WO2020140434A1 - 一种针对船舶碎冰阻力实验的冰场布放和数据处理方法 - Google Patents

一种针对船舶碎冰阻力实验的冰场布放和数据处理方法 Download PDF

Info

Publication number
WO2020140434A1
WO2020140434A1 PCT/CN2019/099883 CN2019099883W WO2020140434A1 WO 2020140434 A1 WO2020140434 A1 WO 2020140434A1 CN 2019099883 W CN2019099883 W CN 2019099883W WO 2020140434 A1 WO2020140434 A1 WO 2020140434A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
region
ice
regions
mean
Prior art date
Application number
PCT/CN2019/099883
Other languages
English (en)
French (fr)
Inventor
宗智
殷志宏
张桂勇
孙哲
王浩
杨碧野
蒋昱妍
陈昭炀
杨涛
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/957,804 priority Critical patent/US11397127B2/en
Publication of WO2020140434A1 publication Critical patent/WO2020140434A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M10/00Hydrodynamic testing; Arrangements in or on ship-testing tanks or water tunnels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/28Quantising the image, e.g. histogram thresholding for discrimination between background and foreground patterns
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the invention relates to an ice rink deployment and data processing method aiming at a ship ice crushing resistance experiment
  • an ice rink deployment and data processing method for the ship ice crushing resistance experiment is provided.
  • the invention aims at the ice rink deployment and data processing flow of the ship ice crushing resistance experiment to solve the situation that the actual situation and design conditions of the ice crushing basin are different during the experiment, and calculates the ice resistance measurement uncertainty to make the ice crushing experiment
  • the measurement data is more reliable, which provides a reference for other ice crushing experiments and similar experiments.
  • the technical means adopted by the present invention are as follows:
  • An ice rink deployment and data processing method for the ship ice crushing resistance experiment has the following steps:
  • step S2 Repeat step S1 at least three times;
  • the crushed ice of the ship crushed ice resistance experiment is evenly distributed, but in fact due to various factors caused by the disturbance of the water surface, the crushed ice distribution in the crushed ice area is different from the uniform distribution in the design. Therefore, to reduce this effect, the ship ice crushing resistance experiment is repeated at least three times. Before each ship ice crushing resistance experiment, the ice crushing is evenly distributed in the ice crushing area, and the overlapping ice crushing is eliminated, and then the ship ice crushing resistance begins as soon as possible. Experiments to ensure that the ship is in a state of uniform distribution when the experiment is carried out in the field of crushed ice, which can reduce the impact of the difference between the actual crushed ice distribution and the design uniform distribution.
  • S5. Perform image correction on the crushed ice field photos in the pre-experiment data, and divide by sub-regions to obtain sub-region pictures, and calculate the actual coverage of the sub-regions corresponding to the sub-region pictures;
  • the ice crushing resistance in the experimental data corresponding to each remaining sub-region is corrected to obtain the final ice crushing resistance corresponding to each remaining sub-region.
  • the ship passes through a field of crushed ice at a constant speed, and the crushed ice is a polyethylene plate with a uniform thickness.
  • step S3 The principle of dividing the crushed ice domain into multiple sub-regions in step S3 is as follows:
  • the length of the sub-region is 1.5 to 2.5 times the length of the ship
  • the experimental data corresponding to the sub-region should be able to indicate its general change trend (time-history curve). If the sub-region trend is not reasonable and repeatable, the sub-region segmentation cannot be regarded as an independent experiment.
  • step S3 the number of sub-regions is 10-15.
  • step S4 The specific steps of the step S4 are as follows:
  • (Chauv#) Mean is the Chauvenet number of average drag force
  • F T_mean is the average value of the selected data of each sub-region
  • Mean_F T_mean is the average value of the selected data of all sub-regions
  • STD_F T_mean is all the sub-regions The variance of the average value of the selected data
  • Mean_F T_mean as an average of the averages of the experimental data to a data sub-regions corresponding to all of the remaining.
  • step S5 The specific steps of the step S5 are as follows:
  • the actual coverage of a sub-region always differs from the design coverage, and because the broken ice in the sub-region picture is brighter and the water background is darker, matlab is used to binarize the sub-region picture, and Adjust the threshold as high as possible (0 ⁇ 255) to eliminate the influence of other brighter factors in the sub-region picture as much as possible;
