WO2020140966A1 - 一种资源配置、获取方法、网络设备及终端 - Google Patents

一种资源配置、获取方法、网络设备及终端 Download PDF

Info

Publication number
WO2020140966A1
WO2020140966A1 PCT/CN2020/070230 CN2020070230W WO2020140966A1 WO 2020140966 A1 WO2020140966 A1 WO 2020140966A1 CN 2020070230 W CN2020070230 W CN 2020070230W WO 2020140966 A1 WO2020140966 A1 WO 2020140966A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
saving signal
resource
transmission
transmission resources
Prior art date
Application number
PCT/CN2020/070230
Other languages
English (en)
French (fr)
Inventor
王加庆
杨美英
赵铮
罗晨
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910731340.4A external-priority patent/CN111417208B/zh
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP20736066.0A priority Critical patent/EP3908066A4/en
Priority to JP2021539365A priority patent/JP7234381B2/ja
Priority to KR1020217023717A priority patent/KR102582378B1/ko
Priority to US17/420,709 priority patent/US11991633B2/en
Publication of WO2020140966A1 publication Critical patent/WO2020140966A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of communication applications, and in particular, to a resource configuration, acquisition method, network equipment, and terminal.
  • the discontinuous reception (DRX) mechanism is used to achieve power saving.
  • the UE monitors the PDCCH only during the DRX activation period (Onduration).
  • the activation period also known as DRX off
  • the UE does not receive the PDCCH to reduce power consumption, that is, enters the sleep mode.
  • the inactive period in DRX is difficult to set for a long time in the mobile communication system. Switching between the DRX active period and the DRX inactive period makes the power saving effect greatly reduced.
  • the paging signal detection is triggered by the wake-up signal WUS (Wake Up Signal), as shown in Figure 1.
  • WUS Wake Up Signal
  • the dashed vertical line in FIG. 1 represents the paging signal transmission opportunity (paging) opportunity.
  • the UE in the radio resource control idle (RRC_IDLE) state needs to wake up periodically at each paging opportunity (Paging Occasion, PO)
  • PDCCH Physical Downlink Control Channel
  • the UE needs to blindly detect the physical downlink control channel (Physical Downlink Control Channel, PDCCH) of the paging signal before detecting the possible paging signal every time, and continue if the PDCCH of the paging signal is seen Otherwise, the paging signal will not be decoded.
  • Another method is to send a WUS before the paging signal. If WUS is detected, the blind detection of the PDCCH of the paging signal is started.
  • WUS can be designed as a sequence, its detection complexity is much lower than that of blind detection of PDCCH, so using WUS can greatly reduce the power consumption of reception.
  • narrow-band IoT there is no relevant solution for how to configure energy-saving signals during the DRX inactive period.
  • the purpose of the present disclosure is to provide a resource configuration, acquisition method, network equipment, and terminal to solve the problem of how to configure an energy-saving signal during the DRX inactive period currently without a related solution.
  • the present disclosure provides a resource configuration method, which is applied to a network device and includes:
  • configure the energy-saving signal to transmit resources during the non-continuous DRX inactive period including:
  • the transmission resource of the energy-saving signal in the DRX inactive period is determined.
  • configuring at least two candidate transmission resources of the energy saving signal during the DRX inactive period includes:
  • each resource window includes at least two candidate transmission resources, and at least two candidate transmission resources of each resource window include a default candidate transmission resource;
  • the resource window includes a time domain resource window and/or a frequency domain resource window.
  • determining the transmission resource of the energy-saving signal during the DRX inactive period includes:
  • configuring at least two candidate transmission resources of the energy saving signal during the DRX inactive period includes:
  • determining the transmission resource of the energy-saving signal during the DRX inactive period includes:
  • the transmission resource of the energy-saving signal in the DRX inactive period is determined.
  • selecting a target position interval value includes:
  • the smallest position interval value is selected as the target position interval value.
  • determining transmission resources of the energy-saving signal during the DRX inactive period according to the target position interval value includes:
  • the pre-agreed candidate transmission resource is determined as the transmission resource of the energy-saving signal during the DRX inactive period
  • the transmission resource of the energy-saving signal during the DRX inactive period is determined according to the idle resource of the time slot where the preset high priority signal used to calculate the target position interval value is located.
  • configure the energy-saving signal to transmit resources during the non-continuous DRX inactive period including:
  • the carrier is the main carrier or the main and secondary carriers.
  • configure the energy-saving signal to transmit resources during the non-continuous DRX inactive period including:
  • the bandwidth part BWP of the energy-saving signal during the DRX inactivity period where the BWP is a cell-specific narrow-band BWP or a predetermined narrow-band BWP.
  • configure the energy-saving signal to transmit resources during the non-continuous DRX inactive period including:
  • the energy-saving signal is configured to transmit the transmission resources in the DRX inactive period discontinuously.
  • configure the energy-saving signal to transmit transmission resources during the non-continuous reception of the DRX inactive period including:
  • the transmission resources of the energy-saving signal in the DRX inactive period are configured.
  • the transmission resources include a first transmission resource and a second transmission resource, the frequency resources of the first transmission resource are fixed, and the time domain resources are variable; the time resources of the second transmission resource are fixed, the frequency Domain resources are variable.
  • the method further includes:
  • the energy-saving signal or the punctured energy-saving signal is abandoned on the transmission resource where the overlap occurs.
  • the above method further includes:
  • the instruction information is used to instruct the terminal to abandon the detection of the energy-saving signal on the transmission resources where overlap occurs and to stay in a sleep state, or to instruct the terminal to abandon the detection of the energy-saving signal on the transmission resources where overlap occurs and enter the awake state. Or, it is used to instruct the terminal to detect the punctured energy-saving signal on the overlapping transmission resources.
  • the method further includes:
  • the energy saving signal is sent on the transmission resource.
  • the preset high priority signal includes at least one of the following:
  • System information block SSB System information block SSB, channel state information reference signal CSI-RS, remaining minimum system information RMSI, tracking reference signal TRS and other system information OSI.
  • the transmission resources are configured periodically, and the configuration period of the transmission resources is greater than the maximum time domain length of the energy-saving signal configured by the base station, and the end position of the transmission resources and the next DRX in the DRX inactive period Among the at least one transmission resource whose interval between the start positions of the activation period is greater than the third preset threshold, the transmission resource closest to the start position of the next DRX activation period is the energy-saving signal transmission resource.
  • the start position of the DRX cycle is the same as the start position of the nuclear energy saving signal cycle, and the DRX cycle is an integer multiple of the cycle of the nuclear energy saving signal;
  • the energy saving signal is a sequence
  • the nuclear energy saving signal is a subsequence with a fixed length in the sequence.
  • the energy-saving signal is configured to transmit transmission resources during the non-continuous reception of the DRX inactive period, including:
  • the transmission resources of the energy-saving signal are configured, and the transmission resources of the energy-saving signal include: downlink DL symbol or time slot, uplink UL symbol or time slot, and flexible symbol or time At least one of the gaps.
  • the resource configuration method further includes:
  • the transmission resource of the energy saving signal includes a downlink DL symbol or time slot
  • the transmission resource of the energy-saving signal includes a UL symbol or a time slot, the transmission of the energy-saving signal is abandoned; or,
  • the transmission resource of the energy-saving signal includes flexible symbols or time slots configured by physical layer signaling, the transmission of the energy-saving signal is abandoned.
  • the energy-saving signal is configured to transmit transmission resources during the non-continuous reception of the DRX inactive period, including:
  • the transmission resources of the energy-saving signal are configured on symbols or time slots other than uplink UL symbols or time slots, and/or flexible symbols or time slots configured by dynamic signaling.
  • some embodiments of the present disclosure also provide a resource acquisition method, which is applied to a terminal and includes:
  • the method further includes:
  • the method further includes:
  • abandon the detection of the energy-saving signal on the transmission resource where overlap occurs and stay in the sleep state, or abandon the detection of the energy-saving signal on the transmission resource where overlap occurs and enter the wake-up state, or on the transmission resource where overlap occurs Detects energy-saving signals for punching.
  • the method further includes:
  • PDCCH monitoring is performed during the DRX activation period that is located after the DRX inactivity period.
  • the resource acquisition method further includes: when the transmission resource of the energy-saving signal configured by the network device cannot be used for the transmission of the energy-saving signal, the terminal directly wakes up the receiver and performs PDCCH detection within the corresponding DRX cycle; or,
  • the terminal When the transmission resource of the energy-saving signal configured by the network device cannot be used for the transmission of the energy-saving signal, the terminal continues to perform the sleep operation and does not detect the PDCCH in the subsequent DRX cycle.
  • the resource acquisition method further includes: when the energy-saving signal transmission resource configured for the terminal is a flexible symbol or time slot configured by RRC signaling, the terminal detects the energy-saving signal on the transmission resource corresponding to the energy-saving signal.
  • some embodiments of the present disclosure also provide a network device, including: a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor, and the processor executes the program
  • a network device including: a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor, and the processor executes the program
  • the processor also implements the following steps when executing the program:
  • the transmission resource of the energy-saving signal in the DRX inactive period is determined.
  • the processor also implements the following steps when executing the program:
  • each resource window includes at least two candidate transmission resources, and at least two candidate transmission resources of each resource window include a default candidate transmission resource;
  • the resource window includes a time domain resource window and/or a frequency domain resource window.
  • the processor also implements the following steps when executing the program:
  • the processor also implements the following steps when executing the program:
  • the processor also implements the following steps when executing the program:
  • the transmission resource of the energy-saving signal in the DRX inactive period is determined.
  • the processor also implements the following steps when executing the program:
  • the smallest position interval value is selected as the target position interval value.
  • the processor also implements the following steps when executing the program:
  • the pre-agreed candidate transmission resource is determined as the transmission resource of the energy-saving signal during the DRX inactive period
  • the transmission resource of the energy-saving signal during the DRX inactive period is determined according to the idle resource of the time slot where the preset high priority signal used to calculate the target position interval value is located.
  • the processor also implements the following steps when executing the program:
  • the carrier is the main carrier or the main and secondary carriers.
  • the processor also implements the following steps when executing the program:
  • the bandwidth part BWP of the energy-saving signal during the DRX inactivity period where the BWP is a cell-specific narrow-band BWP or a predetermined narrow-band BWP.
  • the processor also implements the following steps when executing the program:
  • the energy-saving signal is configured to transmit the transmission resources in the DRX inactive period discontinuously.
  • the processor also implements the following steps when executing the program:
  • the transmission resources of the energy-saving signal in the DRX inactive period are configured.
  • the transmission resources include a first transmission resource and a second transmission resource, the frequency resources of the first transmission resource are fixed, and the time domain resources are variable; the time resources of the second transmission resource are fixed, the frequency Domain resources are variable.
  • the processor also implements the following steps when executing the program:
  • the energy-saving signal or the punctured energy-saving signal is abandoned on the transmission resource where the overlap occurs.
  • the processor also implements the following steps when executing the program:
  • the instruction information is used to instruct the terminal to abandon the detection of the energy-saving signal on the transmission resources where overlap occurs and to stay in a sleep state, or to instruct the terminal to abandon the detection of the energy-saving signal on the transmission resources where overlap occurs and enter the awake state. Or, it is used to instruct the terminal to detect the punctured energy-saving signal on the overlapping transmission resources.
  • the processor also implements the following steps when executing the program:
  • the energy saving signal is sent on the transmission resource.
  • the preset high priority signal includes at least one of the following:
  • System information block SSB System information block SSB, channel state information reference signal CSI-RS, remaining minimum system information RMSI, tracking reference signal TRS and other system information OSI.
  • the transmission resources are configured periodically, and the configuration period of the transmission resources is greater than the maximum time domain length of the energy-saving signal configured by the base station, and the end position of the transmission resources and the next DRX in the DRX inactive period Among the at least one transmission resource whose interval between the start positions of the activation period is greater than the third preset threshold, the transmission resource closest to the start position of the next DRX activation period is the energy-saving signal transmission resource.
  • the start position of the DRX cycle is the same as the start position of the nuclear energy saving signal cycle, and the DRX cycle is an integer multiple of the cycle of the nuclear energy saving signal;
  • the energy saving signal is a sequence
  • the nuclear energy saving signal is a subsequence with a fixed length in the sequence.
  • some embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored, which when executed by a processor implements the steps of the resource configuration method described above.
  • some embodiments of the present disclosure also provide a terminal, including: a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor, when the processor executes the program Implement the following steps:
  • the processor implements the following steps when executing the program:
  • the detection of the energy-saving signal or the detection of the punctured energy-saving signal is abandoned on the overlapping transmission resource.
  • the processor also implements the following steps when executing the program:
  • abandon the detection of the energy-saving signal on the transmission resource where overlap occurs and stay in the sleep state, or abandon the detection of the energy-saving signal on the transmission resource where overlap occurs and enter the wake-up state, or on the transmission resource where overlap occurs Detects energy-saving signals for punching.
  • the processor also implements the following steps when executing the program:
  • PDCCH monitoring is performed during the DRX activation period that is located after the DRX inactivity period.
  • some embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored, which when executed by a processor implements the steps of the resource acquisition method described above.
  • some embodiments of the present disclosure also provide a network device, including:
  • the configuration module is used to configure the transmission resources of the energy-saving signal in the non-continuous reception DRX inactive period in a static or semi-static manner.
  • some embodiments of the present disclosure also provide a terminal, including:
  • the first obtaining module is configured to obtain the transmission resources of the energy-saving signal during the non-continuous reception DRX inactive period in a static or semi-static manner.
  • the transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period are configured to facilitate subsequent energy saving during the DRX inactive period according to the transmission resources
  • the signal transmission enables the terminal to determine whether it is necessary to perform PDCCH detection during the DRX activation period according to the energy-saving signal, thereby reducing unnecessary PDCCH detection and reducing the power consumption of the terminal.
  • Figure 1 is a schematic diagram of the working mechanism of the wake-up signal
  • FIG. 2 is a schematic flowchart of a resource configuration method according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of network equipment periodically configuring transmission opportunities of energy-saving signals
  • FIG. 4 is a schematic diagram of enhancing the transmission opportunity in FIG. 3 into a sliding window in the time domain;
  • FIG. 5 is a schematic diagram of enhancing the transmission opportunity in FIG. 3 into a sliding window in the frequency domain
  • FIG. 6 is a schematic flowchart of a resource acquisition method according to some embodiments of the present disclosure.
  • FIG. 7 is a structural block diagram of a network device in some embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of modules of a network device in some embodiments of the present disclosure.
  • FIG. 9 is a structural block diagram of a terminal in some embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram of modules of a terminal in some embodiments of the present disclosure.
  • the working state of the user equipment is divided into three types: radio resource control idle (RRC_IDLE) state, radio resource control inactive (RRC_Inactive) state, and radio resource control connected (RRC_Connected) state,
  • RRC_IDLE radio resource control idle
  • RRC_Inactive radio resource control inactive
  • RRC_Connected radio resource control connected
  • the UE In the RRC_Connected state, the UE needs to continuously monitor the physical downlink control channel (Physical Downlink Control Channel, PDCCH) to learn the physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) transmission information.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the packet-based data flow is usually bursty, and there is data transmission for a period of time, but there is no data transmission for a long period of time in the next period, and continuous monitoring of the PDCCH inevitably leads to rapid power consumption of the UE. Therefore, when there is no data transmission, the power consumption can be reduced by stopping receiving the PDCCH (at this time, the PDCCH blind detection will be stopped). Therefore, 3GPP is designed to achieve power saving through a discontinuous reception (DRX) mechanism.
  • DRX discontinuous reception
  • the UE monitors the PDCCH only during the DRX activation period (Onduration), and during the DRX inactive period (Opportunity for DRX, Also known as DRX off, the UE does not receive the PDCCH to reduce power consumption, that is, enters the sleep mode.
  • the NR system has three states: radio resource control idle (RRC_IDLE) state, radio resource control inactive (RRC_Inactive) and radio resource control active (RRC_Active). You can learn from the NB-IoT idea.
  • the base station sends energy-saving signals during the Opportunity for DRX cycle ( power saving), if the UE detects the energy saving signal before DRX, it will monitor the PDCCH in the subsequent DRX ON cycle, otherwise, it will continue to sleep and not detect the PDCCH in the DRX on cycle.
  • NR system is very different from LTE and NB-IoT in terms of frame structure, bandwidth, control channel, synchronization channel, etc.
  • some embodiments of the present disclosure provide a resource configuration method, which is applied to a network device.
  • the network device may be specifically a base station. As shown in FIG. 2, the method includes:
  • Step 201 In a static or semi-static manner, configure the transmission resources of the energy-saving signal during the non-continuous reception DRX inactive period.
  • configuring the energy-saving signal transmission resources in the non-continuous reception of the DRX inactive period in a semi-static manner may include: configuring the energy-saving signal transmission resources in the DRX inactive period semi-statically through RRC radio resource control signaling .
  • configuring transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period may include: configuring transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period in a pre-agreed manner.
  • the energy-saving signal is a sequence, which may specifically be WUS.
  • the terminal if the terminal detects the energy-saving signal during the DRX inactive period, the terminal monitors the PDCCH during the subsequent DRX activation period, otherwise, it continues to be in a sleep state and does not detect the PDCCH during the DRX activation period.
  • the resource configuration method of some embodiments of the present disclosure configures the transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period in a static or semi-static manner to facilitate subsequent energy-saving signals during the DRX inactive period according to the transmission resources
  • the transmission of the terminal enables the terminal to determine whether to perform PDCCH detection during the DRX activation period according to the energy-saving signal, thereby reducing unnecessary PDCCH detection and reducing power consumption of the terminal.
  • the method further includes:
  • the energy-saving signal is sent on the transmission resource.
  • the terminal performs PDCCH monitoring in the first DRX activation period after the DRX inactivity period according to the energy saving signal.
  • System information block SSB System information block SSB, channel state information reference signal CSI-RS, remaining minimum system information RMSI, tracking reference signal TRS and other system information OSI.
  • the method further includes:
  • the energy-saving signal or the punctured energy-saving signal is abandoned on the transmission resource where the overlap occurs.
  • the base station may configure time-frequency resources for the energy-saving signals semi-statically.
  • the base station will consider avoiding preset high-priority signals in the system as much as possible, such as SSB signals, CSI-RS, TRS , RMSI, OSI and other broadcast and reference signal information, because SSB, RMSI, OSI are broadcast information sent for all users, and CSI-RS, TRS and other reference signals are designed for multiple users, therefore, a user’s energy-saving signal Transmission cannot affect the receiving performance of other users, so it cannot affect the reception of the original high-priority broadcast and reference signals. These signals must be avoided.
