WO2020140656A1 - 过流保护电路及过流保护系统 - Google Patents

过流保护电路及过流保护系统 Download PDF

Info

Publication number
WO2020140656A1
WO2020140656A1 PCT/CN2019/121352 CN2019121352W WO2020140656A1 WO 2020140656 A1 WO2020140656 A1 WO 2020140656A1 CN 2019121352 W CN2019121352 W CN 2019121352W WO 2020140656 A1 WO2020140656 A1 WO 2020140656A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
electrically connected
unit
module
sampling
Prior art date
Application number
PCT/CN2019/121352
Other languages
English (en)
French (fr)
Inventor
黎志勇
祖天航
林儿
Original Assignee
惠州三华工业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州三华工业有限公司 filed Critical 惠州三华工业有限公司
Publication of WO2020140656A1 publication Critical patent/WO2020140656A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the invention relates to the field of printer power supply, in particular to an overcurrent protection circuit and an overcurrent protection system.
  • USB interface of the motherboard CPU generally has USB overcurrent protection to protect the motherboard from being burned out.
  • the overcurrent detection resistor In the traditional printer power supply, there are often two or more outputs, one is the output voltage of 40V, and the other is the output voltage of 22V.
  • the overcurrent The detection resistor For the overcurrent detection of this two or more outputs, the overcurrent The detection resistor often needs to be placed at the high end, that is, at the positive output end, for high-end detection. The reason why ground detection cannot be done is that multiple outputs share a common ground. If the overcurrent detection resistor of each channel is placed on the ground terminal, the ground terminal of each channel will participate in the shunt, and accurate overcurrent detection cannot be achieved. When the loads carried by the two outputs are different, if the load regulation rate of the power supply is not good enough, it will often affect the output voltage of the two channels.
  • the purpose of the present invention is to overcome the shortcomings in the prior art and provide an overcurrent protection circuit and an overcurrent protection system that more accurately sample and avoid false triggering.
  • An overcurrent protection circuit includes: a voltage sampling module, a differential amplification module, a voltage comparison module, and a control module, two input terminals of the differential amplification module are electrically connected to the voltage sampling module, and the differential amplification module The output end is electrically connected to an input end of the voltage comparison module, the output end of the voltage sampling module is also electrically connected to the other input end of the voltage comparison module, and the output end of the voltage comparison module is connected to the control The module is electrically connected.
  • the voltage sampling module includes a sampling resistor R202, a first end of the sampling resistor R202 is electrically connected to a first input terminal of the differential amplifier module, and a second end of the sampling resistor R202 is The second input terminal of the differential amplifier module is electrically connected.
  • the differential amplification module includes a differential amplification unit, a first sampling unit, and a second sampling unit.
  • the input terminal of the first sampling unit is connected to the first terminal of the voltage sampling module.
  • the output terminal of the first sampling unit is electrically connected to the inverting input terminal of the differential amplification unit
  • the input terminal of the second sampling unit is connected to the second terminal of the voltage sampling module
  • the output of the second sampling unit The terminal is electrically connected to the non-inverting input terminal of the differential amplifier unit
  • the output terminal of the differential amplifier unit is electrically connected to the voltage comparison module.
  • the differential amplifier unit includes an amplifier U602B, an in-phase input terminal of the amplifier U602B is electrically connected to the output terminal of the second sampling unit, and an inverting input terminal of the amplifier U602B is connected to the first The output terminal of a sampling unit is electrically connected, and the output terminal of the amplifier U602B is electrically connected to the input terminal of the voltage comparison module.
  • the voltage comparison module includes a voltage comparison unit, a voltage stabilization unit, and a voltage division unit, the input terminal of the voltage division unit is electrically connected to the output terminal of the voltage sampling module, and the voltage division unit The output end of the is electrically connected to the inverting input end of the voltage comparison unit, the two ends of the voltage stabilizing unit are connected in parallel with the two ends of the voltage dividing unit, the non-inverting input end of the voltage comparison unit is connected to the differential
  • the output terminal of the amplification module is electrically connected, and the output terminal of the voltage comparison unit is output to the control module.
  • the voltage comparison unit includes a comparator U602A and a diode D606, the non-inverting input terminal of the comparator U602A is electrically connected to the output terminal of the differential amplification module, and the inverting input of the comparator U602A The terminal is electrically connected to the output terminal of the voltage dividing unit, the output terminal of the comparator U602A is electrically connected to the anode of the diode D606, and the cathode of the diode D606 is electrically connected to the input terminal of the control module.
  • the voltage comparison module further includes a current limiting filtering unit, the input terminal of the current limiting filtering unit is electrically connected to the output terminal of the voltage sampling module, and the output terminal of the current limiting filtering unit is The input terminal of the voltage dividing unit is electrically connected.
  • the current limiting filter unit includes a current limiting resistor R637 and a filtering capacitor C613, the first end of the current limiting resistor R637 is electrically connected to the output end of the voltage sampling module, and the current limiting resistor The second end of R637 is electrically connected to the input end of the voltage dividing unit, the first end of the filter capacitor C613 is electrically connected to the first end of the current limiting resistor R637, and the second end of the filter capacitor C613 is The negative terminal of the voltage comparison unit is electrically connected.
  • control module includes a control circuit and an optical coupling unit, the input terminal of the optical coupling unit is electrically connected to the input terminal of the voltage comparison module, and the output terminal of the optical coupling unit is The control terminal of the control circuit is electrically connected.
  • the present invention also provides an overcurrent protection system, including the overcurrent protection circuit described in any one of the above.
  • the invention is an overcurrent protection circuit and an overcurrent protection system.
  • a voltage sampling module in the output end of the power supply, the sampled voltage will not be adjusted by two or more outputs during the overcurrent protection process Rate, the impact of each output load size.
  • the control circuit of the power supply starts the overcurrent protection work, and ensures that the printer can work normally.
  • FIG. 1 is a functional block diagram of an overcurrent protection circuit according to an embodiment of the invention.
  • FIG. 2 is a circuit diagram of a voltage sampling module at the output end of the overcurrent protection system shown in FIG. 1;
  • FIG. 3 is a circuit diagram of a control module of the overcurrent protection circuit shown in FIG. 1;
  • FIG. 4 is a circuit diagram of the overcurrent protection circuit shown in FIG. 1;
  • FIG. 5 is a functional block diagram of a delay protection circuit of an overcurrent protection system according to an embodiment of the present invention.
  • FIG. 6 is a circuit diagram of a delay protection circuit of the overcurrent protection system shown in FIG. 4.
  • an overcurrent protection circuit includes a voltage sampling module 100, a differential amplification module 200, a voltage comparison module 300, and a control module 400.
  • Two input terminals of the differential amplification module 200 are respectively sampled with the voltage
  • the module 100 is electrically connected, the output terminal of the differential amplification module 200 is electrically connected to an input terminal of the voltage comparison module 300, and the output terminal of the voltage sampling module 100 is also connected to the other input terminal of the voltage comparison module 300 Electrically connected, the output of the voltage comparison module 300 is electrically connected to the control module 400.
  • the voltage sampling module 100 is used to obtain the voltage at the output end of the power supply; the differential amplifier module 200 is used to obtain the voltage at both ends of the voltage sampling module and output it to the voltage comparison module 300 through its own circuit In an input terminal, after comparing with the voltage output by the voltage sampling module, the voltage comparison module 300 outputs it to the control module; the control module 400 is used to realize the overcurrent protection of the power supply.
  • the voltage sampling module includes a sampling resistor R202, the first end of the sampling resistor R202 is electrically connected to the first input end of the differential amplification module, and the first The two ends are electrically connected to the second input end of the differential amplification module.
  • the sampling resistance By setting the sampling resistance, the voltage at the output of the power supply can be obtained, so that the current at the output of the power supply can be detected.
