WO2020138109A1 - Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element - Google Patents

Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2020138109A1
WO2020138109A1 PCT/JP2019/050687 JP2019050687W WO2020138109A1 WO 2020138109 A1 WO2020138109 A1 WO 2020138109A1 JP 2019050687 W JP2019050687 W JP 2019050687W WO 2020138109 A1 WO2020138109 A1 WO 2020138109A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal alignment
group
treatment agent
alignment treatment
Prior art date
Application number
PCT/JP2019/050687
Other languages
French (fr)
Japanese (ja)
Inventor
加名子 鈴木
雅章 片山
真文 高橋
保坂 和義
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN201980086391.4A priority Critical patent/CN113260910A/en
Priority to JP2020563321A priority patent/JP7392663B2/en
Priority to KR1020217019557A priority patent/KR20210108962A/en
Publication of WO2020138109A1 publication Critical patent/WO2020138109A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent used for manufacturing a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element using the liquid crystal alignment film.
  • a film made of an organic material such as a polymer material is widely used as an interlayer insulating film, a protective film, etc. in electronic devices, because of its ease of formation and insulating performance.
  • an organic film made of polyimide is used as a liquid crystal alignment film.
  • the liquid crystal alignment film is used to control the alignment state of the liquid crystal.
  • it is required to reduce the contrast of the liquid crystal display elements and suppress display defects due to long-term use.
  • liquid crystal display devices have been used for mobile applications such as smartphones and mobile phones.
  • mobile applications such as smartphones and mobile phones.
  • the drawing position of the sealant is at a position in contact with the end of the liquid crystal alignment film, which has weak adhesion to the sealant, or at the upper part of the liquid crystal alignment film. Therefore, in recent years, the adhesion between the substrates of the liquid crystal display element has become weaker than in the past.
  • the present invention is excellent in storage stability of the liquid crystal alignment treatment agent, has high adhesiveness (also referred to as adhesiveness) between the substrates of the liquid crystal display element, and is further exposed to high temperature and high humidity for a long time. It is an object of the present invention to provide a liquid crystal alignment film capable of suppressing the generation of bubbles in the liquid crystal display element and the peeling of the element even under such an environment. In addition, another object is to provide a liquid crystal display device having the above liquid crystal alignment film and a liquid crystal alignment treatment agent capable of producing the above liquid crystal alignment film.
  • the present inventor has completed the present invention having the following points. That is, it is a liquid crystal alignment treatment agent containing a compound having a group represented by the following formula [1] (also referred to as a specific compound). (* represents a binding site with another structure.)
  • the liquid crystal alignment treatment agent of the present invention is excellent in storage stability, has high adhesiveness between substrates of a liquid crystal display element, and further, even in an environment exposed to high temperature and high humidity for a long time, bubbles in the liquid crystal display element It is possible to provide a liquid crystal alignment film capable of suppressing generation and peeling of elements.
  • a liquid crystal display device having the above liquid crystal alignment film and a liquid crystal alignment treatment agent capable of producing the above liquid crystal alignment film can be provided. Therefore, the liquid crystal display element of the present invention is used for a liquid crystal display element such as a smartphone or a mobile phone.
  • SS disulfide bond
  • the liquid crystal display device can suppress the generation of bubbles and the peeling of the device.
  • the specific compound is a compound having a group represented by the above formula [1].
  • a compound represented by the following formula [1a] can be mentioned.
  • X 1 is selected from the group consisting of the following formulas [1-a] to [1-k].
  • T A represents an alkyl group having 1 to 3 carbon atoms.
  • the formula [1-b], the formula [1-c] or the formula [1-d] is preferable.
  • X 2 represents a single bond or an organic group having 1 to 18 carbon atoms. Of these, a single bond or an organic group having 1 to 6 carbon atoms is preferable.
  • X 3 represents a group represented by the above formula [1].
  • Specific preferred examples of the specific compound include compounds represented by the following formula [1-1a], and it is preferable to use these.
  • the specific compound is used in an amount of 0.1 to 30 parts by mass based on 100 parts by mass of all the polymers contained in the liquid crystal alignment treatment agent.
  • the amount is preferably 0.5 part by mass, more preferably 0.5 to 20 parts by mass, and most preferably 1 to 15 parts by mass.
  • the specific compound may be used alone or in combination of two or more depending on each characteristic.
  • the polymer contained in the liquid crystal alignment treatment agent is preferably a polymer having a functional group capable of reacting with the specific compound.
  • the functional group capable of reacting is a concept that includes a functional group capable of forming a covalent bond at room temperature as well as a functional group capable of potentially forming a covalent bond. Examples of such a functional group include heating and/or electromagnetic waves.
  • the functional group capable of reacting include a carboxyl group, an amino group, a (meth)acrylic group, an acid anhydride group, a phenol group, a hydroxyl group, a silanol group, an imide group, an ester group, an amide group, and a urea group. ..
  • the polymer having a functional group capable of reacting with the specific compound is at least selected from the group consisting of acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose, and polysiloxane.
  • One kind is preferable. More preferably, it is a polyimide precursor or polyimide.
  • a polyimide precursor or a polyimide (collectively referred to as a polyimide-based polymer) is used as the polymer, they are a polyimide precursor obtained by reacting a diamine component and a tetracarboxylic acid component or the polyimide.
  • a polyimide obtained by imidizing a precursor is preferable.
  • the polyimide precursor preferably has a structure represented by the following formula [A].
  • R 1 represents a tetravalent organic group.
  • R 2 represents a divalent organic group.
  • a 1 and A 2 each represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • a 3 and A 4 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acetyl group.
  • n represents a positive integer.
  • the diamine component may be a diamine having two primary or secondary amino groups in the molecule.
  • the tetracarboxylic acid component include a tetracarboxylic acid compound, a tetracarboxylic acid dianhydride, a tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound, and a tetracarboxylic acid dialkyl ester dihalide compound.
  • a polyimide-based polymer can be obtained relatively easily by using a tetracarboxylic acid dianhydride of the following formula [B] and a diamine of the following formula [C] as a raw material, so that the following formula [D]
  • a polyamic acid having a structural formula of a repeating unit or a polyimide obtained by imidizing the polyamic acid is preferable.
  • the diamine component for producing the polyimide polymer is not particularly limited. Specifically, the diamine compounds of the formulas [3a-1] to [3a-5] described on pages 34 to 38 of WO 2016/076412 and pages 39 to 42 of the publication. Other examples include diamine compounds and the diamine compounds of the formulas [DA1] to [DA15] described on pages 42 to 44 of the publication. These diamine components may be used either individually or in combination of two or more, depending on the characteristics.
  • the tetracarboxylic acid component for producing the polyimide polymer is not particularly limited. Specifically, the tetracarboxylic dianhydride of the formula [4] described on pages 44 to 45 of International Publication WO2016/076412 and the other tetracarboxylic acid components described on pages 45 to 46 are Can be mentioned. These tetracarboxylic acid components may be used either individually or in combination of two or more, depending on the characteristics.
  • the method for synthesizing the polyimide polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Specific examples thereof include the methods described on pages 46 to 50 of International Publication WO2016/076412.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually performed in a solvent containing the diamine component and the tetracarboxylic acid component.
  • the solvent used at that time is not particularly limited as long as it can dissolve the generated polyimide precursor.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, ⁇ -butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinium Non is included.
  • the polyimide precursor has high solvent solubility, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or a solvent represented by the following formula [D1] to [D3] is used. it can.
  • D 1 and D 2 represent an alkyl group having 1 to 3 carbon atoms.
  • D 3 represents an alkyl group having 1 to 4 carbon atoms.
  • these may be used alone or as a mixture. Further, even a solvent that does not dissolve the polyimide precursor may be used by mixing with the above-mentioned solvent as long as the generated polyimide precursor does not precipitate. Further, since water in the organic solvent inhibits the polymerization reaction and causes hydrolysis of the generated polyimide precursor, it is preferable to use dehydrated and dried organic solvent.
  • the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2 when the total number of moles of the diamine component is 1.0.
  • the polymer has an amino group structure at the terminal.
  • the polymer end When it is greater than 0, that is, when the total number of moles of the tetracarboxylic acid component is greater than the number of moles of the diamine component, the polymer end has a carboxylic acid anhydride or dicarboxylic acid structure.
  • the effect of the specific compound that is, the effect of enhancing the adhesiveness between the liquid crystal alignment film of the liquid crystal display element and the metal electrode becomes higher, so that the total number of moles of the tetracarboxylic acid component is more than 1.0.
  • the total number of moles of the tetracarboxylic acid component is larger than that of the diamine component.
  • the total number of moles of the diamine component is 1.0
  • the total number of moles of the tetracarboxylic acid component is preferably 1.05 to 1.20.
