WO2020142890A1 - 母线电压的调节方法及相关设备 - Google Patents

母线电压的调节方法及相关设备 Download PDF

Info

Publication number
WO2020142890A1
WO2020142890A1 PCT/CN2019/070771 CN2019070771W WO2020142890A1 WO 2020142890 A1 WO2020142890 A1 WO 2020142890A1 CN 2019070771 W CN2019070771 W CN 2019070771W WO 2020142890 A1 WO2020142890 A1 WO 2020142890A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplitude
bus voltage
voltage
reference amplitude
bus
Prior art date
Application number
PCT/CN2019/070771
Other languages
English (en)
French (fr)
Inventor
唐弘扬
刘鹏飞
刘晓红
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to CN201980000844.7A priority Critical patent/CN110249497B/zh
Priority to PCT/CN2019/070771 priority patent/WO2020142890A1/zh
Publication of WO2020142890A1 publication Critical patent/WO2020142890A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/385
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • This application relates to the field of new energy, in particular to a method for regulating bus voltage and related equipment.
  • the adjustment range of the photovoltaic input voltage is narrow, resulting in the limitation of the maximum power point tracking range.
  • many grid-connected inverters adopt a two-stage structure.
  • the front stage is a booster circuit, which is responsible for photovoltaic voltage regulation, and the latter stage is grid-connected inverter.
  • the latter stage is grid-connected inverter.
  • it also limits the adjustment range of the busbar voltage to the photovoltaic input voltage.
  • the prior art In view of the limitation of the adjustment range of the busbar voltage on the photovoltaic input voltage, the prior art generally widens the adjustment range of the photovoltaic input voltage by increasing the busbar voltage.
  • the continuous increase of the bus voltage will not only reduce the conversion efficiency of the inverter, but also continue to work in the high-voltage state will intensify the temperature increase, which will adversely affect the system.
  • Embodiments of the present application provide a method for adjusting bus voltage. It can realize the dynamic adjustment of the bus voltage, thereby broadening the adjustment range of the photovoltaic input voltage, avoiding the high-voltage loss on the bus and the negative effects caused by high voltage and high temperature.
  • An embodiment of the present application provides a method for adjusting a bus voltage, including:
  • the first reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system wherein the first reference amplitude is determined by tracking the maximum power point of the photovoltaic energy storage system
  • the adjusting the bus voltage according to the first reference amplitude and the actual amplitude includes:
  • the bus voltage is adjusted.
  • adjusting the bus voltage according to the difference includes:
  • the bus voltage is adjusted.
  • the determining the second reference amplitude of the bus voltage according to the difference includes:
  • the sum of the actual amplitude and the first preset voltage amplitude is used as the second reference amplitude.
  • the adjusting the bus voltage according to the second reference amplitude includes:
  • the determining the second reference amplitude of the bus voltage according to the difference includes:
  • the difference between the actual amplitude and the second preset voltage amplitude is used as the second reference amplitude.
  • the adjusting the bus voltage according to the second reference amplitude includes:
  • the acquiring of the first reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system includes:
  • An embodiment of the present application provides a bus voltage adjusting device, including:
  • An obtaining module configured to obtain the first reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system, wherein the first reference amplitude is obtained by performing a maximum power point on the photovoltaic energy storage system Determined by tracking;
  • the adjustment module is used to adjust the bus voltage according to the first reference amplitude and the actual amplitude.
  • the adjustment module is also used for:
  • the bus voltage is adjusted.
  • the adjustment module is also used for:
  • the bus voltage is adjusted.
  • the adjustment module is also used for:
  • the sum of the actual amplitude and the first preset voltage amplitude is used as the second reference amplitude.
  • the adjustment module is also used for:
  • the adjustment module is also used for:
  • the difference between the actual amplitude and the second preset voltage amplitude is used as the second reference amplitude.
  • the adjustment module is also used for:
  • the acquisition module is also used to:
  • a third aspect of the embodiments of the present application discloses an electronic device, including: a processor, a memory, a communication interface, and a bus;
  • the processor, the memory, and the communication interface are connected through the bus and complete communication with each other;
  • the memory stores executable program code
  • the processor runs the program corresponding to the executable program code by reading the executable program code stored in the memory, for performing a method for adjusting a bus voltage disclosed in the first aspect of the embodiments of the present application .
  • the present application provides a storage medium, wherein the storage medium is used to store an application program, and the application program is used to execute a method for adjusting a bus voltage disclosed in the first aspect of the embodiments of the present application during runtime. .
  • the present application provides an application program, wherein the application program is used to execute a bus voltage adjusting method disclosed in the first aspect of the embodiments of the present application during runtime.
  • the power point tracking is determined; then the bus voltage is adjusted according to the first reference amplitude and the actual amplitude. It can realize the dynamic adjustment of the bus voltage, thereby broadening the adjustment range of the photovoltaic input voltage, avoiding the high-voltage loss on the bus and the negative effects of high-voltage and high-temperature.
  • FIG. 1 is a schematic structural diagram of a photovoltaic energy storage system in the prior art
  • FIG. 2 is a schematic structural diagram of a first method for adjusting a bus voltage provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a second method for adjusting a bus voltage provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a third method for adjusting a bus voltage provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a fourth bus voltage adjustment method provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a fifth bus voltage adjustment method provided by an embodiment of the present application.
  • FIG. 7 is a logic schematic diagram of actual use of a method for adjusting a bus voltage provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a bus voltage adjusting device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a photovoltaic energy storage system in the prior art.
  • the system includes: photovoltaic panel, photovoltaic DC controller, battery, battery DC controller and inverter.
  • the photovoltaic panel is a photoelectric conversion device that can generate direct current when exposed to sunlight.
  • the photovoltaic DC controller is used to adjust the output voltage of the photovoltaic panel in order to achieve the maximum power point tracking (MPPT) of the system.
  • MPPT maximum power point tracking
  • the MPPT technology is a commonly used technology in photovoltaic energy storage systems, and its role is to perform Maximum power point tracking in order to ensure the maximum output power of the system under various conditions.
  • the battery DC controller is used to stabilize the bus voltage, where the battery is used to power the battery DC controller.
  • the inverter is used to obtain energy through the bus voltage and invert the obtained energy into three-phase electricity in order to supply power to the load.
  • the minimum amplitude of the bus voltage is related to the three-phase voltage output by the inverter. When the bus voltage is lower than the minimum amplitude, the inverter cannot normally output three-phase power to supply the load.
  • the photovoltaic DC controller is a booster circuit, so the bus voltage must be greater than or equal to the photovoltaic input voltage, which requires that the output voltage of the photovoltaic panel must be less than the bus voltage, and it also causes the adjustment of the MPPT photovoltaic input voltage reference amplitude to be affected by the bus
  • the voltage limitation limits the amplitude range of the photovoltaic input voltage of the system. Therefore, the bus voltage needs to be dynamically adjusted to widen the amplitude range of the photovoltaic input voltage.
  • FIG. 2 is a schematic flowchart of a first method for adjusting a bus voltage provided by an embodiment of the present application. As shown in the figure, the method in the embodiments of the present application includes:
  • the photovoltaic energy storage system can supply power to loads such as industrial production equipment and household appliances.
  • the system inverts the output voltage of the photovoltaic panel into three-phase electricity through an inverter to supply power to the load.
  • the first reference amplitude is determined by tracking the maximum power point of the photovoltaic energy storage system.
  • MPPT technology can be used to track the maximum power point of the photovoltaic energy storage system to determine the reference amplitude of the photovoltaic input voltage (photovoltaic panel output voltage), and by adjusting the reference amplitude of the photovoltaic input voltage, the photovoltaic input voltage is adjusted Adjust in a certain step to the voltage direction of the maximum power point.
  • the maximum power reference point is (100v, 20A), which means that the system has the maximum output power when the voltage is 100 volts (v) and the current is 20 amps (A). If the photovoltaic input voltage is actually 60v at this time, the MPPT technology will Continue to increase the reference amplitude of the photovoltaic input voltage until the photovoltaic input voltage reaches 100v. When the photovoltaic input voltage is greater than 100v, MPPT technology will reduce the reference amplitude of the photovoltaic input voltage until the photovoltaic input voltage reaches 100v. The current actual amplitude of the bus voltage can be obtained by sampling the instantaneous voltage on the bus.