  • Actual coverage rate the number of white pixels in the binarized picture/the total number of pixels in the binarized picture
  • the actual coverage obtained is equal to the actual coverage of the sub-region corresponding to the sub-region picture.
  • the number of white pixels in the binarized image can refer to the area of crushed ice, and the actual coverage of the sub-region image can be obtained by dividing it by the total number of pixels in the binarized image.
  • step S6 the final ice crushing resistance corresponding to each remaining sub-region is obtained by the following formula:
  • F ice_final is the final ice crushing resistance corresponding to each remaining sub-region
  • F ice_test is the ice crushing resistance in the experimental data corresponding to each remaining sub-region
  • coverage_design is the design coverage of the sub-region
  • coverage_modificed is the actual sub-region Coverage.
  • the crushed ice is evenly distributed in the crushed ice area before each ship crushed ice resistance test, and the overlapping crushed ice is eliminated to make it close to the experimental design conditions.
  • the ice crushing resistance experiment is repeated independently to reduce the influence of accidental factors; after the experiment, the experimental data is divided into intervals, based on mathematical statistics, the experimental data corresponding to the unreasonable sub-regions are removed, and the uncertainty analysis is performed ; Perform image correction on the broken ice field photos in the pre-experiment data, and divide the sub-regions to obtain the sub-region pictures, calculate the actual coverage of the sub-region, and perform the ice crush resistance in the experimental data corresponding to each remaining sub-region Corrected to make the experimental data more reliable.
  • FIG. 1 is a flowchart of an ice rink deployment and data processing method for a ship ice crushing resistance experiment in a specific embodiment of the present invention.
  • FIG. 2 is a flowchart of image correction, segmentation by sub-regions, binarization processing, and calculation of actual coverage of a photo of a broken ice field in data before experiment in a specific embodiment of the present invention.
  • an ice rink deployment and data processing method for the ship ice crushing resistance experiment has the following steps:
  • step S2 Repeat step S1 at least three times;
  • S5. Perform image correction on the crushed ice field photos in the pre-experiment data, and divide by sub-regions to obtain sub-region pictures, and calculate the actual coverage of the sub-regions corresponding to the sub-region pictures;
  • the ice crushing resistance in the experimental data corresponding to each remaining sub-region is corrected to obtain the final ice crushing resistance corresponding to each remaining sub-region.
  • the ship passes through a field of crushed ice at a constant speed, and the crushed ice is a polyethylene plate with a uniform thickness.
  • step S3 The principle of dividing the crushed ice domain into multiple sub-regions in step S3 is as follows:
  • the length of the sub-region is 1.5 to 2.5 times the length of the ship
  • the experimental data corresponding to the sub-region should be able to indicate its general trend of change.
  • step S3 the number of sub-regions is 10-15.
  • step S4 The specific steps of the step S4 are as follows:
  • (Chauv#) Mean is the Chauvenet number of the average drag force
  • F T_mean is the average drag force of each sub-region
  • Mean_F T_mean is the average value of the drag force of all sub-regions
  • STD_F T_mean is all sub-regions
  • the data selected in this embodiment is the drag force
  • Mean_FT_mean is the average value of the average drag force in the experimental data corresponding to all remaining sub-regions.
  • step S5 The specific steps of the step S5 are as follows:
  • Actual coverage rate the number of white pixels in the binarized picture/the total number of pixels in the binarized picture
  • the actual coverage obtained is equal to the actual coverage of the sub-region corresponding to the sub-region picture.
  • step S6 the final ice crushing resistance corresponding to each remaining sub-region is obtained by the following formula:
  • F ice_final is the final ice resistance corresponding to each remaining sub-region
  • F ice_test is the ice resistance in the experimental data corresponding to each remaining sub-region
  • coverage_design is the design coverage of the sub-region
  • coverage_modificed is the actual sub-region Coverage.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Complex Calculations (AREA)

