WO2020138976A1 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2020138976A1
WO2020138976A1 PCT/KR2019/018520 KR2019018520W WO2020138976A1 WO 2020138976 A1 WO2020138976 A1 WO 2020138976A1 KR 2019018520 W KR2019018520 W KR 2019018520W WO 2020138976 A1 WO2020138976 A1 WO 2020138976A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
voltage
material film
manufacturing
electrolyte
Prior art date
Application number
PCT/KR2019/018520
Other languages
French (fr)
Korean (ko)
Inventor
유봉영
박기문
이진현
Original Assignee
한양대학교에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190124118A external-priority patent/KR102301933B1/en
Application filed by 한양대학교에리카산학협력단 filed Critical 한양대학교에리카산학협력단
Publication of WO2020138976A1 publication Critical patent/WO2020138976A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics

Definitions

  • the present application relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device including forming a material film pattern in a recess region.
  • a typical semiconductor wafer has multiple metal layers deposited or plated on the surface, each successive layer being polished or etched before another layer is added.
  • it is widely practiced to electroplate copper on the wafer surface.
  • CMP chemical-mechanical polishing
  • the substrate eg, wafer
  • CMP slurry typically a polishing and chemical reaction mixture
  • the pads fixed to the platen
  • the substrate rotate, while the wafer carrier system or polishing head exerts pressure (downward force) against the substrate.
  • the slurry undergoes a planarization (polishing) process by chemical mechanical interaction, and the substrate film is planarized due to the effect of the rotational motion of the pad relative to the substrate. Polishing continues in this way until a given film on the substrate is removed, and the usual purpose of polishing is to effectively planarize the substrate.
  • One technical problem to be solved by the present application is to provide a method for manufacturing a semiconductor device with a simplified manufacturing process.
  • Another technical problem to be solved by the present application is to provide a method of manufacturing a semiconductor device capable of solving a problem (scratch, contamination, corrosion, etc. caused by particles contained in the slurry) generated in the CMP process by omitting the CMP process.
  • Another technical problem to be solved by the present application is to provide a method for manufacturing a semiconductor device with reduced manufacturing cost.
  • Another technical problem to be solved by the present application is to provide a method for manufacturing a semiconductor device with improved reliability.
  • the present application provides a method for manufacturing a semiconductor device.
  • the method of manufacturing the semiconductor device comprises: preparing a base substrate structure having a recess region, depositing a material film on the base substrate structure having the recess region, and thereby forming the recess Filling a region, and ionizing a material of the material film to remove the material film outside the recess area, and remaining the material film in the recess area to form a material film pattern in the recess area can do.
  • the step of ionizing the material of the material film includes: immersing the base substrate structure having the material film in an electrolyte, a first removing step of applying a first voltage to the material film, and the material A second removing step of applying a second voltage having a lower level than the first voltage to the film may be included.
  • the method of manufacturing the semiconductor device may include applying the second voltage immediately after the first voltage is applied (directly after).
  • the rate at which the material of the material film is ionized in the first removal step may include a rate faster than the rate at which the material of the material film is ionized in the second removal step.
  • the second voltage may include more than 0.5V and less than 1.6V.
  • the electrolyte may include phosphoric acid (H 3 PO 4 ), and the concentration of the phosphoric acid may be 50 wt% or more.
  • the ionization rate of the material may be increased.
  • a barrier layer on the base substrate structure along an inner surface of the recess region, wherein the electrolyte etches the barrier layer. It may include a barrier etchant.
  • the barrier layer may include any one of titanium (Ti) and tantalum (Ta).
  • the first and second voltages may be applied to the material layer.
  • the recess region may be a trench
  • the material layer pattern may include metal wiring
  • the recess region may be a via-hole penetrating the base substrate, and the material layer pattern may include a through silicon via (TSV).
  • TSV through silicon via
  • the material film may include a copper film.
  • a method of manufacturing the semiconductor device includes: preparing a base substrate, depositing a material film on the base substrate, immersing the base substrate on which the material film is deposited, in an electrolyte, and the material And sequentially applying a first voltage to the film and a second voltage at a level lower than the first voltage to ionize the material of the material film to remove at least a portion of the material film.
  • the removal rate of the material layer decreases to a first slope according to an increase in voltage in the first voltage section, and the removal rate of the material layer decreases according to an increase in voltage in the second voltage section.
  • a second section increasing to is provided, and the size of the second slope of the second section is greater than the size of the first slope of the first section, and the first voltage is selected from the second voltage section.
  • the second voltage may include selected from the first voltage section.
  • a method of manufacturing a semiconductor device includes preparing a base substrate structure having a recess region, depositing a material film on the base substrate structure having the recess region, and filling the recess region And forming a material film pattern in the recessed area by ionizing a material of the material film, removing the material film outside the recessed area, and remaining the material film in the recessed area. have.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a semiconductor device according to an embodiment of the present application.
  • FIGS. 2 to 7 are views showing a manufacturing process of a semiconductor device according to the first embodiment of the present application.
  • FIG 8 to 11 are views showing a manufacturing process of a semiconductor device according to a modification of the first embodiment of the present application.
  • FIGS. 12 to 16 are views showing a manufacturing process of a semiconductor device according to a second embodiment of the present application.
  • 17 and 18 are photographs of results obtained by electropolishing in the process of manufacturing a semiconductor device according to Example 1 of the present application.
  • Example 19 is a photograph of a semiconductor device according to Example 1 of the present application taken at different magnifications and angles.
  • Example 21 is a photograph showing EDS analysis of a semiconductor device according to Example 1 of the present application.
  • Example 22 is a photograph of a semiconductor device according to Example 1 of the present application.
  • 26 is a photograph showing a state in which a copper film is deposited in a via hole in a process of manufacturing a semiconductor device according to Example 3 of the present application.
  • FIG. 27 is a photograph of a semiconductor device according to Example 3 of the present application.
  • Example 30 is a photograph comparing the effect of stirring the electrolyte in the manufacturing process of the semiconductor device according to Example 1 of the present application.
  • 31 and 32 are graphs comparing the effect of stirring the electrolyte in the manufacturing process of the semiconductor device according to Example 1 of the present application.
  • Example 35 are graphs comparing the effects of electrolyte agitation in the manufacturing process of a semiconductor device according to Example 2 of the present application.
  • FIG. 36 are SEM photographs comparing the effect of stirring the electrolyte and the effect of concentration of phosphoric acid in the manufacturing process of the semiconductor device according to Example 1 of the present application.
  • Example 37 is a graph for comparing the effect of stirring the electrolyte and the effect of concentration of phosphoric acid in the manufacturing process of the semiconductor device according to Example 1 of the present application.
  • FIG. 38 are AFM photographs comparing the effect of stirring the electrolyte and the effect of concentration of phosphoric acid in the manufacturing process of the semiconductor device according to Example 1 of the present application.
  • 39 and 40 are SEM photographs comparing the effect of electrolyte agitation in the manufacturing process of the semiconductor device according to Example 2 of the present application.
  • 41 is a graph showing the degree of ionization of copper according to a voltage applied in an electropolishing process for removing a copper film.
  • FIG. 42 is a photograph showing semiconductor elements photographed in each section shown in FIG. 41.
  • 45 is a graph showing a change in the thickness of the copper film according to the amount of charge applied in the electropolishing process for removing the copper film.
  • first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. Therefore, what is referred to as the first component in one embodiment may be referred to as the second component in another embodiment.
  • first component in one embodiment
  • second component in another embodiment
  • Each embodiment described and illustrated herein also includes its complementary embodiment. Also, in this specification,'and/or' is used to mean including at least one of the components listed before and after.
  • FIGS. 2 to 7 are views showing a manufacturing process of the semiconductor device according to the first embodiment of the present application.
  • the base substrate structure 100 may be prepared (S100).
  • the base substrate structure 100 may include a semiconductor substrate, a metal substrate, a plastic substrate, or a glass substrate.
  • the base substrate structure 100 may include a silicon (Si) semiconductor substrate.
  • the base substrate structure 100 may have a recess region 110.
  • the recess region 110 may be a trench.
  • the base substrate structure 100 may be a semiconductor substrate with trenches.
  • the depth of the trench may be 3 ⁇ m.
  • the recess region 110 may be formed directly on the semiconductor substrate, or may be formed on a film formed on the semiconductor substrate.
  • a barrier layer 200 may be formed on the base substrate structure 100.
  • the barrier layer 200 may be formed along the inner surface of the recess region 110.
  • the barrier layer 200 may be conformally formed along the surface profile of the base substrate structure 100 having the recess region 110.
  • the barrier layer 200 can prevent the material of the material film to be described later from being diffused.
  • the barrier layer 200 may improve adhesion between a material film, which will be described later, and the base substrate structure 100.
  • the barrier layer 200 may include titanium (Ti). Or, alternatively, according to another embodiment, the barrier layer 200 is titanium nitride (TiN), silicon nitride (TiSiN), tungsten (W), tungsten nitride (WN), tantalum (Ta), tantalum nitride (TaN) ), tantalum silicon nitride (TaSiN). According to one embodiment, the barrier layer 200 may be formed to a thickness of 20 nm.
  • a seed layer 300 may be formed on the base substrate structure 100 on which the barrier layer 200 is formed.
  • the seed layer 300 may include a metal.
  • the seed layer 300 may be formed on the barrier layer 200 along the inner surface of the recess region 110.
  • the metal may be copper (Cu).
  • the seed layer 300 may be formed by an electroless plating method.
  • the seed layer 300 may be formed to a thickness of 150 nm.
  • a boundary surface between the seed layer 300 and the material layer 400 may not be substantially distinguished.
  • the seed layer 300 may be formed of the same material (for example, copper) as the material film 400, and in the removal process of the material film 400 described later, the material film 400 In addition, a portion of the seed layer 300 disposed outside the recess region 110 may be removed.
  • a material film 400 may be deposited on the base substrate structure 100 on which the seed layer 300 is formed.
  • the material layer 400 may fill the recess region 110 (S200).
  • the material film 400 may be deposited by an electrolytic deposition method.
  • the deposition of the material film 400 may be performed in a solution containing 1000 mM copper sulfate (CuSO 4 ), 580 mM sulfuric acid (H 2 SO 4 ), and 1.9 mM hydrochloric acid (HCl).
  • the deposition of the material film 400 may be performed for 300 s under conditions of a current density of -30 mA/cm 2 and a temperature of 25°C.
  • the material film 400 may be formed by various methods such as chemical vapor deposition, physical vapor deposition, and atomic layer deposition.
  • the material layer 400 may completely fill the recess region 110.
  • the material layer 400 may be formed on the base substrate structure 100 outside the recess region 110. In other words, the material layer 400 may fill the recess region 110 and cover the upper surface of the base substrate structure 100.
  • a material film pattern 500 may be formed in the recess region 110 (S300). That is, the material film pattern 500 may be the material film 400 remaining in the recess region 110, and the upper surface of the material film pattern 500 and the base substrate structure 100 The upper surface can form a coplanar surface. In other words, until the upper surface of the base substrate structure 100 and the upper surface of the material film 400 remaining in the recess region 110 form a coplanar surface, the material film 400 and the barrier layer ( 200), and the seed layer 300 may be removed.
  • the material layer pattern 500 may be a metal wiring.
  • the material film pattern 500 may be copper (Cu) wiring.
  • the material film 400 may be removed by ionizing the material of the material film 400.
  • the step of ionizing the material of the material film 400 is a step of immersing the base substrate structure 100 having the material film 400 in an electrolyte, the material film 400 A first removing step of applying a first voltage, and a second removing step of applying a second voltage to the material layer 400 may be included.
  • the second voltage may be lower than the first voltage.
  • the second voltage may be applied.
  • the first voltage and the second voltage may be applied sequentially. That is, in one process, after the first voltage is applied, the second voltage may be applied.
  • a step of stirring the electrolyte may be performed before the first voltage is applied and the second voltage is applied.
  • a step of stirring the electrolyte may be performed before the first voltage is applied and the second voltage is applied.
  • the first voltage of a relatively high level is applied, a pitting phenomenon in which a hole is formed in the surface of the material film 400 can be prevented.
  • the removal period of the material layer 400 is different from each other in a first section and a second section. Sections may appear.
  • the first section may be a section in which the removal rate of the material layer 400 decreases with a first slope according to an increase in voltage in the first voltage section.
  • the first voltage section may be a section in which a voltage applied to the material layer 400 is greater than 0.5V and less than 1.6V.
  • the second section may be a section in which the removal rate of the material layer 400 increases at a second slope according to an increase in voltage in the second voltage section.
  • the second voltage section may be a section in which a voltage applied to the material layer 400 is 1.6 V or more.
  • the size of the second slope of the second section may be greater than the size of the first slope of the first section. Accordingly, in the first section, the amount of change in the removal rate of the material layer 400 may be smaller than the second section. That is, when a voltage is applied within the first section, the material of the material film 400 may be ionized stably and substantially uniformly.
  • the amount of change in the removal rate of the material layer 400 may be greater than the first section. That is, the rate at which the material of the material film 400 is ionized in the second section may be faster than the rate at which the material of the material film 400 is ionized in the first section.
  • the first voltage in the first removal step described above may be selected in the second voltage section.
  • the second voltage in the second removal step may be selected in the first voltage section.
  • the material film 400 may be removed at a relatively high speed, and in the second removal step, the material film 400 may be removed relatively stably and uniformly. Accordingly, not only can the process time for removing the material film 400 be shortened, but also the etching uniformity of the material film 400 is improved, and the material film pattern in the recess region 110 ( 500) can be improved.
  • the material of the material film 400 may not be substantially ionized. That is, in a voltage range lower than the first voltage section, the material layer 400 may not be substantially removed.
  • the first voltage and the second voltage may be sequentially provided to the material layer 400. Accordingly, the formation efficiency of the material film pattern 500 may be improved. That is, the removal of the material layer 400 can be performed within a relatively fast time, and the etching uniformity of the material layer 400 can also be improved.
  • the electrolyte may include an acidic solution.
  • the acidic solution may include a phosphoric acid (H 3 PO 4 ) solution.
  • the concentration of the phosphoric acid may be 50 wt% or more.
  • the concentration of the phosphoric acid in the electrolyte is less than 50 wt%, as described above, the first section in which the material of the material film 400 is uniformly and stably removed may not exist, Accordingly, it is not easy to form the material layer pattern 500 in the recess region 110. In other words, it is not easy to set process conditions in which the upper surface of the base substrate structure 100 and the upper surface of the material film pattern 500 form a coplanar surface.
  • the material film 400 is removed unevenly and unstablely, so that the film quality of the material film pattern 500 in the recess region 110 may be deteriorated. Accordingly, according to an embodiment of the present application, the concentration of the phosphoric acid in the electrolyte may be 50 wt% or more.
  • the ionization rate of the material of the material film 400 may be controlled. Specifically, as the concentration of the phosphoric acid is lowered, the ionization rate of the material may be increased. As a result, the lower the concentration of the phosphoric acid in the electrolyte, the faster the removal rate of the material film 400 can be.
  • the first voltage section corresponding to the first section in which the material of the material film 400 is uniformly and stably removed may be extended. Therefore, when the concentration of the phosphoric acid is relatively high, the process conditions can be set relatively easily.
  • the electrolyte may further include a barrier etchant.
  • the barrier etchant may etch the barrier layer 200.
  • the barrier layer 200 may also be removed. That is, the barrier layer 200 and the material layer 400 may be removed together.
  • the barrier layer 200 may be removed by the barrier etchant. That is, a portion of the barrier layer 200 disposed outside the recess region 110 is removed, and between the inner surface of the recess region 110 and the material layer pattern 500, the barrier layer 200 This can remain.
  • the barrier etchant may include ammonium fluoride (NH 4 F). Specifically, ammonium fluoride may react with water in an aqueous solution to form hydrofluoric acid (HF). Accordingly, the barrier layer 200 may be etched by hydrofluoric acid.
  • NH 4 F ammonium fluoride
  • HF hydrofluoric acid
  • the concentration of the barrier etchant may be controlled.
  • the barrier etchant may include ammonium fluoride (NH 4 F) at a concentration of 0.5 to 2M.
  • NH 4 F ammonium fluoride
  • the concentration of ammonium fluoride may be 0.5 ⁇ 2M.
  • FIG 8 to 11 are views showing a manufacturing process of a semiconductor device according to a modification of the first embodiment of the present application.
  • the manufacturing method of the semiconductor device according to the modification of the first embodiment of the present application is the same as the manufacturing method of the semiconductor device according to the first embodiment described with reference to FIGS. 1 to 7, but the modification of the first embodiment
  • the seed layer 300 may be omitted. That is, after the material layer 400 is deposited on the barrier layer 200, the barrier layer 200 and the material layer 400 disposed outside the recess region 110 may be removed.
  • FIGS. 12 to 17 are views showing a manufacturing process of a semiconductor device according to a second embodiment of the present application.
  • the base substrate structure 100 may be prepared.
  • the base substrate structure 100 may include a semiconductor substrate, a metal substrate, a plastic substrate, or a glass substrate.
  • the base substrate structure 100 may include a silicon (Si) semiconductor substrate.
  • the base substrate structure 100 may have a recess region 110. That is, the base substrate structure 100 may include a semiconductor substrate on which a recess region is formed. According to an embodiment, the recess region 110 may be a via-hole. Accordingly, the base substrate structure 100 may be a semiconductor substrate on which via holes are formed.
  • a barrier layer 200 may be formed on the base substrate structure 100.
  • the barrier layer 200 may be formed along the inner surface of the recess region 110.
  • the barrier layer 200 can prevent the material of the material film to be described later from being diffused.
  • the barrier layer 200 may improve adhesion between a material film, which will be described later, and the base substrate structure 100.
  • the barrier layer 200 may include tantalum (Ta).
  • the barrier layer 200 may include titanium (Ti), titanium nitride (TiN), silicon nitride (TiSiN), tungsten (W), tungsten nitride (WN), tantalum nitride ( TaN) and tantalum silicon nitride (TaSiN).
  • a material layer 400 may be deposited on the base substrate structure 100 on which the barrier layer 200 is formed.
  • the material layer 400 may fill the recess region 110.
  • the material film 400 may be a copper film.
  • the material film 400 may be deposited by an electrolytic deposition method.
  • a seed layer may be formed on the base substrate structure 100 before forming the material layer 400.
  • the material film 400 may be formed by various methods such as chemical vapor deposition, physical vapor deposition, and atomic layer deposition.
  • the material layer 400 other than the recess region 110 may be removed, and the material layer 400 in the recess region 110 may remain. Accordingly, a material film pattern 500 may be formed in the recess region 110. That is, the material layer pattern 500 may be the material layer 400 remaining in the recess region 110.
  • the material film 400 may be removed by the method described with reference to FIGS. 1 to 7.
  • the lower region of the base substrate structure 100 may be removed so that both ends of the material layer pattern 500 are exposed. Accordingly, the semiconductor substrate structure 700 can be manufactured.
  • the material layer pattern 500 in the semiconductor substrate structure 700 may be a through silicon via (TSV). That is, when a plurality of the semiconductor substrate structures 700 are stacked, the material film pattern 500 may be connected to form an electrical passage.
  • TSV through silicon via
  • a front end of line (FEOL) and a back end of line (BEOL) process are performed, and a lower region of the base substrate structure 100 After this is removed, or the FEOL process is performed and the material film pattern 500 is formed and the BEOL process is performed, the lower region of the base substrate structure 100 is removed, or the FEOL and BEOL processes are performed and the The material film pattern 500 may be formed. That is, the process of forming the material layer pattern 500 according to the embodiment of the present application may be combined in various ways with the FEOL process and the BEOL process.
  • a method of manufacturing a semiconductor device includes preparing the base substrate structure 100 having the recess region 110 and the base substrate structure 100 having the recess region 110. ) Depositing the material film 400 on the substrate, filling the recess region 110, and ionizing the material of the material film 400, so that the material film other than the recess region 110 ( 400) may be removed, and the material layer 400 in the recess region 110 may remain, thereby forming the material layer pattern 500 in the recess region 110.
  • the conventional chemical mechanical polishing process for forming the material film pattern 500 may be omitted or simplified, and scratches, contamination, and corrosion due to particles contained in the slurry input in the chemical mechanical polishing process may be performed.
  • the problem can be minimized.
  • a dipping phenomenon in which a top surface of the material layer pattern 500 is concave (dent) by a chemical mechanical polishing process may be minimized. Due to this, the upper surface of the base substrate structure 100 and the upper surface of the material film pattern 500 can be substantially flat and coplanar, and the manufacturing process is simple and the manufacturing cost is high. This reduced, high-quality and highly reliable metal wiring or manufacturing process of TSV can be provided.
  • a titanium (Ti) layer was formed on the silicon substrate along the inner surface of the trench.
  • a copper (Cu) seed layer was formed on the titanium layer, and a copper film was deposited on the silicon substrate on which the copper seed layer was formed by electrolytic deposition.
  • electrolytic deposition Specifically, in a solution containing 1000 mM copper sulfate (CuSO 4 ), 580 mM sulfuric acid (H 2 SO 4 ), and 1.9 mM hydrochloric acid (HCl), at a current density of ⁇ 30 mA/cm 2 , at a temperature of 25° C. Electrolytic deposition was performed for a time of 300 s to deposit a copper film.
  • an electropolishing method of applying a voltage after immersing the silicon substrate on which the copper film is deposited in the electrolyte, removes the copper film other than the trench, and retains the copper film in the trench, the semiconductor device according to Example 1 was prepared. More specifically, in the electrolytic polishing process for removing the copper film, the silicon substrate on which the above-described copper film was deposited was used as a working electrode, a platinum sheet (Pt sheet) was used as a counter electrode, and Ag/AgCl was used as a reference electrode. . Further, as an electrolyte, a solution in which phosphoric acid (H 3 PO 4 ) and ammonium fluoride (NH 4 F) were mixed was used.
  • a semiconductor device is manufactured by the method for manufacturing a semiconductor device according to the first embodiment described above, but in an electropolishing process of removing the copper film, after applying a first voltage to a silicon substrate on which the copper film is deposited, a level lower than the first voltage A second voltage was applied.
  • a tantalum (Ta) layer was formed on the silicon substrate along the inner surface of the via hole. Subsequently, a method for manufacturing the semiconductor device according to Example 1 described above was performed to manufacture a semiconductor device according to Example 3.
  • a tantalum (Ta) layer was formed on the silicon substrate along the inner surface of the via hole. Subsequently, a method of manufacturing the semiconductor device according to Example 2 described above was performed to manufacture a semiconductor device according to Example 4.
  • a semiconductor device is manufactured by the method for manufacturing a semiconductor device according to Example 1 described above, but in the electropolishing process of removing the copper film, ammonium fluoride (NH 4 F) is not included, and phosphoric acid (H 3 PO 4 ) is included.
  • NH 4 F ammonium fluoride
  • H 3 PO 4 phosphoric acid
  • An electrolyte was used to manufacture a semiconductor device according to Comparative Example 1.
  • FIG. 17 and 18 are photographs of results obtained by electropolishing in the process of manufacturing a semiconductor device according to Example 1 of the present application.
  • FIG. 17(a) shows a state in which a trench is filled with 5 ⁇ m line width and 1 ⁇ m pitch
  • FIG. 17(b) shows a state where a trench is filled with 1 ⁇ m line width and 2 ⁇ m pitch
  • FIG. 17(a) shows a state in which a trench is filled with 5 ⁇ m line width and 1 ⁇ m pitch
  • FIG. 17(b) shows a state where a trench is filled with 1 ⁇ m line width and 2 ⁇ m pitch
  • FIG. 17 (C) shows a state in which a copper film is filled in a trench having a 2 ⁇ m line width and a 2 ⁇ m pitch.
  • electropolishing was performed, it was confirmed that copper films other than the trench were easily removed.
  • FIG. 18 a top view of a semiconductor device according to Example 1 is photographed and illustrated. As can be seen in Figure 19, in the case of a semiconductor device in which electropolishing was performed, it was confirmed that the copper film other than the trench was easily removed.
  • Example 19 is a photograph of a semiconductor device according to Example 1 of the present application taken at different magnifications and angles.
  • the specific manufacturing process conditions of the semiconductor device according to Example 1 photographed in FIG. 19 are as follows.
  • the copper film deposition process was performed at -30 mA/cm 2 current and 9 C/cm 2 conditions, and the copper film removal process was 70 wt% H 3 PO 4 +1.0M NH4F electrolyte, 1.3 V potential ( Potential), 7.5C/cm 2 .
  • the top view of the semiconductor device according to Example 1 is shown by SEM photographing at different magnifications.
  • FIG. 19(d) the The side view of the semiconductor device according to Example 1 is shown by SEM photographing. 19(a) to (d), it was confirmed that copper films other than the trench were easily removed.
  • FIG. 20 is a photograph showing EDS analysis of a semiconductor device according to Comparative Example 1 of the present application
  • FIG. 21 is a photograph showing EDS analysis of a semiconductor device according to Example 1 of the present application
  • FIG. 22 is an embodiment of the present application This is a picture of a semiconductor device according to 1.
  • FIG. 23 is a photograph of a state before an electropolishing process is performed in the process of manufacturing a semiconductor device according to Comparative Example 1 of the present application
  • FIG. 24 is an electropolishing in the process of manufacturing a semiconductor device according to Comparative Example 1 of the present application This is a photograph of the state after the process has been performed.
  • the state before the electropolishing process is performed in the manufacturing process of the semiconductor device according to Comparative Example 1 is shown by SEM photographing.
  • the specific process conditions for the copper film deposition are as follows. Copper film deposition was performed under the conditions of -30 mA/cm 2 (Current) and 9 C/cm 2 . As can be seen in FIG. 24, it was confirmed that deposition of the copper film in the trench was easily performed.
  • FIG. 24 a state after an electropolishing process is performed in the manufacturing process of the semiconductor device according to Comparative Example 1 is shown by SEM photographing.
  • the specific process conditions for copper film removal are as follows. Copper film removal was performed at 70 wt% H 3 PO 4 electrolyte, 1.3V Potential, 7.5 C/cm 2 .
  • the semiconductor device according to Example 1 was photographed by SEM.
  • specific process conditions for removing the copper film are as follows. Copper film removal was performed under the conditions of 70 wt% H 3 PO 4 + 1.0M NH 4 F electrolyte, 1.3V potential, 7.5 C/cm 2 .
  • the semiconductor device according to Example 1 was photographed by SEM.
  • specific process conditions for removing the copper film are as follows. Copper film removal was performed under conditions of 70 wt% H 3 PO 4 + 2.0M NH 4 F electrolyte, 1.3V Potential, 7.5 C/cm 2 .
  • a semiconductor device according to Example 1 is photographed by SEM.
  • specific process conditions for removing the copper film are as follows. Copper film removal was performed under conditions of 70 wt% H 3 PO 4 + 2.5M NH 4 F electrolyte, 1.3V potential, 7.5 C/cm 2 .
  • FIG. 26 is a photograph showing a state in which a copper film is deposited in a via hole in the process of manufacturing a semiconductor device according to Example 3 of the present application
  • FIG. 27 is a photograph of a semiconductor device according to Example 3 of the present application .
  • a semiconductor device according to Example 3 is photographed by SEM. As can be seen in FIG. 27, it was confirmed that the semiconductor device according to the third embodiment, the copper film other than the via hole was easily removed. In addition, as the copper film was filled in the via hole, it was confirmed that it can be used as a through silicon via (TSV).
  • TSV through silicon via
  • the semiconductor device according to the first embodiment which is manufactured using an electrolyte containing 50 wt% of H 3 PO 4, is prepared using an electrolyte containing 60 wt% of H 3 PO 4
  • the semiconductor device according to the first embodiment manufactured using an electrolyte containing 70 wt% of H 3 PO 4
  • the semiconductor device according to the first embodiment manufactured using an electrolyte containing 85 wt% of H 3 PO 4
  • the concentration of phosphoric acid should be used at least 50 wt%, it was confirmed that as the concentration of phosphoric acid is lowered, the ionization rate of copper is increased.
  • Example 30 is a photograph comparing the effect of stirring the electrolyte in the manufacturing process of the semiconductor device according to Example 1 of the present application.
  • the semiconductor device is manufactured according to the method of manufacturing the semiconductor device according to the first embodiment, but the time during which the electrolyte is stirred during the copper film removal process is controlled, and thus the manufactured embodiment 1
  • the semiconductor device according to was photographed.
  • electrolytic polishing for removing the copper film was performed in an electrolyte containing 85 wt% of H 3 PO 4 .
  • FIG. 30 (a) shows a case in which stirring was performed for 300 s for an electropolishing time of 300 s
  • FIG. 30 (b) performed electropolishing for 300 s, but did not perform stirring for 60 s after performing stirring for 240 s
  • FIG. 30(c) shows a case in which electrolytic polishing was performed for 300 s, but stirring was performed for 180 s and then stirring was not performed for 120 s
  • FIG. 30 (d) was stirred for 300 s of electropolishing time.
  • Fig. 30(e) shows the rate of electrolyte agitation.
  • 31 and 32 are graphs comparing the effect of stirring the electrolyte in the manufacturing process of the semiconductor device according to Example 1 of the present application.
  • FIGS. 31 and 32 a plurality of semiconductor devices according to Example 1 in which the time during which the electrolyte is agitated in the copper film removal process is controlled, but the electrolytic polishing process for removing the copper films for each
  • the changes in the current (Current) and the charge (Charge) with time were measured. Specifically, if electropolishing was performed for 300 s, but stirring (400 rpm) was performed for 240 s and then stirring was not performed for 60 s (a in FIGS. 31 and 32 ), electropolishing was performed for 300 s, but stirring (400 rpm) was 180 s. After the agitation was not performed for 120 s (b in FIGS.
  • FIG. 31 was measured based on the condition of 1.3 V
  • FIG. 32 was measured based on the condition of 3.6 C/cm 2 .
  • FIG. 33(a) is a photograph showing a semiconductor device according to Example 1 manufactured by applying a voltage of 2.3V for 300s
  • FIG. 33(b) shows a voltage of 2.3V for 240s
  • FIG. 33(c) shows that the voltage of 1.3V is 120s after the voltage of 2.3V is applied for 180s.
  • This is a photograph showing a semiconductor device according to Example 2, which has been manufactured during the application.
  • FIG. 34(a) is a photograph showing a semiconductor device according to Example 1 manufactured by applying a voltage of 2.3V for 300s
  • FIG. 34(b) shows a voltage of 2.3V applied for 240s.
  • FIG. 34(d) shows that a voltage of 1.3V is applied for 120s after a voltage of 2.3V is applied for 180s.
  • FIG. 34(e) is a photograph showing a semiconductor device according to Example 1 manufactured by applying a voltage of 1.3V for 300s.
  • the semiconductor device according to Example 2 was easily removed from the copper film other than the trench.
  • the semiconductor device according to the second embodiment it can be seen that compared to the semiconductor device according to the first embodiment, the copper film removal efficiency out of the trench was improved.
  • Example 35 are graphs comparing the effects of electrolyte agitation in the manufacturing process of a semiconductor device according to Example 2 of the present application.
  • FIG. 35 a plurality of semiconductor devices according to Example 2 in which the time during which the electrolyte is agitated in the copper film removal process is controlled, but for each time in the electrolytic polishing process for removing the copper film
  • the changes in the current (Current) and the charge (Charge) were measured. Specifically, after performing electrolytic etching for a period of 240 s with a voltage of 2.3 V, and performing electrolytic etching for a period of 60 s with a voltage of 1.3 V (a in FIG. 35 ), electrolysis for a period of 180 s with a voltage of 2.3 V After performing etching, electrolytic etching was performed for 120 s for a voltage of 1.3 V (b in FIG.
  • FIG. 36 are SEM photographs comparing the effect of stirring the electrolyte and the effect of concentration of phosphoric acid in the manufacturing process of the semiconductor device according to Example 1 of the present application.
  • FIG. 36 a plurality of semiconductor devices according to Example 1 in which the electrolyte was stirred and the concentration of phosphoric acid was controlled during the copper film removal process were prepared, and SEM images were taken for each.
  • FIG. 36 (a) shows a semiconductor device prepared under the conditions of 85 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , 400 rpm stirring
  • FIG. 36 (b) shows 70 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2
  • FIG. 36(c) shows 50 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , conditions of stirring at 400 rpm.
  • the semiconductor device manufactured in Figure 36 (d) is 85 wt% H 3 PO 4 electrolyte, 4.5 C / cm 2 , shows the semiconductor device manufactured under the conditions of agitation (without agitation),
  • Figure 36 ( e) represents a 70 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , a semiconductor device manufactured under conditions of agitation, and
  • FIG. 37(f) shows 50 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , a semiconductor device manufactured under conditions of agitation (without agitation).
  • Example 37 is a graph for comparing the effect of stirring the electrolyte and the effect of concentration of phosphoric acid in the manufacturing process of the semiconductor device according to Example 1 of the present application.
  • FIG. 38 are AFM photographs comparing the effect of stirring the electrolyte and the effect of concentration of phosphoric acid in the manufacturing process of the semiconductor device according to Example 1 of the present application.
  • a plurality of semiconductor devices according to Example 1 are manufactured in which the electrolyte is stirred and the concentration of phosphoric acid is controlled during the copper film removal process, and atomic force microscopy (AFM) is photographed for each. It was shown by.
  • Figure 38 (a) shows a semiconductor device prepared under the conditions of 85 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , 400 rpm stirring
  • Figure 38 (b) is 70 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2
  • FIG. 38(c) shows 50 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , 400 rpm stirring conditions
  • a semiconductor device manufactured in FIG. 38(d) shows a semiconductor device manufactured under the condition of 85 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , without agitation
  • FIG. 38 ( e) represents a 70 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , a semiconductor device manufactured under conditions of agitation, and FIG. 38(f) shows 50 wt% H 3 PO 4 electrolyte, It shows a semiconductor device manufactured under the condition of 4.5 C/cm 2 and without agitation.
  • 39 and 40 are SEM photographs comparing the effect of electrolyte agitation in the manufacturing process of the semiconductor device according to Example 2 of the present application.
  • a semiconductor device was manufactured according to the manufacturing process of the semiconductor device according to Example 2, but was manufactured according to the following specific conditions.
  • the copper film deposition process was performed at -30 mA/cm 2 current, 9 C/cm 2 condition, and the copper film removal process was 70 wt% H 3 PO 4 electrolyte, 1.3V potential, 6.5C/cm Stirring at 2 and 400 rpm was performed under conditions of primary removal, 1.0 C/cm 2 and secondary removal where stirring was not performed.
  • a semiconductor device was manufactured according to the manufacturing process of the semiconductor device according to Example 2, but was manufactured according to the following specific conditions.
  • the copper film deposition process was performed at -30 mA/cm 2 current, 9 C/cm 2 condition, and the copper film removal process was 70 wt% H 3 PO 4 electrolyte, 1.3V potential, 6.5C/cm Agitation at 2 and 400 rpm was performed under conditions of primary removal, 0.5 C/cm 2 and secondary removal without stirring.
  • FIG. 41 is a graph showing the degree of ionization of copper according to a voltage applied in the electropolishing process for removing a copper film
  • FIG. 42 is a photograph showing semiconductor elements photographed in each section shown in FIG. 41.
  • a semiconductor device is prepared according to the method of manufacturing a semiconductor device according to Example 1, but a potential (Potential V vs. Ag/AgCl) applied in an electropolishing process for removing a copper film is controlled, Accordingly, the current density (Current density, mA/cm 2 ) was measured and shown.
  • FIG. 42 the semiconductor device described in FIG. 41 is photographed by SEM. Specifically, FIG. 41(a) shows the state before electropolishing is performed, and FIG. 41(b) shows the state where 0.25V is applied, and FIG. 41(c) shows 0.375V. The applied state is photographed and shown, and FIG. 41(d) is shown by photographing a state in which 0.5V is applied, and FIG. 41(e) is shown by photographing a state in which 1.3V is applied.
  • the copper film was not removed in the section of more than 0 V and 0.5 V or less, and the copper film was removed in the section of 0.375 V or more.
  • the slope of the measured current density was remarkably high, so that the etching rate was remarkably fast, and 0.5 V
  • the etching rate was relatively low in the section of more than 1.5V, it was confirmed that the surface condition of the etched copper film was best.
  • the copper film is removed at a high speed by applying the first voltage at a relatively high level, and then the second voltage at the relatively low level is applied to improve the etching uniformity of the copper film. It can be seen that it is a method capable of efficiently performing the planarization process.
  • FIG. 43 and 44 are photographs comparing the effect of the amount of charge applied in the electropolishing process for the removal of the copper film
  • FIG. 45 is the thickness change of the copper film according to the amount of charge applied in the electropolishing process for the removal of the copper film It is a graph showing.
  • FIG. 43 shows a top image and FIG. 44 shows a vertical image.
  • the method for manufacturing a semiconductor device according to an embodiment of the present invention may be applied to various components of a semiconductor device such as metal wiring and TSV.