  • the differential amplification module includes a differential amplification unit, a first sampling unit, and a second sampling unit.
  • the input end of the first sampling unit is connected to the first end of the voltage sampling module.
  • the first The output terminal of the sampling unit is electrically connected to the inverting input terminal of the differential amplification unit
  • the input terminal of the second sampling unit is connected to the second terminal of the voltage sampling module
  • the output terminal of the second sampling unit is The non-inverting input terminal of the differential amplifier unit is electrically connected, and the output terminal of the differential amplifier unit is electrically connected to the voltage comparison module.
  • the first sampling unit is used to obtain the first voltage 40V-2 on one side of the sampling resistor R202
  • the second sampling unit is used to obtain the second voltage 40V on the other side of the sampling resistor R202
  • the two The voltage is transmitted to the differential amplifier unit. If the difference between the two voltages increases linearly, the voltage at the output of the differential amplifier unit will also increase linearly, and then the increased voltage will be transmitted to the voltage comparison module .
  • the differential amplifier unit includes an amplifier U602B, an in-phase input terminal of the amplifier U602B is electrically connected to an output terminal of the second sampling unit, and an inverting input terminal of the amplifier U602B is connected to the The output terminal of the first sampling unit is electrically connected, and the output terminal of the amplifier U602B is electrically connected to the input terminal of the voltage comparison module.
  • the amplifier U602B is used to amplify the voltage at the two input terminals.
  • the first sampling unit includes a resistor R629 and a resistor R630, the first end of the resistor R629 is electrically connected to the first end of the sampling resistor R202, and the second end of the resistor R629 is connected to the amplifier U602B
  • the non-inverting input end of is connected electrically, and both ends of the resistor R630 are connected in parallel with both ends of the resistor R629.
  • the second sampling unit includes a capacitor C616 and a resistor R623, the first end of the resistor R623 is electrically connected to the second end of the sampling resistor R202, and the second end of the resistor R623 is respectively connected to the capacitor One end of C616, and the second end of the resistor R623 are directly electrically connected to the inverting input end of the amplifier U602B.
  • the parallel resistance value of resistor R629 and resistor R630 should be equal to the resistance value of resistor R623, resistor R622 should be equal to the resistance value of resistor R633, resistor R634 should be equal to the resistance value of resistor R635 . Therefore, the sampled voltage is not affected by other factors.
  • the voltage comparison module includes a voltage comparison unit, a voltage stabilization unit, and a voltage division unit.
  • the input terminal of the voltage division unit is electrically connected to the output terminal of the voltage sampling module.
  • the output of the voltage division unit Terminal is electrically connected to the inverting input terminal of the voltage comparison unit, both ends of the voltage stabilizing unit are connected in parallel with both ends of the voltage dividing unit, the non-inverting input terminal of the voltage comparison unit and the differential amplifier module
  • the output terminal of is connected electrically, and the output terminal of the voltage comparison unit is output to the control module.
  • the voltage comparison unit includes a comparator U602A and a diode D606, the non-inverting input terminal of the comparator U602A is electrically connected to the output terminal of the differential amplification module, and the inverting input terminal of the comparator U602A is connected to the The output terminal of the voltage dividing unit is electrically connected, the output terminal of the comparator U602A is electrically connected to the anode of the diode D606, and the cathode of the diode D606 is electrically connected to the input terminal of the control module.
  • the voltage comparison module in the voltage comparison module, the voltage stabilization unit and the voltage division unit are provided, and the voltage input terminal of the voltage division unit also comes from the voltage sampling module, that is, the output voltage of 40V-2 in the figure, so that the input to The voltage at the inverting input terminal of the comparator U602A remains basically unchanged from beginning to end. Since the voltage at the output terminal of the amplifier U602B increases with the increase in the voltage difference between the first voltage 40V-2 of the first sampling unit and the second voltage 40V of the second sampling unit, the non-inverting input to the comparator U602A The terminal voltage also becomes larger.
  • the output of the comparator U602A When the voltage at the non-inverting input terminal of the comparator U602A is greater than the voltage at the inverting input terminal, that is, when the output voltage difference between 40V-2 and 40V in the figure is greater than 0.15V, the output of the comparator U602A will be High level, and then transmitted to the control module to trigger the overcurrent protection function of the control module.
  • the voltage dividing unit includes a resistor R619 and a resistor R620, the first end of the resistor R619 is electrically connected to the output end of the voltage sampling module, and the second end of the resistor R619 is respectively connected to the resistor R620 One end is electrically connected to the inverting input terminal of the comparator U602A.
  • the voltage output from the voltage sampling module is kept at a constant voltage after being divided by the resistor R619 and the resistor R620 (for example, This voltage can be set to 2.5V) input to the inverting input of the comparator U602A, these two resistors are mainly used to divide the voltage.
  • the voltage stabilizing unit includes a voltage stabilizing diode ZD604, a cathode of the voltage stabilizing diode ZD604 is electrically connected to the first end of the resistor R619, an anode of the voltage stabilizing diode ZD604 and the other end of the resistor R620 Electrical connection.
  • the Zener diode ZD604 for example, using a relatively stable 6.2V Zener
  • the voltage input to the inverting input terminal of the comparator U602A can be kept more stable.
  • the voltage comparison module further includes a current limiting filtering unit, the input terminal of the current limiting filtering unit is electrically connected to the output terminal of the voltage sampling module, and the output terminal of the current limiting filtering unit is The input terminals of the voltage dividing unit are electrically connected.
  • the current limiting filter unit includes a current limiting resistor R637 and a filtering capacitor C613, the first end of the current limiting resistor R637 is electrically connected to the output end of the voltage sampling module, and the second end of the current limiting resistor R637 Terminal is electrically connected to the input terminal of the voltage dividing unit, the first terminal of the filter capacitor C613 is electrically connected to the first terminal of the current limiting resistor R637, and the second terminal of the filter capacitor C613 is compared with the voltage The negative terminal of the unit is electrically connected. In this way, by setting the current limiting resistor R637 and the filter capacitor C613, the interference of the voltage input to the comparator U602A can be filtered out, and the stability of the voltage input can be improved.
  • the control module includes a control circuit and an optocoupler unit, the input end of the optocoupler unit is electrically connected to the input end of the voltage comparison module, and the output end of the optocoupler unit It is electrically connected to the control terminal of the control circuit.
  • the control circuit has a control chip U100, the control chip is U100, and a control chip of type NCP1399A is used.
  • the optocoupler unit includes a resistor R610, a resistor R100, a light emitting diode PC1A, and a phototransistor PC1B, the first end of the resistor R610 is electrically connected to the input end of the voltage comparison module, and the second end of the resistor R610 Is electrically connected to the anode of the light emitting diode PC1A, the light emitting diode PC1A is electrically connected to the optocoupler transistor PC1B, the collector of the optocoupler transistor PC1B is electrically connected to one end of the resistor R100, and the resistor R100 The other end of is used to connect the external VCC2, and the emitter of the optocoupler transistor PC1B is electrically connected to the OVP pin of the control circuit.
  • the comparator U602A when the voltage difference between the first voltage 40V-2 of the first sampling unit and the second voltage 40V of the second sampling unit is greater than 0.15V, it will trigger the output terminal of the comparator U602A to output a high voltage, so that The output high voltage is transmitted to the anode of the light-emitting diode PC1A through the Zener diode ZD606, so that the optocoupler unit is turned on, that is, the optocoupler transistor PC1B is turned on, so that the VCC2 is output from the emitter of the optocoupler PC1B to the control circuit U100's OVP/OTP pin, which triggers the overcurrent protection function.
  • the present invention also provides an overcurrent protection system, including an overcurrent protection circuit and a delay protection circuit; wherein, in order to realize the function of output terminal delay protection, the reliability and stability of the overcurrent protection system are improved, for example, in a