  • Polyimide is obtained by ring-closing a polyimide precursor.
  • the polyimide does not necessarily have a ring closure rate (also referred to as an imidization rate) of an amic acid group of 100%, and can be arbitrarily prepared according to the application or purpose. Among them, 30 to 80% is preferable from the viewpoint of the solubility of the polyimide polymer in the solvent. More preferably, it is 40 to 70%.
  • the molecular weight of the polyimide-based polymer is 5 in terms of weight average molecular weight measured by GPC (Gel Permeation Chromatography) method in consideration of the strength of the liquid crystal alignment film obtained therefrom, workability in forming the liquid crystal alignment film, and coating property. It is preferably from 1,000 to 1,000,000, and more preferably from 10,000 to 150,000.
  • the liquid crystal alignment treatment agent is a solution for forming a liquid crystal alignment film, and is a solution containing a specific compound, a polymer and a solvent. In that case, two or more types can be used for each of a specific compound and a polymer.
  • the content of the solvent in the liquid crystal alignment treatment agent can be appropriately selected from the viewpoint of applying the liquid crystal alignment treatment agent and obtaining a target film thickness. Among them, the content of the solvent in the liquid crystal alignment treatment agent is preferably 50 to 99.9 mass% from the viewpoint of forming a uniform liquid crystal alignment film by coating. Among them, 60 to 99 mass% is preferable. More preferably, it is 65 to 99% by mass.
  • the solvent used for the liquid crystal alignment treatment agent is not particularly limited as long as it is a solvent that dissolves the specific compound and the polymer.
  • the polymer is a polyimide precursor, polyimide, polyamide or polyester, or when the solubility of the acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, cellulose or polysiloxane in the solvent is low, It is preferable to use a solvent (also referred to as a solvent A).
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone is preferable. Moreover, these may be used individually or may be mixed and used.
  • the polymer is an acrylic polymer, a methacrylic polymer, a novolac resin, polyhydroxystyrene, cellulose or polysiloxane, further, the polymer is a polyimide precursor, polyimide, polyamide or polyester, the solvent of these polymers When the solubility is high, the following solvent (also referred to as solvent B) can be used.
  • solvent Bs include the solvent Bs described on pages 58 to 60 of International Publication WO2014/171493.
  • 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, cyclohexanone, cyclopentanone or the above formula [D1] To Formula [D3] are preferred.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone of the above-mentioned solvent A is used in combination for the purpose of improving the coating property of the liquid crystal alignment treatment agent. It is preferable to use. Since these solvents B can enhance the coating property and surface smoothness of the liquid crystal alignment film when applying the liquid crystal alignment treatment agent, when a polyimide precursor, polyimide, polyamide or polyester is used as the polymer, It is preferable to use it in combination with the above solvents A. At that time, the amount of the solvent B is preferably 1 to 99% by mass of the whole solvent contained in the liquid crystal alignment treatment agent. Among them, 10 to 99 mass% is preferable. More preferably, it is 20 to 95% by mass.
  • the liquid crystal alignment treatment agent includes a compound having an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxy group, a hydroxyalkyl group or a lower alkoxyalkyl group (collectively, a crosslinker in order to enhance the film strength of the liquid crystal alignment film It is also preferable to introduce a compound). In that case, it is necessary to have two or more groups in the compound.
  • the liquid crystal alignment treatment agent is a group selected from an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group, an alkoxyalkyl group having 1 to 3 carbon atoms, or a polymerizable unsaturated bond group. It is preferable to include at least one crosslinkable compound composed of a compound having two or more.
  • crosslinkable compound having an epoxy group or an isocyanate group examples include the crosslinkable compounds having an epoxy group or an isocyanate group described on pages 63 to 64 of WO 2014/171493.
  • Specific examples of the crosslinkable compound having an oxetane group include crosslinkable compounds of the formulas [4a] to [4k] described on pages 58 to 59 of International Publication WO2011/132751.
  • crosslinkable compound having a cyclocarbonate group examples include crosslinkable compounds of the formulas [5-1] to [5-42] described on pages 76 to 82 of WO 2012/014898.
  • Specific examples of the crosslinkable compound having a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group include melamine derivatives or benzoguanamine derivatives described on pages 65 to 66 of WO2014/171349, and WO2011/132751.
  • the content of the crosslinkable compound in the liquid crystal alignment treatment agent is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal alignment treatment agent. In order to allow the crosslinking reaction to proceed and to produce the desired effect, 0.1 to 50 parts by mass is more preferable, and 1 to 30 parts by mass is most preferable, relative to 100 parts by mass of all polymer components. ..
  • a compound that improves the film thickness uniformity and the surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied can be used. Further, a compound or the like that improves the adhesiveness between the liquid crystal alignment film and the electrode substrate can be used.
  • Compounds that improve the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonion-based surfactants. Specific examples thereof include the surfactants described on page 67 of International Publication WO2014/171493. Further, the use ratio thereof is preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal alignment treatment agent. More preferably, it is 0.01 to 1 part by mass.
  • the compound that improves the adhesiveness between the liquid crystal alignment film and the electrode substrate include the compounds described on pages 67 to 69 of International Publication WO2014/171493. Further, the use ratio thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal alignment treatment agent. More preferably, it is 1 to 20 parts by mass.
  • a liquid crystal alignment treatment agent may be added with a dielectric or a conductive substance for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film.
  • the liquid crystal alignment treatment agent can be used as a liquid crystal alignment film by applying alignment treatment by rubbing treatment or light irradiation after coating and baking on the substrate. Further, in the case of vertical alignment applications, it can be used as a liquid crystal alignment film without alignment treatment.
  • the substrate used in this case is not particularly limited as long as it is a highly transparent substrate, and in addition to glass substrates, acrylic substrates, polycarbonate substrates, plastic substrates such as PET (polyethylene terephthalate) substrates, and further films thereof. Can be used. From the viewpoint of simplifying the process, a substrate on which an ITO electrode for driving a liquid crystal, a metal electrode such as an IZO (Indium Zinc Oxide) electrode and an IGZO (Indium Gallium Zinc Oxide) electrode, and an organic conductive film are formed. Is preferably used. Further, in the case of a reflective liquid crystal display element, if only one substrate is used, a substrate such as a silicon wafer or a metal such as aluminum or a substrate on which a dielectric multilayer film is formed can be used.
  • the method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, a method such as screen printing, offset printing, flexographic printing or an inkjet method is generally used. Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method or a spray method, and these may be used depending on the purpose.
  • After applying the liquid crystal alignment treatment agent on the substrate it is preferably heated at 30 to 300° C., depending on the solvent used for the liquid crystal alignment treatment agent, by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven. Can be used as a liquid crystal alignment film by evaporating the solvent at a temperature of 30 to 250° C.
  • the thickness of the liquid crystal alignment film after firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display device, and if it is too thin, the reliability of the liquid crystal display device may be deteriorated. Is 10 to 200 nm.
  • the liquid crystal alignment film after firing is treated by rubbing or irradiation with polarized ultraviolet light.
  • the liquid crystal used for the liquid crystal display element is not particularly limited, but for example, nematic liquid crystal, smectic liquid crystal or cholesteric liquid crystal can be used.
  • a liquid crystal having a positive or negative dielectric anisotropy can be selected according to the method of the liquid crystal display element.
  • a dichroic dye may be dissolved in the liquid crystal to form a guest-host type liquid crystal display device.
  • the method of injecting the liquid crystal is not particularly limited, but for example, the following method may be mentioned. That is, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and a sealant is applied to all four of the substrates on one side except for a part thereof, and then the liquid crystal alignment film surface is placed inside and the other side is applied. An empty cell in which the above substrates are bonded together is produced. Then, a method of injecting liquid crystal under reduced pressure from a place where the sealant is not applied to obtain a liquid crystal injection cell can be mentioned. Furthermore, prepare a pair of substrates on which a liquid crystal alignment film is formed, drop the liquid crystal on one substrate by ODF (One Drop Filling) method or inkjet method, and then bond the other substrate. Another method is to obtain a liquid crystal injection cell.
  • ODF One Drop Filling
  • the method of controlling the gap of the liquid crystal display device is not particularly limited, for example, a method of introducing a spacer of a desired size in the liquid crystal, a method of coating on a substrate having a column spacer of the desired size, the purpose A method using a liquid crystal containing a column spacer having a size of
  • the size of the gap of the liquid crystal display element is preferably 1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and particularly preferably 2 to 30 ⁇ m. If the gap is too small, the contrast of the liquid crystal display device will be lowered, and if it is too large, the driving voltage of the device will be high.
