WO2020140690A1 - 资源的确定方法、资源的配置方法、终端和网络侧设备 - Google Patents

资源的确定方法、资源的配置方法、终端和网络侧设备 Download PDF

Info

Publication number
WO2020140690A1
WO2020140690A1 PCT/CN2019/123610 CN2019123610W WO2020140690A1 WO 2020140690 A1 WO2020140690 A1 WO 2020140690A1 CN 2019123610 W CN2019123610 W CN 2019123610W WO 2020140690 A1 WO2020140690 A1 WO 2020140690A1
Authority
WO
WIPO (PCT)
Prior art keywords
beta
offset
information
dci
dynamic signaling
Prior art date
Application number
PCT/CN2019/123610
Other languages
English (en)
French (fr)
Inventor
沈晓冬
潘学明
鲁智
李娜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020140690A1 publication Critical patent/WO2020140690A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI

Definitions

  • the embodiments of the present disclosure relate to the field of wireless communication technologies, and in particular, to a resource determination method, a resource configuration method, a terminal, and a network-side device.
  • 5G mobile communication systems need to adapt to more diverse scenarios and business needs.
  • the main scenarios of 5G include enhanced mobile broadband (enhanced Mobile Broadband, eMBB), ultra-reliable and low-latency communications (Ultra-Reliable and Low Latency Communications, URLLC) and massive machine-type communications (massive Machine-Type Communications, mMTC), These scenarios place requirements on the system for high reliability, low latency, large bandwidth, and wide coverage.
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communications
  • mMTC massive machine-type communications
  • QoS quality of service
  • URLLC supports low-latency and highly reliable services. In order to achieve higher reliability, it is necessary to use lower bit rates to transmit data.
  • the eMBB service supports high throughput requirements, but is not as sensitive to URLLC as delay and reliability.
  • UCI Uplink Control Information
  • Embodiments of the present disclosure provide a resource determination method, a resource configuration method, a terminal, and a network side device, which are used to solve the problem of how to adapt different UCI resource occupancy sizes according to different services.
  • an embodiment of the present disclosure provides a method for determining a resource, which is applied to a terminal, and the method includes:
  • each beta_offset set includes at least one beta_offset group
  • each of the beta_offset groups includes at least one The beta_offset value of the type of uplink control information, where the beta_offset value represents the weight of the size of the transmission resource occupied by the uplink control information in the physical uplink shared channel;
  • the size of the transmission resource occupied by the uplink control information or the uplink data information is determined according to the beta_offset value of the first beta_offset group.
  • an embodiment of the present disclosure provides a resource configuration method, which is applied to a network-side device.
  • the method includes:
  • the first dynamic signaling is used to determine a first beta_offset set and a first beta_offset group in the first beta_offset set, wherein each beta_offset set includes at least one beta_offset group, each The beta_offset group includes a beta_offset value of at least one type of uplink control information, where the beta_offset value represents a weight of the size of transmission resources occupied in the physical uplink shared channel.
  • an embodiment of the present disclosure provides a method for determining a resource, which is applied to a terminal.
  • the method includes:
  • the size of the transmission resource occupied by the uplink control information is determined according to the configuration information of the first maxCodeRate.
  • an embodiment of the present disclosure provides a resource configuration method, which is applied to a network-side device.
  • the method includes:
  • an embodiment of the present disclosure provides a method for determining a resource, which is applied to a terminal.
  • the method includes:
  • the size of the transmission resource occupied by the uplink control information is determined according to the configuration information of the first maxCodeRate.
  • an embodiment of the present disclosure provides a terminal, including:
  • the receiving module is used to receive the first dynamic signaling
  • the receiving module is used to receive the first dynamic signaling
  • a first determining module configured to determine a first beta_offset set and a first beta_offset group in the first beta_offset set according to the first dynamic signaling, wherein each beta_offset set includes at least one beta_offset group, and each The beta_offset group includes a beta_offset value of at least one type of uplink control information, where the beta_offset value represents the weight of the size of the transmission resource occupied by the uplink control information in the physical uplink shared channel;
  • the second determining module is configured to determine the size of the transmission resource occupied by the uplink control information or the uplink data information according to the beta_offset value of the first beta_offset group.
  • an embodiment of the present disclosure provides a network-side device, including:
  • the first sending module is configured to send first dynamic signaling, and the first dynamic signaling is used to determine a first beta_offset set and a first beta_offset set in the first beta_offset set, where each beta_offset set includes at least A beta_offset group, each of the beta_offset groups includes a beta_offset value of at least one type of uplink control information, and the beta_offset value represents a weight of the size of transmission resources occupied in the physical uplink shared channel.
  • an embodiment of the present disclosure provides a terminal, including:
  • the receiving module is used to receive the first dynamic signaling
  • a first determining module configured to determine a first maxCodeRate according to the first dynamic signaling
  • the second determining module is configured to determine the size of the transmission resource occupied by the uplink control information according to the configuration information of the first maxCodeRate.
  • an embodiment of the present disclosure provides a network-side device, including:
  • the first sending module is configured to send first dynamic signaling, and the first dynamic signaling is used to determine a first maxCodeRate.
  • an embodiment of the present disclosure provides a terminal, including:
  • a first determining module configured to determine first location information of resources transmitting uplink control information
  • a second determining module configured to determine a first maxCodeRate according to the first position information
  • the third determining module is configured to determine the size of the transmission resource occupied by the uplink control information according to the configuration information of the first maxCodeRate.
  • an embodiment of the present disclosure provides a terminal, including a processor, a memory, and a computer program stored on the memory and executable on the processor, and the computer program is executed by the processor To implement the steps of the above resource determination method.
  • an embodiment of the present disclosure provides a network-side device, including a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program being processed by the When the device is executed, the steps of the method for configuring the application resource are implemented.
  • an embodiment of the present disclosure provides a computer-readable storage medium that stores a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, implements the steps of the method for determining the resource described above; or When the computer program is executed by the processor, the steps of the resource allocation method described above are implemented.
  • the terminal can use different beta_offset or maxCodeRate to determine the size of the uplink control information resource occupation under different services, to ensure that the physical layer transmission meets the different QoS requirements for different services. Demand.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a resource determination method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a resource allocation method according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a method for determining a resource according to another embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a resource configuration method according to another embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a method for determining a resource according to another embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a method for determining PUCCH RESET according to the size of UCI load
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a network-side device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a network side device according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a terminal according to still another embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a terminal according to still another embodiment of the present disclosure.
  • words such as “exemplary” or “for example” are used as examples, illustrations or explanations. Any embodiment or design described in the embodiments of the present disclosure as “exemplary” or “for example” should not be construed as being more preferred or advantageous than other embodiments or design. Rather, the use of words such as “exemplary” or “for example” is intended to present relevant concepts in a specific manner.
  • the method for determining resources, the method for configuring resources, the terminal and the network-side device provided by the embodiments of the present disclosure may be applied to a wireless communication system.
  • the wireless communication system may adopt a 5G system, or an evolved long-term evolution (Evolved Long Term Evolution, eLTE) system, or a subsequent evolution communication system.
  • eLTE evolved Long Term Evolution
  • the wireless communication system may include: a network side device 11 and a terminal 12, and the terminal 12 may be connected to the network side device 11.
  • the connection between the above devices may be a wireless connection.
  • solid lines are used in FIG. 1.
  • the above communication system may include multiple terminals 12, and the network-side device 11 may communicate with multiple terminals 12 (transmit signaling or transmit data).
  • the network-side device 11 provided in the embodiment of the present disclosure may be a base station, which may be a commonly used base station, an evolved base station (evolved node, base station, eNB), or a network-side device in a 5G system (for example Next-generation base station (next generation node, base station, gNB) or transmission and reception point (transmission and reception point, TRP) or cell cell and other equipment. Or the network side equipment in the subsequent evolution communication system. However, the use of words is not sufficient.
  • the terminal 12 provided by the embodiment of the present disclosure may be a mobile phone, a tablet computer, a notebook computer, an ultra-mobile personal computer (Ultra-Mobile Personal Computer, UMPC), a netbook, or a personal digital assistant (Personal Digital Assistant, PDA), etc.
  • UMPC Ultra-Mobile Personal Computer
  • PDA Personal Digital Assistant
  • the terminal can obtain the information required for data transmission of the uplink shared channel (Uplink Shared Channel, UL_SCH) by receiving the uplink authorization (Uplink Grant, UL Grant) sent by the network device, including the number of allocated physical resources, Transport block (Transport Blocks, TBS) bit size, modulation method (Modulation) and other information.
  • the uplink control information and UL_SCH are allowed to be transmitted simultaneously through the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) in the same time slot, and the UCI and UL_SCH are determined by the weight offset value (beta_offset) between UCI and UL_SCH How much resources are allocated separately.
  • a specific implementation method may be that a weight offset value indicator (beta offset indicator) field is introduced in DCI to indicate the weight of resource utilization between UCI and UL_SCH.
  • FIG. 2 is a schematic flowchart of a method for determining a resource according to an embodiment of the present disclosure.
  • the method for determining a resource is applied to a terminal, and includes:
  • Step 21 Receive the first dynamic signaling
  • Step 22 Determine a first beta_offset set and a first beta_offset group in the first beta_offset set according to the first dynamic signaling, where each beta_offset set includes at least one beta_offset group, and each of the beta_offset groups includes A beta_offset value of at least one type of uplink control information, where the beta_offset value represents a weight of the size of transmission resources occupied by the uplink control information in the physical uplink shared channel;
  • the at least one type of uplink control information may include at least one of the following: hybrid automatic repeat request response (Hybrid Automatic Repeat Request, HARQ-ACK), first part channel status indication (CSI part 1) and second part channel status Instructions (CSI Part 2).
  • Hybrid Automatic Repeat Request Hybrid Automatic Repeat Request
  • CSI part 1 first part channel status indication
  • CSI Part 2 second part channel status Instructions
  • each of the beta_offset groups includes HARQ-ACK ⁇ 2bit, HARQ-ACK ⁇ 11bit, HARQ-ACK>11bit, CSI-part1 ⁇ 11bit, CSI-part1>11bit, CSI-part2 ⁇ 11bit, CSI- part 2> The weight value corresponding to 11 bits.
  • X ⁇ n bits means that the size of the payload carrying X is less than n bits.
  • X is HARQ-ACK, CSI-part 1 or CSI-part 2.
  • Step 23 Determine the size of the transmission resource occupied by the uplink control information or the uplink data information according to the beta_offset value of the first beta_offset group.
  • the first beta_offset set corresponding to the first dynamic signaling and the first beta_offset group in the first beta_offset set can be determined, and according to the beta_offset of the first beta_offset group Value to determine the size of the uplink control information resource occupancy, so that the terminal adapts the size of the different uplink control information resource occupancy according to different services, to ensure that the physical layer transmission meets the different requirements of different services for their respective QoS.
  • the currently received dynamic signaling is referred to as first dynamic signaling.
  • the first dynamic signaling may be DCI signaling.
  • the first dynamic signaling may be two dynamic signalings, including first signaling and second signaling.
  • Both the first signaling and the second signaling are dynamic signaling.
  • the first signaling and the second signaling may be the signaling delivered at the same time, or may be the signaling delivered at different times.
  • the first dynamic signaling may also be a piece of dynamic signaling.
  • the method further includes: acquiring dynamic signaling and beta_offset set And the corresponding relationship of the beta_offset group in the beta_offset set.
  • the correspondence is the correspondence between the dynamic signaling and the beta_offset set and the beta_offset group in the beta_offset set.
  • the correspondence includes: the correspondence between the first signaling and the beta_offset set, and, the correspondence between the second signaling and the beta_offset group relationship.
  • the method before determining the first beta_offset set and the first beta_offset group in the first beta_offset set according to the first dynamic signaling, the method further includes:
  • the determining the first beta_offset set and the first beta_offset group in the first beta_offset set according to the first dynamic signaling includes:
  • a first beta_offset set corresponding to the first signaling is determined, and a first beta_offset group corresponding to the second signaling is determined.
  • the correspondence between the first dynamic signaling and the beta_offset set and the beta_offset set in the beta_offset set may be configured by the network-side device to the terminal, or may be agreed by a protocol.
  • the beta_offset sets corresponding to different dynamic signaling may be the same or different.
  • the first dynamic signaling may indicate the first beta_offset set in an explicit indication manner, that is, it may carry first explicit indication information for explicitly indicating the first beta_offset set. For example, assuming that two beta_offset sets are configured, the first explicit indication information may use 1 bit to indicate the beta_offset set. For example, the first explicit indication information is 0 means the first beta_offset set, and the first explicit indication information is 1. Represents the second beta_offset set.
  • the first dynamic signaling may also indicate the first beta_offset set in an implicit indication manner, for example, through the self-attribute information of the dynamic signaling or the implicit indication information carried, indicating the first beta_offset set .
  • the determining the first beta_offset set according to the first dynamic signaling may include: determining at least one of the following information of the first dynamic signaling Describe the first beta_offset set:
  • DCI format information, identification information corresponding to DCI, control channel configuration information corresponding to DCI, modulation and coding strategy corresponding to DCI are self-attribute information of dynamic signaling, service priority information carried by DCI, DCI carried
  • the resource indication related information is implicit indication information carried by dynamic signaling.
  • At least one of the following information of the first signaling may be used to determine the first beta_offset set:
  • the identification information corresponding to the DCI includes at least one of the following:
  • Temporary wireless network identification ie RNTI corresponding to DCI
  • control channel configuration information corresponding to the DCI includes at least one of the following:
  • Control resource set (CORESET) corresponding to DCI
  • Search space (SearchSpace) corresponding to DCI.
  • the resource indication related information carried by the DCI includes at least one of the following:
  • Resource indication information carried by the DCI where the resource indication is used to indicate time-domain resources and/or frequency-domain resources for data or uplink control information transmission;
  • the pilot mapping type information (RS mapping type) carried in the DCI to indicate the transmission of data or uplink control information.
  • the first dynamic signaling may also display indicating the first beta_offset group in the first beta_offset set, that is, carrying the first beta_offset group for explicitly indicating the first beta_offset group in the first beta_offset set.