  • Base station behavior Abandon sending energy-saving signal or sending hole-punching energy-saving signal.
  • the UE may have three behaviors: 1) The UE abandons the detection of the energy-saving signal on the transmission resource where the energy-saving signal collides with the preset high-priority signal, and continues to maintain the sleep state, for example, the energy-saving signal and CSI-RS If more RE collisions occur, the energy-saving signal can be discarded directly; 2) The UE continues to use the punctured energy-saving signal to continue detection, for example, when the SSB collides with the energy-saving signal and RE occurs less frequently; The high-priority signal collision resource abandons the energy-saving signal detection, directly enters the wake-up state, and performs PDCCH detection in the subsequent DRX ON cycle.
  • the resource configuration method of some embodiments of the present disclosure further includes:
  • the instruction information is used to instruct the terminal to abandon the detection of the energy-saving signal on the overlapping transmission resources and maintain the sleep state, or to instruct the terminal to abandon the detection of the energy-saving signal on the overlapping transmission resources and enter the awake state, or It is used to instruct the terminal to detect punctured energy-saving signals on overlapping transmission resources.
  • the base station may notify the UE in a semi-static configuration method of RRC signaling which method the terminal adopts for processing when the transmission resource of the energy-saving signal collides with the transmission resource of the high-priority signal, for example, by 1 Bit signal signaling indication, 1 indicates that the UE directly wakes up; 0 indicates that the punctured energy-saving signal is used to continue detection, or two-bit signaling is used to indicate the above three behaviors of the UE.
  • bit indication information may also be used for indication.
  • the foregoing configuration of the energy-saving signal during the discontinuous reception of transmission resources during the DRX inactive period includes:
  • the transmission resource of the energy-saving signal in the DRX inactive period is determined.
  • the at least two candidate transmission resources of the above configuration energy-saving signal during the DRX inactive period include:
  • each resource window includes at least two candidate transmission resources, and at least two candidate transmission resources of each resource window include a default candidate transmission resource;
  • the resource window includes a time domain resource window and/or a frequency domain resource window.
  • the default candidate transmission resource may specifically be the first candidate transmission resource in the resource window.
  • the transmission resources of the energy-saving signal in the DRX inactive period are determined, including:
  • the base station configures multiple candidate energy-saving signal transmission resources for the terminal.
  • the base station transmits the energy-saving signal on other candidate transmission resources.
  • the energy-saving signal is configured periodically (does not exclude the case where the default energy-saving signal transmission time resource is acyclic), taking the time resource as an example, the transmission positions of multiple candidate resources may be the time offset of the original energy-saving signal transmission position In this way, the energy-saving signal transmission time is not periodic.
  • a specific example is shown in Figures 3 and 4.
  • FIG. 3 is a transmission opportunity of the energy-saving signal periodically configured by the base station for the terminal.
  • a periodic transmission opportunity of the original energy-saving signal is enhanced into a sliding window (time-domain resource window) of a transmission opportunity. Multiple candidate transmission opportunities are configured. For example, there is a 1ms difference between each transmission opportunity.
  • a sliding window can be configured with 5 transmission opportunities. If the UE needs to be woken up during the upcoming DRX ON cycle, the base station needs to send energy-saving signals for the UE. The best first transmission opportunity is the default transmission opportunity. If the previous transmission opportunity is blocked by other signals, it will send an energy-saving signal to the nearest next transmission opportunity. If all transmission opportunities are blocked, the base station will give up this time. Energy-saving signal transmission.
  • the UE when there is an energy-saving signal to be transmitted, if the first transmission opportunity fails to transmit the energy-saving signal, its periodic transmission will be destroyed. If there is a transmission opportunity that is not blocked on the corresponding transmission opportunity in the sliding window, the UE will detect the energy saving signal at the corresponding transmission opportunity. When the energy saving signal is detected, it will wake up the receiver to detect the PDCCH in DRX ON, otherwise it will continue to sleep.
  • the base station configures the energy-saving signal as multiple candidate transmission frequency points.
  • FIG. 5 shows an example of a periodic transmission of the original energy-saving signal.
  • Opportunity enhancement is a transmission opportunity based on the frequency domain sliding window. Multiple candidate frequency domain transmission resources are configured in the frequency domain sliding window. If the UE needs to be woken up in the upcoming DRX ON cycle, the base station needs to send energy saving for the UE For the signal, the base station selects a transmission frequency point in the sliding window according to an order previously agreed with the UE to transmit the energy-saving signal. The first frequency point of the better base station configuration is the default transmission resource. If the previous transmission resource is blocked by other signals, the energy saving signal is sent to the nearest next transmission resource. If all transmission resources are blocked by the block, the base station will give up This time the energy-saving signal is sent.
  • Some embodiments of the present disclosure may further include a sliding window in the time domain and a sliding window in the frequency domain.
  • the candidate transmission opportunities or transmission frequency points of the energy-saving signal of the present disclosure may be semi-statically configured by the base station through RRC signaling, or the base station and the terminal may agree in advance.
  • Candidate transmission opportunities for energy-saving signals can be the starting point of energy-saving signals, nor does it exclude the end point, or a predetermined position;
  • the transmission frequency of energy-saving signals can be the starting point of frequency-domain resources, nor Exclude the end point, or a predetermined position.
  • the at least two candidate transmission resources of the above configuration energy saving signal in the DRX inactive period include:
  • the above determination of transmission resources of the energy-saving signal during the DRX inactive period based on the candidate transmission resources of the energy-saving signal and the transmission resources of the preset high-priority signal includes:
  • selecting a target position interval value includes:
  • the smallest position interval value is selected as the target position interval value.
  • determining transmission resources of the energy-saving signal during the DRX inactive period includes:
  • the pre-agreed candidate transmission resource is determined as the transmission resource of the energy-saving signal during the DRX inactive period
  • the transmission resource of the energy-saving signal during the DRX inactive period is determined according to the idle resource of the time slot where the preset high priority signal used to calculate the target position interval value is located.
  • the energy-saving signal is transmitted in the DRX OFF period, and the UE needs to receive CSI-RS and SSB to perform radio resource management RRM measurement and cell search signals in DRX OFF. At least SSB and CSI-RS do not exclude other high-priority signals.
  • Step 1 The base station configures multiple candidate energy-saving signal transmission resources before DRX ON through the semi-static way of RRC signaling or the static way agreed in advance.
  • Step 2 The base station calculates the location interval value between each candidate transmission resource in step 1 and the transmission resource of the preset high priority signal to obtain multiple location interval values.
  • the preferred position interval value may be the interval value between the start point of the energy-saving signal transmission and the end point of the preset high-priority signal transmission.
  • other distance calculation methods are not excluded.
  • Step 3 Select a target position interval value dmin from multiple position interval values.
  • the method for selecting the target position interval value is as follows. For example, it may be that the distance between multiple candidate transmission resources (or candidate transmission opportunities) of the high-priority signal such as CSI-RS and the energy-saving signal satisfies the minimum value greater than the first preset threshold Th0.
  • a method for determining this Th0 is the threshold of the time required to switch to another signal after receiving one signal, such as the time interval required to switch to receiving energy-saving signals after receiving CSI-RS, and special scenarios are not excluded
  • the value is 0.
  • the number of preset high-priority signals such as CSI-RS in DRX OFF (DRX inactive period) may be multiple, preferably, the target position interval value can be calculated according to the nearest CSI-RS from DRX ON The value of the position interval between it and the candidate transmission resource receiving the energy-saving signal.
  • the preset high priority signal does not exclude other pre-agreed selection methods. There may be multiple preset high-priority signals.
  • CSI-RS and SSB can be indistinguishable when calculating distances. They can be regarded as the same signal, and can also be determined based on higher-priority signals. For example, based on SSB without considering CSI- RS to calculate the position interval value.
  • Step 4 determine the transmission opportunity of the energy-saving signal.
  • Solution 1 The base station sends an energy-saving signal at the candidate position of the energy-saving signal corresponding to the distance dmin obtained in step 3;
  • Solution 2 If the distance dmin obtained in step 3 is greater than a certain threshold (second preset threshold) Th1, the base station Send an energy-saving signal at a predetermined candidate location.
  • Scenario 3 The idle resources of the slot where the preset high priority signal corresponding to dmin (used to calculate the preset high priority signal of dmin) is located (such as the first and second reserved on the slot where the SSB is located) ), an energy-saving signal is sent.
  • This method can effectively avoid the collision between the energy-saving signal and the preset high-priority signal, and can make the distance between the preset high-priority signal and the energy-saving signal closer, so that the energy-saving signal reception uses the preset high-priority signal as much as possible
  • the synchronization function of the SSB is beneficial for the UE to enter the sleep state after continuously receiving the signal.
  • configuring the transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period includes:
  • the carrier is the main carrier or the main and secondary carriers.
  • the base station semi-statically or statically configures the carrier that sends the energy-saving signal. It can be specifically implemented through the following scheme: In the first scheme, the base station sends the energy-saving signal that wakes up the receiver in DRX OFF only on the main carrier PCell or the main subcarrier PScell in a static, pre-agreed manner.
  • the NR system can be divided into two ways: non-standalone and standalone in terms of networking. Non-standalone means that NR and LTE are dual-connected.
  • the main carrier of NR is called PScell.
  • the main carrier of NR is called PCell, and the other subcarriers are called Scell.
  • the base station configures the energy-saving transmission carrier in a semi-static configuration of RRC signaling. For example, even if all data is sent on a high-frequency carrier, a low-frequency carrier can be configured to send an energy-saving signal. This has the advantage The energy-saving signal has better reception performance in low frequency band and larger coverage.
  • configuring the transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period includes:
  • the bandwidth part BWP of the energy-saving signal during the DRX inactivity period where the BWP is a cell-specific narrow-band BWP or a predetermined narrow-band BWP.
  • the base station pre-appoints or RRC signaling semi-statically configures BWP (Bandwidth Part) for sending energy-saving signals.
  • BWP Bandwidth Part
  • the NR system is a large-bandwidth transmission from the perspective of the carrier.
  • a scheme of configuring BWP for UE data transmission is adopted.
  • Each carrier can configure multiple BWPs for the UE, but the UE has only one active BWP at a time.
  • the reception of the energy-saving signal in DRXOFF needs to warm up the RF RF circuit in advance.
  • the energy-saving signal may only occupy a lower bandwidth, but activating the entire broadband BWP will often consume more power than activating a narrow-band BWP, so in order to reduce energy saving Receiving power consumption of a signal, a preferred method of energy-saving signal transmission is to transmit the energy-saving signal on a narrow band BWP that is UE-specific.
  • the NR standard stipulates that each UE can configure up to 4 UE-specific BWPs.
  • the preferred base station configures a narrow-band BWP semi-statically through RRC signaling for energy-saving signal transmission.
  • BWP for Energy-saving signal transmission does not require RRC signaling configuration at this time, which is a static configuration, but the base station can set the BWP that is agreed to be used to send the energy-saving signal to a narrow-band BWP that can save power.
  • the base station may also semi-statically or statically configure a cell-specific BWP for transmitting energy-saving signals.
  • the BWP may It is a cell-specific initial BWP so that no signalling is required, only the convention in the standard that static configuration energy-saving signals are sent on the initial BWP.
  • the initial initial BWP is a cell-specific resource and the resource is relatively tight.
  • the base station uses a semi-static signaling to configure a cell-specific BWP different from the initial BWP for energy-saving signal transmission.
  • the base station can use the bitmap bitmap. Way, configure specific frequency domain resources for transmitting energy-saving signals.
  • the configured frequency domain resources may be continuous or discrete, which can be understood as a cell specific BWP used for all users in the cell to transmit energy-saving signals.
  • configuring the transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period includes:
  • the energy-saving signal is configured to transmit the transmission resources in the DRX inactive period discontinuously.
  • the energy-saving signal is configured to transmit transmission resources during the non-continuous reception of the DRX inactive period, including:
  • the transmission resources of the energy-saving signal in the DRX inactive period are configured.
  • the transmission resources include a first transmission resource and a second transmission resource, the frequency domain resource of the first transmission resource is fixed, and the time domain resource is variable; the time domain resource of the second transmission resource is fixed, frequency Domain resources are variable.
  • the base station transmits the energy-saving signal on the currently activated BWP, that is, the BWP that the UE needs to perform PDCCH monitoring in the upcoming DRX cycle.
  • the BWP for transmitting the energy-saving signal is determined. For example, in the upcoming DRX ON cycle, the base station configures the UE to transmit energy-saving signals in the search space for transmitting PDCCH. The search space corresponding to the UE does not have PDCCH transmission because it is in the DRX OFF cycle.
  • the frequency domain resource of the first transmission resource is fixed and the time domain resource is variable; the time domain resource of the second transmission resource is fixed and the frequency domain resource is variable.
  • the base station semi-statically or statically configures the largest frequency domain resource on some narrow-band BWP, or the number of REs occupied in the frequency domain
  • the number of OFDM or slots occupied in the time domain is variable according to the size of the energy-saving signal payload
  • time-domain resources such as OFDM symbols and slot sizes
  • frequency-domain resources are variable according to the payload size of energy-saving signals.
  • the transmission resource is periodically configured, the configuration period of the transmission resource is greater than the maximum time-domain length of the energy-saving signal configured by the base station, and the DRX inactive period transmits In at least one transmission resource where the interval between the end position of the resource and the start position of the next DRX activation period is greater than the third preset threshold, the transmission resource closest to the start position of the next DRX activation period is the transmission of the energy-saving signal Resources.
  • the time configuration regarding the energy-saving channel is also highly related to the energy-saving signal design scheme. Since the DRX cycle configuration of the UE is UE-specific, if the DRX cycle configuration of the UE is not restricted, the energy-saving signals of multiple UEs may overlap each other in the time domain, which may cause interference between the energy-saving signals and seriously damage the energy-saving signals. Performance, especially when the energy-saving signal is based on an orthogonal sequence, the orthogonality is destroyed. So consider the following time domain transmission scheme.
  • the time-domain configuration method of the energy-saving signal is not tied to the DRX cycle.
  • Other reference signals like NR use the periodic configuration, but the energy-saving signal cycle must be greater than the maximum time-domain length occupied by the energy-saving signal configured by the base station.
  • the transmission resource (sending position) period configuration of the energy-saving signal must be greater than the maximum time-domain length occupied by the energy-saving signal configured by the base station, and it is satisfied and upcoming within the DRX OFF period
  • the candidate position of the DRX ON cycle with the closest distance and greater than a certain gap (the third preset threshold) can be used as the transmission and detection position of the energy-saving signal, which will align the starting point of the energy-saving signal and will not cause overlapping between the sequences. Thereby reducing interference between users, more conducive to maintaining orthogonality.
  • the start position of the DRX cycle is the same as the start position of the cycle of the nuclear energy saving signal, and the DRX cycle is an integer multiple of the cycle of the nuclear energy saving signal.
  • the energy saving signal is a sequence
  • the nuclear energy saving signal is a sub-sequence with a fixed length in the sequence.
  • the start position of the DRX cycle is the same as the start position of the cycle of the nuclear energy saving signal.
  • the first time corresponding to the start position of the DRX cycle is the second corresponding to the start position of the cycle of the nuclear energy saving signal. An integer multiple of time.
  • the energy-saving signal is bound to the DRX, that is, the energy-saving signal sending position and the DRX have a gap and the maximum energy-saving signal length is configured.
  • the energy-saving signal starts from the starting point of the maximum energy-saving signal length Send, at this time there will be overlapping of energy-saving signals.
  • the energy-saving signal is based on a sequence structure, there will always be a sub-sequence of fixed length, such as 256 bits, which can be defined as a Kernel energy-saving signal.
  • the subsequent sequence is the time-domain repetition of the Kernel energy-saving signal.
  • the period of the signal is T, for example, it can be a slot or 4 OFDM symbols.
  • the start points of all DRX ONs in the period T of the Kernel energy-saving signal are aligned, so that the orthogonality between the sequences will not be destroyed Sex, but the overlap between the sequences still exists.
  • the starting point of the energy-saving signal and the starting point of DRX remain fixed, and the DRX cycle is configured by the UE specific cycle.
  • the energy saving signal is bound to DRX, that is, always at the agreed position before DRX, the starting point of the DRX cycle configured by the base station for the UE is the same as the starting point of the cycle T of the Kernel energy saving signal, DRX
  • the period of the cycle is also an integer multiple of the period T of the Kernel energy-saving signal.
  • the starting point of DRX can be set to an integer multiple of the period T of the Kernel energy-saving signal
  • the cycle of the DRX cycle is also an integer multiple of the period T of the Kernel energy-saving signal.
  • the resource configuration method may further include: sending an energy-saving signal with a wake-up function before the DRX activation period, for waking up the UE to perform PDCCH detection during the corresponding DRX activation period.
  • the energy-saving signal with wake-up function is configured periodically.
  • the energy-saving signal is configured to transmit transmission resources during the non-continuous reception of the DRX inactive period, including:
  • the transmission resources of the energy-saving signal include: downlink DL symbols or time slots, uplink UL symbols or time slots, and flexible At least one of symbols or time slots. Or, configure the transmission resources of the energy-saving signal on symbols or time slots other than uplink UL symbols or time slots, and/or flexible symbols or time slots configured by dynamic signaling, that is, not allowed in UL symbols Or a time slot, and/or, a flexible symbol configured by dynamic signaling or a transmission resource of the energy-saving signal with a wake-up function is configured on the time slot.
  • the time slots or symbols can be used for uplink or downlink, depending on the scheduler of the base station.
  • the transmission resource of the energy-saving signal with wake-up function includes UL symbols or time slots
  • the transmission of the energy-saving signal is abandoned; or, the transmission resource of the energy-saving signal with wake-up function includes flexibility of physical layer signaling configuration
  • the transmission resource of the energy saving signal includes a downlink DL symbol or time slot
  • the energy saving signal is sent on the DL symbol or time slot.
  • the energy-saving signal with wake-up function here (also called wake-up signal) can be used to wake up the UE to perform PDCCH detection in the corresponding DRX ON.
  • the base station sends a wake-up signal before the DRX ON cycle.
  • the wake-up signal may be periodically configured.
  • the wake-up signal may be a power-saving signal based on PDCCH, and the corresponding search space is Periodic, because DRX cycle is also periodic, it is generally possible to bind the DRX cycle to the position where the energy-saving signal is sent.
  • the energy-saving signal is always sent at a fixed offset (offset) before the DRX cycle, which is generally high-level Signaling configuration.
  • the time-domain resource sent by the energy-saving signal cannot be guaranteed to be a DL resource.
  • the frame structure configuration can be configured by RRC signaling or physical layer dynamic signaling.
  • the UL symbol or time slot It can also be a flexible symbol or a time slot.
  • both RRC signaling and physical layer signaling can be configured with flexible symbols or time slots.
  • the flexible symbols or time slots configured by RRC signaling can send uplink or downlink, while the flexible symbols or time slots indicated by physical layer signaling cannot transmit downlink.
  • the transmission resource of the energy-saving signal configured by the base station for the terminal contains UL symbols or time slots, that is, when the downlink energy-saving signal conflicts with the allocated uplink transmission resource, the behavior of the base station side is to abandon the transmission of the energy-saving signal, or the base station is not allowed to save energy UL symbols or time slots are configured on the transmission resources of the signal.
