WO2020138563A1 - Band type fabric sensor and manufacturing method therefor - Google Patents

Band type fabric sensor and manufacturing method therefor Download PDF

Info

Publication number
WO2020138563A1
WO2020138563A1 PCT/KR2018/016871 KR2018016871W WO2020138563A1 WO 2020138563 A1 WO2020138563 A1 WO 2020138563A1 KR 2018016871 W KR2018016871 W KR 2018016871W WO 2020138563 A1 WO2020138563 A1 WO 2020138563A1
Authority
WO
WIPO (PCT)
Prior art keywords
band
gauze
base fabric
type fabric
sensor
Prior art date
Application number
PCT/KR2018/016871
Other languages
French (fr)
Korean (ko)
Inventor
소주희
유의상
임대영
김은주
이현경
이재경
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to PCT/KR2018/016871 priority Critical patent/WO2020138563A1/en
Publication of WO2020138563A1 publication Critical patent/WO2020138563A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons

Definitions

  • An embodiment of the present invention relates to a body-mounted sensor, and more particularly, to a band-type fabric sensor and a method of manufacturing the same.
  • Biosignal measurement technology through a body-mounted sensor is leading research on the development of sensors made of stretchable materials and circuits to meet human skin characteristics.
  • body-mounted sensors are being developed mainly for circuit board and electronic device packaging technology, antenna and communication technology, materials and detachable technology, but there are difficulties in solving problems of elasticity, flexibility, and mass production technology.
  • the present invention is to solve the problems of the prior art described above, a band-type fabric sensor and a method of manufacturing the electrode material in a body fluid-sensitive polymer material by using a material in which conductive particles or conductive particles are dispersed can be arranged regularly
  • the purpose is to provide.
  • Another object of the present invention is to provide a band-type fabric sensor and a method of manufacturing the same, which have flexibility and elasticity by using a disposable bandage structure widely used for wound protection, and can be easily attached and detached and easily applied to a mass production process.
  • Band-type fabric sensor for solving the above technical problem, a base fabric in the form of a band manufactured using a dielectric constant yarn; Gauze made of a yarn disposed on the base fabric and having conductive yarns or conductive particles dispersed therein; A polymer material disposed on the base fabric and covered by the gauze; And a sensing circuit that senses a change in resistance according to the change in volume when the volume changes as the acidity (ph) or temperature changes because the polymer material is wetted by a liquid containing body fluid.
  • the electrode material made of a material in which conductive particles or conductive particles are dispersed is uniformly arranged in a body fluid-sensitive polymer material.
  • the regular arrangement includes, but is not limited to, regular spacing, regular grid arrangement, and the like, and may have various bends depending on the gauze weaving method or material.
  • the average density or injection amount per unit area of the electrode material of the gauze may have a deviation below a certain level. That is, the average density or injection amount per unit area of the electrode material of the gauze may be significantly the same within the error range.
  • the polymer material may include a hydrogel.
  • the hydrogel may have an average diameter of 0.1 mm or more and 1 mm or less.
  • the gauze may have a density in which the contact amount of adjacent conductive yarns or adjacent yarns increases according to a pressing change of the polymer material according to the change in volume.
  • the density of the gauze is less than 1/3 of the base fabric on the basis of a densimeter and may have a number of threads of 10 or less in 1 cm in diameter.
  • the gus may have at least a double weave structure or a multi-layer structure in which a plurality of layers overlap.
  • the material of the gauze may be cotton, silk, rayon or a combination thereof.
  • the length of the base fabric may be less than 20 cm and the width may be less than 5 cm.
  • the conductive particles may include carbon black, carbon nanobubbles, metal particles, metal fibers, graphene, or a combination thereof.
  • the bonding step may include a process of stitching with a conductive fiber and coating with a hot melt so that the other end of the wiring and the yarn in which the conductive particles or conductive particles are dispersed are electrically connected to each other.
  • the sensing circuit may be implemented to calculate a resistance change by Young's modulus, bulk modulus, or a combination thereof.
  • band-type fabric sensor Using the above-described band-type fabric sensor and its manufacturing method, it is possible to manufacture a sensor that responds to bodily fluids emitted from the skin with a simple configuration and material, and has an advantage of being easily introduced into a mass production process.
  • prior art techniques for measuring a biosignal in the skin have had difficulties in device packaging, desorption, and mass production process technology development, but the present invention can solve the problems of such prior arts.
  • FIG. 1 is a plan view of a band-type fabric sensor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the banded fabric sensor of FIG. 1.
  • FIG. 3 is a cross-sectional view of a material in which conductive yarns or conductive particles are dispersed in the band-type fabric sensor of FIG. 1.
  • FIG. 4 is a partial side view of a conductive material that can be used in the band-type fabric sensor of FIG. 1.
  • FIG. 5 is a block diagram of an electronic device that can be used in the band-type fabric sensor of FIG. 1.
  • FIG. 1 is a plan view of a band-type fabric sensor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the banded fabric sensor of FIG. 1.
  • FIG. 3 is a cross-sectional view of a material in which conductive yarns or conductive particles are dispersed in the band-type fabric sensor of FIG. 1.
  • FIG. 4 is a partial side view of a conductive material that can be used in the band-type fabric sensor of FIG. 1.
  • 5 is a block diagram of an electronic device that can be used in the band-type fabric sensor of FIG. 1.
  • the band-type fabric sensor includes a base fabric 10, gauze 20, a polymer material 30, and an electronic device 40, as shown in FIG. 1.
  • the gauze 20 and the electronic device 40 are connected through a wiring 50, and an adhesive component may be applied to one end of the base fabric 10.
  • the length L1 of the base fabric 10 may be less than 20 cm and the width W1 may be less than 5 cm. This is to limit the largest dimension in a typical band form, but a larger size base fabric 10 may be used depending on the application.
  • the base fabric 10 is manufactured using a dielectric constant yarn.
  • the base fabric 10 may include a wire 50 formed using a conductive yarn or a material (thread) in which conductive particles are dispersed.
  • the gauze 20 may be disposed on one surface of the base fabric 10 and may be made of a material (thread) in which conductive yarns or conductive particles are dispersed.
  • the conductive particles may include carbon black, carbon nanobubbles, metal particles, metal fibers, graphene, or a combination thereof.
  • the term'gauze' is a kind of fabric and may be referred to as a conductive fabric.
  • the electrode material made of a material in which conductive particles or conductive particles are dispersed is uniformly arranged in a body fluid-sensitive polymer material.
  • the regular arrangement includes, but is not limited to, regular spacing, regular grid arrangement, and the like, and may have various bends depending on the gauze weaving method or material.
  • the average density or injection amount per unit area of the electrode material of the gauze may have a deviation below a certain level. That is, the average density or injection amount per unit area of the electrode material of the gauze may be significantly the same within the error range.
  • the gauze 20 may be manufactured to have a density in which the contact amount of adjacent conductive yarns or adjacent yarns increases according to a pressing change of the polymer material 30 according to a change in the volume of the polymer material 30.
