WO2020140253A1 - 具有低偏振相关损耗的并联光纤光栅及其制备方法、装置 - Google Patents

具有低偏振相关损耗的并联光纤光栅及其制备方法、装置 Download PDF

Info

Publication number
WO2020140253A1
WO2020140253A1 PCT/CN2019/070381 CN2019070381W WO2020140253A1 WO 2020140253 A1 WO2020140253 A1 WO 2020140253A1 CN 2019070381 W CN2019070381 W CN 2019070381W WO 2020140253 A1 WO2020140253 A1 WO 2020140253A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
grating
optical fiber
electric rotating
objective lens
Prior art date
Application number
PCT/CN2019/070381
Other languages
English (en)
French (fr)
Inventor
王义平
廖常锐
李自亮
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2019/070381 priority Critical patent/WO2020140253A1/zh
Publication of WO2020140253A1 publication Critical patent/WO2020140253A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the invention relates to a parallel fiber grating with low polarization-related loss, in particular to a parallel fiber grating with low polarization-related loss and a preparation method and device thereof, which belong to the field of photoelectric technology.
  • Fiber grating is a kind of diffraction grating formed by axially periodically modulating the refractive index of the fiber core through a certain method, and is a passive filter device.
  • Grating fiber has the advantages of small size, small fusion loss, full compatibility with optical fiber, and the ability to embed smart materials. Its resonance wavelength is sensitive to changes in the external environment such as temperature, strain, refractive index, concentration, etc. The field of sensing has been widely used.
  • the main object of the present invention is to provide a parallel fiber grating with low polarization-dependent loss, and a method and device for manufacturing the same.
  • the main purpose of the present invention is to provide a parallel fiber grating with low polarization-dependent loss, and a method and device for manufacturing the same, which can solve the technology of low spatial resolution, low reflectance, and high polarization-related loss in the fiber grating in the prior art problem.
  • the present invention provides a parallel fiber grating with low polarization-dependent loss, which includes a cylindrical solid core fiber and four fiber Bragg gratings written in the solid core fiber;
  • the four fiber Bragg gratings are distributed in parallel on the side of the cylinder formed by the center line of the solid core fiber as a fixed line, and the four intercept points of the four fiber Bragg gratings on the circular cross section of the cylinder are two perpendicular to each other in the circular cross section
  • the intersection of the diameter of the circle and the circular section; the radius of the circular section is the preset length;
  • the modulation directions of any two adjacent fiber Bragg gratings differ by 90°, and the modulation directions of any two non-adjacent fiber Bragg gratings are the same.
  • the grating period of the four fiber Bragg gratings is ⁇ , and the length of the grating ranges from 0.2 mm to 0.8 mm.
  • the preset length ranges from 1 micrometer to 4.5 micrometers.
  • the invention also provides a preparation device for a parallel fiber grating with low polarization-dependent loss.
  • the preparation device includes a femtosecond laser, a laser energy regulator, a shutter device, a dichromatic prism, a CCD camera, an objective lens, and a first motor Rotating fixture, second electric rotating fixture, fixture control device and three-dimensional mobile platform;
  • the first electric rotating jig and the second electric rotating jig are arranged on a three-dimensional mobile platform, and the first electric rotating jig and the second electric rotating jig are on the same horizontal line for clamping the solid core optical fiber; the jig control device and the first Connection of electric rotary clamp and second electric rotary clamp;
  • the laser light emitted by the femtosecond laser is transmitted to the dichroic prism through the laser energy regulator and the shutter device, and the first laser light and the second laser light are separated by the dichroic prism, the first laser light is transmitted to the CCD camera, and the second laser light is focused on the solid fiber through the objective lens It is used to make parallel fiber gratings.
  • the preparation device further includes an optical fiber coupler, a light source module, a spectrum acquisition and analysis module, a first optical fiber, a second optical fiber, a third optical fiber, and a fourth optical fiber;
  • the first end of the optical fiber coupler is connected to the light source module through the first optical fiber, and the second end of the optical fiber coupler is connected to the port of the spectrum acquisition and analysis module through the second optical fiber.
  • the optical fiber coupler further includes a third end, and one end of the third optical fiber Connected to the third end, the other end of the third fiber is connected to one end of the solid core fiber, and the position where the third fiber and the solid fiber are connected is clamped by the first electric rotating fixture; one end of the fourth fiber is connected to the spectrum
  • the port of the analysis module is connected, the other end of the fourth optical fiber is connected to the other end of the solid optical fiber, and the position where the fourth optical fiber and the solid optical fiber are connected is clamped by the second electric rotating clamp;
  • the laser light emitted by the light source module is incident on the prepared parallel fiber grating through the fiber coupler, part of the laser light is incident on the spectrum collection and analysis module, and the other part of the laser light is reflected in the parallel fiber grating and is incident on the spectrum collection and analysis through the fiber coupler Module.
  • the laser energy regulator includes a Granite prism and a polarization controller
  • the laser light is transmitted to the shutter device through the Gran Prism and the polarization controller;
  • the Grand Prism is used to control the energy attenuation of the laser, and the polarization controller is used to control the polarization state of the laser beam.
  • the present invention also provides a method for preparing a parallel fiber grating with low polarization-dependent loss.
  • the preparation method is based on the preparation device according to claim 4, and the preparation method includes:
  • Step 1 Clamp the solid optical fiber stripped of the coating layer on the first electric rotating fixture and the second electric rotating fixture, and move the three-dimensional moving platform so that the center axis of the solid fiber is located on the horizontal line where the focal point of the objective lens focuses. Note that the focus position of the objective lens is the first position;
  • Step 2 Move the three-dimensional mobile platform upward by a preset length, turn on the femtosecond laser, and move the objective lens horizontally from the first electric rotary fixture to the second electric rotary fixture.
  • the laser light emitted by the femtosecond laser is focused at the focal point through the objective lens , And write the first fiber Bragg grating on the first horizontal line on the solid core fiber, and turn off the femtosecond laser after the writing is completed;
  • Step 3 Move the three-dimensional mobile platform to return the focal point of the objective lens to the first position, move the three-dimensional mobile platform downward by a preset length, turn on the femtosecond laser, and move from the first electric rotating fixture to the second electric rotating fixture Move the objective lens horizontally; the laser light emitted by the femtosecond laser is focused at the focal point by the objective lens, and a second fiber Bragg grating is written on the second horizontal line on the solid core fiber, and the femtosecond laser is turned off after the writing is completed;
  • Step 4 Move the three-dimensional mobile platform so that the focus of the objective lens returns to the first position, and the first electric rotating jig and the second electric rotating jig are controlled by the jig control device to simultaneously rotate 90° in a counterclockwise direction;
  • Step 5 Move the three-dimensional mobile platform upward by a preset length, turn on the femtosecond laser, and move the objective lens horizontally from the first electric rotary fixture to the second electric rotary fixture.
  • the laser light emitted by the femtosecond laser is focused at the focal point through the objective lens , Write the third fiber Bragg grating on the third horizontal line on the solid core fiber, and turn off the femtosecond laser after the writing is completed;
  • Step 6 Move the three-dimensional mobile platform to return the focal point of the objective lens to the first position, move the three-dimensional mobile platform downward by a preset length, turn on the femtosecond laser, and move from the first electric rotating fixture to the second electric rotating fixture Moving the objective lens horizontally, the laser light emitted by the femtosecond laser is focused at the focal point through the objective lens, and a fourth fiber Bragg grating is written on the fourth horizontal line on the solid core fiber to obtain a parallel fiber grating.