  • Two explicit instructions For example, assuming that the first beta_offset set includes four beta_offset groups, the second explicit indication information may use 2 bits to indicate the four beta_offset groups.
  • the second explicit indication information is 00, indicating that the first beta_offset group is the first Beta_offset groups, the second explicit indication information is 01 means the second beta_offset group in the first beta_offset set, the second explicit indication information is 10 means the third beta_offset group in the first beta_offset set, the second explicit The indication information is 11 indicates the fourth beta_offset group in the first beta_offset set.
  • the method before determining the first beta_offset set and the first beta_offset set in the first beta_offset set according to the first dynamic signaling, the method further includes: obtaining configuration information of at least two beta_offset sets, the configuration The information includes the beta_offset value in the beta_offset set.
  • the currently received beta_offset set corresponding to the first dynamic signaling is referred to as a first beta_offset set
  • the beta_offset group corresponding to the first dynamic signaling is referred to as a first beta_offset group.
  • the configuration information of the beta_offset set may be configured by the network-side device to the terminal, or may be agreed by a protocol.
  • the network side device may be configured through RRC signaling.
  • beta_offset set corresponding to the service of the service 1 e.g, URLLC
  • beta_offset set corresponding to the service 2 e.g, eMBB
  • the configuration information of the beta_offset set corresponding to service 1 is shown in Table 1:
  • the configuration information of the beta_offset set corresponding to service 2 is shown in Table 2:
  • service 1 and service 2 may be directly associated with the corresponding beta_offset set, or service 1 and service 2 may be replaced with the corresponding dynamic signaling 1 information and dynamic signaling 2 information, and the beta_offset set Association, dynamic signaling information refers to at least one of the foregoing information:
  • the beta_offset set corresponding to service 1 includes 4 beta_offset groups
  • the beta_offset set corresponding to service 2 includes 2 beta_offset groups.
  • Each beta_offset group includes three types of uplink control information (HARQ-ACK, CSI-part 1 and CSI-part 2) weight values. The three types of uplink control information are further divided into multiple weight values according to different loads.
  • the first beta_offset set used for uplink control information transmission and the first beta_offset set in the first beta_offset set may be indicated through dynamic signaling, for example, dynamic signaling indicates that the beta_offset corresponding to service 1 is used Set and use the third beta_offset group in the beta_offset set corresponding to service 1, the terminal can find the configuration information of the third beta_offset group from the above table 1 (30,10,1,1,1,1,1), According to the configuration information, the size of the transmission resource occupied by the uplink control information or the uplink data information is determined.
  • the following is an example to describe the method for determining the size of the transmission resources occupied by the uplink control information. Assuming that when the uplink shared channel and HARQ-ACK are transmitted in the PUSCH, the following formula can be used to determine the size of the transmission resources occupied by the HARQ-ACK:
  • Q ACK represents the number of HARQ-ACK bits
  • L represents the number of cyclic redundancy check (Cyclic Redundancy Check, CRC) bits
  • CRC Cyclic Redundancy Check
  • C UL-SCH represents the number of UL_SCH code blocks transmitted on PUSCH
  • K r represents the rth Code block size
  • the first beta_offset set corresponding to the first dynamic signaling and the first beta_offset group in the first beta_offset set can be determined, and according to the beta_offset of the first beta_offset group Value to determine the size of the uplink control information resource occupancy, so that the terminal adapts the size of the different uplink control information resource occupancy according to different services, to ensure that the physical layer transmission meets the different requirements of different services for their respective QoS.
  • FIG. 3 is a schematic flowchart of a resource configuration method according to an embodiment of the present disclosure.
  • the resource configuration method is applied to network-side devices, including:
  • Step 31 Send first dynamic signaling for determining the first beta_offset set and the first beta_offset group in the first beta_offset set, where each beta_offset set includes at least one beta_offset group,
  • Each of the beta_offset groups includes a beta_offset value of at least one type of uplink control information, where the beta_offset value represents a weight of the size of transmission resources occupied in the physical uplink shared channel.
  • the terminal receiving the first dynamic signaling can determine the first beta_offset set corresponding to the first dynamic signaling and the first beta_offset in the first beta_offset set Group, and determine the size of the uplink control information resource occupation according to the beta_offset value of the first beta_offset group, so that the size of the resource occupation of different uplink control information can be adapted according to different services, to ensure that the physical layer transmission meets different services. Different requirements of the respective QoS.
  • the first dynamic signaling may be DCI signaling.
  • the beta_offset sets corresponding to different dynamic signaling may be the same or different.
  • before sending the first dynamic signaling may further include: sending configuration information of at least two beta_offset sets, where the configuration information includes the beta_offset value in the beta_offset set.
  • the configuration information of at least two beta_offset sets may be sent through RRC signaling.
  • NR introduces a variety of physical uplink control channel (Physical Uplink Control Channel, PUCCH) structures, such as a short PUCCH structure that supports 1 to 2 symbol lengths, and a long PUCCH structure that supports 4-14 symbol lengths.
  • PUCCH Physical Uplink Control Channel
  • the design of LTE is expanded.
  • DFT-S-OFDM discrete Fourier transform spread spectrum orthogonal frequency division multiplexing multiple access technology scheme
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • format 0 and 2 belong to short PUCCH format
  • format 2, 3, 4 belong to long PUCCH format.
  • the network-side device can configure MaxCodeRate to limit the maximum code rate of the UCI transmitted on the PUCCH after encoding.
  • FIG. 4 is a schematic flowchart of a method for determining a resource according to another embodiment of the present disclosure.
  • the method for determining a resource applied to a terminal includes:
  • Step 41 Receive the first dynamic signaling
  • Step 42 Determine the first maxCodeRate according to the first dynamic signaling
  • the maxCodeRate is the maximum code rate after encoding the uplink control information transmitted on the PUCCH.
  • Step 43 Determine the size of the transmission resource occupied by the uplink control information according to the configuration information of the first maxCodeRate.
  • the first maxCodeRate corresponding to the first dynamic signaling can be determined, and according to the configuration information of the first maxCodeRate, the resource occupation size of the uplink control information is determined, so that the terminal can Different services adapt to the size of the resources occupied by different upstream control information, to ensure that the physical layer transmission meets the different requirements of different services for their respective QoS.
  • the first dynamic signaling may be DCI signaling.
  • the method further includes: acquiring a correspondence between dynamic signaling and maxCodeRate;
  • the determining the first maxCodeRate according to the first dynamic signaling includes: determining the first maxCodeRate corresponding to the first dynamic signaling according to the corresponding relationship.
  • the correspondence between the dynamic signaling and maxCodeRate may be configured by the network-side device to the terminal, or may be agreed by a protocol.
  • the maxCodeRate corresponding to different dynamic signaling may be the same or different.
  • the first dynamic signaling may indicate the first maxCodeRate in an explicit indication manner, or may indicate the first maxCodeRate in an implicit indication manner, for example, through the dynamic signaling itself
  • the attribute information or the implicit indication information carried indicates the first maxCodeRate.
  • the determining the first maxCodeRate according to the first dynamic signaling may include: using at least one of the following information of the first dynamic signaling to determine the First maxCodeRate:
  • DCI format information, identification information corresponding to DCI, control channel configuration information corresponding to DCI, modulation and coding strategy corresponding to DCI are self-attribute information of dynamic signaling, service priority information carried by DCI, DCI carried
  • the resource indication related information is implicit indication information carried by the first dynamic signaling.
  • the identification information corresponding to the DCI includes at least one of the following:
  • control channel configuration information corresponding to the DCI includes at least one of the following:
  • the search space corresponding to DCI is the search space corresponding to DCI.
  • the resource indication related information carried by the DCI includes at least one of the following:
  • Resource indication information carried by the DCI where the resource indication is used to indicate time-domain resources and/or frequency-domain resources for data or uplink control information transmission;
  • the method before determining the first maxCodeRate according to the first dynamic signaling, the method further includes: acquiring configuration information of at least two maxCodeRates.
  • the configuration information of maxCodeRate may be configured by the network-side device to the terminal, or may be agreed by a protocol.
  • the network side device may be configured through RRC signaling.
  • the PUCCH contains HARQ-ACK information of O ACK bits, Bit SR (Scheduling Request scheduling request), and O CRC bit CRC (Cyclic redundancy check, cyclic redundancy check).
  • PUCCH format 2 or PUCCH format 3 is used for transmission, the UE is PUCCH is transmitted on PRB, satisfy Not greater than the nrofPRBs parameter configured by higher layer signaling, and meets:
  • r maxCodeRate
  • PUCCH format is PUCCH format 2
  • PUCCH format 3 When the PUCCH format is PUCCH format 4 among them, Is the number of subcarriers per resource block.
  • Q m is a modulation and coding method.
  • FIG. 5 is a schematic flowchart of a resource configuration method according to another embodiment of the present disclosure.
  • the resource configuration method is applied to a network-side device, including:
  • Step 51 Send first dynamic signaling, where the first dynamic signaling is used to determine the first maxCodeRate.
  • the terminal receiving the first dynamic signaling can determine the first maxCodeRate corresponding to the dynamic signaling, and determine the uplink control information according to the configuration information of the first maxCodeRate The size of the resource occupation, so as to adapt the size of the resource occupation of different uplink control information according to different services, to ensure that the physical layer transmission meets the different needs of different services for their respective QoS.
  • the first dynamic signaling may be DCI signaling.
  • the first maxCodeRate corresponding to different dynamic signaling may be the same or different.
  • the method before sending the first dynamic signaling, the method further includes sending configuration information of at least two maxCodeRates.
  • the configuration information of at least two maxCodeRates may be sent through RRC signaling.
  • FIG. 6 is a schematic flowchart of a method for determining a resource according to another embodiment of the present disclosure.
  • the method for determining a resource is applied to a terminal, and includes:
  • Step 61 Determine the first position information of the resource transmitting the uplink control information
  • Step 62 Determine the first maxCodeRate according to the first position information
  • Step 63 Determine the size of the transmission resource occupied by the uplink control information according to the configuration information of the first maxCodeRate.
  • the first maxCodeRate corresponding to the first position information of the resource transmitting the uplink control information is determined, and the size of the resource occupied by the uplink control information is determined according to the configuration information of the first maxCodeRate, so that the terminal can Services adapt to the size of resources occupied by different upstream control information to ensure that the physical layer transmission meets the different requirements of different services for their respective QoS.
  • the location information of the resource transmitting the uplink control information may be dynamically configured by the network side device.
  • the method further includes: acquiring a correspondence between location information of a resource transmitting uplink control information and maxCodeRate;
  • the determining the first maxCodeRate according to the first position information includes: determining the first maxCodeRate corresponding to the first position information according to the corresponding relationship.
  • the correspondence between the location information of the resource transmitting the uplink control information and maxCodeRate may be configured by the network side device to the terminal, or may be agreed by a protocol.
  • the maxCodeRate corresponding to the location information of different resources transmitting uplink control information may be the same or different.
  • the location information of the resource that transmits uplink control information includes at least one of the following:
  • BWP used to transmit upstream control information
  • PUCCH resource set (PUCCH ResourceSet, PUCCH RESET) used for transmitting uplink control information
  • PUCCH resource (PUCCH Resource) used for transmitting uplink control information.
  • the above PUCCHResource and PUCCHResourceSet are message units (InformationElemenent, IE) defined in the 3GPP specification TS38.331.
  • PUCCH resource set is introduced into the NR system. After the RRC connection is established, in order to determine the PUCCH resource, up to 4 RESETs can be configured. In each RESET, you can configure a maximum of 4 or 8 resources (PUCCH Resource). When configuring 8 resources, an implicit PUCCH resource indication solution is required.
  • each resource in RESET is configured according to the parameter list in Table 4.
  • the terminal may determine which RESET is specifically used according to the size of the UCI payload.
  • the embodiments of the present disclosure also provide a terminal corresponding to the method for determining resources in the above embodiments, and a network side device corresponding to the method for configuring resources in the above embodiments, which will be described separately below.
  • an embodiment of the present disclosure also provides a terminal 80, including:
  • the receiving module 81 is configured to receive the first dynamic signaling
  • the first determining module 82 is configured to determine a first beta_offset set and a first beta_offset group in the first beta_offset set according to the first dynamic signaling, where each beta_offset set includes at least one beta_offset group, each The beta_offset group includes a beta_offset value of at least one type of uplink control information, where the beta_offset value represents the weight of the size of the transmission resource occupied by the uplink control information in the physical uplink shared channel;
  • the second determining module 83 is configured to determine the size of the transmission resource occupied by the uplink control information or the uplink data information according to the beta_offset value of the first beta_offset group.
  • the terminal 80 further includes:
  • the second acquiring module is configured to acquire configuration information of at least two beta_offset sets, where the configuration information includes the beta_offset value in the beta_offset set.
  • the first dynamic signaling includes first signaling and second signaling.
  • the terminal 80 further includes:
  • the first acquiring module is used to acquire the correspondence between the first signaling and the beta_offset set; and acquire the correspondence between the second signaling and the beta_offset group.
  • the first determining module 82 is configured to determine a first beta_offset set corresponding to the first signaling according to the correspondence, and determine a first beta_offset group corresponding to the second signaling.
  • the first determining module 82 is configured to determine the first beta_offset set using at least one of the following information of the first dynamic signaling:
  • the identification information corresponding to the DCI includes at least one of the following:
  • control channel configuration information corresponding to the DCI includes at least one of the following:
  • the search space corresponding to DCI is the search space corresponding to DCI.
  • the resource indication related information carried by the DCI includes at least one of the following:
  • Resource indication information carried by the DCI where the resource indication is used to indicate time-domain resources and/or frequency-domain resources for data or uplink control information transmission;
  • the pilot mapping type information carried in the DCI to indicate the transmission of data or uplink control information.
  • an embodiment of the present disclosure also provides a network side device 90, including:
  • the first sending module 91 is configured to send first dynamic signaling, and the first dynamic signaling is used to determine a first beta_offset set and a first beta_offset group in the first beta_offset set, where each beta_offset set includes At least one beta_offset group, each of the beta_offset groups includes a beta_offset value of at least one type of uplink control information, and the beta_offset value represents a weight of the size of transmission resources occupied in the physical uplink shared channel.
  • the network side device 90 further includes:
  • the second sending module is configured to send configuration information of at least two beta_offset sets, where the configuration information includes the beta_offset value in the beta_offset set.
  • an embodiment of the present disclosure also provides a terminal 100, including:
  • the receiving module 101 is configured to receive first dynamic signaling
  • the first determining module 102 is configured to determine the first maxCodeRate according to the first dynamic signaling
  • the second determining module 103 is configured to determine the size of the transmission resource occupied by the uplink control information according to the configuration information of the first maxCodeRate.
  • the terminal 100 further includes:
  • the first obtaining module is used to obtain the correspondence between dynamic signaling and maxCodeRate;
  • the first determining module 102 is configured to determine the first maxCodeRate corresponding to the first dynamic signaling according to the corresponding relationship.
  • the terminal 100 further includes:
  • the first determining module 102 is configured to determine the first maxCodeRate using at least one of the following information of the first dynamic signaling:
  • the identification information corresponding to the DCI includes at least one of the following:
  • control channel configuration information corresponding to the DCI includes at least one of the following:
  • the search space corresponding to DCI is the search space corresponding to DCI.
  • the resource indication related information carried by the DCI includes at least one of the following:
  • Resource indication information carried by the DCI where the resource indication is used to indicate time-domain resources and/or frequency-domain resources for data or uplink control information transmission;
  • the pilot mapping type information carried in the DCI to indicate the transmission of data or uplink control information.
  • an embodiment of the present disclosure also provides a network-side device 110, including:
  • the first sending module 111 is configured to send first dynamic signaling, and the first dynamic signaling is used to determine a first maxCodeRate.
  • the network-side device 110 further includes:
  • the second sending module is used to send at least two maxCodeRate configuration information.
  • an embodiment of the present disclosure also provides a terminal 120, including:
  • the first determining module 121 is used to determine the first position information of the resource transmitting the uplink control information
  • the second determining module 122 is configured to determine a first maxCodeRate according to the first position information
  • the third determining module 123 is configured to determine the size of the transmission resource occupied by the uplink control information according to the configuration information of the first maxCodeRate.
  • the terminal 120 further includes:
  • An obtaining module used to obtain the correspondence between the position information of the resource transmitting the uplink control information and maxCodeRate;
  • the second determining module 122 is configured to determine the first maxCodeRate corresponding to the first position information according to the corresponding relationship.
  • the location information of the resource transmitting uplink control information includes at least one of the following:
  • BWP used to transmit upstream control information
  • PUCCH resources used for transmission of uplink control information are PUCCH resources used for transmission of uplink control information.
  • FIG. 13 is a schematic structural diagram of a terminal according to another embodiment of the present disclosure.
  • the terminal 130 includes but is not limited to: a radio frequency unit 131, a network module 132, an audio output unit 133, an input unit 134, a sensor 135, and a display unit 136, user input unit 137, interface unit 138, memory 139, processor 1310, power supply 1311 and other components.
  • the terminal structure shown in FIG. 13 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than those illustrated, or combine certain components, or arrange different components.
  • the terminals include but are not limited to mobile phones, tablet computers, notebook computers, palmtop computers, vehicle-mounted terminals, wearable devices, pedometers, and the like.
  • the radio frequency unit 131 is used to receive the first dynamic signaling
  • the processor 1310 is configured to determine a first beta_offset set and a first beta_offset group in the first beta_offset set according to the first dynamic signaling, where each beta_offset set includes at least one beta_offset group, and each The beta_offset group includes a beta_offset value of at least one type of uplink control information, where the beta_offset value represents a weight of the size of transmission resources occupied by the uplink control information in the physical uplink shared channel; determined according to the beta_offset value of the first beta_offset group The size of transmission resources occupied by uplink control information or uplink data information.
  • the radio frequency unit 131 is used to receive the first dynamic signaling
  • the processor 1310 is configured to determine the first maxCodeRate according to the first dynamic signaling; and determine the size of the transmission resource occupied by the uplink control information according to the configuration information of the first maxCodeRate.
  • the processor 1310 is configured to determine the first location information of the resource that transmits the uplink control information; determine the first maxCodeRate according to the first location information; and determine the transmission resource occupied by the uplink control information according to the configuration information of the first maxCodeRate the size of.
  • the radio frequency unit 131 may be used to receive and send signals during sending and receiving information or during a call. Specifically, after receiving the downlink data from the base station, it is processed by the processor 1310; The uplink data is sent to the base station.
  • the radio frequency unit 131 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 131 can also communicate with the network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 132, such as helping users to send and receive e-mail, browse web pages, and access streaming media.
  • the audio output unit 133 may convert the audio data received by the radio frequency unit 131 or the network module 132 or stored in the memory 139 into an audio signal and output as sound. Moreover, the audio output unit 133 may also provide audio output related to a specific function performed by the terminal 130 (eg, call signal reception sound, message reception sound, etc.).
  • the audio output unit 133 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 134 is used to receive audio or video signals.
  • the input unit 134 may include a graphics processor (Graphics Processing Unit, GPU) 1341 and a microphone 1342, and the graphics processor 1341 may process a still picture or a video image obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode The data is processed.
  • the processed image frame may be displayed on the display unit 136.
  • the image frame processed by the graphics processor 1341 may be stored in the memory 139 (or other storage medium) or sent via the radio frequency unit 131 or the network module 132.
  • the microphone 1342 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to the mobile communication base station via the radio frequency unit 131 in the case of the telephone call mode and output.
  • the terminal 130 further includes at least one sensor 135, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 1361 according to the brightness of the ambient light, and the proximity sensor can close the display panel 1361 and/or when the terminal 130 moves to the ear Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when at rest, and can be used to recognize the posture of the terminal (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; sensor 135 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared Sensors, etc., will not be repeated here.
  • the display unit 136 is used to display information input by the user or information provided to the user.
  • the display unit 136 may include a display panel 1361, and the display panel 1361 may be configured in the form of a liquid crystal display (Liquid Crystal) (LCD), an organic light emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal
  • OLED Organic Light-Emitting Diode
  • the user input unit 137 may be used to receive input numeric or character information, and generate key signal input related to user settings and function control of the terminal.
  • the user input unit 137 includes a touch panel 1371 and other input devices 1372.
  • the touch panel 1371 also known as a touch screen, can collect user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc. on the touch panel 1371 or near the touch panel 1371. operating).
  • the touch panel 1371 may include a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates, and then sends To the processor 1310, the command sent from the processor 1310 is received and executed.
  • the touch panel 1371 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the user input unit 137 may also include other input devices 1372.
  • other input devices 1372 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the touch panel 1371 can be overlaid on the display panel 1361, and when the touch panel 1371 detects a touch operation on or near it, it is transmitted to the processor 1310 to determine the type of touch event, and then the processor 1310 according to the touch The type of event provides corresponding visual output on the display panel 1361.
  • the touch panel 1371 and the display panel 1361 are implemented as two independent components to realize the input and output functions of the terminal, in some embodiments, the touch panel 1371 and the display panel 1361 may be integrated to The input and output functions of the terminal are implemented, which is not limited here.
  • the interface unit 138 is an interface for connecting an external device to the terminal 130.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 138 may be used to receive input (eg, data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 130 or may be used between the terminal 130 and the external device transfer data.
  • the memory 139 can be used to store software programs and various data.
  • the memory 139 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, application programs required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store Data created by the use of mobile phones (such as audio data, phone books, etc.), etc.
  • the memory 139 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 1310 is the control center of the terminal, and uses various interfaces and lines to connect the various parts of the entire terminal, executes or executes the software programs and/or modules stored in the memory 139, and calls the data stored in the memory 139 to execute Various functions and processing data of the terminal, so as to monitor the terminal as a whole.
  • the processor 1310 may include one or more processing units; optionally, the processor 1310 may integrate an application processor and a modem processor, where the application processor mainly processes an operating system, a user interface, and application programs, etc.
  • the modulation processor mainly handles wireless communication. It can be understood that, the foregoing modem processor may not be integrated into the processor 1310.
  • the terminal 130 may further include a power supply 1311 (such as a battery) that supplies power to various components.
  • a power supply 1311 (such as a battery) that supplies power to various components.
  • the power supply 1311 may be logically connected to the processor 1310 through a power management system, thereby managing charging, discharging, and power consumption management through the power management system And other functions.
  • the terminal 130 includes some function modules not shown, which will not be repeated here.
  • the present disclosure also provides a terminal including: a processor and a memory.
  • the terminal further includes: a computer program stored on the memory and executable on the processor. When the computer program is executed by the processor, the following steps are implemented:
  • each beta_offset set includes at least one beta_offset group
  • each of the beta_offset groups includes at least one The beta_offset value of the type of uplink control information, where the beta_offset value represents the weight of the size of the transmission resource occupied by the uplink control information in the physical uplink shared channel;
  • the size of the transmission resource occupied by the uplink control information or the uplink data information is determined according to the beta_offset value of the first beta_offset group.
  • the method further includes:
  • configuration information of at least two beta_offset sets where the configuration information includes beta_offset values in the beta_offset set.
  • the first dynamic signaling includes first signaling and second signaling
  • the method further includes:
  • the determining the first beta_offset set and the first beta_offset group in the first beta_offset set according to the first dynamic signaling includes:
  • a first beta_offset set corresponding to the first signaling is determined, and a first beta_offset group corresponding to the second signaling is determined.
  • the determining the first beta_offset set according to the first dynamic signaling includes:
  • the first beta_offset set is determined using at least one of the following information of the first dynamic signaling:
  • the identification information corresponding to the DCI includes at least one of the following:
  • control channel configuration information corresponding to the DCI includes at least one of the following:
  • the search space corresponding to DCI is the search space corresponding to DCI.
  • the resource indication related information carried by the DCI includes at least one of the following:
  • Resource indication information carried by the DCI where the resource indication is used to indicate time-domain resources and/or frequency-domain resources for data or uplink control information transmission;
  • the pilot mapping type information carried in the DCI to indicate the transmission of data or uplink control information.
  • An embodiment of the present disclosure also provides a network-side device.
  • the network-side device includes: a processor and a memory.
  • the network-side device further includes: a computer program stored on the memory and executable on the processor, and the computer program is executed by the processor to implement the following steps:
  • the first dynamic signaling is used to determine a first beta_offset set and a first beta_offset group in the first beta_offset set, wherein each beta_offset set includes at least one beta_offset group, each The beta_offset group includes a beta_offset value of at least one type of uplink control information, where the beta_offset value represents a weight of the size of transmission resources occupied in the physical uplink shared channel.
  • the method further includes sending configuration information of at least two beta_offset sets, where the configuration information includes the beta_offset value in the beta_offset set.
  • An embodiment of the present disclosure also provides a terminal.
  • the terminal includes a processor and a memory.
  • the terminal further includes: a computer program stored on the memory and executable on the processor. When the computer program is executed by the processor, the following steps are implemented:
  • the size of the transmission resource occupied by the uplink control information is determined according to the configuration information of the first maxCodeRate.
  • the method further includes:
  • the determining the first maxCodeRate according to the first dynamic signaling includes:
  • the first maxCodeRate corresponding to the first dynamic signaling is determined.
  • the method further includes:
  • the determining the first maxCodeRate according to the first dynamic signaling includes:
  • the first maxCodeRate is determined using at least one of the following information of the first dynamic signaling:
  • the identification information corresponding to the DCI includes at least one of the following:
  • control channel configuration information corresponding to the DCI includes at least one of the following:
  • the search space corresponding to DCI is the search space corresponding to DCI.
  • the resource indication related information carried by the DCI includes at least one of the following:
  • Resource indication information carried by the DCI where the resource indication is used to indicate time-domain resources and/or frequency-domain resources for data or uplink control information transmission;
  • the pilot mapping type information carried in the DCI to indicate the transmission of data or uplink control information.
  • An embodiment of the present disclosure also provides a network-side device.
  • the network-side device includes: a processor and a memory.
  • the network-side device further includes: a computer program stored on the memory and executable on the processor, and the computer program is executed by the processor to implement the following steps:
  • the method further includes:
  • An embodiment of the present disclosure also provides a terminal.
  • the terminal includes a processor and a memory.
  • the terminal further includes: a computer program stored on the memory and executable on the processor. When the computer program is executed by the processor, the following steps are implemented:
  • the size of the transmission resource occupied by the uplink control information is determined according to the configuration information of the first maxCodeRate.
  • the method further includes:
  • the determining the first maxCodeRate according to the first location information includes:
  • the first maxCodeRate corresponding to the first position information is determined.
  • the location information of the resource transmitting uplink control information includes at least one of the following:
  • BWP used to transmit upstream control information
  • PUCCH resources used for transmission of uplink control information are PUCCH resources used for transmission of uplink control information.
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program on the computer-readable storage medium.
  • the computer program is executed by a processor, each of the embodiments of the resource determination method or resource configuration method embodiment described above is implemented. Process, and can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种资源的确定方法、资源的配置方法、终端和网络侧设备,该资源的确定方法包括:根据接收到的动态信令确定beta_offset集合、beta_offset集合中的beta_offset组;或者,根据接收到的动态信令确定maxCodeRate;或者,根据传输上行控制信息的资源的位置信息确定maxCodeRate,从而确定上行控制信息或者上行数据信息占用的传输资源的大小。