  • the density of the gauze 20 is smaller than 1/3 of the base fabric 10 based on a densimeter and may have a number of threads of 10 or less in 1 cm in diameter.
  • the gauze 20 may be provided with a multilayer structure in which at least a double weave structure or a plurality of layers 21, 22, and 23 are overlapped (see FIG. 2).
  • the material of the gauze 20 may be cotton, silk, rayon, or a combination thereof.
  • the yarn 210 in which conductive yarns or conductive particles contained in the gauze 20 are dispersed is carbon nanotubes or graphene formed by a binder 212 on the surface of the dielectric fiber yarn 211 or carbon fiber as shown in FIG. 3. And dispersion of the fins 213.
  • the seal 210 (hereinafter, also referred to as a conductive fiber) may further include an additive 214 dispersed with the carbon nanotubes or graphene 213 by the binder 212.
  • the additive 214 may include graphite powder.
  • the conductive yarn 220 included in the gauze 20 may have a multifilament form by twisting the dielectric constant yarn 211 and the conductive fiber 210 as illustrated in FIG. 4.
  • the polymer material 30 is disposed at the center of one surface of the base fabric 10 and may be covered by gauze 20.
  • the polymer material 30 changes in volume as the acidity (ph) or temperature changes as the polymer material is wetted by a liquid containing body fluids.
  • the polymer material 30 may include a hydrogel.
  • the polymer material 30 may have a spherical shape, and may have an average diameter of 0.1 mm or more and 1 mm or less.
  • the electronic device 40 detects a change in resistance according to a change in volume of the polymer material 30.
  • the electronic device 40 may include a sensing circuit or may correspond to the sensing circuit.
  • the electronic device 40 may include a power supply unit that applies a predetermined voltage to both ends of the gauze 20 through the wiring 50.
  • the electronic device 40 may have a semiconductor chip or module structure or form.
  • the electronic device 40 may include hardware components such as a field programmable gate array (FPGA) and an application specific integrated circuit (ASIC).
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • the electronic device 40 may include a power supply unit (not shown), a signal detection unit 42, a comparison unit 44, a biosignal processing unit 46, and an output unit 48 as shown in FIG. 5.
  • the power supply unit may apply a predetermined voltage to both the conductive yarns of the gauze 20 and the terminal portions of both sides of the conductive fiber through the wiring 50.
  • the power supply unit may include a battery, a piezoelectric generator, a thermal battery, and the like, and the piezoelectric generator and the thermal battery may be manufactured using carbon fiber.
  • the signal detection unit 42 is connected between the power supply unit and the gauze 20 and detects a physical quantity (resistance, etc.) according to the volume change of the polymer material 30 covered with the gauze 20.
  • the signal detection unit 42 may include a signal amplification unit for amplifying a physical quantity according to a volume change.
  • the input terminal of the signal detection unit 42 is an input unit of the electronic device 40 and may correspond to at least one of the input terminals of the signal amplification unit.
  • the comparison unit 44 compares the output signal of the signal detection unit 42 with a reference signal or a reference level.
  • the bio-signal processing unit 46 may detect a preset bio-signal based on the signal determined through the comparison unit 44 among the detection signals. Using such a biosignal, it is possible to perform wound treatment, continuous monitoring of the wound treatment process, and the like.
  • the electronic device 40 may include an output unit 48 for outputting a sensing signal sensed by the signal sensing unit 42 or a biosignal corresponding thereto.
  • the output unit 48 may include a connector, an antenna of a communication subsystem, a display device, and the like.
  • the communication sub-system may include a communication module for wireless communication, and the wireless communication may include short-range wireless communication, mobile communication, and the like.
  • the connector may be employed by selecting at least one of various existing shapes.
  • the connector may include a universal serial bus (USB).
  • USB universal serial bus
  • a connector, a communication subsystem, or the like it is possible to connect a mobile terminal such as a smartphone and display a biosignal or a wound healing process on the screen through an application mounted on the mobile terminal.
  • the bio-signals can be transmitted to a healthcare server or the like and used to monitor personal health care.
  • the output unit may be embodied in addition to a connector or a communication subsystem, or implemented as a display element to replace it.
  • the output unit may be implemented to display a biosignal detected by a liquid crystal display (LED) in a predetermined number or character form Can.
  • LED liquid crystal display
  • the manufacturing method of the band-type fabric sensor according to the present embodiment described above may be prepared using a dielectric constant yarn and may prepare a band-shaped base fabric having wiring. Then, an electronic device can be attached to the base fabric and one end of the wiring can be connected.
  • gauze in which electrode materials made of a material in which conductive particles or conductive particles are dispersed are uniformly arranged on average may be prepared.
  • a part of the edge of the gauze may be left behind and the other edge of the gauze may be bonded to the base fabric, surrounding the central portion of one surface of the base fabric and connecting to the other end of the wiring.
  • a polymer material whose volume changes as the acidity (ph) or temperature changes due to wetness with a liquid containing body fluid in the central portion may be inserted through a portion of the gauze and block the portion.
  • the sensing circuit of the electronic device can detect a change in resistance according to a change in volume of the polymer material.
  • the sensing circuit may be implemented to calculate a resistance change by Young's modulus, bulk modulus, or a combination thereof.
  • the bonding may include a process in which the other end of the wiring and the material (thread) in which the conductive yarns or conductive particles are dispersed are electrically connected to each other and sewn with a conductive fiber and coated with a hot melt.
  • a connection structure by lockstitch can be used.
  • the length in the longitudinal direction is illustrated by exemplifying a shape approximately 4 times larger than the length in the width direction, but the present invention is not limited to such a configuration, and other sizes of squares, squares, triangles, and circles , It can be implemented to have a variety of shapes, such as a half moon, star shape.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

Disclosed are a band type fabric sensor, which is one type of body-attachable sensor, and a manufacturing method therefor. The band type fabric sensor comprises: a band type base fabric manufactured by using dielectric yarn; gauze disposed on the base fabric and made of conductive yarn or yarn in which conductive particles are dispersed; a polymeric material disposed on the base fabric and covered by the gauze; and a sensing circuit for sensing a change in resistance according to a change in volume when the volume of the polymeric material is changed as the polymeric material is wetted by liquid containing body fluid and thus acidity (pH) or temperature is changed.

Description

밴드형 패브릭 센서 및 그 제조방법Band type fabric sensor and its manufacturing method
본 발명의 실시예는 신체부착형 센서에 관한 것으로, 보다 상세하게는, 밴드형 패브릭 센서 및 그 제조방법에 관한 것이다.An embodiment of the present invention relates to a body-mounted sensor, and more particularly, to a band-type fabric sensor and a method of manufacturing the same.
신체부착형 센서를 통한 생체신호 측정기술은 인간의 피부 특성에 부합하도록 신축 가능한 소재 및 회로로 이루어진 센서 개발 위주로 선도적인 연구들이 수행되고 있다.Biosignal measurement technology through a body-mounted sensor is leading research on the development of sensors made of stretchable materials and circuits to meet human skin characteristics.