  • the grating period of the first fiber Bragg grating, the second fiber Bragg grating, the third fiber Bragg grating, and the fourth fiber Bragg grating is ⁇ , and the grating length ranges from 0.2 mm to 0.8 mm.
  • the preset length ranges from 1 micrometer to 4.5 micrometers.
  • the invention provides a parallel fiber grating with low polarization-dependent loss and a preparation method and device thereof.
  • the parallel fiber grating includes a cylindrical solid-core fiber and four fiber Bragg gratings written in the solid-core fiber.
  • the four fibers The Bragg grating is distributed in parallel on the side of the cylinder formed by the center line of the solid core fiber as a fixed straight line, and the four intercept points of the four fiber Bragg gratings on the circular cross section of the cylinder are two mutually perpendicular diameters in the circular cross section
  • the intersection with the circular cross-section; the radius of the circular cross-section is a preset length, where the modulation directions of any two adjacent fiber Bragg gratings differ by 90°, and the modulation directions of any two non-adjacent fiber Bragg gratings are the same.
  • the parallel fiber grating with four fiber Bragg gratings provided by the present invention has a higher reflectivity;
  • the reflectivity of the parallel fiber grating is higher, the polarization-dependent loss will be smaller, and when the structural symmetry of the grating is better, the polarization-dependent loss will be smaller.
  • the parallel fiber gratings in the provided parallel fiber gratings are distributed in a circular ring shape and have good symmetry; on the other hand, the parallel fiber gratings provided by the present invention have a short grating length and therefore have a high spatial resolution .
  • the parallel fiber grating provided by the present invention not only has high spatial resolution and high reflectivity, but also has low polarization-dependent loss.
  • FIG. 1 is a schematic structural diagram of a parallel fiber grating with low polarization-dependent loss provided by this application;
  • FIG. 2 is a schematic structural diagram of a preparation device for preparing a parallel fiber grating with low polarization-dependent loss provided by this application;
  • FIG. 3 is a schematic structural diagram of another preparation device for preparing a parallel fiber grating with low polarization-dependent loss provided by this application;
  • FIG. 5 is a schematic structural diagram of another parallel fiber grating with low polarization-dependent loss provided by this application;
  • FIG. 6 is a schematic cross-sectional structure diagram of a parallel fiber grating with low polarization-dependent loss provided by the present application;
  • the present application provides a parallel fiber grating with low polarization-dependent loss.
  • the parallel fiber grating includes a cylindrical solid core fiber 1 and four fiber Bragg gratings written in the solid core fiber. See FIG.
  • the fiber Bragg grating 101 is distributed in parallel on the side of the cylinder formed by the center line 102 of the solid core fiber as a straight line, and the four fiber Bragg grating 1 has four intercept points 103 on the circular cross section of the cylinder, which are two in the circular cross section The intersection of the mutually perpendicular diameter and the circular cross section.
  • modulation directions of any two adjacent fiber Bragg gratings differ by 90°, and the modulation directions of any two adjacent fiber Bragg gratings are the same.
  • the solid core optical fiber is a common single-mode quartz optical fiber stripped of the coating layer.
  • the radius of the circular cross-section is a preset length.
  • the preset length may range from 1 micrometer to 4.5 micrometers.
  • the four fiber Bragg gratings in the solid core fiber have a grating period of ⁇ and a grating length ranging from 0.2 mm to 0.8 mm.
  • the parallel fiber grating provided in this embodiment has four fiber Bragg gratings, and the four fiber Bragg gratings are distributed in a circular ring shape. Therefore, the parallel fiber grating provided by the present invention has the characteristics of high reflectivity and low polarization-related loss.
  • the parallel fiber grating provided by the present invention has a short grating length ranging from 0.2 mm to 0.8 mm. Therefore, the parallel fiber grating provided by the present invention also has the characteristics of higher spatial resolution.
  • the present application also provides a device for preparing a parallel fiber grating with low polarization-dependent loss.
  • the preparation device includes a femtosecond laser 201, a laser energy regulator 202, a shutter device 203, a dichromatic prism 204, and a CCD
  • the first electric rotating jig 207 and the second electric rotating jig 208 are disposed on the three-dimensional moving platform 210, and the first electric rotating jig 207 and the second electric rotating jig 208 are on the same horizontal line for clamping the solid core optical fiber 1.
  • the jig control device 209 is connected to the first electric rotating jig 207 and the second electric rotating jig 208, respectively.
  • the application also provides the functions of each device included in the preparation device as follows:
  • the femtosecond laser 201 emits laser light.
  • the laser energy regulator 202 is used to adjust the laser light emitted by the femtosecond laser to a suitable energy.
  • the shutter device 203 is used to block the laser light emitted by the femtosecond laser, which is equivalent to an optical switch, and specific opening and closing can be automatically controlled by a program.
  • the dichroic prism 204 is used to reflect the laser light emitted by the femtosecond laser to the objective lens, and the CCD camera.
  • the CCD camera 205 is used to collect the laser light reflected by the dichromatic prism and the objective lens, and produce a real-time microscopic image according to the refractive index of the laser light in the core of the solid core fiber.
  • the objective lens 206 can focus the laser light on a solid core fiber, and write a fiber Bragg grating on the solid core fiber.
  • the first electric rotating jig 207 and the second electric rotating jig 208 are used to fix both ends of the solid core optical fiber in a horizontal line.
  • the jig control device 209 is used to send a rotation control signal to control the first electric rotating jig 207 and the second electric rotating jig 208 to rotate.
  • the three-dimensional mobile platform 210 can move in three-dimensional space.
  • the laser light emitted by the femtosecond laser 201 is transmitted to the dichroic prism 204 through the laser energy regulator 202 and the shutter device 203, and the first laser and the second laser are split by the dichroic prism 204
  • the first laser will be transmitted to the CCD camera 205, and the second laser will be focused on the solid core fiber 1 through the objective lens 206, which is used to make a parallel fiber grating.
  • the preparation device of the parallel fiber grating provided by the present invention further includes a fiber coupler 211, a light source module 212, and a spectrum acquisition and analysis module 213, a first optical fiber 214, a second optical fiber 215, a third optical fiber 216, and a fourth optical fiber 217.
  • each device is: the first end of the optical fiber coupler 211 is connected to the light source module 212 through the first optical fiber 214, and the second end of the optical fiber coupler 211 is connected to the spectrum acquisition and analysis module 213 through the second optical fiber 215 Port connection, the optical fiber coupler 211 further includes a third end, one end of the third optical fiber 216 is connected to the third end, the other end of the third optical fiber 216 is connected to one end of the solid optical fiber 1, and the third optical fiber 216 and the solid core The position where the optical fiber 1 meets is clamped by the first electric rotary jig 207.
  • One end of the fourth optical fiber 217 is connected to the port of the spectrum acquisition and analysis module 213, the other end of the fourth optical fiber 217 is connected to the other end of the solid optical fiber 1, and the position where the fourth optical fiber 217 and the solid optical fiber 1 are connected is Two electric rotating clamps 208 are clamped.
  • the function of the light source module is to provide incident light.
  • the spectrum acquisition and analysis module is used to collect and analyze the laser light reflected by the parallel fiber grating, and write the reflectance, resonance peak position and other information of the parallel fiber grating.
  • the optical fiber coupler may split the laser light emitted by the light source module 212 from the first optical fiber 214 to the second optical fiber 215 and the third optical fiber 216.
  • the laser light emitted by the light source module 212 is incident on the parallel fiber grating made of the solid core fiber 1 through the fiber coupler 211, part of the laser light is incident on the spectrum acquisition and analysis module 213, and the other part of the laser light is in the parallel fiber grating