  • solvent NMP: N-methyl-2-pyrrolidone
  • NEP N-ethyl-2-pyrrolidone
  • BCS ethylene glycol monobutyl ether
  • PB propylene glycol monobutyl ether
  • the imidization ratio is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 ppm to 10.0 ppm. It was calculated by the following formula using the integrated value.
  • Imidization rate (%) (1- ⁇ x/y) ⁇ 100 (X is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, ⁇ is a reference proton for one NH group proton of amic acid in the case of polyamic acid (imidization rate is 0%) Is the proportion of the number of.)
  • Table 1 shows the polyimide-based polymers obtained in the synthesis examples. *1: Polyamic acid. *2: Polyamic acid alkyl ester.
  • a 6 ⁇ m spacer is applied to the liquid crystal alignment film surface of one substrate, and a sealant (723K1, manufactured by Kyoritsu Chemical Industry Co., Ltd.) is applied to the liquid crystal alignment film surface of the other substrate.
  • the bonding was performed so that the liquid crystal alignment film surfaces of the substrates face each other.
  • the application amount of the sealing agent was adjusted so that the area of the sealing agent after the bonding was 5 ⁇ 50 mm (length ⁇ width).
  • the bonded substrates are irradiated with 3 J/cm 2 of ultraviolet rays at a wavelength of 365 nm by using a metal halide lamp with an illuminance of 20 mW/cm 2 , and then heated at 120° C.
  • the liquid crystal alignment treatment agents obtained in Examples and Comparative Examples were pressure-filtered with a membrane filter having a pore size of 1 ⁇ m, and washed with pure water and IPA.
  • a substrate with ITO electrodes (length 40 mm ⁇ width 30 mm, thickness) (0.7 mm) ITO surface is spin-coated, and heat-treated at 120° C. for 2 minutes on a hot plate and at 230° C. for 30 minutes in a heat circulation type clean oven to have a liquid crystal alignment film with a thickness of 100 nm.
  • the ITO substrate of was obtained.
  • liquid crystal alignment film surface of this substrate was rubbed with a rubbing device having a roll diameter of 120 mm under the conditions of a roll rotation speed of 500 rpm, a roll advancing speed of 30 mm/sec, and a pushing amount of 0.3 mm. Processed.
  • a spacer of 4 ⁇ m is applied to the liquid crystal alignment film surface of one substrate, and a sealant (XN- 1500T) (manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was applied, and the substrates were laminated so that the liquid crystal alignment film surfaces of these substrates face each other. At that time, the substrates were laminated so that the rubbing directions of the substrates were opposite to each other.
  • heat treatment was performed at 120° C. for 90 minutes in a heat circulation type clean oven to prepare an empty cell. Liquid crystal was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell.
  • Example 1 to 5 and 14 and Comparative Examples 1 and 2 a positive type liquid crystal (MLC-2003) (manufactured by Merck) was used as the liquid crystal, and in Examples 6 to 13 and Comparative Examples 3 and 4, the liquid crystal was used. Negative liquid crystal (MLC-6608, manufactured by Merck) was used.
  • MLC-2003 positive type liquid crystal
  • MLC-6608, manufactured by Merck negative liquid crystal
  • the liquid crystal cell was stored in a constant temperature and constant humidity chamber at a temperature of 80° C. and a humidity of 90% RH for 48 hours, and peeling of the liquid crystal cell and the presence or absence of bubbles were confirmed. Specifically, the liquid crystal cell is not peeled (a state where it is peeled between the liquid crystal alignment film and the sealant and between the liquid crystal alignment film and the ITO electrode), and bubbles are generated in the liquid crystal cell. Those which were not evaluated were considered to be excellent in this evaluation (good display in the table).
  • Example 1 A1 (0.20 g), NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (1) (10.0 g) obtained in Synthesis Example 1, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (1) was obtained.
  • Example 3 A1 (0.20 g), K2 (0.13 g), NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (2) (10.0 g) obtained in Synthesis Example 2, The mixture was stirred at 25°C for 15 hours to obtain a liquid crystal alignment treatment agent (3).
  • NEP (31.3 g) was added to the polyimide powder (4) (2.50 g) obtained in Synthesis Example 4, and the mixture was stirred at 60° C. for 24 hours to be dissolved.
  • A1 (0.13 g) and BCS (7.83 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (5).
  • A1 (0.18 g), NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (5) (10.0 g) obtained in Synthesis Example 5, and the mixture was stirred at 25° C. for 15 hours.
  • a liquid crystal alignment treatment agent (6) was obtained.
  • Example 7 A1 (0.18 g), NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (6) (10.0 g) obtained in Synthesis Example 6, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (7) was obtained.
  • NEP (23.5 g) was added to the polyimide powder (7) (2.50 g) obtained in Synthesis Example 7, and the mixture was stirred at 60° C. for 24 hours to be dissolved.
  • Example 11 A1 (0.25 g), NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (9) (10.0 g) obtained in Synthesis Example 9, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (11) was obtained.
  • Example 12 To the polyamic acid solution (9) (10.0 g) obtained in Synthesis Example 9, A1 (0.25 g), K2 (0.08 g), NMP (16.0 g) and BCS (15.7 g) were added, The mixture was stirred at 25°C for 15 hours to obtain a liquid crystal alignment treatment agent (12).
  • Example 13 In the polyamic acid solution (10) (10.0 g) obtained in Synthesis Example 10, A1 (0.08 g), K1 (0.18 g), NMP (16.0 g), BCS (7.83 g) and PB( 7.83 g) was added and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (13).
  • NMP (31.3 g) was added to the polyamic acid alkyl ester powder (11) (2.50 g) obtained in Synthesis Example 11 and dissolved by stirring at 40° C. for 24 hours. A1 (0.13 g) and BCS (7.83 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (14).
  • *3 Indicates the content (parts by mass) of the specific compound with respect to 100 parts by mass of the polymer.
  • *4 Indicates the content (parts by mass) of the crosslinkable compound with respect to 100 parts by mass of the polymer.
  • *5 A very small amount of bubbles were found in the device.
  • *6 A small amount of bubbles were found in the element (more than *5).
  • *7 Bubbles were found in the element (more than *6).
  • the polymer terminal has a structure of a carboxylic acid anhydride or a dicarboxylic acid, that is, during the polymerization reaction of a diamine component and a tetracarboxylic acid component, a tetracarboxylic acid Those in which the total number of moles of the components is larger than the number of moles of the diamine component have a polymer terminal having a structure of an amino group (in the polymerization reaction, the total number of moles of the tetracarboxylic acid component is smaller than the number of moles of the diamine component.
  • the occurrence of bubbles in the liquid crystal cell in the emphasis test was suppressed as compared with that of No. Specifically, in comparison under the same conditions, there are comparison between Example 1 and Example 2 and comparison between Example 6 and Example 7.
  • the adhesiveness between the substrates of the liquid crystal display device is high, further, even in a harsh environment exposed to high temperature and high humidity for a long time,
  • the liquid crystal display device capable of suppressing the generation of bubbles in the liquid crystal display device and the peeling of the device is particularly obtained. Therefore, it can be suitably used for a liquid crystal display element for mobile devices such as smartphones and mobile phones.

Abstract

Provided are: a liquid crystal alignment treatment agent that can be used to produce a liquid crystal alignment film that has outstanding preservation stability, provides high adhesiveness (adhesion) between substrates of a liquid crystal display element, and can suppress air bubbles generating within the liquid crystal display element as well as detachment of the element even in an environment exposed to high temperature and high humidity for a long period of time; a liquid crystal alignment film obtained by using said agent; and a liquid crystal display element. The liquid crystal alignment treatment agent contains a compound including a group represented by a formula [1]. (* represents the site of bonding with another structure.)

Description

液晶配向処理剤、液晶配向膜及び液晶表示素子Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
 本発明は、液晶表示素子の製造に用いられる液晶配向処理剤、該液晶配向処理剤から得られる液晶配向膜、及び該液晶配向膜を使用した液晶表示素子に関する。 The present invention relates to a liquid crystal alignment treatment agent used for manufacturing a liquid crystal display element, a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent, and a liquid crystal display element using the liquid crystal alignment film.
 高分子材料など有機材料からなる膜は、形成の容易さや絶縁性能などが着目され、電子デバイスにおいて、層間絶縁膜や保護膜等として広く用いられている。なかでも、表示デバイスとして良く知られた液晶表示素子では、ポリイミドからなる有機膜が液晶配向膜として使用されている。 A film made of an organic material such as a polymer material is widely used as an interlayer insulating film, a protective film, etc. in electronic devices, because of its ease of formation and insulating performance. Among them, in a liquid crystal display element well known as a display device, an organic film made of polyimide is used as a liquid crystal alignment film.