하지만 현재 신체부착형 센서는 회로보드 및 전자소자 패키징 기술, 안테나 및 통신기술, 소재 및 탈부착 기술 중심으로 개발이 진행되고 있으나 신축성 및 유연성, 양산기술 문제 해결에 대한 어려움이 있다.However, currently, body-mounted sensors are being developed mainly for circuit board and electronic device packaging technology, antenna and communication technology, materials and detachable technology, but there are difficulties in solving problems of elasticity, flexibility, and mass production technology.
이와 같이 신축성 및 유연성을 만족하고 양산이 용이한 신체부착형 센서에 대한 요구가 상당하다.As such, there is a great need for a body-mountable sensor that satisfies elasticity and flexibility and is easy to mass-produce.
본 발명은 전술한 종래 기술의 문제를 해결하기 위한 것으로, 전도사 또는 전도성 입자가 분산된 소재를 사용하여 체액 감응 고분자 소재 내에서 전극 물질이 일정하게 배열될 수 있도록 이루어지는 밴드형 패브릭 센서 및 그 제조방법을 제공하는데 그 목적이 있다.The present invention is to solve the problems of the prior art described above, a band-type fabric sensor and a method of manufacturing the electrode material in a body fluid-sensitive polymer material by using a material in which conductive particles or conductive particles are dispersed can be arranged regularly The purpose is to provide.
본 발명의 다른 목적은 상처 보호에 널리 쓰이는 일회용 밴디지 구조를 이용하여 유연성과 신축성을 가지며 탈부착이 용이하고 양산 공정에도 쉽게 적용될 수 있는 밴드형 패브릭 센서 및 그 제조방법을 제공하는데 있다.Another object of the present invention is to provide a band-type fabric sensor and a method of manufacturing the same, which have flexibility and elasticity by using a disposable bandage structure widely used for wound protection, and can be easily attached and detached and easily applied to a mass production process.
상기 기술적 과제를 해결하기 위한 본 발명의 일 측면에 따른 밴드형 패브릭 센서는, 유전율 실을 이용하여 제조되는 밴드 형태의 베이스 원단; 상기 베이스 원단 상에 배치되고 전도사 또는 전도성 입자가 분산된 실로 이루어지는 거즈; 상기 베이스 원단 상에 배치되고 상기 거즈에 의해 덮히는 고분자 소재; 및 상기 고분자 소재가 체액을 포함한 액체에 의해 젖어 산도(ph) 또는 온도가 변함에 따라 부피가 변할 때, 상기 부피의 변화에 따른 저항 변화를 감지하는 센싱 회로를 포함한다.Band-type fabric sensor according to an aspect of the present invention for solving the above technical problem, a base fabric in the form of a band manufactured using a dielectric constant yarn; Gauze made of a yarn disposed on the base fabric and having conductive yarns or conductive particles dispersed therein; A polymer material disposed on the base fabric and covered by the gauze; And a sensing circuit that senses a change in resistance according to the change in volume when the volume changes as the acidity (ph) or temperature changes because the polymer material is wetted by a liquid containing body fluid.
일실시예에서, 전도사 또는 전도성 입자가 분산된 소재로 이루어지는 전극 물질은 체액 감응 고분자 소재 내에서 일정하게 배열된다. 일정한 배열은 등간격, 규칙적인 격자 배열 등을 포함하나, 이에 한정되지 않으며, 거즈의 직조 방식이나 소재에 따라 다양한 굴곡을 가질 수 있다. 다만, 어떠한 경우라도, 거즈의 전극 물질의 단위 면적당 평균 밀도나 분사량은 일정 이하의 편차를 가질 수 있다. 즉, 거즈의 전극 물질의 단위 면적당 평균 밀도나 분사량은 오차 범위 내에서 유의미하게 동일할 수 있다.In one embodiment, the electrode material made of a material in which conductive particles or conductive particles are dispersed is uniformly arranged in a body fluid-sensitive polymer material. The regular arrangement includes, but is not limited to, regular spacing, regular grid arrangement, and the like, and may have various bends depending on the gauze weaving method or material. However, in any case, the average density or injection amount per unit area of the electrode material of the gauze may have a deviation below a certain level. That is, the average density or injection amount per unit area of the electrode material of the gauze may be significantly the same within the error range.
일실시예에서, 상기 고분자 소재는 하이드로겔을 포함할 수 있다. 상기 하이드로겔의 평균 직경은 0.1㎜ 이상, 1㎜ 이하일 수 있다.In one embodiment, the polymer material may include a hydrogel. The hydrogel may have an average diameter of 0.1 mm or more and 1 mm or less.
일실시예에서, 상기 거즈는 상기 부피의 변화에 따른 상기 고분자 소재의 압박 변화에 따라 인접한 도전사들 또는 인접한 실들의 접촉량이 증가하는 밀도를 구비할 수 있다. 상기 거즈의 밀도는 덴시미터(densimeter)를 기준으로 상기 베이스 원단의 1/3보다 작고 직경 1㎝ 안에 10수 이하의 실을 구비할 수 있다.In one embodiment, the gauze may have a density in which the contact amount of adjacent conductive yarns or adjacent yarns increases according to a pressing change of the polymer material according to the change in volume. The density of the gauze is less than 1/3 of the base fabric on the basis of a densimeter and may have a number of threads of 10 or less in 1 cm in diameter.
일실시예에서, 상기 거스는 적어도 이중직 구조나 복수의 레이어가 중첩되는 다층 구조를 구비할 수 있다. 상기 거즈의 재질은 목면, 실크, 레이온 또는 이들의 조합일 수 있다.In one embodiment, the gus may have at least a double weave structure or a multi-layer structure in which a plurality of layers overlap. The material of the gauze may be cotton, silk, rayon or a combination thereof.
일실시예에서, 상기 베이스 원단의 길이는 20㎝보다 작고, 폭은 5㎝보다 작을 수 있다.In one embodiment, the length of the base fabric may be less than 20 cm and the width may be less than 5 cm.
일실시예에서, 상기 전도성 입자는 카본블랙, 카본나노뷰브, 금속입자, 금속 파이버, 그래핀 또는 이들의 조합을 포함할 수 있다.In one embodiment, the conductive particles may include carbon black, carbon nanobubbles, metal particles, metal fibers, graphene, or a combination thereof.