  • the delay protection circuit includes a positive terminal sampling module 500, a first comparison module 600 and a second comparison module 700.
  • the input terminal of the positive terminal sampling module is used to connect with the voltage output terminal. Connected, the output of the positive sampling module is electrically connected to the input of the first comparison module, the output of the first comparison module is electrically connected to the input of the second comparison module, the second The output of the comparison module is electrically connected to the control module.
  • the positive sampling module is used to obtain the high-end voltage of the power output terminal, that is, the voltage at the positive terminal;
  • the first comparison module is used to obtain the voltage across the positive sampling module and output it through its own circuit To an input end of the second comparison module, the second comparison module outputs to the control module; the control module is used to realize overcurrent protection of the power supply.
  • the second comparison module is a delay module.
  • the positive sampling module 500 includes a resistor R212 and a resistor R213.
  • the first end of the resistor R212 is used for electrical connection with the positive electrode of the power output terminal, and the second end of the resistor R212 is connected to the first
  • the input end of the comparison module 600 is electrically connected, the two ends of the resistor R213 are electrically connected to the two ends of the resistor R212, and the first end of the resistor R212 is the sampling end of 22V-1, the The second end is the sampling end of 22V-2.
  • the accuracy of overcurrent detection can be improved by setting the high-end sampling resistor R212 and resistor R213 , That is, the accuracy of overcurrent sampling, so that in the process of overcurrent protection, the sampled voltage will not be disturbed by the load at the output end, to avoid the false trigger of the overcurrent protection circuit, and the control circuit of the power supply starts overcurrent protection To ensure that the printer can work normally.
  • the first comparison module 600 includes a voltage stabilizing unit, a first voltage dividing unit, a voltage input unit, and a first comparator 600A.
  • the input terminal of the voltage stabilizing unit is electrically connected to the second terminal of the resistor R212.
  • the voltage stabilizing unit is electrically connected to the first voltage dividing unit and the voltage input unit, and the output terminal of the first voltage dividing unit is electrically connected to the inverting input terminal of the first comparator.
  • the other input terminal of the voltage input unit is electrically connected to the first terminal of the resistor R212, the output terminal of the voltage input unit is electrically connected to the non-inverting input terminal of the first comparator, and the The output terminal is electrically connected to the input terminal of the second comparison module 700.
  • the voltage input to the inverting input terminal of the first comparator can be kept at a fixed voltage value.
  • the first voltage dividing unit is used to realize the function of voltage division, and the voltage input unit passes Sampling at the first end of the resistor R212, input to the non-inverting input end of the first comparator, and after comparing with the fixed voltage value, the output voltage is amplified.
  • the voltage stabilizing unit includes an integrated circuit IC600 that is electrically connected to the second end of the resistor R212 and the output end of the first voltage dividing unit, respectively.
  • the first voltage dividing unit includes a resistor R601 and a resistor R603, the first end of the resistor R601 is electrically connected to one end of the integrated circuit IC600, and the second end of the resistor R601 and the first end of the resistor R603 Electrically connected, the second end of the resistor R603 is electrically connected to the other end of the integrated circuit IC600, and the first end of the resistor R601 is electrically connected to pin 2 of the first comparator U600A.
  • the voltage input unit includes a resistor R602, a resistor R604, and a resistor R611, one end of the resistor R602 is electrically connected to one end of the integrated circuit IC600, and the other end of the resistor R602 is respectively connected to the resistor R604 and the resistor R611
  • the resistor R604 is also electrically connected to the first end of the resistor R212, and the resistor R611 is also electrically connected to the non-inverting input end of the first comparator.
  • the second comparison module 700 includes a discharge unit, a delay unit, a second voltage dividing unit, a voltage limiting unit and a second comparator U600B, the discharge unit, the delay unit and the second voltage dividing unit It is electrically connected to the output end of the first comparison module 600 respectively, the output ends of the discharge unit and the delay unit are electrically connected to the in-phase input end of the second comparator U600B, and the second voltage dividing unit The output end of is electrically connected to the inverting input end of the second comparator U600B, and the output end of the second comparator U600B is electrically connected to the control module.
  • the overcurrent protection circuit can have a delay function, so that when overcurrent protection is required at the output end of the power supply, it will not be protected immediately, and the overcurrent will be delayed for 6s to 7s before starting the overcurrent. Protection function; the discharge unit is used to realize the discharge of the delay unit; the second voltage dividing unit is used to realize the voltage division; the voltage limiting unit is used to limit the voltage of the second comparator to not exceed 32V to avoid voltage The voltage difference is too large to burn out the comparator and play a protective role; the second comparator U600B is used to compare the voltage of the non-inverting input terminal and the inverting input terminal, and then output the voltage to the control module to achieve overcurrent protection.
  • the delay unit includes a capacitor C603, a capacitor C604, a resistor R607, and a resistor R627
  • one end of the capacitor C603 is electrically connected to the output end of the first comparator U600A
  • the capacitor C603 The other end is electrically connected to the second end of the resistor R212
  • the capacitor C604 is electrically connected to the output end of the first comparator U600A
  • the other end of the capacitor C604 is electrically connected to the second end of the resistor R212
  • one end of the resistor R607 is electrically connected to the voltage output terminal of the 40V-2
  • the other end of the resistor R607 is electrically connected to the capacitor C604 through the resistor R627
  • the resistor R627 is also connected to the The 5-pin electrical connection of the second comparator U600B is described; thus, when the output of the first comparator U600A outputs a high level, 40V-2 will charge the capacitors C603 and C60
  • the discharge unit includes a diode D601 and a resistor R626, an anode of the diode D601 is electrically connected to the capacitor C603, and a cathode of the diode D601 is electrically connected to the voltage output terminal of the 40V-2 through the resistor R626.
  • the system also performs overcurrent protection, thereby disconnecting the power supply of the system, so that the voltage of capacitor C603 and capacitor C604 will discharge through diode D601 and resistor R626. Prepare for delayed overcurrent protection again.
  • the second voltage dividing unit includes a resistor R609 and a resistor R608, a first end of the resistor R609 is electrically connected to the voltage output terminal of 40V-2, and a second end of the resistor R609 is respectively connected to the resistor R608 and
  • the inverting input terminal of the second comparator U600B is electrically connected, so that the function of voltage division can be realized, and the voltage is input into the second comparator U600B after the voltage division.
  • the voltage limiting unit includes a diode ZD601 and a capacitor C605, the anode of the diode ZD601 is electrically connected to the second end of the resistor R212, that is, the second end of the resistor R212 is a voltage of 22V-2, and the diode ZD601
  • the cathode is electrically connected to the 40V voltage output terminal and the positive connection terminal of the second comparator U600B, one end of the capacitor C605 is electrically connected to the anode of the diode ZD601, and one end of the capacitor C605 is connected to the The cathode of the diode ZD601 is electrically connected.
  • the voltage of 22V-2 may soon fall to a voltage close to 0V, and if 40V Because of the no-load voltage, the power-down is relatively slow. If the power-down is greater than 32V or more when the voltage of 22V drops to 0V, the second comparator U600B will be damaged. Therefore, by setting the diode ZD601, the operating voltage input to the second comparator U600B can be clamped within its safe voltage range, for example, within 24V, to ensure the normal operation of the second comparator U600B.
  • the invention is an overcurrent protection circuit and an overcurrent protection system.
  • a voltage sampling module in the output end of the power supply, the sampled voltage will not be adjusted by two or more outputs during the overcurrent protection process Rate, the impact of each output load size.
  • the control circuit of the power supply starts the overcurrent protection work, and ensures that the printer can work normally.
  • the present invention is also applicable to voltage applications with an output voltage higher than 32V, which solves the disadvantage that the maximum operating voltage of the operational amplifier or comparator is only 32V.