 液晶配向膜は、液晶の配向状態を制御する目的で使用される。しかし、液晶表示素子の高精細化に伴い、液晶表示素子のコントラスト低下や長期使用に伴う表示不良の抑制が求められている。 The liquid crystal alignment film is used to control the alignment state of the liquid crystal. However, as the resolution of liquid crystal display elements increases, it is required to reduce the contrast of the liquid crystal display elements and suppress display defects due to long-term use.
 これらに対して、ポリイミドを用いた液晶配向膜において、液晶配向性を高め、液晶表示画面周辺部に表示不良が生じにくくする手法として、アルコキシシラン化合物を添加した液晶配向処理剤を用いた液晶配向膜が提案されている(特許文献1、2参照)。 On the other hand, in a liquid crystal alignment film using polyimide, a liquid crystal alignment treatment using a liquid crystal alignment treatment agent containing an alkoxysilane compound is used as a method of improving the liquid crystal alignment property and making it difficult for a display defect to occur in the peripheral portion of the liquid crystal display screen. Membranes have been proposed (see Patent Documents 1 and 2).
日本特開昭61-171762号公報Japanese Patent Laid-Open No. 61-171762 日本特開平11-119226号公報Japanese Patent Laid-Open No. 11-119226
 近年、スマートフォンや携帯電話などのモバイル用途向けに、液晶表示素子が用いられている。これら用途では、できるだけ広い表示面を確保するため、液晶表示素子の基板間を接着させるために用いるシール剤の幅を、従来に比べて狭くする必要がある。更に前記理由により、シール剤の描画位置を、シール剤との接着性が弱い液晶配向膜の端部に接した位置、或いは液晶配向膜の上部にすることも求められている。そのため、近年では、従来に比べて、液晶表示素子の基板間の接着が弱い状況となっている。更に、このような場合、高温高湿条件下での使用により、シール剤と液晶配向膜との間から水が混入しやすくなり、液晶表示素子の額縁付近での表示ムラや素子内での気泡の発生、更には、素子の剥がれが起こってしまう。 In recent years, liquid crystal display devices have been used for mobile applications such as smartphones and mobile phones. In these applications, in order to secure a display surface as wide as possible, it is necessary to make the width of the sealant used for bonding the substrates of the liquid crystal display element narrower than in the conventional case. Further, for the above reason, it is also required that the drawing position of the sealant is at a position in contact with the end of the liquid crystal alignment film, which has weak adhesion to the sealant, or at the upper part of the liquid crystal alignment film. Therefore, in recent years, the adhesion between the substrates of the liquid crystal display element has become weaker than in the past. Furthermore, in such a case, when used under high temperature and high humidity conditions, water easily mixes in between the sealant and the liquid crystal alignment film, resulting in display unevenness near the frame of the liquid crystal display element and bubbles in the element. Occurs, and the element peels off.
 この問題に対して、液晶配向膜とシール剤との密着性を高める手法として、液晶配向処理剤にアルコキシラン化合物を添加する手法がある。しかし、アルコキシシラン化合物を液晶配向処理剤中に添加した場合、シール剤と液晶配向膜との接着性を高めることができるが、液晶配向処理剤の保存中にアルコキシ化合物中のアルコキシ基の縮合反応が進行し、液晶配向処理剤の粘度上昇やゲル化物の発生など、液晶配向処理剤の保存安定性が悪くなる問題がある。 For this problem, there is a method of adding an alkoxysilane compound to the liquid crystal alignment treatment agent as a method of improving the adhesion between the liquid crystal alignment film and the sealant. However, when the alkoxysilane compound is added to the liquid crystal alignment treatment agent, the adhesiveness between the sealant and the liquid crystal alignment film can be increased, but the condensation reaction of the alkoxy group in the alkoxy compound during storage of the liquid crystal alignment treatment agent Occurs, and there is a problem that the storage stability of the liquid crystal alignment treatment agent deteriorates, such as an increase in the viscosity of the liquid crystal alignment treatment agent and the generation of a gelled product.
 以上の点から、本発明は、液晶配向処理剤の保存安定性に優れ、液晶表示素子の基板間の接着性(密着性ともいう。)が高く、更には、長時間、高温高湿に曝される環境でも、液晶表示素子内の気泡の発生や素子の剥がれを抑制できる液晶配向膜の提供を目的とする。加えて、上記の液晶配向膜を有する液晶表示素子、上記の液晶配向膜を作製できる液晶配向処理剤の提供も目的とする。 From the above points, the present invention is excellent in storage stability of the liquid crystal alignment treatment agent, has high adhesiveness (also referred to as adhesiveness) between the substrates of the liquid crystal display element, and is further exposed to high temperature and high humidity for a long time. It is an object of the present invention to provide a liquid crystal alignment film capable of suppressing the generation of bubbles in the liquid crystal display element and the peeling of the element even under such an environment. In addition, another object is to provide a liquid crystal display device having the above liquid crystal alignment film and a liquid crystal alignment treatment agent capable of producing the above liquid crystal alignment film.
 本発明者は、前記の目的を達成するため鋭意研究を進めた結果、以下の要旨を有する本発明を完成するに至った。
 即ち、下記式[1]で表される基を有する化合物(特定化合物ともいう。)を含有することを特徴とする液晶配向処理剤である。
Figure JPOXMLDOC01-appb-C000006
(*は、他の構造との結合部位を表す。)
As a result of earnest research to achieve the above-mentioned object, the present inventor has completed the present invention having the following points.
That is, it is a liquid crystal alignment treatment agent containing a compound having a group represented by the following formula [1] (also referred to as a specific compound).
Figure JPOXMLDOC01-appb-C000006
(* represents a binding site with another structure.)
 本発明の液晶配向処理剤は、保存安定性に優れ、液晶表示素子の基板間の接着性が高く、更には、長時間、高温高湿に曝される環境でも、液晶表示素子内の気泡の発生や素子の剥がれを抑制することができる液晶配向膜を提供できる。加えて、上記の液晶配向膜を有する液晶表示素子、上記の液晶配向膜を作製出来る液晶配向処理剤を提供できる。そのため、本発明の液晶表示素子は、スマートフォンや携帯電話などの液晶表示素子に用いられる。 The liquid crystal alignment treatment agent of the present invention is excellent in storage stability, has high adhesiveness between substrates of a liquid crystal display element, and further, even in an environment exposed to high temperature and high humidity for a long time, bubbles in the liquid crystal display element It is possible to provide a liquid crystal alignment film capable of suppressing generation and peeling of elements. In addition, a liquid crystal display device having the above liquid crystal alignment film and a liquid crystal alignment treatment agent capable of producing the above liquid crystal alignment film can be provided. Therefore, the liquid crystal display element of the present invention is used for a liquid crystal display element such as a smartphone or a mobile phone.
 本発明により何故に上記の優れた特性を有する液晶表示素子が得られるメカニズムは、必ずしも明らかではないが、ほぼ次のように推定される。
 液晶配向処理剤中に含まれる特定化合物は、ジスルフィド結合(S-S)とチオケトン(C=S)基を有することから、液晶配向膜と金属電極との密着性が高くなる。また、特性化合物中のアミノ基(N)は、弱塩基性を示すことからシール剤の硬化性を促進させることができる。これにより、液晶配向膜を形成後、液晶配向膜と金属電極、及び液晶配向膜とシール剤との密着性が高くなり、長時間、高温高湿に曝される環境でも、液晶表示素子内の気泡の発生や素子の剥がれを抑制することができる液晶表示素子となると考えられる。
The mechanism by which the liquid crystal display device having the above-mentioned excellent characteristics is obtained by the present invention is not necessarily clear, but it is presumed as follows.
Since the specific compound contained in the liquid crystal alignment treatment agent has a disulfide bond (SS) and a thioketone (C=S) group, the adhesion between the liquid crystal alignment film and the metal electrode becomes high. In addition, the amino group (N) in the characteristic compound exhibits weak basicity, so that the curability of the sealant can be promoted. As a result, after the liquid crystal alignment film is formed, the adhesion between the liquid crystal alignment film and the metal electrode, and the liquid crystal alignment film and the sealant becomes high, and even in an environment where the liquid crystal alignment film is exposed to high temperature and high humidity for a long time, It is considered that the liquid crystal display device can suppress the generation of bubbles and the peeling of the device.
<特定化合物>
 特定化合物は、前記式[1]で表される基を有する化合物である。具体的には、下記式[1a]で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 Xは下記式[1-a]~式[1-k]からなる群から選ばれる。
Figure JPOXMLDOC01-appb-C000008
(Tは炭素数1~3のアルキル基を示す。)
 なかでも、式[1-b]、式[1-c]又は式[1-d]が好ましい。
 Xは単結合又は炭素数1~18の有機基を示す。なかでも、単結合又は炭素数1~6の有機基が好ましい。
 Xは前記式[1]で表される基を示す。
<Specific compound>
The specific compound is a compound having a group represented by the above formula [1]. Specifically, a compound represented by the following formula [1a] can be mentioned.