상기 기술적 과제를 해결하기 위한 본 발명의 다른 측면에 따른 밴드형 패브릭 센서의 제조방법은, 유전율 실을 이용하여 제조되고 배선을 구비하는 밴드 형태의 베이스 원단을 준비하는 단계; 상기 베이스 원단에 전자소자를 부착하고 상기 배선의 일단을 연결하는 단계; 전도사 또는 전도성 입자가 분산된 소재로 이루어지는 전극 물질이 평균적으로 균일하게 배열되는 거즈를 준비하는 단계; 상기 베이스 원단의 일면 중앙부를 포위하고 상기 배선의 타단에 연결되도록 상기 거즈의 가장자리의 일부분을 남기고 가장자리를 상기 베이스 원단에 접합하는 단계; 및 상기 거즈의 일부분을 통해 상기 중앙부에 체액을 포함한 액체에 의해 젖어 산도(ph) 또는 온도가 변함에 따라 부피가 변하는 고분자 소재를 삽입하고 상기 일부분을 막는 단계를 포함하며, 상기 전자소자의 센싱 회로는 상기 부피의 변화에 따른 저항 변화를 감지한다.A method of manufacturing a band-type fabric sensor according to another aspect of the present invention for solving the above technical problem comprises: preparing a base fabric in a band form manufactured using a dielectric constant yarn and having wiring; Attaching an electronic element to the base fabric and connecting one end of the wiring; Preparing gauze in which electrode materials made of a material in which conductive particles or conductive particles are dispersed are uniformly arranged on average; Joining an edge to the base fabric, leaving a portion of the edge of the gauze to surround the central portion of one surface of the base fabric and to be connected to the other end of the wiring; And inserting a polymer material whose volume changes as the acidity (ph) or temperature changes by being wetted by a liquid containing body fluid through the portion of the gauze and blocking the portion of the electronic device. Senses the change in resistance according to the change in volume.
일실시예에서, 상기 접합하는 단계는 상기 배선의 타단과 상기 전도사 또는 전도성 입자가 분산된 실이 전기적으로 서로 연결되도록 도전성 섬유로 꿰메고 핫멜트로 피복하는 과정을 포함할 수 있다.In one embodiment, the bonding step may include a process of stitching with a conductive fiber and coating with a hot melt so that the other end of the wiring and the yarn in which the conductive particles or conductive particles are dispersed are electrically connected to each other.
일실시예에서, 상기 센싱 회로는 영률(Young's modulus), 부피탄성률(bulk modulus) 또는 이들의 조합에 의해 저항 변화를 산출하도록 구현될 수 있다.In one embodiment, the sensing circuit may be implemented to calculate a resistance change by Young's modulus, bulk modulus, or a combination thereof.
전술한 밴드형 패브릭 센서 및 그 제조방법을 이용하면, 간단한 구성 및 소재로 피부에서 방출되는 체액에 감응하는 센서를 제조할 수 있으며 양산공정으로의 도입이 용이한 장점이 있다. 참고로, 피부에서 생체신호를 측정하는 종래 기술들은 소자 패키징, 탈부착, 양산공정 기술 개발에 어려움이 있었으나, 본 발명은 그러한 종래 기술들의 문제를 해결할 수 있다.Using the above-described band-type fabric sensor and its manufacturing method, it is possible to manufacture a sensor that responds to bodily fluids emitted from the skin with a simple configuration and material, and has an advantage of being easily introduced into a mass production process. For reference, prior art techniques for measuring a biosignal in the skin have had difficulties in device packaging, desorption, and mass production process technology development, but the present invention can solve the problems of such prior arts.
또한, 본 발명에 의하면, 건강관리 및 의료 분야에 폭넓게 적용가능할 수 있는 밴드형 패브릭 센서를 제공할 수 있으며, 특히 피부에서 측정가능한 생체 신호 측정 및 상처 치료, 상처 치료 과정의 지속적인 모니터링 등에 효과적으로 활용할 수 있는 장점이 있다.In addition, according to the present invention, it is possible to provide a band-type fabric sensor that can be widely applied to the health care and medical fields, and can be effectively utilized for measuring bio signals measurable in the skin and wound healing, continuous monitoring of the wound healing process There is an advantage.
도 1은 본 발명의 일실시예에 따른 밴드형 패브릭 센서에 대한 평면도이다.1 is a plan view of a band-type fabric sensor according to an embodiment of the present invention.
도 2는 도 1의 밴드형 패브릭 센서의 횡단면도이다.FIG. 2 is a cross-sectional view of the banded fabric sensor of FIG. 1.
도 3은 도 1의 밴드형 패브릭 센서에 사용할 수 있는 전도사 또는 전도성 입자가 분산된 소재에 대한 단면도이다.FIG. 3 is a cross-sectional view of a material in which conductive yarns or conductive particles are dispersed in the band-type fabric sensor of FIG. 1.
도 4는 도 1의 밴드형 패브릭 센서에 사용할 수 있는 전도사에 대한 부분 측면도이다.FIG. 4 is a partial side view of a conductive material that can be used in the band-type fabric sensor of FIG. 1.
도 5는 도 1의 밴드형 패브릭 센서에 사용할 수 있는 전자소자의 블록도이다.5 is a block diagram of an electronic device that can be used in the band-type fabric sensor of FIG. 1.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일실시예에 따른 밴드형 패브릭 센서에 대한 평면도이다. 도 2는 도 1의 밴드형 패브릭 센서의 횡단면도이다. 도 3은 도 1의 밴드형 패브릭 센서에 사용할 수 있는 전도사 또는 전도성 입자가 분산된 소재에 대한 단면도이다. 도 4는 도 1의 밴드형 패브릭 센서에 사용할 수 있는 전도사에 대한 부분 측면도이다. 도 5는 도 1의 밴드형 패브릭 센서에 사용할 수 있는 전자소자의 블록도이다.1 is a plan view of a band-type fabric sensor according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the banded fabric sensor of FIG. 1. FIG. 3 is a cross-sectional view of a material in which conductive yarns or conductive particles are dispersed in the band-type fabric sensor of FIG. 1. FIG. 4 is a partial side view of a conductive material that can be used in the band-type fabric sensor of FIG. 1. 5 is a block diagram of an electronic device that can be used in the band-type fabric sensor of FIG. 1.
본 실시예에 따른 밴드형 패브릭 센서는, 도 1에 도시한 바와 같이, 베이스 원단(10), 거즈(20), 고분자 소재(30) 및 전자소자(40)를 포함한다. 밴드형 패브릭 센서에서 거즈(20)와 전자소자(40)는 배선(50)을 통해 연결되고, 베이스 원단(10)의 일단부에는 접착 성분이 도포되어 있을 수 있다.The band-type fabric sensor according to this embodiment includes a base fabric 10, gauze 20, a polymer material 30, and an electronic device 40, as shown in FIG. 1. In the band-type fabric sensor, the gauze 20 and the electronic device 40 are connected through a wiring 50, and an adhesive component may be applied to one end of the base fabric 10.
베이스 원단(10)의 길이(L1)는 20㎝보다 작고, 폭(W1)은 5㎝보다 작을 수 있다. 이것은 통상의 밴드 형태에서 가장 큰 치수를 한정한 것이나, 용도에 따라 좀더 큰 사이즈의 베이스 원단(10)이 사용될 수도 있다.The length L1 of the base fabric 10 may be less than 20 cm and the width W1 may be less than 5 cm. This is to limit the largest dimension in a typical band form, but a larger size base fabric 10 may be used depending on the application.