Abstract

A method for manufacturing a semiconductor device is provided. The method for manufacturing the semiconductor device comprises the steps of: preparing a base substrate structure having recessed regions; depositing a material film on the base substrate structure having the recessed regions so as to fill the recessed regions with same; and forming a material film pattern in the recessed regions by removing the material film in exclusion of the recessed regions by ionizing the material of the material film, leaving behind the material film in the recessed regions.

Description

반도체 소자의 제조 방법Method for manufacturing semiconductor device
본 출원은 반도체 소자의 제조 방법에 관한 것으로서, 보다 구체적으로는 리세스 영역 내에 물질막 패턴을 형성하는 것을 포함하는 반도체 소자의 제조 방법에 관련된 것이다. The present application relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device including forming a material film pattern in a recess region.
반도체 장치를 제조할 때, 금속층의 증착 및 선택적 제거는 중요한 공정이다. 전형적인 반도체 웨이퍼는 표면에 증착되거나 도금되는 여러개의 금속층을 갖는데, 각각의 연속하는 층은 다른 층이 더 추가되기 전에 연마되거나 에칭된다. 특히, 웨이퍼 면 상에 구리를 전기도금하는 것이 널리 실시되고 있다. 전형적으로, 구리의 도금(이는 일반적으로 웨이퍼 상에 구리로 된 덮개층을 만든다)을 한 후에 도금층의 원하지 않는 부분을 제거하기 위해 일반적으로 화학기계적 연마(Chemical-Mechanical Polishing, CMP) 공정을 이용하고 있다. When manufacturing a semiconductor device, deposition and selective removal of a metal layer are important processes. A typical semiconductor wafer has multiple metal layers deposited or plated on the surface, each successive layer being polished or etched before another layer is added. In particular, it is widely practiced to electroplate copper on the wafer surface. Typically, after plating of copper (which usually makes a copper overlay on the wafer), a chemical-mechanical polishing (CMP) process is generally used to remove unwanted portions of the plating layer. have.
전형적인 CMP 공정에서, 기판(예, 웨이퍼)은 플래튼(platen)에 부착된 회전 폴리싱 패드(rotating polishing pad)와 접촉되게 놓인다. CMP 슬러리, 전형적으로는 연마 및 화학적 반응 혼합물이 기판의 CMP 공정 동안 패드에 공급된다. CMP 공정 동안, 패드(플래튼에 고정됨) 및 기판이 회전되면서, 웨이퍼 캐리어 시스템 또는 폴리싱 헤드가 기판에 대해서 압력(다운포스(downward force))을 가한다. 슬러리는 화학 기계적 상호작용에 의해서 평탄화(폴리싱) 공정을 수행하며, 기판 필름이 기판에 대한 패드의 회전 운동의 효과로 인해서 평탄화된다. 폴리싱은 이러한 방식으로 기판상의 소정의 필름이 제거될 때까지 계속되며, 폴리싱의 통상적인 목적은 기판을 효과적으로 평탄화시키는 것이다. In a typical CMP process, the substrate (eg, wafer) is placed in contact with a rotating polishing pad attached to a platen. CMP slurry, typically a polishing and chemical reaction mixture, is supplied to the pad during the CMP process of the substrate. During the CMP process, the pads (fixed to the platen) and the substrate rotate, while the wafer carrier system or polishing head exerts pressure (downward force) against the substrate. The slurry undergoes a planarization (polishing) process by chemical mechanical interaction, and the substrate film is planarized due to the effect of the rotational motion of the pad relative to the substrate. Polishing continues in this way until a given film on the substrate is removed, and the usual purpose of polishing is to effectively planarize the substrate.
그러나, CMP 공정에는 슬러리에 함유되어 있는 입자에 의한 스크래치, 오염, 부식의 문제와 함께 공정 비용이 높다는 문제점이 있다. 이에 따라, 반도체 공정에 있어, CMP 공정에서 발생되는 문제점을 해결하며, 평탄화 공정을 수행할 수 있는 방법에 대해 지속적으로 연구되고 있다. However, in the CMP process, there is a problem that the process cost is high along with the problem of scratches, contamination and corrosion by particles contained in the slurry. Accordingly, in the semiconductor process, a problem occurring in the CMP process is solved, and a method for performing a planarization process has been continuously studied.
본 출원이 해결하고자 하는 일 기술적 과제는, 제조 공정이 간소화된 반도체 소자의 제조 방법을 제공하는 데 있다. One technical problem to be solved by the present application is to provide a method for manufacturing a semiconductor device with a simplified manufacturing process.
본 출원이 해결하고자 하는 다른 기술적 과제는, CMP 공정을 생략하여, CMP 공정에서 발생되는 문제점(슬러리에 포함된 입자에 의한 스크래치, 오염, 부식 등)을 해결할 수 있는 반도체 소자의 제조 방법을 제공하는 데 있다. Another technical problem to be solved by the present application is to provide a method of manufacturing a semiconductor device capable of solving a problem (scratch, contamination, corrosion, etc. caused by particles contained in the slurry) generated in the CMP process by omitting the CMP process. Having
본 출원이 해결하고자 하는 또 다른 기술적 과제는, 제조 비용이 절감된 반도체 소자의 제조 방법을 제공하는 데 있다. Another technical problem to be solved by the present application is to provide a method for manufacturing a semiconductor device with reduced manufacturing cost.
본 출원이 해결하고자 하는 또 다른 기술적 과제는, 신뢰성이 향상된 반도체 소자의 제조 방법을 제공하는 데 있다. Another technical problem to be solved by the present application is to provide a method for manufacturing a semiconductor device with improved reliability.
본 출원이 해결하고자 하는 기술적 과제는 상술된 것에 제한되지 않는다. The technical problem to be solved by the present application is not limited to the above.
상술된 기술적 과제들을 해결하기 위해 본 출원은 반도체 소자의 제조 방법을 제공한다. In order to solve the above technical problems, the present application provides a method for manufacturing a semiconductor device.
일 실시 예에 따르면, 상기 반도체 소자의 제조 방법은, 리세스(recess) 영역을 갖는 베이스 기판 구조체를 준비하는 단계, 상기 리세스 영역을 갖는 상기 베이스 기판 구조체 상에 물질막을 증착하여, 상기 리세스 영역을 채우는 단계, 및 상기 물질막의 물질을 이온화시켜, 상기 리세스 영역 외의 상기 물질막을 제거하고, 상기 리세스 영역 내의 상기 물질막을 잔존시켜, 상기 리세스 영역 내에 물질막 패턴을 형성하는 단계를 포함할 수 있다. According to one embodiment, the method of manufacturing the semiconductor device comprises: preparing a base substrate structure having a recess region, depositing a material film on the base substrate structure having the recess region, and thereby forming the recess Filling a region, and ionizing a material of the material film to remove the material film outside the recess area, and remaining the material film in the recess area to form a material film pattern in the recess area can do.
일 실시 예에 따르면, 상기 물질막의 상기 물질을 이온화시키는 단계는, 상기 물질막을 갖는 상기 베이스 기판 구조체를 전해질 내에 침지하는 단계, 상기 물질막에 제1 전압을 인가하는 제1 제거 단계, 및 상기 물질막에 상기 제1 전압보다 낮은 레벨의 제2 전압을 인가하는 제2 제거 단계를 포함할 수 있다. According to one embodiment, the step of ionizing the material of the material film includes: immersing the base substrate structure having the material film in an electrolyte, a first removing step of applying a first voltage to the material film, and the material A second removing step of applying a second voltage having a lower level than the first voltage to the film may be included.
일 실시 예에 따르면, 상기 반도체 소자의 제조 방법은, 상기 제1 전압이 인가된 직후(directly after), 상기 제2 전압이 인가되는 것을 포함할 수 있다. According to an embodiment, the method of manufacturing the semiconductor device may include applying the second voltage immediately after the first voltage is applied (directly after).
일 실시 예에 따르면, 상기 제1 제거 단계에서 상기 물질막의 상기 물질이 이온화되는 속도는, 상기 제2 제거 단계에서 상기 물질막의 상기 물질이 이온화되는 속도보다 빠른 것을 포함할 수 있다. According to an embodiment, the rate at which the material of the material film is ionized in the first removal step may include a rate faster than the rate at which the material of the material film is ionized in the second removal step.
일 실시 예에 따르면, 상기 제2 전압은 0.5V 초과 1.6V 미만인 것을 포함할 수 있다. According to one embodiment, the second voltage may include more than 0.5V and less than 1.6V.
일 실시 예에 따르면, 상기 전해질은 인산(H3PO4)을 포함하고, 상기 인산의 농도는 50 wt% 이상인 것을 포함할 수 있다. According to an embodiment, the electrolyte may include phosphoric acid (H 3 PO 4 ), and the concentration of the phosphoric acid may be 50 wt% or more.
일 실시 예에 따르면, 상기 인산의 농도가 낮아짐에 따라, 상기 물질의 이온화 속도가 빨라지는 것을 포함할 수 있다. According to an embodiment, as the concentration of the phosphoric acid decreases, the ionization rate of the material may be increased.
일 실시 예에 따르면, 상기 물질막을 증착하기 전, 상기 베이스 기판 구조체 상에, 상기 리세스 영역의 내면을 따라, 베리어층을 형성하는 단계를 더 포함하되, 상기 전해질은, 상기 베리어층을 식각하는 베리어 식각액을 포함할 수 있다. According to an embodiment, before depositing the material layer, further comprising forming a barrier layer on the base substrate structure along an inner surface of the recess region, wherein the electrolyte etches the barrier layer. It may include a barrier etchant.
일 실시 예에 따르면, 상기 베리어층은 티타늄(Ti), 및 탄탈륨(Ta) 중 어느 하나를 포함할 수 있다. According to an embodiment, the barrier layer may include any one of titanium (Ti) and tantalum (Ta).
일 실시 예에 따르면, 상기 전해질이 교반되는 동시에, 상기 물질막에 상기 제1 및 제2 전압이 인가되는 것을 포함할 수 있다. According to an embodiment, while the electrolyte is stirred, the first and second voltages may be applied to the material layer.
일 실시 예에 따르면, 상기 리세스 영역은 트렌치(Trench)이고, 상기 물질막 패턴은 금속 배선인 것을 포함할 수 있다. According to an embodiment, the recess region may be a trench, and the material layer pattern may include metal wiring.
일 실시 예에 따르면, 상기 리세스 영역은 상기 베이스 기판을 관통하는 비아 홀(Via-hole)이고, 상기 물질막 패턴은 TSV(Through Silicon Via)인 것을 포함할 수 있다. According to an embodiment, the recess region may be a via-hole penetrating the base substrate, and the material layer pattern may include a through silicon via (TSV).
일 실시 예에 따르면, 상기 물질막은 구리막을 포함할 수 있다. According to one embodiment, the material film may include a copper film.
다른 실시 예에 따르면, 상기 반도체 소자의 제조 방법은, 베이스 기판을 준비하는 단계, 상기 베이스 기판 상에 물질막을 증착하는 단계, 상기 물질막이 증착된 상기 베이스 기판을 전해질 내에 침지하는 단계, 및 상기 물질막에 제1 전압, 및 상기 제1 전압보다 낮은 레벨의 제2 전압을 연속적으로(sequentially) 인가하여, 상기 물질막의 물질을 이온화시켜, 상기 물질막의 적어도 일부분을 제거하는 단계를 포함할 수 있다. According to another embodiment, a method of manufacturing the semiconductor device includes: preparing a base substrate, depositing a material film on the base substrate, immersing the base substrate on which the material film is deposited, in an electrolyte, and the material And sequentially applying a first voltage to the film and a second voltage at a level lower than the first voltage to ionize the material of the material film to remove at least a portion of the material film.
다른 실시 예에 따르면, 제1 전압 구간에서 전압 증가에 따라서 상기 물질막의 제거 속도가 제1 기울기로 감소하는 제1 구간, 및 제2 전압 구간에서 전압 증가에 따라서 상기 물질막의 제거 속도가 제2 기울기로 증가하는 제2 구간이 제공되고, 상기 제2 구간의 상기 제2 기울기의 크기는, 상기 제1 구간의 상기 제1 기울기의 크기보다 크고, 상기 제1 전압은 상기 제2 전압 구간에서 선택되고, 상기 제2 전압은 상기 제1 전압 구간에서 선택되는 것을 포함할 수 있다.According to another embodiment, the removal rate of the material layer decreases to a first slope according to an increase in voltage in the first voltage section, and the removal rate of the material layer decreases according to an increase in voltage in the second voltage section. A second section increasing to is provided, and the size of the second slope of the second section is greater than the size of the first slope of the first section, and the first voltage is selected from the second voltage section. , The second voltage may include selected from the first voltage section.
본 출원의 실시 예에 따른 반도체 소자의 제조 방법은, 리세스 영역을 갖는 베이스 기판 구조체를 준비하는 단계, 상기 리세스 영역을 갖는 상기 베이스 기판 구조체 상에 물질막을 증착하여, 상기 리세스 영역을 채우는 단계, 및 상기 물질막의 물질을 이온화시켜, 상기 리세스 영역 외의 상기 물질막을 제거하고, 상기 리세스 영역 내의 상기 물질막을 잔존시켜, 상기 리세스 영역 내에 상기 물질막 패턴을 형성하는 단계를 포함할 수 있다. A method of manufacturing a semiconductor device according to an embodiment of the present application includes preparing a base substrate structure having a recess region, depositing a material film on the base substrate structure having the recess region, and filling the recess region And forming a material film pattern in the recessed area by ionizing a material of the material film, removing the material film outside the recessed area, and remaining the material film in the recessed area. have.
이에 따라, 상기 리세스 영역 내의 상기 물질막 패턴을 형성하는 공정에 따른 막질의 손상(슬러리에 포함된 입자에 의한 스크래치, 오염, 부식 등)이 예방될 수 있다. 또한, 간단하고 저렴한 비용으로, 고신뢰성의 금속 배선 또는 TSV(Through Silicon Via)가 제조될 수 있다. Accordingly, damage to the film quality (scratch, contamination, corrosion, etc. by particles contained in the slurry) according to the process of forming the material film pattern in the recess region can be prevented. In addition, at a simple and low cost, a highly reliable metal wiring or through silicon via (TSV) can be manufactured.
도 1은 본 출원의 실시 예에 따른 반도체 소자의 제조 방법을 설명하는 순서도이다. 1 is a flowchart illustrating a method of manufacturing a semiconductor device according to an embodiment of the present application.
도 2 내지 도 7은 본 출원의 제1 실시 예에 따른 반도체 소자의 제조 공정을 나타내는 도면이다. 2 to 7 are views showing a manufacturing process of a semiconductor device according to the first embodiment of the present application.
도 8 내지 도 11은 본 출원의 제1 실시 예의 변형 예에 따른 반도체 소자의 제조 공정을 나타내는 도면이다. 8 to 11 are views showing a manufacturing process of a semiconductor device according to a modification of the first embodiment of the present application.
도 12 내지 도 16은 본 출원의 제2 실시 예에 따른 반도체 소자의 제조 공정을 나타내는 도면이다. 12 to 16 are views showing a manufacturing process of a semiconductor device according to a second embodiment of the present application.
도 17 및 도 18은 본 출원의 실시 예 1에 따른 반도체 소자의 제조 과정에서, 전해연마에 따른 결과를 촬영한 사진이다. 17 and 18 are photographs of results obtained by electropolishing in the process of manufacturing a semiconductor device according to Example 1 of the present application.
도 19는 본 출원의 실시 예 1에 따른 반도체 소자를 서로 다른 배율 및 각도에서 촬영한 사진이다. 19 is a photograph of a semiconductor device according to Example 1 of the present application taken at different magnifications and angles.
도 20은 본 출원의 비교 예 1에 따른 반도체 소자의 EDS analysis를 나타내는 사진이다. 20 is a photograph showing EDS analysis of a semiconductor device according to Comparative Example 1 of the present application.
도 21은 본 출원의 실시 예 1에 따른 반도체 소자의 EDS analysis를 나타내는 사진이다. 21 is a photograph showing EDS analysis of a semiconductor device according to Example 1 of the present application.
도 22는 본 출원의 실시 예 1에 따른 반도체 소자를 촬영한 사진이다. 22 is a photograph of a semiconductor device according to Example 1 of the present application.
도 23은 본 출원의 비교 예 1에 따른 반도체 소자의 제조 과정에서 전해연마 공정이 수행되기 전 상태를 촬영한 사진이다. 23 is a photograph of a state before the electropolishing process is performed in the manufacturing process of the semiconductor device according to Comparative Example 1 of the present application.
도 24는 본 출원의 비교 예 1에 따른 반도체 소자의 제조 과정에서 전해연마 공정이 수행된 후의 상태를 촬영한 사진이다. 24 is a photograph of a state after an electropolishing process is performed in the process of manufacturing a semiconductor device according to Comparative Example 1 of the present application.
도 25는 전해질이 포함하는 불화암모늄(NH4F)의 농도에 따른 베리어층의 제거 효과를 비교하는 사진들이다. 25 is a photograph comparing the effect of removing the barrier layer according to the concentration of ammonium fluoride (NH 4 F) contained in the electrolyte.
도 26은 본 출원의 실시 예 3에 따른 반도체 소자의 제조 과정에서, 비아홀 내에 구리막이 증착된 상태를 촬영하여 나타낸 사진이다. 26 is a photograph showing a state in which a copper film is deposited in a via hole in a process of manufacturing a semiconductor device according to Example 3 of the present application.
도 27은 본 출원의 실시 예 3에 따른 반도체 소자를 촬영한 사진이다. 27 is a photograph of a semiconductor device according to Example 3 of the present application.
도 28 및 도 29는 전해질이 포함하는 인산의 농도에 따른 효과를 비교하는 그래프이다. 28 and 29 are graphs comparing the effect of the concentration of phosphoric acid contained in the electrolyte.
도 30은 본 출원의 실시 예 1에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과를 비교하는 사진들이다. 30 is a photograph comparing the effect of stirring the electrolyte in the manufacturing process of the semiconductor device according to Example 1 of the present application.
도 31 및 도 32는 본 출원의 실시 예 1에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과를 비교하는 그래프들이다. 31 and 32 are graphs comparing the effect of stirring the electrolyte in the manufacturing process of the semiconductor device according to Example 1 of the present application.
도 33 및 도 34는 본 출원의 실시 예 1 및 실시 예 2에 따른 반도체 소자를 비교하는 사진들이다.33 and 34 are pictures comparing semiconductor devices according to Examples 1 and 2 of the present application.
도 35는 본 출원의 실시 예 2에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과를 비교하는 그래프들이다. 35 are graphs comparing the effects of electrolyte agitation in the manufacturing process of a semiconductor device according to Example 2 of the present application.
도 36은 본 출원의 실시 예 1에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과 및 인산의 농도에 따른 효과를 비교하는 SEM 사진들이다. FIG. 36 are SEM photographs comparing the effect of stirring the electrolyte and the effect of concentration of phosphoric acid in the manufacturing process of the semiconductor device according to Example 1 of the present application.
도 37은 본 출원의 실시 예 1에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과 및 인산의 농도에 따른 효과를 비교하는 그래프이다. 37 is a graph for comparing the effect of stirring the electrolyte and the effect of concentration of phosphoric acid in the manufacturing process of the semiconductor device according to Example 1 of the present application.
도 38은 본 출원의 실시 예 1에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과 및 인산의 농도에 따른 효과를 비교하는 AFM 사진들이다.FIG. 38 are AFM photographs comparing the effect of stirring the electrolyte and the effect of concentration of phosphoric acid in the manufacturing process of the semiconductor device according to Example 1 of the present application.
도 39 및 도 40은 본 출원의 실시 예 2에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과를 비교하는 SEM 사진들이다. 39 and 40 are SEM photographs comparing the effect of electrolyte agitation in the manufacturing process of the semiconductor device according to Example 2 of the present application.
도 41은 구리막 제거를 위한 전해연마 과정에서 인가되는 전압에 따라 구리가 이온화되는 정도를 나타내는 그래프이다. 41 is a graph showing the degree of ionization of copper according to a voltage applied in an electropolishing process for removing a copper film.
도 42는 도 41에 표시된 각 구간에서 촬영된 반도체 소자들을 나타내는 사진이다. 42 is a photograph showing semiconductor elements photographed in each section shown in FIG. 41.
도 43 및 도 44는 구리막의 제거를 위한 전해연마 공정에서 인가되는 전하의 크기에 따른 효과를 비교하는 사진이다. 43 and 44 are pictures comparing the effect of the amount of charge applied in the electropolishing process for the removal of the copper film.
도 45는 구리막의 제거를 위한 전해연마 공정에서 인가되는 전하량에 따른 구리막의 두께 변화를 나타내는 그래프이다. 45 is a graph showing a change in the thickness of the copper film according to the amount of charge applied in the electropolishing process for removing the copper film.
이하, 첨부된 도면들을 참조하여 본 출원의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 출원의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 출원의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Hereinafter, preferred embodiments of the present application will be described in detail with reference to the accompanying drawings. However, the technical spirit of the present application is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided to ensure that the disclosed contents are thorough and complete and that the spirit of the present application is sufficiently conveyed to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In this specification, when a component is referred to as being on another component, it means that it may be formed directly on another component, or a third component may be interposed between them. In addition, in the drawings, the thickness of the films and regions are exaggerated for effective description of the technical content.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.In addition, in various embodiments of the present specification, terms such as first, second, and third are used to describe various components, but these components should not be limited by these terms. These terms are only used to distinguish one component from another component. Therefore, what is referred to as the first component in one embodiment may be referred to as the second component in another embodiment. Each embodiment described and illustrated herein also includes its complementary embodiment. Also, in this specification,'and/or' is used to mean including at least one of the components listed before and after.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다.In the specification, a singular expression includes a plural expression unless the context clearly indicates otherwise. Also, terms such as “include” or “have” are intended to indicate the presence of features, numbers, steps, elements, or combinations thereof described in the specification, and one or more other features, numbers, steps, or configurations. It should not be understood as excluding the possibility or presence of elements or combinations thereof. In addition, in this specification, "connecting" is used in a sense to include both indirectly connecting a plurality of components, and directly connecting.