Abstract

一种过流保护电路及过流保护系统,包括电压取样模块(100)、差分放大模块(200)、电压比较模块(300)及控制模块(400),所述差分放大模块(200)的两个输入端分别与所述电压取样模块(100)电连接,所述差分放大模块(200)的输出端与所述电压比较模块(300)的一输入端电连接,所述电压取样模块(100)的输出端还与所述电压比较模块(300)的另一输入端电连接,所述电压比较模块(300)的输出端与所述控制模块(400)电连接。通过在电源的输出端中设置电压取样模块(100),可以使得在过流保护的过程中,取样的电压不会受两路或多路输出调整率,各输出带载大小情况的影响。避免过流保护电路的出现误触发,使得电源的控制电路启动过流保护的工作,保证打印机可以正常的工作。

Description

过流保护电路及过流保护系统 技术领域
本发明涉及打印机电源领域,特别是涉及一种过流保护电路及过流保护系统。
背景技术
很多电子设备都有个额定电流,不允许超过额定电流,不然会烧坏设备。所以有些设备就做了电流保护模块。当电流超过设定电流时候,设备自动断电,以保护设备。如主板cpu的usb接口一般有usb过流保护,保护主板不被烧坏。
在传统的打印机电源中,常常具有双路或多路的输出,一路是输出为40V的电压,另一路是输出22V的电压,针对这种两路或多路输出的过流检测,其过流检测电阻往往需要放在高端,即放在正极输出端,做高端检测。不能做地端检测的原因为多路输出共地,如果每一路的过流检测电阻都放地端的话,每一路的地端都会参与分流,是不能实现精确的过流检测的。当这两个输出所带的负载不同的时候,电源的负载调整率如果不够好,往往也会影响两路的输出电压,则很有可能会使得传统的过流保护电路的被触发启动过流保护,这就出现了过流保护的误触发,从而使得该电源中芯片也被触发保护,使得电源不能继续工作,影响打印机的使用。并且,若40V电压的输出端和20V电压输出端所带的负载不同的话,也会影响到过流保护电路取样的精度,从而也可能出现过流保护被误触发的情况。
发明内容
本发明的目的是克服现有技术中的不足之处,提供一种更准确地取样、避免出现误触发的过流保护电路及过流保护系统。
本发明的目的是通过以下技术方案来实现的:
一种过流保护电路,包括:电压取样模块、差分放大模块、电压比较模块及控制模块,所述差分放大模块的两个输入端分别与所述电压取样模块电连接,所述差分放大模块的输出端与所述电压比较模块的一输入端电连接,所述电压取样模块的输出端还与所述电压比较模块的另一输入端电连接,所述电压比较模块的输出端与所述控制模块电连接。
在其中一个实施例中,所述电压取样模块包括取样电阻R202,所述取样电阻R202的第一端与所述差分放大模块的第一输入端电连接,所述取样电阻R202的第二端与所述差分放大模块的第二输入端电连接。
在其中一个实施例中,所述差分放大模块包括差分放大单元、第一取样单元及第二取样单元,所述第一取样单元的输入端与所述电压取样模块的第一端连接,所述第一取样单元的输出端与所述差分放大单元的反相输入端电连接,所述第二取样单元的输入端与所述电压取样模块的第二端连接,所述第二取样单元的输出端与所述差分放大单元的同相输入端电连接,所述差分放大单元的 输出端与所述电压比较模块电连接。
在其中一个实施例中,所述差分放大单元包括放大器U602B,所述放大器U602B的同相输入端与所述第二取样单元的输出端电连接,所述放大器U602B的反相输入端与所述第一取样单元的输出端电连接,所述放大器U602B的输出端与所述电压比较模块的输入端电连接。
在其中一个实施例中,所述电压比较模块包括电压比较单元、稳压单元及分压单元,所述分压单元的输入端与所述电压取样模块的输出端电连接,所述分压单元的输出端与所述电压比较单元的反相输入端电连接,所述稳压单元的两端与所述分压单元的两端并联连接,所述电压比较单元的同相输入端与所述差分放大模块的输出端电连接,所述电压比较单元的输出端输出至所述控制模块中。
在其中一个实施例中,所述电压比较单元包括比较器U602A和二极管D606,所述比较器U602A的同相输入端与所述差分放大模块的输出端电连接,所述比较器U602A的反相输入端与所述分压单元的输出端电连接,所述比较器U602A的输出端与所述二极管D606的阳极电连接,所述二极管D606的阴极与所述控制模块的输入端电连接。
在其中一个实施例中,所述电压比较模块还包括限流滤波单元,所述限流滤波单元的输入端与所述电压取样模块的输出端电连接,所述限流滤波单元的输出端与所述分压单元的输入端电连接。
在其中一个实施例中,所述限流滤波单元包括限流电阻R637和滤波电容C613,所述限流电阻R637的第一端与所述电压取样模块的输出端电连接,所述限流电阻R637的第二端与所述分压单元的输入端电连接,所述滤波电容C613的第一端与所述限流电阻R637的第一端电连接,所述滤波电容C613的第二端与所述电压比较单元的负端电连接。
在其中一个实施例中,所述控制模块包括控制电路及光耦单元,所述光耦单元的输入端与所述电压比较模块的输入端电连接,所述光耦单元的输出端与所述控制电路的控制端电连接。
本发明还提供一种过流保护系统,包括以上任意一项所述的过流保护电路。
本发明相比于现有技术的优点及有益效果如下:
本发明为一种过流保护电路及过流保护系统,通过在电源的输出端中设置电压取样模块,可以使得在过流保护的过程中,取样的电压不会受两路或多路输出调整率,各输出带载大小情况的影响。避免过流保护电路的出现误触发,使得电源的控制电路启动过流保护的工作,保证打印机可以正常的工作。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明一实施方式的过流保护电路的功能模块图;
图2为图1所示的过流保护系统的输出端的电压取样模块的电路图;
图3为图1所示的过流保护电路的控制模块的电路图;
图4为图1所示的过流保护电路的电路图;
图5为本发明一实施方式的过流保护系统的延时保护电路的功能模块图;