Figure JPOXMLDOC01-appb-C000007
X 1 is selected from the group consisting of the following formulas [1-a] to [1-k].
Figure JPOXMLDOC01-appb-C000008
(T A represents an alkyl group having 1 to 3 carbon atoms.)
Among them, the formula [1-b], the formula [1-c] or the formula [1-d] is preferable.
X 2 represents a single bond or an organic group having 1 to 18 carbon atoms. Of these, a single bond or an organic group having 1 to 6 carbon atoms is preferable.
X 3 represents a group represented by the above formula [1].
 特定化合物の好ましい具体例としては、下記式[1-1a]の化合物が挙げられ、これを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000009
Specific preferred examples of the specific compound include compounds represented by the following formula [1-1a], and it is preferable to use these.
Figure JPOXMLDOC01-appb-C000009
 特定化合物の使用割合は、液晶表示素子の液晶配向膜と金属電極との密着性などの点から、液晶配向処理剤に含まれる全ての重合体100質量部に対して、0.1~30質量部が好ましく、より好ましくは、0.5~20質量部であり、最も好ましくは、1~15質量部である。また、特定化合物は、各特性に応じて、1種類又は2種類以上を混合して使用することもできる。 From the viewpoint of adhesion between the liquid crystal alignment film of the liquid crystal display element and the metal electrode, the specific compound is used in an amount of 0.1 to 30 parts by mass based on 100 parts by mass of all the polymers contained in the liquid crystal alignment treatment agent. The amount is preferably 0.5 part by mass, more preferably 0.5 to 20 parts by mass, and most preferably 1 to 15 parts by mass. In addition, the specific compound may be used alone or in combination of two or more depending on each characteristic.
<重合体>
 液晶配向処理剤に含まれる重合体としては、前記特定化合物と反応可能な官能基を有する重合体であることが好ましい。反応可能な官能基とは、室温状態で共有結合形成可能な官能基のほか、潜在的に共有結合形成可能な官能基も含む概念であり、このような官能基としては、加熱及び/又は電磁波の照射により構造の一部が変化して特定化合物と共有結合を形成可能な官能基が挙げられる。反応可能な官能基の具体例として、カルボキシル基、アミノ基、(メタ)アクリル基、酸無水基、フェノール基、ヒドロキシル基、シラノール基、イミド基、エステル基、アミド基、ウレア基等が挙げられる。
<Polymer>
The polymer contained in the liquid crystal alignment treatment agent is preferably a polymer having a functional group capable of reacting with the specific compound. The functional group capable of reacting is a concept that includes a functional group capable of forming a covalent bond at room temperature as well as a functional group capable of potentially forming a covalent bond. Examples of such a functional group include heating and/or electromagnetic waves. A functional group capable of forming a covalent bond with a specific compound by changing a part of the structure by irradiation with. Specific examples of the functional group capable of reacting include a carboxyl group, an amino group, a (meth)acrylic group, an acid anhydride group, a phenol group, a hydroxyl group, a silanol group, an imide group, an ester group, an amide group, and a urea group. ..
 前記特定化合物と反応可能な官能基を有する重合体は、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース、及びポリシロキサンからなる群から選ばれる少なくとも1種が好ましい。より好ましくは、ポリイミド前駆体又はポリイミドである。
 上記重合体として、ポリイミド前駆体又はポリイミド(総称して、ポリイミド系重合体ともいう。)を用いる場合、それらは、ジアミン成分とテトラカルボン酸成分とを反応させて得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化して得られるポリイミドが好ましい。
The polymer having a functional group capable of reacting with the specific compound is at least selected from the group consisting of acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose, and polysiloxane. One kind is preferable. More preferably, it is a polyimide precursor or polyimide.
When a polyimide precursor or a polyimide (collectively referred to as a polyimide-based polymer) is used as the polymer, they are a polyimide precursor obtained by reacting a diamine component and a tetracarboxylic acid component or the polyimide. A polyimide obtained by imidizing a precursor is preferable.
 上記ポリイミド前駆体は、下記式[A]の構造を有するものが好ましい。
Figure JPOXMLDOC01-appb-C000010
 式[A]中、Rは4価の有機基を示す。Rは2価の有機基を示す。A及びAはそれぞれ、水素原子又は炭素数1~8のアルキル基を示す。A及びAは、それぞれ独立して、水素原子、炭素数1~5のアルキル基又はアセチル基を示す。nは正の整数を示す。
The polyimide precursor preferably has a structure represented by the following formula [A].
Figure JPOXMLDOC01-appb-C000010
In formula [A], R 1 represents a tetravalent organic group. R 2 represents a divalent organic group. A 1 and A 2 each represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms. A 3 and A 4 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms or an acetyl group. n represents a positive integer.
 ジアミン成分としては、分子内に1級又は2級のアミノ基を2個有するジアミンが挙げられる。テトラカルボン酸成分としては、テトラカルボン酸化合物、テトラカルボン酸二無水物、テトラカルボン酸ジハライド化合物、テトラカルボン酸ジアルキルエステル化合物又はテトラカルボン酸ジアルキルエステルジハライド化合物が挙げられる。 The diamine component may be a diamine having two primary or secondary amino groups in the molecule. Examples of the tetracarboxylic acid component include a tetracarboxylic acid compound, a tetracarboxylic acid dianhydride, a tetracarboxylic acid dihalide compound, a tetracarboxylic acid dialkyl ester compound, and a tetracarboxylic acid dialkyl ester dihalide compound.
 ポリイミド系重合体は、下記式[B]のテトラカルボン酸二無水物と下記式[C]のジアミンとを原料とすることで、比較的簡便に得られるという理由から、下記式[D]の繰り返し単位の構造式から成るポリアミド酸又は該ポリアミド酸をイミド化させたポリイミドが好ましい。 A polyimide-based polymer can be obtained relatively easily by using a tetracarboxylic acid dianhydride of the following formula [B] and a diamine of the following formula [C] as a raw material, so that the following formula [D] A polyamic acid having a structural formula of a repeating unit or a polyimide obtained by imidizing the polyamic acid is preferable.
Figure JPOXMLDOC01-appb-C000011
(R及びRは、式[A]で定義したものと同じである。)
Figure JPOXMLDOC01-appb-C000011
(R 1 and R 2 are the same as defined in the formula [A].)
Figure JPOXMLDOC01-appb-C000012
(R及びRは、式[A]で定義したものと同じである。)
Figure JPOXMLDOC01-appb-C000012
(R 1 and R 2 are the same as defined in the formula [A].)
 また、通常の合成手法で、前記で得られた式[D]の重合体に、式[A]中のA及びAの炭素数1~8のアルキル基、及び式[A]中のA及びAの炭素数1~5のアルキル基又はアセチル基を導入することもできる。
 ポリイミド系重合体を作製するためのジアミン成分は特に限定されない。具体的には、国際公開公報WO2016/076412の34頁~38頁に記載される式[3a-1]~式[3a-5]のジアミン化合物、同公報の39頁~42頁に記載されるその他ジアミン化合物、及び同公報の42頁~44頁に記載される式[DA1]~[DA15]のジアミン化合物が挙げられる。これらジアミン成分は、各特性に応じて、1種又は2種以上を混合して使用できる。
Further, in a conventional synthetic procedures, the polymer of the formula [D] obtained by the above formula [A] alkyl group of A 1 and A 2 having 1 to 8 carbon atoms in, and in the formula [A] It is also possible to introduce an alkyl group having 1 to 5 carbon atoms or an acetyl group of A 3 and A 4 .
The diamine component for producing the polyimide polymer is not particularly limited. Specifically, the diamine compounds of the formulas [3a-1] to [3a-5] described on pages 34 to 38 of WO 2016/076412 and pages 39 to 42 of the publication. Other examples include diamine compounds and the diamine compounds of the formulas [DA1] to [DA15] described on pages 42 to 44 of the publication. These diamine components may be used either individually or in combination of two or more, depending on the characteristics.
 ポリイミド系重合体を作製するためのテトラカルボン酸成分は特に限定されない。具体的には、国際公開公報WO2016/076412の44頁~45頁に記載される式[4]のテトラカルボン酸二無水物、及び45頁~46頁に記載されるその他のテトラカルボン酸成分が挙げられる。これらテトラカルボン酸成分は、各特性に応じて、1種又は2種以上を混合して使用できる。 The tetracarboxylic acid component for producing the polyimide polymer is not particularly limited. Specifically, the tetracarboxylic dianhydride of the formula [4] described on pages 44 to 45 of International Publication WO2016/076412 and the other tetracarboxylic acid components described on pages 45 to 46 are Can be mentioned. These tetracarboxylic acid components may be used either individually or in combination of two or more, depending on the characteristics.