  • the transmission resource of the energy-saving signal configured by the base station for the terminal contains flexible symbols or time slots configured by physical layer signaling, the behavior of the base station side is to abandon the transmission of the energy-saving signal.
  • the behavior of the UE side is to directly wake up the receiver and perform PDCCH detection within the corresponding DRX cycle.
  • the advantage is that the base station can continue to transmit in the subsequent DRX cycle, thereby reducing the delay and not affecting the reception quality; another behavior is that the UE continues to perform the sleep operation, does not detect the energy-saving signal, and does not detect the PDCCH in the subsequent DRX cycle.
  • the advantage is to save power, and the disadvantage is that it will cause greater latency.
  • the base station When the energy-saving signal transmission resource configured by the base station for the terminal is a flexible symbol or time slot configured by RRC signaling, the base station sends the energy-saving signal on the resource, and the UE detects the energy-saving signal on the transmission resource corresponding to the energy-saving signal.
  • the resource configuration method of some embodiments of the present disclosure configures the transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period in a static or semi-static manner to facilitate subsequent energy-saving signals during the DRX inactive period according to the transmission resources
  • the transmission of the terminal enables the terminal to determine whether to perform PDCCH detection during the DRX activation period according to the energy-saving signal, thereby reducing unnecessary PDCCH detection and reducing power consumption of the terminal.
  • some embodiments of the present disclosure also provide a resource acquisition method, which is applied to a terminal and includes:
  • Step 601 Obtain the transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period in a static or semi-static manner.
  • obtaining transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period in a semi-static manner may include: obtaining transmission resources of the energy-saving signal during the DRX inactive period through RRC radio resource control signaling.
  • Acquiring transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period through a static manner may include: acquiring transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period in a pre-agreed manner.
  • the energy-saving signal is a sequence, which may specifically be WUS.
  • the terminal if the terminal detects the energy-saving signal during the DRX inactive period, the terminal monitors the PDCCH during the subsequent DRX activation period, otherwise, it continues to be in a sleep state and does not detect the PDCCH during the DRX activation period.
  • the resource acquisition method of some embodiments of the present disclosure acquires transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period in a static or semi-static manner, so as to subsequently perform energy-saving signals during the DRX inactive period according to the transmission resources
  • the transmission of the terminal enables the terminal to determine whether to perform PDCCH detection during the DRX activation period according to the energy-saving signal, thereby reducing unnecessary PDCCH detection and reducing power consumption of the terminal.
  • the method further includes:
  • the detection of the energy-saving signal or the detection of the punctured energy-saving signal is abandoned on the overlapping transmission resource.
  • the transmission resources of the energy-saving signal in the DRX inactive period overlap with the transmission resources of the preset high priority signal
  • the number of overlapping resources is greater than the target value (such as the number of overlapping REs is greater than the target value)
  • the target value such as the number of overlapping REs is greater than the target value
  • the overlapping transmission resources Detect the energy saving signal for punching.
  • the method further includes:
  • abandon the detection of the energy-saving signal on the transmission resource where overlap occurs and stay in the sleep state, or abandon the detection of the energy-saving signal on the transmission resource where overlap occurs and enter the wake-up state, or on the transmission resource where overlap occurs Detects energy-saving signals for punching.
  • the method further includes:
  • PDCCH monitoring is performed during the DRX activation period that is located after the DRX inactivity period.
  • the resource acquisition method may further include: when the transmission resource of the energy-saving signal configured by the network device cannot be used for the transmission of the energy-saving signal, the terminal directly wakes up the receiver and performs PDCCH detection within the corresponding DRX cycle; or, When the transmission resource of the energy-saving signal configured by the network device cannot be used for the transmission of the energy-saving signal, the terminal continues to perform the sleep operation and does not detect the PDCCH in the subsequent DRX cycle.
  • the transmission resources of the energy-saving signal configured by the network device that cannot be used for the transmission of the energy-saving signal may include: the transmission resources of the energy-saving signal include UL symbols or time slots, or the transmission resources of the energy-saving signal include physical layer signaling Configured flexible symbols or time slots; of course, both can be satisfied.
  • the energy-saving signal with wake-up function is used to wake up the terminal to perform PDCCH detection within the corresponding DRX activation period.
  • the resource acquisition method may further include: when the energy-saving signal transmission resource configured for the terminal is a flexible symbol or time slot configured by RRC signaling, the terminal detects the energy-saving signal on the transmission resource corresponding to the energy-saving signal.
  • the terminal determines whether PDCCH detection needs to be performed during the DRX activation period according to the energy-saving signal, which can further reduce unnecessary PDCCH detection and reduce power consumption of the terminal.
  • the network device may specifically be a base station, including a memory 720, a processor 700, a transceiver 710, a bus interface, and stored on the memory 720.
  • a computer program running on the processor 700 which is used to read the program in the memory 720 and perform the following process:
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 700 and various circuits of the memory represented by the memory 720 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be described further herein.
  • the bus interface provides an interface.
  • the transceiver 710 may be a plurality of elements, including a transmitter and a transceiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 720 may store data used by the processor 700 when performing operations.
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • the transmission resource of the energy-saving signal in the DRX inactive period is determined.
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • each resource window includes at least two candidate transmission resources, and at least two candidate transmission resources of each resource window include a default candidate transmission resource;
  • the resource window includes a time domain resource window and/or a frequency domain resource window.
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • the transmission resource of the energy-saving signal in the DRX inactive period is determined.
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • the smallest position interval value is selected as the target position interval value.
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • the pre-agreed candidate transmission resource is determined as the transmission resource of the energy-saving signal during the DRX inactive period
  • the transmission resource of the energy-saving signal during the DRX inactive period is determined according to the idle resource of the time slot where the preset high priority signal used to calculate the target position interval value is located.
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • the carrier is the main carrier or the main and secondary carriers.
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • the bandwidth part BWP of the energy-saving signal during the DRX inactivity period where the BWP is a cell-specific narrow-band BWP or a predetermined narrow-band BWP.
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • the energy-saving signal is configured to transmit the transmission resources in the DRX inactive period discontinuously.
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • the transmission resources of the energy-saving signal in the DRX inactive period are configured.
  • the transmission resources include a first transmission resource and a second transmission resource, the frequency resources of the first transmission resource are fixed, and the time domain resources are variable; the time resources of the second transmission resource are fixed, the frequency Domain resources are variable.
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • the energy-saving signal or the punctured energy-saving signal is abandoned on the transmission resource where the overlap occurs.
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • the instruction information is used to instruct the terminal to abandon the detection of the energy-saving signal on the overlapping transmission resources and maintain the sleep state, or to instruct the terminal to abandon the detection of the energy-saving signal on the overlapping transmission resources and enter the awake state, or It is used to instruct the terminal to detect punctured energy-saving signals on overlapping transmission resources.
  • the processor 700 is also used to read the program in the memory 720 and perform the following steps:
  • the energy saving signal is sent on the transmission resource.
  • the preset high priority signal includes at least one of the following:
  • System information block SSB System information block SSB, channel state information reference signal CSI-RS, remaining minimum system information RMSI, tracking reference signal TRS and other system information OSI.
  • the transmission resources are configured periodically, and the configuration period of the transmission resources is greater than the maximum time domain length of the energy-saving signal configured by the base station, and the end position of the transmission resources and the next DRX in the DRX inactive period Among the at least one transmission resource whose interval between the start positions of the activation period is greater than the third preset threshold, the transmission resource closest to the start position of the next DRX activation period is the energy-saving signal transmission resource.
  • the start position of the DRX cycle is the same as the start position of the nuclear energy saving signal cycle, and the DRX cycle is an integer multiple of the cycle of the nuclear energy saving signal;
  • the energy saving signal is a sequence
  • the nuclear energy saving signal is a sub-sequence with a fixed length in the sequence.
  • the network device of some embodiments of the present disclosure configures the transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period in a static or semi-static manner to facilitate subsequent energy-saving signal transmission in the DRX inactive period according to the transmission resources
  • the transmission enables the terminal to determine whether it is necessary to perform PDCCH detection during the DRX activation period according to the energy-saving signal, thereby reducing unnecessary PDCCH detection and reducing power consumption of the terminal.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by the processor, the following steps are realized:
  • an embodiment of the present disclosure also provides a network device, including:
  • the configuration module 801 is configured to configure the transmission resources of the energy-saving signal in the non-continuous reception DRX inactive period in a static or semi-static manner.
  • the configuration module includes:
  • Configuration submodule configured to configure at least two candidate transmission resources of the energy-saving signal in the DRX inactive period
  • the determination submodule is configured to determine transmission resources of the energy-saving signal in the DRX inactive period according to the candidate transmission resources of the energy-saving signal and the transmission resources of the preset high-priority signal.
  • the configuration submodule is configured to configure multiple resource windows according to a preset configuration period, each resource window includes at least two candidate transmission resources, and at least two candidates for each resource window
  • the transmission resources include default candidate transmission resources
  • the resource window includes a time domain resource window and/or a frequency domain resource window.
  • the determination submodule is used for removing the default candidate according to the resource window when the default candidate transmission resource of the energy-saving signal overlaps with the transmission resource of the preset high priority signal
  • the candidate transmission resources other than the transmission resources determine the transmission resources of the energy-saving signal during the DRX inactive period.
  • the configuration submodule is configured to configure at least two candidate transmission resources of the energy-saving signal during the DRX inactive period before the DRX active period.
  • the determination submodule includes:
  • An obtaining unit configured to obtain a position interval value between each of the candidate transmission resources and a preset high priority signal transmission resource
  • a selection unit configured to select a target position interval value among the plurality of position interval values
  • the determining unit is configured to determine the transmission resource of the energy-saving signal in the DRX inactive period according to the target position interval value.
  • the selection unit is configured to select the smallest position interval value as the target position interval value among the position interval values greater than the first preset threshold.
  • the determining unit is configured to determine the transmission resource of the energy-saving signal in the DRX inactive period according to the candidate transmission resource corresponding to the target position interval value;
  • the pre-agreed candidate transmission resource as the transmission resource of the energy-saving signal during the DRX inactive period
  • it is used to determine the transmission resource of the energy saving signal in the DRX inactive period according to the idle resource of the time slot where the preset high priority signal used to calculate the target position interval value is located.
  • the configuration module is configured to configure a carrier of the energy-saving signal during the DRX inactive period, where the carrier is a main carrier or a main subcarrier.
  • the configuration module is configured to configure the bandwidth part BWP of the energy-saving signal during the DRX inactivity period, where the BWP is a cell-specific narrow-band BWP or a predetermined narrow-band BWP.
  • the configuration module is configured to configure the transmission resources of the energy-saving signal during the non-continuous reception DRX inactive period according to the currently activated BWP.
  • the configuration module is configured to configure the transmission resources of the energy-saving signal during the DRX inactive period according to the physical downlink control channel PDCCH search space corresponding to the currently activated BWP.
  • the transmission resources include a first transmission resource and a second transmission resource.
  • the frequency resource of the first transmission resource is fixed, and the time domain resource is variable; the time of the second transmission resource
  • the domain resources are fixed, and the frequency domain resources are variable.
  • the first sending module is configured to forgo sending energy-saving signals or puncturing on the overlapping transmission resources when the transmission resources of the energy-saving signal in the DRX inactive period overlap with the transmission resources of the preset high-priority signal Energy saving signal.
  • a second sending module configured to send indication information when the transmission resource of the energy-saving signal during the DRX inactive period overlaps with the transmission resource of the preset high-priority signal
  • the instruction information is used to instruct the terminal to abandon the detection of the energy-saving signal on the overlapping transmission resources and maintain the sleep state, or to instruct the terminal to abandon the detection of the energy-saving signal on the overlapping transmission resources and enter the awake state, or It is used to instruct the terminal to detect punctured energy-saving signals on overlapping transmission resources.
  • the third sending module is configured to send the energy saving signal on the transmission resource when the transmission resource of the energy saving signal in the DRX inactive period does not overlap with the transmission resource of the preset high priority signal.
  • the preset high priority signal includes at least one of the following:
  • System information block SSB System information block SSB, channel state information reference signal CSI-RS, remaining minimum system information RMSI, tracking reference signal TRS and other system information OSI.
  • the transmission resource is periodically configured, the configuration period of the transmission resource is greater than the maximum time domain length of the energy-saving signal configured by the base station, and the end of the transmission resource in the DRX inactive period Among the at least one transmission resource where the interval between the position and the starting position of the next DRX activation period is greater than the third preset threshold, the transmission resource closest to the starting position of the next DRX activation period is the energy-saving signal transmission resource.
  • the start position of the DRX cycle is the same as the start position of the nuclear energy saving signal, and the DRX cycle is an integer multiple of the cycle of the nuclear energy saving signal;
  • the energy saving signal is a sequence
  • the nuclear energy saving signal is a sub-sequence with a fixed length in the sequence.
  • the network device of some embodiments of the present disclosure is a network device corresponding to the above method embodiment applied to the network device side. In all implementations of the above method embodiment applied to the network device side, to avoid duplication, I won't repeat them here.
  • the network device of some embodiments of the present disclosure configures the transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period in a static or semi-static manner to facilitate subsequent energy-saving signal transmission in the DRX inactive period according to the transmission resources
  • the transmission enables the terminal to determine whether it is necessary to perform PDCCH detection during the DRX activation period according to the energy-saving signal, thereby reducing unnecessary PDCCH detection and reducing power consumption of the terminal.
  • some embodiments of the present disclosure also provide a terminal, including: a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor, and the processor executes the program
  • a terminal including: a transceiver, a memory, a processor, and a program stored on the memory and executable on the processor, and the processor executes the program
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 900 and various circuits of the memory represented by the memory 920 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be described further herein.
  • the bus interface provides an interface.
  • the transceiver 910 may be a plurality of elements, including a transmitter and a transceiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the user interface 930 may also be an interface that can be externally connected to the required equipment.
  • the connected equipment includes but is not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 900 is responsible for managing the bus architecture and general processing, and the memory 920 may store data used by the processor 900 in performing operations.
  • the processor 900 is also used to read the program in the memory 920 and perform the following steps:
  • the following also includes:
  • the detection of the energy-saving signal or the detection of the punctured energy-saving signal is abandoned on the overlapping transmission resource.
  • the processor 900 is also used to read the program in the memory 920 and perform the following steps:
  • abandon the detection of the energy-saving signal on the transmission resource where overlap occurs and stay in the sleep state, or abandon the detection of the energy-saving signal on the transmission resource where overlap occurs and enter the wake-up state, or on the transmission resource where overlap occurs Detects energy-saving signals for punching.
  • the processor 900 is also used to read the program in the memory 920 and perform the following steps:
  • PDCCH monitoring is performed during the DRX activation period that is located after the DRX inactivity period.
  • the terminal of some embodiments of the present disclosure obtains the transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period in a static or semi-static manner, so as to facilitate the subsequent transmission of the energy-saving signal during the DRX inactive period according to the transmission resources , So that the terminal determines whether PDCCH detection needs to be performed during the DRX activation period according to the energy-saving signal, thereby reducing unnecessary PDCCH detection and reducing power consumption of the terminal.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by the processor, the following steps are realized:
  • the program When the program is executed by the processor, it can implement all the implementation manners in the above-mentioned resource acquisition method embodiment applied to the terminal side. To avoid repetition, details are not described herein again.
  • some embodiments of the present disclosure also provide a terminal, including:
  • the first obtaining module 1001 is configured to obtain the transmission resources of the energy-saving signal during the non-continuous reception DRX inactive period in a static or semi-static manner.
  • the first processing module is configured to abandon the detection of the energy-saving signal or the detection of puncturing on the overlapping transmission resources when the transmission resources of the energy-saving signal in the DRX inactive period overlap with the transmission resources of the preset high-priority signal Energy saving signal.
  • the second obtaining module is used to obtain indication information, which is sent by the network device when the transmission resources of the energy-saving signal during the DRX inactive period overlap with the transmission resources of the preset high priority signal;
  • the second processing module is configured to abandon the detection of the energy-saving signal on the transmission resource that overlaps and maintain the sleep state according to the instruction information, or to abandon the detection of the energy-saving signal on the transmission resource that overlaps and enter the awake state, or, Detect punctured energy-saving signals on overlapping transmission resources.
  • a third obtaining module configured to obtain energy-saving signals on the transmission resources
  • the monitoring module is configured to monitor the PDCCH during the DRX activation period after the DRX inactivity period according to the energy saving signal.
  • the terminal of some embodiments of the present disclosure obtains the transmission resources of the energy-saving signal during the non-continuous reception of the DRX inactive period in a static or semi-static manner, so as to facilitate the subsequent transmission of the energy-saving signal during the DRX inactive period according to the transmission resources , So that the terminal determines whether PDCCH detection needs to be performed during the DRX activation period according to the energy-saving signal, thereby reducing unnecessary PDCCH detection and reducing power consumption of the terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种资源配置、获取方法、网络设备及终端,解决目前如何在DRX非激活期内配置节能信号没有相关方案的问题。所述方法包括:通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源。