Abstract

一种针对船舶碎冰阻力实验的冰场布放和数据处理方法,每次船舶碎冰阻力实验前将碎冰均匀分布在碎冰域中,并消除相互重叠的碎冰,使之与实验设计工况接近,对每次船舶碎冰阻力实验进行独立重复实验减少偶然性因素的影响;在实验结束后,对实验数据进行区间划分处理,基于数理统计的方法剔除不合理的子区域所对应的实验数据,并进行不确定性分析;对实验前数据中的碎冰域照片进行图像校正,并按子区域分割,得到子区域图片,计算子区域的实际覆盖率,对每个剩余子区域对应的实验数据中的碎冰阻力进行修正,从而使实验数据更具可靠性。

Description

一种针对船舶碎冰阻力实验的冰场布放和数据处理方法 技术领域
本发明涉及一种针对船舶碎冰阻力实验的冰场布放和数据处理方法
背景技术
由于全球变暖,北极航道通航正日渐成为现实。对于极地船舶设计来说,碎冰阻力是必须要考虑的因素。因此船舶碎冰实验的开展显得极有价值。但当前关于船舶碎冰实验的指导方法,尤其是关于实验中碎冰域的处理流程的方法还比较匮乏。
发明内容
根据上述提出的技术问题,而提供一种针对船舶碎冰阻力实验的冰场布放和数据处理方法。本发明针对船舶碎冰阻力实验的冰场布放和数据处理流程来解决实验时碎冰流域的实际情况与设计工况有所出入的情况,并计算冰阻力测量不确定度,使得碎冰实验测量数据更具可靠性,为其它碎冰实验及类似实验提供了参考。本发明采用的技术手段如下:
一种针对船舶碎冰阻力实验的冰场布放和数据处理方法,具有如下步骤:
S1、将碎冰均匀分布在碎冰域中,并消除相互重叠的碎冰,记录实验前数据;
在碎冰域中进行船舶碎冰阻力实验,并记录实验数据;
S2、重复步骤S1至少三次;
船舶碎冰阻力实验的碎冰是均匀分布的,但是实际上由于各种因素导致的水面扰动,碎冰域中的碎冰分布与设计中的均匀分布有所出入。故为减小此影响,船舶碎冰阻力实验至少重复三次,每次船舶碎冰阻力实验前将碎冰均匀分布在碎冰域中,并消除相互重叠的碎冰,之后尽快开始船舶碎冰阻力实验,以确保船舶在碎冰域中进行实验时,碎冰处于一种均匀分布的状态,这样就能减少实际碎冰分布与设计均匀分布有所出入的误差所带来的影响。
S3、基于ITTC冰实验指导文件(Ice Testing Experimental Uncertainty Analysis for Ship Resistance in Ice Tank Testing)中的分割假设及稳定状态要求将碎冰域分割成多段子区域;
S4、对每个子区域对应的实验数据进行离群数据点判断,舍弃异常子区域 对应的实验数据,对剩余子区域对应的实验数据进行不确定分析;
S5、对实验前数据中的碎冰域照片进行图像校正,并按子区域分割,得到子区域图片,计算子区域图片所对应的子区域的实际覆盖率;
S6、根据子区域的实际覆盖率和子区域的设计覆盖率,对每个剩余子区域对应的实验数据中的碎冰阻力进行修正,得到每个剩余子区域对应的最终碎冰阻力。
船舶碎冰阻力实验时,船舶以恒定速度穿过碎冰域,所述碎冰为厚度均匀的聚乙烯板。
所述步骤S3中将碎冰域分割成多段子区域的原则如下:
子区域长度为1.5~2.5倍的船舶长度;
船舶在子区域内至少发生10次与碎冰的碰撞;
子区域对应的实验数据应能表明其普遍变化趋势(时历曲线),若该子区域趋势不具合理性和可重复性则该子区域分割不能被视为一个独立的实验。
所述步骤S3中子区域的个数为10~15个。
所述步骤S4的具体步骤如下:
由于实际实验情况存在偶然性事件,故并不是每个子区域都是合理的结果,因此需要对每个子区域进行离群数据点判断,以此进行筛选。
从每个子区域对应的实验数据选取一种数据并根据公式(1)进行判断;
Figure PCTCN2019099883-appb-000001
