (zh) 2019-01-08 2019-01-08 一种可调控的磁性斯格明子材料及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2020142898A1 true WO2020142898A1 (zh) 2020-07-16

Family

ID=71521926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070841 WO2020142898A1 (zh) 2019-01-08 2019-01-08 一种可调控的磁性斯格明子材料及其制备方法和用途

Country Status (1)

Country Link
WO (1) WO2020142898A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114496012A (zh) * 2022-01-25 2022-05-13 广东工业大学 磁性斯格明子的磁场驱动方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051610A (zh) * 2013-03-15 2014-09-17 三星电子株式会社 具有插入层的磁性结和使用该磁性结的磁存储器
CN105552214A (zh) * 2015-12-09 2016-05-04 中电海康集团有限公司 一种垂直磁化的磁电阻随机存储器
WO2017151735A1 (en) * 2016-03-01 2017-09-08 Virginia Commonwealth University Switching skyrmions with vcma/electric field for memory, computing, and information processing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104051610A (zh) * 2013-03-15 2014-09-17 三星电子株式会社 具有插入层的磁性结和使用该磁性结的磁存储器
CN105552214A (zh) * 2015-12-09 2016-05-04 中电海康集团有限公司 一种垂直磁化的磁电阻随机存储器
WO2017151735A1 (en) * 2016-03-01 2017-09-08 Virginia Commonwealth University Switching skyrmions with vcma/electric field for memory, computing, and information processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114496012A (zh) * 2022-01-25 2022-05-13 广东工业大学 磁性斯格明子的磁场驱动方法
CN114496012B (zh) * 2022-01-25 2024-03-19 广东工业大学 磁性斯格明子的磁场驱动方法

Similar Documents

Publication Publication Date Title
US20070258170A1 (en) Magnetic Tunnel Junction Device and Method of Manufacturing the Same
Guo et al. A roadmap for controlled production of topological insulator nanostructures and thin films
US9368177B2 (en) Magnetic resistance structure, method of manufacturing the magnetic resistance structure, and electronic device including the magnetic resistance structure
WO2005088745A1 (ja) 磁気抵抗素子及びその製造方法
JP2006210391A (ja) 磁気抵抗素子及びその製造方法
Kurt et al. Giant tunneling magnetoresistance with electron beam evaporated MgO barrier and CoFeB electrodes
WO2020142898A1 (zh) 一种可调控的磁性斯格明子材料及其制备方法和用途
Zhuang et al. Large-area fabrication of 2D layered topological semimetal films and emerging applications
Li et al. InAs/GaAs quantum dots with wide-range tunable densities by simply varying V/III ratio using metal-organic chemical vapor deposition
Komagata et al. Ferromagnetic MnAs nanocluster composites position-controlled on GaAs (111) B substrates toward lateral magnetoresistive devices
WO2020082223A1 (zh) 一种黑磷相超薄铋纳米片改性的复合膜及其制备方法
Ostrikov et al. Self-assembled low-dimensional nanomaterials via low-temperature plasma processing
Jia et al. Parameters influencing interfacial morphology in GaAs/Ge superlattices grown by metal organic chemical vapor deposition
CN113307236A (zh) 一种单层或几个单层的CrTe3薄膜及其制备方法
WO2020223922A1 (zh) 一种异质结结构材料、及其制备方法和用途
WO2020191527A1 (zh) 一种磁性斯格明子材料及其制备方法和用途
Gupt et al. Structural, magnetic, and transport properties of Co2CrAl epitaxial thin film
JP5119434B2 (ja) 磁性半導体薄膜及び磁性半導体薄膜の製造方法
Kim et al. Growth behaviour of ZnO thin films and nanowires on SrTiO3 substrates
Bouravleuv et al. (In, Mn) As quantum dots: Molecular-beam epitaxy and optical properties
US20220384711A1 (en) Layered structure, magnetoresistive device using the same, and method of fabricating layered structure
Kanjanachuchai et al. Self-assembled InAs quantum dots on cross-hatch InGaAs templates: Excess growth, growth rate, capping and preferential alignment
KR101210958B1 (ko) 강자성체 단결정의 제조방법
CN117385456A (zh) 一种基于CVD的新型低功耗MnTe-Cr1-xTe异质结的制备方法
CN117580439A (zh) 一种原位制备Cr1-xTe晶态-非晶异质结的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908331

Country of ref document: EP

Kind code of ref document: A1