WO2020139096A1 - Système interférentiel de mesure de longueur absolue - Google Patents

Système interférentiel de mesure de longueur absolue Download PDF

Info

Publication number
WO2020139096A1
WO2020139096A1 PCT/RU2018/000851 RU2018000851W WO2020139096A1 WO 2020139096 A1 WO2020139096 A1 WO 2020139096A1 RU 2018000851 W RU2018000851 W RU 2018000851W WO 2020139096 A1 WO2020139096 A1 WO 2020139096A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
interferometer
length
components
laser source
Prior art date
Application number
PCT/RU2018/000851
Other languages
English (en)
Russian (ru)
Inventor
Владислав Матвеевич ХАВИНСОН
Роман Андреевич ЛАРИЧЕВ
Алексей Николаевич ЯКОВЕНКО
Original Assignee
Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования Балтийский Государственный Технический Университет "Военмех" Им. Д.Ф.Устинова (Бгту "Военмех")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования Балтийский Государственный Технический Университет "Военмех" Им. Д.Ф.Устинова (Бгту "Военмех") filed Critical Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования Балтийский Государственный Технический Университет "Военмех" Им. Д.Ф.Устинова (Бгту "Военмех")
Priority to PCT/RU2018/000851 priority Critical patent/WO2020139096A1/fr
Publication of WO2020139096A1 publication Critical patent/WO2020139096A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers

Definitions

  • the invention relates to the field of instrumentation, in particular, to an interference technique for measuring linear quantities and can be used to measure absolute lengths and distances.
  • Interference systems for measuring the absolute length contain a laser source, the radiation-generating spectrum of which is composed of two components, the frequency difference of which varies during the measurement; double-beam reference interferometer.
  • the radiation generated by the source is directed to the input of the interferometer.
  • the paths in the interferometer are common to the two spectral components of the radiation.
  • the measured length linearly depends on the difference in optical paths in the arms of the interferometer.
  • the combined interferometer and refractometer include two interferometers, each of which uses a light beam generated from a common source that is divided into the rays of the measuring component and the rays of the reference component.
  • the rays of the measuring component are guided along parallel paths to the object and are reflected from reflective surfaces on the object, which is positioned so as to create a fixed difference in the path length between the rays.
  • the reflected beams are re-combined with the reference component beams to form output beams that pass into the detector system, which outputs an output signal from each.
  • Changes in the refractive index are determined by any difference in the two output signals, and the distance traveled by the object is determined by any change in one of the output signals or by summing them and dividing by two.
  • SUBSTITUTE SHEET measuring the absolute distance using a laser interferometric wavelength difference, comprising: a laser light source system, a laser interferometric wavelength system and an interference signal processing and suppression system, in which the laser light source system outputs an orthogonally linearly polarized beam with a wavelength of L1 and a wavelength of A 2, and an orthogonally linearly polarized beam is projected onto the laser interferometric system with a difference in wavelengths to form an interference beam.
  • the interference beam is projected onto the jamming signal processing and suppression system, and the controller into the jamming signal processing and suppression system is used to control the change in wavelength A 2 in the light of a laser source, in which the light source system contains a first laser, a second laser, a first beam expander, an expander the second beam, the first reflector (the first polarization beam splitter, in which a linearly polarized beam with a constant wavelength A1 emitted by the first laser passes through the first beam expander and projects onto the first polarizer beam splitter, a linearly polarized beam with variable wavelength A 2 emitted the second laser, the polarization direction of which is perpendicular to the beam of the first laser, passes through the second beam expander is reflected by the first reflector and projected onto the first polarization beam splitter, and a linearly polarized beam with a constant wavelength A 2 is transmitted by the first polarizer splitter radiation beam and a linearly polarized beam with a variable wavelength A 2 reflected by the first separator
  • the difference in the optical paths is measured by measuring the phase difference of the interfering rays separately for each of the spectral components, according to the total measurement results of the phase differences for the two spectral components, a controlled value is judged.
  • the separation at the output of the interferometer of spectral components for measuring phase differences is carried out (in time) by switching the components at the input of the interferometer.
  • These interference systems have limited functionality, since they do not allow the simultaneous measurement of phase differences for two spectral components of the radiation.
  • the range of frequency differences V ⁇ and Vi two spectral components of radiation, W v ⁇ - Vi, determines the range of the measured difference between the optical lengths: £ max ⁇ c / fr (c - velocity of light).
  • the possibility of using traditional spectroscopic methods for separating the spectral components at the output of the interferometer is limited by a relatively narrow range of measured lengths.
  • the objective of the proposed technical solution is to increase the accuracy of measuring the absolute length when measuring in dynamic mode (with a changing measured length) with an unlimited high available measurement range.
  • the optical circuit in the reference two-beam interferometer is constructed in such a way that two spectral components the radiation from the laser source, which comes separately from the laser source into the readout double-beam interferometer, propagates in the arms of the interferometer in opposite directions and has separate inputs and separate outputs.
  • the technical result of the proposed interference system for measuring the absolute length is to increase accuracy, while maintaining sufficient resistance to dynamic changes in the measured length due to external and internal factors and with an unlimited high available measurement range.
  • FIG. 1 shows a diagram of a proposed interference system for measuring absolute length.
  • the absolute length interference measuring system comprises a laser source 1 (see FIG. 1) generating two-frequency radiation, the spectral components of which Vi and V2 are spatially separated, an interferometer consisting of beam splitters 2 and 3, mirrors 4 and 5, retroreflectors 6 and 7, and two output photodetectors 8 and 9, and a phase difference meter 10.
  • the inputs of the phase shift meter 10 are electrically connected to the outputs of the photodetectors 8 and 9.
  • the distance L between the optical centers of the retroreflectors 6 and 7 is the measured length.
  • the interference system for measuring the absolute length works as follows: the light beams v and vz from the outputs of the laser source 1 are sent to the beam splitters 2 and 3 of the interferometer (inputs of the interferometer).
  • the light beams v ⁇ and Vi in the arms of the interferometer with a beam splitter 2 and a mirror 4 are directed to the retroreflectors 6 and 7 parallel to each other, the optical centers of the retroreflectors are placed on a line parallel to the light beams v ⁇ and Vi".
  • Beams v and P at the output of the interferometer are combined by beam splitter 2 and mirror 4.
  • the light beam Ul is sent to beam splitter 3 in the direction opposite to the direction of beam v emerging from the beam splitter.
  • the optical scheme of the proposed interference system for measuring the absolute length is constructed in such a way as to exclude signal mixing — to completely spatially separate the spectral components vi and nc all the way from the laser source 1 to the outputs of the interferometer with beam splitters 2 and 3.
  • the optical scheme of the interferometer is constructed with separate inputs and separate outputs with beam splitters 2 and Zdl for two spectral components of the radiation, separately coming from the source to the interferometer, and propagating in the arms of the interferometer in opposite directions without mixing, with an input for each from the components is combined with the output for the component propagating in the opposite direction, which ensures the equality of the optical paths for the two components in the interferometer.
  • the instantaneous equality of the optical path differences of the spectral components is guaranteed, which eliminates the uncertainty / 2.
  • the required measurement (averaging) time is determined only by the vibration parameters.
  • the technical result of the proposed interference system for measuring the absolute length is to increase accuracy, while maintaining sufficient resistance to dynamic changes in the measured length due to external and internal factors and with an unlimited high available measurement range.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

L'invention se rapporte au domaine des techniques de contrôle et de mesure, et notamment à une technique interférentielle de mesure de valeurs linéaires, et peut être utilisée pour mesurer des longueurs et des distances absolues. Le but de la présente inevntion est d'augmenter la précision de mesure d'une longueur absolue lors de mesures en mode dynamique (lorsque la longueur à mesurer change) selon une plage de mesure potentielle élevée et sans limite. Cet objectif est atteint grâce à un système interférentiel de mesure de longueur absolue qui comprend une source laser générant un rayonnement avec un spectre à deux composantes de manière à pouvoir modifier la différence de fréquences des ces composantes, et un interféromètre de comptage à deux faisceaux; dans l'interféromètre de comptage à deux faisceaux, le système optique est conçu de sorte que les deux composantes spectrales du rayonnement de la source laser allant de manière distincte de la source laser vers l'interféromètre de comptage à deux faisceaux, se propagent sur les épaulements de l'interféromètre dans des directions se faisant face et possèdent des entrées distinctes et des sorties distinctes. Ainsi, le résultat technique de ce système interférentiel de mesure de longueur absolue consiste en une augmentation de la précision tout en conservant une fiabilité suffisante en ce qui concerne les mesures dynamiques d'une longueur à mesurer du fait des facteurs externes et internes et avec une plage de mesure potentielle élevée et sans limite.
PCT/RU2018/000851 2018-12-24 2018-12-24 Système interférentiel de mesure de longueur absolue WO2020139096A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/RU2018/000851 WO2020139096A1 (fr) 2018-12-24 2018-12-24 Système interférentiel de mesure de longueur absolue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2018/000851 WO2020139096A1 (fr) 2018-12-24 2018-12-24 Système interférentiel de mesure de longueur absolue