Description

一种资源配置、获取方法、网络设备及终端
相关申请的交叉引用
本申请主张在2019年1月4日在中国提交的中国专利申请号No.201910008258.9的优先权和2019年8月8日在中国提交的中国专利申请号No.201910731340.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信应用的技术领域,尤其涉及一种资源配置、获取方法、网络设备及终端。
背景技术
5G新空口(New Radio,NR)系统中,通过非连续接收(Discontinuous Reception,DRX)机制达到省电目的,在DRX周期内,UE只在DRX激活期(On duration)内监测PDCCH,在DRX非激活期(Opportunity for DRX,也称为DRX off)内,UE不接收PDCCH以减少功耗,即进入睡眠模式。
为了快速的对基站的调度做出响应,减少用户设备(User Equipment,UE)的延迟latency,DRX中的非激活期在移动通信系统中很难做到可以设置较长的时间,对于UE频繁的进行DRX激活期和DRX非激活期之间的切换,使得省电效果大打折扣。
在窄带物联网NB-IoT中,通过唤醒信号WUS(Wake Up Signal)触发寻呼信号检测,如图1所示。图1中虚竖线表示寻呼信号传输机会(paging opportunity),在没有唤醒信号WUS时,处于无线资源控制空闲(RRC_IDLE)状态的UE需要周期醒来在各个寻呼时机(Paging Occasion,PO)位置上接收可能的寻呼信号,UE在每一次检测可能的寻呼信号之前需要盲检寻呼信号的物理下行控制信道(Physical Downlink Control Channel,PDCCH),如果见到寻呼信号的PDCCH则继续解码寻呼信号否则不再解码。另一种方法是在寻呼信号之前发送WUS,如果检测到WUS就开始盲检寻呼信号的PDCCH,如果没检测到WUS就放弃PO内的寻呼信号的检测。由于WUS可以设计为一个序列, 其检测复杂度远远低于盲检PDCCH的复杂度,所以采用WUS可以较大幅度的降低接收功耗。但对于窄带物联网,如何在DRX非激活期内配置节能信号还没有相关方案。
发明内容
本公开的目的在于提供一种资源配置、获取方法、网络设备及终端,用以解决目前如何在DRX非激活期内配置节能信号没有相关方案的问题。
为了实现上述目的,本公开提供了一种资源配置方法,应用于网络设备,包括:
通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源。
可选的,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
配置节能信号在DRX非激活期内的至少两个候选发送资源;
根据所述节能信号的候选发送资源与预设高优先级信号的发送资源,确定节能信号在DRX非激活期内的传输资源。
可选的,配置节能信号在DRX非激活期内的至少两个候选发送资源,包括:
按照预设配置周期,配置多个资源窗口,每个资源窗口包括至少两个候选发送资源,且每个资源窗口的至少两个候选发送资源中包括默认候选发送资源;
可选的,所述资源窗口包括时域资源窗口和/或频域资源窗口。
可选的,根据所述节能信号的候选发送资源与预设高优先级信号的发送资源,确定节能信号在DRX非激活期内的传输资源,包括:
在节能信号的默认候选发送资源与预设高优先级信号的发送资源重叠的情况下,根据所述资源窗口中除所述默认候选发送资源之外的其他候选发送资源,确定节能信号在DRX非激活期内的传输资源。
可选的,配置节能信号在DRX非激活期内的至少两个候选发送资源,包括:
在DRX激活期之前,配置节能信号在DRX非激活期内的至少两个候选发 送资源。
可选的,根据所述节能信号的候选发送资源与预设高优先级信号的发送资源,确定节能信号在DRX非激活期内的传输资源,包括:
获取各个所述候选发送资源与预设高优先级信号发送资源之间的位置间隔值;
在多个所述位置间隔值中,选取一个目标位置间隔值;
根据所述目标位置间隔值,确定节能信号在DRX非激活期内的传输资源。
可选的,在多个所述位置间隔值中,选取一个目标位置间隔值,包括:
在大于第一预设阈值的位置间隔值中,选取最小的位置间隔值作为目标位置间隔值。
可选的,根据所述目标位置间隔值,确定节能信号在DRX非激活期内的传输资源,包括:
根据所述目标位置间隔值对应的候选发送资源,确定节能信号在DRX非激活期内的传输资源;
或者,在所述目标位置间隔值大于第二预设阈值的情况下,将预先约定的候选发送资源,确定为节能信号在DRX非激活期内的传输资源;
或者,根据用于计算所述目标位置间隔值的预设高优先级信号所在时隙的空闲资源,确定节能信号在DRX非激活期内的传输资源。
可选的,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
配置节能信号在DRX非激活期内的载波,所述载波为主载波或主副载波。
可选的,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
配置节能信号在DRX非激活期内的带宽部分BWP,所述BWP为小区特定的窄带BWP或者预先约定的窄带BWP。
可选的,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
根据当前激活的BWP,配置节能信号在非连续接收DRX非激活期内的传输资源。
可选的,根据当前激活的BWP,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
根据当前激活的BWP对应的物理下行控制信道PDCCH搜索空间,配置节 能信号在DRX非激活期内的传输资源。
可选的,所述传输资源包括第一传输资源和第二传输资源,所述第一传输资源的频域资源固定,时域资源可变;所述第二传输资源的时域资源固定,频域资源可变。
可选的,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,在发生重叠的传输资源上放弃发送节能信号或者发送打孔的节能信号。
可选的,上述方法还包括:
当节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠时,发送指示信息;
可选的,所述指示信息用于指示终端在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者用于指示终端在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者用于指示终端在发生重叠的传输资源上检测打孔的节能信号。
可选的,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
当节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源未发生重叠时,在所述传输资源上发送节能信号。
可选的,所述预设高优先级信号包括以下至少一项:
系统信息块SSB、信道状态信息参考信号CSI-RS、剩余的最小系统信息RMSI、追踪参考信号TRS和其他系统信息OSI。
可选的,所述传输资源是周期性配置的,所述传输资源的配置周期大于基站配置的节能信号的最大时域长度,且所述DRX非激活期内传输资源的结束位置与下一个DRX激活期的起始位置之间的间隔大于第三预设阈值的至少一个传输资源中,距离下一个DRX激活期的起始位置最近的传输资源为节能信号的发送资源。
可选的,DRX周期的起始位置与核节能信号的周期的起始位置相同,且 DRX周期为核节能信号的周期的整数倍;
可选的,所述节能信号为一序列,所述核节能信号为所述序列中具有固定长度的子序列。
可选的,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
通过无线资源控制RRC信令或者物理层动态信令,配置所述节能信号的传输资源,所述节能信号的传输资源包括:下行DL符号或者时隙、上行UL符号或者时隙以及灵活符号或者时隙中的至少一种。
可选的,资源配置方法,还包括:
所述节能信号的传输资源包含下行DL符号或者时隙时,在所述DL符号或者时隙上发送所述节能信号;或者,
所述节能信号的传输资源包含UL符号或者时隙时,放弃所述节能信号的发送;或者,
所述节能信号的传输资源包含物理层信令配置的灵活符号或者时隙时,放弃节能信号的发送。
可选的,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
通过静态或半静态的方式,在除上行UL符号或者时隙,和/或,动态信令配置的灵活符号或者时隙之外的符号或者时隙上,配置所述节能信号的传输资源。
为了实现上述目的,本公开一些实施例还提供了一种资源获取方法,应用于终端,包括:
通过静态或半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源。
可选的,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,在发生重叠的传输资源上放弃检测节能信号或者检测打孔的节能信号。
可选的,获取节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
获取指示信息,所述指示信息是网络设备在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下发送的;
根据所述指示信息,在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者,在发生重叠的传输资源上检测打孔的节能信号。
可选的,获取节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
在所述传输资源上,获取节能信号;
根据所述节能信号,在位于DRX非激活期后的DRX激活期内进行PDCCH的监测。
可选的,资源获取方法,还包括:网络设备配置的节能信号的传输资源上不能用于节能信号的传输时,所述终端直接唤醒接收机且在对应的DRX周期内执行PDCCH检测;或者,
网络设备配置的节能信号的传输资源上不能用于节能信号的传输时,终端继续执行睡眠操作,不在后续的DRX周期内检测PDCCH。
可选的,资源获取方法,还包括:为终端配置的节能信号传输资源为RRC信令所配置的灵活符号或者时隙时,所述终端在该节能信号对应的传输资源上检测节能信号。
为了实现上述目的,本公开一些实施例还提供了一种网络设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源。
可选的,所述处理器执行所述程序时还实现以下步骤:
配置节能信号在DRX非激活期内的至少两个候选发送资源;
根据所述节能信号的候选发送资源与预设高优先级信号的发送资源,确定节能信号在DRX非激活期内的传输资源。
可选的,所述处理器执行所述程序时还实现以下步骤:
按照预设配置周期,配置多个资源窗口,每个资源窗口包括至少两个候选发送资源,且每个资源窗口的至少两个候选发送资源中包括默认候选发送资源;
可选的,所述资源窗口包括时域资源窗口和/或频域资源窗口。
可选的,所述处理器执行所述程序时还实现以下步骤:
在节能信号的默认候选发送资源与预设高优先级信号的发送资源重叠的情况下,根据所述资源窗口中除所述默认候选发送资源之外的其他候选发送资源,确定节能信号在DRX非激活期内的传输资源。
可选的,所述处理器执行所述程序时还实现以下步骤:
在DRX激活期之前,配置节能信号在DRX非激活期内的至少两个候选发送资源。
可选的,所述处理器执行所述程序时还实现以下步骤:
获取各个所述候选发送资源与预设高优先级信号发送资源之间的位置间隔值;
在多个所述位置间隔值中,选取一个目标位置间隔值;
根据所述目标位置间隔值,确定节能信号在DRX非激活期内的传输资源。
可选的,所述处理器执行所述程序时还实现以下步骤:
在大于第一预设阈值的位置间隔值中,选取最小的位置间隔值作为目标位置间隔值。
可选的,所述处理器执行所述程序时还实现以下步骤:
根据所述目标位置间隔值对应的候选发送资源,确定节能信号在DRX非激活期内的传输资源;
或者,在所述目标位置间隔值大于第二预设阈值的情况下,将预先约定的候选发送资源,确定为节能信号在DRX非激活期内的传输资源;
或者,根据用于计算所述目标位置间隔值的预设高优先级信号所在时隙的空闲资源,确定节能信号在DRX非激活期内的传输资源。
可选的,所述处理器执行所述程序时还实现以下步骤:
配置节能信号在DRX非激活期内的载波,所述载波为主载波或主副载波。
可选的,所述处理器执行所述程序时还实现以下步骤:
配置节能信号在DRX非激活期内的带宽部分BWP,所述BWP为小区特定的窄带BWP或者预先约定的窄带BWP。
可选的,所述处理器执行所述程序时还实现以下步骤:
根据当前激活的BWP,配置节能信号在非连续接收DRX非激活期内的传输资源。
可选的,所述处理器执行所述程序时还实现以下步骤:
根据当前激活的BWP对应的物理下行控制信道PDCCH搜索空间,配置节能信号在DRX非激活期内的传输资源。
可选的,所述传输资源包括第一传输资源和第二传输资源,所述第一传输资源的频域资源固定,时域资源可变;所述第二传输资源的时域资源固定,频域资源可变。
可选的,所述处理器执行所述程序时还实现以下步骤:
在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,在发生重叠的传输资源上放弃发送节能信号或者发送打孔的节能信号。
可选的,所述处理器执行所述程序时还实现以下步骤:
当节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠时,发送指示信息;
可选的,所述指示信息用于指示终端在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者用于指示终端在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者用于指示终端在发生重叠的传输资源上检测打孔的节能信号。
可选的,所述处理器执行所述程序时还实现以下步骤:
当节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源未发生重叠时,在所述传输资源上发送节能信号。
可选的,所述预设高优先级信号包括以下至少一项:
系统信息块SSB、信道状态信息参考信号CSI-RS、剩余的最小系统信息RMSI、追踪参考信号TRS和其他系统信息OSI。
可选的,所述传输资源是周期性配置的,所述传输资源的配置周期大于基站配置的节能信号的最大时域长度,且所述DRX非激活期内传输资源的结束位置与下一个DRX激活期的起始位置之间的间隔大于第三预设阈值的至少一个传输资源中,距离下一个DRX激活期的起始位置最近的传输资源为节能信号的发送资源。
可选的,DRX周期的起始位置与核节能信号的周期的起始位置相同,且DRX周期为核节能信号的周期的整数倍;
可选的,所述节能信号为一序列,所述核节能信号为所述序列中具有固定长度的子序列。
为了实现上述目的,本公开一些实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上所述资源配置方法的步骤。
为了实现上述目的,本公开一些实施例还提供了一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
通过静态或半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源。
可选的,所述处理器执行所述程序时实现以下步骤:
在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,在发生重叠的传输资源上放弃检测节能信号或者检测打孔的节能信号。
可选的,所述处理器执行所述程序时还实现以下步骤:
获取指示信息,所述指示信息是网络设备在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下发送的;
根据所述指示信息,在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者,在发生重叠的传输资源上检测打孔的节能信号。
可选的,所述处理器执行所述程序时还实现以下步骤:
在所述传输资源上,获取节能信号;
根据所述节能信号,在位于DRX非激活期后的DRX激活期内进行PDCCH的监测。
为了实现上述目的,本公开一些实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上所述的资源获取方法的步骤。
为了实现上述目的,本公开一些实施例还提供了一种网络设备,包括:
配置模块,用于通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源。
为了实现上述目的,本公开一些实施例还提供了一种终端,包括:
第一获取模块,用于通过静态或半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源。
根据本公开一些实施例的上述技术方案,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源,以便于后续根据该传输资源在DRX非激活期内进行节能信号的传输,使得终端根据该节能信号确定是否需要在DRX激活期内进行PDCCH的检测,进而能够减少不必要的PDCCH检测,降低终端的功耗。
附图说明
图1为唤醒信号的工作机制示意图;
图2为本公开一些实施例的资源配置方法的流程示意图;
图3为网络设备周期性地配置节能信号的传输机会的示意图;
图4为将图3中的传输机会在时域上增强为一个滑动窗的示意图;
图5为将图3中的传输机会在频域上增强为一个滑动窗的示意图;
图6为本公开一些实施例的资源获取方法的流程示意图;
图7为本公开一些实施例中网络设备的结构框图;
图8为本公开一些实施例中网络设备的模块示意图;
图9为本公开一些实施例中终端的结构框图;
图10为本公开一些实施例中终端的模块示意图。
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合具体实施例及附图进行详细描述。
5G新空口系统中,用户设备(User Equipment,UE)的工作状态分为三种:无线资源控制空闲(RRC_IDLE)状态、无线资源控制非激活(RRC_Inactive)状态和无线资源控制连接(RRC_Connected)状态,前两种状态中UE需要监控寻呼信号。当UE接收到寻呼信号时,则表示网络侧有数据发送,UE需要进入到RRC_Connected状态去接收下行数据。而在RRC_Connected状态UE需要持续的监听物理下行控制信道(Physical Downlink Control Channel,PDCCH),以获知物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的发送信息。而基于包的数据流通常是突发性的,在一段时间内有数据传输,但在接下来的一段较长时间内没有数据传输,持续的监听PDCCH必然导致UE的快速耗电。故在没有数据传输的时候,可以通过停止接收PDCCH(此时会停止PDCCH盲检)来降低功耗。因此3GPP的设计是通过非连续接收(Discontinuous Reception,DRX)机制达到省电目的,在DRX周期内,UE只在DRX激活期(On duration)内监测PDCCH,在DRX非激活期(Opportunity for DRX,也称为DRX off)内,UE不接收PDCCH以减少功耗,即进入睡眠模式。
NR系统存在无线资源控制空闲(RRC_IDLE)状态、无线资源控制非激活(RRC_Inactive)和无线资源控制激活(RRC_Active)三种状态,可以借鉴NB-IoT思想,基站在Opportunity for DRX周期内发送节能信号(power saving signal),UE如果在DRX on之前检测到节能信号,则会在后续的DRX ON周期内进行PDCCH监测,否则,继续处于睡眠状态,不在DRX on周期内检测PDCCH。由于NR系统无论是帧结构,带宽、控制信道,同步信道等很多方面都与LTE NB-IoT大不相同,所以针对NR系统需要考虑如何传输节能信号,即节能信道,由于NR的节能信号比NB IoT的WUS概念更宽,包括DRX on之前的节能信号,又包括DRX on周期之内的节能信号,而目前如何在DRX非激活期内配置节能信号还没有相关方案。
基于此,本公开一些实施例提供了一种资源配置方法,应用于网络设备,该网络设备可具体为基站,如图2所示,该方法包括:
步骤201:通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源。
其中,通过半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源,可以包括:通过RRC无线资源控制信令,半静态地配置节能信号在DRX非激活期内的传输资源。
通过静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源,可以包括:通过预先约定的方式,配置节能信号在非连续接收DRX非激活期内的传输资源。
本公开一些实施例中,节能信号为一个序列,具体可为WUS。
本公开一些实施例中,终端如果在DRX非激活期内检测到节能信号,则在后续的DRX激活期内进行PDCCH的监测,否则,继续处于睡眠状态,不在DRX激活期内检测PDCCH。