图6为图4所示的过流保护系统的延时保护电路的电路图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,一种过流保护电路,包括:电压取样模块100、差分放大模块200、电压比较模块300及控制模块400,所述差分放大模块200的两个输入端分别与所述电压取样模块100电连接,所述差分放大模块200的输出端与所述电压比较模块300的一输入端电连接,所述电压取样模块100的输出端还与所述电压比较模块300的另一输入端电连接,所述电压比较模块300的输出端与所述控制模块400电连接。需要说明的是,所述电压取样模块100用于获取电源输出端的电压;所述差分放大模块200用于获取电压取样模块两端的电压,并经自身的电路后输出至所述电压比较模块300的一输入端中,再通过与电压取样模块输出的电压进行比较后,由电压比较模块300输出至控制模块中;所述控制模块400用于实现电源的过流保护。
如此,通过在电源的输出端中设置电压取样模块,可以使得在过流保护的过程中,取样的电压不会被输出端的负载所干扰,避免过流保护电路的出现误触发,使得电源的控制电路启动过流保护的工作,保证打印机可以正常的工作。
需要说明的是,请参阅图2,所述电压取样模块包括取样电阻R202,所述取样电阻R202的第一端与所述差分放大模块的第一输入端电连接,所述取样电阻R202的第二端与所述差分放大模块的第二输入端电连接。通过设置取样电阻,可以获取电源输出端的电压,从而可以检测电源输出端的电流大小。
需要说明的是,所述差分放大模块包括差分放大单元、第一取样单元及第二取样单元,所述第一取样单元的输入端与所述电压取样模块的第一端连接,所述第一取样单元的输出端与所述差分放大单元的反相输入端电连接,所述第 二取样单元的输入端与所述电压取样模块的第二端连接,所述第二取样单元的输出端与所述差分放大单元的同相输入端电连接,所述差分放大单元的输出端与所述电压比较模块电连接。所述第一取样单元用于获取取样电阻R202一侧的第一电压40V-2,所述第二取样单元用于获取取样电阻R202另一侧的第二电压40V,再将取样得到的两个电压传输至差分放大单元中,若这两个电压的压差的呈线性增大的话,则差分放大单元的输出端的电压也会出现线性升高,然后升高的电压再传输至电压比较模块中。
具体地,请参阅图3,所述差分放大单元包括放大器U602B,所述放大器U602B的同相输入端与所述第二取样单元的输出端电连接,所述放大器U602B的反相输入端与所述第一取样单元的输出端电连接,所述放大器U602B的输出端与所述电压比较模块的输入端电连接。所述放大器U602B用于放大两个输入端的电压。
具体地,所述第一取样单元包括电阻R629和电阻R630,所述电阻R629的第一端与所述取样电阻R202的第一端电连接,所述电阻R629的第二端与所述放大器U602B的同相输入端电连接,所述电阻R630的两端与所述电阻R629的两端并联连接。
具体地,所述第二取样单元包括电容C616和电阻R623,所述电阻R623的第一端与所述取样电阻R202的第二端电连接,所述电阻R623的第二端分别与所述电容C616的一端,且所述电阻R623的第二端直接与所述放大器U602B的反相输入端电连接。一般地,为了等到更高的检测精度,电阻R629与电阻R630的并联电阻值应与电阻R623的电阻值相等,电阻R622应与电阻R633的电阻值相等,电阻R634应与电阻R635的电阻值相等。从而可以使得取样的电压不受其他因素的影响。
需要说明的是,所述电压比较模块包括电压比较单元、稳压单元及分压单元,所述分压单元的输入端与所述电压取样模块的输出端电连接,所述分压单元的输出端与所述电压比较单元的反相输入端电连接,所述稳压单元的两端与所述分压单元的两端并联连接,所述电压比较单元的同相输入端与所述差分放大模块的输出端电连接,所述电压比较单元的输出端输出至所述控制模块中。
具体地,所述电压比较单元包括比较器U602A和二极管D606,所述比较器U602A的同相输入端与所述差分放大模块的输出端电连接,所述比较器U602A的反相输入端与所述分压单元的输出端电连接,所述比较器U602A的输出端与所述二极管D606的阳极电连接,所述二极管D606的阴极与所述控制模块的输入端电连接。
在工作过程中,在电压比较模块中,通过设置了稳压单元及分压单元,并且分压单元的电压输入端也来自电压取样模块,即图中40V-2的输出电压,因此使得输入至比较器U602A的反相输入端的电压基本由始自终保持不变。由于放大器U602B的输出端的电压会随着第一取样单元的第一电压40V-2和第二取样单元的第二电压40V的压差的增大而增大,使得输入至比较器U602A的同相输入端电压也变大,当比较器U602A的同相输入端比反相输入端的电压大的时候,即图中40V-2与40V的输出电压差大于0.15V时,则会使比较器U602A的 输出一个高电平,再传输到控制模块中,触发控制模块的过流保护功能。
具体地,所述分压单元包括电阻R619和电阻R620,所述电阻R619的第一端与所述电压取样模块的输出端电连接,所述电阻R619的第二端分别与所述电阻R620的一端和所述比较器U602A的反相输入端电连接。如此,通过设置电阻R619和电阻R620,并对这两个电阻进行设定特定的参数值,使得从电压取样模块输出的电压经过电阻R619和电阻R620分压后,保持一个恒定的电压(比如,可以设定此电压为2.5V)输入至比较器U602A的反相输入端中,这两个电阻主要是起到分压的作用。
具体地,所述稳压单元包括稳压二极管ZD604,所述稳压二极管ZD604的阴极与所述电阻R619的第一端电连接,所述稳压二极管ZD604的阳极与所述电阻R620的另一端电连接。如此,通过设置稳压二极管ZD604(比如使用特性相对稳定的6.2V稳压管),可以保持输入至比较器U602A的反相输入端的电压更稳定。
还需要说明的是,所述电压比较模块还包括限流滤波单元,所述限流滤波单元的输入端与所述电压取样模块的输出端电连接,所述限流滤波单元的输出端与所述分压单元的输入端电连接。
具体地,所述限流滤波单元包括限流电阻R637和滤波电容C613,所述限流电阻R637的第一端与所述电压取样模块的输出端电连接,所述限流电阻R637的第二端与所述分压单元的输入端电连接,所述滤波电容C613的第一端与所述限流电阻R637的第一端电连接,所述滤波电容C613的第二端与所述电压比较单元的负端电连接。如此,通过设置限流电阻R637和滤波电容C613,可以滤除输入至比较器U602A的电压的干扰,提高电压输入的稳定性。