  • the reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system can be obtained at preset time intervals to adjust the bus voltage.
  • the preset time interval can be any duration of 20 seconds (s), 30s, etc.
  • the reference amplitude of the bus voltage may be determined according to the interval to which the difference belongs.
  • the actual amplitude of the bus voltage is 32v
  • the reference amplitude of the photovoltaic input voltage is 20v
  • the difference between them is 12v
  • the reference amplitude of the bus voltage can be taken as The sum of the actual amplitude and the difference is 44v. Then adjust the bus voltage from the original 32v to 44v.
  • the first reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system are first obtained.
  • the first reference amplitude is obtained by performing maximum power on the photovoltaic energy storage system.
  • Point tracking is determined; then adjust the bus voltage according to the first reference amplitude and the actual amplitude.
  • the dynamic adjustment of the bus voltage is realized, thereby widening the adjustment range of the photovoltaic input voltage.
  • FIG. 3 is a schematic flowchart of a second bus voltage adjustment method according to an embodiment of the present application. As shown in the figure, the method in the embodiments of the present application includes:
  • step S301 Obtain the first reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system. This step is the same as step S201 in the previous embodiment, and this step will not be repeated here.
  • S302 Determine whether the difference between the actual amplitude and the first reference amplitude is less than a first threshold. If yes, execute S303, if no, end.
  • the first threshold may be 10v, 15v, etc. If the difference is not less than the first threshold, it means that there is no need to adjust the bus voltage, so the process ends. If the difference is less than the first threshold, S303 is executed to adjust the bus voltage.
  • the MPPT technology when the difference between the actual amplitude and the first reference amplitude is less than the first threshold, it means that the MPPT technology may be limited by the upper limit when upwardly adjusting the reference amplitude of the photovoltaic input voltage. Since the upper limit of the photovoltaic input voltage is the bus voltage, it is necessary to increase the bus voltage.
  • the sum of the actual amplitude of the bus voltage and the first preset voltage amplitude may be used as the second reference amplitude of the bus voltage.
  • the first preset voltage amplitude may be 10v, 20v, and so on.
  • the bus voltage can be adjusted from the actual amplitude to the second reference amplitude.
  • the actual amplitude of the bus voltage is 28v
  • the reference amplitude of the photovoltaic input voltage is 20v
  • the difference between them is 8v
  • the actual amplitude 28v and the preset voltage amplitude 10v and 38v are used as the reference amplitude of bus voltage. Then adjust the bus voltage from the original 28v to the reference amplitude 38v.
  • the first reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system are first obtained.
  • the first reference amplitude is obtained by performing maximum power on the photovoltaic energy storage system. Point tracking is determined; then when the difference between the first reference amplitude and the actual amplitude is less than the first threshold, the sum of the actual amplitude and the preset voltage amplitude is used as the second reference amplitude of the bus voltage, and Adjust the bus voltage according to the second reference amplitude.
  • FIG. 4 is a schematic flowchart of a third method for adjusting a bus voltage provided by an embodiment of the present application. As shown in the figure, the method in the embodiments of the present application includes:
  • step S401 Obtain a first reference amplitude of the photovoltaic input voltage and an actual amplitude of the bus voltage in the photovoltaic energy storage system. This step is the same as step S201 in the foregoing embodiment, and this step will not be repeated here.
  • S402 Determine whether the difference between the actual amplitude value and the first reference amplitude value is less than a first threshold. If yes, execute S403; if no, end. This step is the same as S302 in the previous embodiment, and this step will not be repeated here.
  • the bus voltage in order to ensure the safety of the components in the photovoltaic energy storage system, the bus voltage cannot be increased without limitation. Therefore, the maximum amplitude of the bus voltage can be determined first according to the withstand voltage value of the bus capacitor in the photovoltaic energy storage system, where the bus capacitor can be the DC bus capacitor in the inverter.
  • the withstand voltage of the bus capacitor is the highest voltage that the bus capacitor can withstand for a long time.
  • the maximum amplitude of the bus voltage can be equal to the withstand voltage of the bus capacitor, such as 50v.
  • S405 Adjust the bus voltage according to the maximum amplitude and the second reference amplitude.
  • the second reference amplitude can be compared with the maximum amplitude to determine whether the second reference amplitude of the bus voltage is greater than the maximum amplitude. If the second reference amplitude is not greater than the maximum amplitude, the bus voltage can be changed from The actual amplitude is adjusted to the second reference amplitude; if the reference amplitude is greater than the maximum amplitude, the bus voltage is adjusted from the actual amplitude to the maximum amplitude.
  • the actual amplitude of the bus voltage is 28v
  • the reference amplitude of the photovoltaic input voltage is 20v
  • the difference between them is 8v
  • the actual amplitude 28v and the preset voltage amplitude 10v and 38v are used as the reference amplitude of bus voltage.
  • the first reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system are first obtained.
  • the first reference amplitude is obtained by performing maximum power on the photovoltaic energy storage system. Point tracking is determined; then when the difference between the first reference amplitude and the actual amplitude is less than the first threshold, the sum of the actual amplitude and the preset voltage amplitude is used as the second reference amplitude of the bus voltage, and Adjust the bus voltage according to the second reference amplitude.
  • FIG. 5 is a schematic flowchart of a fourth method for adjusting a bus voltage provided by an embodiment of the present application. As shown in the figure, the method in the embodiments of the present application includes:
  • S502 Determine whether the difference between the actual amplitude value and the first reference amplitude value is greater than a second threshold. If yes, execute S503; if no, end.
  • the second threshold may be any value such as 20v. If the difference is not greater than the second threshold, it means that there is no need to adjust the bus voltage, so the process ends. If the difference is greater than the second threshold, S503 is executed to adjust the bus voltage.
  • the difference between the actual amplitude of the bus voltage and the first reference amplitude of the photovoltaic input voltage is greater than the second threshold, there is no risk that the maximum power point tracking cannot continue. At this time, if the bus voltage continues to maintain a high voltage state, it will generate heat due to high voltage, resulting in unnecessary power loss. Therefore, it is necessary to appropriately reduce the bus voltage.
  • the difference between the actual amplitude of the bus voltage and the second preset voltage amplitude can be used as the reference amplitude of the bus voltage, and the second preset voltage amplitude can be any value such as 10v.
  • the bus voltage can be adjusted from the actual amplitude to the second reference amplitude.
  • the actual amplitude of the bus voltage is 38v
  • the reference amplitude of the photovoltaic input voltage is 15v
  • the difference between them is 23v
  • the actual amplitude 38v and the preset voltage amplitude The difference between 10v and 28v is used as the reference amplitude of the bus voltage. Then adjust the bus voltage from the original 38v to 28v.
  • the first reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system are first obtained.
  • the first reference amplitude is obtained by performing maximum power on the photovoltaic energy storage system.
  • Point tracking is determined; then when the difference between the first reference amplitude and the actual amplitude is greater than the second threshold, the difference between the actual amplitude and the preset voltage amplitude is used as the second reference amplitude of the bus voltage, and Adjust the bus voltage according to the second reference amplitude.
  • the dynamic adjustment of the bus voltage is realized, which can not only widen the adjustment range of the photovoltaic input voltage, but also eliminate the negative effects of high-voltage losses on the bus and high voltage and high temperature.
  • FIG. 6 is a schematic flowchart of a fifth bus voltage adjustment method according to an embodiment of the present application. As shown in the figure, the method in the embodiments of the present application includes:
  • S602 Determine whether the difference between the actual amplitude value and the first reference amplitude value is greater than a second threshold. If yes, execute S603; if no, end. This step is the same as S502 in the previous embodiment, and this step will not be repeated here.
  • S604 Determine the minimum amplitude of the bus voltage.
  • the minimum amplitude of the bus voltage can be determined according to the amplitude of the three-phase voltage output by the inverter in the photovoltaic energy storage system, for example, the three-phase voltage output by the inverter
  • the amplitude is u, you can determine the minimum amplitude of the bus voltage Among them, when the amplitude of the bus voltage is lower than the minimum amplitude, the inverter cannot normally output three-phase voltage to supply power to the load.