Description

资源的确定方法、资源的配置方法、终端和网络侧设备
相关申请的交叉引用
本申请主张在2019年1月4日在中国提交的中国专利申请号No.201910009157.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及无线通信技术领域,尤其涉及一种资源的确定方法、资源的配置方法、终端和网络侧设备。
背景技术
与以往的移动通信系统相比,未来5G移动通信系统需要适应更加多样化的场景和业务需求。5G的主要场景包括增强型移动宽带(enhanced Mobile BroadBand,eMBB),超可靠和低时延通信(Ultra-Reliable and Low Latency Communications,URLLC)和海量机器类通信(massive Machine-Type Communication,mMTC),这些场景对系统提出了高可靠,低时延,大带宽,广覆盖等要求。这些不同的业务有不同的服务质量(Quality of Service,QoS)的要求,例如URLLC支持低时延、高可靠业务。为了达到更高的可靠性,需要使用更低的码率传输数据。eMBB业务支持高吞吐量的要求,但是对于时延和可靠性不如URLLC那么敏感。
为了满足不同业务的不同QoS要求,需要一种机制来根据不同的业务适配不同的上行控制信息(Uplink Control Information,UCI)的资源占用的大小。
发明内容
本公开实施例提供一种资源的确定方法、资源的配置方法、终端和网络侧设备,用于解决如何根据不同的业务来适配不同的UCI的资源占用的大小的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种资源的确定方法,应用于终端,所 述方法包括:
接收第一动态信令;
根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示上行控制信息在物理上行共享信道中占用的传输资源的大小的权重;
根据所述第一beta_offset组的beta_offset值,确定上行控制信息或者上行数据信息占用的传输资源的大小。
第二方面,本公开实施例提供了一种资源的配置方法,应用于网络侧设备,所述方法包括:
发送第一动态信令,所述第一动态信令用于确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示在物理上行共享信道中占用的传输资源的大小的权重。
第三方面,本公开实施例提供了一种资源的确定方法,应用于终端,所述方法包括:
接收第一动态信令;
根据所述第一动态信令,确定第一maxCodeRate;
根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
第四方面,本公开实施例提供了一种资源的配置方法,应用于网络侧设备,所述方法包括:
发送第一动态信令,所述第一动态信令用于确定第一maxCodeRate。
第五方面,本公开实施例提供了一种资源的确定方法,应用于终端,所述方法包括:
确定传输上行控制信息的资源的第一位置信息;
根据所述第一位置信息,确定第一maxCodeRate;
根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
第六方面,本公开实施例提供了一种终端,包括:
接收模块,用于接收第一动态信令;
接收模块,用于接收第一动态信令;
第一确定模块,用于根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示上行控制信息在物理上行共享信道中占用的传输资源的大小的权重;
第二确定模块,用于根据所述第一beta_offset组的beta_offset值,确定上行控制信息或者上行数据信息占用的传输资源的大小。
第七方面,本公开实施例提供了一种网络侧设备,包括:
第一发送模块,用于发送第一动态信令,所述第一动态信令用于确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示在物理上行共享信道中占用的传输资源的大小的权重。
第八方面,本公开实施例提供了一种终端,包括:
接收模块,用于接收第一动态信令;
第一确定模块,用于根据所述第一动态信令,确定第一maxCodeRate;
第二确定模块,用于根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
第九方面,本公开实施例提供了一种网络侧设备,包括:
第一发送模块,用于发送第一动态信令,所述第一动态信令用于确定第一maxCodeRate。
第十方面,本公开实施例提供了一种终端,包括:
第一确定模块,用于确定传输上行控制信息的资源的第一位置信息;
第二确定模块,用于根据所述第一位置信息,确定第一maxCodeRate;
第三确定模块,用于根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
第十一方面,本公开实施例提供了一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述资源的确定方法的步骤。
第十二方面,本公开实施例提供了一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现申述资源的配置方法的步骤。
第十三方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现上述资源的确定方法的步骤;或者所述计算机程序被处理器执行时实现上述资源的配置方法的步骤。
在本公开实施例中,通过网络侧设备的动态指示,终端能够在不同业务下使用不同的beta_offset或者maxCodeRate确定上行控制信息的资源占用的大小,保证物理层传输满足不同业务对于各自的QoS的不同的需求。
附图说明
通过阅读下文可选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出可选实施方式的目的,而并不认为是对本公开的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本公开实施例提供的一种无线通信系统的架构示意图;
图2为本公开一实施例的资源的确定方法的流程示意图;
图3为本公开一实施例的资源的配置方法的流程示意图;
图4为本公开另一实施例的资源的确定方法的流程示意图;
图5为本公开另一实施例的资源的配置方法的流程示意图;
图6为本公开又一实施例的资源的确定方法的流程示意图;
图7为根据UCI载荷的大小确定PUCCH RESET的方法示意图;
图8为本公开一实施例的终端的结构示意图;
图9为本公开一实施例的网络侧设备的结构示意图;
图10为本公开另一实施例的终端的结构示意图;
图11为本公开另一实施例的网络侧设备的结构示意图;
图12为本公开又一实施例的终端的结构示意图;
图13为本公开再一实施例的终端的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,说明书以及权利要求中使用“和/或”表示所连接对象的至少其中之一,例如A和/或B,表示包含单独A,单独B,以及A和B都存在三种情况。
在本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面结合附图介绍本公开的实施例。本公开实施例提供的资源的确定方法、资源的配置方法、终端和网络侧设备可以应用于无线通信系统中。该无线通信系统可以采用5G系统,或者演进型长期演进(Evolved Long Term Evolution,eLTE)系统,或者后续演进通信系统。
参考图1,为本公开实施例提供的一种无线通信系统的架构示意图。如图1所示,该无线通信系统可以包括:网络侧设备11和终端12,终端12可以与网络侧设备11连接。在实际应用中上述各个设备之间的连接可以为无线连接,为了方便直观地表示各个设备之间的连接关系,图1中采用实线示意。
需要说明的是,上述通信系统可以包括多个终端12,网络侧设备11和可以与多个终端12通信(传输信令或传输数据)。
本公开实施例提供的网络侧设备11可以为基站,该基站可以为通常所用的基站,也可以为演进型基站(evolved node base station,eNB),还可以为5G系统中的网络侧设备(例如下一代基站(next generation node base station,gNB)或发送和接收点(transmission and reception point,TRP))或者小区cell等设备。或者后续演进通信系统中的网络侧设备。然用词不够成限制。
本公开实施例提供的终端12可以为手机、平板电脑、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本或者个人数字助理(Personal Digital Assistant,PDA)等。所属领域技术人员可以理解,用词并不构成限制。
在通信系统中,终端通过接收网络设备发送的上行授权(Uplink Grant,UL Grant)可以获得用于上行共享信道(Uplink Share Channel,UL_SCH)数据传输所需要的信息,包括分配的物理资源的数目,传输块(Transport Blocks,TBS)的比特数大小,调制方式(Modulation)等的信息。另外,允许上行控制信息和UL_SCH在同一个时隙中通过物理上行共享信道(Physical Uplink Shared Channel,PUSCH)同时传输,并且通过UCI和UL_SCH之间的权重偏移值(beta_offset)来确定UCI和UL_SCH分别分配多少的资源。具体的实现方法可以为,在DCI中引入了权重偏移值指示(beta offset indicator)字段,用于指示UCI和UL_SCH等之间的资源利用的权重。
然而,不论是哪种类型的业务,目前均采用相同的beta_offset,无法满足不同业务对于各自的QoS的不同的需求。
为解决上述问题,请参考图2,图2为本公开一实施例的资源的确定方法的流程示意图,该资源的确定方法应用于终端,包括:
步骤21:接收第一动态信令;
步骤22:根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示上行控制信息在物理上行共 享信道中占用的传输资源的大小的权重;
所述至少一种类型的上行控制信息可以包括以下至少一项:混合自动重传请求应答(Hybrid Automatic Repeat reQuest,HARQ-ACK)、第一部分信道状态指示(CSI part 1)和第二部分信道状态指示(CSI part 2)。
另外,根据所述至少一种类型的上行控制信息载荷(payload)的大小,可以进一步的分成多个权重值。例如,每一所述beta_offset组包括HARQ-ACK≤2bit,HARQ-ACK≤11bit,HARQ-ACK>11bit,CSI-part 1≤11bit,CSI-part 1>11bit,CSI-part 2≤11bit,CSI-part 2>11bit对应的权重值。
其中上述X<n bit的含义是承载X的载荷(payload)的大小小于n比特。X为HARQ-ACK、CSI-part 1或CSI-part 2。
步骤23:根据所述第一beta_offset组的beta_offset值,确定上行控制信息或者上行数据信息占用的传输资源的大小。
本公开实施例中,通过接收第一动态信令,能够确定与第一动态信令对应的第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,并根据第一beta_offset组的beta_offset值,确定上行控制信息的资源占用的大小,使得终端根据不同的业务来适配不同的上行控制信息的资源占用的大小,保证物理层传输满足不同业务对于各自的QoS的不同的需求。
本公开实施例中,将当前接收到的动态信令称为第一动态信令。
本公开实施例中,所述第一动态信令可以是DCI信令。
在本公开的一些实施例中,所述第一动态信令可以是两条动态信令,包括第一信令和第二信令。
所述第一信令和第二信令均为动态的信令。
所述第一信令和第二信令可以是同时下发的信令,也可以是不同时下发的信令。
当然,在本公开的另外一些实施例中,所述第一动态信令也可以是一条动态信令。
本公开实施例中,可选的,所述根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组之前还包括:获取动态信令与beta_offset集合以及beta_offset集合中的beta_offset组 的对应关系。
本公开实施例中,当所述动态信令是一条信令时,所述对应关系为所述动态信令与beta_offset集合以及beta_offset集合中的beta_offset组的对应关系。
当所述动态信令包括第一信令和第二信令时,所述对应关系包括:所述第一信令与beta_offset集合的对应关系,和,所述第二信令与beta_offset组的对应关系。
即所述根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组之前还包括:
获取第一信令与beta_offset集合的对应关系;
获取第二信令与beta_offset组的对应关系。
所述根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组包括:
根据所述对应关系,确定与所述第一信令对应的第一beta_offset集合,确定与所述第二信令对应的第一beta_offset组。
所述第一动态信令与beta_offset集合以及beta_offset集合中的beta_offset组的对应关系,可以由网络侧设备配置给所述终端,也可以由协议约定。
本公开实施例中,不同的动态信令对应的beta_offset集合可以相同,也可以不同。
本公开的一些实施例中,所述第一动态信令可以采用显式指示方式指示所述第一beta_offset集合,即可以携带用于显式指示第一beta_offset集合的第一显式指示信息。举例来说,假设配置有两个beta_offset集合,第一显式指示信息可以采用1bit指示beta_offset集合,例如,第一显式指示信息为0表示第一个beta_offset集合,第一显式指示信息为1表示第二个beta_offset集合。
本公开的另外一些实施例中,所述第一动态信令也可以隐式指示方式指示第一beta_offset集合,例如通过动态信令的自身属性信息或者携带的隐式指示信息,指示第一beta_offset集合。假设所述第一动态信令为DCI信令,所述根据所述第一动态信令,确定第一beta_offset集合可以包括:采用所述 第一动态信令的以下信息中的至少一项确定所述第一beta_offset集合:
DCI格式信息;
DCI所对应的标识信息;
DCI所对应的控制信道配置信息;
DCI携带的业务优先级信息;
DCI携带的资源指示相关信息;
DCI所对应的调制与编码策略。
其中,DCI格式信息、DCI所对应的标识信息、DCI所对应的控制信道配置信息、DCI所对应的调制与编码策略为动态信令的自身属性信息,DCI携带的业务优先级信息、DCI携带的资源指示相关信息为动态信令携带的隐式指示信息。
进一步的,可以采用所述第一信令的以下信息中的至少一项确定所述第一beta_offset集合:
DCI格式信息;
DCI所对应的标识信息;
DCI所对应的控制信道配置信息;
DCI携带的业务优先级信息;
DCI携带的资源指示相关信息;
DCI所对应的调制与编码策略。
可选的,所述DCI对应的标识信息包括以下至少一项:
DCI所对应的无线网络临时标识(即RNTI);
DCI所对应的加扰信息。
可选的,所述DCI所对应的控制信道配置信息包括以下至少一项:
DCI所对应的控制资源集(CORESET);
DCI所对应的搜索空间(Search Space)。
可选的,所述DCI携带的资源指示相关信息包括以下至少一项:
DCI携带的资源指示信息,所述资源指示用于指示数据或者上行控制信息传输的时域资源和/或频域资源;
DCI中携带的用于指示数据或者上行控制信息传输的导频映射类型信息 (RS mapping type)。
在本公开的一些实施例中,所述第一动态信令还可以显示指示第一beta_offset集合中的第一beta_offset组,即携带用于显式指示第一beta_offset集合中的第一beta_offset组的第二显式指示信息。举例来说,假设第一beta_offset集合包括四个beta_offset组,第二显式指示信息可以采用2bit指示这四个beta_offset组,例如,第二显式指示信息为00表示第一beta_offset集合中的第一个beta_offset组,第二显式指示信息为01表示第一beta_offset集合中的第二个beta_offset组,第二显式指示信息为10表示第一beta_offset集合中的第三个beta_offset组,第二显式指示信息为11表示第一beta_offset集合中的第四个beta_offset组。
本公开实施例中,所述根据第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组之前还包括:获取至少两个beta_offset集合的配置信息,所述配置信息中包括所述beta_offset集合中的beta_offset值。
本公开实施例中,将当前接收到的第一动态信令对应的beta_offset集合称为第一beta_offset集合,第一动态信令对应的beta_offset组称为第一beta_offset组。
所述beta_offset集合的配置信息可以由网络侧设备配置给所述终端,也可以由协议约定。
所述beta_offset集合的配置信息由网络侧设备配置时,网络侧设备可以通过RRC信令配置。
下面举例对本公开实施例的资源的确定方法进行说明。