베이스 원단(10)은 유전율 실을 이용하여 제조된다. 베이스 원단(10)은 전도사나 전도성 입자가 분산된 소재(실)을 사용하여 형성되는 배선(50)을 포함할 수 있다.The base fabric 10 is manufactured using a dielectric constant yarn. The base fabric 10 may include a wire 50 formed using a conductive yarn or a material (thread) in which conductive particles are dispersed.
거즈(20)는 베이스 원단(10)의 일면 상에 배치되고 전도사 또는 전도성 입자가 분산된 소재(실)로 이루어질 수 있다. 전도성 입자는 카본블랙, 카본나노뷰브, 금속입자, 금속 파이버, 그래핀 또는 이들의 조합을 포함할 수 있다. 본 실시예에서 용어 '거즈'는 직물의 일종으로 전도성 직물로 지칭될 수 있다.The gauze 20 may be disposed on one surface of the base fabric 10 and may be made of a material (thread) in which conductive yarns or conductive particles are dispersed. The conductive particles may include carbon black, carbon nanobubbles, metal particles, metal fibers, graphene, or a combination thereof. In this embodiment, the term'gauze' is a kind of fabric and may be referred to as a conductive fabric.
전도사 또는 전도성 입자가 분산된 소재로 이루어지는 전극 물질은 체액 감응 고분자 소재 내에서 일정하게 배열된다. 일정한 배열은 등간격, 규칙적인 격자 배열 등을 포함하나, 이에 한정되지 않으며, 거즈의 직조 방식이나 소재에 따라 다양한 굴곡을 가질 수 있다. 다만, 어떠한 경우라도, 거즈의 전극 물질의 단위 면적당 평균 밀도나 분사량은 일정 이하의 편차를 가질 수 있다. 즉, 거즈의 전극 물질의 단위 면적당 평균 밀도나 분사량은 오차 범위 내에서 유의미하게 동일할 수 있다.The electrode material made of a material in which conductive particles or conductive particles are dispersed is uniformly arranged in a body fluid-sensitive polymer material. The regular arrangement includes, but is not limited to, regular spacing, regular grid arrangement, and the like, and may have various bends depending on the gauze weaving method or material. However, in any case, the average density or injection amount per unit area of the electrode material of the gauze may have a deviation below a certain level. That is, the average density or injection amount per unit area of the electrode material of the gauze may be significantly the same within the error range.
또한, 거즈(20)는 고분자 소재(30)의 부피의 변화에 따른 고분자 소재(30)의 압박 변화에 따라 인접한 도전사들 또는 인접한 실들의 접촉량이 증가하는 밀도를 구비하도록 제조될 수 있다. 거즈(20)의 밀도는 덴시미터(densimeter)를 기준으로 베이스 원단(10)의 1/3보다 작고 직경 1㎝ 안에 10수 이하의 실을 구비할 수 있다.In addition, the gauze 20 may be manufactured to have a density in which the contact amount of adjacent conductive yarns or adjacent yarns increases according to a pressing change of the polymer material 30 according to a change in the volume of the polymer material 30. The density of the gauze 20 is smaller than 1/3 of the base fabric 10 based on a densimeter and may have a number of threads of 10 or less in 1 cm in diameter.
또한, 거즈(20)는 적어도 이중직 구조나 복수의 레이어들(21, 22, 23)이 중첩되는 다층 구조를 구비할 수 있다(도 2 참조). 거즈(20)의 재질은 목면, 실크, 레이온 또는 이들의 조합일 수 있다.In addition, the gauze 20 may be provided with a multilayer structure in which at least a double weave structure or a plurality of layers 21, 22, and 23 are overlapped (see FIG. 2). The material of the gauze 20 may be cotton, silk, rayon, or a combination thereof.
또한, 거즈(20)에 포함되는 도전사 또는 도전성 입자가 분산된 실(210)은 도 3에 도시한 바와 같이 유전율 실(211)이나 탄소섬유의 표면에 바인더(212)에 의한 탄소나노튜브나 그래핀(213)의 분산을 포함할 수 있다. 또한, 상기 실(210)(이하, 도전성 섬유라고도 함)은 바인더(212)에 의해 탄소나노튜브나 그래핀(213)과 함께 분산되는 첨가재(214)를 더 구비할 수 있다. 첨가재(214)는 흑연 분말을 포함할 수 있다.In addition, the yarn 210 in which conductive yarns or conductive particles contained in the gauze 20 are dispersed is carbon nanotubes or graphene formed by a binder 212 on the surface of the dielectric fiber yarn 211 or carbon fiber as shown in FIG. 3. And dispersion of the fins 213. In addition, the seal 210 (hereinafter, also referred to as a conductive fiber) may further include an additive 214 dispersed with the carbon nanotubes or graphene 213 by the binder 212. The additive 214 may include graphite powder.
또한, 거즈(20)에 포함되는 도전사(220)는 도 4에 도시한 바와 같이 유전율 실(211)과 도전성 섬유(210)가 꼬여져 멀티필라멘트 형태를 구비할 수 있다.In addition, the conductive yarn 220 included in the gauze 20 may have a multifilament form by twisting the dielectric constant yarn 211 and the conductive fiber 210 as illustrated in FIG. 4.
다시 도 1 및 도 2을 참조하면, 고분자 소재(30)는 베이스 원단(10)의 일면 중앙부에 배치되고 거즈(20)에 의해 덮힐 수 있다. 고분자 소재(30)는 고분자 소재가 체액을 포함한 액체에 의해 젖어 산도(ph) 또는 온도가 변함에 따라 부피가 변한다.Referring back to FIGS. 1 and 2, the polymer material 30 is disposed at the center of one surface of the base fabric 10 and may be covered by gauze 20. The polymer material 30 changes in volume as the acidity (ph) or temperature changes as the polymer material is wetted by a liquid containing body fluids.
고분자 소재(30)는 하이드로겔을 포함할 수 있다. 고분자 소재(30)는 구 형상을 구비할 수 있으며, 그 평균 직경은 0.1㎜ 이상, 1㎜ 이하일 수 있다.The polymer material 30 may include a hydrogel. The polymer material 30 may have a spherical shape, and may have an average diameter of 0.1 mm or more and 1 mm or less.
전자소자(40)는 고분자 소재(30)의 부피의 변화에 따른 저항 변화를 감지한다. 전자소자(40)는 센싱 회로를 포함하거나 센싱 회로에 대응될 수 있다. 전자소자(40)는 배선(50)을 통해 거즈(20)의 양단에 소정의 전압을 인가하는 전원부를 포함할 수 있다. 전자소자(40)는 반도체 칩이나 모듈 구조나 형태를 가질 수 있다. 전자소자(40)는 FPGA(field programmable gate array), ASIC(Application Specific Integrated Circuit) 등과 같은 하드웨어 구성요소를 포함할 수 있다.The electronic device 40 detects a change in resistance according to a change in volume of the polymer material 30. The electronic device 40 may include a sensing circuit or may correspond to the sensing circuit. The electronic device 40 may include a power supply unit that applies a predetermined voltage to both ends of the gauze 20 through the wiring 50. The electronic device 40 may have a semiconductor chip or module structure or form. The electronic device 40 may include hardware components such as a field programmable gate array (FPGA) and an application specific integrated circuit (ASIC).