  • the second reference amplitude of the bus voltage can be compared with the minimum amplitude to determine whether the second reference amplitude is smaller than the minimum amplitude. If the second reference amplitude is not smaller than the minimum amplitude, the bus voltage can be changed from The actual amplitude is adjusted to the second reference amplitude; if the second reference amplitude is less than the minimum amplitude, the bus voltage is adjusted from the actual amplitude to the minimum amplitude.
  • the actual amplitude of the bus voltage is 38v
  • the reference amplitude of the photovoltaic input voltage is 15v
  • the difference between them is 23v
  • the actual amplitude 38v and the preset voltage amplitude The 10v difference 28v is used as the reference amplitude of the bus voltage.
  • the first reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system are first obtained.
  • the first reference amplitude is obtained by performing maximum power on the photovoltaic energy storage system.
  • Point tracking is determined; then when the difference between the first reference amplitude and the actual amplitude is greater than the second threshold, the difference between the actual amplitude and the preset voltage amplitude is used as the reference amplitude of the bus voltage, and according to the bus
  • the reference amplitude of the voltage adjusts the bus voltage.
  • the dynamic adjustment of the bus voltage is realized, which can not only widen the adjustment range of the photovoltaic input voltage, but also eliminate the negative effects of high-voltage losses on the bus and high voltage and high temperature. At the same time, a lower adjustment limit is set during the adjustment of the bus voltage. Thus ensuring the normal operation of the photovoltaic energy storage system.
  • u bus , u pref , u busmax , u busmin and u busref respectively represent the actual amplitude of the bus voltage, the reference amplitude of the photovoltaic input voltage determined by MPPT technology, the maximum amplitude of the bus voltage, The minimum amplitude of the bus voltage and the reference amplitude of the bus voltage.
  • the bus voltage is adjusted once every 20s, the adjustment of the bus voltage starts from the end of the last adjustment operation of the bus voltage and when the 20-second delay is completed.
  • FIG. 8 is a schematic structural diagram of a bus voltage adjusting device according to an embodiment of the present application. As shown in the figure, the device in the embodiment of the present application includes:
  • the obtaining module 801 is configured to obtain the first reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system, wherein the first reference amplitude is obtained by performing maximum power on the photovoltaic energy storage system Point tracking is determined.
  • the maximum power point of the photovoltaic energy storage system can be tracked according to the MPPT technology to determine the reference amplitude of the photovoltaic input voltage in the photovoltaic energy storage system. And the actual amplitude of the current bus voltage can be obtained by sampling.
  • the reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system can be obtained at preset time intervals to adjust the bus voltage.
  • the preset time interval can be any duration of 20s, 30s, etc.
  • the adjustment module 802 is configured to adjust the bus voltage according to the first reference amplitude and the actual amplitude.
  • the first threshold may be 10v and so on.
  • the MPPT technology may upwardly adjust the reference amplitude of the photovoltaic input voltage. Since the upper limit of the photovoltaic input voltage is the bus voltage, the bus voltage can be increased, and the bus voltage can be increased.
  • the sum of the actual amplitude value and the first preset voltage amplitude value is used as the reference amplitude value of the bus voltage, and the first preset voltage amplitude value may be 10v, 20v, and so on. Then adjust the bus voltage according to the reference amplitude of the bus voltage, where the bus voltage can be directly increased from the actual amplitude to the reference amplitude.
  • the bus voltage cannot be increased without limit. Therefore, you can first determine the maximum amplitude of the bus voltage according to the withstand voltage of the bus capacitor in the photovoltaic energy storage system, where the bus capacitor is included in the inverter, and the withstand voltage of the bus capacitor is the value that the bus capacitor can withstand for a long time.
  • the maximum amplitude of the bus voltage can be equal to the withstand voltage of the bus capacitor, such as 280v, 300v, etc.; then determine whether the reference amplitude of the bus voltage is greater than the maximum amplitude, when the reference amplitude of the bus voltage is not greater than the maximum amplitude , Adjust the bus voltage from the actual amplitude to the reference amplitude; when the reference amplitude is greater than the maximum amplitude, adjust the bus voltage from the actual amplitude to the maximum amplitude.
  • the difference between the actual amplitude of the bus voltage and the reference amplitude of the photovoltaic input voltage is greater than the second threshold, the difference between the actual amplitude and the second preset voltage amplitude is used as the reference amplitude of the bus voltage.
  • the second threshold may be any value such as 20v.
  • the bus voltage can be moderately reduced to reduce the power loss due to heat generated by the excessive bus voltage, and the difference between the actual amplitude of the bus voltage and the second preset voltage amplitude can be used as the reference amplitude of the bus voltage Value, the second preset voltage amplitude may be 10v and so on.
  • the bus voltage can be directly reduced from the actual amplitude to the reference amplitude.
  • the minimum amplitude of the bus voltage can also be determined first according to the output voltage of the inverter in the photovoltaic energy storage system. Among them, when the reference amplitude of the bus voltage is lower than the minimum amplitude, the inverter cannot output the three-phase voltage normally. Next, determine whether the reference amplitude of the bus voltage is less than the minimum amplitude of the bus voltage. When the reference amplitude is not less than the minimum amplitude, reduce the bus voltage from the actual amplitude to the reference amplitude; when the reference amplitude is less than the minimum amplitude , Reduce the bus voltage from the actual amplitude to the minimum amplitude.
  • the first reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system are first obtained.
  • the first reference amplitude is obtained by performing maximum power on the photovoltaic energy storage system.
  • Point tracking is determined; then adjust the bus voltage according to the first reference amplitude and the actual amplitude. It can realize the dynamic adjustment of the bus voltage, thereby broadening the adjustment range of the photovoltaic input voltage, avoiding the high-voltage loss on the bus and the negative effects of high-voltage and high-temperature.
  • the electronic device may include: at least one processor 901, such as a CPU, at least one communication interface 902, at least one memory 903, and at least one bus 904.
  • the bus 904 is used to implement connection and communication between these components.
  • the communication interface 902 of the electronic device in the embodiment of the present application is a wired transmission port, and may also be a wireless device, for example, including an antenna device, used for signaling or data communication with other node devices.
  • the memory 903 may be a high-speed RAM memory, or may be a non-volatile memory (non-volatile memory), for example, at least one magnetic disk memory.
  • the memory 903 may be at least one storage device located away from the foregoing processor 901.
  • a group of program codes is stored in the memory 903, and the processor 901 is used to call the program codes stored in the memory to perform the following operations:
  • the first reference amplitude of the photovoltaic input voltage and the actual amplitude of the bus voltage in the photovoltaic energy storage system is determined by tracking the maximum power point of the photovoltaic energy storage system
  • the processor 901 is also used to perform the following operation steps:
  • the bus voltage is adjusted.
  • the processor 901 is also used to perform the following operation steps:
  • the bus voltage is adjusted.
  • the processor 901 is also used to perform the following operation steps:
  • the sum of the actual amplitude and the first preset voltage amplitude is used as the second reference amplitude.
  • the processor 901 is also used to perform the following operation steps:
  • the processor 901 is also used to perform the following operation steps:
  • the difference between the actual amplitude and the second preset voltage amplitude is used as the second reference amplitude.
  • the processor 901 is also used to perform the following operation steps:
  • the processor 901 is also used to perform the following operation steps:
  • the processor 901 is also used to perform the following operation steps:
  • the first reference amplitude of the photovoltaic input voltage is determined.
  • the embodiments of the present application also provide a storage medium, which is used to store an application program, and the application program is used to execute FIG. 2, FIG. 3, FIG. 4, FIG. 5, and 6 at runtime. An operation performed by an electronic device in a method for adjusting a bus voltage shown.
  • the embodiments of the present application also provide an application program, which is used to perform a kind of bus voltage adjustment shown in FIG. 2, FIG. 3, FIG. 4, FIG. 5 and FIG. 6 during runtime. The operation performed by the electronic device in the method.
  • the program may be stored in a computer-readable storage medium, and the storage medium may include: Flash disk, read-only memory (English: Read-Only Memory, abbreviation: ROM), random access device (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一种母线电压的调节方法及相关设备,包括:首先获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值(S201);然后根据所述第一参考幅值和所述实际幅值,调节所述母线电压(S202)。采用上述方法和设备,可以实现母线电压的动态调节、拓宽光伏输入电压的调节范围、以及避免母线上的高压损耗以及高压高温带来的负面影响。