需要说明的是,请参阅图4,所述控制模块包括控制电路及光耦单元,所述光耦单元的输入端与所述电压比较模块的输入端电连接,所述光耦单元的输出端与所述控制电路的控制端电连接。在本实施例中,所述控制电路中具有控制芯片U100,所述控制芯片为U100,并且采用型号为NCP1399A的控制芯片。
具体地,所述光耦单元包括电阻R610、电阻R100、发光二极管PC1A和光耦三极管PC1B,所述电阻R610的第一端与所述电压比较模块的输入端电连接,所述电阻R610的第二端和所述发光二极管PC1A的阳极电连接,所述发光二极管PC1A和所述光耦三极管PC1B电连接,所述光耦三极管PC1B的集电极与所述电阻R100的一端电连接,所述电阻R100的另一端用于连接外部的VCC2,且所述光耦三极管PC1B的发射极与所述控制电路的OVP管脚电连接。
在工作过程中,当第一取样单元的第一电压40V-2和第二取样单元的第二电压40V的压差大于0.15V的时候,则会触发比较器U602A的输出端输出高电压,使得输出的高电压经过稳压二极管ZD606后传输至发光二极管PC1A的阳极中,从而使得光耦单元导通,即光耦三极管PC1B导通,使得VCC2从光耦三极管PC1B的发射极中输出至控制电路U100的OVP/OTP管脚中,从而触发过流保护功能。
本发明还提供一种过流保护系统,包括过流保护电路及延时保护电路;其中,为了实现输出端延时保护的功能,提高过流保护系统的可靠性和稳定性, 例如,在一实施方式中,请参阅图5,所述延时保护电路包括正端取样模块500、第一比较模块600和第二比较模块700,所述正端取样模块的输入端用于与电压输出端电连接,所述正端取样模块的输出端与所述第一比较模块的输入端电连接,所述第一比较模块的输出端与所述第二比较模块的输入端电连接,所述第二比较模块的输出端与所述控制模块电连接。需要说明的是,所述正端取样模块用于获取电源输出端的高端电压,即输出正端的电压;所述第一比较模块用于获取正端取样模块两端的电压,并经自身的电路后输出至所述第二比较模块的一输入端中,由第二比较模块输出至控制模块中;所述控制模块用于实现电源的过流保护。所述第二比较模块为延时模块。
请参阅图2,所述正端取样模块500包括电阻R212和电阻R213,所述电阻R212的第一端用于与电源输出端的正极电连接,所述电阻R212的第二端与所述第一比较模块600的输入端电连接,所述电阻R213的两端分别与所述电阻R212的两端电连接,并且所述电阻R212的第一端为22V-1的取样端,所述电阻R212的第二端为22V-2的取样端。如此,通过在电源的输出正端中取高端电压,可以避免由于多路输出的负载带来的地端分流的影响,因此,通过设置高端的取样电阻R212和电阻R213可以提高过流检测的精度,即过流取样的精度,从而可以使得在过流保护的过程中,取样的电压不会被输出端的负载所干扰,避免过流保护电路的出现误触发,使得电源的控制电路启动过流保护的工作,保证打印机可以正常的工作。
所述第一比较模块600包括电压稳压单元、第一分压单元、电压输入单元及第一比较器600A,所述电压稳压单元的输入端与所述电阻R212的第二端电连接,所述电压稳压单元分别与所述第一分压单元、所述电压输入单元电连接,所述第一分压单元的输出端与所述第一比较器的反相输入端电连接,所述电压输入单元的另一输入端与所述电阻R212的第一端电连接,所述电压输入单元的输出端与所述第一比较器的同相输入端电连接,所述第一比较器的输出端与所述第二比较模块700的输入端电连接。如此,通过设置电压稳压单元可以使得输入至第一比较器的反相输入端的电压保存在一个固定电压值,所述第一分压单元用于实现分压的功能,所述电压输入单元通过在电阻R212的第一端取样,输入至第一比较器的同相输入端,并且与电压固定值进行比较后,放大输出电压。
具体地,请参阅图6,所述电压稳压单元包括集成电路IC600,所述集成电路IC600分别与所述电阻R212的第二端和所述第一分压单元的输出端电连接。所述第一分压单元包括电阻R601和电阻R603,所述电阻R601的第一端与所述集成电路IC600的一端电连接,所述电阻R601的第二端与所述电阻R603的第一端电连接,所述电阻R603的第二端与所述集成电路IC600的另一端电连接,所述电阻R601的第一端与所述第一比较器U600A的2脚电连接。所述电压输入单元包括电阻R602、电阻R604和电阻R611,所述电阻R602的一端与所述集成电路IC600的一端电连接,所述电阻R602的另一端分别与所述电阻R604和所述电阻R611电连接,所述电阻R604还与所述电阻R212的第一端电连接,所述电阻R611还与所述第一比较器的同相输入端电连接。
所述第二比较模块700包括放电单元、延时单元、第二分压单元、电压限压单元及第二比较器U600B,所述放电单元、所述延时单元及所述第二分压单元分别与所述第一比较模块600的输出端电连接,所述放电单元、所述延时单元的输出端与所述第二比较器U600B的同相输入端电连接,所述第二分压单元的输出端与所述第二比较器U600B的反相输入端电连接,所述第二比较器U600B的输出端与所述控制模块电连接。如此,通过设置延时单元,可以使得过流保护电路具有延时的功能,进而使得电源输出端需要进行过流保护的时候,不会立即进行保护,会先延时6s~7s才启动过流保护功能;所述放电单元用于实现延时单元的放电;所述第二分压单元用于实现分压;所述电压限压单元用于限制第二比较器的电压不超过32V,避免电压的压差过大烧坏比较器,起到保护的作用;所述第二比较器U600B用于通过比较同相输入端和反相输入端的电压,进而输出电压至控制模块中,实现过流保护的功能。
具体地,请参阅图6,所述延时单元包括电容C603、电容C604、电阻R607和电阻R627,所述电容C603的一端与所述第一比较器U600A的输出端电连接,所述电容C603的另一端与所述电阻R212的第二端电连接,所述电容C604与所述第一比较器U600A的输出端电连接,所述电容C604的另一端与所述电阻R212的第二端电连接,所述电阻R607的一端与所述40V-2的电压输出端电连接,所述电阻R607的另一端经所述电阻R627后与所述电容C604电连接,并且所述电阻R627还与所述第二比较器U600B的5脚电连接;如此,当第一比较器U600A的输出端输出高电平的时候,40V-2会通过通过电阻R607和电阻R627对电容C603、电容C604进行充电,得到的电压输入至第二比较器U600B的同相输入端中。