전자소자(40)는 도 5에 도시한 바와 같이 전원부(미도시), 신호감지부(42), 비교부(44), 생체신호 처리부(46) 및 출력부(48)를 구비할 수 있다. 전원부는 배선(50)을 통해 거즈(20)의 도전사나 도전성 섬유의 양측 단자부들에 소정 전압을 인가할 수 있다. 전원부는 배터리, 압전 발전기, 열전지 등을 포함할 수 있으며, 압전 발전기와 열전지는 탄소섬유를 이용하여 제작될 수 있다.The electronic device 40 may include a power supply unit (not shown), a signal detection unit 42, a comparison unit 44, a biosignal processing unit 46, and an output unit 48 as shown in FIG. 5. The power supply unit may apply a predetermined voltage to both the conductive yarns of the gauze 20 and the terminal portions of both sides of the conductive fiber through the wiring 50. The power supply unit may include a battery, a piezoelectric generator, a thermal battery, and the like, and the piezoelectric generator and the thermal battery may be manufactured using carbon fiber.
신호감지부(42)는 전원부와 거즈(20) 사이에 연결되고 거즈(20)로 덮힌 고분자 소재(30)의 부피 변화에 따른 물리량(저항 등)을 감지한다. 신호감지부(42)는 부피 변화에 따른 물리양을 증폭하는 신호증폭부를 구비할 수 있다. 신호감지부(42)의 입력단은 전자소자(40)의 입력부로서 신호증폭부의 입력단들 중 적어도 어느 하나에 대응될 수 있다.The signal detection unit 42 is connected between the power supply unit and the gauze 20 and detects a physical quantity (resistance, etc.) according to the volume change of the polymer material 30 covered with the gauze 20. The signal detection unit 42 may include a signal amplification unit for amplifying a physical quantity according to a volume change. The input terminal of the signal detection unit 42 is an input unit of the electronic device 40 and may correspond to at least one of the input terminals of the signal amplification unit.
비교부(44)는 신호감지부(42)의 출력신호를 기준신호 또는 기준레벨과 비교한다. The comparison unit 44 compares the output signal of the signal detection unit 42 with a reference signal or a reference level.
생체신호 처리부(46)는 감지신호 중 비교부(44)를 통해 판단된 신호에 기초하여 미리 설정된 생체신호를 감지할 수 있다. 이러한 생체신호를 이용하면, 상처 치료, 상처 치료 과정의 지속적인 모니터링 등을 수행할 수 있다.The bio-signal processing unit 46 may detect a preset bio-signal based on the signal determined through the comparison unit 44 among the detection signals. Using such a biosignal, it is possible to perform wound treatment, continuous monitoring of the wound treatment process, and the like.
또한, 전자소자(40)는 신호감지부(42)에서 감지되는 감지신호나 이에 대응하는 생체신호를 출력하는 출력부(48)를 구비할 수 있다. 출력부(48)는 커넥터, 통신서브시스템의 안테나, 표시장치 등을 포함할 수 있다. 통신서브시스템은 무선 통신을 위한 통신 모듈을 포함할 수 있고, 무선 통신은 근거리 무선통신, 이동통신 등을 포함할 수 있다.In addition, the electronic device 40 may include an output unit 48 for outputting a sensing signal sensed by the signal sensing unit 42 or a biosignal corresponding thereto. The output unit 48 may include a connector, an antenna of a communication subsystem, a display device, and the like. The communication sub-system may include a communication module for wireless communication, and the wireless communication may include short-range wireless communication, mobile communication, and the like.
커넥터는 기존의 다양한 형태들 중 적어도 어느 하나를 선택하여 채용될 수 있다. 커넥터는 USB(universal serial bus)를 포함할 수 있다. 커넥터, 통신서브시스템 등을 이용하면, 스마트폰 등의 휴대 단말을 연결하여 휴대 단말에 탑재된 애플리케이션을 통해 생체 신호나 상처 치료 과정 등을 화면에 표시하는 것이 가능하다. 물론, 생체신호는 헬스케어 서버 등으로 전송되어 개인 건강관리를 모니터링하는데 이용될 수 있다.The connector may be employed by selecting at least one of various existing shapes. The connector may include a universal serial bus (USB). When a connector, a communication subsystem, or the like is used, it is possible to connect a mobile terminal such as a smartphone and display a biosignal or a wound healing process on the screen through an application mounted on the mobile terminal. Of course, the bio-signals can be transmitted to a healthcare server or the like and used to monitor personal health care.
출력부는 커넥터나 통신서브시스템에 더하여 추가로 포함하거나 이것을 대체하는 표시소자로 구현될 수 있으며, 그 경우 액정표시장치(LED) 등에 의해 감지된 생체신호를 미리 정해진 숫자나 문자 형태로 표시하도록 구현될 수 있다.The output unit may be embodied in addition to a connector or a communication subsystem, or implemented as a display element to replace it. In this case, the output unit may be implemented to display a biosignal detected by a liquid crystal display (LED) in a predetermined number or character form Can.
전술한 본 실시예에 따른 밴드형 패브릭 센서의 제조방법은, 먼저 유전율 실을 이용하여 제조되고 배선을 구비하는 밴드 형태의 베이스 원단을 준비할 수 있다. 그런 다음, 베이스 원단에 전자소자를 부착하고 배선의 일단을 연결할 수 있다.The manufacturing method of the band-type fabric sensor according to the present embodiment described above may be prepared using a dielectric constant yarn and may prepare a band-shaped base fabric having wiring. Then, an electronic device can be attached to the base fabric and one end of the wiring can be connected.
다음, 전도사 또는 전도성 입자가 분산된 소재로 이루어지는 전극 물질이 평균적으로 균일하게 배열되는 거즈를 준비할 수 있다.Next, gauze in which electrode materials made of a material in which conductive particles or conductive particles are dispersed are uniformly arranged on average may be prepared.
다음, 베이스 원단의 일면 중앙부를 포위하고 배선의 타단에 연결되도록 거즈의 가장자리의 일부분을 남기고 거즈의 나머지 가장자리를 베이스 원단에 접합할 수 있다.Next, a part of the edge of the gauze may be left behind and the other edge of the gauze may be bonded to the base fabric, surrounding the central portion of one surface of the base fabric and connecting to the other end of the wiring.
그리고, 상기 중앙부에 체액을 포함한 액체에 의해 젖어 산도(ph) 또는 온도가 변함에 따라 부피가 변하는 고분자 소재를 상기 거즈의 일부분을 통해 삽입하고 상기 일부분을 막을 수 있다.In addition, a polymer material whose volume changes as the acidity (ph) or temperature changes due to wetness with a liquid containing body fluid in the central portion may be inserted through a portion of the gauze and block the portion.