 ポリイミド系重合体を合成する方法は、特に限定されない。通常、ジアミン成分とテトラカルボン酸成分とを反応させて得られる。具体的には、国際公開公報WO2016/076412の46頁~50頁に記載される方法が挙げられる。
 ジアミン成分とテトラカルボン酸成分との反応は、通常、ジアミン成分とテトラカルボン酸成分とを含む溶媒中で行う。その際に用いる溶媒としては、生成したポリイミド前駆体が溶解するものであれば特に限定されない。
The method for synthesizing the polyimide polymer is not particularly limited. Usually, it is obtained by reacting a diamine component and a tetracarboxylic acid component. Specific examples thereof include the methods described on pages 46 to 50 of International Publication WO2016/076412.
The reaction between the diamine component and the tetracarboxylic acid component is usually performed in a solvent containing the diamine component and the tetracarboxylic acid component. The solvent used at that time is not particularly limited as long as it can dissolve the generated polyimide precursor.
 具体的には、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド又は1,3-ジメチル-イミダゾリジノンなどが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン又は下記式[D1]~式[D3]の溶媒を用いることができる。 Specifically, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinium Non is included. When the polyimide precursor has high solvent solubility, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone or a solvent represented by the following formula [D1] to [D3] is used. it can.
Figure JPOXMLDOC01-appb-C000013
(D及びDは炭素数1~3のアルキル基を示す。Dは炭素数1~4のアルキル基を示す。)
Figure JPOXMLDOC01-appb-C000013
(D 1 and D 2 represent an alkyl group having 1 to 3 carbon atoms. D 3 represents an alkyl group having 1 to 4 carbon atoms.)
 また、これらは単独で使用しても、混合して使用してもよい。更に、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記の溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、更には、生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。 Also, these may be used alone or as a mixture. Further, even a solvent that does not dissolve the polyimide precursor may be used by mixing with the above-mentioned solvent as long as the generated polyimide precursor does not precipitate. Further, since water in the organic solvent inhibits the polymerization reaction and causes hydrolysis of the generated polyimide precursor, it is preferable to use dehydrated and dried organic solvent.
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数を1.0にした際のテトラカルボン酸成分の合計モル数は、0.8~1.2が好ましい。テトラカルボン酸成分の合計モル数が1.0より小さい場合、即ち、テトラカルボン酸成分の合計モル数がジアミン成分のモル数よりも小さい場合は、ポリマの末端がアミノ基の構造となり、1.0より大きい場合、即ち、テトラカルボン酸成分の合計モル数がジアミン成分のモル数よりも大きい場合は、ポリマの末端がカルボン酸無水物或いはジカルボン酸の構造となる。本発明においては、特定化合物の効果、即ち、液晶表示素子の液晶配向膜と金属電極との密着性を高める効果が、より高くなることから、テトラカルボン酸成分の合計モル数は1.0より大きい、即ち、テトラカルボン酸成分の合計モル数がジアミン成分のモル数よりも大きいことが好ましい。具体的には、ジアミン成分の合計モル数を1.0にした際、テトラカルボン酸成分の合計モル数が1.05~1.20が好ましい。 In the polymerization reaction of the polyimide precursor, the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2 when the total number of moles of the diamine component is 1.0. When the total number of moles of the tetracarboxylic acid component is less than 1.0, that is, when the total number of moles of the tetracarboxylic acid component is less than the number of moles of the diamine component, the polymer has an amino group structure at the terminal. When it is greater than 0, that is, when the total number of moles of the tetracarboxylic acid component is greater than the number of moles of the diamine component, the polymer end has a carboxylic acid anhydride or dicarboxylic acid structure. In the present invention, the effect of the specific compound, that is, the effect of enhancing the adhesiveness between the liquid crystal alignment film of the liquid crystal display element and the metal electrode becomes higher, so that the total number of moles of the tetracarboxylic acid component is more than 1.0. It is preferable that the total number of moles of the tetracarboxylic acid component is larger than that of the diamine component. Specifically, when the total number of moles of the diamine component is 1.0, the total number of moles of the tetracarboxylic acid component is preferably 1.05 to 1.20.
 ポリイミドはポリイミド前駆体を閉環させて得られる。ポリイミドは、アミド酸基の閉環率(イミド化率ともいう。)は必ずしも100%である必要はなく、用途や目的に応じて任意に調製できる。なかでも、ポリイミド系重合体の溶媒への溶解性の点から、30~80%が好ましい。より好ましいのは、40~70%である。
 ポリイミド系重合体の分子量は、そこから得られる液晶配向膜の強度、液晶配向膜形成時の作業性及び塗膜性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましいのは、10,000~150,000である。
Polyimide is obtained by ring-closing a polyimide precursor. The polyimide does not necessarily have a ring closure rate (also referred to as an imidization rate) of an amic acid group of 100%, and can be arbitrarily prepared according to the application or purpose. Among them, 30 to 80% is preferable from the viewpoint of the solubility of the polyimide polymer in the solvent. More preferably, it is 40 to 70%.
The molecular weight of the polyimide-based polymer is 5 in terms of weight average molecular weight measured by GPC (Gel Permeation Chromatography) method in consideration of the strength of the liquid crystal alignment film obtained therefrom, workability in forming the liquid crystal alignment film, and coating property. It is preferably from 1,000 to 1,000,000, and more preferably from 10,000 to 150,000.
<液晶配向処理剤>
 液晶配向処理剤は、液晶配向膜を形成するための溶液であり、特定化合物、重合体及び溶媒を含有する溶液である。その際、特定化合物及び重合体には、それぞれ、2種類以上のものを用いることができる。
 液晶配向処理剤中の溶媒の含有量は、液晶配向処理剤の塗布方法や目的とする膜厚を得るという観点から、適宜選択できる。なかでも、塗布により均一な液晶配向膜を形成するとい観点から、液晶配向処理剤中の溶媒の含有量は50~99.9質量%が好ましい。なかでも、60~99質量%が好ましい。より好ましいのは、65~99質量%である。
<Liquid crystal orientation treatment agent>
The liquid crystal alignment treatment agent is a solution for forming a liquid crystal alignment film, and is a solution containing a specific compound, a polymer and a solvent. In that case, two or more types can be used for each of a specific compound and a polymer.
The content of the solvent in the liquid crystal alignment treatment agent can be appropriately selected from the viewpoint of applying the liquid crystal alignment treatment agent and obtaining a target film thickness. Among them, the content of the solvent in the liquid crystal alignment treatment agent is preferably 50 to 99.9 mass% from the viewpoint of forming a uniform liquid crystal alignment film by coating. Among them, 60 to 99 mass% is preferable. More preferably, it is 65 to 99% by mass.
 液晶配向処理剤に用いる溶媒は、特定化合物及び重合体を溶解させる溶媒であれば特に限定されない。なかでも、重合体がポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルの場合、或いは、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、セルロース又はポリシロキサンの溶媒への溶解性が低い場合は、下記の溶媒(溶媒A類ともいう。)を用いることが好ましい。 The solvent used for the liquid crystal alignment treatment agent is not particularly limited as long as it is a solvent that dissolves the specific compound and the polymer. Among them, when the polymer is a polyimide precursor, polyimide, polyamide or polyester, or when the solubility of the acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, cellulose or polysiloxane in the solvent is low, It is preferable to use a solvent (also referred to as a solvent A).
 例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノンなどである。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンが好ましい。また、これらは単独で使用しても、混合して使用してもよい。 For example, N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, methyl ethyl ketone , Cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone and the like. Among them, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone is preferable. Moreover, these may be used individually or may be mixed and used.
 重合体が、アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、セルロース又はポリシロキサンである場合、更には、重合体がポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルであり、これら重合体の溶媒への溶解性が高い場合は、下記の溶媒(溶媒B類ともいう。)を用いることができる。 When the polymer is an acrylic polymer, a methacrylic polymer, a novolac resin, polyhydroxystyrene, cellulose or polysiloxane, further, the polymer is a polyimide precursor, polyimide, polyamide or polyester, the solvent of these polymers When the solubility is high, the following solvent (also referred to as solvent B) can be used.