Description

母线电压的调节方法及相关设备 技术领域
本申请涉及新能源领域,尤其涉及一种母线电压的调节方法及相关设备。
背景技术
目前,在太阳能光伏发电/储能系统中由于单级逆变器电网电压限制,光伏输入电压的调节范围较窄,导致最大功率点跟踪的范围受到限制。为了提高光伏电压调节范围,很多并网逆变器采用双级结构,前级为升压电路,负责进行光伏电压调节,后级进行并网逆变。而与此同时,又造成了母线电压对光伏输入电压的调节范围的限制。针对母线电压对光伏输入电压的调节范围限制问题,现有技术通常通过提高母线电压来拓宽光伏输入电压的调节范围。然而,母线电压的不断升高不仅会降低逆变器转换效率,而且持续工作在高压状态会加剧升温,对系统产生不利影响。
申请内容
本申请实施例提供一种母线电压的调节方法。可以实现母线电压的动态调节,从而拓宽光伏输入电压的调节范围、避免母线上的高压损耗以及高压高温带来的负面影响。
本申请实施例提供了一种母线电压的调节方法,包括:
获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值,其中,所述第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的;
根据所述第一参考幅值和所述实际幅值,调节所述母线电压。
其中,所述根据所述第一参考幅值和所述实际幅值,调节所述母线电压包括:
计算所述实际幅值与所述第一参考幅值的差值;
根据所述差值,调节所述母线电压。
其中,所述根据所述差值,调节所述母线电压包括:
根据所述差值,确定所述母线电压的第二参考幅值;
根据所述第二参考幅值,调节所述母线电压。
其中,所述根据所述差值,确定所述母线电压的第二参考幅值包括:
当所述差值小于第一阈值时,将所述实际幅值与第一预设电压幅值的和作为所述第二参考幅值。
其中,所述根据所述第二参考幅值,调节所述母线电压包括:
根据所述光伏储能系统中母线电容的耐压值,确定所述母线电压的最大幅值;
判断所述第二参考幅值是否大于所述最大幅值,若所述第二参考幅值不大于所述最大幅值,则将所述母线电压的幅值调节至所述第二参考幅值;若所述第二参考幅值大于所述最大幅值,则将所述母线电压的幅值调节至所述最大幅值。
其中,所述根据所述差值,确定所述母线电压的第二参考幅值包括:
当所述差值大于第二阈值时,将所述实际幅值与第二预设电压幅值的差作为所述第二参考幅值。
其中,所述根据所述第二参考幅值,调节所述母线电压包括:
根据所述光伏储能系统中逆变器的输出电压,确定所述母线电压的最小幅值;
判断所述第二参考幅值是否小于所述最小幅值;若所述第二参考幅值不小于所述最小幅值,则将所述母线电压的幅值调节至所述第二参考幅值;若所述第二参考幅值小于所述最小幅值,则将所述母线电压的幅值调节至所述最小幅值。
其中,所述获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值包括:
按照预设时间间隔获取所述第一参考幅值和所述实际幅值。
本申请实施例提供了一种母线电压的调节装置,包括:
获取模块,用于获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值,其中,所述第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的;
调节模块,用于根据所述第一参考幅值和所述实际幅值,调节所述母线电压。
其中,所述调节模块还用于:
计算所述实际幅值与所述第一参考幅值的差值;
根据所述差值,调节所述母线电压。
其中,所述调节模块还用于:
根据所述差值,确定所述母线电压的第二参考幅值;
根据所述第二参考幅值,调节所述母线电压。
其中,所述调节模块还用于:
当所述差值小于第一阈值时,将所述实际幅值与第一预设电压幅值的和作为所述第二参考幅值。
其中,所述调节模块还用于:
根据所述光伏储能系统中母线电容的耐压值,确定所述母线电压的最大幅值;
判断所述第二参考幅值是否大于所述最大幅值;若所述第二参考幅值不大于所述最大幅值,则将所述母线电压的幅值调节至所述第二参考幅值;若所述第二参考幅值大于所述最大幅值,则将所述母线电压的幅值调节至所述最大幅值。
其中,所述调节模块还用于:
当所述差值大于第二阈值时,将所述实际幅值与第二预设电压幅值的差作为所述第二参考幅值。
其中,所述调节模块还用于:
根据所述光伏储能系统中逆变器的输出电压,确定所述母线电压的最小幅值;
判断所述第二参考幅值是否小于所述最小幅值;若所述第二参考幅值不小于所述最小幅值,则将所述母线电压的幅值调节至所述第二参考幅值;若所述第二参考幅值小于所述最小幅值,将所述母线电压的幅值调节至所述最小幅值。
其中,所述获取模块还用于:
按照预设时间间隔获取所述第一参考幅值和所述实际幅值。
本申请实施例第三方面公开了一种电子设备,包括:处理器、存储器、通信接口和总线;
所述处理器、所述存储器和所述通信接口通过所述总线连接并完成相互间的通信;
所述存储器存储可执行程序代码;
所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行本申请实施例第一方面公开的一种母线电压的调节方法。
相应地,本申请提供了一种存储介质,其中,所述存储介质用于存储应用程序,所述应用程序用于在运行时执行本申请实施例第一方面公开的一种母线电压的调节方法。
相应地,本申请提供了一种应用程序,其中,所述应用程序用于在运行时执行本申请实施例第一方面公开的一种母线电压的调节方法。
实施本申请实施例,首先获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值,其中,所述第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的;然后根据所述第一参考幅值和所述实际幅值,调节所述母线电压。可以实现对母线电压的动态调节,从而拓宽光伏输入电压的调节范围、避免母线上的高压损耗以及高压高温带来的负面影响。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中的一种光伏储能系统的结构示意图;
图2是本申请实施例提供的第一种母线电压的调节方法的结构示意图;
图3是本申请实施例提供的第二种母线电压的调节方法的结构示意图;
图4是本申请实施例提供的第三种母线电压的调节方法的结构示意图;
图5是本申请实施例提供的第四种母线电压的调节方法的结构示意图;
图6是本申请实施例提供的第五种母线电压的调节方法的结构示意图;
图7是本申请实施例提供的一种母线电压的调节方法的实际使用的逻辑示意图;
图8是本申请实施例提供一种母线电压的调节装置的结构示意图;
图9是本申请实施例提供一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参考图1,图1是现有技术中的一种光伏储能系统的结构示意图。如图所示,该系 统包括:光伏板、光伏直流控制器、电池、电池直流控制器和逆变器。其中,光伏板是一种暴露在阳光下就可以产生直流电的光电转换装置。光伏直流控制器用于调整光伏板的输出电压,以便实现系统的最大功率点跟踪(Maximum Power Point Tracking,MPPT),其中,MPPT技术为光伏储能系统中常用的技术,它的作用是对系统进行最大功率点跟踪,以便在各种情况下保证系统的输出功率最大。电池直流控制器用于稳定母线电压,其中,电池用于为电池直流控制器供电。逆变器用于通过母线电压获取能量并将获取到的能量逆变为三相电,以便为负载供电。在该系统中,一方面,母线电压的最小幅值与逆变器输出的三相电压相关,当母线电压低于最小幅值时,逆变器就无法正常输出三相电为负载供电。另一方面,光伏直流控制器为升压电路,所以母线电压必须大于等于光伏输入电压,这就要求光伏板的输出电压必须小于母线电压,同时也导致MPPT光伏输入电压参考幅值的调节受到母线电压的限制,即限制了该系统的光伏输入电压的幅值范围。因此需要对母线电压进行动态的调节,以扩宽光伏输入电压的幅值范围。基于上述系统,本申请实施例提供以下母线电压的调节方法。
请参考图2,图2是本申请实施例提供的第一种母线电压的调节方法的流程示意图。如图所示,本申请实施例中的方法包括:
S201,获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值。
具体实现中,光伏储能系统可以为工业生产设备、家用电器等负载供电。该系统通过逆变器将光伏板的输出电压逆变为三相电向负载供电。第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的。其中,可以利用MPPT技术对光伏储能系统进行最大功率点跟踪,以确定光伏输入电压(光伏板输出电压)的参考幅值,并通过对光伏输入电压的参考幅值的调节,使光伏输入电压以一定步长向最大功率点的电压方向调节。比如:最大功率参考点为(100v,20A),表示系统在电压为100伏(v),电流为20安(A)时输出功率最大,如果此时光伏输入电压实际为60v,则MPPT技术会不断抬高光伏输入电压的参考幅值,直到光伏输入电压达到100v,当光伏输入电压大于100v后,MPPT技术会降低光伏输入电压的参考幅值,直到光伏输入电压达到100v。母线电压当前的实际幅值可以通过对母线上的瞬时电压进行采样来获取。
为了防止母线电压调节频率过高导致系统不稳定,可以按照预设时间间隔获取光伏储能系统中的光伏输入电压的参考幅值和母线电压的实际幅值,以便对母线电压的进行调节。预设时间间隔可以是20秒(s)、30s等任意时长。
S202,根据所述第一参考幅值和所述实际幅值,调节所述母线电压。