또한, 하기에서 본 출원을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 출원의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.In addition, in the following description of the present application, when it is determined that a detailed description of related known functions or configurations may unnecessarily obscure the subject matter of the present application, the detailed description will be omitted.
도 1은 본 출원의 실시 예에 따른 반도체 소자의 제조 방법을 설명하는 순서도이고, 도 2 내지 도 7은 본 출원의 제1 실시 예에 따른 반도체 소자의 제조 공정을 나타내는 도면이다. 1 is a flowchart illustrating a method of manufacturing a semiconductor device according to an embodiment of the present application, and FIGS. 2 to 7 are views showing a manufacturing process of the semiconductor device according to the first embodiment of the present application.
도 1 및 도 2를 참조하면, 베이스 기판 구조체(100)가 준비될 수 있다(S100). 일 실시 예에 따르면, 상기 베이스 기판 구조체(100)는, 반도체 기판, 금속 기판, 플라스틱 기판, 또는 유리 기판을 포함할 수 있다. 예를 들어, 상기 베이스 기판 구조체(100)는 실리콘(Si) 반도체 기판을 포함할 수 있다. 1 and 2, the base substrate structure 100 may be prepared (S100). According to one embodiment, the base substrate structure 100 may include a semiconductor substrate, a metal substrate, a plastic substrate, or a glass substrate. For example, the base substrate structure 100 may include a silicon (Si) semiconductor substrate.
상기 베이스 기판 구조체(100)는 리세스(recess) 영역(110)을 가질 수 있다. 일 실시 예에 따르면, 상기 리세스 영역(110)은, 트렌치(Trench)일 수 있다. 이에 따라, 상기 베이스 기판 구조체(100)는, 트렌치가 형성된 반도체 기판일 수 있다. 예를 들어, 상기 트렌치의 깊이는 3μm 일 수 있다. 상기 리세스 영역(110)은 상기 반도체 기판에 직접 형성되거나, 또는 상기 반도체 기판 상에 형성된 막에 형성될 수 있다. The base substrate structure 100 may have a recess region 110. According to an embodiment, the recess region 110 may be a trench. Accordingly, the base substrate structure 100 may be a semiconductor substrate with trenches. For example, the depth of the trench may be 3 μm. The recess region 110 may be formed directly on the semiconductor substrate, or may be formed on a film formed on the semiconductor substrate.
도 3을 참조하면, 상기 베이스 기판 구조체(100) 상에, 베리어층(200)이 형성될 수 있다. 상기 베리어층(200)은, 상기 리세스 영역(110)의 내면을 따라 형성될 수 있다. 다시 말하면, 상기 베리어층(200)은 상기 리세스 영역(110)을 갖는 상기 베이스 기판 구조체(100)의 표면 프로파일을 따라, 콘포말하게 형성될 수 있다. 상기 베리어층(200)은, 후술되는 물질막의 물질이 확산되는 것을 방지할 수 있다. 또한, 상기 베리어층(200)은, 후술되는 물질막과 상기 베이스 기판 구조체(100) 사이의 접착력을 향상시킬 수 있다. Referring to FIG. 3, a barrier layer 200 may be formed on the base substrate structure 100. The barrier layer 200 may be formed along the inner surface of the recess region 110. In other words, the barrier layer 200 may be conformally formed along the surface profile of the base substrate structure 100 having the recess region 110. The barrier layer 200 can prevent the material of the material film to be described later from being diffused. In addition, the barrier layer 200 may improve adhesion between a material film, which will be described later, and the base substrate structure 100.
일 실시 예에 따르면, 상기 베리어층(200)은 티타늄(Ti)을 포함할 수 있다. 또는, 이와는 달리, 다른 실시 예에 따르면, 상기 베리어층(200)은 질화티타늄(TiN), 질화규소티타늄(TiSiN), 텅스텐(W), 질화텅스텐(WN), 탄탈륨(Ta), 질화탄탈륨(TaN), 질화규소탄탈륨(TaSiN) 중 적어도 어느 하나를 포함할 수 있다. 일 실시 예에 따르면, 상기 베리어층(200)은 20 nm의 두께로 형성될 수 있다. According to one embodiment, the barrier layer 200 may include titanium (Ti). Or, alternatively, according to another embodiment, the barrier layer 200 is titanium nitride (TiN), silicon nitride (TiSiN), tungsten (W), tungsten nitride (WN), tantalum (Ta), tantalum nitride (TaN) ), tantalum silicon nitride (TaSiN). According to one embodiment, the barrier layer 200 may be formed to a thickness of 20 nm.
도 4를 참조하면, 상기 베리어층(200)이 형성된 상기 베이스 기판 구조체(100) 상에, 시드층(seed layer, 300)이 형성될 수 있다. 일 실시 예에 따르면, 상기 시드층(300)은 금속을 포함할 수 있다. 상기 시드층(300)은 상기 리세스 영역(110)의 내면을 따라 상기 베리어층(200) 상에 형성될 수 있다. 예를 들어, 상기 금속은 구리(Cu)일 수 있다. 일 실시 예에 따르면, 상기 시드층(300)은 무전해도금 방법으로 형성될 수 있다. 일 실시 예에 따르면, 상기 시드층(300)은 150 nm의 두께로 형성될 수 있다. Referring to FIG. 4, a seed layer 300 may be formed on the base substrate structure 100 on which the barrier layer 200 is formed. According to one embodiment, the seed layer 300 may include a metal. The seed layer 300 may be formed on the barrier layer 200 along the inner surface of the recess region 110. For example, the metal may be copper (Cu). According to one embodiment, the seed layer 300 may be formed by an electroless plating method. According to one embodiment, the seed layer 300 may be formed to a thickness of 150 nm.
후술되는 도 5에 도시된 바와 달리, 상기 시드층(300) 및 상기 물질막(400) 사이의 경계면은 실질적으로 구분되지 않을 수 있다. 5, a boundary surface between the seed layer 300 and the material layer 400 may not be substantially distinguished.
또한, 상기 시드층(300)은 상기 물질막(400)과 동일한 물질(예를 들어, 구리)로 형성될 수 있고, 후술되는 상기 물질막(400)의 제거 공정에서, 상기 물질막(400)과 함께 상기 리세스 영역(110)외에 배치된 상기 시드층(300)의 일부분이 제거될 수 있다.In addition, the seed layer 300 may be formed of the same material (for example, copper) as the material film 400, and in the removal process of the material film 400 described later, the material film 400 In addition, a portion of the seed layer 300 disposed outside the recess region 110 may be removed.
도 1 및 도 5를 참조하면, 상기 시드층(300)이 형성된 상기 베이스 기판 구조체(100) 상에 물질막(400)이 증착될 수 있다. 상기 물질막(400)은, 상기 리세스 영역(110)을 채울 수 있다(S200). 1 and 5, a material film 400 may be deposited on the base substrate structure 100 on which the seed layer 300 is formed. The material layer 400 may fill the recess region 110 (S200).
일 실시 예에 따르면, 상기 물질막(400)은 전해증착 방법으로 증착될 수 있다. 구체적인 예를 들어, 상기 물질막(400)의 증착은, 황산구리(CuSO4) 1000mM, 황산(H2SO4) 580 mM, 염산(HCl) 1.9 mM을 포함하는 용액 내에서 수행될 수 있다. 또한, 상기 물질막(400)의 증착은, -30 mA/cm2의 전류밀도, 25℃의 온도의 조건에서 300s의 시간 동안 수행될 수 있다. According to one embodiment, the material film 400 may be deposited by an electrolytic deposition method. For a specific example, the deposition of the material film 400 may be performed in a solution containing 1000 mM copper sulfate (CuSO 4 ), 580 mM sulfuric acid (H 2 SO 4 ), and 1.9 mM hydrochloric acid (HCl). In addition, the deposition of the material film 400 may be performed for 300 s under conditions of a current density of -30 mA/cm 2 and a temperature of 25°C.
다른 실시 예에 따르면, 상기 물질막(400)은, 화학기상 증착법, 물리기상 증착법, 원자층 증착법 등 다양한 방법으로 형성될 수 있다. According to another embodiment, the material film 400 may be formed by various methods such as chemical vapor deposition, physical vapor deposition, and atomic layer deposition.
상기 물질막(400)은 상기 리세스 영역(110)을 완전히 채울 수 있다. 또한, 상기 물질막(400)은 상기 리세스 영역(110) 외부의 상기 베이스 기판 구조체(100) 상에 형성될 수 있다. 다시 말하면, 상기 물질막(400)은, 상기 리세스 영역(110)을 채우고, 상기 베이스 기판 구조체(100)의 상부면을 덮을 수 있다. The material layer 400 may completely fill the recess region 110. In addition, the material layer 400 may be formed on the base substrate structure 100 outside the recess region 110. In other words, the material layer 400 may fill the recess region 110 and cover the upper surface of the base substrate structure 100.
도 1, 도 6, 및 도 7을 참조하면, 상기 리세스 영역(110) 외의 상기 물질막(400)은 제거되고, 상기 리세스 영역(110) 내의 상기 물질막(400)은 잔존될 수 있다. 이에 따라, 상기 리세스 영역(110) 내에 물질막 패턴(500)이 형성될 수 있다(S300). 즉, 상기 물질막 패턴(500)은, 상기 리세스 영역(110) 내에 잔존된 상기 물질막(400)일 수 있고, 상기 물질막 패턴(500)의 상부면과 상기 베이스 기판 구조체(100)의 상부면은 공면(共面, co planar)을 이룰 수 있다. 다시 말하면, 상기 베이스 기판 구조체(100)의 상부면과 상기 리세스 영역(110) 내에 잔존된 상기 물질막(400)의 상부면이 공면을 이룰때까지, 상기 물질막(400), 상기 베리어층(200), 및 상기 시드층(300)이 제거될 수 있다. 1, 6, and 7, the material layer 400 other than the recess region 110 is removed, and the material layer 400 in the recess region 110 may remain. . Accordingly, a material film pattern 500 may be formed in the recess region 110 (S300). That is, the material film pattern 500 may be the material film 400 remaining in the recess region 110, and the upper surface of the material film pattern 500 and the base substrate structure 100 The upper surface can form a coplanar surface. In other words, until the upper surface of the base substrate structure 100 and the upper surface of the material film 400 remaining in the recess region 110 form a coplanar surface, the material film 400 and the barrier layer ( 200), and the seed layer 300 may be removed.
일 실시 예에 따르면, 상기 물질막 패턴(500)은 금속 배선일 수 있다. 구체적으로, 예를 들어, 상기 물질막 패턴(500)은 구리(Cu) 배선일 수 있다. According to one embodiment, the material layer pattern 500 may be a metal wiring. Specifically, for example, the material film pattern 500 may be copper (Cu) wiring.
상기 물질막(400)은, 상기 물질막(400)의 물질이 이온화되어 제거될 수 있다. 일 실시 예에 따르면, 상기 물질막(400)의 상기 물질을 이온화시키는 단계는, 상기 물질막(400)을 갖는 상기 베이스 기판 구조체(100)를 전해질 내에 침지하는 단계, 상기 물질막(400)에 제1 전압을 인가하는 제1 제거 단계, 및 상기 물질막(400)에 제2 전압을 인가하는 제2 제거 단계를 포함할 수 있다. 상기 제2 전압은, 상기 제1 전압보다 낮은 레벨일 수 있다. The material film 400 may be removed by ionizing the material of the material film 400. According to one embodiment, the step of ionizing the material of the material film 400 is a step of immersing the base substrate structure 100 having the material film 400 in an electrolyte, the material film 400 A first removing step of applying a first voltage, and a second removing step of applying a second voltage to the material layer 400 may be included. The second voltage may be lower than the first voltage.
상기 제1 전압이 인가된 직후(directly after), 상기 제2 전압이 인가될 수 있다. 다시 말해, 상기 제1 전압 및 상기 제2 전압은 연속적(sequentially)으로 인가될 수 있다. 즉, 1회의 공정에서, 상기 제1 전압이 인가된 후, 상기 제2 전압이 인가될 수 있다. After the first voltage is applied (directly after), the second voltage may be applied. In other words, the first voltage and the second voltage may be applied sequentially. That is, in one process, after the first voltage is applied, the second voltage may be applied.
또는, 다른 실시 예에 따르면, 상기 제1 전압이 인가되고, 상기 제2 전압이 인가되기 전, 상기 전해질을 교반하는 단계가 수행될 수 있다. 이 경우, 상대적으로 높은 레벨의 상기 제1 전압이 인가됨에 따라, 상기 물질막(400) 표면에 구멍이 형성되는 pitting 현상이 예방될 수 있다.Alternatively, according to another embodiment, before the first voltage is applied and the second voltage is applied, a step of stirring the electrolyte may be performed. In this case, as the first voltage of a relatively high level is applied, a pitting phenomenon in which a hole is formed in the surface of the material film 400 can be prevented.
일 실시 예에 따르면, 상기 물질막(400) 제거 단계에서, 상기 물질막(400)에 인가되는 전압이 증가함에 따라, 상기 물질막(400)의 제거 속도가 서로 다른 제1 구간, 및 제2 구간이 나타날 수 있다. According to an embodiment, in the removing step of the material layer 400, as the voltage applied to the material layer 400 increases, the removal period of the material layer 400 is different from each other in a first section and a second section. Sections may appear.
구체적으로, 상기 제1 구간은, 제1 전압 구간에서 전압 증가에 따라서 상기 물질막(400)의 제거 속도가 제1 기울기로 감소하는 구간일 수 있다. 예를 들어, 상기 제1 전압 구간은, 상기 물질막(400)에 인가되는 전압이 0.5V 초과 1.6V 미만인 구간일 수 있다. 이와 달리, 상기 제2 구간은, 제2 전압 구간에서 전압 증가에 따라서 상기 물질막(400)의 제거 속도가 제2 기울기로 증가하는 구간일 수 있다. 예를 들어, 상기 제2 전압 구간은, 상기 물질막(400)에 인가되는 전압이 1.6V 이상인 구간일 수 있다. Specifically, the first section may be a section in which the removal rate of the material layer 400 decreases with a first slope according to an increase in voltage in the first voltage section. For example, the first voltage section may be a section in which a voltage applied to the material layer 400 is greater than 0.5V and less than 1.6V. Alternatively, the second section may be a section in which the removal rate of the material layer 400 increases at a second slope according to an increase in voltage in the second voltage section. For example, the second voltage section may be a section in which a voltage applied to the material layer 400 is 1.6 V or more.
상기 제2 구간의 상기 제2 기울기의 크기는, 상기 제1 구간의 상기 제1 기울기의 크기보다 클 수 있다. 이에 따라, 상기 제1 구간은, 상기 제2 구간 보다 상기 물질막(400)의 제거율 변화량이 작을 수 있다. 즉, 상기 제1 구간 내에서 전압이 인가되는 경우, 상기 물질막(400)의 상기 물질이 안정적 그리고 실질적으로 균일하게 이온화 될 수 있다. The size of the second slope of the second section may be greater than the size of the first slope of the first section. Accordingly, in the first section, the amount of change in the removal rate of the material layer 400 may be smaller than the second section. That is, when a voltage is applied within the first section, the material of the material film 400 may be ionized stably and substantially uniformly.
이와는 달리, 상기 제2 구간은, 상기 제1 구간 보다 상기 물질막(400)의 제거율 변화량이 클 수 있다. 즉, 상기 제2 구간에서 상기 물질막(400)의 상기 물질이 이온화되는 속도는, 상기 제1 구간에서 상기 물질막(400)의 상기 물질이 이온화되는 속도보다 빠를 수 있다. Alternatively, in the second section, the amount of change in the removal rate of the material layer 400 may be greater than the first section. That is, the rate at which the material of the material film 400 is ionized in the second section may be faster than the rate at which the material of the material film 400 is ionized in the first section.
일 실시 예에 따르면, 상술된 상기 제1 제거 단계에서의 상기 제1 전압은, 상기 제2 전압 구간에서 선택될 수 있다. 이와 달리, 상기 제2 제거 단계에서의 상기 제2 전압은, 상기 제1 전압 구간에서 선택될 수 있다. According to an embodiment, the first voltage in the first removal step described above may be selected in the second voltage section. Alternatively, the second voltage in the second removal step may be selected in the first voltage section.
즉, 상기 제1 제거 단계에서는, 상기 물질막(400)이 상대적으로 빠른 속도로 제거되고, 상기 제2 제거 단계에서는, 상기 물질막(400)이 상대적으로 안정적으로 그리고 균일하게 제거될 수 있다. 이에 따라, 상기 물질막(400)의 제거를 위한 공정 시간이 단축될 수 있을 뿐만 아니라, 상기 물질막(400)의 식각 균일성이 향상되고, 상기 리세스 영역(110) 내의 상기 물질막 패턴(500)의 특성이 향상될 수 있다. That is, in the first removal step, the material film 400 may be removed at a relatively high speed, and in the second removal step, the material film 400 may be removed relatively stably and uniformly. Accordingly, not only can the process time for removing the material film 400 be shortened, but also the etching uniformity of the material film 400 is improved, and the material film pattern in the recess region 110 ( 500) can be improved.
상기 제1 전압 구간보다 낮은 전압 범위에서는, 상기 물질막(400)의 상기 물질이 실질적으로 이온화되지 않을 수 있다. 즉, 상기 제1 전압 구간보다 낮은 전압 범위에서는, 상기 물질막(400)이 실질적으로 제거되지 않을 수 있다. In a voltage range lower than the first voltage period, the material of the material film 400 may not be substantially ionized. That is, in a voltage range lower than the first voltage section, the material layer 400 may not be substantially removed.
일 실시 예에 따르면, 상기 전해질이 교반되는 동시에, 상기 물질막(400)에 상기 제1 전압 및 상기 제2 전압이 순차적으로 제공될 수 있다. 이에 따라, 상기 물질막 패턴(500)의 형성 효율이 향상될 수 있다. 즉, 상기 물질막(400)의 제거가 상대적으로 빠른 시간 내에 수행될 수 있을 뿐만 아니라, 상기 물질막(400)의 식각 균일성 또한 향상될 수 있다. According to an embodiment, while the electrolyte is stirred, the first voltage and the second voltage may be sequentially provided to the material layer 400. Accordingly, the formation efficiency of the material film pattern 500 may be improved. That is, the removal of the material layer 400 can be performed within a relatively fast time, and the etching uniformity of the material layer 400 can also be improved.
일 실시 예에 따르면, 상기 전해질은 산성 용액을 포함할 수 있다. 예를 들어, 상기 산성 용액은 인산(H3PO4) 용액을 포함할 수 있다. 일 실시 예에 따르면, 상기 전해질 내에서, 상기 인산의 농도는 50 wt% 이상일 수 있다. 이와는 달리, 상기 전해질 내에서 상기 인산의 농도가 50 wt% 미만일 경우, 상술된 바와 같이, 상기 물질막(400)의 상기 물질이 균일하고 안정적으로 제거되는 상기 제1 구간이 존재하지 않을 수 있고, 이에 따라, 상기 리세스 영역(110) 내에 상기 물질막 패턴(500)을 형성하는 것이 용이하지 않다. 다시 말하면, 상기 베이스 기판 구조체(100)의 상부면과 상기 물질막 패턴(500)의 상부면이 공면(共面, co planar)을 이루는 공정 조건을 셋팅하기 용이하지 않다. 또한, 불균일 및 불안정하게 상기 물질막(400)이 제거되어, 상기 리레스 영역(110) 내의 상기 물질막 패턴(500)의 막질이 저하될 수 있다. 이에 따라, 본 출원의 실시 예에 따르면, 상기 전해질 내에서 상기 인산의 농도는 50 wt% 이상일 수 있다.According to one embodiment, the electrolyte may include an acidic solution. For example, the acidic solution may include a phosphoric acid (H 3 PO 4 ) solution. According to one embodiment, in the electrolyte, the concentration of the phosphoric acid may be 50 wt% or more. Alternatively, when the concentration of the phosphoric acid in the electrolyte is less than 50 wt%, as described above, the first section in which the material of the material film 400 is uniformly and stably removed may not exist, Accordingly, it is not easy to form the material layer pattern 500 in the recess region 110. In other words, it is not easy to set process conditions in which the upper surface of the base substrate structure 100 and the upper surface of the material film pattern 500 form a coplanar surface. In addition, the material film 400 is removed unevenly and unstablely, so that the film quality of the material film pattern 500 in the recess region 110 may be deteriorated. Accordingly, according to an embodiment of the present application, the concentration of the phosphoric acid in the electrolyte may be 50 wt% or more.
또한, 일 실시 예에 따르면, 상기 인산의 농도에 따라, 상기 물질막(400)의 상기 물질의 이온화 속도가 제어될 수 있다. 구체적으로, 상기 인산의 농도가 낮아짐에 따라, 상기 물질의 이온화 속도가 빨라질 수 있다. 결과적으로, 상기 전해질 내에서 상기 인산의 농도가 낮을수록, 상기 물질막(400)의 제거 속도가 빨라질 수 있다. Further, according to an embodiment, according to the concentration of the phosphoric acid, the ionization rate of the material of the material film 400 may be controlled. Specifically, as the concentration of the phosphoric acid is lowered, the ionization rate of the material may be increased. As a result, the lower the concentration of the phosphoric acid in the electrolyte, the faster the removal rate of the material film 400 can be.
또한, 일 실시 예에 따르면, 상기 인산의 농도에 따라서, 상기 물질막(400)의 상기 물질이 균일하고 안정적으로 제거되는 상기 제1 구간에 해당하는 상기 제1 전압 구간이 확장될 수 있다. 따라서, 상기 인산의 농도가 상대적으로 고농도인 경우, 상대적으로 용이하게 공정 조건을 셋팅할 수 있다. Further, according to an embodiment, according to the concentration of the phosphoric acid, the first voltage section corresponding to the first section in which the material of the material film 400 is uniformly and stably removed may be extended. Therefore, when the concentration of the phosphoric acid is relatively high, the process conditions can be set relatively easily.