 溶媒B類の具体例は、国際公開公報WO2014/171493の58頁~60頁に記載される溶媒B類が挙げられる。なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジプロピレングリコールジメチルエーテル、シクロヘキサノン、シクロペンタノン又は前記式[D1]~式[D3]が好ましい。 Specific examples of the solvent Bs include the solvent Bs described on pages 58 to 60 of International Publication WO2014/171493. Among them, 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether, dipropylene glycol dimethyl ether, cyclohexanone, cyclopentanone or the above formula [D1] To Formula [D3] are preferred.
 また、これら溶媒B類を用いる際、液晶配向処理剤の塗布性を改善する目的に、前記溶媒A類のN-メチル-2-ピロリドン、N-エチル-2-ピロリドン又はγ-ブチロラクトンを併用して用いることが好ましい。
 これら溶媒B類は、液晶配向処理剤を塗布する際の液晶配向膜の塗膜性や表面平滑性を高めることができるため、重合体にポリイミド前駆体、ポリイミド、ポリアミド又はポリエステルを用いた場合、前記溶媒A類と併用して用いることが好ましい。その際、溶媒B類は、液晶配向処理剤に含まれる溶媒全体の1~99質量%が好ましい。なかでも、10~99質量%が好ましい。より好ましいのは、20~95質量%である。
Further, when these solvent Bs are used, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or γ-butyrolactone of the above-mentioned solvent A is used in combination for the purpose of improving the coating property of the liquid crystal alignment treatment agent. It is preferable to use.
Since these solvents B can enhance the coating property and surface smoothness of the liquid crystal alignment film when applying the liquid crystal alignment treatment agent, when a polyimide precursor, polyimide, polyamide or polyester is used as the polymer, It is preferable to use it in combination with the above solvents A. At that time, the amount of the solvent B is preferably 1 to 99% by mass of the whole solvent contained in the liquid crystal alignment treatment agent. Among them, 10 to 99 mass% is preferable. More preferably, it is 20 to 95% by mass.
 液晶配向処理剤には、液晶配向膜の膜強度を高めるために、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ヒドロキシ基、ヒドロキシアルキル基又は低級アルコキシアルキル基を有する化合物(総称して架橋性化合物ともいう。)を導入することが好ましい。その際、上記の基は、化合物中に2個以上有する必要がある。
 すなわち、液晶配向処理剤は、エポキシ基、イソシアネート基、オキセタン基、シクロカーボネート基、ヒドロキシル基、ヒドロキシアルキル基、炭素数1~3のアルコキシアルキル基、又は重合性不飽和結合基から選ばれる基を2つ以上有する化合物からなる少なくとも1種の架橋性化合物を含むことが好ましい。
The liquid crystal alignment treatment agent includes a compound having an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxy group, a hydroxyalkyl group or a lower alkoxyalkyl group (collectively, a crosslinker in order to enhance the film strength of the liquid crystal alignment film It is also preferable to introduce a compound). In that case, it is necessary to have two or more groups in the compound.
That is, the liquid crystal alignment treatment agent is a group selected from an epoxy group, an isocyanate group, an oxetane group, a cyclocarbonate group, a hydroxyl group, a hydroxyalkyl group, an alkoxyalkyl group having 1 to 3 carbon atoms, or a polymerizable unsaturated bond group. It is preferable to include at least one crosslinkable compound composed of a compound having two or more.
 エポキシ基又はイソシアネート基を有する架橋性化合物の具体例は、国際公開公報WO2014/171493の63頁~64頁に記載されるエポキシ基又はイソシアネート基を有する架橋性化合物が挙げられる。
 オキセタン基を有する架橋性化合物の具体例は、国際公開公報WO2011/132751の58頁~59頁に掲載される式[4a]~式[4k]の架橋性化合物が挙げられる。
Specific examples of the crosslinkable compound having an epoxy group or an isocyanate group include the crosslinkable compounds having an epoxy group or an isocyanate group described on pages 63 to 64 of WO 2014/171493.
Specific examples of the crosslinkable compound having an oxetane group include crosslinkable compounds of the formulas [4a] to [4k] described on pages 58 to 59 of International Publication WO2011/132751.
 シクロカーボネート基を有する架橋性化合物の具体例は、国際公開公報WO2012/014898の76頁~82頁に掲載される式[5-1]~式[5-42]の架橋性化合物が挙げられる。
 ヒドロキシル基、ヒドロキシアルキル基及び低級アルコキシアルキル基を有する架橋性化合物の具体例は、国際公開公報2014/171493の65頁~66頁に記載されるメラミン誘導体又はベンゾグアナミン誘導体、及び国際公開公報WO2011/132751の62頁~66頁に掲載される、式[6-1]~式[6-48]の架橋性化合物が挙げられる。
Specific examples of the crosslinkable compound having a cyclocarbonate group include crosslinkable compounds of the formulas [5-1] to [5-42] described on pages 76 to 82 of WO 2012/014898.
Specific examples of the crosslinkable compound having a hydroxyl group, a hydroxyalkyl group and a lower alkoxyalkyl group include melamine derivatives or benzoguanamine derivatives described on pages 65 to 66 of WO2014/171349, and WO2011/132751. And the crosslinkable compounds of the formulas [6-1] to [6-48] listed on pages 62 to 66.
 液晶配向処理剤における架橋性化合物の含有量は、液晶配向処理剤に含まれる全ての重合体成分100質量部に対して、0.1~100質量部が好ましい。架橋反応が進行し、目的の効果を発現させるためには、すべての重合体成分100質量部に対して0.1~50質量部がより好ましく、最も好ましいのは、1~30質量部である。
 液晶配向処理剤には、液晶配向処理剤を塗布した際の液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物を用いることができる。更に、液晶配向膜と電極基板との密着性を向上させる化合物などを用いることもできる。
The content of the crosslinkable compound in the liquid crystal alignment treatment agent is preferably 0.1 to 100 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal alignment treatment agent. In order to allow the crosslinking reaction to proceed and to produce the desired effect, 0.1 to 50 parts by mass is more preferable, and 1 to 30 parts by mass is most preferable, relative to 100 parts by mass of all polymer components. ..
As the liquid crystal alignment treatment agent, a compound that improves the film thickness uniformity and the surface smoothness of the liquid crystal alignment film when the liquid crystal alignment treatment agent is applied can be used. Further, a compound or the like that improves the adhesiveness between the liquid crystal alignment film and the electrode substrate can be used.
 液晶配向膜の膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、又はノ二オン系界面活性剤などが挙げられる。具体的には、国際公開公報WO2014/171493の67頁に記載される界面活性剤が挙げられる。また、その使用割合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して、0.01~2質量部が好ましい。より好ましいのは、0.01~1質量部である。 Compounds that improve the film thickness uniformity and surface smoothness of the liquid crystal alignment film include fluorine-based surfactants, silicone-based surfactants, and nonion-based surfactants. Specific examples thereof include the surfactants described on page 67 of International Publication WO2014/171493. Further, the use ratio thereof is preferably 0.01 to 2 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal alignment treatment agent. More preferably, it is 0.01 to 1 part by mass.
 液晶配向膜と電極基板との密着性を向上させる化合物の具体例は、国際公開公報WO2014/171493の67頁~69頁に記載される化合物が挙げられる。また、その使用割合は、液晶配向処理剤に含有されるすべての重合体成分100質量部に対して、0.1~30質量部が好ましい。より好ましいのは、1~20質量部である。
 液晶配向処理剤には、前記以外の化合物の他に、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
Specific examples of the compound that improves the adhesiveness between the liquid crystal alignment film and the electrode substrate include the compounds described on pages 67 to 69 of International Publication WO2014/171493. Further, the use ratio thereof is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of all polymer components contained in the liquid crystal alignment treatment agent. More preferably, it is 1 to 20 parts by mass.
In addition to the compounds other than the above, a liquid crystal alignment treatment agent may be added with a dielectric or a conductive substance for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film.
<液晶配向膜・液晶表示素子>
 液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、液晶配向膜として用いることができる。また、垂直配向用途などの場合では配向処理なしでも液晶配向膜として用いることができる。
<Liquid crystal alignment film/liquid crystal display element>
The liquid crystal alignment treatment agent can be used as a liquid crystal alignment film by applying alignment treatment by rubbing treatment or light irradiation after coating and baking on the substrate. Further, in the case of vertical alignment applications, it can be used as a liquid crystal alignment film without alignment treatment.