具体实现中,可以首先计算母线电压的实际幅值与光伏输入电压的第一参考幅值的差值,其中,差值=母线电压的实际幅值-第一参考幅值;接着根据该差值确定母线电压的参考幅值,再以母线电压的参考幅值为依据调节母线电压。其中,可以但不限于根据该差值所属的区间来确定母线电压的参考幅值。
例如:母线电压的实际幅值为32v,光伏输入电压的参考幅值为20v,它们之间的差值为12v,因为12v属于[10,20],则可以将母线电压的参考幅值取为实际幅值与差值之和,即44v。然后将母线电压从原来的32v调节至44v。
在本申请实施例中,首先获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值,所述第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的;然后根据第一参考幅值和所述实际幅值,调节所述母线电压。实现了对母线电压的动态调节,从而拓宽了光伏输入电压的调节范围。
请参考图3,图3是本申请实施例提供的第二种母线电压的调节方法的流程示意图。如图所示,本申请实施例中的方法包括:
S301,获取光伏储能系统中的光伏输入电压的第一参考幅值和母线电压的实际幅值。本步骤与上一实施例中的步骤S201相同,本步骤不再赘述。
S302,判断所述实际幅值与所述第一参考幅值的差值是否小于第一阈值。若是,则执行S303,若否,则结束。
具体实现中,可以首先计算母线电压的实际幅值与光伏输入电压的第一参考幅值的差值,其中,差值=母线电压的实际幅值-第一参考幅值;接着将该差值与第一阈值进行比较。其中,第一阈值可以为10v、15v等。若该差值不小于第一阈值,则说明不需要调节母线电压,因此结束流程。若该差值小于第一阈值,则执行S303以便调节母线电压。
S303,将所述实际幅值与第一预设电压幅值的和作为所述母线电压的第二参考幅值。
具体实现中,当实际幅值与第一参考幅值的差值小于第一阈值时,说明MPPT技术向上调节光伏输入电压的参考幅值时可能受到上限限制。由于光伏输入电压的上限值为母线电压,因此需要提高母线电压。其中,可以将母线电压的实际幅值与第一预设电压幅值的和作为母线电压的第二参考幅值,第一预设电压幅值可以为10v、20v等等。
S304,根据所述第二参考幅值,调节所述母线电压。
具体实现中,可以将母线电压从实际幅值调节至第二参考幅值。
例如:母线电压的实际幅值为28v,光伏输入电压的参考幅值为20v,它们之间的差值为8v,因为8v小于第一阈值10v,则将实际幅值28v与预设电压幅值10v的和38v作为母线电压的参考幅值。然后将母线电压从原来的28v调节至参考幅值38v。
在本申请实施例中,首先获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值,所述第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的;然后当第一参考幅值和所述实际幅值的差值小于第一阈值时,将实际幅值与预设电压幅值的和作为母线电压的第二参考幅值、并根据第二参考幅值调节母线电压。可以实现对母线电压的动态调节,避免了母线电压的幅值低于光伏输入电压的参考幅值而导致无法继续进行最大功率点的跟踪的问题,从而拓宽了光伏输入电压的调节范围。
请参考图4,图4是本申请实施例提供的第三种母线电压的调节方法的流程示意图。如图所示,本申请实施例中的方法包括:
S401,获取光伏储能系统中的光伏输入电压的第一参考幅值和母线电压的实际幅值。本步骤与前述实施例中的步骤S201相同,本步骤不再赘述。
S402,判断所述实际幅值与所述第一参考幅值的差值是否小于第一阈值。若是,则执行S403;若否,则结束。本步骤与上一实施例中的S302相同,本步骤不再赘述。
S403,将所述实际幅值与第一预设电压幅值的和作为所述母线电压的第二参考幅值。本步骤与上一实施例中的S303相同,本步骤不再赘述。
S404,确定所述母线电压的最大幅值。
具体实现中,为了保证光伏储能系统中元件的安全性,不能无限制的提高母线电压。因此,可以首先根据光伏储能系统中母线电容的耐压值,确定母线电压的最大幅值,其中,母线电容可以为逆变器中的直流母线电容。母线电容的耐压值为该母线电容可长时间承受的最高电压,母线电压的最大幅值可以等于母线电容的耐压值,如50v。
S405,根据所述最大幅值和所述第二参考幅值,调节所述母线电压。
具体实现中,可以将第二参考幅值与最大幅值进行比较,判断母线电压的第二参考幅值是否大于最大幅值,若第二参考幅值不大于最大幅值,则将母线电压从实际幅值调节至第二参考幅值;若参考幅值大于最大幅值,则将母线电压从实际幅值调节至最大幅值。
例如:母线电压的实际幅值为28v,光伏输入电压的参考幅值为20v,它们之间的差值为8v,因为8v小于第一阈值10v,则将实际幅值28v与预设电压幅值10v的和38v作为母线电压的参考幅值。然后将母线电压的参考幅值38v与最大幅值50v进行比较,因为38v小于50v,于是将母线电压从原来的28v调节至38v。
在本申请实施例中,首先获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值,所述第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的;然后当第一参考幅值和所述实际幅值的差值小于第一阈值时,将实际幅值与预设电压幅值的和作为母线电压的第二参考幅值、并根据第二参考幅值调节所述母线电压。可以实现对母线电压的动态调节,避免了母线电压的幅值低于光伏输入电压的参考幅值而导致无法继续进行最大功率点跟踪的问题,从而拓宽了光伏输入电压的调节范围。同时,在母线电压的调节过程中设置了调节上限,从而保障了光伏储能系统中电路元件的安全。
请参考图5,图5是本申请实施例提供的第四种母线电压的调节方法的流程示意图。如图所示,本申请实施例中的方法包括:
S501,获取光伏储能系统中的光伏输入电压的第一参考幅值和母线电压的实际幅值。本步骤与前述实施例中的S201相同,本步骤不再赘述。
S502,判断所述实际幅值与所述第一参考幅值的差值是否大于第二阈值。若是,则执行S503;若否,则结束。
具体实现中,可以首先计算母线电压的实际幅值与光伏输入电压的第一参考幅值的差值,其中,差值=母线电压的实际幅值-第一参考幅值;接着将该差值与第二阈值进行比较。其中,第二阈值可以为20v等任意值。若该差值不大于第二阈值,则说明不需要调节母线电压,因此结束流程。若该差值大于第二阈值,则执行S503以便调节母线电压。
S503,将所述实际幅值与第二预设电压幅值的差作为所述母线电压的第二参考幅值。
具体实现中,当母线电压的实际幅值与光伏输入电压的第一参考幅值的差值大于第二阈值时,不存在无法继续进行最大功率点跟踪的风险。此时,若母线电压继续维持高压状态,将因高压导致发热,从而造成不必要的电能损耗。因此需要适当的调低母线电压。其中,可以将母线电压的实际幅值与第二预设电压幅值的差作为母线电压的参考幅值,第二 预设电压幅值可以为10v等任意值。
S504,根据所述第二参考幅值,调节所述母线电压。
具体实现中,可以将母线电压从实际幅值调节至第二参考幅值。
例如:母线电压的实际幅值为38v,光伏输入电压的参考幅值为15v,它们之间的差值为23v,因为23v大于第二阈值20v,则将实际幅值38v与预设电压幅值10v之间差值28v作为母线电压的参考幅值。然后将母线电压从原来的38v调节至28v。
在本申请实施例中,首先获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值,所述第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的;然后当第一参考幅值和所述实际幅值的差值大于第二阈值时,将实际幅值与预设电压幅值的差作为母线电压的第二参考幅值、并根据第二参考幅值调节所述母线电压。实现了对母线电压的动态调节,不仅可以拓宽光伏输入电压的调节范围,还可以消除母线上的高压损耗以及高压高温带来的负面影响。
请参考图6,图6是本申请实施例提供的第五种母线电压的调节方法的流程示意图。如图所示,本申请实施例中的方法包括:
S601,获取光伏储能系统中的光伏输入电压的第一参考幅值和母线电压的实际幅值。本步骤与前述实施例中的S201相同,本步骤不再赘述。
S602,判断所述实际幅值与所述第一参考幅值的差值是否大于第二阈值。若是,则执行S603;若否,则结束。本步骤与上一实施例中的S502相同,本步骤不再赘述。
S603,将所述实际幅值与第二预设电压幅值的差作为所述母线电压的第二参考幅值。本步骤与上一实施例中的S503相同,本步骤不再赘述。
S604,确定所述母线电压的最小幅值。
具体实现中,为了保证光伏储能系统正常运行,可以根据光伏储能系统中逆变器输出的三相电压的幅值,确定母线电压的最小幅值,例如,逆变器输出的三相电压的幅值为u,则可以确定母线电压的最小幅值为
Figure PCTCN2019070771-appb-000001
其中,当母线电压的幅值低于该最小幅值时,逆变器就无法正常输出三相电压为负载供电。
S605,根据所述最小幅值和所述第二参考幅值,调节所述母线电压。
具体实现中,可以将母线电压的第二参考幅值与最小幅值进行比较,判断第二参考幅值是否小于最小幅值,若第二参考幅值不小于最小幅值,则将母线电压从实际幅值调节至第二参考幅值;若第二参考幅值小于最小幅值时,将母线电压从实际幅值调节至最小幅值。