상기 전해질은, 베리어 식각액을 더 포함할 수 있다. 상기 베리어 식각액은, 상기 베리어층(200)을 식각할 수 있다. 상기 물질막(400)이 제거되는 동시에, 상기 베리어층(200) 또한 제거될 수 있다. 즉, 상기 베리어층(200) 및 상기 물질막(400)은 함께 제거될 수 있다. 구체적으로, 상기 물질막(400)의 상기 물질이 이온화되어 제거되는 과정에서, 상기 물질막(400) 및 상기 시드층(300)이 제거되어, 상기 베리어층(200)이 노출된 경우, 노출된 상기 베리어층(200)이 상기 베리어 식각액에 의해 제거될 수 있다. 즉, 상기 리세스 영역(110) 외부에 배치된 상기 베리어층(200)의 일부분이 제거되고, 상기 리세스 영역(110) 내면 및 상기 물질막 패턴(500) 사이에, 상기 베리어층(200)이 잔존될 수 있다. The electrolyte may further include a barrier etchant. The barrier etchant may etch the barrier layer 200. At the same time that the material film 400 is removed, the barrier layer 200 may also be removed. That is, the barrier layer 200 and the material layer 400 may be removed together. Specifically, when the material of the material film 400 is ionized and removed, when the material film 400 and the seed layer 300 are removed, the barrier layer 200 is exposed, The barrier layer 200 may be removed by the barrier etchant. That is, a portion of the barrier layer 200 disposed outside the recess region 110 is removed, and between the inner surface of the recess region 110 and the material layer pattern 500, the barrier layer 200 This can remain.
예를 들어, 상기 베리어 식각액은 불화암모늄(NH4F)을 포함할 수 있다. 구체적으로, 불화암모늄은 수용액 내에서 물과 반응하여 불산(HF)을 형성할 수 있다. 이에 따라, 불산에 의하여 상기 베리어층(200)이 식각될 수 있다. For example, the barrier etchant may include ammonium fluoride (NH 4 F). Specifically, ammonium fluoride may react with water in an aqueous solution to form hydrofluoric acid (HF). Accordingly, the barrier layer 200 may be etched by hydrofluoric acid.
일 실시 예에 따르면, 상기 베리어 식각액의 농도가 제어될 수 있다. 구체적으로, 상기 베리어 식각액은, 0.5~2M 농도의 불화암모늄(NH4F)을 포함할 수 있다. 불화암모늄의 농도가 0.5M 미만인 경우, 상기 리세스 영역(110) 외부의 상기 베리어층(200)이 완전히 제거되지 않을 수 있고, 불화암모늄의 농도가 2M 초과인 경우 불화암모늄에 의한 불산으로, 다른 막들(예를 들어, 층간 절연막)이 손상될 수 있다. 이에 따라, 본 출원의 실시 예에 따르면, 불화암모늄의 농도는 0.5~2M일 수 있다.According to one embodiment, the concentration of the barrier etchant may be controlled. Specifically, the barrier etchant may include ammonium fluoride (NH 4 F) at a concentration of 0.5 to 2M. When the concentration of ammonium fluoride is less than 0.5M, the barrier layer 200 outside the recess region 110 may not be completely removed, and when the concentration of ammonium fluoride exceeds 2M, hydrofluoric acid by ammonium fluoride may cause Films (eg, interlayer insulating films) may be damaged. Accordingly, according to an embodiment of the present application, the concentration of ammonium fluoride may be 0.5 ~ 2M.
이상, 본 출원의 제1 실시 예에 따른 반도체 소자의 제조 방법이 설명되었다. 이하, 본 출원의 제1 실시 예의 변형 예에 따른 반도체 소자의 제조 방법이 도 8 내지 도 11을 참조하여 설명된다. The method for manufacturing a semiconductor device according to the first embodiment of the present application has been described above. Hereinafter, a method of manufacturing a semiconductor device according to a modification of the first embodiment of the present application will be described with reference to FIGS. 8 to 11.
도 8 내지 도 11은 본 출원의 제1 실시 예의 변형 예에 따른 반도체 소자의 제조 공정을 나타내는 도면이다. 8 to 11 are views showing a manufacturing process of a semiconductor device according to a modification of the first embodiment of the present application.
본 출원의 제1 실시 예의 변형 예에 따른 반도체 소자의 제조 방법은, 도 1 내지 도 7을 참조하여 설명된 상기 제1 실시 예에 따른 반도체 소자의 제조 방법과 동일하되, 상기 제1 실시 예의 변형 예에 따른 반도체 소자는, 상기 시드층(300)이 생략될 수 있다. 즉, 상기 베리어층(200) 상에 상기 물질막(400)이 증착된 후, 상기 리세스 영역(110) 외에 배치된 상기 베리어층(200) 및 상기 물질막(400)이 제거될 수 있다. The manufacturing method of the semiconductor device according to the modification of the first embodiment of the present application is the same as the manufacturing method of the semiconductor device according to the first embodiment described with reference to FIGS. 1 to 7, but the modification of the first embodiment In the semiconductor device according to an example, the seed layer 300 may be omitted. That is, after the material layer 400 is deposited on the barrier layer 200, the barrier layer 200 and the material layer 400 disposed outside the recess region 110 may be removed.
이상, 본 출원의 제1 실시 예 및 제1 실시 예의 변형 예에 따른 반도체 소자의 제조 방법이 설명되었다. 이하, 본 출원의 제2 실시 예에 따른 반도체 소자의 제조 방법이 설명된다. In the above, the manufacturing method of the semiconductor device according to the first embodiment and the modification of the first embodiment of the present application has been described. Hereinafter, a method of manufacturing a semiconductor device according to a second embodiment of the present application will be described.
도 12 내지 도 17은 본 출원의 제2 실시 예에 따른 반도체 소자의 제조 공정을 나타내는 도면이다. 12 to 17 are views showing a manufacturing process of a semiconductor device according to a second embodiment of the present application.
도 12를 참조하면, 베이스 기판 구조체(100)가 준비될 수 있다. 일 실시 예에 따르면, 상기 베이스 기판 구조체(100)는, 반도체 기판, 금속 기판, 플라스틱 기판, 또는 유리 기판을 포함할 수 있다. 예를 들어, 상기 베이스 기판 구조체(100)는 실리콘(Si) 반도체 기판을 포함할 수 있다. Referring to FIG. 12, the base substrate structure 100 may be prepared. According to one embodiment, the base substrate structure 100 may include a semiconductor substrate, a metal substrate, a plastic substrate, or a glass substrate. For example, the base substrate structure 100 may include a silicon (Si) semiconductor substrate.
상기 베이스 기판 구조체(100)는 리세스(recess) 영역(110)을 가질 수 있다. 즉, 상기 베이스 기판 구조체(100)는, 리세스 영역이 형성된 반도체 기판을 포함할 수 있다. 일 실시 예에 따르면, 상기 리세스 영역(110)은, 비아 홀(Via-hole)일 수 있다. 이에 따라, 상기 베이스 기판 구조체(100)는, 비아 홀이 형성된 반도체 기판일 수 있다. The base substrate structure 100 may have a recess region 110. That is, the base substrate structure 100 may include a semiconductor substrate on which a recess region is formed. According to an embodiment, the recess region 110 may be a via-hole. Accordingly, the base substrate structure 100 may be a semiconductor substrate on which via holes are formed.
도 13을 참조하면, 상기 베이스 기판 구조체(100) 상에 베리어층(200)이 형성될 수 있다. 상기 베리어층(200)은, 상기 리세스 영역(110)의 내면을 따라 형성될 수 있다. 상기 베리어층(200)은, 후술되는 물질막의 물질이 확산되는 것을 방지할 수 있다. 또한, 상기 베리어층(200)은, 후술되는 물질막과 상기 베이스 기판 구조체(100) 사이의 접착력을 향상시킬 수 있다. Referring to FIG. 13, a barrier layer 200 may be formed on the base substrate structure 100. The barrier layer 200 may be formed along the inner surface of the recess region 110. The barrier layer 200 can prevent the material of the material film to be described later from being diffused. In addition, the barrier layer 200 may improve adhesion between a material film, which will be described later, and the base substrate structure 100.
일 실시 예에 따르면, 상기 베리어층(200)은 탄탈륨(Ta)을 포함할 수 있다. 또는, 이와는 달리, 다른 실시 예에 따르면, 상기 베리어층(200)은, 티타늄(Ti), 질화티타늄(TiN), 질화규소티타늄(TiSiN), 텅스텐(W), 질화텅스텐(WN), 질화탄탈륨(TaN), 질화규소탄탈륨(TaSiN) 중 적어도 어느 하나를 포함할 수 있다. According to an embodiment, the barrier layer 200 may include tantalum (Ta). Alternatively, according to another embodiment, the barrier layer 200 may include titanium (Ti), titanium nitride (TiN), silicon nitride (TiSiN), tungsten (W), tungsten nitride (WN), tantalum nitride ( TaN) and tantalum silicon nitride (TaSiN).
도 14를 참조하면, 상기 베리어층(200)이 형성된 상기 베이스 기판 구조체(100) 상에 물질막(400)이 증착될 수 있다. 상기 물질막(400)은, 상기 리세스 영역(110)을 채울 수 있다. 예를 들어, 상기 물질막(400)은 구리막일 수 있다.Referring to FIG. 14, a material layer 400 may be deposited on the base substrate structure 100 on which the barrier layer 200 is formed. The material layer 400 may fill the recess region 110. For example, the material film 400 may be a copper film.
일 실시 예에 따르면, 상기 물질막(400)은 전해증착 방법으로 증착될 수 있다. 이 경우, 시드층이 상기 물질막(400)을 형성하기 전, 상기 베이스 기판 구조체(100) 상에 형성될 수 있다. 또는, 다른 실시 예에 따르면, 상기 물질막(400)은, 화학기상 증착법, 물리기상 증착법, 원자층 증착법 등 다양한 방법으로 형성될 수 있다.According to one embodiment, the material film 400 may be deposited by an electrolytic deposition method. In this case, a seed layer may be formed on the base substrate structure 100 before forming the material layer 400. Alternatively, according to another embodiment, the material film 400 may be formed by various methods such as chemical vapor deposition, physical vapor deposition, and atomic layer deposition.
도 15 및 도 16을 참조하면, 상기 리세스 영역(110) 외의 상기 물질막(400)은 제거되고, 상기 리세스 영역(110) 내의 상기 물질막(400)은 잔존될 수 있다. 이에 따라, 상기 리세스 영역(110) 내에 물질막 패턴(500)이 형성될 수 있다. 즉, 상기 물질막 패턴(500)은, 상기 리세스 영역(110) 내에 잔존된 상기 물질막(400)일 수 있다. 15 and 16, the material layer 400 other than the recess region 110 may be removed, and the material layer 400 in the recess region 110 may remain. Accordingly, a material film pattern 500 may be formed in the recess region 110. That is, the material layer pattern 500 may be the material layer 400 remaining in the recess region 110.
상기 물질막(400)은 도 1 내지 도 7을 참조하여 설명된 방법으로 제거될 수 있다. The material film 400 may be removed by the method described with reference to FIGS. 1 to 7.
일 실시 예에 따르면, 상기 물질막 패턴(500)의 양 단이 노출되도록, 상기 베이스 기판 구조체(100)의 하부 영역 제거될 수 있다. 이에 따라, 반도체 기판 구조체(700)가 제조될 수 있다. 이 경우, 상기 반도체 기판 구조체(700)에서 상기 물질막 패턴(500)은 TSV(Through Silicon Via)일 수 있다. 즉, 복수의 상기 반도체 기판 구조체(700)가 적층되는 경우, 상기 물질막 패턴(500)이 연결되어, 전기적 통로를 형성할 수 있다. 예를 들어, 상술된 바와 같이, 상기 물질막 패턴(500)이 형성된 후, FEOL(front end of line) 및 BEOL(back end of line) 공정이 수행되고, 상기 베이스 기판 구조체(100)의 하부 영역이 제거되거나, 또는, FEOL 공정이 수행되고 상기 물질막 패턴(500)이 형성되고 BEOL 공정이 수행된 후 상기 베이스 기판 구조체(100)의 하부 영역이 제거되거나, 또는 FEOL 및 BEOL 공정이 수행되고 상기 물질막 패턴(500)이 형성될 수 있다. 즉, 본 출원의 실시 예에 따른 상기 물질막 패턴(500)의 형성 공정은 FEOL 공정 및 BEOL 공정과 다양한 방식으로 조합될 수 있다. According to an embodiment, the lower region of the base substrate structure 100 may be removed so that both ends of the material layer pattern 500 are exposed. Accordingly, the semiconductor substrate structure 700 can be manufactured. In this case, the material layer pattern 500 in the semiconductor substrate structure 700 may be a through silicon via (TSV). That is, when a plurality of the semiconductor substrate structures 700 are stacked, the material film pattern 500 may be connected to form an electrical passage. For example, as described above, after the material layer pattern 500 is formed, a front end of line (FEOL) and a back end of line (BEOL) process are performed, and a lower region of the base substrate structure 100 After this is removed, or the FEOL process is performed and the material film pattern 500 is formed and the BEOL process is performed, the lower region of the base substrate structure 100 is removed, or the FEOL and BEOL processes are performed and the The material film pattern 500 may be formed. That is, the process of forming the material layer pattern 500 according to the embodiment of the present application may be combined in various ways with the FEOL process and the BEOL process.
본 출원의 실시 예에 따른 반도체 소자의 제조 방법은, 상기 리세스 영역(110)을 갖는 상기 베이스 기판 구조체(100)를 준비하는 단계, 상기 리세스 영역(110)을 갖는 상기 베이스 기판 구조체(100) 상에 상기 물질막(400)을 증착하여, 상기 리세스 영역(110)을 채우는 단계, 및 상기 물질막(400)의 상기 물질을 이온화시켜, 상기 리세스 영역(110) 외의 상기 물질막(400)을 제거하고, 상기 리세스 영역(110) 내의 상기 물질막(400)을 잔존시켜, 상기 리세스 영역(110) 내에 상기 물질막 패턴(500)을 형성하는 단계를 포함할 수 있다. A method of manufacturing a semiconductor device according to an embodiment of the present application includes preparing the base substrate structure 100 having the recess region 110 and the base substrate structure 100 having the recess region 110. ) Depositing the material film 400 on the substrate, filling the recess region 110, and ionizing the material of the material film 400, so that the material film other than the recess region 110 ( 400) may be removed, and the material layer 400 in the recess region 110 may remain, thereby forming the material layer pattern 500 in the recess region 110.
이에 따라, 종래 상기 물질막 패턴(500)을 형성하기 위한 화학적 기계적 연마 공정을 생략하거나, 또는 간소화할 수 있고, 화학적 기계적 연마 공정에서 투입되는 슬러리에 포함된 입자에 의한 스크래치, 오염, 부식 등의 문제가 최소화될 수 있다. 또한, 화학적 기계적 연마 공정에 의해 상기 물질막 패턴(500)의 상부면이 오목하게 패이는(dent) 디슁(dishing) 현상이 최소화될 수 있다. 이로 인해, 상기 베이스 기판 구조체(100)의 상부면과 상기 물질막 패턴(500)의 상부면이 평평하게 실질적으로 공면(共面, co planar)을 이룰 수 있고, 제조 공정이 간소하고, 제조 비용이 절감된, 고품질 및 고신뢰성의 금속 배선 또는 TSV의 제조 공정이 제공될 수 있다.Accordingly, the conventional chemical mechanical polishing process for forming the material film pattern 500 may be omitted or simplified, and scratches, contamination, and corrosion due to particles contained in the slurry input in the chemical mechanical polishing process may be performed. The problem can be minimized. In addition, a dipping phenomenon in which a top surface of the material layer pattern 500 is concave (dent) by a chemical mechanical polishing process may be minimized. Due to this, the upper surface of the base substrate structure 100 and the upper surface of the material film pattern 500 can be substantially flat and coplanar, and the manufacturing process is simple and the manufacturing cost is high. This reduced, high-quality and highly reliable metal wiring or manufacturing process of TSV can be provided.
이상, 본 출원의 실시 예에 따른 반도체 소자의 제조 방법이 설명되었다. 이하, 본 출원의 실시 예에 따른 반도체 소자의 제조 방법의 구체적인 실험 예 및 특성 평가 결과가 설명된다. In the above, a method of manufacturing a semiconductor device according to an embodiment of the present application has been described. Hereinafter, specific experimental examples and characteristic evaluation results of a method for manufacturing a semiconductor device according to an embodiment of the present application will be described.
실시 예 1에 따른 반도체 소자 제조Semiconductor device fabrication according to Example 1
3 μm 깊이의 트렌치(Trench)를 갖는 실리콘 기판을 준비한 후, 트렌치의 내면을 따라, 실리콘 기판 상에 티타늄(Ti)층을 형성하였다. 이후, 티타늄층 상에 구리(Cu) 시드층을 형성하고, 구리 시드층이 형성된 실리콘 기판에 전해증착 방법으로, 구리막을 증착하였다. 구체적으로, 황산구리(CuSO4) 1000mM, 황산(H2SO4) 580 mM, 염산(HCl) 1.9 mM을 포함하는 용액 내에서, -30 mA/cm2의 전류밀도, 25℃의 온도의 조건에서 300s의 시간 동안 전해증착을 수행하여, 구리막을 증착시켰다. After preparing a silicon substrate having a trench having a depth of 3 μm, a titanium (Ti) layer was formed on the silicon substrate along the inner surface of the trench. Thereafter, a copper (Cu) seed layer was formed on the titanium layer, and a copper film was deposited on the silicon substrate on which the copper seed layer was formed by electrolytic deposition. Specifically, in a solution containing 1000 mM copper sulfate (CuSO 4 ), 580 mM sulfuric acid (H 2 SO 4 ), and 1.9 mM hydrochloric acid (HCl), at a current density of −30 mA/cm 2 , at a temperature of 25° C. Electrolytic deposition was performed for a time of 300 s to deposit a copper film.
계속해서, 구리막이 증착된 실리콘 기판을 전해질에 침지시킨 후 전압을 인가하는 전해연마(electropolishing) 방법으로, 트렌치 외의 구리막을 제거하고, 트렌지 내의 구리막을 잔존시켜, 상기 실시 예 1에 따른 반도체 소자를 제조하였다. 보다 구체적으로, 구리막을 제거하는 전해연마 공정에서, 상술된 구리막이 증착된 실리콘 기판은 Working electrode로 사용되었고, 백금 시트(Pt sheet)는 Counter electrode로 사용되었고, Ag/AgCl은 Reference electrode로 사용되었다. 또한, 전해질로서, 인산(H3PO4) 및 불 화암모늄(NH4F)이 혼합된 용액이 사용되었다. Subsequently, an electropolishing method of applying a voltage after immersing the silicon substrate on which the copper film is deposited in the electrolyte, removes the copper film other than the trench, and retains the copper film in the trench, the semiconductor device according to Example 1 Was prepared. More specifically, in the electrolytic polishing process for removing the copper film, the silicon substrate on which the above-described copper film was deposited was used as a working electrode, a platinum sheet (Pt sheet) was used as a counter electrode, and Ag/AgCl was used as a reference electrode. . Further, as an electrolyte, a solution in which phosphoric acid (H 3 PO 4 ) and ammonium fluoride (NH 4 F) were mixed was used.
실시 예 2에 따른 반도체 소자 제조Semiconductor device fabrication according to Example 2
상술된 실시 예 1에 따른 반도체 소자의 제조 방법으로 반도체 소자를 제조하되, 구리막을 제거하는 전해연마 공정에서, 구리막이 증착된 실리콘 기판에 제1 전압을 인가한 후, 제1 전압보다 낮은 레벨의 제2 전압을 인가하였다. A semiconductor device is manufactured by the method for manufacturing a semiconductor device according to the first embodiment described above, but in an electropolishing process of removing the copper film, after applying a first voltage to a silicon substrate on which the copper film is deposited, a level lower than the first voltage A second voltage was applied.
실시 예 3에 따른 반도체 소자 제조Semiconductor device fabrication according to Example 3
비아 홀(Via-hole)을 갖는 실리콘 기판을 준비한 후, 비아 홀의 내면을 따라, 실리콘 기판 상에 탄탈륨(Ta)층을 형성하였다. 이후, 상술된 실시 예 1에 따른 반도체 소자의 제조 방법을 수행하여, 실시 예 3에 따른 반도체 소자를 제조하였다. After preparing a silicon substrate having a via-hole, a tantalum (Ta) layer was formed on the silicon substrate along the inner surface of the via hole. Subsequently, a method for manufacturing the semiconductor device according to Example 1 described above was performed to manufacture a semiconductor device according to Example 3.
실시 예 4에 따른 반도체 소자 제조Semiconductor device fabrication according to Example 4
비아 홀(Via-hole)을 갖는 실리콘 기판을 준비한 후, 비아 홀의 내면을 따라, 실리콘 기판 상에 탄탈륨(Ta)층을 형성하였다. 이후, 상술된 실시 예 2에 따른 반도체 소자의 제조 방법을 수행하여, 실시 예 4에 따른 반도체 소자를 제조하였다. After preparing a silicon substrate having a via-hole, a tantalum (Ta) layer was formed on the silicon substrate along the inner surface of the via hole. Subsequently, a method of manufacturing the semiconductor device according to Example 2 described above was performed to manufacture a semiconductor device according to Example 4.
비교 예 1에 따른 반도체 소자 제조Semiconductor device fabrication according to Comparative Example 1
상술된 실시 예 1에 따른 반도체 소자의 제조 방법으로 반도체 소자를 제조하되, 구리막을 제거하는 전해연마 공정에서, 불화암모늄(NH4F)을 포함하지 않고, 인산(H3PO4)을 포함하는 전해질이 사용되어, 비교 예 1에 따른 반도체 소자를 제조하였다. A semiconductor device is manufactured by the method for manufacturing a semiconductor device according to Example 1 described above, but in the electropolishing process of removing the copper film, ammonium fluoride (NH 4 F) is not included, and phosphoric acid (H 3 PO 4 ) is included. An electrolyte was used to manufacture a semiconductor device according to Comparative Example 1.
상기 실시 예 1 내지 실시 예 4, 및 비교 예 1에 따른 반도체 소자의 제조 방법이 아래의 <표 1>을 통해 정리된다. The manufacturing method of the semiconductor device according to Examples 1 to 4 and Comparative Example 1 is summarized through <Table 1> below.
구분division 리세스 구조Recess structure 전해연마 단계 전압인가 횟수Electrolytic polishing step voltage application count 전해질Electrolyte
실시 예 1Example 1 트렌치(Trench)Trench 1One H3PO4+NH4FH 3 PO 4 +NH 4 F
실시 예 2Example 2 트렌치(Trench)Trench 22 H3PO4+NH4FH 3 PO 4 +NH 4 F
실시 예 3Example 3 비아-홀(Via-hole)Via-hole 1One H3PO4+NH4FH 3 PO 4 +NH 4 F
실시 예 4Example 4 비아-홀(Via-hole)Via-hole 22 H3PO4+NH4FH 3 PO 4 +NH 4 F
비교 예 1Comparative Example 1 트렌치(Trench)Trench 1One H3PO4 H 3 PO 4
도 17 및 도 18은 본 출원의 실시 예 1에 따른 반도체 소자의 제조 과정에서, 전해연마에 따른 결과를 촬영한 사진이다. 도 17을 참조하면, 상기 실시 예 1에 따른 반도체 소자의 제조 과정에서, 전해연마를 수행하기 전(Before Electropolishing), 및 전해연마를 수행한 후(After Electropolishing)에 대해 각각 SEM(Scanning Electron Microscope) 촬영하고, 그 결과를 나타내었다. 도 17의 (a)는 5 μm 선폭 및 1 μm 피치의 트렌치에 구리막이 채워진 상태를 나타내고, 도 17의 (b)는 1 μm 선폭 및 2 μm 피치의 트렌치에 구리막이 채워진 상태를 나타내고, 도 17의 (c)는 2 μm 선폭 및 2 μm 피치의 트렌치에 구리막이 채워진 상태를 나타낸다. 도 17의 (a) 내지 (c)에서 확인할 수 있듯이, 전해연마가 수행됨에 따라, 트렌치 외의 구리막이 용이하게 제거되었음을 확인할 수 있었다. 도 18을 참조하면, 상기 실시 예 1에 따른 반도체 소자의 상부면(Top View)을 촬영하여 나타내었다. 도 19에서 확인할 수 있듯이, 전해연마가 수행된 반도체 소자의 경우, 트렌치 외의 구리막이 용이하게 제거되었음을 확인할 수 있었다. 17 and 18 are photographs of results obtained by electropolishing in the process of manufacturing a semiconductor device according to Example 1 of the present application. Referring to FIG. 17, in the manufacturing process of the semiconductor device according to Example 1, before performing electropolishing (Before Electropolishing) and after performing electropolishing (After Electropolishing), SEM (Scanning Electron Microscope), respectively, Photographs were taken, and the results were shown. FIG. 17(a) shows a state in which a trench is filled with 5 μm line width and 1 μm pitch, and FIG. 17(b) shows a state where a trench is filled with 1 μm line width and 2 μm pitch, and FIG. 17 (C) shows a state in which a copper film is filled in a trench having a 2 μm line width and a 2 μm pitch. As can be seen from (a) to (c) of FIG. 17, as electropolishing was performed, it was confirmed that copper films other than the trench were easily removed. Referring to FIG. 18, a top view of a semiconductor device according to Example 1 is photographed and illustrated. As can be seen in Figure 19, in the case of a semiconductor device in which electropolishing was performed, it was confirmed that the copper film other than the trench was easily removed.