假设配置有两个beta_offset集合,其中,一个beta_offset集合为业务1(例如URLLC)业务对应的beta_offset集合,一个beta_offset集合为业务2(例如eMBB)对应的beta_offset集合。
业务1对应的beta_offset集合的配置信息如表1所示:
表1
Figure PCTCN2019123610-appb-000001
Figure PCTCN2019123610-appb-000002
业务2对应的beta_offset集合的配置信息如表2所示:
表2
Figure PCTCN2019123610-appb-000003
本公开实施例中,可以采用业务1和业务2直接与对应的beta_offset集合关联,也可以将业务1和业务2替代为对应的动态信令1的信息和动态信令2的信息,与beta_offset集合关联,动态信令的信息是指前述的信息中的至少一项:
DCI格式信息;
DCI所对应的标识信息;
DCI所对应的控制信道配置信息;
DCI携带的业务优先级信息;
DCI携带的资源指示相关信息;
DCI所对应的调制与编码策略。
从表1和表2可以看出,业务1对应的beta_offset集合包括4个beta_offset组,业务2对应的beta_offset集合包括2个beta_offset组。每一beta_offset组中包括3种类型上行控制信息(HARQ-ACK、CSI-part 1和CSI-part 2)的权重值。该3种类型上行控制信息又进一步根据载荷不同,分成多个权重值。
本公开实施例中,可以通过动态信令,指示上行控制信息传输所使用的 第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,例如,动态信令指示使用业务1对应的beta_offset集合以及使用业务1对应的beta_offset集合中的第三个beta_offset组,终端可以从上述表1中找出第三个beta_offset组的配置信息(30,10,1,1,1,1,1),并根据该配置信息,确定上行控制信息或者上行数据信息占用的传输资源的大小。
下面举例对上行控制信息占用的传输资源的大小的确定方法进行说明,假设当上行共享信道和HARQ-ACK在PUSCH中传输时,可以采用下述公式确定HARQ-ACK占用的传输资源的大小:
Figure PCTCN2019123610-appb-000004
其中,Q ACK表示HARQ-ACK的比特数目;L表示循环冗余校验(Cyclic Redundancy Check,CRC)比特数目;
Figure PCTCN2019123610-appb-000005
表示PUSCH传输的带宽,以子载波数目表示;
Figure PCTCN2019123610-appb-000006
表示用于PUSCH传输的符号数目,去除用于调制解调信号(Demodulation Reference Signal,DMRS)传输的符号数目;C UL-SCH表示在PUSCH上传输的UL_SCH的码块数目;K r表示第r个码块的大小;
Figure PCTCN2019123610-appb-000007
表示PUSCH中的符号数目;
Figure PCTCN2019123610-appb-000008
表示集合
Figure PCTCN2019123610-appb-000009
中的元素数目,这里
Figure PCTCN2019123610-appb-000010
是第l个符号中的可用于UCI传输的资源的数目,l=0,1,2...。
本公开实施例中,通过接收第一动态信令,能够确定与第一动态信令对应的第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,并根据第一beta_offset组的beta_offset值,确定上行控制信息的资源占用的大小,使得终端根据不同的业务来适配不同的上行控制信息的资源占用的大小,保证物理层传输满足不同业务对于各自的QoS的不同的需求。
请参考图3,图3为本公开一实施例的资源的配置方法的流程示意图,该资源的配置方法应用于网络侧设备,包括:
步骤31:发送第一动态信令,所述第一动态信令用于确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少 一种类型的上行控制信息的beta_offset值,所述beta_offset值表示在物理上行共享信道中占用的传输资源的大小的权重。
本公开实施例中,通过发送第一动态信令,使接收到第一动态信令的终端能够确定与第一动态信令对应的第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,并根据第一beta_offset组的beta_offset值,确定上行控制信息的资源占用的大小,从而可以根据不同的业务来适配不同的上行控制信息的资源占用的大小,保证物理层传输满足不同业务对于各自的QoS的不同的需求。
本公开实施例中,所述第一动态信令可以为DCI信令。
本公开实施例中,不同的动态信令对应的beta_offset集合可以相同,也可以不同。
可选的,所述发送第一动态信令之前还可以包括:发送至少两个beta_offset集合的配置信息,所述配置信息中包括所述beta_offset集合中的beta_offset值。
本公开实施例中,可以通过RRC信令发送至少两个beta_offset集合的配置信息。
NR引入了多种物理上行控制信道(Physical Uplink Control Channel,PUCCH)的结构,如支持1到2个符号长度的短PUCCH结构,和支持4-14个符号长度的长PUCCH的结构。在具体支持的波形上,扩展了LTE的设计,除了支持LTE中有的DFT-S-OFDM(离散傅里叶变换扩频的正交频分复用多址接入技术方案)以外,为了保持上下行波形的对称性和一致性,额外支持了CP-OFDM(循环前缀-正交频分复用)波形。
预计NR支持的PUCCH的格式以及相应的特征如表3所示:
表3
Figure PCTCN2019123610-appb-000011
Figure PCTCN2019123610-appb-000012
其中,format 0和2属于短PUCCH格式,format 2,3,4属于长PUCCH格式。
对于PUCCH format2,3,4(payload大于2bit的情况),网络侧设备可以通过配置MaxCodeRate限定在该PUCCH上面传输的UCI的编码后的最大码率。
然而,目前不论是哪种类型的业务,均采用相同的MaxCodeRate,无法满足不同业务对于各自的QoS的不同的需求。
为解决上述问题,请参考图4,图4为本公开另一实施例的资源的确定方法的流程示意图,该资源的确定方法应用于终端,包括:
步骤41:接收第一动态信令;
步骤42:根据所述第一动态信令,确定第一maxCodeRate;
所述maxCodeRate为PUCCH上传输的上行控制信息编码后的最大码率。
步骤43:根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
本公开实施例中,通过第一动态信令,能够确定与第一动态信令对应的第一maxCodeRate,并根据第一maxCodeRate的配置信息,确定上行控制信息的资源占用的大小,使得终端能够根据不同的业务来适配不同的上行控制信息的资源占用的大小,保证物理层传输满足不同业务对于各自的QoS的不同的需求。
本公开实施例中,所述第一动态信令可以是DCI信令。
本公开实施例中,可选的,所述根据第一动态信令,确定第一maxCodeRate之前还包括:获取动态信令与maxCodeRate的对应关系;
所述根据第一动态信令,确定第一maxCodeRate包括:根据所述对应关系,确定与第一动态信令对应的第一maxCodeRate。
所述动态信令与maxCodeRate的对应关系,可以由网络侧设备配置给所述终端,也可以由协议约定。
本公开实施例中,不同的动态信令对应的maxCodeRate可以相同,也可 以不同。
本公开的一些实施例中,所述第一动态信令可以采用显式指示方式指示所述第一maxCodeRate,也可以采用隐式指示方式指示所述第一maxCodeRate,例如通过该动态信令的自身属性信息或者携带的隐式指示信息,指示第一maxCodeRate。
假设所述第一动态信令为DCI信令,所述根据所述第一动态信令,确定第一maxCodeRate可以包括:采用所述第一动态信令的以下信息中的至少一项确定所述第一maxCodeRate:
DCI格式信息;
DCI所对应的标识信息;
DCI所对应的控制信道配置信息;
DCI携带的业务优先级信息;
DCI携带的资源指示相关信息;
DCI所对应的调制与编码策略。
其中,DCI格式信息、DCI所对应的标识信息、DCI所对应的控制信道配置信息、DCI所对应的调制与编码策略为动态信令的自身属性信息,DCI携带的业务优先级信息、DCI携带的资源指示相关信息为所述第一动态信令携带的隐式指示信息。
可选的,所述DCI对应的标识信息包括以下至少一项:
DCI所对应的无线网络临时标识;
DCI所对应的加扰信息。
可选的,所述DCI所对应的控制信道配置信息包括以下至少一项:
DCI所对应的控制资源集;
DCI所对应的搜索空间。
可选的,所述DCI携带的资源指示相关信息包括以下至少一项:
DCI携带的资源指示信息,所述资源指示用于指示数据或者上行控制信息传输的时域资源和/或频域资源;
DCI中携带的用于指示数据或者上行控制信息传输的导频映射类型信息。
本公开实施例中,所述根据所述第一动态信令,确定第一maxCodeRate 之前还包括:获取至少两个maxCodeRate的配置信息。
所述maxCodeRate的配置信息可以由网络侧设备配置给所述终端,也可以由协议约定。
所述maxCodeRate的配置信息由网络侧设备配置时,网络侧设备可以通过RRC信令配置。
对于如何根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小,下面举例进行说明。
如果UE要传输一个PUCCH,该PUCCH包含O ACK比特HARQ-ACK信息,
Figure PCTCN2019123610-appb-000013
比特SR(Scheduling Request调度请求),and O CRC比特CRC(Cyclic redundancy check,循环冗余校验)。假设使用PUCCH format 2或者PUCCH format 3传输,UE在
Figure PCTCN2019123610-appb-000014
PRB上传输PUCCH,满足
Figure PCTCN2019123610-appb-000015
不大于高层信令配置的nrofPRBs参数,并且满足:
Figure PCTCN2019123610-appb-000016
Figure PCTCN2019123610-appb-000017
其中,r是maxCodeRate;
PUCCH格式是PUCCH format 2时,
Figure PCTCN2019123610-appb-000018
PUCCH格式是PUCCH format 3时
Figure PCTCN2019123610-appb-000019
PUCCH格式是PUCCH format 4时
Figure PCTCN2019123610-appb-000020
其中,
Figure PCTCN2019123610-appb-000021
是每个资源块的子载波数目。
PUCCH格式是PUCCH format 2时,
Figure PCTCN2019123610-appb-000022
等于PUCCH符号数
Figure PCTCN2019123610-appb-000023
PUCCH格式是PUCCH format 3时,
Figure PCTCN2019123610-appb-000024
等于PUCCH符号数
Figure PCTCN2019123610-appb-000025
for PUCCH format 3,PUCCH格式是PUCCH format 4时,
Figure PCTCN2019123610-appb-000026
等于PUCCH符号数
Figure PCTCN2019123610-appb-000027
Q m是调制编码方式。
请参考图5,图5为本公开另一实施例的资源的配置方法的流程示意图,该资源的配置方法应用于网络侧设备,包括:
步骤51:发送第一动态信令,所述第一动态信令用于确定第一maxCodeRate。
本公开实施例中,通过发送第一动态信令,使接收到第一动态信令的终端能够确定与动态信令对应的第一maxCodeRate,并根据第一maxCodeRate 的配置信息,确定上行控制信息的资源占用的大小,从而根据不同的业务来适配不同的上行控制信息的资源占用的大小,保证物理层传输满足不同业务对于各自的QoS的不同的需求。
本公开实施例中,所述第一动态信令可以为DCI信令。
本公开实施例中,不同的动态信令对应的第一maxCodeRate可以相同,也可以不同。
可选的,所述发送第一动态信令之前还包括:发送至少两个maxCodeRate的配置信息。
本公开实施例中,可以通过RRC信令发送至少两个maxCodeRate的配置信息。
请参考图6,图6为本公开又一实施例的资源的确定方法的流程示意图,该资源的确定方法应用于终端,包括:
步骤61:确定传输上行控制信息的资源的第一位置信息;
步骤62:根据所述第一位置信息,确定第一maxCodeRate;
步骤63:根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
本公开实施例中,确定与传输上行控制信息的资源的第一位置信息对应的第一maxCodeRate,并根据第一maxCodeRate的配置信息,确定上行控制信息的资源占用的大小,使得终端能够根据不同的业务来适配不同的上行控制信息的资源占用的大小,保证物理层传输满足不同业务对于各自的QoS的不同的需求。
本公开实施例中,所述传输上行控制信息的资源的位置信息可以由网络侧设备动态配置。
本公开实施例中,可选的,所述根据所述第一位置信息,确定第一maxCodeRate之前还包括:获取传输上行控制信息的资源的位置信息与maxCodeRate的对应关系;
所述根据所述第一位置信息,确定第一maxCodeRate包括:根据所述对应关系,确定与第一位置信息对应的第一maxCodeRate。
所述传输上行控制信息的资源的位置信息与maxCodeRate的对应关系, 可以由网络侧设备配置给所述终端,也可以由协议约定。
本公开实施例中,不同的传输上行控制信息的资源的位置信息对应的maxCodeRate可以相同,也可以不同。
本公开实施例中,可选的,所述传输上行控制信息的资源的位置信息包括以下至少一项:
传输上行控制信息所用的BWP;
传输上行控制信息所用的载波;
传输上行控制信息所用的PUCCH资源集合(PUCCH ResourceSet,PUCCH RESET);
传输上行控制信息所用的PUCCH资源(PUCCH Resource)。
上面PUCCH Resource和PUCCH ResourceSet是3GPP规范TS38.331中定义的消息单元(Information Elemenent,IE)。
下面对PUCCH Resource和PUCCH ResourceSet进行简单说明。
NR系统中引入了PUCCH资源集合的概念,当RRC连接建立后,为了确定PUCCH的资源,最大可以配置4个RESET。而在每一个RESET内,可以配置最大4个或者8个资源(PUCCH Resource)。当配置8个资源的时候,需要隐式的PUCCH资源指示的方案。
在RESET内的每个资源的配置根据表4内的参数列表配置。
表4
Figure PCTCN2019123610-appb-000028
Figure PCTCN2019123610-appb-000029
如图7所示,终端可以根据UCI的载荷(payload)的大小,确定具体使用哪一个RESET。
基于同一发明构思,本公开实施例还提供对应于上述实施例中的资源的确定方法的终端,以及对应于上述实施例中的资源的配置方法的网络侧设备,下面分别进行说明。
如图8所示,本公开实施例还提供一种终端80,包括:
接收模块81,用于接收第一动态信令;
第一确定模块82,用于根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示上行控制信息在物理上行共享信道中占用的传输资源的大小的权重;
第二确定模块83,用于根据所述第一beta_offset组的beta_offset值,确定上行控制信息或者上行数据信息占用的传输资源的大小。
可选的,所述终端80还包括:
第二获取模块,用于获取至少两个beta_offset集合的配置信息,所述配置信息中包括所述beta_offset集合中的beta_offset值。
可选的,所述第一动态信令包括第一信令和第二信令。可选的,所述终端80还包括:
第一获取模块,用于获取第一信令与beta_offset集合的对应关系;获取第二信令与beta_offset组的对应关系。
所述第一确定模块82,用于根据所述对应关系,确定与所述第一信令对应的第一beta_offset集合,确定与所述第二信令对应的第一beta_offset组。可选的,所述第一确定模块82,用于采用所述第一动态信令的以下信息中的至少一项确定所述第一beta_offset集合:
DCI格式信息;
DCI所对应的标识信息;
DCI所对应的控制信道配置信息;
DCI携带的业务优先级信息;
DCI携带的资源指示相关信息;
DCI所对应的调制与编码策略。
可选的,所述DCI对应的标识信息包括以下至少一项:
DCI所对应的无线网络临时标识;
DCI所对应的加扰信息。
可选的,所述DCI所对应的控制信道配置信息包括以下至少一项:
DCI所对应的控制资源集;
DCI所对应的搜索空间。
可选的,所述DCI携带的资源指示相关信息包括以下至少一项:
DCI携带的资源指示信息,所述资源指示用于指示数据或者上行控制信息传输的时域资源和/或频域资源;
DCI中携带的用于指示数据或者上行控制信息传输的导频映射类型信息。
如图9所示,本公开实施例还提供一种网络侧设备90,包括:
第一发送模块91,用于发送第一动态信令,所述第一动态信令用于确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示在物理上行共享信道中占用的传输资源的大小的权重。
可选的,所述网络侧设备90还包括:
第二发送模块,用于发送至少两个beta_offset集合的配置信息,所述配置信息中包括所述beta_offset集合中的beta_offset值。
如图10所示,本公开实施例还提供一种终端100,包括:
接收模块101,用于接收第一动态信令;
第一确定模块102,用于根据第一动态信令,确定第一maxCodeRate;
第二确定模块103,用于根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
可选的,所述终端100还包括:
第一获取模块,用于获取动态信令与maxCodeRate的对应关系;
所述第一确定模块102,用于根据所述对应关系,确定与第一动态信令对应的第一maxCodeRate。
可选的,所述终端100还包括:
获取至少两个maxCodeRate的配置信息。
可选的,所述第一确定模块102,用于采用所述第一动态信令的以下信息中的至少一项确定所述第一maxCodeRate:
DCI格式信息;
DCI所对应的标识信息;
DCI所对应的控制信道配置信息;
DCI携带的业务优先级信息;
DCI携带的资源指示相关信息;
DCI所对应的调制与编码策略。
可选的,所述DCI对应的标识信息包括以下至少一项:
DCI所对应的无线网络临时标识;
DCI所对应的加扰信息。
可选的,所述DCI所对应的控制信道配置信息包括以下至少一项:
DCI所对应的控制资源集;
DCI所对应的搜索空间。
可选的,所述DCI携带的资源指示相关信息包括以下至少一项:
DCI携带的资源指示信息,所述资源指示用于指示数据或者上行控制信息传输的时域资源和/或频域资源;
DCI中携带的用于指示数据或者上行控制信息传输的导频映射类型信息。
如图11所示,本公开实施例还提供一种网络侧设备110,包括:
第一发送模块111,用于发送第一动态信令,所述第一动态信令用于确定第一maxCodeRate。
可选的,所述网络侧设备110还包括:
第二发送模块,用于发送至少两个maxCodeRate的配置信息。
如图12所示,本公开实施例还提供一种终端120,包括:
第一确定模块121,用于确定传输上行控制信息的资源的第一位置信息;
第二确定模块122,用于根据所述第一位置信息,确定第一maxCodeRate;
第三确定模块123,用于根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
可选的,所述终端120还包括:
获取模块,用于获取传输上行控制信息的资源的位置信息与maxCodeRate的对应关系;
所述第二确定模块122用于根据所述对应关系,确定与第一位置信息对应的第一maxCodeRate。
可选的,所述传输上行控制信息的资源的位置信息包括以下至少一项:
传输上行控制信息所用的BWP;
传输上行控制信息所用的载波;
传输上行控制信息所用的PUCCH资源集合;
传输上行控制信息所用的PUCCH资源。
请参考图13,图13为本公开另一实施例的终端的结构示意图,该终端130包括但不限于:射频单元131、网络模块132、音频输出单元133、输入单元134、传感器135、显示单元136、用户输入单元137、接口单元138、存储器139、处理器1310、以及电源1311等部件。本领域技术人员可以理解,图13中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元131,用于接收第一动态信令;
处理器1310,用于根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示上行控制信息在物理上行共享信道中占用的传输资源的大小的权重;根据所述第一beta_offset组的beta_offset值,确定上行控制信息或者上行数据信息占用的传输资源的大小。
或者
射频单元131,用于接收第一动态信令;
处理器1310,用于根据第一动态信令,确定第一maxCodeRate;根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
或者
处理器1310,用于确定传输上行控制信息的资源的第一位置信息;根据所述第一位置信息,确定第一maxCodeRate;根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
应理解的是,本公开实施例中,射频单元131可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器1310处理;另外,将上行的数据发送给基站。通常,射频单元131包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元131还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块132为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元133可以将射频单元131或网络模块132接收的或者在存储器139中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元133还可以提供与终端130执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元133包括扬声器、蜂鸣器以及受话器等。
输入单元134用于接收音频或视频信号。输入单元134可以包括图形处理器(Graphics Processing Unit,GPU)1341和麦克风1342,图形处理器1341对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元136上。经图形处理器1341处理后的图像帧可以存储在存储器139(或其它存储介质)中或者经由射频单元131或网络模块132进行发送。麦克风1342可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元131发送到移动通信基站的格式输出。
终端130还包括至少一种传感器135,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1361的亮度,接近传感器可在终端130移动到耳边时,关闭显示面板1361和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器135还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元136用于显示由用户输入的信息或提供给用户的信息。显示单元136可包括显示面板1361,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1361。
用户输入单元137可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元137包括触控面板1371以及其他输入设备1372。触控面板1371,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1371上或在触控面板1371附近的操作)。触控面板1371可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器1310,接收处理器1310发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1371。除了触控面板1371,用户输入单元137还可以包括其他输入设备1372。具体地,其他输入设备1372可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1371可覆盖在显示面板1361上,当触控面板1371检测到在其上或附近的触摸操作后,传送给处理器1310以确定触摸事件的类型,随后处理器1310根据触摸事件的类型在显示面板1361上提供相应的视觉输出。虽然在图13中,触控面板1371与显示面板1361是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板1371与显示面板1361集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元138为外部装置与终端130连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元138可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收的输入传输到终端130内的一个或多个元件或者可以用于在终端130和外部装置之间传输数据。
存储器139可用于存储软件程序以及各种数据。存储器139可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可 存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器139可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器1310是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器139内的软件程序和/或模块,以及调用存储在存储器139内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器1310可包括一个或多个处理单元;可选的,处理器1310可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器1310中。
终端130还可以包括给各个部件供电的电源1311(比如电池),可选的,电源1311可以通过电源管理系统与处理器1310逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端130包括一些未示出的功能模块,在此不再赘述。
本公开还提供一种终端,该终端包括:处理器和存储器。在本公开实施例中,终端还包括:存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现如下步骤:
接收第一动态信令;
根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示上行控制信息在物理上行共享信道中占用的传输资源的大小的权重;
根据所述第一beta_offset组的beta_offset值,确定上行控制信息或者上行数据信息占用的传输资源的大小。
可选的,计算机程序被处理器执行时还可实现如下步骤:
所述根据第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组之前还包括:
获取至少两个beta_offset集合的配置信息,所述配置信息中包括所述 beta_offset集合中的beta_offset值。
可选的,所述第一动态信令包括第一信令和第二信令;
所述根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组之前还包括:
获取第一信令与beta_offset集合的对应关系;
获取第二信令与beta_offset组的对应关系。
可选的,计算机程序被处理器执行时还可实现如下步骤:
所述根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组包括:
根据所述对应关系,确定与所述第一信令对应的第一beta_offset集合,确定与所述第二信令对应的第一beta_offset组。
可选的,计算机程序被处理器执行时还可实现如下步骤:
所述根据第一动态信令,确定第一beta_offset集合包括:
采用所述第一动态信令的以下信息中的至少一项确定所述第一beta_offset集合:
DCI格式信息;
DCI所对应的标识信息;
DCI所对应的控制信道配置信息;
DCI携带的业务优先级信息;
DCI携带的资源指示相关信息;
DCI所对应的调制与编码策略。
可选的,所述DCI对应的标识信息包括以下至少一项:
DCI所对应的无线网络临时标识;
DCI所对应的加扰信息。
可选的,所述DCI所对应的控制信道配置信息包括以下至少一项:
DCI所对应的控制资源集;
DCI所对应的搜索空间。
可选的,所述DCI携带的资源指示相关信息包括以下至少一项:
DCI携带的资源指示信息,所述资源指示用于指示数据或者上行控制信 息传输的时域资源和/或频域资源;
DCI中携带的用于指示数据或者上行控制信息传输的导频映射类型信息。
本公开实施例还提供一种网络侧设备,该网络侧设备包括:处理器和存储器。在本公开实施例中,网络侧设备还包括:存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现如下步骤:
发送第一动态信令,所述第一动态信令用于确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示在物理上行共享信道中占用的传输资源的大小的权重。
可选的,计算机程序被处理器执行时还可实现如下步骤:
所述发送第一动态信令之前还包括:发送至少两个beta_offset集合的配置信息,所述配置信息中包括所述beta_offset集合中的beta_offset值。
本公开实施例还提供一种终端,该终端包括:处理器和存储器。在本公开实施例中,终端还包括:存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现如下步骤:
接收第一动态信令;
根据第一动态信令,确定第一maxCodeRate;
根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
可选的,计算机程序被处理器161执行时还可实现如下步骤:
所述根据第一动态信令,确定第一maxCodeRate之前还包括:
获取动态信令与maxCodeRate的对应关系;
所述根据第一动态信令,确定第一maxCodeRate包括:
根据所述对应关系,确定与第一动态信令对应的第一maxCodeRate。
可选的,计算机程序被处理器执行时还可实现如下步骤:
所述根据第一动态信令,确定第一maxCodeRate之前还包括:
获取至少两个maxCodeRate的配置信息。
可选的,计算机程序被处理器执行时还可实现如下步骤:
所述根据第一动态信令,确定第一maxCodeRate包括:
采用所述第一动态信令的以下信息中的至少一项确定所述第一maxCodeRate:
DCI格式信息;
DCI所对应的标识信息;
DCI所对应的控制信道配置信息;
DCI携带的业务优先级信息;
DCI携带的资源指示相关信息;
DCI所对应的调制与编码策略。
可选的,所述DCI对应的标识信息包括以下至少一项:
DCI所对应的无线网络临时标识;
DCI所对应的加扰信息。
可选的,所述DCI所对应的控制信道配置信息包括以下至少一项:
DCI所对应的控制资源集;
DCI所对应的搜索空间。
可选的,所述DCI携带的资源指示相关信息包括以下至少一项:
DCI携带的资源指示信息,所述资源指示用于指示数据或者上行控制信息传输的时域资源和/或频域资源;
DCI中携带的用于指示数据或者上行控制信息传输的导频映射类型信息。
本公开实施例还提供一种网络侧设备,该网络侧设备包括:处理器和存储器。在本公开实施例中,网络侧设备还包括:存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现如下步骤:
发送第一动态信令,所述第一动态信令用于确定第一maxCodeRate。
可选的,计算机程序被处理器执行时还可实现如下步骤:
所述发送第一动态信令之前还包括:
发送至少两个maxCodeRate的配置信息。
本公开实施例还提供一种终端,该终端包括:处理器和存储器。在本公开实施例中,终端还包括:存储在存储器上并可在处理器上运行的计算机程序,计算机程序被处理器执行时实现如下步骤:
确定传输上行控制信息的资源的第一位置信息;
根据所述第一位置信息,确定第一maxCodeRate;
根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
可选的,计算机程序被处理器执行时还可实现如下步骤:
所述根据所述第一位置信息,确定第一maxCodeRate之前还包括:
获取传输上行控制信息的资源的位置信息与maxCodeRate的对应关系;
所述根据所述第一位置信息,确定第一maxCodeRate包括:
根据所述对应关系,确定与第一位置信息对应的第一maxCodeRate。
可选的,所述传输上行控制信息的资源的位置信息包括以下至少一项:
传输上行控制信息所用的BWP;
传输上行控制信息所用的载波;
传输上行控制信息所用的PUCCH资源集合;
传输上行控制信息所用的PUCCH资源。
本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现上述资源的确定方法或者资源的配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的 技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (30)