  • the reflection occurs and enters the spectrum acquisition and analysis module 213 through the fiber coupler 211.
  • the spectrum acquisition and analysis module 213 can perform analysis based on the received laser, and finally obtain information such as the reflectivity and resonance peak position of the parallel fiber grating.
  • the laser energy regulator 202 includes a Granite prism 2021 and a polarization controller 2022.
  • the laser light emitted by the light source module 212 can be transmitted to the shutter device through the Granite prism 2021 and the polarization controller 2022. 203.
  • the Granite prism is used to control the energy attenuation of the laser
  • the polarization controller is used to control the polarization state of the laser beam.
  • the parallel fiber grating prepared by the preparation device of the parallel fiber grating provided in this embodiment may have four fiber Bragg gratings, and the four fiber Bragg gratings are distributed in a circular ring shape, so the parallel fiber grating has high reflectivity and low Characteristics of polarization-dependent loss.
  • the present application also provides a preparation method of the parallel fiber grating, which is implemented based on the preparation device of the parallel fiber grating.
  • this embodiment is based on the preparation device shown in FIG. 2 and introduces the process of preparing the parallel fiber grating shown in FIG. 5.
  • FIG. 6 is shown in FIG. 5.
  • the schematic diagram of the cross-sectional structure of the parallel fiber grating is shown.
  • preparation device based on the preparation method provided by the present application may not only be the preparation device shown in FIG. 2 but also other preparation devices, as long as the preparation method provided by the present application can be realized.
  • the preparation method provided in this example includes:
  • Step 1 The solid core optical fiber 1 stripped of the coating layer is clamped between the first electric rotary jig 207 and the second electric rotary jig 208, and the three-dimensional moving platform 210 is moved so that the central axis 102 of the solid core optical fiber 1 (see FIG. 5 ) Is located on the horizontal line where the focal point of the objective lens 206 is focused, and the position where the focal point of the objective lens is located is the first position 104;
  • Step 2 Move the three-dimensional mobile platform 210 upward by a preset length, turn on the femtosecond laser 201, and move the objective lens 206 horizontally from the first electric rotating fixture 207 to the second electric rotating fixture 208, the laser light emitted by the femtosecond laser 201 Focus on the focal point through the objective lens 206, and write the first fiber Bragg grating 1011 on the first horizontal line on the solid core fiber 1, and turn off the femtosecond laser 201 after the writing is completed.
  • Step 3 Move the three-dimensional mobile platform 210 to return the focal point of the objective lens 206 to the first position 104, move the three-dimensional mobile platform 210 downward by a preset length, turn on the femtosecond laser 201, and move the first electric rotating fixture 207 to The objective lens 206 is moved horizontally in the direction of the second electric rotating fixture 208.
  • the laser light emitted by the femtosecond laser 201 is focused at the focal point through the objective lens 206, and a second fiber Bragg grating 1012 is written on the second horizontal line on the solid core fiber 1. After the writing is completed, the femtosecond laser 201 is turned off.
  • Step 4 Move the three-dimensional moving platform 210 to return the focal point of the objective lens 206 to the first position 104, and control the first electric rotating jig 207 and the second electric rotating jig 208 to rotate coaxially in the counterclockwise direction by 90 through the jig control device 209 °.
  • Step 5 Move the three-dimensional mobile platform 210 upward by a preset length, turn on the femtosecond laser 201, and move the objective lens 206 horizontally from the first electric rotating fixture 207 to the second electric rotating fixture 208.
  • the laser light emitted by the femtosecond laser 201 Focusing on the focal point through the objective lens 206, a third fiber Bragg grating 1013 is written on the third horizontal line on the solid core fiber 1, and the femtosecond laser 201 is turned off after the writing is completed.
  • Step 6 Move the three-dimensional mobile platform 210 to return the focal point of the objective lens 206 to the first position 104, move the three-dimensional mobile platform 210 downward by a preset length, turn on the femtosecond laser 201, and move the first electric rotating fixture 207 to
  • the objective lens 206 is moved horizontally in the direction of the second electric rotating jig 208, the laser light emitted by the femtosecond laser 201 is focused at the focal point through the objective lens 206, and a fourth fiber Bragg grating 1014 is written on the fourth horizontal line on the solid core fiber 1 to obtain Parallel fiber grating.
  • the first fiber Bragg grating 1011, the second fiber Bragg grating 1012, the third fiber Bragg grating 1013 and the fourth fiber Bragg grating 1014 are distributed in the quartz fiber core Different locations.
  • the modulation directions of the first fiber Bragg grating 1011 and the second fiber Bragg grating 1012 are the same, and the modulation directions of the third fiber Bragg grating 1013 and the fourth fiber Bragg grating 1014 are the same, so that a symmetrical distribution can be formed.
  • the modulation directions of the first fiber Bragg grating 1011 and the second fiber Bragg grating 1012 are 90° from the modulation directions of the third fiber Bragg grating 1013 and the fourth fiber Bragg grating 1014.
  • the first fiber Bragg grating 1011, the second fiber Bragg grating 1012, the third fiber Bragg grating 1013, and the fourth fiber Bragg grating 1014 have a grating period of ⁇ and a grating length ranging from 0.2 mm to 0.8 mm.
  • the preset length ranges from 1 micrometer to 4.5 micrometers.
  • the prepared parallel fiber grating has four fiber Bragg gratings, and the four fiber Bragg gratings are distributed in a circular ring shape. Therefore, the parallel fiber grating has high reflectivity and low polarization Characteristics of related losses.
  • the parallel fiber grating provided by the present application includes a solid core fiber and a plurality of parallel and spaced fiber Bragg gratings of the same period or different periods in the core of the solid fiber. These fiber Bragg gratings There is a reasonable spacing between the gratings, no crosstalk between them, high reflectivity and low polarization-dependent loss.
  • the preparation apparatus for the parallel fiber grating provided by the present application, it is not necessary to manufacture the parallel fiber grating based on an expensive phase mask as in the prior art, and the solid core can be controlled by a precise three-dimensional mobile platform The movement of the optical fiber makes a parallel fiber grating under the action of the laser.
  • the preparation method provided by the invention is relatively simple and low in cost, and the obtained parallel fiber grating has high mechanical strength and stable performance, and can achieve higher reflectivity (greater than 90%) while achieving a short grating length And low polarization-dependent loss (less than 1dB), it has good application value in the field of fiber communication, fiber sensing and fiber laser.
  • Ultra-high spatial resolution temperature/strain sensor Based on the parallel fiber grating proposed by the present invention, an ultra-high spatial resolution temperature/strain sensor can be made.
  • the sensor device has a short grating length and a small fiber diameter, and can realize a sub-micron single-point type Sensing.
  • Multi-wavelength fiber laser A multi-wavelength fiber laser can be made based on the parallel fiber grating proposed by the present invention. Since multiple fiber Bragg gratings with different periods are integrated in the parallel fiber grating, the fiber laser resonant cavity and the multi-wavelength-selected fiber can be realized simultaneously Device.
  • the parallel integrated fiber Bragg grating device proposed by the present invention can realize ultra-low polarization-dependent loss under the premise of ensuring high reflectivity through the spatial ring distribution of the Bragg grating proposed by the inventor.
  • FIG. 7 is a polarization-dependent loss test result of a high spatial resolution temperature sensor made based on the parallel fiber grating provided by the present invention.
  • the abscissa in the figure represents the wavelength in nm
  • the ordinate on the left represents the transmission spectrum loss in dB
  • the ordinate on the right represents the polarization-dependent loss in dB.
  • the corresponding polarization-dependent loss is only 1.18 dB.
  • the reflectivity of the high spatial resolution temperature sensor based on the parallel fiber grating can be greater than 95%.
  • the polarization-dependent loss is low (1.18dB), which greatly improves the measurement accuracy of the single-point temperature sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