其中:(Chauv#) Mean为平均拖力的Chauvenet数,F T_mean为每个子区域的选取数据的平均值,Mean_F T_mean是所有子区域的选取数据的平均值的平均值,STD_F T_mean是所有子区域的选取数据的平均值的方差;
若子区域的(Chauv#) Mean值不在1.96~2.13的范围内,则该子区域异常,对应的实验数据被舍弃,对剩余子区域对应的实验数据进行不确定分析:
Figure PCTCN2019099883-appb-000002
其中,U(F T_mean)为剩余子区域对应的实验数据中某一种数据的不确定性,t为经验系数,(STD_F T_mean)为所有剩余子区域对应的实验数据中某一种数据的平均值的方差,N为剩余子区域的数量;
将U(F T_mean)表示为百分比形式如下:
Figure PCTCN2019099883-appb-000003
其中,Mean_F T_mean为是所有剩余子区域对应的实验数据中某一种数据的 平均值的平均值。
所述步骤S5的具体步骤如下:
由于实验前数据中的碎冰域照片很难将狭长的整个碎冰域涵盖进去,并且存在透视变形等诸多影响因素,因此其不能直接进行覆盖率的计算。
采用matlab对实验前数据中的碎冰域照片进行几何校正以消除透视变形,并按子区域分割,得到子区域图片,使之接近真实碎冰域情况;
计算子区域图片的实际覆盖率:
实验时,某个子区域的实际覆盖率总是与设计覆盖率有所出入,且由于子区域图片中碎冰较亮、水域背景较暗,采用matlab将子区域图片进行图像二值化处理,并将阈值尽可能调高(0~255),以尽可能的剔除子区域图片中其它较亮因素的影响;
对二值化处理后的图片进行实际覆盖率的计算:
实际覆盖率=二值化处理后的图片中白色像素点数量/二值化处理后的图片中总像素点数量;
得到的实际覆盖率等于子区域图片所对应的子区域的实际覆盖率。
其中,二值化处理后的图片中白色像素点数量可代指碎冰面积,在将之除以二值化处理后的图片中总像素点数量便能得到该子区域图片的实际覆盖率。
所述步骤S6中,每个剩余子区域对应的最终碎冰阻力通过以下公式得到:
Figure PCTCN2019099883-appb-000004
其中,F ice_final为每个剩余子区域对应的最终碎冰阻力,F ice_test为每个剩余子区域对应的实验数据中的碎冰阻力,coverage_design为子区域的设计覆盖率,coverage_modificed为子区域的实际覆盖率。
与现有技术相比,本发明中每次船舶碎冰阻力实验前将碎冰均匀分布在碎冰域中,并消除相互重叠的碎冰,使之与实验设计工况接近,对每次船舶碎冰阻力实验进行独立重复实验减少偶然性因素的影响;在实验结束后,对实验数据进行区间划分处理,基于数理统计的方法剔除不合理的子区域所对应的实验数据,并进行不确定性分析;对实验前数据中的碎冰域照片进行图像校正,并按子区域分割,得到子区域图片,计算子区域的实际覆盖率,对每个剩余子区域对应的实验数据中的碎冰阻力进行修正,从而使实验数据更具可靠性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描 述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的具体实施方式中针对船舶碎冰阻力实验的冰场布放和数据处理方法的流程图。
图2是本发明的具体实施方式中对实验前数据中的碎冰域照片进行图像校正、按子区域分割、二值化处理和实际覆盖率计算的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1和图2所示,一种针对船舶碎冰阻力实验的冰场布放和数据处理方法,具有如下步骤:
S1、将碎冰均匀分布在碎冰域中,并消除相互重叠的碎冰,记录实验前数据;
在碎冰域中进行船舶碎冰阻力实验,并记录实验数据;
S2、重复步骤S1至少三次;
S3、基于ITTC冰实验指导文件(Ice Testing Experimental Uncertainty Analysis for Ship Resistance in Ice Tank Testing)中的分割假设及稳定状态要求将碎冰域分割成多段子区域;
S4、对每个子区域对应的实验数据进行离群数据点判断,舍弃异常子区域对应的实验数据,对剩余子区域对应的实验数据进行不确定分析;
S5、对实验前数据中的碎冰域照片进行图像校正,并按子区域分割,得到子区域图片,计算子区域图片所对应的子区域的实际覆盖率;
S6、根据子区域的实际覆盖率和子区域的设计覆盖率,对每个剩余子区域对应的实验数据中的碎冰阻力进行修正,得到每个剩余子区域对应的最终碎冰阻力。
船舶碎冰阻力实验时,船舶以恒定速度穿过碎冰域,所述碎冰为厚度均匀的聚乙烯板。
所述步骤S3中将碎冰域分割成多段子区域的原则如下:
子区域长度为1.5~2.5倍的船舶长度;
船舶在子区域内至少发生10次与碎冰的碰撞;
子区域对应的实验数据应能表明其普遍变化趋势。
所述步骤S3中子区域的个数为10~15个。
所述步骤S4的具体步骤如下:
从每个子区域对应的实验数据选取一种数据并根据公式(1)进行判断;本实施例选取的数据为拖曳力;
Figure PCTCN2019099883-appb-000005
其中:(Chauv#) Mean为平均拖力的Chauvenet数,F T_mean为每个子区域的拖曳力的平均值,Mean_F T_mean是所有子区域的拖曳力的平均值的平均值,STD_F T_mean是所有子区域的拖曳力的平均值的方差;
若子区域的(Chauv#) Mean值不在1.96~2.13的范围内,则该子区域异常,对应的实验数据被舍弃,对剩余子区域对应的实验数据进行不确定分析:
本实施例选取的数据为拖曳力;
Figure PCTCN2019099883-appb-000006
其中,U(F T_mean)为剩余子区域对应的实验数据中拖曳力的不确定性,t为经验系数,本实施例中t=2,(STD_F T_mean)为所有剩余子区域对应的实验数据中拖曳力的平均值的方差,N为剩余子区域的数量;
将U(F T_mean)表示为百分比形式如下:
Figure PCTCN2019099883-appb-000007
其中,Mean_F T_mean为是所有剩余子区域对应的实验数据中拖曳力的平均值的平均值。
所述步骤S5的具体步骤如下:
采用matlab对实验前数据中的碎冰域照片进行几何校正以消除透视变形,并按子区域分割,得到子区域图片;
计算子区域图片的实际覆盖率的计算:
采用matlab将子区域图片进行图像二值化处理,并将阈值尽可能调高;
对二值化处理后的图片进行实际覆盖率:
实际覆盖率=二值化处理后的图片中白色像素点数量/二值化处理后的图片中总像素点数量;
得到的实际覆盖率等于子区域图片所对应的子区域的实际覆盖率。
所述步骤S6中,每个剩余子区域对应的最终碎冰阻力通过以下公式得到:
Figure PCTCN2019099883-appb-000008
其中,F ice_final为每个剩余子区域对应的最终碎冰阻力,F ice_test为每个剩余子区域对应的实验数据中的碎冰阻力,coverage_design为子区域的设计覆盖率,coverage_modificed为子区域的实际覆盖率。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (7)