  1. 一种资源的确定方法,应用于终端,所述方法包括:
    接收第一动态信令;
    根据所述第一动态信令,确定第一权重偏移值beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示上行控制信息在物理上行共享信道中占用的传输资源的大小的权重;
    根据所述第一beta_offset组的beta_offset值,确定上行控制信息或者上行数据信息占用的传输资源的大小。
  2. 如权利要求1所述的方法,其中,所述根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组之前还包括:
    获取至少两个beta_offset集合的配置信息,所述配置信息中包括所述beta_offset集合中的beta_offset值。
  3. 如权利要求1所述的方法,其中,
    所述第一动态信令包括第一信令和第二信令;
    所述根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组之前还包括:
    获取第一信令与beta_offset集合的对应关系;
    获取第二信令与beta_offset组的对应关系。
  4. 如权利要求3所述的方法,其中,所述根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组包括:
    根据所述对应关系,确定与所述第一信令对应的第一beta_offset集合,确定与所述第二信令对应的第一beta_offset组。
  5. 如权利要求1-4任一项所述的方法,其中,所述根据所述第一动态信令,确定第一beta_offset集合包括:
    采用所述第一动态信令的以下信息中的至少一项确定所述第一beta_offset集合:
    DCI格式信息;
    DCI所对应的标识信息;
    DCI所对应的控制信道配置信息;
    DCI携带的业务优先级信息;
    DCI携带的资源指示相关信息;
    DCI所对应的调制与编码策略。
  6. 如权利要求5所述的方法,其中,所述DCI对应的标识信息包括以下至少一项:
    DCI所对应的无线网络临时标识;
    DCI所对应的加扰信息。
  7. 如权利要求5所述的方法,其中,所述DCI所对应的控制信道配置信息包括以下至少一项:
    DCI所对应的控制资源集;
    DCI所对应的搜索空间。
  8. 如权利要求5所述的方法,其中,所述DCI携带的资源指示相关信息包括以下至少一项:
    DCI携带的资源指示信息,所述资源指示用于指示数据或者上行控制信息传输的时域资源和/或频域资源;
    DCI中携带的用于指示数据或者上行控制信息传输的导频映射类型信息。
  9. 一种资源的配置方法,应用于网络侧设备,所述方法包括:
    发送第一动态信令,所述第一动态信令用于确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示在物理上行共享信道中占用的传输资源的大小的权重。
  10. 如权利要求9所述的方法,其中,所述发送第一动态信令之前还包括:
    发送至少两个beta_offset集合的配置信息,所述配置信息中包括所述beta_offset集合中的beta_offset值。
  11. 一种资源的确定方法,应用于终端,所述方法包括:
    接收第一动态信令;
    根据所述第一动态信令,确定第一maxCodeRate;
    根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
  12. 如权利要求11所述的方法,其中,
    所述根据所述第一动态信令,确定第一maxCodeRate之前还包括:
    获取动态信令与maxCodeRate的对应关系;
    所述根据所述第一动态信令,确定第一maxCodeRate包括:
    根据所述对应关系,确定与所述第一动态信令对应的第一maxCodeRate。
  13. 如权利要求11所述的方法,其中,所述根据所述第一动态信令,确定第一maxCodeRate之前还包括:
    获取至少两个maxCodeRate的配置信息。
  14. 如权利要求11-13任一项所述的方法,其中,所述根据所述第一动态信令,确定第一maxCodeRate包括:
    采用所述第一动态信令的以下信息中的至少一项确定所述第一maxCodeRate:
    DCI格式信息;
    DCI所对应的标识信息;
    DCI所对应的控制信道配置信息;
    DCI携带的业务优先级信息;
    DCI携带的资源指示相关信息;
    DCI所对应的调制与编码策略。
  15. 如权利要求14所述的方法,其中,所述DCI对应的标识信息包括以下至少一项:
    DCI所对应的无线网络临时标识;
    DCI所对应的加扰信息。
  16. 如权利要求14所述的方法,其中,所述DCI所对应的控制信道配置信息包括以下至少一项:
    DCI所对应的控制资源集;
    DCI所对应的搜索空间。
  17. 如权利要求14所述的方法,其中,所述DCI携带的资源指示相关信息包括以下至少一项:
    DCI携带的资源指示信息,所述资源指示用于指示数据或者上行控制信息传输的时域资源和/或频域资源;
    DCI中携带的用于指示数据或者上行控制信息传输的导频映射类型信息。
  18. 一种资源的配置方法,应用于网络侧设备,所述方法包括:
    发送第一动态信令,所述第一动态信令用于确定第一maxCodeRate。
  19. 如权利要求18所述的方法,其中,所述发送第一动态信令之前还包括:
    发送至少两个maxCodeRate的配置信息。
  20. 一种资源的确定方法,应用于终端,所述方法包括:
    确定传输上行控制信息的资源的第一位置信息;
    根据所述第一位置信息,确定第一maxCodeRate;
    根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
  21. 如权利要求20所述的方法,其中,
    所述根据所述第一位置信息,确定第一maxCodeRate之前还包括:
    获取传输上行控制信息的资源的位置信息与maxCodeRate的对应关系;
    所述根据所述第一位置信息,确定第一maxCodeRate包括:
    根据所述对应关系,确定与所述第一位置信息对应的第一maxCodeRate。
  22. 如权利要求20或21所述的方法,其中,所述传输上行控制信息的资源的位置信息包括以下至少一项:
    传输上行控制信息所用的BWP;
    传输上行控制信息所用的载波;
    传输上行控制信息所用的PUCCH资源集合;
    传输上行控制信息所用的PUCCH资源。
  23. 一种终端,包括:
    接收模块,用于接收第一动态信令;
    第一确定模块,用于根据所述第一动态信令,确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示上行控制信息在物理上行共享信道中占用的传输资源的大小的权重;
    第二确定模块,用于根据所述第一beta_offset组的beta_offset值,确定上行控制信息或者上行数据信息占用的传输资源的大小。
  24. 一种网络侧设备,包括:
    第一发送模块,用于发送第一动态信令,所述第一动态信令用于确定第一beta_offset集合以及所述第一beta_offset集合中的第一beta_offset组,其中,每一beta_offset集合包括至少一个beta_offset组,每一所述beta_offset组包括至少一种类型的上行控制信息的beta_offset值,所述beta_offset值表示在物理上行共享信道中占用的传输资源的大小的权重。
  25. 一种终端,包括:
    接收模块,用于接收第一动态信令;
    第一确定模块,用于根据所述第一动态信令,确定第一maxCodeRate;
    第二确定模块,用于根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
  26. 一种网络侧设备,包括:
    第一发送模块,用于发送第一动态信令,所述第一动态信令用于确定第一maxCodeRate。
  27. 一种终端,包括:
    第一确定模块,用于确定传输上行控制信息的资源的第一位置信息;
    第二确定模块,用于根据所述第一位置信息,确定第一maxCodeRate;
    第三确定模块,用于根据所述第一maxCodeRate的配置信息,确定上行控制信息占用的传输资源的大小。
  28. 一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至8中任一项所述的资源的确定方法的步骤;或者,所述计算机程序被所述处理器执行时实现如权利要求11至17中任一项所述的资源的确定方法的步骤;或者,所述计算机程序被所述处理器执行时实现如权利要求20至22中任一项所述的资源的确定方法的步骤。
  29. 一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求9或10所述的资源的配置方法的步骤;或者,所述计算机程序被所述处理器执行时实现如权利要求18至19所述的资源的配置方法的步骤。
  30. 一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至8中任一项所述的资源的确定方法的步骤;或者所述计算机程序被处理器执行时实现如权利要求11至17中任一项所述的资源的确定方法的步骤;或者所述计算机程序被处理器执行时实现如权利要求20至22中任一项所述的资源的确定方法的步骤;或者所述计算机程序被处理器执行时实现如权利要求9或10所述的资源的配置方法的步骤;或者所述计算机程序被处理器执行时实现如权利要求18或19所述的资源的配置方法的步骤。
PCT/CN2019/123610 2019-01-04 2019-12-06 资源的确定方法、资源的配置方法、终端和网络侧设备 WO2020140690A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910009157.3 2019-01-04
CN201910009157.3A CN111278118B (zh) 2019-01-04 2019-01-04 资源的确定方法、资源的配置方法、终端和网络侧设备