一种具有低偏振相关损耗的并联光纤光栅以及制备装置、方法,并联光纤光栅包括圆柱形的实芯光纤(1),以及写制在实芯光纤(1)中的四条光纤布拉格光栅(101),这四条光纤布拉格光栅(101)平行分布于以实芯光纤(1)的中心轴线(102)为定直线形成的圆柱体的侧面,且四条光纤布拉格光栅(101)在圆柱体的圆截面上的四个截点(103),为圆截面内两条互相垂直的直径与圆截面的交点;圆截面的半径为预设长度,其中,任意相邻的两条光纤布拉格光栅(101)的调制方向相差90°,且任意不相邻的两条光纤布拉格光栅(101)的调制方向相同。并联光纤光栅具有四个光纤布拉格光栅(101),四个光纤布拉格光栅(101)成圆环形分布,因此并联光纤光栅具有高反射率,低偏振相关损耗的特点。

Description

具有低偏振相关损耗的并联光纤光栅及其制备方法、装置 技术领域
本发明涉及一种具有低偏振相关损耗的并联光纤光栅,尤其是一种具有低偏振相关损耗的并联光纤光栅及其制备方法、装置,属于光电技术领域。
背景技术
光纤光栅是一种通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅,是一种无源滤波器件。由于光栅光纤具有体积小、熔接损耗小、全兼容于光纤、能埋入智能材料等优点,并且其谐振波长对温度、应变、折射率、浓度等外界环境的变化比较敏感,因此在光纤通信和传感领域得到了广泛的应用。
近年来,随着电子技术的发展,对光纤光栅的要求越来越高,而现有的光纤光栅具有较低的空间分辨率、较低的反射率、较高的偏振相关损耗。
技术问题
本发明的主要目的在于提供一种具有低偏振相关损耗的并联光纤光栅及其制备方法、装置。
技术解决方案
本发明的主要目的在于提供一种具有低偏振相关损耗的并联光纤光栅及其制备方法、装置,可以解决现有技术中的光纤光栅具有低空间分辨率、低反射率、高偏振相关损耗的技术问题。
为实现上述目的,本发明提供了一种具有低偏振相关损耗的并联光纤光栅,该并联光纤光栅包括圆柱形的实芯光纤,以及写制在实芯光纤中的四条光纤布拉格光栅;
四条光纤布拉格光栅平行分布于以实芯光纤的中心轴线为定直线形成的圆柱体的侧面,且四条光纤布拉格光栅在圆柱体的圆截面上的四个截点,为圆截面内两条互相垂直的直径与圆截面的交点;圆截面的半径为预设长度;
其中,任意相邻的两条光纤布拉格光栅的调制方向相差90°,且任意不相邻的两条光纤布拉格光栅的调制方向相同。
可选的,四条光纤布拉格光栅的光栅周期为Λ,光栅长度的范围为0.2毫米至0.8毫米。
可选的,预设长度的范围为1微米至4.5微米。
进一步的本发明还提供了一种具有低偏振相关损耗的并联光纤光栅的制备装置,该制备装置包括飞秒激光器、激光能量调节器,快门装置、双色棱镜、CCD相机、物镜,以及第一电动旋转夹具、第二电动旋转夹具、夹具控制装置和三维移动平台;
第一电动旋转夹具、第二电动旋转夹具设置在三维移动平台上,且第一电动旋转夹具与第二电动旋转夹具处于同一水平线上,用于夹住实芯光纤;夹具控制装置分别与第一电动旋转夹具、第二电动旋转夹具连接;
飞秒激光器发出的激光通过激光能量调节器、快门装置传输至双色棱镜,经双色棱镜分光得到第一激光和第二激光,第一激光传输至CCD相机,第二激光经物镜聚焦在实芯光纤上,用于制得并联光纤光栅。
可选的,制备装置还包括光纤耦合器、光源模块、光谱采集分析模块、第一光纤、第二光纤、第三光纤以及第四光纤;
光纤耦合器的第一端通过第一光纤与光源模块连接,光纤耦合器的第二端通过第二光纤与光谱采集分析模块的端口连接,光纤耦合器还包括第三端,第三光纤的一端与第三端连接,第三光纤的另一端与实芯光纤的一端相接,且第三光纤和实芯光纤相接的位置被第一电动旋转夹具夹住;第四光纤的一端与光谱采集分析模块的端口连接,第四光纤的另一端与实芯光纤的另一端相接,且第四光纤和实芯光纤相接的位置被第二电动旋转夹具夹住;
光源模块发出的激光经光纤耦合器入射至制得的并联光纤光栅中,部分激光入射至光谱采集与分析模块,另一部分激光在并联光纤光栅中发生反射并经过光纤耦合器入射至光谱采集与分析模块中。
可选的,激光能量调节器包括格兰棱镜和偏振控制器;
激光通过格兰棱镜、偏振控制器传输至快门装置;
格兰棱镜用于控制激光的能量衰减,偏振控制器用于控制激光的光束偏振态。
进一步的本发明还提供了一种具有低偏振相关损耗的并联光纤光栅的制备方法,制备方法基于如权利要求4的制备装置实现,制备方法包括:
步骤1、将剥除涂覆层的实芯光纤夹于第一电动旋转夹具、第二电动旋转夹具,移动三维移动平台,以使实芯光纤的中心轴线位于物镜聚焦的焦点所在的水平线上,记物镜的焦点所在的位置为第一位置;
步骤2、将三维移动平台向上移动预设长度,开启飞秒激光器,并向由第一电动旋转夹具至第二电动旋转夹具的方向水平移动物镜,飞秒激光器发出的激光经物镜聚焦于焦点处,并在实芯光纤上的第一水平线上写制第一光纤布拉格光栅,在写制完成后关闭飞秒激光器;
步骤3、移动三维移动平台,以使物镜的焦点回到第一位置,将三维移动平台向下移动预设长度,开启飞秒激光器,并向由第一电动旋转夹具至第二电动旋转夹具的方向水平移动物镜;飞秒激光器发出的激光经物镜聚焦于焦点处,并在实芯光纤上的第二水平线上写制第二光纤布拉格光栅,在写制完成后关闭飞秒激光器;
步骤4、移动三维移动平台,以使物镜的焦点回到第一位置,通过夹具控制装置控制第一电动旋转夹具、第二电动旋转夹具同时同轴向逆时针方向旋转90°;
步骤5、将三维移动平台向上移动预设长度,开启飞秒激光器,并向由第一电动旋转夹具至第二电动旋转夹具的方向水平移动物镜,飞秒激光器发出的激光经物镜聚焦于焦点处,在实芯光纤上的第三水平线上写制第三光纤布拉格光栅,在写制完成后关闭飞秒激光器;
步骤6、移动三维移动平台,以使物镜的焦点回到第一位置,将三维移动平台向下移动预设长度,开启飞秒激光器,并向由第一电动旋转夹具至第二电动旋转夹具的方向水平移动物镜,飞秒激光器发出的激光经物镜聚焦于焦点处,在实芯光纤上的第四水平线上写制第四光纤布拉格光栅,制得并联光纤光栅。
可选的,第一光纤布拉格光栅、第二光纤布拉格光栅、第三光纤布拉格光栅以及第四光纤布拉格光栅的光栅周期为Λ,光栅长度范围为0.2毫米至0.8毫米。
可选的,预设长度的范围为1微米至4.5微米。
有益效果