本公开一些实施例的资源配置方法,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源,以便于后续根据该传输资源在DRX非激活期内进行节能信号的传输,使得终端根据该节能信号确定是否需要在DRX激活期内进行PDCCH的检测,进而能够减少不必要的PDCCH检测,降低终端的功耗。
可选的,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
在所述传输资源上发送节能信号。
具体的,当节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源未发生重叠时,在所述传输资源上发送节能信号。
这里,终端根据该节能信号,在位于DRX非激活期后的第一个DRX激活期内进行PDCCH的监测。
本公开一些实施例中的预设高优先级信号可包括以下至少一项:
系统信息块SSB、信道状态信息参考信号CSI-RS、剩余的最小系统信息RMSI、追踪参考信号TRS和其他系统信息OSI。
其中,预设高优先级信号的发送资源可包括以下至少一项:
系统信息块SSB的发送资源、信道状态信息参考信号CSI-RS的发送资源、TRS的发送资源、剩余的最小系统信息RMSI对应的PDCCH的发送资源和其他系统信息OSI对应的PDCCH的发送资源。
可选的,在通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,在发生重叠的传输资源上放弃发送节能信号或者发送打孔的节能信号。
具体的,基站可为节能信号半静态的配置时频资源,基站在配置该时频资源时,会考虑尽量的避开系统中预设高优先级信号,比如,SSB信号,CSI-RS,TRS,RMSI,OSI等广播与参考信号信息,因为SSB,RMSI,OSI是广播信息为所有用户发送,而CSI-RS、TRS等参考信号是为多个用户设计的,因此,某个用户的节能信号发送不能影响其他用户的接收性能,故不能影响对原有高优先级的广播与参考信号的接收,必须要避开这些信号。但在实际中这些高优先级的信号往往是周期发送的数量较大,而且与这些信号发送相关的时频资源也是随着基站的配置改变而改变,因此完全避开这些高优先级的信号的可能性较小。基于此,本公开提出如下解决方案。
当节能信号的发送资源与SSB的发送资源或者CSI-RS的发送资源或者TRS的发送资源或者RMSI与OSI对应的PDCCH的发送资源(如控制资源集CORESET#0的部分或者全部资源)发生碰撞时,基站行为:放弃发送节能信号或者发送打孔的节能信号。
此时,UE的行为可以有三种:一)UE在节能信号与所述预设高优先级信号发生碰撞的发送资源上放弃节能信号的检测,继续保持睡眠状态,例如,节能信号与CSI-RS发生较多RE的碰撞,此时,节能信号可以直接放弃;二)UE利用打孔的节能信号继续检测,例如SSB与节能信号发生较少的RE发生碰撞的情形;三)UE在节能信号与所述高优先级信号发生碰撞的资源上放弃节能信号检测,直接进入唤醒状态,并在后续的DRX ON周期内进行PDCCH检测。
可选的,本公开一些实施例的资源配置方法,还包括:
在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,发送指示信息;
其中,所述指示信息用于指示终端在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者用于指示终端在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者用于指示终端在发生重叠的传输资源上检测打孔的节能信号。
本公开一些实施例中,基站可以通过RRC信令半静态配置的方法,通知UE在节能信号的传输资源与高优先级信号的发送资源发生碰撞时终端采用何种方式进行处理,例如,通过1比特信信令指示,1表示UE直接唤醒;0表示利用打孔的节能信号继续检测,或者,用两比特信令分别指示上述UE的三种行为。当然,本公开一些实施例中也可用比特的指示信息进行指示。
进一步地,上述配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
配置节能信号在DRX非激活期内的至少两个候选发送资源;
根据所述节能信号的候选发送资源与预设高优先级信号的发送资源,确定节能信号在DRX非激活期内的传输资源。
上述配置节能信号在DRX非激活期内的至少两个候选发送资源,包括:
按照预设配置周期,配置多个资源窗口,每个资源窗口包括至少两个候选发送资源,且每个资源窗口的至少两个候选发送资源中包括默认候选发送资源;
其中,所述资源窗口包括时域资源窗口和/或频域资源窗口。
这里,默认候选发送资源可具体为资源窗口内的第一个候选发送资源。
基于此,根据所述节能信号的候选发送资源与预设高优先级信号的发送资源,确定节能信号在DRX非激活期内的传输资源,包括:
在节能信号的默认候选发送资源与预设高优先级信号的发送资源重叠的情况下,根据所述资源窗口中除所述默认候选发送资源之外的其他候选发送资源,确定节能信号在DRX非激活期内的传输资源。
下面结合具体实施例对上述实现方式进行如下说明。
基站为终端配置多个节能信号的候选发送资源,当节能信号与前述预设高优先级信号的发送资源发生碰撞时,基站在其他候选发送资源上发送节能信号。例如,节能信号是周期配置的(并不排除默认的节能信号发送时间资源为非周期的情形),以时间资源为例,多个候选资源的发送位置可以是原节能信号发送位置的时间偏移,这样就导致节能信号传输时间不是周期的,一个具体例子如图3和图4所示。
在图3中是基站为终端周期配置的节能信号的传输机会,图4中将原节能信号的一次周期性传输机会增强为一个传输机会的滑动窗(时域资源窗口),在该滑动窗内配置了多个候选传输机会,比如每个传输机会间相差1ms,一个滑动窗可以配置5个传输机会,如果即将到来的DRX ON周期内UE需要被唤醒,即基站需要为UE发送节能信号,较佳的第一个传输机会为默认的传输机会,如果前一个传输机会被其他信号阻塞就到最近的下一个传输机会上发送节能信号,如果所有的传输机会都被阻塞block,基站就放弃本次节能信号发送。
另,在有节能信号需要传输时,如果第一个传输机会没能传输节能信号,其周期性传输将被破坏。如果在滑动窗内对应的传输机会上存在不被block的传输机会,UE将在对应传输机会检测节能信号,节能信号被检测到将唤醒接收机在DRX ON内检测PDCCH,否则继续处于睡眠状态。
上述为时域滑动窗的例子,对于频域滑动窗,同理可以得到,比如基站为节能信号配置为多个候选的传输频点,图5给出一个示例,原节能信号的一次周期性传输机会增强为一个基于频域滑动窗的传输机会,在该频域滑动窗内配置了多个候选频域传输资源,如果即将到来的DRX ON周期内UE需要被唤醒,即基站需要为UE发送节能信号,基站按照与UE预先约定的顺序在滑动窗内选择发送频点进行节能信号的发送。较佳的基站配置的第一个频点为默认的传输资源,如果前一个传输资源被其他信号阻塞就到最近的下一个传输资源上发送节能信号,如果所有的传输资源都被block基站就放弃本次节能信号的发送。
前面叙述了时域滑动窗与频域滑动窗的例子,本公开一些实施例还可包括同时包含时域滑动窗与频域滑动窗。本公开的节能信号的候选传输机会或 者传输频点等可以由基站通过RRC信令半静态配置,或者基站与终端事先约定。节能信号的候选传输机会(时域传输资源)可以是节能信号的起点,也不排除终点,或者某一预先约定的位置;同理节能信号的传输频点可以是频域资源的起点,也不排除终点,或者某一预先约定的位置。
进一步地,上述配置节能信号在DRX非激活期内的至少两个候选发送资源,包括:
在DRX激活期之前,配置节能信号在DRX非激活期内的至少两个候选发送资源。
基于此,上述根据所述节能信号的候选发送资源与预设高优先级信号的发送资源,确定节能信号在DRX非激活期内的传输资源,包括:
获取各个所述候选发送资源与预设高优先级信号发送资源之间的位置间隔值;在多个所述位置间隔值中,选取一个目标位置间隔值;根据所述目标位置间隔值,确定节能信号在DRX非激活期内的传输资源。
其中,在多个所述位置间隔值中,选取一个目标位置间隔值,包括:
在大于第一预设阈值的位置间隔值中,选取最小的位置间隔值作为目标位置间隔值。
其中,根据所述目标位置间隔值,确定节能信号在DRX非激活期内的传输资源,包括:
根据所述目标位置间隔值对应的候选发送资源,确定节能信号在DRX非激活期内的传输资源;
或者,在所述目标位置间隔值大于第二预设阈值的情况下,将预先约定的候选发送资源,确定为节能信号在DRX非激活期内的传输资源;
或者,根据用于计算所述目标位置间隔值的预设高优先级信号所在时隙的空闲资源,确定节能信号在DRX非激活期内的传输资源。
下面结合具体实施例进行说明。
节能信号在DRX OFF周期内传输,而DRX OFF内UE需要接收CSI-RS与SSB执行无线资源管理RRM测量与小区搜索信号,至少是SSB与CSI-RS不排除还有其他高优先级信号。本公开一些实施例提供了一种节能信号与其他高优先级信号在时域共存的一种方法。具体步骤如下:
步骤1:基站通过RRC信令半静态的方式或者预先约定的静态方式,在DRX ON之前配置多个节能信号的候选发送资源。
步骤2:基站计算步骤1中各个候选发送资源与预设高优先级信号的发送资源间的位置间隔值,得到多个位置间隔值。较佳的该位置间隔值可以是节能信号传输的起点与预设高优先级信号传输的终点间的间隔值,当然并不排除其它的距离计算方式。
步骤3:从多个位置间隔值中选择某个目标位置间隔值dmin。如前所述,得到预设高优先级信号与节能信号候选发送资源的位置间隔值后,会有多个位置间隔值,本步骤将会从中选择一个用于执行后续步骤。目标位置间隔值的选择方法如下,例如可以是高优先级信号如CSI-RS与节能信号多个候选发送资源(或者候选发送机会)间的距离满足大于第一预设阈值Th0中的最小值。该Th0一个确定方法是接收完成一个信号后切换到另一个信号接收所需要时间的门限值,如根据接收完CSI-RS后切换到接收节能信号所需的时间间隔来确定,特殊场景不排除该值为0。而在DRX OFF(DRX非激活期)内的预设高优先级信号如CSI-RS个数可能有多个,较佳的,目标位置间隔值选择时可以根据距离DRX ON最近的CSI-RS计算其与接收节能信号的候选发送资源间的位置间隔值。当然,该预设高优先级信号也不排除其它预先约定的选择方法。预设高优先级别信号可能有多种,如CSI-RS与SSB等在距离计算时可以不区分,视为同一种信号,也可以根据更高优先级信号确定,比如根据SSB而不考虑CSI-RS来计算位置间隔值。
步骤4,根据步骤3确定的目标位置间隔值,确定节能信号的传输机会。方案一:基站在步骤3得到的距离dmin所对应的节能信号的候选位置上发送节能信号;方案2:如果步骤3中得到的距离值dmin大于某门限(第二预设阈值)Th1,则基站在某预先约定的候选位置上发送节能信号。方案3:可以在dmin所对应的预设高优先级信号(用于计算该dmin的预设高优先级信号)所在slot的空闲资源上(如SSB所在的slot上预留的第一与第二个空闲符号上)发送节能信号。
该方法可以有效的避免节能信号与预设高优先级信号发生碰撞,又能使得预设高优先级信号与节能信号的发送距离较近,从而使得节能信号接收尽 可能利用预设高优先级信号如SSB的同步功能,又有利于UE连续接收完信号后进入睡眠状态。
进一步地,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
配置节能信号在DRX非激活期内的载波,所述载波为主载波或主副载波。
在本公开一些实施例中,基站半静态或者静态地配置发送节能signal的载波。可具体通过以下方案实现:方案一,基站以静态即预先约定的方式只在主载波PCell或者主副载波PScell上发送在DRX OFF内唤醒接收机的节能信号。NR系统从组网的方式上可以分为非独立(non-standalone)与独立(standalone)两种方式。non-standalone即NR与LTE为双连接方式,NR的主载波称为PScell,对于standalone系统,NR主载波称为PCell,其他副载波称为Scell。对于Scell数量比较多的情况,Scell可以通过DRX on内的其他信号激活,且Scell不一定存在SSB,所以为了降低DRX off内发送节能信号的资源开销,基站不在Scell发送节能信号。方式二:基站以RRC信令半静态配置的方式配置节能发送的载波,例如,即使所有的数据都在高频段载波上发送,也可以配置一个低频段的载波用于发送节能信号,这样优势在于节能信号低频段接收性能更好,覆盖范围更大。
进一步地,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
配置节能信号在DRX非激活期内的带宽部分BWP,所述BWP为小区特定的窄带BWP或者预先约定的窄带BWP。
在本公开一些实施例中,基站预先约定或者RRC信令半静态配置用于发送节能信号的BWP(Bandwidth Part)。NR系统从载波角度看为大带宽传输,为了有利于终端降低功耗,采用为UE数据传输配置BWP的方案,每个载波可以为UE配置多个BWP,但UE同一时刻只有一个激活的BWP。DRXOFF内的节能信号的接收,需要提前对射频RF电路warmup,可能节能信号只占据较低的带宽,但是激活整个宽带BWP,往往会比激活一个窄带BWP会消耗更多的电量,所以为了降低节能信号的接收功耗,一种较佳的节能信号发送方法是,将节能信号在一个UE specific的窄带BWP上发送。NR标准规定每个UE 最多配置4个UE specific的BWP,较佳的基站通过RRC信令半静态配置一个窄带BWP用于节能信号传输,也可以在标准中预先约定如index=0的BWP用于节能信号发送,此时不需要RRC信令配置,属于静态配置,但是基站可以将该约定用于发送节能信号的BWP设置为可以节电的窄带BWP。
由于多个需要同时唤醒的UE配置的BWP可能互不相同,为了降低节能信号的资源开销,基站也可以半静态或者静态配置一个小区特定(cell specific)的BWP用于传输节能信号,该BWP可以是cell specific的initial BWP这样就不需要任何信令,只需要标准中约定即静态配置节能信号在initial BWP上发送即可。考虑到初始initial BWP是cell specific的资源该资源较为紧张,较佳的,基站利用半静态信令配置一个不同于initial BWP的cell specific的BWP用于节能信号传输,例如基站可以利用位图bitmap的方式,配置特定的频域资源用于传输节能信号。配置的频域资源可以是连续的或者离散的,可以理解为一个cell specific BWP用于该cell内所有用户传输节能信号。
进一步地,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
根据当前激活的BWP,配置节能信号在非连续接收DRX非激活期内的传输资源。
具体的,根据当前激活的BWP,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
根据当前激活的BWP对应的物理下行控制信道PDCCH搜索空间,配置节能信号在DRX非激活期内的传输资源。
节能进一步地,所述传输资源包括第一传输资源和第二传输资源,所述第一传输资源的频域资源固定,时域资源可变;所述第二传输资源的时域资源固定,频域资源可变。
在本公开一些实施例中,基站在当前激活的BWP,即即将到来的DRX cycle内UE需要执行PDCCH monitoring的BWP上传输节能信号。本公开一些实施例中,传输节能信号的BWP是确定的。例如在即将到来的DRX ON周期内基站为该UE配置的传输PDCCH的搜索空间内传输节能信号,该UE对应的搜索空 间由于处于DRX OFF周期恰好没有PDCCH传输。且本公开一些实施例中第一传输资源的频域资源固定,时域资源可变;所述第二传输资源的时域资源固定,频域资源可变。例如基站在某些窄带BWP上半静态或者静态配置最大的频域资源,或者频域所占的RE个数,则时域所占据的OFDM或者slot个数根据节能信号payload的大小是可变的;同时对于大带宽BWP基站可半静态或者静态配置的时域资源如OFDM符号与slot的大小,频域资源根据节能信号的payload大小可变。
进一步地,作为一种可选的实现方式,所述传输资源是周期性配置的,所述传输资源的配置周期大于基站配置的节能信号的最大时域长度,且所述DRX非激活期内传输资源的结束位置与下一个DRX激活期的起始位置之间的间隔大于第三预设阈值的至少一个传输资源中,距离下一个DRX激活期的起始位置最近的传输资源为节能信号的发送资源。
在本公开一些实施例中,关于节能信道的时间配置也与节能信号设计方案高度相关。由于UE的DRX cycle配置是UE specific的,如果UE的DRX cycle配置不加以约束,则导致多个UE的节能信号会在时域互相重叠,这样会造成节能信号间相互干扰,严重破坏节能信号的性能,特别是当节能信号基于正交序列时,正交性被破坏。所以考虑以下时域传输方案。
节能信号时域配置方式不与DRX周期绑定,类似NR的其它参考信号采用周期配置,但是节能信号周期必须大于基站配置的节能信号所占用的最大时域长度。因此,本公开一些实施例中节能信号的传输资源(发送位置)周期配置,节能信号周期必须大于基站配置的节能信号所占用的最大时域长度,在DRX OFF周期内满足与即将到来(upcoming)的DRX ON周期距离最近且大于某一gap(第三预设阈值)的候选位置即可作为节能信号的发送与检测位置,这样会使得节能信号的发送起点对齐,不会导致序列间相互重叠,从而减少用户间干扰,更有利于维持正交性。
进一步地,本公开一些实施例中DRX周期的起始位置与核节能信号的周期的起始位置相同,且DRX周期为核节能信号的周期的整数倍。
其中,所述节能信号为一序列,所述核节能信号为所述序列中具有固定长度的子序列。
具体的,所述DRX周期的起始位置与核节能信号的周期的起始位置相同包括所述DRX周期的起始位置对应的第一时间是核节能信号的周期的起始位置对应的第二时间的整数倍。
在本公开一些实施例中,节能信号与DRX绑定,即节能信号发送位置与DRX on有一个间隔gap且配置最大的节能信号长度,节能信号从最大的节能信号长度的起始点(starting point)发送,此时会出现节能信号前后重叠。考虑到节能信号基于序列构造,总会有一个固定长度如256个比特的子序列,可以定为核(Kernel)节能信号,后续序列是Kernel节能信号的时域重复(repetition),且假定Kernel节能信号的周期为T,例如可以是一个slot或者4个OFDM符号,本公开一些实施例中把Kernel节能信号的周期T内的所有的DRX ON的起点都对齐,则不会破坏序列间的正交性,但序列间的相互重叠还存在。为了实现节能信号的发送时间对齐,需要恰当地配置DRX周期cycle的起点与周期。一般来说,节能信号的发送起点与DRX ON起点保持固定,而DRX cycle又是UE specific周期配置的。因此,本公开一些实施例中,将节能信号与DRX绑定,即总在DRX on之前的约定位置,基站为UE配置的DRX周期的起点与Kernel节能信号的周期T的起点是相同的,DRX cycle的周期也是Kernel节能信号的周期T的整数倍。例如DRX起点可以设置为Kernel节能信号周期T的整数倍,DRX cycle的周期也是Kernel节能信号的周期T的整数倍。
本公开的又一实施例中,资源配置方法还可以包括:在DRX激活期前发送具有唤醒功能的节能信号,用于唤醒UE在对应的DRX激活期内执行PDCCH检测。这里,具有唤醒功能的节能信号是周期配置的。
可选的,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
通过无线资源控制RRC信令或者物理层动态信令,配置所述节能信号的传输资源,所述节能信号的传输资源包括:下行DL符号或者时隙、上行UL符号或者时隙以及灵活(flexible)符号或者时隙中的至少一种。;或者,在除上行UL符号或者时隙,和/或,动态信令配置的灵活符号或者时隙之外的符号或者时隙上,配置所述节能信号的传输资源,即不允许在UL符号或者 时隙,和/或,动态信令配置的灵活符号或者时隙上配置所述具有唤醒功能的节能信号的传输资源。NR标准中支持的flexible时隙或者符号,该时隙或者符号可以被用于上行也可以被用于下行,具体形式取决于基站调度器。这里,所述具有唤醒功能的节能信号的传输资源包含UL符号或者时隙时,放弃所述节能信号的发送;或者,所述具有唤醒功能的节能信号的传输资源包含物理层信令配置的灵活符号或者时隙时,放弃节能信号的发送。所述节能信号的传输资源包含下行DL符号或者时隙时,在所述DL符号或者时隙上发送所述节能信号。
这里的具有唤醒功能的节能信号(又可称为唤醒信号),可以用于唤醒UE在对应的DRX ON内执行PDCCH检测。
如前面实施例所述,可选的,基站在DRX ON周期前发送唤醒信号,唤醒信号可以是周期配置的,例如唤醒信号可以是基于PDCCH的节能信号,其对应的search space(搜索空间)是周期的,由于DRX cycle也是周期的,所以一般可以将DRX cycle与节能信号的发送位置进行绑定,例如节能信号总是在DRX cycle之前的固定offset(偏移)处发送,该offset一般是高层信令配置的。
但节能信号发送的时域资源不能确保一定是DL资源,在NR中帧结构配置可以由RRC信令配置或者物理层动态信令配置,帧结构除了DL符号或者时隙,UL符号或者时隙,还可以是flexible符号或者时隙。这里,RRC信令与物理层信令都可以配置flexible符号或者时隙。
根据NR规定RRC信令配置的flexible符号或者时隙可以发送上行或者下行,而物理层信令指示的flexible符号或者时隙不能传输下行。