  1. 一种针对船舶碎冰阻力实验的冰场布放和数据处理方法,其特征在于具有如下步骤:
    S1、将碎冰均匀分布在碎冰域中,并消除相互重叠的碎冰,记录实验前数据;
    在碎冰域中进行船舶碎冰阻力实验,并记录实验数据;
    S2、重复步骤S1至少三次;
    S3、基于ITTC冰实验指导文件中的分割假设及稳定状态要求将碎冰域分割成多段子区域;
    S4、对每个子区域对应的实验数据进行离群数据点判断,舍弃异常子区域对应的实验数据,对剩余子区域对应的实验数据进行不确定分析;
    S5、对实验前数据中的碎冰域照片进行图像校正,并按子区域分割,得到子区域图片,计算子区域图片所对应的子区域的实际覆盖率;
    S6、根据子区域的实际覆盖率和子区域的设计覆盖率,对每个剩余子区域对应的实验数据中的碎冰阻力进行修正,得到每个剩余子区域对应的最终碎冰阻力。
  2. 根据权利要求1所述的方法,其特征在于:船舶碎冰阻力实验时,船舶以恒定速度穿过碎冰域,所述碎冰为厚度均匀的聚乙烯板。
  3. 根据权利要求1所述的方法,其特征在于:所述步骤S3中将碎冰域分割成多段子区域的原则如下:
    子区域长度为1.5~2.5倍的船舶长度;
    船舶在子区域内至少发生10次与碎冰的碰撞;
    子区域对应的实验数据应能表明其普遍变化趋势。
  4. 根据权利要求3所述的方法,其特征在于:所述步骤S3中子区域的个数为10~15个。
  5. 根据权利要求4所述的方法,其特征在于:所述步骤S4的具体步骤如下:
    从每个子区域对应的实验数据选取一种数据并根据公式(1)进行判断;
    Figure PCTCN2019099883-appb-100001
    其中:(Chauv#) Mean为平均拖力的Chauvenet数,F T_mean为每个子区域的 选取数据的平均值,Mean_F T_mean是所有子区域的选取数据的平均值的平均值,STD_F T_mean是所有子区域的选取数据的平均值的方差;
    若子区域的(Chauv#) Mean值不在1.96~2.13的范围内,则该子区域异常,对应的实验数据被舍弃,对剩余子区域对应的实验数据进行不确定分析:
    Figure PCTCN2019099883-appb-100002
    其中,U(F T_mean)为剩余子区域对应的实验数据中某一种数据的不确定性,t为经验系数,(STD_F T_mean)为所有剩余子区域对应的实验数据中某一种数据的平均值的方差,N为剩余子区域的数量;
    将U(F T_mean)表示为百分比形式如下:
    Figure PCTCN2019099883-appb-100003
    其中,Mean_F T_mean为是所有剩余子区域对应的实验数据中某一种数据的平均值的平均值。
  6. 根据权利要求5所述的方法,其特征在于:所述步骤S5的具体步骤如下:
    采用matlab对实验前数据中的碎冰域照片进行几何校正以消除透视变形,并按子区域分割,得到子区域图片;
    计算子区域图片的实际覆盖率:
    采用matlab将子区域图片进行图像二值化处理,并将阈值尽可能调高;
    对二值化处理后的图片进行实际覆盖率的计算:
    实际覆盖率=二值化处理后的图片中白色像素点数量/二值化处理后的图片中总像素点数量;
    得到的实际覆盖率等于子区域图片所对应的子区域的实际覆盖率。
  7. 根据权利要求6所述的方法,其特征在于:所述步骤S6中,每个剩余子区域对应的最终碎冰阻力通过以下公式得到:
    Figure PCTCN2019099883-appb-100004
    其中,F ice_final为每个剩余子区域对应的最终碎冰阻力,F ice_test为每个剩余子区域对应的实验数据中的碎冰阻力,coverage_design为子区域的设计覆盖率,coverage_modificed为子区域的实际覆盖率。
PCT/CN2019/099883 2019-01-05 2019-08-09 一种针对船舶碎冰阻力实验的冰场布放和数据处理方法 WO2020140434A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/957,804 US11397127B2 (en) 2019-01-05 2019-08-09 Method of ice distribution and data processing for ship ice resistance experiment in broken ice field