本发明提供一种具有低偏振相关损耗的并联光纤光栅及其制备方法、装置,该并联光纤光栅包括圆柱形的实芯光纤,以及写制在实芯光纤中的四条光纤布拉格光栅,这四条光纤布拉格光栅平行分布于以实芯光纤的中心轴线为定直线形成的圆柱体的侧面,且四条光纤布拉格光栅在圆柱体的圆截面上的四个截点,为圆截面内两条互相垂直的直径与圆截面的交点;圆截面的半径为预设长度,其中,任意相邻的两条光纤布拉格光栅的调制方向相差90°,且任意不相邻的两条光纤布拉格光栅的调制方向相同。需要了解的是,随着并联光纤光栅中光纤布拉格光栅数量的增加,并联光纤光栅的反射率也将增加,因此本发明提供的具有四个光纤布拉格光栅的并联光纤光栅具有较高的反射率;另一方面需要了解的是,随着并联光纤光栅的反射率越高,其偏振相关损耗将越小,而当光栅的结构对称性更好时,偏振相关损耗将越小,因此,由于本发明提供的并联光纤光栅中的四个光纤布拉格光栅成圆环形分布,具有较好的对称性;再一方面,本发明提供的并联光纤光栅的光栅长度短,因此还具有较高的空间分辨率。综上所述本发明提供的并联光纤光栅不仅具有高空间分别率、高反射率,还具有较低的偏振相关损耗。
附图说明
图1为本申请提供的一种具有低偏振相关损耗的并联光纤光栅的结构示意图;
图2为本申请提供的一种制备具有低偏振相关损耗的并联光纤光栅的制备装置结构示意图;
图3为本申请提供的另一种制备具有低偏振相关损耗的并联光纤光栅的制备装置结构示意图;
图4为本申请提供的另一种制备具有低偏振相关损耗的并联光纤光栅的制备方法流程图;
图5为本申请提供的另一种具有低偏振相关损耗的并联光纤光栅的结构示意图;
图6为本申请提供的一种具有低偏振相关损耗的并联光纤光栅的横截面结构示意图;
图7为基于本申请提供的并联光纤光栅制得的高空间分辨率温度传感器所得到的测试结果。
本发明的最佳实施方式
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而非全部实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请提供了一种具有低偏振相关损耗的并联光纤光栅,该并联光纤光栅包括圆柱形的实芯光纤1,以及写制在实芯光纤中的四条光纤布拉格光栅,参见图1所示,四条光纤布拉格光栅101平行分布于以实芯光纤的中心轴线102为定直线形成的圆柱体的侧面,且四条光纤布拉格光栅1在圆柱体的圆截面上的四个截点103,为圆截面内两条互相垂直的直径与圆截面的交点。
需要注意的是,任意相邻的两条光纤布拉格光栅的调制方向相差90°,且任意不相邻的两条光纤布拉格光栅的调制方向相同。
实芯光纤为剥除涂覆层的普通单模石英光纤。
需要了解的是,圆截面的半径为预设长度,在一些示例下,该预设长度的范围可以为1微米至4.5微米。
在另一些示例下,实芯光纤中的四条光纤布拉格光栅的光栅周期为Λ,光栅长度的范围为0.2毫米至0.8毫米。
本实施例供的并联光纤光栅具有四个光纤布拉格光栅,该四个光纤布拉格光栅成圆环形分布,因此本发明提供的并联光纤光栅具有高反射率,低偏振相关损耗的特点。另外需要了解的是,本发明提供的并联光纤光栅的光栅长度短,范围为0.2毫米至0.8毫米,因此本发明提供的并联光纤光栅还具有较高的空间分辨率的特点。
本申请还提供了一种具有低偏振相关损耗的并联光纤光栅的制备装置,参见图2所示,该制备装置包括飞秒激光器201、激光能量调节器202,快门装置203、双色棱镜204、CCD相机205、物镜206,以及第一电动旋转夹具207、第二电动旋转夹具208、夹具控制装置209和三维移动平台210,各器件的连接关系如下:
第一电动旋转夹具207、第二电动旋转夹具208设置在三维移动平台210上,且第一电动旋转夹具207与第二电动旋转夹具208处于同一水平线上,用于夹住实芯光纤1。夹具控制装置209分别与第一电动旋转夹具207、第二电动旋转夹具208连接。
本申请还提供制备装置所包含的各个器件功能如下:
飞秒激光器201用于发射激光。
激光能量调节器202用于将飞秒激光器发射的激光调节到适合能量。
快门装置203用于挡住飞秒激光器发射的激光,相当于光开关,具体的开与关可以通过程序自动的控制。
双色棱镜204用于将飞秒激光器发射的激光反射至物镜,以及CCD相机。
CCD相机205用于采集在双色棱镜和物镜反射的激光,并根据激光在实芯光纤的纤芯内的折射率制得实时显微图像。
物镜206可以将激光聚焦在实芯光纤上,在实芯光纤上写制光纤布拉格光栅。
第一电动旋转夹具207和第二电动旋转夹具208,用于固定实芯光纤的两端处于水平线。
夹具控制装置209用于发出旋转控制信号,以控制第一电动旋转夹具207和第二电动旋转夹具208进行旋转。
三维移动平台210可以在三维空间进行移动。
需要明白的是,在制备并联光纤光栅的过程中,飞秒激光器201发出的激光通过激光能量调节器202、快门装置203传输至双色棱镜204,经双色棱镜204分光得到第一激光和第二激光,第一激光将传输至CCD相机205,第二激光经物镜206聚焦在实芯光纤1上,用于制得并联光纤光栅。
在另外的一些示例下,为了解制得的并联光纤光栅的反射率、谐振峰位置等信息,本发明提供的并联光纤光栅的制备装置还包括光纤耦合器211、光源模块212、光谱采集分析模块213、第一光纤214、第二光纤215、第三光纤216以及第四光纤217。
参见图3,各个器件的连接关系为:光纤耦合器211的第一端通过第一光纤214与光源模块212连接,光纤耦合器211的第二端通过第二光纤215与光谱采集分析模块213的端口连接,光纤耦合器211还包括第三端,第三光纤216的一端与第三端连接,第三光纤216的另一端与实芯光纤1的一端相接,且第三光纤216和实芯光纤1相接的位置被第一电动旋转夹具207夹住。第四光纤217的一端与光谱采集分析模块213的端口连接,第四光纤217的另一端与实芯光纤1的另一端相接,且第四光纤217和实芯光纤1相接的位置被第二电动旋转夹具208夹住。
光源模块的功能为提供入射光。
光谱采集与分析模块用于采集并分析并联光纤光栅反射的激光,写制该并联光纤光栅的反射率,谐振峰位置等信息。
光纤耦合器可以将光源模块212发射的激光从第一光纤214分至第二光纤215和第三光纤216。
需要了解的是,光源模块212发出的激光经光纤耦合器211入射至由实芯光纤1制得的并联光纤光栅中,部分激光入射至光谱采集与分析模块213,另一部分激光在并联光纤光栅中发生反射并经过光纤耦合器211入射至光谱采集与分析模块213中,光谱采集与分析模块213可以基于接收到激光进行分析,最后得到并联光纤光栅的反射率、谐振峰位置等信息。
参见图3,在一些示例下激光能量调节器202包括格兰棱镜2021和偏振控制器2022,在该示例下,光源模块212发出的激光可以通过格兰棱镜2021、偏振控制器2022传输至快门装置203。