다음, 상기 전자소자의 센싱 회로는 고분자 소재의 부피 변화에 따른 저항 변화를 감지할 수 있다. 센싱 회로는 영률(Young's modulus), 부피탄성률(bulk modulus) 또는 이들의 조합에 의해 저항 변화를 산출하도록 구현될 수 있다.Next, the sensing circuit of the electronic device can detect a change in resistance according to a change in volume of the polymer material. The sensing circuit may be implemented to calculate a resistance change by Young's modulus, bulk modulus, or a combination thereof.
상기 접합하는 단계는 배선의 타단과 전도사 또는 전도성 입자가 분산된 소재(실)가 전기적으로 서로 연결되도록 도전성 섬유로 꿰메고 핫멜트로 피복하는 과정을 포함할 수 있다. 물론, 구현에 따라서 박음질에 의한 연결 구조를 사용할 수 있다.The bonding may include a process in which the other end of the wiring and the material (thread) in which the conductive yarns or conductive particles are dispersed are electrically connected to each other and sewn with a conductive fiber and coated with a hot melt. Of course, depending on the implementation, a connection structure by lockstitch can be used.
한편, 전술한 실시예에서는 길이방향의 길이가 폭 방향의 길이에 비해 대략 4배 정도 큰 형태를 예시하여 설명하였지만, 본 발명은 그러한 구성으로 한정되지 않고, 다른 사이즈의 사각형이나 정사각형, 삼각형, 원형, 반달형, 별모양 등 다양한 모양을 구비하도록 구현될 수 있다.On the other hand, in the above-described embodiment, the length in the longitudinal direction is illustrated by exemplifying a shape approximately 4 times larger than the length in the width direction, but the present invention is not limited to such a configuration, and other sizes of squares, squares, triangles, and circles , It can be implemented to have a variety of shapes, such as a half moon, star shape.
본 발명은 도면에 도시된 실시 예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 청구범위에 의해서 정하여져야 할 것이다.The present invention has been described with reference to the embodiment shown in the drawings, but this is only exemplary, and those skilled in the art to which the art belongs can various modifications and equivalent other embodiments from this. Will understand. Therefore, the technical protection scope of the present invention should be defined by the claims.
[과제고유번호] IZ180001 / [부처명] 정부 및 지자체 (경기도) / [연구관리전문기관] 정부 및 지자체 (경기도) / [연구사업명] 지방자치단체 수탁연구 세부사업: 용역 및 연구개발 / [연구과제명] 지능형 전자섬유 기반 스마트 텍스트로닉스 개발 / [기여율] 100% / [주관기관] 한국생산기술연구원 / [연구기간] 2017. 01. 01 ~ 2021. 12. 31[Project identification number] IZ180001 / [Ministry name] Government and local governments (Gyeonggi-do) / [Research management agency] Government and local governments (Gyeonggi-do) / [Research project name] Local government consignment research sub-project: Service and R&D / [Research project Name] Development of smart textronics based on intelligent electronic fiber / [Contribution rate] 100% / [Host organization] Korea Institute of Industrial Technology / [Research period] 2017. 01. 01 ~ 2021. 12. 31
[과제고유번호] JA180002 / [부처명] 정부 및 지자체 (경기도) / [연구관리전문기관] 정부 및 지자체 (경기도) / [연구사업명] 지방자치단체 수탁연구 세부사업: 용역 및 연구개발 / [연구과제명] 지능형 전자섬유 기반 스마트 텍스트로닉스 개발 / [기여율] 100% / [주관기관] 한국생산기술연구원 / [연구기간] 2017. 01. 01 ~ 2021. 12. 31[Task identification number] JA180002 / [Ministry name] Government and local governments (Gyeonggi-do) / [Research management agency] Government and local governments (Gyeonggi-do) / [Research project name] Local government consignment research detailed project: Service and R&D / [Research project Name] Development of smart textronics based on intelligent electronic fiber / [Contribution rate] 100% / [Host organization] Korea Institute of Industrial Technology / [Research period] 2017. 01. 01 ~ 2021. 12. 31

Claims (11)

  1. 유전율 실을 이용하여 제조되는 밴드 형태의 베이스 원단;A band-shaped base fabric manufactured using a dielectric constant yarn;
    상기 베이스 원단 상에 배치되고 전도사 또는 전도성 입자가 분산된 실로 이루어지는 거즈;Gauze made of a yarn disposed on the base fabric and having conductive yarns or conductive particles dispersed therein;
    상기 베이스 원단 상에 배치되고 상기 거즈에 의해 덮히는 고분자 소재; 및A polymer material disposed on the base fabric and covered by the gauze; And
    상기 고분자 소재가 체액을 포함한 액체에 의해 젖어 산도(ph) 또는 온도가 변함에 따라 부피가 변할 때, 상기 부피의 변화에 따른 저항 변화를 감지하는 센싱 회로를 포함하는 밴드형 패브릭 센서.A band-type fabric sensor comprising a sensing circuit that senses a change in resistance according to a change in volume when the volume changes as the acidity (ph) or temperature changes as the polymer material becomes wet by a liquid containing body fluid.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 고분자 소재는 하이드로겔을 포함하는, 밴드형 패브릭 센서.The polymer material comprises a hydrogel, band-type fabric sensor.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 하이드로겔의 평균 직경은 0.1㎜ 이상, 1㎜ 이하인, 밴드형 패브릭 센서.The average diameter of the hydrogel is 0.1 mm or more, 1 mm or less, band-type fabric sensor.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 거즈는 상기 부피의 변화에 따른 상기 고분자 소재의 압박 변화에 따라 인접한 도전사들 또는 인접한 실들의 접촉량이 증가하는 밀도를 구비하는, 밴드형 패브릭 센서.The gauze has a density in which the contact amount of adjacent conductive yarns or adjacent yarns increases according to a change in pressure of the polymer material according to a change in the volume, a band-type fabric sensor.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 거즈의 밀도는 밀도계(densimeter) 기준으로 상기 베이스 원단의 1/3보다 작고 직경 1㎝ 안에 10수 이하의 실을 구비하는, 밴드형 패브릭 센서.The density of the gauze is less than 1/3 of the base fabric on a densimeter basis, and a band-type fabric sensor having a number of threads of 10 or less in 1 cm in diameter.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 거스는 적어도 이중직 구조, 복수의 레이어가 중첩되는 2층 이상의 복층 구조, 트윌 구조 또는 이중직 구조를 구비하는, 밴드형 패브릭 센서.The guss has at least a double-woven structure, a multi-layered structure of two or more layers in which a plurality of layers overlap, a twill structure or a double-woven structure, a band type fabric sensor.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 거즈의 재질은 목면, 실크, 레이온 또는 이들의 조합인, 밴드형 패브릭 센서.The material of the gauze is cotton, silk, rayon or a combination thereof, a band-type fabric sensor.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 베이스 원단의 길이는 20㎝보다 작고, 폭은 5㎝보다 작은, 밴드형 패브릭 센서.The length of the base fabric is less than 20 cm, the width is less than 5 cm, band-type fabric sensor.