例如:母线电压的实际幅值为38v,光伏输入电压的参考幅值为15v,它们之间的差值为23v,因为23v大于第二阈值20v,则将实际幅值38v与预设电压幅值10v的差28v作为母线电压的参考幅值。然后将母线电压的参考幅值28v与最小幅值30v进行比较,因为28v小于30v,于是将母线电压从原来的38v调节至最小幅值30v。
在本申请实施例中,首先获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值,所述第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的;然后当第一参考幅值和所述实际幅值的差值大于第二阈值时,将实际幅值与预设电压幅值的差作为母线电压的参考幅值、并根据母线电压的参考幅值调节所述母线电压。实现 了对母线电压的动态调节,不仅可以拓宽光伏输入电压的调节范围,还可以消除母线上的高压损耗以及高压高温带来的负面影响,同时,在母线电压的调节过程中设置了调节下限,从而保障了光伏储能系统正常运行。
综合上述5个实施例,以下通过一个例子来对本申请所提供的母线电压的调节方法进行说明。
例如:如图7所示,u bus、u pref、u busmax、u busmin和u busref分别表示母线电压的实际幅值、MPPT技术确定的光伏输入电压的参考幅值、母线电压的最大幅值、母线电压的最小幅值和母线电压的参考幅值。假设每隔20s对母线电压进行一次调节,则从上一次母线电压的调节操作结束开始,当20秒延时完成时,开始进行本次母线电压的调节操作。首先获取当前的u bus以及利用MPPT技术确定的光伏输入电压的参考幅值u pref,其中,一般情况下母线电压当前的u bus等于上一次调节后母线电压的电压幅值。接着,包括3种情况:(1)若u bus-u pref小于10,则计算u busref=u bus+10,并进一步确定u busref是否大于u busmax,当u busref大于u busmax时,将母线电压调节至u busmax,否则将母线电压调节至u busref。(2)若u bus-u pref大于等于20,则计算u busref=u bus-10,并进一步确定u busref是否小于u busmin,当u busref大于等于u busmin时,将母线电压调节至u busref,否则将母线电压调节至u busmin。(3)若u bus-u pref既不小于10也不大于等于20,则说明母线电压不需要调节,结束本次调节操作。
请参考图8,图8本申请实施例提供的一种母线电压的调节装置的结构示意图。如图所示,本申请实施例中的装置包括:
获取模块801,用于获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值,其中,所述第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的。
具体实现中,可以将根据MPPT技术对光伏储能系统进行最大功率点跟踪,以确定光伏储能系统中光伏输入电压的参考幅值。以及可以通过采样获取当前母线电压的实际幅值。
为了防止母线电压调节频率过高导致系统不稳定,可以按照预设时间间隔获取光伏储能系统中光伏输入电压的参考幅值和母线电压的实际幅值,以便对母线电压的进行调节。预设时间间隔可以是20s、30s等任意时长。
调节模块802,用于根据第一参考幅值和所述实际幅值,调节所述母线电压。
具体实现中,可以首先计算母线电压的实际幅值与光伏输入电压的第一参考幅值的差值,其中,差值=母线电压的实际幅值-第一参考幅值;接着确定该差值是否小于第一阈值。其中,第一阈值可以为10v等等。当该差值小于第一阈值时,MPPT技术向上调节光伏输入电压的参考幅值可能受到限制,由于光伏输入电压的上限值为母线电压,因此可以提高母线电压,其中,可以将母线电压的实际幅值与第一预设电压幅值的和作为母线电压的参考幅值,第一预设电压幅值可以为10v、20v等等。然后根据母线电压的参考幅值,调节母线电压,其中,可以直接将母线电压从实际幅值提高至参考幅值。
可选的,为了保证系统所有元件的安全性,不能无限制的提高母线电压。因此,可以 首先根据光伏储能系统中母线电容的耐压值,确定母线电压的最大幅值,其中,母线电容包括在逆变器中,母线电容的耐压值为母线电容可长时间承受的最高电压,母线电压的最大幅值可以等于母线电容的耐压值,例如280v、300v等;接着确定母线电压的参考幅值是否大于最大幅值,当母线电压的参考幅值不大于最大幅值时,将母线电压从实际幅值调节至参考幅值;当参考幅值大于最大幅值时,将母线电压从实际幅值调节至最大幅值。
可选的,当母线电压的实际幅值与光伏输入电压的参考幅值的差值大于第二阈值时,将实际幅值与第二预设电压幅值的差作为母线电压的参考幅值。
具体实现中,第二阈值可以为20v等任意值。当母线电压的实际幅值与光伏输入电压的参考幅值的差值大于第二阈值时,已经不存在无法继续进行最大功率点跟踪的风险。因此,此时可以适度地降低母线电压,以减少母线电压过高造成发热而损耗的电能,其中,可以将母线电压的实际幅值与第二预设电压幅值的差作为母线电压的参考幅值,第二预设电压幅值可以为10v等等。
然后,根据母线电压的参考幅值,调节母线电压。其中,可以直接将母线电压从实际幅值降低至参考幅值。
可选的,为了保证系统正常运行,还可以首先根据光伏储能系统中逆变器的输出电压,确定母线电压的最小幅值。其中,当母线电压的参考幅值低于最小幅值时,逆变器就无法正常输出三相电压。接着确定母线电压的参考幅值是否小于母线电压的最小幅值,当参考幅值不小于最小幅值时,将母线电压从实际幅值降低至参考幅值;当参考幅值小于最小幅值时,将母线电压从实际幅值降低至最小幅值。
在本申请实施例中,首先获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值,所述第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的;然后根据第一参考幅值和所述实际幅值,调节所述母线电压。可以实现对母线电压的动态调节,从而拓宽光伏输入电压的调节范围、避免母线上的高压损耗以及高压高温带来的负面影响。
请参考图9,图9是本申请实施例提供的一种电子设备的结构示意图。如图所示,该电子设备可以包括:至少一个处理器901,例如CPU,至少一个通信接口902,至少一个存储器903,至少一个总线904。其中,总线904用于实现这些组件之间的连接通信。其中,本申请实施例中电子设备的通信接口902是有线发送端口,也可以为无线设备,例如包括天线装置,用于与其他节点设备进行信令或数据的通信。存储器903可以是高速RAM存储器,也可以是非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。存储器903可选的还可以是至少一个位于远离前述处理器901的存储装置。存储器903中存储一组程序代码,且处理器901用于调用存储器中存储的程序代码,用于执行以下操作:
获取光伏储能系统中光伏输入电压第一参考幅值和母线电压的实际幅值,所述第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的;
根据所述第一参考幅值和所述实际幅值,调节所述母线电压。
其中,处理器901还用于执行如下操作步骤:
计算所述实际幅值与所述第一参考幅值的差值;
根据所述差值,调节所述母线电压。
其中,处理器901还用于执行如下操作步骤:
根据所述差值,确定所述母线电压的第二参考幅值;
根据所述第二参考幅值,调节所述母线电压。
其中,处理器901还用于执行如下操作步骤:
当所述差值小于第一阈值时,将所述实际幅值与第一预设电压幅值的和作为所述第二参考幅值。
其中,处理器901还用于执行如下操作步骤:
根据所述光伏储能系统中母线电容的耐压值,确定所述母线电压的最大幅值;
判断所述第二参考幅值是否大于所述最大幅值;若所述第二参考幅值不大于所述最大幅值,则将所述母线电压的幅值调节至所述第二参考幅值;若所述第二参考幅值大于所述最大幅值,则将所述母线电压的幅值调节至所述最大幅值。
其中,处理器901还用于执行如下操作步骤:
当所述差值大于第二阈值时,将所述实际幅值与第二预设电压幅值的差作为所述第二参考幅值。
其中,处理器901还用于执行如下操作步骤:
根据所述光伏储能系统中逆变器的输出电压,确定所述母线电压的最小幅值;
判断所述第二参考幅值是否小于所述最小幅值;若所述第二参考幅值不小于所述最小幅值,则将所述母线电压的幅值调节至所述第二参考幅值;若所述第二参考幅值小于所述最小幅值,则将所述母线电压的幅值调节至所述最小幅值。
其中,处理器901还用于执行如下操作步骤:
按照预设时间间隔获取所述第一参考幅值和所述实际幅值。
其中,处理器901还用于执行如下操作步骤:
根据最大功率点跟踪技术,确定所述光伏输入电压的所述第一参考幅值。
需要说明的是,本申请实施例同时也提供了一种存储介质,该存储介质用于存储应用程序,该应用程序用于在运行时执行图2、图3、图4、图5和图6所示的一种母线电压的调节方法中电子设备执行的操作。
需要说明的是,本申请实施例同时也提供了一种应用程序,该应用程序用于在运行时执行图2、图3、图4、图5和图6所示的一种母线电压的调节方法中电子设备执行的操作。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通 过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本申请实施例所提供的内容下载方法及相关设备、系统进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (18)