需要了解的是,格兰棱镜用于控制激光的能量衰减,偏振控制器用于控制激光的光束偏振态。
基于本实施例供的并联光纤光栅的制备装置制备得到的并联光纤光栅,可以具有四个光纤布拉格光栅,该四个光纤布拉格光栅成圆环形分布,因此该并联光纤光栅具有高反射率,低偏振相关损耗的特点。
本申请还提供了并联光纤光栅的制备方法,该制备方法基于上述并联光纤光栅的制备装置实现。为更好的介绍该制备方法,本实施例是基于图2所示的制备装置制备,对制备得到图5所示的并联光纤光栅的过程进行介绍,需要注意的是,图6为图5所示的并联光纤光栅的横截面结构示意图。
需要明白的是,本申请提供的制备方法所基于的制备装置不仅仅可以为图2所示的制备装置,也可以为其他的制备装置,只要能实现本申请提供的该制备方法。
参见图4,本实施例提供的制备方法包括:
步骤1、将剥除涂覆层的实芯光纤1夹于第一电动旋转夹具207、第二电动旋转夹具208,移动三维移动平台210,以使实芯光纤1的中心轴线102(参见图5)位于物镜206聚焦的焦点所在的水平线上,记物镜的焦点所在的位置为第一位置104;
步骤2、将三维移动平台210向上移动预设长度,开启飞秒激光器201,并向由第一电动旋转夹具207至第二电动旋转夹具208的方向水平移动物镜206,飞秒激光器201发出的激光经物镜206聚焦于焦点处,并在实芯光纤1上的第一水平线上写制第一光纤布拉格光栅1011,在写制完成后关闭飞秒激光器201。
步骤3、移动三维移动平台210,以使物镜206的焦点回到第一位置104,将三维移动平台210向下移动预设长度,开启飞秒激光器201,并向由第一电动旋转夹具207至第二电动旋转夹具208的方向水平移动物镜206,飞秒激光器201发出的激光经物镜206聚焦于焦点处,并在实芯光纤1上的第二水平线上写制第二光纤布拉格光栅1012,在写制完成后关闭飞秒激光器201。
步骤4、移动三维移动平台210,以使物镜206的焦点回到第一位置104,通过夹具控制装置209控制第一电动旋转夹具207、第二电动旋转夹具208同时同轴向逆时针方向旋转90°。
步骤5、将三维移动平台210向上移动预设长度,开启飞秒激光器201,并向由第一电动旋转夹具207至第二电动旋转夹具208的方向水平移动物镜206,飞秒激光器201发出的激光经物镜206聚焦于焦点处,在实芯光纤1上的第三水平线上写制第三光纤布拉格光栅1013,在写制完成后关闭飞秒激光器201。
步骤6、移动三维移动平台210,以使物镜206的焦点回到第一位置104,将三维移动平台210向下移动预设长度,开启飞秒激光器201,并向由第一电动旋转夹具207至第二电动旋转夹具208的方向水平移动物镜206,飞秒激光器201发出的激光经物镜206聚焦于焦点处,在实芯光纤1上的第四水平线上写制第四光纤布拉格光栅1014,制得并联光纤光栅。
需要明白的是,经过上述步骤在制得的并联光纤光栅中,第一光纤布拉格光栅1011、第二光纤布拉格光栅1012、第三光纤布拉格光栅1013以及第四光纤布拉格光栅1014分布在石英光纤纤芯的不同位置。其中,第一光纤布拉格光栅1011和第二光纤布拉格光栅1012的调制方向相同,第三光纤布拉格光栅1013和第四光纤布拉格光栅1014的调制方向相同,这样便可以形成对称分布。
需要注意的是,第一光纤布拉格光栅1011和第二光纤布拉格光栅1012的调制方向,与第三光纤布拉格光栅1013和第四光纤布拉格光栅1014的调制方向成90°。
需要了解的是,在一些示例下,第一光纤布拉格光栅1011、第二光纤布拉格光栅1012、第三光纤布拉格光栅1013以及第四光纤布拉格光栅1014的光栅周期为Λ,光栅长度范围为0.2毫米至0.8毫米。
在另一些示例下,预设长度的范围为1微米至4.5微米。
基于本实施例供的并联光纤光栅的制备方法,制备得到的并联光纤光栅具有四个光纤布拉格光栅,该四个光纤布拉格光栅成圆环形分布,因此该并联光纤光栅具有高反射率,低偏振相关损耗的特点。
与现有技术相比,本申请提供的并联光纤光栅包括实芯光纤以及在实芯光纤的纤芯中的多个相互平行并间隔开的、相同周期或不同周期的光纤布拉格光栅,这些光纤布拉格光栅之间具有合理间隔,其之间并不会产生串扰,具有高反射率以及低偏振相关损耗。
另一方面,本申请提供的上述并联光纤光栅的制备装置中,不需要像现有技术一样,需要基于昂贵的相位掩模板来制得并联光纤光栅,而可以通过精密的三维移动平台控制实芯光纤的移动,在激光的作用下制得并联光纤光栅。
再一方面,利用本发明提供的制备方法较为简单、成本低廉,制得的并联光纤光栅机械强度高、性能稳定,在实现光栅长度短的同时,可以获得较高的反射率(大于90%)和较低的偏振相关损耗(小于1dB),在光纤通信、光纤传感和光纤激光器领域具有良好的应用价值。
本发明可以应用在以下领域:
超高空间分辨率温度/应变传感器:基于本发明提出的并联光纤光栅可以制成超高空间分辨率温度/应变传感器,该传感器件的光栅长度短,光纤直径小,可以实现亚微米单点式传感。
多波长光纤激光器:基于本发明提出的并联光纤光栅可以制成多波长光纤激光器,由于并联光纤光栅中集成多个周期不同的光纤布拉格光栅,因此可同时实现光纤激光器谐振腔和多波长选择的光纤器件。
低偏振相关损耗的通信器件:本发明提出的并联集成光纤布拉格光栅器件,通过发明人提出的布拉格光栅的空间环形分布,可以实现在保证高反射率的前提下,实现超低的偏振相关损耗。
参见图7,图7为基于本发明提供的并联光纤光栅所制得的高空间分辨率温度传感器的偏振相关损耗测试结果。图中的横坐标表示波长,单位为nm,左边纵坐标表示透射谱损耗,单位为dB,右边纵坐标表示偏振相关损耗,单位为dB。
从图中可以看出,对应光栅谐振峰透射损耗在-12.49dB时,对应偏振相关损耗仅有1.18dB。该基于并联光纤光栅所制得的高空间分辨率温度传感器的反射率可以大于95%,同时,偏振相关损耗较低(1.18dB),极大的提高了在单点温度传感器的测量精度。
需要说明的是,对于前述的各方法实施例,为了简便描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其它顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定都是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其它实施例的相关描述,同时,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (9)