所述放电单元包括二极管D601和电阻R626,所述二极管D601的阳极与所述电容C603电连接,所述二极管D601的阴极经所述电阻R626后与所述40V-2的电压输出端电连接。如此,当电容C603和电容C604充满电后,系统也进行了过流保护,从而断开了系统的电源,从而电容C603和电容C604的电压就会通过二极管D601和电阻R626实现放电的功能,为再次进行延时过流保护提供准备。
所述第二分压单元包括电阻R609和电阻R608,所述电阻R609的第一端与所述40V-2的电压输出端电连接,所述电阻R609的第二端分别与所述电阻R608和所述第二比较器U600B的反相输入端电连接,如此,可以实现分压的功能,并且在分压后输入至第二比较器U600B中。
所述电压限压单元包括二极管ZD601和电容C605,所述二极管ZD601的阳极与所述电阻R212的第二端电连接,即电阻R212的第二端为22V-2的电压,所述二极管ZD601的阴极分别与所述40V的电压输出端和所述第二比较器U600B的正极连接端电连接,所述电容C605的一端与所述二极管ZD601的阳极电连接,所述电容C605的一端与所述二极管ZD601的阴极电连接。如此,当系统下电后,如果此时22V输出带满载,40V输出空载,那么在电源开闭的时候,22V-2的电压可能很快就掉到接近0V的电压,而此时如果40V的电压因为空载,掉电比较慢,如果其的掉电在22V的电压掉到0V的时候还大于32V或以上的时候,则会 使得第二比较器U600B损坏。因此通过设置二极管ZD601后,可以使得输入至第二比较器U600B的工作电压钳位在其安全的电压范围内,比如,在24V内,保证第二比较器U600B的正常工作。
本发明相比于现有技术的优点及有益效果如下:
本发明为一种过流保护电路及过流保护系统,通过在电源的输出端中设置电压取样模块,可以使得在过流保护的过程中,取样的电压不会受两路或多路输出调整率,各输出带载大小情况的影响。避免过流保护电路的出现误触发,使得电源的控制电路启动过流保护的工作,保证打印机可以正常的工作。本发明也适用于输出电压高于32V的电压应用,解决了因运算放大器或比较器的最大工作电压只有32V的缺点。
以上所述实施方式仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种过流保护电路,其特征在于,包括:电压取样模块、差分放大模块、电压比较模块及控制模块,所述差分放大模块的两个输入端分别与所述电压取样模块电连接,所述差分放大模块的输出端与所述电压比较模块的一输入端电连接,所述电压取样模块的输出端还与所述电压比较模块的另一输入端电连接,所述电压比较模块的输出端与所述控制模块电连接。
  2. 根据权利要求1所述的过流保护电路,其特征在于,所述电压取样模块包括取样电阻R202,所述取样电阻R202的第一端与所述差分放大模块的第一输入端电连接,所述取样电阻R202的第二端与所述差分放大模块的第二输入端电连接。
  3. 根据权利要求1所述的过流保护电路,其特征在于,所述差分放大模块包括差分放大单元、第一取样单元及第二取样单元,所述第一取样单元的输入端与所述电压取样模块的第一端连接,所述第一取样单元的输出端与所述差分放大单元的反相输入端电连接,所述第二取样单元的输入端与所述电压取样模块的第二端连接,所述第二取样单元的输出端与所述差分放大单元的同相输入端电连接,所述差分放大单元的输出端与所述电压比较模块电连接。
  4. 根据权利要求3所述的过流保护电路,其特征在于,所述差分放大单元包括放大器U602B,所述放大器U602B的同相输入端与所述第二取样单元的输出端电连接,所述放大器U602B的反相输入端与所述第一取样单元的输出端电连接,所述放大器U602B的输出端与所述电压比较模块的输入端电连接。
  5. 根据权利要求1所述的过流保护电路,其特征在于,所述电压比较模块包括电压比较单元、稳压单元及分压单元,所述分压单元的输入端与所述电压取样模块的输出端电连接,所述分压单元的输出端与所述电压比较单元的反相输入端电连接,所述稳压单元的两端与所述分压单元的两端并联连接,所述电压比较单元的同相输入端与所述差分放大模块的输出端电连接,所述电压比较单元的输出端输出至所述控制模块中。
  6. 根据权利要求5所述的过流保护电路,其特征在于,所述电压比较单元包括比较器U602A和二极管D606,所述比较器U602A的同相输入端与所述差分放大模块的输出端电连接,所述比较器U602A的反相输入端与所述分压单元的输出端电连接,所述比较器U602A的输出端与所述二极管D606的阳极电连接,所述二极管D606的阴极与所述控制模块的输入端电连接。
  7. 根据权利要求5所述的过流保护电路,其特征在于,所述电压比较模块还包括限流滤波单元,所述限流滤波单元的输入端与所述电压取样模块的输出端电连接,所述限流滤波单元的输出端与所述分压单元的输入端电连接。
  8. 根据权利要求7所述的过流保护电路,其特征在于,所述限流滤波单元包括限流电阻R637和滤波电容C613,所述限流电阻R637的第一端与所述电压取样模块的输出端电连接,所述限流电阻R637的第二端与所述分压单元的输入端电连接,所述滤波电容C613的第一端与所述限流电阻R637的第一端电连接,所述滤波电容C613的第二端与所述电压比较单元的负端电连接。
  9. 根据权利要求1所述的过流保护电路,其特征在于,所述控制模块包括 控制电路及光耦单元,所述光耦单元的输入端与所述电压比较模块的输入端电连接,所述光耦单元的输出端与所述控制电路的控制端电连接。
  10. 根据权利要求1所述的过流保护系统,其特征在于,包括权利要求1~9中任意一项所述的过流保护电路。
PCT/CN2019/121352 2018-12-30 2019-11-27 过流保护电路及过流保护系统 WO2020140656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811646441.3A CN109861511A (zh) 2018-12-30 2018-12-30 过流保护电路及过流保护系统
CN201811646441.3 2018-12-30