  9. 청구항 1에 있어서,The method according to claim 1,
    상기 전도성 입자는 카본블랙, 카본나노뷰브, 금속입자, 금속 파이버, 그래핀 또는 이들의 조합을 포함하는, 밴드형 패브릭 센서.The conductive particles include carbon black, carbon nanobubbles, metal particles, metal fibers, graphene, or a combination thereof, a band-type fabric sensor.
  10. 유전율 실을 이용하여 제조되고 배선을 구비하는 밴드 형태의 베이스 원단을 준비하는 단계;Preparing a base fabric in the form of a band manufactured using a dielectric constant yarn and having wiring;
    상기 베이스 원단에 전자소자를 부착하고 상기 배선의 일단을 연결하는 단계;Attaching an electronic element to the base fabric and connecting one end of the wiring;
    전도사 또는 전도성 입자가 분산된 소재로 이루어지는 전극 물질이 평균적으로 균일하게 배열되는 거즈를 준비하는 단계;Preparing gauze in which electrode materials made of a material in which conductive particles or conductive particles are dispersed are uniformly arranged on average;
    상기 베이스 원단의 일면 중앙부를 포위하고 상기 배선의 타단에 연결되도록 상기 거즈의 가장자리의 일부분을 남기고 가장자리를 상기 베이스 원단에 접합하는 단계; 및Joining an edge to the base fabric, leaving a portion of the edge of the gauze to surround the central portion of one surface of the base fabric and to be connected to the other end of the wiring; And
    상기 거즈의 일부분을 통해 상기 중앙부에 체액을 포함한 액체에 의해 젖어 산도(ph) 또는 온도가 변함에 따라 부피가 변하는 고분자 소재를 삽입하고 상기 일부분을 막는 단계를 포함하며,And inserting a polymer material whose volume changes as the acidity (ph) or temperature changes by being wetted by a liquid containing body fluid through the portion of the gauze and blocking the portion,
    상기 전자소자의 센싱 회로는 상기 부피의 변화에 따른 저항 변화를 감지하는, 밴드형 패브릭 센서의 제조 방법.The sensing circuit of the electronic device detects a change in resistance according to the change in volume, a method of manufacturing a band-type fabric sensor.
  11. 청구항 10에 있어서,The method according to claim 10,
    상기 접합하는 단계는 상기 배선의 타단과 상기 전도사 또는 전도성 입자가 분산된 소재가 전기적으로 서로 연결되도록 도전성 소재로 꿰메고 핫멜트로 피복하는, 밴드형 패브릭 센서의 제조 방법.The bonding step is a method of manufacturing a band-type fabric sensor, wherein the other end of the wiring and the material in which the conductive yarn or conductive particles are dispersed are electrically connected to each other and sewn with a conductive material and coated with a hot melt.
PCT/KR2018/016871 2018-12-28 2018-12-28 Band type fabric sensor and manufacturing method therefor WO2020138563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/016871 WO2020138563A1 (en) 2018-12-28 2018-12-28 Band type fabric sensor and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/016871 WO2020138563A1 (en) 2018-12-28 2018-12-28 Band type fabric sensor and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2020138563A1 true WO2020138563A1 (en) 2020-07-02

Family

ID=71129805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016871 WO2020138563A1 (en) 2018-12-28 2018-12-28 Band type fabric sensor and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2020138563A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101612121B1 (en) * 2015-12-28 2016-04-27 한국생산기술연구원 Wearable band
KR20160081245A (en) * 2014-12-31 2016-07-08 한국패션산업연구원 Three-dimensional type fabric sensor capable of vital-sign measurement and pressure measurement
JP2016533227A (en) * 2013-10-18 2016-10-27 ユニバーシティ・オブ・シンシナティ Sweat perception with a guarantee over time
KR20170008461A (en) * 2015-07-14 2017-01-24 상명대학교 천안산학협력단 Bio signal monitoring system using embroidery textile electrode and Smart wear having the same
KR20190057804A (en) * 2017-11-20 2019-05-29 한국생산기술연구원 Band type febric sensor and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016533227A (en) * 2013-10-18 2016-10-27 ユニバーシティ・オブ・シンシナティ Sweat perception with a guarantee over time
KR20160081245A (en) * 2014-12-31 2016-07-08 한국패션산업연구원 Three-dimensional type fabric sensor capable of vital-sign measurement and pressure measurement
KR20170008461A (en) * 2015-07-14 2017-01-24 상명대학교 천안산학협력단 Bio signal monitoring system using embroidery textile electrode and Smart wear having the same
KR101612121B1 (en) * 2015-12-28 2016-04-27 한국생산기술연구원 Wearable band
KR20190057804A (en) * 2017-11-20 2019-05-29 한국생산기술연구원 Band type febric sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CA2944323C (en) Connector and cable assembly for smart garments
US9833160B2 (en) High impedance signal detection systems and methods for use in electrocardiogram detection systems
CN103025365B (en) With the equipment for the path that monitors patient associated with for detecting the equipment of humidity
CN108348675A (en) Apparatus for testing weeping for medical instrument
JP3150673U (en) Wearable physiological signal measuring device capable of preventing interference
CN101960299A (en) Sensor for humidity and management system therefor
US20120143032A1 (en) Sensor web device for measuring electromyographic signals
KR102044605B1 (en) Band type febric sensor and manufacturing method thereof
JP6812033B2 (en) Electrode belt device for measuring biological signals
WO2017059831A1 (en) Sensory system for the electronic detection of body fluids in a diaper
KR101322838B1 (en) The method of manufacturing piezoelectric sensor having carbon black
TWI786197B (en) Connectors for personal hygiene product with a digital element
TW201540256A (en) Array network sensing system for sensing body surface physiological signal
JP2023169177A (en) Data logger unit, sensor unit, absorbent article management system, and identification method
WO2020138563A1 (en) Band type fabric sensor and manufacturing method therefor
KR20190057813A (en) Fabric Pressure Sensor
US11698384B2 (en) System and method for monitoring body movement
CN110123525A (en) A kind of pressure bandage based on diaphragm pressure sensor
JP2017020817A (en) Liquid detection sensor
CN209916006U (en) Motion gesture monitor
Lou et al. Development and characteristic study of woven fabrics for intelligent diapers
WO2022203164A1 (en) Wearable bedsore detection sensor, and bedsore detection system comprising same
KR20190057811A (en) Stretchable temperature sensor using carbon nanotube sheets and manufacturing method thereof
KR20220049105A (en) Bio-electrode device and method for manufacturing the same
KR102683403B1 (en) Bio-electrode device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18945068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18945068

Country of ref document: EP

Kind code of ref document: A1