  1. 一种具有低偏振相关损耗的并联光纤光栅,其特征在于,所述并联光纤光栅包括圆柱形的实芯光纤,以及写制在所述实芯光纤中的四条光纤布拉格光栅;
    四条所述光纤布拉格光栅平行分布于以所述实芯光纤的中心轴线为定直线形成的圆柱体的侧面,且四条所述光纤布拉格光栅在所述圆柱体的圆截面上的四个截点,为所述圆截面内两条互相垂直的直径与所述圆截面的交点;所述圆截面的半径为预设长度;
    其中,任意相邻的两条所述光纤布拉格光栅的调制方向相差90°,且任意不相邻的两条所述光纤布拉格光栅的调制方向相同。
  2. 如权利要求1所述的并联光纤光栅,其特征在于,四条所述光纤布拉格光栅的光栅周期为Λ,光栅长度的范围为0.2毫米至0.8毫米。
  3. 如权利要求1或2所述的并联光纤光栅,其特征在于,所述预设长度的范围为1微米至4.5微米。
  4. 一种具有低偏振相关损耗的并联光纤光栅的制备装置,其特征在于,所述制备装置包括飞秒激光器、激光能量调节器,快门装置、双色棱镜、CCD相机、物镜,以及第一电动旋转夹具、第二电动旋转夹具、夹具控制装置和三维移动平台;
    所述第一电动旋转夹具、第二电动旋转夹具设置在所述三维移动平台上,且所述第一电动旋转夹具与所述第二电动旋转夹具处于同一水平线上,用于夹住实芯光纤;所述夹具控制装置分别与所述第一电动旋转夹具、第二电动旋转夹具连接;
    所述飞秒激光器发出的激光通过所述激光能量调节器、快门装置传输至所述双色棱镜,经所述双色棱镜分光得到第一激光和第二激光,所述第一激光传输至所述CCD相机,所述第二激光经所述物镜聚焦在所述实芯光纤上,用于制得并联光纤光栅。
  5. 如权利要求4所述的制备装置,其特征在于,所述制备装置还包括光纤耦合器、光源模块、光谱采集分析模块、第一光纤、第二光纤、第三光纤以及第四光纤;
    所述光纤耦合器的第一端通过所述第一光纤与所述光源模块连接,所述光纤耦合器的第二端通过所述第二光纤与所述光谱采集分析模块的端口连接,所述光纤耦合器还包括第三端,所述第三光纤的一端与所述第三端连接,所述第三光纤的另一端与所述实芯光纤的一端相接,且所述第三光纤和所述实芯光纤相接的位置被所述第一电动旋转夹具夹住;所述第四光纤的一端与所述光谱采集分析模块的端口连接,所述第四光纤的另一端与所述实芯光纤的另一端相接,且所述第四光纤和所述实芯光纤相接的位置被所述第二电动旋转夹具夹住;
    所述光源模块发出的激光经所述光纤耦合器入射至制得的所述并联光纤光栅中,部分所述激光入射至所述光谱采集与分析模块,另一部分所述激光在所述并联光纤光栅中发生反射并经过所述光纤耦合器入射至所述光谱采集与分析模块中。
  6. 如权利要求4或5所述的制备装置,其特征在于,所述激光能量调节器包括格兰棱镜和偏振控制器;
    所述激光通过所述格兰棱镜、所述偏振控制器传输至所述快门装置;
    所述格兰棱镜用于控制所述激光的能量衰减,所述偏振控制器用于控制所述激光的光束偏振态。
  7. 一种具有低偏振相关损耗的并联光纤光栅的制备方法,其特征在于,所述制备方法基于如权利要求4所述的制备装置实现,所述制备方法包括:
    步骤1、将剥除涂覆层的实芯光纤夹于所述第一电动旋转夹具、所述第二电动旋转夹具,移动所述三维移动平台,以使所述实芯光纤的中心轴线位于所述物镜聚焦的焦点所在的水平线上,记所述物镜的焦点所在的位置为第一位置;
    步骤2、将所述三维移动平台向上移动预设长度,开启所述飞秒激光器,并向由所述第一电动旋转夹具至所述第二电动旋转夹具的方向水平移动所述物镜,所述飞秒激光器发出的激光经所述物镜聚焦于焦点处,并在所述实芯光纤上的第一水平线上写制第一光纤布拉格光栅,在写制完成后关闭所述飞秒激光器;
    步骤3、移动所述三维移动平台,以使所述物镜的焦点回到所述第一位置,将所述三维移动平台向下移动所述预设长度,开启所述飞秒激光器,并向由所述第一电动旋转夹具至所述第二电动旋转夹具的方向水平移动所述物镜;所述飞秒激光器发出的激光经所述物镜聚焦于焦点处,并在所述实芯光纤上的第二水平线上写制第二光纤布拉格光栅,在写制完成后关闭所述飞秒激光器;
    步骤4、移动所述三维移动平台,以使所述物镜的焦点回到所述第一位置,通过所述夹具控制装置控制所述第一电动旋转夹具、第二电动旋转夹具同时同轴向逆时针方向旋转90°;
    步骤5、将所述三维移动平台向上移动所述预设长度,开启所述飞秒激光器,并向由所述第一电动旋转夹具至所述第二电动旋转夹具的方向水平移动所述物镜,所述飞秒激光器发出的激光经所述物镜聚焦于焦点处,在所述实芯光纤上的第三水平线上写制第三光纤布拉格光栅,在写制完成后关闭所述飞秒激光器;
    步骤6、移动所述三维移动平台,以使所述物镜的焦点回到所述第一位置,将所述三维移动平台向下移动所述预设长度,开启所述飞秒激光器,并向由所述第一电动旋转夹具至所述第二电动旋转夹具的方向水平移动所述物镜,所述飞秒激光器发出的激光经所述物镜聚焦于焦点处,在所述实芯光纤上的第四水平线上写制第四光纤布拉格光栅,制得并联光纤光栅。
  8. 如权利要求7所述的制备方法,其特征在于,所述第一光纤布拉格光栅、第二光纤布拉格光栅、第三光纤布拉格光栅以及第四光纤布拉格光栅的光栅周期为Λ,光栅长度范围为0.2毫米至0.8毫米。
  9. 如权利要求7或8所述的制备方法,其特征在于,所述预设长度的范围为1微米至4.5微米。
PCT/CN2019/070381 2019-01-04 2019-01-04 具有低偏振相关损耗的并联光纤光栅及其制备方法、装置 WO2020140253A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/070381 WO2020140253A1 (zh) 2019-01-04 2019-01-04 具有低偏振相关损耗的并联光纤光栅及其制备方法、装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/070381 WO2020140253A1 (zh) 2019-01-04 2019-01-04 具有低偏振相关损耗的并联光纤光栅及其制备方法、装置