因此,当基站为终端配置的节能信号的传输资源里面包含UL符号或者时隙时即下行节能信号与分配的上行传输资源冲突时,基站侧行为是放弃节能信号的发送,或者基站不允许在节能信号的传输资源上配置UL符号或者时隙。当基站为终端配置的节能信号的传输资源里面包含物理层信令配置的flexible符号或者时隙时,基站侧行为是放弃节能信号的发送。
当基站在节能信号发送资源上,由上述UL、flexible符号或者时隙的原因无法发送下行节能信号时,UE侧的行为是直接唤醒接收机且在对应的DRX  cycle内执行PDCCH检测,该行为的优点在于基站可以在后续的DRX周期继续发送,从而减少时延,不影响接收质量;另外一种行为是UE继续执行睡眠操作,不检测节能信号,不在后续的DRX周期内检测PDCCH,该行为的优点是省电,缺陷是会导致较大的latency(延迟)。基站为终端配置的节能信号传输资源为RRC信令所配置的flexible符号或者时隙时,基站在该资源上发送节能信号,UE在该节能信号对应的传输资源上检测节能信号。
本公开一些实施例的资源配置方法,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源,以便于后续根据该传输资源在DRX非激活期内进行节能信号的传输,使得终端根据该节能信号确定是否需要在DRX激活期内进行PDCCH的检测,进而能够减少不必要的PDCCH检测,降低终端的功耗。
如图6所示,本公开一些实施例还提供了一种资源获取方法,应用于终端,包括:
步骤601:通过静态或半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源。
其中,通过半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源,可以包括:通过RRC无线资源控制信令,获取节能信号在DRX非激活期内的传输资源。
通过静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源,可以包括:通过预先约定的方式,获取节能信号在非连续接收DRX非激活期内的传输资源。
本公开一些实施例中,节能信号为一个序列,具体可为WUS。
本公开一些实施例中,终端如果在DRX非激活期内检测到节能信号,则在后续的DRX激活期内进行PDCCH的监测,否则,继续处于睡眠状态,不在DRX激活期内检测PDCCH。
本公开一些实施例的资源获取方法,通过静态或半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源,以便于后续根据该传输资源在DRX非激活期内进行节能信号的传输,使得终端根据该节能信号确定是否需要在DRX激活期内进行PDCCH的检测,进而能够减少不必要的PDCCH检 测,降低终端的功耗。
进一步地,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,在发生重叠的传输资源上放弃检测节能信号或者检测打孔的节能信号。
具体的,在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,若重叠资源的数量大于目标数值(如重叠RE的数量大于目标数值),则在发生重叠的传输资源上放弃检测节能信号,并继续保持睡眠状态或进入唤醒状态;若重叠资源的数量小于或者等于目标数值(如重叠RE的数量小于目标数值),则在发生重叠的传输资源上检测打孔的节能信号。
进一步地,获取节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
获取指示信息,所述指示信息是网络设备在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下发送的;
根据所述指示信息,在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者,在发生重叠的传输资源上检测打孔的节能信号。
具体的实现方式,已在网络设备侧的方法实施例中进行详细说明,此处不再赘述。
进一步地,获取节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
在所述传输资源上,获取节能信号;
根据所述节能信号,在位于DRX非激活期后的DRX激活期内进行PDCCH的监测。
进一步的,资源获取方法,还可以包括:网络设备配置的节能信号的传输资源上不能用于节能信号的传输时,所述终端直接唤醒接收机且在对应的DRX周期内执行PDCCH检测;或者,网络设备配置的节能信号的传输资源上 不能用于节能信号的传输时,终端继续执行睡眠操作,不在后续的DRX周期内检测PDCCH。这里,网络设备配置的节能信号的传输资源上不能用于节能信号的传输可以包括:所述节能信号的传输资源包含UL符号或者时隙,或者,所述节能信号的传输资源包含物理层信令配置的灵活符号或者时隙;当然,也可以是二者都满足。具有唤醒功能的节能信号用于唤醒终端在对应的DRX激活期内执行PDCCH检测。
进一步的,资源获取方法,还可以包括:为终端配置的节能信号传输资源为RRC信令所配置的灵活符号或者时隙时,所述终端在该节能信号对应的传输资源上检测节能信号。
本公开一些实施例中,终端根据该节能信号确定是否需要在DRX激活期内进行PDCCH的检测,进而能够减少不必要的PDCCH检测,降低终端的功耗。
如图7所示,本公开的一些实施例还提供了一种网络设备,该网络设备可具体为基站,包括存储器720、处理器700、收发机710、总线接口及存储在存储器720上并可在处理器700上运行的计算机程序,所述处理器700用于读取存储器720中的程序,执行下列过程:
通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机710可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器700负责管理总线架构和通常的处理,存储器720可以存储处理器700在执行操作时所使用的数据。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
配置节能信号在DRX非激活期内的至少两个候选发送资源;
根据所述节能信号的候选发送资源与预设高优先级信号的发送资源,确定节能信号在DRX非激活期内的传输资源。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
按照预设配置周期,配置多个资源窗口,每个资源窗口包括至少两个候选发送资源,且每个资源窗口的至少两个候选发送资源中包括默认候选发送资源;
其中,所述资源窗口包括时域资源窗口和/或频域资源窗口。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
在节能信号的默认候选发送资源与预设高优先级信号的发送资源重叠的情况下,根据所述资源窗口中除所述默认候选发送资源之外的其他候选发送资源,确定节能信号在DRX非激活期内的传输资源。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
在DRX激活期之前,配置节能信号在DRX非激活期内的至少两个候选发送资源。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
获取各个所述候选发送资源与预设高优先级信号发送资源之间的位置间隔值;
在多个所述位置间隔值中,选取一个目标位置间隔值;
根据所述目标位置间隔值,确定节能信号在DRX非激活期内的传输资源。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
在大于第一预设阈值的位置间隔值中,选取最小的位置间隔值作为目标位置间隔值。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
根据所述目标位置间隔值对应的候选发送资源,确定节能信号在DRX非激活期内的传输资源;
或者,在所述目标位置间隔值大于第二预设阈值的情况下,将预先约定的候选发送资源,确定为节能信号在DRX非激活期内的传输资源;
或者,根据用于计算所述目标位置间隔值的预设高优先级信号所在时隙的空闲资源,确定节能信号在DRX非激活期内的传输资源。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
配置节能信号在DRX非激活期内的载波,所述载波为主载波或主副载波。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
配置节能信号在DRX非激活期内的带宽部分BWP,所述BWP为小区特定的窄带BWP或者预先约定的窄带BWP。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
根据当前激活的BWP,配置节能信号在非连续接收DRX非激活期内的传输资源。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
根据当前激活的BWP对应的物理下行控制信道PDCCH搜索空间,配置节能信号在DRX非激活期内的传输资源。
可选的,所述传输资源包括第一传输资源和第二传输资源,所述第一传输资源的频域资源固定,时域资源可变;所述第二传输资源的时域资源固定,频域资源可变。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,在发生重叠的传输资源上放弃发送节能信号或者发送打孔的节能信号。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
当节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠时,发送指示信息;
其中,所述指示信息用于指示终端在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者用于指示终端在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者用于指示终端在发生重叠的传输资源上检测打孔的节能信号。
可选的,处理器700还用于读取存储器720中的程序,执行如下步骤:
当节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源未发生重叠时,在所述传输资源上发送节能信号。
可选的,所述预设高优先级信号包括以下至少一项:
系统信息块SSB、信道状态信息参考信号CSI-RS、剩余的最小系统信息RMSI、追踪参考信号TRS和其他系统信息OSI。
可选的,所述传输资源是周期性配置的,所述传输资源的配置周期大于基站配置的节能信号的最大时域长度,且所述DRX非激活期内传输资源的结束位置与下一个DRX激活期的起始位置之间的间隔大于第三预设阈值的至少一个传输资源中,距离下一个DRX激活期的起始位置最近的传输资源为节能信号的发送资源。
可选的,DRX周期的起始位置与核节能信号的周期的起始位置相同,且DRX周期为核节能信号的周期的整数倍;
其中,所述节能信号为一序列,所述核节能信号为所述序列中具有固定长度的子序列。
本公开一些实施例的网络设备,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源,以便于后续根据该传输资源在DRX非激活期内进行节能信号的传输,使得终端根据该节能信号确定是否需要在DRX激活期内进行PDCCH的检测,进而能够减少不必要的PDCCH检测,降低终端的功耗。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源。
该程序被处理器执行时能实现上述应用于网络设备侧的方法实施例中的所有实现方式,为避免重复,此处不再赘述。
如图8所示,本公开的实施例还提供了一种网络设备,包括:
配置模块801,用于通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源。
本公开一些实施例的网络设备,所述配置模块包括:
配置子模块,用于配置节能信号在DRX非激活期内的至少两个候选发送资源;
确定子模块,用于根据所述节能信号的候选发送资源与预设高优先级信号的发送资源,确定节能信号在DRX非激活期内的传输资源。
本公开一些实施例的网络设备,所述配置子模块用于按照预设配置周期, 配置多个资源窗口,每个资源窗口包括至少两个候选发送资源,且每个资源窗口的至少两个候选发送资源中包括默认候选发送资源;
其中,所述资源窗口包括时域资源窗口和/或频域资源窗口。
本公开一些实施例的网络设备,所述确定子模块用于在节能信号的默认候选发送资源与预设高优先级信号的发送资源重叠的情况下,根据所述资源窗口中除所述默认候选发送资源之外的其他候选发送资源,确定节能信号在DRX非激活期内的传输资源。
本公开一些实施例的网络设备,所述配置子模块用于在DRX激活期之前,配置节能信号在DRX非激活期内的至少两个候选发送资源。
本公开一些实施例的网络设备,所述确定子模块包括:
获取单元,用于获取各个所述候选发送资源与预设高优先级信号发送资源之间的位置间隔值;
选取单元,用于在多个所述位置间隔值中,选取一个目标位置间隔值;
确定单元,用于根据所述目标位置间隔值,确定节能信号在DRX非激活期内的传输资源。
本公开一些实施例的网络设备,所述选取单元用于在大于第一预设阈值的位置间隔值中,选取最小的位置间隔值作为目标位置间隔值。
本公开一些实施例的网络设备,所述确定单元用于根据所述目标位置间隔值对应的候选发送资源,确定节能信号在DRX非激活期内的传输资源;
或者,用于在所述目标位置间隔值大于第二预设阈值的情况下,将预先约定的候选发送资源,确定为节能信号在DRX非激活期内的传输资源;
或者,用于根据用于计算所述目标位置间隔值的预设高优先级信号所在时隙的空闲资源,确定节能信号在DRX非激活期内的传输资源。
本公开一些实施例的网络设备,所述配置模块用于配置节能信号在DRX非激活期内的载波,所述载波为主载波或主副载波。
本公开一些实施例的网络设备,所述配置模块用于配置节能信号在DRX非激活期内的带宽部分BWP,所述BWP为小区特定的窄带BWP或者预先约定的窄带BWP。
本公开一些实施例的网络设备,所述配置模块用于根据当前激活的BWP, 配置节能信号在非连续接收DRX非激活期内的传输资源。
本公开一些实施例的网络设备,所述配置模块用于根据当前激活的BWP对应的物理下行控制信道PDCCH搜索空间,配置节能信号在DRX非激活期内的传输资源。
本公开一些实施例的网络设备,所述传输资源包括第一传输资源和第二传输资源,所述第一传输资源的频域资源固定,时域资源可变;所述第二传输资源的时域资源固定,频域资源可变。
本公开一些实施例的网络设备,还包括:
第一发送模块,用于在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,在发生重叠的传输资源上放弃发送节能信号或者发送打孔的节能信号。
本公开一些实施例的网络设备,还包括:
第二发送模块,用于当节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠时,发送指示信息;
其中,所述指示信息用于指示终端在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者用于指示终端在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者用于指示终端在发生重叠的传输资源上检测打孔的节能信号。
本公开一些实施例的网络设备,还包括:
第三发送模块,用于当节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源未发生重叠时,在所述传输资源上发送节能信号。
本公开一些实施例的网络设备,所述预设高优先级信号包括以下至少一项:
系统信息块SSB、信道状态信息参考信号CSI-RS、剩余的最小系统信息RMSI、追踪参考信号TRS和其他系统信息OSI。
本公开一些实施例的网络设备,所述传输资源是周期性配置的,所述传输资源的配置周期大于基站配置的节能信号的最大时域长度,且所述DRX非激活期内传输资源的结束位置与下一个DRX激活期的起始位置之间的间隔大于第三预设阈值的至少一个传输资源中,距离下一个DRX激活期的起始位置 最近的传输资源为节能信号的发送资源。
本公开一些实施例的网络设备,DRX周期的起始位置与核节能信号的周期的起始位置相同,且DRX周期为核节能信号的周期的整数倍;
其中,所述节能信号为一序列,所述核节能信号为所述序列中具有固定长度的子序列。
需要说明的是,本公开一些实施例的网络设备是与上述应用于网络设备侧的方法实施例对应的网络设备,上述应用于网络设备侧的方法实施例中的所有实现方式,为避免重复,此处不再赘述。
本公开一些实施例的网络设备,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源,以便于后续根据该传输资源在DRX非激活期内进行节能信号的传输,使得终端根据该节能信号确定是否需要在DRX激活期内进行PDCCH的检测,进而能够减少不必要的PDCCH检测,降低终端的功耗。
如图9所示,本公开一些实施例还提供了一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,所述处理器执行所述程序时实现以下步骤:
通过静态或半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源。
其中,在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器900代表的一个或多个处理器和存储器920代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机910可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口930还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器900负责管理总线架构和通常的处理,存储器920可以存储处理器900在执行操作时所使用的数据。
可选的,处理器900还用于读取存储器920中的程序,执行如下步骤:
通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,在发生重叠的传输资源上放弃检测节能信号或者检测打孔的节能信号。
可选的,处理器900还用于读取存储器920中的程序,执行如下步骤:
获取指示信息,所述指示信息是网络设备在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下发送的;
根据所述指示信息,在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者,在发生重叠的传输资源上检测打孔的节能信号。
可选的,处理器900还用于读取存储器920中的程序,执行如下步骤:
在所述传输资源上,获取节能信号;
根据所述节能信号,在位于DRX非激活期后的DRX激活期内进行PDCCH的监测。
本公开一些实施例的终端,通过静态或半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源,以便于后续根据该传输资源在DRX非激活期内进行节能信号的传输,使得终端根据该节能信号确定是否需要在DRX激活期内进行PDCCH的检测,进而能够减少不必要的PDCCH检测,降低终端的功耗。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现以下步骤:
通过静态或半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源。
该程序被处理器执行时能实现上述应用于终端侧的资源获取方法实施例中的所有实现方式,为避免重复,此处不再赘述。
如图10所示,本公开一些实施例还提供了一种终端,包括:
第一获取模块1001,用于通过静态或半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源。
本公开一些实施例的终端,还包括:
第一处理模块,用于在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,在发生重叠的传输资源上放弃检测节能信号或者检测打孔的节能信号。
本公开一些实施例的终端,还包括:
第二获取模块,用于获取指示信息,所述指示信息是网络设备在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下发送的;
第二处理模块,用于根据所述指示信息,在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者,在发生重叠的传输资源上检测打孔的节能信号。
本公开一些实施例的终端,还包括:
第三获取模块,用于在所述传输资源上,获取节能信号;
监测模块,用于根据所述节能信号,在位于DRX非激活期后的DRX激活期内进行PDCCH的监测。
本公开一些实施例的终端,通过静态或半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源,以便于后续根据该传输资源在DRX非激活期内进行节能信号的传输,使得终端根据该节能信号确定是否需要在DRX激活期内进行PDCCH的检测,进而能够减少不必要的PDCCH检测,降低终端的功耗。
在本公开的各种实施例中,应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开一些实施例的实施过程构成任何限定。
以上所述是本公开的一些实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (44)