도 19는 본 출원의 실시 예 1에 따른 반도체 소자를 서로 다른 배율 및 각도에서 촬영한 사진이다. 19 is a photograph of a semiconductor device according to Example 1 of the present application taken at different magnifications and angles.
도 19에 촬영된 상기 실시 예 1에 따른 반도체 소자의 구체적인 제조 공정 조건은 다음과 같다. 구리막 증착 공정은, -30 mA/cm2의 전류 및 9 C/cm2 조건에서 수행되었으며, 구리막 제거 공정은, 70 wt% H3PO4+1.0M NH4F의 전해질, 1.3V의 포텐셜(Potential), 7.5C/cm2 조건에서 수행되었다. The specific manufacturing process conditions of the semiconductor device according to Example 1 photographed in FIG. 19 are as follows. The copper film deposition process was performed at -30 mA/cm 2 current and 9 C/cm 2 conditions, and the copper film removal process was 70 wt% H 3 PO 4 +1.0M NH4F electrolyte, 1.3 V potential ( Potential), 7.5C/cm 2 .
도 19의 (a) 내지 (c)를 참조하면, 상기 실시 예 1에 따른 반도체 소자의 상부면(Top View)을 서로 다른 배율로 SEM 촬영하여 나타내고, 도 19의 (d)를 참조하면, 상기 실시 예 1에 따른 반도체 소자의 측면(Side View)를 SEM 촬영하여 나타내었다. 도 19의 (a) 내지 (d)에서 확인할 수 있듯이, 트렌치 외의 구리막이 용이하게 제거되었음을 확인할 수 있었다. Referring to (a) to (c) of FIG. 19, the top view of the semiconductor device according to Example 1 is shown by SEM photographing at different magnifications. Referring to FIG. 19(d), the The side view of the semiconductor device according to Example 1 is shown by SEM photographing. 19(a) to (d), it was confirmed that copper films other than the trench were easily removed.
도 20은 본 출원의 비교 예 1에 따른 반도체 소자의 EDS analysis를 나타내는 사진이고, 도 21은 본 출원의 실시 예 1에 따른 반도체 소자의 EDS analysis를 나타내는 사진이고, 도 22는 본 출원의 실시 예 1에 따른 반도체 소자를 촬영한 사진이다. 20 is a photograph showing EDS analysis of a semiconductor device according to Comparative Example 1 of the present application, FIG. 21 is a photograph showing EDS analysis of a semiconductor device according to Example 1 of the present application, and FIG. 22 is an embodiment of the present application This is a picture of a semiconductor device according to 1.
도 20 및 도 21을 참조하면, 상기 비교 예 1에 따른 반도체 소자 및 비교 예 2에 따른 반도체 소자의 EDS(Energy Dispersive X-ray Spectroscopy) analysis를 촬영하여 나타내었고, 도 22를 참조하면, 상기 실시 예 1에 따른 반도체 소자를 측면(Side view)에서 SEM 촬영하여 나타내었다. 20 and 21, EDS (Energy Dispersive X-ray Spectroscopy) analysis of the semiconductor device according to Comparative Example 1 and the semiconductor device according to Comparative Example 2 was photographed and shown, and referring to FIG. 22, the implementation The semiconductor device according to Example 1 is shown by SEM photographing in a side view.
도 20 내지 도 22에서 확인할 수 있듯이, 상기 비교 예 1에 따른 반도체 소자의 경우, 티타늄층이 제거되지 않았지만, 실시 예 1에 따른 반도체 소자의 경우, 구리막과 함께 티타늄층 또한 제거된 것을 확인할 수 있었다. 즉, 구리막의 전해연마 과정에서 전해질에 포함된 불화암모늄(NH4F)이, 티타늄층을 제거하는 것을 확인할 수 있었다. 20 to 22, in the case of the semiconductor device according to Comparative Example 1, the titanium layer was not removed, but in the case of the semiconductor device according to Example 1, it was confirmed that the titanium layer was also removed together with the copper film. there was. That is, it was confirmed that ammonium fluoride (NH 4 F) contained in the electrolyte is removed from the titanium layer during the electropolishing process of the copper film.
도 23은 본 출원의 비교 예 1에 따른 반도체 소자의 제조 과정에서 전해연마 공정이 수행되기 전 상태를 촬영한 사진이고, 도 24는 본 출원의 비교 예 1에 따른 반도체 소자의 제조 과정에서 전해연마 공정이 수행된 후의 상태를 촬영한 사진이다. 23 is a photograph of a state before an electropolishing process is performed in the process of manufacturing a semiconductor device according to Comparative Example 1 of the present application, and FIG. 24 is an electropolishing in the process of manufacturing a semiconductor device according to Comparative Example 1 of the present application This is a photograph of the state after the process has been performed.
도 23를 참조하면, 상기 비교 예 1에 따른 반도체 소자의 제조 과정에서 전해연마 공정이 수행되기 전 상태를 SEM 촬영하여 나타내었다. 구리막 증착을 위한 구체적인 공정 조건은 다음과 같다. -30 mA/cm2의 전류(Current) 및 9 C/cm2의 조건에서 구리막 증착이 수행되었다. 도 24에서 확인할 수 있듯이, 트렌치 내에 구리막의 증착이 용이하게 이루어 진 것을 확인할 수 있었다. Referring to FIG. 23, the state before the electropolishing process is performed in the manufacturing process of the semiconductor device according to Comparative Example 1 is shown by SEM photographing. The specific process conditions for the copper film deposition are as follows. Copper film deposition was performed under the conditions of -30 mA/cm 2 (Current) and 9 C/cm 2 . As can be seen in FIG. 24, it was confirmed that deposition of the copper film in the trench was easily performed.
도 24를 참조하면, 상기 비교 예 1에 따른 반도체 소자의 제조 과정에서 전해연마 공정이 수행된 후의 상태를 SEM 촬영하여 나타내었다. 구리막 제거를 위한 구체적인 공정 조건은 다음과 같다. 70 wt% H3PO4 전해질, 1.3V 포텐셜(Potential), 7.5 C/cm2의 조건에서 구리막 제거가 수행되었다. Referring to FIG. 24, a state after an electropolishing process is performed in the manufacturing process of the semiconductor device according to Comparative Example 1 is shown by SEM photographing. The specific process conditions for copper film removal are as follows. Copper film removal was performed at 70 wt% H 3 PO 4 electrolyte, 1.3V Potential, 7.5 C/cm 2 .
도 24에서 확인할 수 있듯이, 상기 비교 예 1에 따른 반도체 소자의 경우, 구리막의 제거는 발생되었지만, 구리막과 실리콘 기판 구조체 사이에 형성된 티타늄(Ti)층은 제거되지 않은 것을 확인할 수 있었다. As can be seen in FIG. 24, in the case of the semiconductor device according to Comparative Example 1, although the removal of the copper film occurred, it was confirmed that the titanium (Ti) layer formed between the copper film and the silicon substrate structure was not removed.
도 25는 전해질이 포함하는 불화암모늄(NH4F)의 농도에 따른 베리어층의 제거 효과를 비교하는 사진들이다. 25 is a photograph comparing the effect of removing the barrier layer according to the concentration of ammonium fluoride (NH 4 F) contained in the electrolyte.
도 25의 (a)를 참조하면, 상기 실시 예 1에 따른 반도체 소자를 SEM 촬영하여 나타내었다. 도 25의 (a)에서 촬영된 반도체 소자의 제조 과정에서, 구리막 제거를 위한 구체적인 공정 조건은 다음과 같다. 70 wt% H3PO4 + 1.0M NH4F 전해질, 1.3V 포텐셜(Potential), 7.5 C/cm2의 조건에서 구리막 제거가 수행되었다. Referring to (a) of FIG. 25, the semiconductor device according to Example 1 was photographed by SEM. In the manufacturing process of the semiconductor device photographed in FIG. 25A, specific process conditions for removing the copper film are as follows. Copper film removal was performed under the conditions of 70 wt% H 3 PO 4 + 1.0M NH 4 F electrolyte, 1.3V potential, 7.5 C/cm 2 .
도 25의 (b)를 참조하면, 상기 실시 예 1에 따른 반도체 소자를 SEM 촬영하여 나타내었다. 도 25의 (b)에서 촬영된 반도체 소자의 제조 과정에서, 구리막 제거를 위한 구체적인 공정 조건은 다음과 같다. 70 wt% H3PO4 + 2.0M NH4F 전해질, 1.3V 포텐셜(Potential), 7.5 C/cm2의 조건에서 구리막 제거가 수행되었다. Referring to FIG. 25B, the semiconductor device according to Example 1 was photographed by SEM. In the manufacturing process of the semiconductor device photographed in FIG. 25B, specific process conditions for removing the copper film are as follows. Copper film removal was performed under conditions of 70 wt% H 3 PO 4 + 2.0M NH 4 F electrolyte, 1.3V Potential, 7.5 C/cm 2 .
도 25의 (c)를 참조하면, 상기 실시 예 1에 따른 반도체 소자를 SEM 촬영하여 나타내었다. 도 25의 (c)에서 촬영된 반도체 소자의 제조 과정에서, 구리막 제거를 위한 구체적인 공정 조건은 다음과 같다. 70 wt% H3PO4 + 2.5M NH4F 전해질, 1.3V 포텐셜(Potential), 7.5 C/cm2의 조건에서 구리막 제거가 수행되었다. Referring to (c) of FIG. 25, a semiconductor device according to Example 1 is photographed by SEM. In the manufacturing process of the semiconductor device photographed in FIG. 25C, specific process conditions for removing the copper film are as follows. Copper film removal was performed under conditions of 70 wt% H 3 PO 4 + 2.5M NH 4 F electrolyte, 1.3V potential, 7.5 C/cm 2 .
도 25의 (a) 내지 (c)에서 확인할 수 있듯이, 상기 실시 예 1에 따른 반도체 소자의 경우, 트렌치 영역 외의 구리막 제거가 용이하게 수행된 것을 확인할 수 있었다. 또한, 전해질이 포함하는 불화암모늄의 농도와 관계 없이, 구리막과 실리콘 기판 구조체 사이에 배치된 티타늄층이 용이하게 제거된 것을 확인할 수 있었다. As can be seen from (a) to (c) of FIG. 25, in the case of the semiconductor device according to Example 1, it was confirmed that copper film removal outside the trench region was easily performed. In addition, it was confirmed that regardless of the concentration of ammonium fluoride contained in the electrolyte, the titanium layer disposed between the copper film and the silicon substrate structure was easily removed.
도 26은 본 출원의 실시 예 3에 따른 반도체 소자의 제조 과정에서, 비아홀 내에 구리막이 증착된 상태를 촬영하여 나타낸 사진이고, 도 27은 본 출원의 실시 예 3에 따른 반도체 소자를 촬영한 사진이다. 26 is a photograph showing a state in which a copper film is deposited in a via hole in the process of manufacturing a semiconductor device according to Example 3 of the present application, and FIG. 27 is a photograph of a semiconductor device according to Example 3 of the present application .
도 26을 참조하면, 상기 실시 예 3에 따른 반도체 소자의 제조 과정에서, 비아홀 내에 구리막을 증착시킨 후, 구리막이 증착된 상태의 실리콘 기판 구조체의 단면을 촬영하여 나타내었다. 도 26에서 확인할 수 있듯이, 비아홀 내에 구리막이 용이하게 채워진 것을 확인할 수 있었다. Referring to FIG. 26, in the process of manufacturing the semiconductor device according to Example 3, after depositing a copper film in a via hole, a cross-section of a silicon substrate structure in which the copper film is deposited is photographed and illustrated. 26, it was confirmed that the copper film was easily filled in the via hole.
도 27을 참조하면, 상기 실시 예 3에 따른 반도체 소자를 SEM 촬영하여 나타내었다. 도 27에서 확인할 수 있듯이, 상기 실시 예 3에 따른 반도체 소자는, 비아홀 외의 구리막이 용이하게 제거된 것을 확인할 수 있었다. 또한, 비아홀 내에 구리막이 채워짐에 따라, TSV(Through Silicon Via)로 사용될 수 있음을 확인할 수 있었다. Referring to FIG. 27, a semiconductor device according to Example 3 is photographed by SEM. As can be seen in FIG. 27, it was confirmed that the semiconductor device according to the third embodiment, the copper film other than the via hole was easily removed. In addition, as the copper film was filled in the via hole, it was confirmed that it can be used as a through silicon via (TSV).
도 28 및 도 29는 전해질이 포함하는 인산의 농도에 따른 효과를 비교하는 그래프이다. 28 and 29 are graphs comparing the effect of the concentration of phosphoric acid contained in the electrolyte.
도 28 및 도 29를 참조하면, 50wt%의 H3PO4를 포함하는 전해질을 사용하여 제조된 제1 실시 예에 따른 반도체 소자, 60wt%의 H3PO4를 포함하는 전해질을 사용하여 제조된 제1 실시 예에 따른 반도체 소자, 70wt%의 H3PO4를 포함하는 전해질을 사용하여 제조된 제1 실시 예에 따른 반도체 소자, 85wt%의 H3PO4를 포함하는 전해질을 사용하여 제조된 제1 실시 예에 따른 반도체 소자, 30wt%의 H3PO4를 포함하는 전해질을 사용하여 제조된 제1 실시 예에 따른 반도체 소자, 및 10wt%의 H3PO4를 포함하는 전해질을 사용하여 제조된 제1 실시 예에 따른 반도체 소자 각각에 대해, 구리막 전해연마 과정에서, 시간에 따라 포텐셜(Pontential(V) [vs. Ag/AgCl])을 변화시키고, 그에 따른 전류밀도(Current density, mA/cm2) 변화를 측정하여 나타내었다. 28 and 29, the semiconductor device according to the first embodiment, which is manufactured using an electrolyte containing 50 wt% of H 3 PO 4, is prepared using an electrolyte containing 60 wt% of H 3 PO 4 The semiconductor device according to the first embodiment, manufactured using an electrolyte containing 70 wt% of H 3 PO 4 The semiconductor device according to the first embodiment, manufactured using an electrolyte containing 85 wt% of H 3 PO 4 Preparation using a semiconductor device according to the first embodiment, an electrolyte containing 30 wt% of H 3 PO 4 and an electrolyte comprising 10 wt% of H 3 PO 4 according to the first embodiment For each of the semiconductor devices according to the first embodiment, in the copper film electropolishing process, the potential (Pontential(V) [vs. Ag/AgCl]) is changed with time, and thus the current density (mA) /cm 2 ) The change was measured.
도 28 및 도 29에서 확인할 수 있듯이, 30 wt% 및 10 wt%의 H3PO4를 포함하는 전해질을 사용하여 제조된 반도체 소자의 경우, 포텐셜 변화에 따른 전류밀도 변화가 불규칙적으로 발생되는 것을 확인할 수 있었다. As can be seen in FIGS. 28 and 29, in the case of a semiconductor device manufactured using an electrolyte containing 30 wt% and 10 wt% of H 3 PO 4 , it was confirmed that the current density change according to the potential change is irregularly generated. Could.
하지만, 50 wt%, 60 wt%, 70 wt%, 및 85 wt%의 H3PO4를 포함하는 전해질을 사용하여 제조된 반도체 소자의 경우, 포텐셜 변화에 따른 전류밀도 변화가 일정한 경향을 나타내는 것을 확인할 수 있었다. However, in the case of a semiconductor device manufactured using an electrolyte containing 50 wt%, 60 wt%, 70 wt%, and 85 wt% of H 3 PO 4 , the change in current density according to the potential change shows a constant trend. I could confirm.
또한, 50 wt%, 60 wt%, 70 wt%, 및 85 wt%의 H3PO4를 포함하는 전해질을 사용하여 제조된 반도체 소자의 경우, H3PO4의 농도가 낮을수록 전류밀도가 높게 나타나는 것을 확인할 수 있었다. In addition, in the case of a semiconductor device manufactured using an electrolyte containing 50 wt%, 60 wt%, 70 wt%, and 85 wt% of H 3 PO 4 , the lower the concentration of H 3 PO 4, the higher the current density. It was confirmed that it appeared.
결과적으로, 구리막 제거를 위한 전해연마 공정에서, 인산의 농도는 50 wt%이상이 사용되어야 하며, 인산의 농도가 농도가 낮아짐에 따라, 구리의 이온화 속도가 빨라지는 것을 확인할 수 있었다. As a result, in the electropolishing process for removing the copper film, the concentration of phosphoric acid should be used at least 50 wt%, it was confirmed that as the concentration of phosphoric acid is lowered, the ionization rate of copper is increased.
도 30은 본 출원의 실시 예 1에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과를 비교하는 사진들이다. 30 is a photograph comparing the effect of stirring the electrolyte in the manufacturing process of the semiconductor device according to Example 1 of the present application.
도 30을 참조하면, 상기 실시 예 1에 따른 반도체 소자의 제조 방법에 따라 반도체 소자를 제조하되, 구리막 제거 과정에서 전해질이 교반(Agitation)되는 시간을 제어하고, 이에 따라 제조된 상기 실시 예 1에 따른 반도체 소자를 촬영하였다. 도 30에서 촬영된 사진의 반도체 소자는, 85 wt%의 H3PO4를 포함하는 전해질 내에서, 구리막 제거를 위한 전해연마가 수행되었다. Referring to FIG. 30, the semiconductor device is manufactured according to the method of manufacturing the semiconductor device according to the first embodiment, but the time during which the electrolyte is stirred during the copper film removal process is controlled, and thus the manufactured embodiment 1 The semiconductor device according to was photographed. In the semiconductor device of the picture taken in FIG. 30, electrolytic polishing for removing the copper film was performed in an electrolyte containing 85 wt% of H 3 PO 4 .
도 30의 (a)는 300s의 전해연마 시간 동안 교반을 300s 동안 수행한 경우를 나타내고, 도 30의 (b)는 300s 동안 전해연마를 수행하되 교반을 240s 수행한 후 60s 동안 교반을 수행하지 않은 경우를 나타내고, 도 30의 (c)는 300s 동안 전해연마를 수행하되 교반을 180s 수행한 후 120s 동안 교반을 수행하지 않은 경우를 나타내고, 도 30의 (d)는 300s의 전해연마 시간 동안 교반을 수행하지 않은 경우를 나타내고, 도 30의 (e)는 전해질 교반의 속도를 나타낸다. 30 (a) shows a case in which stirring was performed for 300 s for an electropolishing time of 300 s, and FIG. 30 (b) performed electropolishing for 300 s, but did not perform stirring for 60 s after performing stirring for 240 s. FIG. 30(c) shows a case in which electrolytic polishing was performed for 300 s, but stirring was performed for 180 s and then stirring was not performed for 120 s, and FIG. 30 (d) was stirred for 300 s of electropolishing time. Fig. 30(e) shows the rate of electrolyte agitation.
도 30의 (a) 내지 (d)에서 확인할 수 있듯이, 전해연마 과정에서, 전해질의 교반이 수행되는 경우, 트렌치 외의 구리막 제거가 보다 용이하게 이루어지는 것을 확인할 수 있었다. As can be seen from (a) to (d) of FIG. 30, it was confirmed that in the electropolishing process, when stirring of the electrolyte is performed, copper film removal outside the trench is more easily performed.
도 31 및 도 32는 본 출원의 실시 예 1에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과를 비교하는 그래프들이다. 31 and 32 are graphs comparing the effect of stirring the electrolyte in the manufacturing process of the semiconductor device according to Example 1 of the present application.
도 31 및 도 32를 참조하면, 구리막 제거 과정에서 전해질이 교반(Agitation)되는 시간이 제어된 복수의 상기 실시 예 1에 따른 반도체 소자를 제조하되, 각각에 대해 구리막 제거를 위한 전해연마 과정에서 시간에 따른 전류(Current)의 변화 및 전하(Charge)의 변화를 측정하였다. 구체적으로, 300s 동안 전해연마를 수행하되 교반(400rpm)을 240s 수행한 후 60s 동안 교반을 수행하지 않은 경우(도 31 및 도 32의 a) , 300s 동안 전해연마를 수행하되 교반(400rpm)을 180s 수행한 후 120s 동안 교반을 수행하지 않은 경우(도 31 및 도 32의 b), 300s 의 전해연마 시간 동안 교반을 수행하지 않은 경우(도 31 및 도 32의 c) 각각에 대해 시간에 따른 전류의 변화 및 전하의 변화를 측정하였다. 도 31은 1.3V의 조건을 기준으로 측정되었고, 도 32는 3.6 C/cm2의 조건을 기준으로 측정되었다. Referring to FIGS. 31 and 32, a plurality of semiconductor devices according to Example 1 in which the time during which the electrolyte is agitated in the copper film removal process is controlled, but the electrolytic polishing process for removing the copper films for each The changes in the current (Current) and the charge (Charge) with time were measured. Specifically, if electropolishing was performed for 300 s, but stirring (400 rpm) was performed for 240 s and then stirring was not performed for 60 s (a in FIGS. 31 and 32 ), electropolishing was performed for 300 s, but stirring (400 rpm) was 180 s. After the agitation was not performed for 120 s (b in FIGS. 31 and 32), the agitation was not performed during the electrolytic polishing time of 300 s (c in FIGS. 31 and 32), respectively, Changes and changes in charge were measured. FIG. 31 was measured based on the condition of 1.3 V, and FIG. 32 was measured based on the condition of 3.6 C/cm 2 .
도 31 및 도 32에서 확인할 수 있듯이, 전해연마 시간 동안 교반을 수행하지 않은 경우, 구리막의 제거를 위해 600s의 시간이 소요되었지만, 교반이 수행된 경우에는 300s의 시간이 소요되는 것을 확인할 수 있었다. As can be seen in FIGS. 31 and 32, when stirring was not performed during the electropolishing time, 600 s was required to remove the copper film, but when stirring was performed, it was confirmed that 300 s was required.
도 33 및 도 34는 본 출원의 실시 예 1 및 실시 예 2에 따른 반도체 소자를 비교하는 사진들이다.33 and 34 are pictures comparing semiconductor devices according to Examples 1 and 2 of the present application.
도 33 및 도 34를 참조하면, 상기 실시 예 1 및 실시 예 2에 따른 반도체 소자의 제조 방법에 따라 반도체 소자를 제조한 후, 각각을 SEM 촬영하여 나타내었다. 도 33 및 도 34에서 촬영된 사진의 반도체 소자는, 85 wt%의 H3PO4를 포함하는 전해질 내에서, 구리막 제거를 위한 전해연마가 수행되었다. 33 and 34, after manufacturing the semiconductor device according to the method of manufacturing the semiconductor device according to Example 1 and Example 2, each of them is shown by SEM photographing. In the semiconductor device of the photographs taken in FIGS. 33 and 34, electrolytic polishing for removing the copper film was performed in an electrolyte containing 85 wt% of H 3 PO 4 .
구체적으로, 도 33의 (a)는 2.3V의 전압이 300s 동안 인가되어 제조된 실시 예 1에 따른 반도체 소자를 촬영하여 나타낸 사진이고, 도 33의 (b)는 2.3V의 전압이 240s 동안 인가된 후 1.3V의 전압이 60s 동안 인가되어 제조된 실시 예 2에 따른 반도체 소자를 촬영하여 나타낸 사진이고, 도 33의 (c)는 2.3V의 전압이 180s 동안 인가된 후 1.3V의 전압이 120s 동안 인가되어 제조된 실시 예 2에 따른 반도체 소자를 촬영하여 나타낸 사진이다. Specifically, FIG. 33(a) is a photograph showing a semiconductor device according to Example 1 manufactured by applying a voltage of 2.3V for 300s, and FIG. 33(b) shows a voltage of 2.3V for 240s After a voltage of 1.3V was applied for 60s, the semiconductor device according to Example 2 was photographed, and FIG. 33(c) shows that the voltage of 1.3V is 120s after the voltage of 2.3V is applied for 180s. This is a photograph showing a semiconductor device according to Example 2, which has been manufactured during the application.