Publications (1)

Publication Number Publication Date
WO2020140656A1 true WO2020140656A1 (zh) 2020-07-09

Family

ID=66893675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121352 WO2020140656A1 (zh) 2018-12-30 2019-11-27 过流保护电路及过流保护系统

Country Status (2)

Country Link
CN (1) CN109861511A (zh)
WO (1) WO2020140656A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116667268A (zh) * 2022-12-15 2023-08-29 荣耀终端有限公司 防止触发过流保护的方法及电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109861511A (zh) * 2018-12-30 2019-06-07 惠州华科电器有限公司 过流保护电路及过流保护系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203135403U (zh) * 2012-12-18 2013-08-14 Tcl通力电子(惠州)有限公司 机芯光头过流保护电路
CN105449631A (zh) * 2015-12-21 2016-03-30 山东航天电子技术研究所 一种宇航抗闩锁电路
CN206908273U (zh) * 2017-06-26 2018-01-19 钜微电源技术(深圳)有限公司 电源电流检测保护电路
CN109861511A (zh) * 2018-12-30 2019-06-07 惠州华科电器有限公司 过流保护电路及过流保护系统
CN209516923U (zh) * 2018-12-30 2019-10-18 惠州三华工业有限公司 过流保护电路及过流保护系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496903B (zh) * 2011-11-15 2014-10-29 深圳桑达国际电子器件有限公司 一种过流保护电路、电源电路及电源
CN103259405B (zh) * 2012-02-20 2015-10-07 理光微电子株式会社 Dcdc转换器
CN203135393U (zh) * 2013-03-05 2013-08-14 深圳Tcl新技术有限公司 电子设备热插拔配件的过流保护电路
CN103311878B (zh) * 2013-04-24 2016-03-02 华南理工大学 一种双极性电刺激保护装置
CN103475217B (zh) * 2013-09-06 2017-07-28 深圳Tcl新技术有限公司 Dc‑dc电路及其过流保护方法
JP6220249B2 (ja) * 2013-12-02 2017-10-25 ローム株式会社 スイッチングコンバータおよびその制御回路、ac/dcコンバータ、電源アダプタおよび電子機器
CN103683931B (zh) * 2013-12-27 2016-09-28 深圳市航嘉驰源电气股份有限公司 一种电源转换电路
CN203951161U (zh) * 2014-06-03 2014-11-19 成都嘉晨科技有限公司 一种过电流监测保护电路
CN106787734B (zh) * 2017-02-21 2019-05-24 哈尔滨工业大学深圳研究生院 一种适用于提高级联变换器系统稳定性的控制电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203135403U (zh) * 2012-12-18 2013-08-14 Tcl通力电子(惠州)有限公司 机芯光头过流保护电路
CN105449631A (zh) * 2015-12-21 2016-03-30 山东航天电子技术研究所 一种宇航抗闩锁电路
CN206908273U (zh) * 2017-06-26 2018-01-19 钜微电源技术(深圳)有限公司 电源电流检测保护电路
CN109861511A (zh) * 2018-12-30 2019-06-07 惠州华科电器有限公司 过流保护电路及过流保护系统
CN209516923U (zh) * 2018-12-30 2019-10-18 惠州三华工业有限公司 过流保护电路及过流保护系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116667268A (zh) * 2022-12-15 2023-08-29 荣耀终端有限公司 防止触发过流保护的方法及电子设备

Also Published As

Publication number Publication date
CN109861511A (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
US8022640B2 (en) Electronic power protection circuit and applications thereof
US20150015186A1 (en) Usb charger for electronic cigarettes
US20170170653A1 (en) Explosion-proof circuit, charging circuit and charging/discharging protection circuit of battery
WO2020140656A1 (zh) 过流保护电路及过流保护系统
US20150026486A1 (en) Overcurrent protection circuit and server using the same
WO2018068323A1 (zh) 充电器
US20130293186A1 (en) Battery charging circuit
US9887620B2 (en) Power converter
JP2013251518A (ja) Led駆動回路
CN101930059B (zh) 用于电源的交流检测电路
CN210327077U (zh) 快速充电电路及装置
TW201306411A (zh) 過壓過流保護電路
US20210226442A1 (en) Circuit structure for suppressing surge current
CN106558980B (zh) 一种使能控制电路
US10333325B2 (en) Charging state indicating circuit
GB2462135A (en) Power converter output safety device
CN107967019A (zh) 一种cmos ldo及改善其负载响应特性的系统
CN209516923U (zh) 过流保护电路及过流保护系统
CN104779577A (zh) 一种过流保护电路
TW201445866A (zh) 電源轉換電路及電子裝置
WO2022188822A1 (zh) 激光传感器控制电路、方法和电子设备
WO2018192081A1 (zh) 稳压电路及具有该稳压电路的供电电路、遥控器
TWI413329B (zh) 電池過放電保護裝置
TWI233721B (en) Capacity variation suppressor device
CN110855127A (zh) 一种反馈控制电路、充电器以及开关电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907466

Country of ref document: EP

Kind code of ref document: A1