  1. 一种母线电压的调节方法,其特征在于,所述方法包括:
    获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值,其中,所述第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的;
    根据所述第一参考幅值和所述实际幅值,调节所述母线电压。
  2. 如权利要求1所述的母线电压的调节方法,其特征在于,所述根据所述第一参考幅值和所述实际幅值,调节所述母线电压包括:
    计算所述实际幅值与所述第一参考幅值的差值;
    根据所述差值,调节所述母线电压。
  3. 如权利要求2所述的母线电压的调节方法,其特征在于,所述根据所述差值,调节所述母线电压包括:
    根据所述差值,确定所述母线电压的第二参考幅值;
    根据所述第二参考幅值,调节所述母线电压。
  4. 如权利要求3所述的母线电压的调节方法,其特征在于,所述根据所述差值,确定所述母线电压的第二参考幅值包括:
    当所述差值小于第一阈值时,将所述实际幅值与第一预设电压幅值的和作为所述第二参考幅值。
  5. 如权利要求3所述的母线电压的调节方法,其特征在于,所述根据所述第二参考幅值,调节所述母线电压包括:
    根据所述光伏储能系统中母线电容的耐压值,确定所述母线电压的最大幅值;
    判断所述第二参考幅值是否大于所述最大幅值;若所述第二参考幅值不大于所述最大幅值,则将所述母线电压的幅值调节至所述第二参考幅值;若所述第二参考幅值大于所述最大幅值,则将所述母线电压的幅值调节至所述最大幅值。
  6. 如权利要求3所述的母线电压的调节方法,其特征在于,所述根据所述差值,确定所述母线电压的第二参考幅值包括:
    当所述差值大于第二阈值时,将所述实际幅值与第二预设电压幅值的差作为所述第二参考幅值。
  7. 如权利要求3所述的母线电压的调节方法,其特征在于,所述根据所述第二参考幅值,调节所述母线电压包括:
    根据所述光伏储能系统中逆变器的输出电压,确定所述母线电压的最小幅值;
    判断所述第二参考幅值是否小于所述最小幅值;若所述第二参考幅值不小于所述最小 幅值,则将所述母线电压的幅值调节至所述第二参考幅值;若所述第二参考幅值小于所述最小幅值,则将所述母线电压的幅值调节至所述最小幅值。
  8. 如权利要求1所述的母线电压的调节方法,其特征在于,所述获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值包括:
    按照预设时间间隔获取所述第一参考幅值和所述实际幅值。
  9. 一种母线电压的调节装置,用于执行权利要求1-8任一项所述的母线电压的调节方法,其特征在于,所述装置包括:
    获取模块,用于获取光伏储能系统中光伏输入电压的第一参考幅值和母线电压的实际幅值,其中,所述第一参考幅值是通过对所述光伏储能系统进行最大功率点跟踪确定的;
    调节模块,用于根据所述第一参考幅值和所述实际幅值,调节所述母线电压。
  10. 如权利要求9所述的母线电压的调节装置,其特征在于,所述调节模块还用于:
    计算所述实际幅值与所述第一参考幅值的差值;
    根据所述差值,调节所述母线电压。
  11. 如权利要求10所述的母线电压的调节装置,其特征在于,所述调节模块还用于:
    根据所述差值,确定所述母线电压的第二参考幅值;
    根据所述第二参考幅值,调节所述母线电压。
  12. 如权利要求11所述的母线电压的调节装置,其特征在于,所述调节模块还用于:
    当所述差值小于第一阈值时,将所述实际幅值与第一预设电压幅值的和作为所述第二参考幅值。
  13. 如权利要求12所述的母线电压的调节装置,其特征在于,所述调节模块还用于:
    根据所述光伏储能系统中母线电容的耐压值,确定所述母线电压的最大幅值;
    判断所述第二参考幅值是否大于所述最大幅值;若所述第二参考幅值不大于所述最大幅值,则将所述母线电压的幅值调节至所述第二参考幅值;若所述第二参考幅值大于所述最大幅值,则将所述母线电压的幅值调节至所述最大幅值。
  14. 如权利要求11所述的母线电压的调节装置,其特征在于,所述调节模块还用于:
    当所述差值大于第二阈值时,将所述实际幅值与第二预设电压幅值的差作为所述第二参考幅值。
  15. 如权利要求14所述的母线电压的调节装置,其特征在于,所述调节模块还用于:
    根据所述光伏储能系统中逆变器的输出电压,确定所述母线电压的最小幅值;
    判断所述第二参考幅值是否小于所述最小幅值;若所述第二参考幅值不小于所述最小 幅值,则将所述母线电压的幅值调节至所述第二参考幅值;若所述第二参考幅值小于所述最小幅值,则将所述母线电压的幅值调节至所述最小幅值。
  16. 如权利要求9-15任一项所述的母线电压的调节装置,其特征在于,所述获取模块还用于:
    按照预设时间间隔获取所述第一参考幅值和所述实际幅值。
  17. 一种电子设备,其特征在于,包括:处理器、存储器、通信接口和总线;
    所述处理器、所述存储器和所述通信接口通过所述总线连接并完成相互间的通信;
    所述存储器存储可执行程序代码;
    所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行如权利要求1-8任一项所述的母线电压的调节方法。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有多条指令,所述指令适于由处理器加载并执行如权利要求1-8任一项所述的母线电压的调节方法。
PCT/CN2019/070771 2019-01-08 2019-01-08 母线电压的调节方法及相关设备 WO2020142890A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980000844.7A CN110249497B (zh) 2019-01-08 2019-01-08 母线电压的调节方法及相关设备
PCT/CN2019/070771 WO2020142890A1 (zh) 2019-01-08 2019-01-08 母线电压的调节方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/070771 WO2020142890A1 (zh) 2019-01-08 2019-01-08 母线电压的调节方法及相关设备