  1. 一种资源配置方法,应用于网络设备,包括:
    通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源。
  2. 根据权利要求1所述的资源配置方法,其中,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
    配置节能信号在DRX非激活期内的至少两个候选发送资源;
    根据所述节能信号的候选发送资源与预设高优先级信号的发送资源,确定节能信号在DRX非激活期内的传输资源。
  3. 根据权利要求2所述的资源配置方法,其中,配置节能信号在DRX非激活期内的至少两个候选发送资源,包括:
    按照预设配置周期,配置多个资源窗口,每个资源窗口包括至少两个候选发送资源,且每个资源窗口的至少两个候选发送资源中包括默认候选发送资源;
    其中,所述资源窗口包括时域资源窗口和/或频域资源窗口。
  4. 根据权利要求3所述的资源配置方法,其中,根据所述节能信号的候选发送资源与预设高优先级信号的发送资源,确定节能信号在DRX非激活期内的传输资源,包括:
    在节能信号的默认候选发送资源与预设高优先级信号的发送资源重叠的情况下,根据所述资源窗口中除所述默认候选发送资源之外的其他候选发送资源,确定节能信号在DRX非激活期内的传输资源。
  5. 根据权利要求2所述的资源配置方法,其中,配置节能信号在DRX非激活期内的至少两个候选发送资源,包括:
    在DRX激活期之前,配置节能信号在DRX非激活期内的至少两个候选发送资源。
  6. 根据权利要求2或5所述的资源配置方法,其中,根据所述节能信号的候选发送资源与预设高优先级信号的发送资源,确定节能信号在DRX非激活期内的传输资源,包括:
    获取各个所述候选发送资源与预设高优先级信号发送资源之间的位置间隔值;
    在多个所述位置间隔值中,选取一个目标位置间隔值;
    根据所述目标位置间隔值,确定节能信号在DRX非激活期内的传输资源。
  7. 根据权利要求6所述的资源配置方法,其中,在多个所述位置间隔值中,选取一个目标位置间隔值,包括:
    在大于第一预设阈值的位置间隔值中,选取最小的位置间隔值作为目标位置间隔值。
  8. 根据权利要求6所述的资源配置方法,其中,根据所述目标位置间隔值,确定节能信号在DRX非激活期内的传输资源,包括:
    根据所述目标位置间隔值对应的候选发送资源,确定节能信号在DRX非激活期内的传输资源;
    或者,在所述目标位置间隔值大于第二预设阈值的情况下,将预先约定的候选发送资源,确定为节能信号在DRX非激活期内的传输资源;
    或者,根据用于计算所述目标位置间隔值的预设高优先级信号所在时隙的空闲资源,确定节能信号在DRX非激活期内的传输资源。
  9. 根据权利要求1所述的资源配置方法,其中,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
    配置节能信号在DRX非激活期内的载波,所述载波为主载波或主副载波。
  10. 根据权利要求1所述的资源配置方法,其中,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
    配置节能信号在DRX非激活期内的带宽部分BWP,所述BWP为小区特定的窄带BWP或者预先约定的窄带BWP。
  11. 根据权利要求1所述的资源配置方法,其中,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
    根据当前激活的BWP,配置节能信号在非连续接收DRX非激活期内的传输资源。
  12. 根据权利要求11所述的资源配置方法,其中,根据当前激活的BWP,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
    根据当前激活的BWP对应的物理下行控制信道PDCCH搜索空间,配置节能信号在DRX非激活期内的传输资源。
  13. 根据权利要求11所述的资源配置方法,其中,所述传输资源包括第一传输资源和第二传输资源,所述第一传输资源的频域资源固定,时域资源可变;所述第二传输资源的时域资源固定,频域资源可变。
  14. 根据权利要求1所述的资源配置方法,其中,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
    在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,在发生重叠的传输资源上放弃发送节能信号或者发送打孔的节能信号。
  15. 根据权利要求14所述的资源配置方法,还包括:
    当节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠时,发送指示信息;
    其中,所述指示信息用于指示终端在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者用于指示终端在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者用于指示终端在发生重叠的传输资源上检测打孔的节能信号。
  16. 根据权利要求1所述的资源配置方法,其中,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
    当节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源未发生重叠时,在所述传输资源上发送节能信号。
  17. 根据权利要求2或14所述的资源配置方法,其中,所述预设高优先级信号包括以下至少一项:
    系统信息块SSB、信道状态信息参考信号CSI-RS、剩余的最小系统信息RMSI、追踪参考信号TRS和其他系统信息OSI。
  18. 根据权利要求1所述的资源配置方法,其中,所述传输资源是周期性配置的,所述传输资源的配置周期大于基站配置的节能信号的最大时域长度,且所述DRX非激活期内传输资源的结束位置与下一个DRX激活期的起始位置之间的间隔大于第三预设阈值的至少一个传输资源中,距离下一个DRX 激活期的起始位置最近的传输资源为节能信号的发送资源。
  19. 根据权利要求1所述的资源配置方法,其中,
    DRX周期的起始位置与核节能信号的周期的起始位置相同,且DRX周期为核节能信号的周期的整数倍;
    其中,所述节能信号为一序列,所述核节能信号为所述序列中具有固定长度的子序列。
  20. 根据权利要求1所述的资源配置方法,其中,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
    通过无线资源控制RRC信令或者物理层动态信令,配置所述节能信号的传输资源,所述节能信号的传输资源包括:下行DL符号或者时隙、上行UL符号或者时隙以及灵活符号或者时隙中的至少一种。
  21. 根据权利要求20所述的资源配置方法,还包括:
    所述节能信号的传输资源包含下行DL符号或者时隙时,在所述DL符号或者时隙上发送所述节能信号;或者,
    所述节能信号的传输资源包含UL符号或者时隙时,放弃所述节能信号的发送;或者,
    所述节能信号的传输资源包含物理层信令配置的灵活符号或者时隙时,放弃节能信号的发送。
  22. 根据权利要求1所述的资源配置方法,其中,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源,包括:
    通过静态或半静态的方式,在除上行UL符号或者时隙,和/或,动态信令配置的灵活符号或者时隙之外的符号或者时隙上,配置所述节能信号的传输资源。
  23. 一种资源获取方法,应用于终端,包括:
    通过静态或半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源。
  24. 根据权利要求23所述的资源获取方法,其中,通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
    在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资 源重叠的情况下,在发生重叠的传输资源上放弃检测节能信号或者检测打孔的节能信号。
  25. 根据权利要求23所述的资源获取方法,其中,获取节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
    获取指示信息,所述指示信息是网络设备在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下发送的;
    根据所述指示信息,在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者,在发生重叠的传输资源上检测打孔的节能信号。
  26. 根据权利要求23所述的资源获取方法,其中,获取节能信号在非连续接收DRX非激活期内的传输资源之后,还包括:
    在所述传输资源上,获取节能信号;
    根据所述节能信号,在位于DRX非激活期后的DRX激活期内进行PDCCH的监测。
  27. 根据权利要求23所述的资源获取方法,还包括:
    网络设备配置的节能信号的传输资源上不能用于节能信号的传输时,所述终端直接唤醒接收机且在对应的DRX周期内执行PDCCH检测;或者,
    网络设备配置的节能信号的传输资源上不能用于节能信号的传输时,终端继续执行睡眠操作,不在后续的DRX周期内检测PDCCH。
  28. 根据权利要求23所述的资源获取方法,还包括:
    为终端配置的节能信号传输资源为RRC信令所配置的灵活符号或者时隙时,所述终端在该节能信号对应的传输资源上检测节能信号。
  29. 一种网络设备,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现以下步骤:
    通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源。
  30. 根据权利要求29所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    配置节能信号在DRX非激活期内的至少两个候选发送资源;
    根据所述节能信号的候选发送资源与预设高优先级信号的发送资源,确定节能信号在DRX非激活期内的传输资源。
  31. 根据权利要求29所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    按照预设配置周期,配置多个资源窗口,每个资源窗口包括至少两个候选发送资源,且每个资源窗口的至少两个候选发送资源中包括默认候选发送资源;
    其中,所述资源窗口包括时域资源窗口和/或频域资源窗口。
  32. 根据权利要求31所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    在节能信号的默认候选发送资源与预设高优先级信号的发送资源重叠的情况下,根据所述资源窗口中除所述默认候选发送资源之外的其他候选发送资源,确定节能信号在DRX非激活期内的传输资源。
  33. 根据权利要求30所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    在DRX激活期之前,配置节能信号在DRX非激活期内的至少两个候选发送资源。
  34. 根据权利要求30或33所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    获取各个所述候选发送资源与预设高优先级信号发送资源之间的位置间隔值;
    在多个所述位置间隔值中,选取一个目标位置间隔值;
    根据所述目标位置间隔值,确定节能信号在DRX非激活期内的传输资源。
  35. 根据权利要求34所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    在大于第一预设阈值的位置间隔值中,选取最小的位置间隔值作为目标位置间隔值。
  36. 根据权利要求34所述的网络设备,其中,所述处理器执行所述程序 时还实现以下步骤:
    根据所述目标位置间隔值对应的候选发送资源,确定节能信号在DRX非激活期内的传输资源;
    或者,在所述目标位置间隔值大于第二预设阈值的情况下,将预先约定的候选发送资源,确定为节能信号在DRX非激活期内的传输资源;
    或者,根据用于计算所述目标位置间隔值的预设高优先级信号所在时隙的空闲资源,确定节能信号在DRX非激活期内的传输资源。
  37. 根据权利要求29所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,在发生重叠的传输资源上放弃发送节能信号或者发送打孔的节能信号。
  38. 根据权利要求37所述的网络设备,其中,所述处理器执行所述程序时还实现以下步骤:
    当节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠时,发送指示信息;
    其中,所述指示信息用于指示终端在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者用于指示终端在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者用于指示终端在发生重叠的传输资源上检测打孔的节能信号。
  39. 一种终端,包括:收发机、存储器、处理器及存储在存储器上并可在处理器上运行的程序,其中,所述处理器执行所述程序时实现以下步骤:
    通过静态或半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源。
  40. 根据权利要求39所述的终端,其中,所述处理器执行所述程序时实现以下步骤:
    在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下,在发生重叠的传输资源上放弃检测节能信号或者检测打孔的节能信号。
  41. 根据权利要求39所述的终端,其中,所述处理器执行所述程序时还实现以下步骤:
    获取指示信息,所述指示信息是网络设备在节能信号在DRX非激活期内的传输资源与预设高优先级信号的发送资源重叠的情况下发送的;
    根据所述指示信息,在发生重叠的传输资源上放弃节能信号的检测并保持睡眠状态,或者在发生重叠的传输资源上放弃节能信号的检测并进入唤醒状态,或者,在发生重叠的传输资源上检测打孔的节能信号。
  42. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求1至22中任一项所述资源配置方法的步骤或者如权利要求23至28中任一项所述资源获取方法的步骤。
  43. 一种网络设备,包括:
    配置模块,用于通过静态或半静态的方式,配置节能信号在非连续接收DRX非激活期内的传输资源。
  44. 一种终端,包括:
    第一获取模块,用于通过静态或半静态的方式,获取节能信号在非连续接收DRX非激活期内的传输资源。
PCT/CN2020/070230 2019-01-04 2020-01-03 一种资源配置、获取方法、网络设备及终端 WO2020140966A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20736066.0A EP3908066A4 (en) 2019-01-04 2020-01-03 METHOD FOR CONFIGURING AND ACQUIRING RESOURCES, NETWORK DEVICE AND TERMINAL
JP2021539365A JP7234381B2 (ja) 2019-01-04 2020-01-03 リソース設定方法、リソース取得方法、ネットワーク機器及び端末
KR1020217023717A KR102582378B1 (ko) 2019-01-04 2020-01-03 자원 구성 방법, 자원 획득 방법, 네트워크 기기 및 단말
US17/420,709 US11991633B2 (en) 2019-01-04 2020-01-03 Resource configuration method, resource obtaining method, network device and terminal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910008258 2019-01-04
CN201910008258.9 2019-01-04
CN201910731340.4A CN111417208B (zh) 2019-01-04 2019-08-08 一种资源配置、获取方法、网络设备及终端
CN201910731340.4 2019-08-08