Publications (1)

Publication Number Publication Date
WO2020140690A1 true WO2020140690A1 (zh) 2020-07-09

Family

ID=70998586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123610 WO2020140690A1 (zh) 2019-01-04 2019-12-06 资源的确定方法、资源的配置方法、终端和网络侧设备

Country Status (2)

Country Link
CN (1) CN111278118B (zh)
WO (1) WO2020140690A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106416389A (zh) * 2014-05-08 2017-02-15 夏普株式会社 用于双连接操作的系统和方法
WO2018028257A1 (en) * 2016-08-12 2018-02-15 Qualcomm Incorporated Signaling for interlaced fdm uplink dmrs
WO2019098700A1 (ko) * 2017-11-15 2019-05-23 엘지전자 주식회사 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말
CN109873689A (zh) * 2017-12-01 2019-06-11 维沃移动通信有限公司 混合自动重传请求应答消息的传输方法及终端
CN110139390A (zh) * 2018-02-09 2019-08-16 维沃移动通信有限公司 资源调度指示方法、终端及网络设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025467B (zh) * 2009-12-30 2013-05-15 电信科学技术研究院 一种反馈信息的传输方法及传输装置
WO2018143740A1 (ko) * 2017-02-05 2018-08-09 엘지전자 주식회사 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 이를 지원하는 장치
US10440698B2 (en) * 2017-02-06 2019-10-08 Qualcomm Incorporated Transmitting uplink control information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106416389A (zh) * 2014-05-08 2017-02-15 夏普株式会社 用于双连接操作的系统和方法
WO2018028257A1 (en) * 2016-08-12 2018-02-15 Qualcomm Incorporated Signaling for interlaced fdm uplink dmrs
WO2019098700A1 (ko) * 2017-11-15 2019-05-23 엘지전자 주식회사 무선 통신 시스템에서 단말의 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말
CN109873689A (zh) * 2017-12-01 2019-06-11 维沃移动通信有限公司 混合自动重传请求应答消息的传输方法及终端
CN110139390A (zh) * 2018-02-09 2019-08-16 维沃移动通信有限公司 资源调度指示方法、终端及网络设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Open Issues and Corrections to UCI Feedback", 3GPP TSG RAN WG1 MEETING #94BIS R1-1810521, 12 October 2018 (2018-10-12), XP051517929, DOI: 20200226171101X *
HUAWEI ET AL.: "Discussion on UCI Feedback for URLLC", 3GPP TSG RAN WG1 MEETING #91 R1-1719413, 1 December 2017 (2017-12-01), XP051369322 *
HUAWEI ET AL.: "Review Summary for Al 7.1.3.2 Related to Long PUCCH", 3GPP TSG RAN WG1 MEETING #94BIS R1-1811918, 12 September 2018 (2018-09-12), XP051519242 *
QUALCOMM INCORPORATED: "Remaining Issues for Multiplexing UCI on PUSCH", 3GPP TSG RAN WG1 MEETING #92 R1-1802839, 2 March 2018 (2018-03-02), XP051398252 *

Also Published As

Publication number Publication date
CN111278118A (zh) 2020-06-12
CN111278118B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2021004316A1 (zh) Uci传输方法、接收方法、终端和网络设备
JP7258041B2 (ja) サイドリンクの伝送方法及び端末
CN110324859B (zh) 副链路的传输资源选择方法、配置方法、终端和网络设备
US20220271892A1 (en) Information transmission method and terminal
JP7170130B2 (ja) フィードバック情報伝送方法及び端末機器
CN111262670B (zh) 一种混合自动重传确认反馈信息传输方法和终端设备
WO2021017948A1 (zh) Dci传输方法和通信设备
WO2019196826A1 (zh) 旁链路信息的传输方法及设备
CN111447686B (zh) 一种harq-ack反馈方法、终端和网络设备
WO2020119243A1 (zh) 物理上行控制信道传输方法、网络侧设备和终端
JP7322346B2 (ja) リソース設定方法及び機器
WO2020134359A1 (zh) 非授权调度配置的方法、终端及网络侧设备
WO2020063452A1 (zh) 一种资源调度方法和装置
WO2020029783A1 (zh) Pusch和sr处理方法及设备
US20220015091A1 (en) Resource configuration method, resource determining method, network side device and terminal
CN111800794A (zh) 解调参考信号位置的确定方法及设备
JP7125431B2 (ja) フィードバック応答情報の長さ確定方法及び関連製品
CN113543345B (zh) 资源确定方法、指示方法及设备
WO2021000774A1 (zh) 信息传输、接收方法、终端及网络侧设备
WO2021013006A1 (zh) 参数处理方法、设备及计算机可读存储介质
WO2020088188A1 (zh) 传输方法、发送端设备、接收端设备及网络侧设备
CN110933751B (zh) 上行控制信息的指示方法、接收方法、终端及网络设备
WO2020151388A1 (zh) 重复传输方法、终端及网络侧设备
US20230031787A1 (en) Method for determining overhead reference value for dmrs and terminal
US20230038092A1 (en) Resource determining method, resource indication method, and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907700

Country of ref document: EP

Kind code of ref document: A1