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910009611.5 2019-01-05
CN201910009611 2019-01-05

Publications (1)

Publication Number Publication Date
WO2020140434A1 true WO2020140434A1 (zh) 2020-07-09

Family

ID=66405992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099883 WO2020140434A1 (zh) 2019-01-05 2019-08-09 一种针对船舶碎冰阻力实验的冰场布放和数据处理方法

Country Status (3)

Country Link
US (1) US11397127B2 (zh)
CN (1) CN109752165B (zh)
WO (1) WO2020140434A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752165B (zh) 2019-01-05 2020-09-29 大连理工大学 一种针对船舶碎冰阻力实验的冰场布放和数据处理方法
CN110282076B (zh) * 2019-08-05 2020-11-06 江苏科技大学 一种碎冰与海洋结构物连续碰撞水池实验装置
CN112525484B (zh) * 2020-12-04 2022-11-29 中国石油大学(华东) 一种测量船体在遮阳球中航行所受阻力的模拟装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014587A (zh) * 2017-05-18 2017-08-04 哈尔滨工程大学 一种利用非冻结模型冰获取碎冰中船模阻力的测量系统和测量方法
CN107021184A (zh) * 2017-03-22 2017-08-08 哈尔滨工程大学 一种船舶实水域破冰试验方法
JP2018009793A (ja) * 2016-07-11 2018-01-18 ジャパンマリンユナイテッド株式会社 船舶の氷片干渉試験方法及び船舶の氷片干渉試験設備
CN108195561A (zh) * 2018-02-02 2018-06-22 哈尔滨工程大学 一种实际水域中冰缘区航行船舶阻力性能试验方法
CN109752165A (zh) * 2019-01-05 2019-05-14 大连理工大学 一种针对船舶碎冰阻力实验的冰场布放和数据处理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106394806A (zh) * 2016-08-29 2017-02-15 南通中远川崎船舶工程有限公司 一种基于冰水池试验的冰区船破冰阻力预报方法
CN108982055B (zh) * 2018-05-25 2021-01-05 哈尔滨工程大学 一种碎冰释放装置
CN108717017A (zh) * 2018-08-07 2018-10-30 上海海事大学 极地航行船舶材料低温环境摩擦碰撞性能测试装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009793A (ja) * 2016-07-11 2018-01-18 ジャパンマリンユナイテッド株式会社 船舶の氷片干渉試験方法及び船舶の氷片干渉試験設備
CN107021184A (zh) * 2017-03-22 2017-08-08 哈尔滨工程大学 一种船舶实水域破冰试验方法
CN107014587A (zh) * 2017-05-18 2017-08-04 哈尔滨工程大学 一种利用非冻结模型冰获取碎冰中船模阻力的测量系统和测量方法
CN108195561A (zh) * 2018-02-02 2018-06-22 哈尔滨工程大学 一种实际水域中冰缘区航行船舶阻力性能试验方法
CN109752165A (zh) * 2019-01-05 2019-05-14 大连理工大学 一种针对船舶碎冰阻力实验的冰场布放和数据处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄焱 等 (HUANG, YAN ET AL.): "大型运输船极地浮冰区航行阻力的模型试验 (Model Tests on the Resistance of a Large Transport Ship in Arctic Region with Pack Ice)", 中国造船 (SHIPBUILDING OF CHINA), vol. 57, no. 3, 30 September 2016 (2016-09-30), ISSN: 1000--488, DOI: 20191015145810A *

Also Published As

Publication number Publication date
US20210172831A1 (en) 2021-06-10
CN109752165A (zh) 2019-05-14
US11397127B2 (en) 2022-07-26
CN109752165B (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2020140434A1 (zh) 一种针对船舶碎冰阻力实验的冰场布放和数据处理方法
CN108460757B (zh) 一种手机TFT-LCD屏Mura缺陷在线自动检测方法
KR102104403B1 (ko) 단일영상 내의 안개 제거 방법 및 장치
KR101669819B1 (ko) 깊이 영상의 고정밀 복원을 위한 필터링 장치 및 방법
CN103439338B (zh) 薄膜缺陷分类方法
CN108918093B (zh) 一种滤光片镜面缺陷检测方法、装置及终端设备
CN109741334A (zh) 一种通过分块阈值进行图像分割的方法
CN107491763A (zh) 基于深度图像的手指区域分割方法及装置
WO2019223706A1 (zh) 一种基于饱和度聚类的骨髓白细胞定位方法
CN111768387A (zh) 瑕疵检测方法、孪生神经网络训练方法、装置及电子设备
CN111476712B (zh) 一种烧结机的台车箅条图像的摄取及检测方法、系统
Xia et al. Multi-focus image fusion based on probability filtering and region correction
CN108510510A (zh) 基于梯度方向的图像边缘检测方法
CN109712116B (zh) 输电线路及其附件的故障识别方法
KR20160078215A (ko) 이미지 처리 방법 및 장치
CN109635679B (zh) 一种实时的靶纸定位及环线识别方法
CN104899854B (zh) 堆粮高度线的检测方法和装置
CN106023102B (zh) 一种基于多尺度结构块的图像修复方法
CN106846262A (zh) 去除蚊式噪声的方法及系统
CN115511738A (zh) 一种图像局部色差区域自动匀色处理方法
Vachier et al. News from viscousland.
KR101553140B1 (ko) 영상 분할 기법을 이용한 안개 영상의 보상 방법
CN108376401A (zh) 一种基于行方差的自动定位gpr信号病害位置方法
CN111382736B (zh) 车牌图像的获取方法和装置
WO2017091060A1 (en) A system and method for detecting objects from image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907972

Country of ref document: EP

Kind code of ref document: A1