또한, 도 34의 (a)는 2.3V의 전압이 300s 동안 인가되어 제조된 실시 예 1에 따른 반도체 소자를 촬영하여 나타낸 사진이고, 도 34의 (b)는 2.3V의 전압이 240s 동안 인가된 후 1.3V의 전압이 60s 동안 인가되어 제조된 실시 예 2에 따른 반도체 소자를 촬영하여 나타낸 사진이고, 도 34의 (d)는 2.3V의 전압이 180s 동안 인가된 후 1.3V의 전압이 120s 동안 인가되어 제조된 실시 예 2에 따른 반도체 소자를 촬영하여 나타낸 사진이고, 도 34의 (e)는 1.3V의 전압이 300s 동안 인가되어 제조된 실시 예 1에 따른 반도체 소자를 촬영하여 나타낸 사진이다. In addition, FIG. 34(a) is a photograph showing a semiconductor device according to Example 1 manufactured by applying a voltage of 2.3V for 300s, and FIG. 34(b) shows a voltage of 2.3V applied for 240s. After photographing a semiconductor device according to Example 2 manufactured by applying a voltage of 1.3V for 60s, FIG. 34(d) shows that a voltage of 1.3V is applied for 120s after a voltage of 2.3V is applied for 180s. It is a photograph showing a semiconductor device according to Example 2 manufactured by being applied, and FIG. 34(e) is a photograph showing a semiconductor device according to Example 1 manufactured by applying a voltage of 1.3V for 300s.
도 33 및 도 34에서 확인할 수 있듯이, 상기 실시 예 2에 따른 반도체 소자는, 트렌치 외의 구리막이 용이하게 제거된 것을 확인할 수 있었다. 또한, 상기 실시 예 2에 따른 반도체 소자는, 상기 실시 예 1에 따른 반도체 소자와 비교하여 트렌치 외의 구리막 제거 효율이 향상된 것을 확인할 수 있었다. As can be seen from FIGS. 33 and 34, it was confirmed that the semiconductor device according to Example 2 was easily removed from the copper film other than the trench. In addition, the semiconductor device according to the second embodiment, it can be seen that compared to the semiconductor device according to the first embodiment, the copper film removal efficiency out of the trench was improved.
도 35는 본 출원의 실시 예 2에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과를 비교하는 그래프들이다. 35 are graphs comparing the effects of electrolyte agitation in the manufacturing process of a semiconductor device according to Example 2 of the present application.
도 35를 참조하면, 구리막 제거 과정에서 전해질이 교반(Agitation)되는 시간이 제어된 복수의 상기 실시 예 2에 따른 반도체 소자를 제조하되, 각각에 대해 구리막 제거를 위한 전해연마 과정에서 시간에 따른 전류(Current)의 변화 및 전하(Charge)의 변화를 측정하였다. 구체적으로, 2.3V의 전압으로 240s의 시간 동안 전해식각을 수행한 후 1.3V의 전압으로 60s의 시간 동안 전해식각을 수행한 경우(도 35의 a), 2.3V의 전압으로 180s의 시간 동안 전해식각을 수행한 후 1.3V의 전압으로 120s의 시간 동안 전해식각을 수행한 경우(도 35의 b), 및 2.3V의 전압으로 300s의 시간 동안 교반(400rpm)이 수행된 경우(도 35의 c) 각각에 대해 시간에 따른 전류의 변화 및 전하의 변화를 측정하였다. 전하의 변화는 3.6 C/cm2의 조건을 기준으로 측정되었다. Referring to FIG. 35, a plurality of semiconductor devices according to Example 2 in which the time during which the electrolyte is agitated in the copper film removal process is controlled, but for each time in the electrolytic polishing process for removing the copper film The changes in the current (Current) and the charge (Charge) were measured. Specifically, after performing electrolytic etching for a period of 240 s with a voltage of 2.3 V, and performing electrolytic etching for a period of 60 s with a voltage of 1.3 V (a in FIG. 35 ), electrolysis for a period of 180 s with a voltage of 2.3 V After performing etching, electrolytic etching was performed for 120 s for a voltage of 1.3 V (b in FIG. 35 ), and when stirring (400 rpm) was performed for 300 s for a voltage of 2.3 V (c in FIG. 35 c) ) For each, changes in current and changes in charge over time were measured. The change in charge was measured based on the condition of 3.6 C/cm 2 .
도 36은 본 출원의 실시 예 1에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과 및 인산의 농도에 따른 효과를 비교하는 SEM 사진들이다. FIG. 36 are SEM photographs comparing the effect of stirring the electrolyte and the effect of concentration of phosphoric acid in the manufacturing process of the semiconductor device according to Example 1 of the present application.
도 36을 참조하면, 구리막 제거 과정에서 전해질이 교반(Agitation)되는 시간 및 인산의 농도가 제어된 복수의 상기 실시 예 1에 따른 반도체 소자를 제조하고, 각각에 대해 SEM 촬영을 하여 나타내었다. 구체적으로, 도 36의 (a)는 85 wt% H3PO4 전해질, 4.5 C/cm2, 400 rpm 교반의 조건에서 제조된 반도체 소자를 나타내고, 도 36의 (b)는 70 wt% H3PO4 전해질, 4.5 C/cm2, 400 rpm 교반의 조건에서 제조된 반도체 소자를 나타내고, 도 36의 (c)는 50 wt% H3PO4 전해질, 4.5 C/cm2, 400 rpm 교반의 조건에서 제조된 반도체 소자를 나타내고, 도 36의 (d)는 85 wt% H3PO4 전해질, 4.5 C/cm2, 미교반(without agitation)의 조건에서 제조된 반도체 소자를 나타내고, 도 36의 (e)는 70 wt% H3PO4 전해질, 4.5 C/cm2, 미교반(without agitation)의 조건에서 제조된 반도체 소자를 나타내고, 도 37의 (f)는 50 wt% H3PO4 전해질, 4.5 C/cm2, 미교반(without agitation)의 조건에서 제조된 반도체 소자를 나타낸다. Referring to FIG. 36, a plurality of semiconductor devices according to Example 1 in which the electrolyte was stirred and the concentration of phosphoric acid was controlled during the copper film removal process were prepared, and SEM images were taken for each. Specifically, FIG. 36 (a) shows a semiconductor device prepared under the conditions of 85 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , 400 rpm stirring, and FIG. 36 (b) shows 70 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , shows a semiconductor device prepared under conditions of 400 rpm stirring, and FIG. 36(c) shows 50 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , conditions of stirring at 400 rpm. The semiconductor device manufactured in Figure 36 (d) is 85 wt% H 3 PO 4 electrolyte, 4.5 C / cm 2 , shows the semiconductor device manufactured under the conditions of agitation (without agitation), Figure 36 ( e) represents a 70 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , a semiconductor device manufactured under conditions of agitation, and FIG. 37(f) shows 50 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , a semiconductor device manufactured under conditions of agitation (without agitation).
도 36의 (a) 내지 (f)에서 확인할 수 있듯이, 전해질이 교반되지 않은 경우와 비교하여 전해질이 교반된 상태에서 구리막이 제거된 경우, 구리막 제거 효율이 보다 높은 것을 확인할 수 있었다. 또한, H3PO4의 농도가 낮아질수록 구리막의 제거 효율이 높은 것을 확인할 수 있었다. As can be seen from (a) to (f) of FIG. 36, when the copper film was removed while the electrolyte was agitated as compared to the case where the electrolyte was not stirred, it was confirmed that the copper film removal efficiency was higher. In addition, it was confirmed that the lower the concentration of H 3 PO 4, the higher the removal efficiency of the copper film.
도 37은 본 출원의 실시 예 1에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과 및 인산의 농도에 따른 효과를 비교하는 그래프이다. 37 is a graph for comparing the effect of stirring the electrolyte and the effect of concentration of phosphoric acid in the manufacturing process of the semiconductor device according to Example 1 of the present application.
도 37을 참조하면, 구리막 제거 과정에서 전해질이 교반(Agitation)되는 시간 및 인산의 농도가 제어된 복수의 상기 실시 예 1에 따른 반도체 소자를 제조하되, 각각에 대해 구리막 제거를 위한 전해연마 과정에서 시간에 따른 전하(Charge)의 변화를 측정하였다. 구체적으로, 50 wt%의 H3PO4 및 400rpm으로 교반된 경우, 50 wt%의 H3PO4 및 교반되지 않은 경우, 70 wt%의 H3PO4 및 400rpm으로 교반된 경우, 70 wt%의 H3PO4 및 교반되지 않은 경우, 85 wt%의 H3PO4 및 400rpm으로 교반된 경우, 85 wt%의 H3PO4 및 교반되지 않은 경우 각각에 대해 시간에 따른 전하의 변화를 측정하였다. 도 38은 3.6 C/cm2의 조건을 기준으로 측정되었다. Referring to FIG. 37, a plurality of semiconductor devices according to Example 1 in which the electrolyte is stirred and the concentration of phosphoric acid is controlled during the copper film removal process, but electrolytic polishing for copper film removal for each In the process, changes in charge over time were measured. Specifically, when it is stirred with H 3 PO 4, and 400rpm for 50 wt%, in the case 50 is not wt% of H 3 PO 4 and stirring, if a stirred with H 3 PO 4, and 400rpm for 70 wt%, 70 wt% of H 3 PO 4, and if they are not stirred, if it is stirred with H 3 PO 4, and 400rpm for 85 wt%, when 85 wt% of H 3 PO 4 and a non-stirring measuring a change in electric charge with time, for each Did. 38 was measured based on the condition of 3.6 C/cm 2 .
도 37에서 확인할 수 있듯이, 50 wt%의 H3PO4 및 400rpm으로 교반된 경우 가장 높은 구리막 제거 효율이 나타나는 것을 확인할 수 있었다. 반면, 85 wt%의 H3PO4 및 교반되지 않은 경우는, 구리막 제거 효율이 가장 낮게 나타나는 것을 확인할 수 있었다. As can be seen in Figure 37, it was confirmed that the highest copper film removal efficiency when stirred at 50 wt% of H 3 PO 4 and 400 rpm. On the other hand, when 85 wt% of H 3 PO 4 and not stirred, it was confirmed that the copper film removal efficiency was the lowest.
도 38은 본 출원의 실시 예 1에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과 및 인산의 농도에 따른 효과를 비교하는 AFM 사진들이다.FIG. 38 are AFM photographs comparing the effect of stirring the electrolyte and the effect of concentration of phosphoric acid in the manufacturing process of the semiconductor device according to Example 1 of the present application.
도 38을 참조하면, 구리막 제거 과정에서 전해질이 교반(Agitation)되는 시간 및 인산의 농도가 제어된 복수의 상기 실시 예 1에 따른 반도체 소자를 제조하고, 각각에 대해 AFM(Atomic force microscopy) 촬영을 하여 나타내었다.Referring to FIG. 38, a plurality of semiconductor devices according to Example 1 are manufactured in which the electrolyte is stirred and the concentration of phosphoric acid is controlled during the copper film removal process, and atomic force microscopy (AFM) is photographed for each. It was shown by.
구체적으로, 도 38의 (a)는 85 wt% H3PO4 전해질, 4.5 C/cm2, 400 rpm 교반의 조건에서 제조된 반도체 소자를 나타내고, 도 38의 (b)는 70 wt% H3PO4 전해질, 4.5 C/cm2, 400 rpm 교반의 조건에서 제조된 반도체 소자를 나타내고, 도 38의 (c)는 50 wt% H3PO4 전해질, 4.5 C/cm2, 400 rpm 교반의 조건에서 제조된 반도체 소자를 나타내고, 도 38의 (d)는 85 wt% H3PO4 전해질, 4.5 C/cm2, 미교반(without agitation)의 조건에서 제조된 반도체 소자를 나타내고, 도 38의 (e)는 70 wt% H3PO4 전해질, 4.5 C/cm2, 미교반(without agitation)의 조건에서 제조된 반도체 소자를 나타내고, 도 38의 (f)는 50 wt% H3PO4 전해질, 4.5 C/cm2, 미교반(without agitation)의 조건에서 제조된 반도체 소자를 나타낸다. Specifically, Figure 38 (a) shows a semiconductor device prepared under the conditions of 85 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , 400 rpm stirring, Figure 38 (b) is 70 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , shows a semiconductor device prepared under the conditions of 400 rpm stirring, and FIG. 38(c) shows 50 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , 400 rpm stirring conditions A semiconductor device manufactured in FIG. 38(d) shows a semiconductor device manufactured under the condition of 85 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , without agitation, and FIG. 38 ( e) represents a 70 wt% H 3 PO 4 electrolyte, 4.5 C/cm 2 , a semiconductor device manufactured under conditions of agitation, and FIG. 38(f) shows 50 wt% H 3 PO 4 electrolyte, It shows a semiconductor device manufactured under the condition of 4.5 C/cm 2 and without agitation.
도 38의 (a) 내지 (f)에서 확인할 수 있듯이, 전해질이 교반되지 않은 경우와 비교하여 전해질이 교반된 상태에서 구리막이 제거된 경우, 구리막 제거 효율이 보다 높은 것을 확인할 수 있었다. 또한, H3PO4의 농도가 낮아질수록 구리막의 제거 효율이 높은 것을 확인할 수 있었다. As can be seen from (a) to (f) of FIG. 38, when the copper film was removed while the electrolyte was agitated compared to the case where the electrolyte was not stirred, it was confirmed that the copper film removal efficiency was higher. In addition, it was confirmed that the lower the concentration of H 3 PO 4, the higher the removal efficiency of the copper film.
도 39 및 도 40은 본 출원의 실시 예 2에 따른 반도체 소자의 제조 공정에서 전해질 교반에 따른 효과를 비교하는 SEM 사진들이다. 39 and 40 are SEM photographs comparing the effect of electrolyte agitation in the manufacturing process of the semiconductor device according to Example 2 of the present application.
도 39를 참조하면, 상기 실시 예 2에 따른 반도체 소자의 제조 공정에 따라 반도체 소자를 제조하되, 다음과 같은 구체적인 조건에 따라 제조되었다. 구리막 증착 공정은, -30 mA/cm2의 전류, 9 C/cm2 조건에서 수행되었고, 구리막 제거 공정은 70 wt% H3PO4 전해질, 1.3V 포텐셜(Potential), 6.5C/cm2 및 400rpm으로의 교반이 수행되는 1차 제거, 1.0 C/cm2 및 교반이 수행되지 않는 2차 제거의 조건에서 수행되었다. Referring to FIG. 39, a semiconductor device was manufactured according to the manufacturing process of the semiconductor device according to Example 2, but was manufactured according to the following specific conditions. The copper film deposition process was performed at -30 mA/cm 2 current, 9 C/cm 2 condition, and the copper film removal process was 70 wt% H 3 PO 4 electrolyte, 1.3V potential, 6.5C/cm Stirring at 2 and 400 rpm was performed under conditions of primary removal, 1.0 C/cm 2 and secondary removal where stirring was not performed.
도 40을 참조하면, 상기 실시 예 2에 따른 반도체 소자의 제조 공정에 따라 반도체 소자를 제조하되, 다음과 같은 구체적인 조건에 따라 제조되었다. 구리막 증착 공정은, -30 mA/cm2의 전류, 9 C/cm2 조건에서 수행되었고, 구리막 제거 공정은 70 wt% H3PO4 전해질, 1.3V 포텐셜(Potential), 6.5C/cm2 및 400rpm으로의 교반이 수행되는 1차 제거, 0.5 C/cm2 및 교반이 수행되지 않는 2차 제거의 조건에서 수행되었다.Referring to FIG. 40, a semiconductor device was manufactured according to the manufacturing process of the semiconductor device according to Example 2, but was manufactured according to the following specific conditions. The copper film deposition process was performed at -30 mA/cm 2 current, 9 C/cm 2 condition, and the copper film removal process was 70 wt% H 3 PO 4 electrolyte, 1.3V potential, 6.5C/cm Agitation at 2 and 400 rpm was performed under conditions of primary removal, 0.5 C/cm 2 and secondary removal without stirring.
도 39 및 도 40에서 확인할 수 있듯이, 2차 제거 조건의 변화에도 불구하고, 트렌치 외의 구리막이 용이하게 제거된 것을 확인할 수 있었다. 또한, 다양한 크기의 Line width와 Line space를 갖는 트렌치 내에 구리막이 용이하게 채워진 것을 확인할 수 있었다. As can be seen in FIGS. 39 and 40, it was confirmed that despite the change in the secondary removal condition, the copper film other than the trench was easily removed. In addition, it was confirmed that the copper film was easily filled in trenches having line widths and line spaces of various sizes.
도 41은 구리막 제거를 위한 전해연마 과정에서 인가되는 전압에 따라 구리가 이온화되는 정도를 나타내는 그래프이고, 도 42는 도 41에 표시된 각 구간에서 촬영된 반도체 소자들을 나타내는 사진이다. 41 is a graph showing the degree of ionization of copper according to a voltage applied in the electropolishing process for removing a copper film, and FIG. 42 is a photograph showing semiconductor elements photographed in each section shown in FIG. 41.
도 41을 참조하면, 상기 실시 예 1에 따른 반도체 소자의 제조 방법에 따라 반도체 소자를 준비하되, 구리막 제거를 위한 전해연마 과정에서 인가되는 포텐셜(Potential V vs. Ag/AgCl)을 제어하고, 이에 따른 전류 밀도(Current density, mA/cm2)를 측정하여 나타내었다. Referring to FIG. 41, a semiconductor device is prepared according to the method of manufacturing a semiconductor device according to Example 1, but a potential (Potential V vs. Ag/AgCl) applied in an electropolishing process for removing a copper film is controlled, Accordingly, the current density (Current density, mA/cm 2 ) was measured and shown.
도 42를 참조하면, 도 41에서 상술된 반도체 소자를 SEM 촬영하여 나타내었다. 구체적으로, 도 41의 (a)는 전해연마가 수행되기 이전 상태를 촬영하여 나타내고, 도 41의 (b)는 0.25V가 인가된 상태를 촬영하여 나타내고, 도 41의 (c)는 0.375V가 인가된 상태를 촬영하여 나타내고, 도 41의 (d)는 0.5V가 인가된 상태를 촬영하여 나타내고, 도 41의 (e)는 1.3V가 인가된 상태를 촬영하여 나타내었다. Referring to FIG. 42, the semiconductor device described in FIG. 41 is photographed by SEM. Specifically, FIG. 41(a) shows the state before electropolishing is performed, and FIG. 41(b) shows the state where 0.25V is applied, and FIG. 41(c) shows 0.375V. The applied state is photographed and shown, and FIG. 41(d) is shown by photographing a state in which 0.5V is applied, and FIG. 41(e) is shown by photographing a state in which 1.3V is applied.
도 41 및 도 42에서 확인할 수 있듯이, 0V 초과 0.5V 이하의 구간과 1.6V 이상 2.5V 이하의 구간에서는, 인가되는 전압의 증가에 따라 전류 밀도의 기울기가 증가하는 것을 확인할 수 있었다. 반면, 0.5 V 초과 1.5V 미만의 구간에서는, 인가되는 전압의 증가에 따라 전류 밀도의 기울기가 소폭으로 감소하는 것을 확인할 수 있었다. As can be seen from FIGS. 41 and 42, it was confirmed that in the section of 0V to 0.5V and the section of 1.6V to 2.5V, the slope of the current density increased as the applied voltage increased. On the other hand, in the section of more than 0.5 V and less than 1.5 V, it was confirmed that the slope of the current density decreased slightly with increasing voltage applied.
또한, 0V 초과 0.5V 이하의 구간에서는 구리막 제거가 이루어지지 않았고, 0.375V 이상의 구간에서는 구리막의 제거가 이루어 지는 것을 확인할 수 있었다. 뿐만 아니라, 1.6V 이상 2.5V 이하의 구간에서는 0.5 V 초과 1.5V 미만의 구간과 비교하여, 측정된 전류 밀도의 기울기가 현저하게 높은 것으로 보아, 식각 속도가 현저하게 빠른 것을 확인할 수 있었고, 0.5 V 초과 1.5V 미만의 구간에서는 상대적으로 식각 속도는 낮지만, 식각된 구리막의 표면 상태가 가장 좋게 나타나는 것을 확인할 수 있었다. In addition, it was confirmed that the copper film was not removed in the section of more than 0 V and 0.5 V or less, and the copper film was removed in the section of 0.375 V or more. In addition, in the section of 1.6V or more and 2.5V or less, compared with the section of 0.5 V or more and less than 1.5 V, it was confirmed that the slope of the measured current density was remarkably high, so that the etching rate was remarkably fast, and 0.5 V Although the etching rate was relatively low in the section of more than 1.5V, it was confirmed that the surface condition of the etched copper film was best.
결과적으로, 구리막 제거를 위한 전해연마 과정에서, 상대적으로 높은 레벨의 제1 전압을 인가하여 빠른 속도로 구리막을 제거한 후, 상대적으로 낮은 레벨의 제2 전압을 인가하여 구리막의 식각 균일성을 향상시키는 것이, 평탄화 공정을 효율적으로 수행할 수 있는 방법임을 알 수 있다. As a result, in the electrolytic polishing process for removing the copper film, the copper film is removed at a high speed by applying the first voltage at a relatively high level, and then the second voltage at the relatively low level is applied to improve the etching uniformity of the copper film. It can be seen that it is a method capable of efficiently performing the planarization process.
도 43 및 도 44는 구리막의 제거를 위한 전해연마 공정에서 인가되는 전하의 크기에 따른 효과를 비교하는 사진이고, 도 45는 구리막의 제거를 위한 전해연마 공정에서 인가되는 전하량에 따른 구리막의 두께 변화를 나타내는 그래프이다. 43 and 44 are photographs comparing the effect of the amount of charge applied in the electropolishing process for the removal of the copper film, and FIG. 45 is the thickness change of the copper film according to the amount of charge applied in the electropolishing process for the removal of the copper film It is a graph showing.
도 43 및 도 44를 참조하면, 구리막 제거 과정에서 인가되는 전하의 크기를 0C/cm2, 0.5 C/cm2, 1.5 C/cm2, 및 2.5 C/cm2으로 제어된 복수의 상기 실시 예 1에 따른 반도체 소자를 제조한 후, 각각을 SEM 촬영하여 나타내었다. 도 43은 Top image를 나타내고 도 44는 Vertical image를 나타낸다. 43 and referring to Figure 44, is the size of the charge 0C / cm 2, which in a copper film removal process 0.5 C / cm 2, 1.5 C / cm 2, and 2.5 C / cm 2 the embodiment of the controlled Multi with After manufacturing the semiconductor device according to Example 1, each was shown by SEM photographing. FIG. 43 shows a top image and FIG. 44 shows a vertical image.
도 45를 참조하면, 구리막 제거 과정에서 인가되는 전하의 크기를 제어한 후, 각각의 C/cm2 크기에 따라 제조된 실시 예 1에 따른 반도체 소자에서, 트렌치 외의 구리막의 두께(Thickness, um) 변화를 측정하여 나타내었다. Referring to Figure 45, after controlling the size of the charge applied in the process of removing the copper film, in the semiconductor device according to Example 1 manufactured according to the size of each C / cm 2 , the thickness of the copper film other than the trench (Thickness, um ) The change was measured.
도 43 내지 도 45에서 확인할 수 있듯이, 구리막 제거 과정에서 인가되는 전하의 크기(또는 전압의 크기)가 증가함에 따라, 구리막의 제거가 용이하게 발생는 것을 확인할 수 있었다. As can be seen in FIGS. 43 to 45, it was confirmed that the removal of the copper film was easily generated as the size of the electric charge (or the size of the voltage) applied during the copper film removal process increased.
이상, 본 출원을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 출원의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 출원의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.As described above, the present application has been described in detail using a preferred embodiment, but the scope of the present application is not limited to a specific embodiment, and should be interpreted by the appended claims. In addition, those skilled in the art should understand that many modifications and variations are possible without departing from the scope of the present application.
본 발명의 실시 예에 따른 반도체 소자의 제조 방법은, 금속 배선, TSV 등 반도체 소자의 다양한 구성 요소에 적용될 수 있다.The method for manufacturing a semiconductor device according to an embodiment of the present invention may be applied to various components of a semiconductor device such as metal wiring and TSV.