Publications (1)

Publication Number Publication Date
WO2020142890A1 true WO2020142890A1 (zh) 2020-07-16

Family

ID=67893944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070771 WO2020142890A1 (zh) 2019-01-08 2019-01-08 母线电压的调节方法及相关设备

Country Status (2)

Country Link
CN (1) CN110249497B (zh)
WO (1) WO2020142890A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746170A (zh) * 2021-09-03 2021-12-03 阳光电源(上海)有限公司 一种储能系统及其离网过载保护方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130027997A1 (en) * 2011-07-29 2013-01-31 Zhuohui Tan Maximum power point tracking for power conversion system and method thereof
CN103560656A (zh) * 2013-11-06 2014-02-05 西安龙腾新能源科技发展有限公司 减小单相光伏并网逆变器输出电流谐波的方法
CN104882909A (zh) * 2015-05-29 2015-09-02 南京南瑞太阳能科技有限公司 光伏微电网直流母线电压调节与mppt的统一控制系统和方法
CN105293732A (zh) * 2014-07-25 2016-02-03 新疆中兴能源有限公司 一种无电地区光伏提水净水系统
CN106712643A (zh) * 2016-12-29 2017-05-24 上海新时达电气股份有限公司 光伏水泵控制方法及装置
CN109066777A (zh) * 2018-08-13 2018-12-21 青海伟航北创新能源科技有限公司 光伏发电并网输出功率控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184140B (zh) * 2014-08-07 2016-06-29 哈尔滨工程大学 分布式发电系统中保持汇流直流母线电压稳定的控制装置及控制方法
CN104104112B (zh) * 2014-08-08 2016-08-24 深圳市创皓科技有限公司 用于两级拓扑结构的光伏并网逆变器的mppt控制方法
CN105515047B (zh) * 2016-01-12 2018-04-06 上海电力学院 一种光伏电池的变压控制方法
CN108565892A (zh) * 2018-05-02 2018-09-21 南方电网科学研究院有限责任公司 一种故障穿越方法、装置和光伏发电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130027997A1 (en) * 2011-07-29 2013-01-31 Zhuohui Tan Maximum power point tracking for power conversion system and method thereof
CN103560656A (zh) * 2013-11-06 2014-02-05 西安龙腾新能源科技发展有限公司 减小单相光伏并网逆变器输出电流谐波的方法
CN105293732A (zh) * 2014-07-25 2016-02-03 新疆中兴能源有限公司 一种无电地区光伏提水净水系统
CN104882909A (zh) * 2015-05-29 2015-09-02 南京南瑞太阳能科技有限公司 光伏微电网直流母线电压调节与mppt的统一控制系统和方法
CN106712643A (zh) * 2016-12-29 2017-05-24 上海新时达电气股份有限公司 光伏水泵控制方法及装置
CN109066777A (zh) * 2018-08-13 2018-12-21 青海伟航北创新能源科技有限公司 光伏发电并网输出功率控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746170A (zh) * 2021-09-03 2021-12-03 阳光电源(上海)有限公司 一种储能系统及其离网过载保护方法
CN113746170B (zh) * 2021-09-03 2024-02-09 阳光电源(上海)有限公司 一种储能系统及其离网过载保护方法

Also Published As

Publication number Publication date
CN110249497A (zh) 2019-09-17
CN110249497B (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
US20180166883A1 (en) Low voltage ride-through control system and method for multi-inverter grid-connected power converter
JP7301997B2 (ja) 最適化器、太陽光発電システム、及び太陽電池モジュールのためのiv曲線スキャニング方法
JP6225388B2 (ja) Mppt集中モード退出、切り替え方法及びその応用
CN108258718B (zh) 逆变器、集散式汇流箱、限功率控制系统和方法
WO2022087955A1 (zh) 光伏系统母线电压控制方法及装置
CN107154647B (zh) 一种光伏发电系统的功率降额方法及控制器
US11171489B2 (en) Control method and controller for string inverter, inverter, and inverter system
CN109713714B (zh) 一种最大功率点跟踪方法及设备
CN111049376B (zh) 一种两级式串联光伏功率优化器系统无通讯母线调制方法
CN105680477B (zh) 一种光伏并网逆变器降额控制系统及方法
CN113162112A (zh) 光伏并离网系统的母线电压控制方法及光伏并离网系统
EP3035509B1 (en) Method and device for switching operation mode of a five-level inverter
EP3035510A2 (en) Method and device for modulating a five-level inverter, and photovoltaic system
WO2020142890A1 (zh) 母线电压的调节方法及相关设备
CN112242712B (zh) 用于两级式光伏逆变系统的功率控制方法
CN116581763A (zh) 用于配电网中光伏逆变器系统工作模式选择切换的方法
US11699905B2 (en) Power system and control method
JP2017117346A (ja) 制御装置
US20190165581A1 (en) Method and apparatus for controlling alternating current cascade photovoltaic power generation system
CN210092954U (zh) 直流微电网系统
CN115425733A (zh) 一种充电控制方法、装置、太阳能充电控制器及存储介质
CN114583957A (zh) 一种三电平变换器及其控制方法、控制装置
CN110247414B (zh) 用于超级ups的直流母线电压稳定控制方法、装置及系统
CN108183508B (zh) 光伏逆变器在两路mppt输入条件下的控制方法
CN106059484B (zh) 一种具备倾斜特性保护的集成光伏组件功率控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909076

Country of ref document: EP

Kind code of ref document: A1