Publications (1)

Publication Number Publication Date
WO2020139096A1 true WO2020139096A1 (fr) 2020-07-02

Family

ID=71128309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2018/000851 WO2020139096A1 (fr) 2018-12-24 2018-12-24 Système interférentiel de mesure de longueur absolue

Country Status (1)

Country Link
WO (1) WO2020139096A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056921A (en) * 1987-12-24 1991-10-15 Renishaw Plc Optical apparatus for use with inteferometric measuring devices
US5412474A (en) * 1992-05-08 1995-05-02 Smithsonian Institution System for measuring distance between two points using a variable frequency coherent source
US5517308A (en) * 1993-12-04 1996-05-14 Renishaw Plc Interferometric measuring apparatus employing fixed non-zero path length difference
US20170038192A1 (en) * 2015-03-27 2017-02-09 Zhejiang Sci-Tech University Absolute distance measurement apparatus and method using laser interferometric wavelength leverage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5056921A (en) * 1987-12-24 1991-10-15 Renishaw Plc Optical apparatus for use with inteferometric measuring devices
US5412474A (en) * 1992-05-08 1995-05-02 Smithsonian Institution System for measuring distance between two points using a variable frequency coherent source
US5517308A (en) * 1993-12-04 1996-05-14 Renishaw Plc Interferometric measuring apparatus employing fixed non-zero path length difference
US20170038192A1 (en) * 2015-03-27 2017-02-09 Zhejiang Sci-Tech University Absolute distance measurement apparatus and method using laser interferometric wavelength leverage

Similar Documents

Publication Publication Date Title
CA1316367C (fr) Interferometre
US8179534B2 (en) Fixed wavelength absolute distance interferometer
US5546184A (en) Single-frequency bidirectional fringe-counting interferometer
US6014216A (en) Architecture for air-turbulence-compensated dual-wavelength heterodyne interferometer
CN110319769B (zh) 抗振动菲索干涉测量装置及方法
JPH03180704A (ja) レーザ干渉計
JPS61271431A (ja) 波面状態検出用の干渉装置
US6462823B1 (en) Wavelength meter adapted for averaging multiple measurements
CN107764197B (zh) 一种光学系统轴向参数测量装置及方法
JPH03504768A (ja) 特に可動な構成要素の距離及至シフト運動を測定するための干渉計システム
US7423760B2 (en) Method and apparatus for monitoring an interferometer
JPH11183116A (ja) 光波干渉測定方法および装置
US8279439B2 (en) Birefringence measuring device and birefringence measuring method
US20230236125A1 (en) Dynamic phase-shift interferometer utilizing a synchronous optical frequency-shift
WO2020139096A1 (fr) Système interférentiel de mesure de longueur absolue
US6483593B1 (en) Hetrodyne interferometer and associated interferometric method
JP2023036027A (ja) 計測システムで用いるためのヘテロダイン光源
US7518729B2 (en) Interferometric measuring device
JPH07190712A (ja) 干渉計
CN114046733A (zh) 一种激光同时测量三自由度线性几何误差系统与方法
CN113340212A (zh) 基于双侧干涉仪的形貌与厚度检测装置
JP3499044B2 (ja) 微少変位量測定方法及び装置
US5493394A (en) Method and apparatus for use in measuring frequency difference between light signals
US20230069087A1 (en) Digital holography metrology system
GB2333834A (en) Interferometer with deadpath error compensation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944190

Country of ref document: EP

Kind code of ref document: A1