Publications (1)

Publication Number Publication Date
WO2020140253A1 true WO2020140253A1 (zh) 2020-07-09

Family

ID=71407131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070381 WO2020140253A1 (zh) 2019-01-04 2019-01-04 具有低偏振相关损耗的并联光纤光栅及其制备方法、装置

Country Status (1)

Country Link
WO (1) WO2020140253A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840018A (zh) * 2010-04-09 2010-09-22 哈尔滨工程大学 多芯长周期光纤光栅制造方法及光纤旋转定位装置
CN204422809U (zh) * 2015-02-10 2015-06-24 山东交通学院 利用飞秒激光泰伯效应制备长周期光纤光栅的装置
CN105652364A (zh) * 2016-03-01 2016-06-08 深圳大学 并行集成的光纤布拉格光栅及其制作方法、制作装置
CN205427228U (zh) * 2016-03-01 2016-08-03 深圳大学 并行集成的光纤布拉格光栅及其制作装置
WO2016202649A1 (en) * 2015-06-15 2016-12-22 Koninklijke Philips N.V. Optical shape sensing system and method for sensing a position and/or shape of a medical device using backscatter reflectometry
CN106970442A (zh) * 2017-05-12 2017-07-21 深圳大学 基于拉锥光纤的相移光栅及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840018A (zh) * 2010-04-09 2010-09-22 哈尔滨工程大学 多芯长周期光纤光栅制造方法及光纤旋转定位装置
CN204422809U (zh) * 2015-02-10 2015-06-24 山东交通学院 利用飞秒激光泰伯效应制备长周期光纤光栅的装置
WO2016202649A1 (en) * 2015-06-15 2016-12-22 Koninklijke Philips N.V. Optical shape sensing system and method for sensing a position and/or shape of a medical device using backscatter reflectometry
CN105652364A (zh) * 2016-03-01 2016-06-08 深圳大学 并行集成的光纤布拉格光栅及其制作方法、制作装置
CN205427228U (zh) * 2016-03-01 2016-08-03 深圳大学 并行集成的光纤布拉格光栅及其制作装置
CN106970442A (zh) * 2017-05-12 2017-07-21 深圳大学 基于拉锥光纤的相移光栅及其制作方法

Similar Documents

Publication Publication Date Title
KR940004211B1 (ko) 마이크로렌즈에 의한 광학장치의 광섬유에의 결합
JP5070330B2 (ja) ビーム曲げ装置およびその製造方法
US7920763B1 (en) Mode field expanded fiber collimator
CN211603608U (zh) 基于机器学习图像识别的飞秒激光直写光纤光栅制备装置
JP2006512616A (ja) 光ファイバレンズ及び作成方法
CN103267629B (zh) 点衍射干涉波像差测量仪及检测方法
CN110160685A (zh) 光纤光栅方向性压力传感器、光纤光栅制备方法及装置
CN111175885A (zh) 一种基于机器学习图像识别的飞秒激光直写光纤光栅制备装置及制备方法
CN111708133A (zh) 大发散角激光耦合单模光纤的装置及方法
WO2014112801A1 (ko) 번들형 광섬유 프로브
CN106291821B (zh) 一种空芯光子晶体光纤耦合器
CN113835155A (zh) 自由空间光与光子芯片光栅耦合方法
JP2000206359A (ja) 光ファイバ結合装置
CN115236798A (zh) 一种光纤光栅及其制备装置和制备方法
CN201654453U (zh) 光纤端面微光学器件数字光刻的装置
CN209265001U (zh) 一种具有低偏振相关损耗的并联光纤光栅及其制备装置
CN112596168B (zh) 基于环形螺旋光纤光栅谐振器的涡旋光束产生方法及装置
WO2020140253A1 (zh) 具有低偏振相关损耗的并联光纤光栅及其制备方法、装置
CN102096155B (zh) 一种基于Mie散射的光纤衰减器的结构单元及其应用
WO2017147775A1 (zh) 并行集成的光纤布拉格光栅及其制作方法、制作装置
CN102455467B (zh) 一种集成于光纤端面的亚波长聚焦透镜
Demagh et al. Self-centring technique for fibre optic microlens mounting using a concave cone-etched fibre
JPH0836119A (ja) 低損失コリメータ対の作製方法
CN109445022A (zh) 具有低偏振相关损耗的并联光纤光栅及其制备方法、装置
CN213122366U (zh) 大发散角激光耦合单模光纤的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19907929

Country of ref document: EP

Kind code of ref document: A1