Claims (15)

  1. 리세스(recess) 영역을 갖는 베이스 기판 구조체를 준비하는 단계;Preparing a base substrate structure having a recess area;
    상기 리세스 영역을 갖는 상기 베이스 기판 구조체 상에 물질막을 증착하여, 상기 리세스 영역을 채우는 단계; 및Depositing a material film on the base substrate structure having the recess region to fill the recess region; And
    상기 물질막의 물질을 이온화시켜, 상기 리세스 영역 외의 상기 물질막을 제거하고, 상기 리세스 영역 내의 상기 물질막을 잔존시켜, 상기 리세스 영역 내에 물질막 패턴을 형성하는 단계를 포함하는 반도체 소자의 제조 방법. A method of manufacturing a semiconductor device comprising ionizing a material of the material film, removing the material film outside the recess area, and remaining the material film in the recess area to form a material film pattern in the recess area. .
  2. 제1 항에 있어서, According to claim 1,
    상기 물질막의 상기 물질을 이온화시키는 단계는, The step of ionizing the material of the material film,
    상기 물질막을 갖는 상기 베이스 기판 구조체를 전해질 내에 침지하는 단계;Immersing the base substrate structure having the material film in an electrolyte;
    상기 물질막에 제1 전압을 인가하는 제1 제거 단계; 및A first removing step of applying a first voltage to the material film; And
    상기 물질막에 상기 제1 전압보다 낮은 레벨의 제2 전압을 인가하는 제2 제거 단계를 포함하는 반도체 소자의 제조 방법.And a second removing step of applying a second voltage having a level lower than the first voltage to the material film.
  3. 제2 항에 있어서, According to claim 2,
    상기 제1 전압이 인가된 직후(directly after), 상기 제2 전압이 인가되는 것을 포함하는 반도체 소자의 제조 방법. A method of manufacturing a semiconductor device comprising applying the second voltage immediately after the first voltage is applied (directly after).
  4. 제2 항에 있어서, According to claim 2,
    상기 제1 제거 단계에서 상기 물질막의 상기 물질이 이온화되는 속도는, 상기 제2 제거 단계에서 상기 물질막의 상기 물질이 이온화되는 속도보다 빠른 것을 포함하는 반도체 소자의 제조 방법. A method of manufacturing a semiconductor device, wherein a rate at which the material of the material film is ionized in the first removal step is faster than a rate at which the material of the material film is ionized in the second removal step.
  5. 제2 항에 있어서, According to claim 2,
    상기 제2 전압은 0.5V 초과 1.6V 미만인 것을 포함하는 반도체 소자의 제조 방법. The second voltage is a method of manufacturing a semiconductor device comprising more than 0.5V less than 1.6V.
  6. 제2 항에 있어서, According to claim 2,
    상기 전해질은 인산(H3PO4)을 포함하고, 상기 인산의 농도는 50 wt% 이상인 것을 포함하는 반도체 소자의 제조 방법. The electrolyte comprises phosphoric acid (H 3 PO 4 ), the concentration of the phosphoric acid is 50 wt% or more of the semiconductor device manufacturing method.
  7. 제2 항에 있어서, According to claim 2,
    상기 인산의 농도가 낮아짐에 따라, 상기 물질의 이온화 속도가 빨라지는 것을 포함하는 반도체 소자의 제조 방법. As the concentration of the phosphoric acid is lowered, the method of manufacturing a semiconductor device comprising a faster ionization rate of the material.
  8. 제2 항에 있어서, According to claim 2,
    상기 물질막을 증착하기 전, Before depositing the material film,
    상기 베이스 기판 구조체 상에, 상기 리세스 영역의 내면을 따라, 베리어층을 형성하는 단계를 더 포함하되, On the base substrate structure, along the inner surface of the recess region, further comprising the step of forming a barrier layer,
    상기 전해질은, 상기 베리어층을 식각하는 베리어 식각액을 포함하는 반도체 소자의 제조 방법. The electrolyte is a method of manufacturing a semiconductor device including a barrier etchant for etching the barrier layer.
  9. 제8 항에 있어서, The method of claim 8,
    상기 베리어층은 티타늄(Ti), 탄탈륨(Ta), 질화티타늄(TiN), 질화규소티타늄(TiSiN), 텅스텐(W), 질화텅스텐(WN), 질화탄탈륨(TaN), 및 질화규소탄탈륨(TaSiN) 중 어느 하나를 포함하는 반도체 소자의 제조 방법. The barrier layer is one of titanium (Ti), tantalum (Ta), titanium nitride (TiN), silicon nitride (TiSiN), tungsten (W), tungsten nitride (WN), tantalum nitride (TaN), and silicon tantalum nitride (TaSiN) A method for manufacturing a semiconductor device including any one.
  10. 제2 항에 있어서, According to claim 2,
    상기 전해질이 교반되는 동시에, 상기 물질막에 상기 제1 및 제2 전압이 인가되는 것을 포함하는 반도체 소자의 제조 방법. A method of manufacturing a semiconductor device including the first and second voltages being applied to the material layer while the electrolyte is stirred.
  11. 제1 항에 있어서, According to claim 1,
    상기 리세스 영역은 트렌치(Trench)이고, 상기 물질막 패턴은 금속 배선인 것을 포함하는 반도체 소자의 제조 방법. The recess region is a trench, and the material layer pattern is a metal wiring.
  12. 제1 항에 있어서, According to claim 1,
    상기 리세스 영역은 상기 베이스 기판을 관통하는 비아 홀(Via-hole)이고, 상기 물질막 패턴은 TSV(Through Silicon Via)인 것을 포함하는 반도체 소자의 제조 방법. The recess region is a via-hole passing through the base substrate, and the material layer pattern is a through silicon via (TSV) manufacturing method.
  13. 제1 항에 있어서, According to claim 1,
    상기 물질막은 구리막을 포함하는 반도체 소자의 제조 방법. The material film is a method of manufacturing a semiconductor device including a copper film.
  14. 베이스 기판을 준비하는 단계;Preparing a base substrate;
    상기 베이스 기판 상에 물질막을 증착하는 단계; Depositing a material film on the base substrate;
    상기 물질막이 증착된 상기 베이스 기판을 전해질 내에 침지하는 단계; 및Immersing the base substrate on which the material film is deposited in an electrolyte; And
    상기 물질막에 제1 전압, 및 상기 제1 전압보다 낮은 레벨의 제2 전압을 연속적으로(sequentially) 인가하여, 상기 물질막의 물질을 이온화시켜, 상기 물질막의 적어도 일부분을 제거하는 단계를 포함하는 반도체 소자의 제조 방법. And sequentially applying a first voltage to the material film and a second voltage at a level lower than the first voltage to ionize the material of the material film to remove at least a portion of the material film. Device manufacturing method.
  15. 제14 항에 있어서, The method of claim 14,
    제1 전압 구간에서 전압 증가에 따라서 상기 물질막의 제거 속도가 제1 기울기로 감소하는 제1 구간, 및 제2 전압 구간에서 전압 증가에 따라서 상기 물질막의 제거 속도가 제2 기울기로 증가하는 제2 구간이 제공되고, In a first voltage section, a first section in which the removal rate of the material film decreases to a first slope according to an increase in voltage, and a second section in which a removal rate of the material film increases in a second slope according to an increase in voltage in the second voltage section. Is provided,
    상기 제2 구간의 상기 제2 기울기의 크기는, 상기 제1 구간의 상기 제1 기울기의 크기보다 크고, The size of the second slope of the second section is greater than the size of the first slope of the first section,
    상기 제1 전압은 상기 제2 전압 구간에서 선택되고, 상기 제2 전압은 상기 제1 전압 구간에서 선택되는 것을 포함하는 반도체 소자의 제조 방법. The first voltage is selected in the second voltage section, the second voltage is a method of manufacturing a semiconductor device comprising the first voltage section.
PCT/KR2019/018520 2018-12-26 2019-12-26 Method for manufacturing semiconductor device WO2020138976A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180169518 2018-12-26
KR10-2018-0169518 2018-12-26
KR10-2019-0124118 2019-10-07
KR1020190124118A KR102301933B1 (en) 2018-12-26 2019-10-07 Fabricating method of Semiconductor device