Publications (1)

Publication Number Publication Date
WO2020140966A1 true WO2020140966A1 (zh) 2020-07-09

Family

ID=71406544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070230 WO2020140966A1 (zh) 2019-01-04 2020-01-03 一种资源配置、获取方法、网络设备及终端

Country Status (4)

Country Link
US (1) US11991633B2 (zh)
EP (1) EP3908066A4 (zh)
JP (1) JP7234381B2 (zh)
WO (1) WO2020140966A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113767675A (zh) * 2021-07-28 2021-12-07 北京小米移动软件有限公司 节能配置方法及其装置
WO2022028534A1 (zh) * 2020-08-05 2022-02-10 维沃移动通信有限公司 处理方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110913482B (zh) * 2018-09-18 2023-04-07 大唐移动通信设备有限公司 一种节能信号的侦听方法、配置方法、终端及网络侧设备
WO2020166925A1 (ko) * 2019-02-14 2020-08-20 엘지전자 주식회사 전력 절약 신호 및 물리 하향링크 제어 채널 모니터링
KR102626617B1 (ko) * 2020-01-21 2024-01-18 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 디바이스 대 디바이스 사이드 링크 제어 신호를 모니터링하기 위한 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097680A1 (en) * 2016-11-25 2018-05-31 Lg Electronics Inc. Method and apparatus for designing broadcast channel for nr in wireless communication system
WO2018169649A1 (en) * 2017-03-17 2018-09-20 Qualcomm Incorporated Techniques and apparatuses for control channel monitoring using a wakeup signal
CN108633070A (zh) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 半静态资源调度方法、功率控制方法及相应用户设备
WO2018202693A1 (en) * 2017-05-05 2018-11-08 Sony Corporation Terminal device, infrastructure equipment, wireless telecommunications system and methods
WO2018204799A1 (en) * 2017-05-04 2018-11-08 Convida Wireless, Llc Wake up signals operation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9603048B2 (en) 2012-03-16 2017-03-21 Interdigital Patent Holdings, Inc. Random access procedures in wireless systems
WO2018174635A1 (ko) 2017-03-24 2018-09-27 엘지전자 주식회사 페이징 메시지를 수신하는 방법 및 무선 기기
KR20180121350A (ko) 2017-04-28 2018-11-07 엘지전자 주식회사 페이징 메시지를 수신하는 방법 및 무선 기기
WO2018175760A1 (en) * 2017-03-24 2018-09-27 Intel Corporation Wake up signal for machine type communication and narrowband-internet-of-things devices
WO2018203717A1 (en) 2017-05-04 2018-11-08 Samsung Electronics Co., Ltd. Bandwidth part configurations for single carrier wideband operations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097680A1 (en) * 2016-11-25 2018-05-31 Lg Electronics Inc. Method and apparatus for designing broadcast channel for nr in wireless communication system
WO2018169649A1 (en) * 2017-03-17 2018-09-20 Qualcomm Incorporated Techniques and apparatuses for control channel monitoring using a wakeup signal
CN108633070A (zh) * 2017-03-24 2018-10-09 北京三星通信技术研究有限公司 半静态资源调度方法、功率控制方法及相应用户设备
WO2018204799A1 (en) * 2017-05-04 2018-11-08 Convida Wireless, Llc Wake up signals operation
WO2018202693A1 (en) * 2017-05-05 2018-11-08 Sony Corporation Terminal device, infrastructure equipment, wireless telecommunications system and methods

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "3GPP TSG RAN WG1 Meeting #90bis R1-1718141", WAKE-UP SIGNAL CONFIGURATIONS AND PROCEDURES, 13 October 2017 (2017-10-13), XP051341323, DOI: 0200323145710X *
QUALCOMM INCORPORATED: "3GPP TSG-RAN WG1 Meeting #94bis R1-1811283", TRIGGERING ADAPTATION OF UE POWER CONSUMPTION CHARACTERISTICS, 12 October 2018 (2018-10-12), XP051518686, DOI: 20200323145354Y *
See also references of EP3908066A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022028534A1 (zh) * 2020-08-05 2022-02-10 维沃移动通信有限公司 处理方法及装置
CN113767675A (zh) * 2021-07-28 2021-12-07 北京小米移动软件有限公司 节能配置方法及其装置
WO2023004652A1 (zh) * 2021-07-28 2023-02-02 北京小米移动软件有限公司 节能配置方法及其装置

Also Published As

Publication number Publication date
EP3908066A4 (en) 2022-02-09
JP7234381B2 (ja) 2023-03-07
US11991633B2 (en) 2024-05-21
JP2022517197A (ja) 2022-03-07
US20220110057A1 (en) 2022-04-07
EP3908066A1 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
CN111417208B (zh) 一种资源配置、获取方法、网络设备及终端
US11968623B2 (en) Method and apparatus having a discontinuous reception configuration
WO2020140966A1 (zh) 一种资源配置、获取方法、网络设备及终端
WO2020088257A1 (zh) 唤醒信号的资源确定、配置方法及装置、终端、基站
JP7411580B2 (ja) ユーザ機器、基地局、方法および集積回路
CN107439030B (zh) 在lte许可协助接入操作中的drx处理
CN114258732B (zh) 用于监控节电信令的物理下行控制通道的方法及相关设备
US9301257B2 (en) Adaptive physical layer warm-up for LTE TDD C-DRX power optimization
WO2020224552A1 (zh) 唤醒终端设备的方法、装置、网络设备和终端设备
CN114885406B (zh) 一种节电信号配置和传输方法及装置
WO2020228617A1 (zh) 一种通信方法及装置
US11729731B2 (en) Information transmission method, network device and terminal
EP4199605A1 (en) Transmission control method and apparatus, and related device
WO2020029703A1 (zh) 非授权频谱pdcch的监测、指示方法及装置、存储介质、终端、基站
WO2020035059A1 (zh) 信息发送、接收方法、网络设备及终端
CN114786207A (zh) 测量调度方法、装置、用户设备及存储介质
US20230354185A1 (en) Method and apparatus for selecting resource, method and apparatus for processing power saving, and device
CN112312524B (zh) 一种节电信号配置和传输方法及装置
CN112312525B (zh) 一种节电信号配置和传输方法及装置
KR102094774B1 (ko) 세컨더리 셀 상태 제어 방법 및 장치
WO2021088986A1 (zh) 一种节电信号的传输方法及装置
CN111491325A (zh) 辅小区数据的使用方法、装置、接收机及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20736066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539365

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217023717

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020736066

Country of ref document: EP

Effective date: 20210804