Publications (1)

Publication Number Publication Date
WO2020138976A1 true WO2020138976A1 (en) 2020-07-02

Family

ID=71129838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018520 WO2020138976A1 (en) 2018-12-26 2019-12-26 Method for manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2020138976A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040030147A (en) * 2001-08-17 2004-04-08 에이씨엠 리서치, 인코포레이티드 Forming a semiconductor structure using a combination of planarizing methods and electropolishing
KR20040094560A (en) * 2003-05-03 2004-11-10 삼성전자주식회사 Apparatus and Method For Electropolishing Metal On Semiconductor Devices
KR20070061579A (en) * 2004-10-06 2007-06-13 바스프 악티엔게젤샤프트 Electropolishing electrolyte and method for planarizing a metal layer using the same
JP2007523264A (en) * 2004-02-23 2007-08-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Membrane electrolytic polishing equipment
KR101492467B1 (en) * 2008-08-20 2015-02-11 에이씨엠 리서치 (상하이) 인코포레이티드 Barrier layer removal method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040030147A (en) * 2001-08-17 2004-04-08 에이씨엠 리서치, 인코포레이티드 Forming a semiconductor structure using a combination of planarizing methods and electropolishing
KR20040094560A (en) * 2003-05-03 2004-11-10 삼성전자주식회사 Apparatus and Method For Electropolishing Metal On Semiconductor Devices
JP2007523264A (en) * 2004-02-23 2007-08-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Membrane electrolytic polishing equipment
KR20070061579A (en) * 2004-10-06 2007-06-13 바스프 악티엔게젤샤프트 Electropolishing electrolyte and method for planarizing a metal layer using the same
KR101492467B1 (en) * 2008-08-20 2015-02-11 에이씨엠 리서치 (상하이) 인코포레이티드 Barrier layer removal method and apparatus

Similar Documents

Publication Publication Date Title
US7157351B2 (en) Ozone vapor clean method
US5271798A (en) Method for selective removal of a material from a wafer&#39;s alignment marks
US6737360B2 (en) Controlled potential anodic etching process for the selective removal of conductive thin films
US7416985B2 (en) Semiconductor device having a multilayer interconnection structure and fabrication method thereof
TWI321346B (en) Method of forming metal line in semiconductor device
US20040253809A1 (en) Forming a semiconductor structure using a combination of planarizing methods and electropolishing
WO2020218816A1 (en) Etching device using etching chamber
CA2456225A1 (en) Forming a semiconductor structure using a combination of planarizing methods and electropolishing
WO2020138976A1 (en) Method for manufacturing semiconductor device
US6815336B1 (en) Planarization of copper damascene using reverse current electroplating and chemical mechanical polishing
US6287972B1 (en) System and method for residue entrapment utilizing a polish and sacrificial fill for semiconductor fabrication
WO2018169240A1 (en) Composition for performing cleaning after chemical/mechanical polishing
KR19990072296A (en) Method and structure for contact to copper metallization in an insulating via on a semiconductor
WO2023249418A1 (en) Polymer thin film, diffusion barrier film using same, and method for manufacturing same
WO2020197057A1 (en) Composition for etching laminate of titanium nitride film and tungsten film and method for etching semiconductor device using same
US6174819B1 (en) Low temperature photoresist removal for rework during metal mask formation
WO2019132113A1 (en) Method of manufacturing a cobalt containing thin film
WO2020256515A1 (en) Method for selectively manufacturing material layer and target pattern
WO2020040386A1 (en) Insulating film etchant composition and pattern forming method using same
WO2023219400A1 (en) Method for forming electrode for semiconductor devices, and electrode for semiconductor devices
WO2023018072A1 (en) Resist stripper composition and pattern formation method using same
KR970006937B1 (en) Metal wiring method in semiconductor
WO2017116063A1 (en) Etchant composition and method for manufacturing semiconductor device by using same
KR100714049B1 (en) Method of forming a metal line in semiconductor device
KR102301933B1 (en) Fabricating method of Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905054

Country of ref document: EP

Kind code of ref document: A1