 この際に用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板、ポリカーボネート基板、PET(ポリエチレンテレフタレート)基板などのプラスチック基板、更には、それらのフィルムを用いることができる。また、プロセスの簡素化の観点からは、液晶駆動のためのITO電極、IZO(Indium Zinc Oxide)電極及びIGZO(Indium Gallium Zinc Oxide)電極などの金属電極、及び有機導電膜などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子とする場合には、片側の基板のみにならば、シリコンウエハやアルミニウムなどの金属や誘電体多層膜が形成された基板を使用できる。 The substrate used in this case is not particularly limited as long as it is a highly transparent substrate, and in addition to glass substrates, acrylic substrates, polycarbonate substrates, plastic substrates such as PET (polyethylene terephthalate) substrates, and further films thereof. Can be used. From the viewpoint of simplifying the process, a substrate on which an ITO electrode for driving a liquid crystal, a metal electrode such as an IZO (Indium Zinc Oxide) electrode and an IGZO (Indium Gallium Zinc Oxide) electrode, and an organic conductive film are formed. Is preferably used. Further, in the case of a reflective liquid crystal display element, if only one substrate is used, a substrate such as a silicon wafer or a metal such as aluminum or a substrate on which a dielectric multilayer film is formed can be used.
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷又はインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法又はスプレー法などがあり、目的に応じてこれらを用いてもよい。
 液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどの加熱手段により、液晶配向処理剤に用いる溶媒に応じて、30~300℃、好ましくは30~250℃の温度で溶媒を蒸発させて液晶配向膜とすることができる。
The method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, a method such as screen printing, offset printing, flexographic printing or an inkjet method is generally used. Other coating methods include a dip method, a roll coater method, a slit coater method, a spinner method or a spray method, and these may be used depending on the purpose.
After applying the liquid crystal alignment treatment agent on the substrate, it is preferably heated at 30 to 300° C., depending on the solvent used for the liquid crystal alignment treatment agent, by a heating means such as a hot plate, a heat circulation type oven or an IR (infrared) type oven. Can be used as a liquid crystal alignment film by evaporating the solvent at a temperature of 30 to 250° C.
 焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~200nmである。
 液晶を水平配向や傾斜配向させる場合は、焼成後の液晶配向膜をラビング又は偏光紫外線照射などで処理する。
 液晶表示素子に用いる液晶は、特に限定されないが、例えば、ネマチック液晶、スメクチック液晶又はコレステリック液晶を用いることができる。その際、液晶表示素子の方式に応じて、正又は負の誘電異方性を有する液晶を選択できる。また、液晶中に二色性染料を溶解させてゲストホスト型の液晶表示素子とすることもできる。
If the thickness of the liquid crystal alignment film after firing is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display device, and if it is too thin, the reliability of the liquid crystal display device may be deteriorated. Is 10 to 200 nm.
When the liquid crystal is horizontally or tilted, the liquid crystal alignment film after firing is treated by rubbing or irradiation with polarized ultraviolet light.
The liquid crystal used for the liquid crystal display element is not particularly limited, but for example, nematic liquid crystal, smectic liquid crystal or cholesteric liquid crystal can be used. At that time, a liquid crystal having a positive or negative dielectric anisotropy can be selected according to the method of the liquid crystal display element. Alternatively, a dichroic dye may be dissolved in the liquid crystal to form a guest-host type liquid crystal display device.
 液晶の注入方法は、特に限定されないが、例えば、次の方法が挙げられる。即ち、液晶配向膜が形成された一対の基板を用意し、片側の基板の4片を、一部分を除いてシール剤を塗布し、その後、液晶配向膜面が内側になるようにして、もう片側の基板を貼り合わせた空セルを作製する。そして、シール剤が塗布されていない場所から液晶を減圧注入して、液晶注入セルを得る方法が挙げられる。更に、液晶配向膜が形成された一対の基板を用意し、片側の基板の上にODF(One Drop Filling)法やインクジェット法などで、液晶を滴下し、その後、もう片側の基板を貼り合わせて、液晶注入セルを得る方法も挙げられる。 The method of injecting the liquid crystal is not particularly limited, but for example, the following method may be mentioned. That is, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and a sealant is applied to all four of the substrates on one side except for a part thereof, and then the liquid crystal alignment film surface is placed inside and the other side is applied. An empty cell in which the above substrates are bonded together is produced. Then, a method of injecting liquid crystal under reduced pressure from a place where the sealant is not applied to obtain a liquid crystal injection cell can be mentioned. Furthermore, prepare a pair of substrates on which a liquid crystal alignment film is formed, drop the liquid crystal on one substrate by ODF (One Drop Filling) method or inkjet method, and then bond the other substrate. Another method is to obtain a liquid crystal injection cell.
 液晶表示素子のギャップ制御の方法は、特に限定されないが、例えば、液晶中に目的とする大きさのスペーサーを導入する方法、目的とする大きさのカラムスペーサーを有する基板上に塗布する方法、目的とする大きさのカラムスペーサーを含む液晶を用いる方法などが挙げられる。
 液晶表示素子のギャップの大きさは、1~100μmが好ましく、より好ましくは、1~50μmであり、特に好ましくは、2~30μmである。ギャップが小さすぎると、液晶表示素子のコントラストが低下し、大きすぎると、素子の駆動電圧が高くなる。
The method of controlling the gap of the liquid crystal display device is not particularly limited, for example, a method of introducing a spacer of a desired size in the liquid crystal, a method of coating on a substrate having a column spacer of the desired size, the purpose A method using a liquid crystal containing a column spacer having a size of
The size of the gap of the liquid crystal display element is preferably 1 to 100 μm, more preferably 1 to 50 μm, and particularly preferably 2 to 30 μm. If the gap is too small, the contrast of the liquid crystal display device will be lowered, and if it is too large, the driving voltage of the device will be high.
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、これらに限定されるものではない。以下で用いる略語は下記の通りである。
「特定化合物」
Figure JPOXMLDOC01-appb-C000014
Hereinafter, the present invention will be described in more detail by way of examples, but the invention is not limited thereto. The abbreviations used below are as follows.
"Specific compound"
Figure JPOXMLDOC01-appb-C000014
<ジアミン成分>
Figure JPOXMLDOC01-appb-C000015
<Diamine component>
Figure JPOXMLDOC01-appb-C000015
<テトラカルボン酸成分>
Figure JPOXMLDOC01-appb-C000016
<Tetracarboxylic acid component>
Figure JPOXMLDOC01-appb-C000016
「架橋性化合物」
Figure JPOXMLDOC01-appb-C000017
"Crosslinkable compound"
Figure JPOXMLDOC01-appb-C000017
「溶媒」
 NMP:N-メチル-2-ピロリドン、 NEP:N-エチル-2-ピロリドン
 BCS:エチレングリコールモノブチルエーテル
 PB:プロピレングリコールモノブチルエーテル
"solvent"
NMP: N-methyl-2-pyrrolidone, NEP: N-ethyl-2-pyrrolidone BCS: ethylene glycol monobutyl ether PB: propylene glycol monobutyl ether
「ポリイミド系重合体の分子量測定」
 常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(KD-803,KD-805)(Shodex社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
"Measurement of molecular weight of polyimide polymer"
The measurement was performed as follows using a room temperature gel permeation chromatography (GPC) device (GPC-101) (manufactured by Showa Denko KK) and a column (KD-803, KD-805) (manufactured by Shodex).
Column temperature: 50°C
Eluent: N,N'-dimethylformamide (additional lithium bromide hydrate (LiBr.H 2 O) 30 mmol/L (liter), phosphoric acid/anhydrous crystal (o-phosphoric acid) 30 mmol) /L, tetrahydrofuran (THF) 10ml/L)
Flow rate: 1.0 ml/min Standard sample for preparing calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (manufactured by Tosoh Corporation) and polyethylene glycol (molecular weight; about) 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
「ポリイミド系重合体のイミド化率の測定」
 ポリイミド粉末20mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学社製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品)(0.53ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
 イミド化率(%)=(1-α・x/y)×100
(xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。)
"Measurement of imidization ratio of polyimide polymer"
20 mg of polyimide powder was put in an NMR (nuclear magnetic resonance) sample tube (NMR sampling tube standard, φ5 (Kusano Scientific Co., Ltd.)), and deuterated dimethyl sulfoxide (DMSO-d6, 0.05 mass% TMS (tetramethylsilane) was added. (Mixture) (0.53 ml) was added and ultrasonic waves were applied to completely dissolve. This solution was measured for proton NMR at 500 MHz with an NMR measuring device (JNW-ECA500) (manufactured by JEOL Datum). The imidization ratio is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and the peak integrated value of this proton and the proton peak derived from the NH group of amic acid that appears near 9.5 ppm to 10.0 ppm. It was calculated by the following formula using the integrated value.
Imidization rate (%)=(1-α·x/y)×100
(X is a proton peak integrated value derived from NH group of amic acid, y is a peak integrated value of reference proton, α is a reference proton for one NH group proton of amic acid in the case of polyamic acid (imidization rate is 0%) Is the proportion of the number of.)
「ポリイミド系重合体の合成」
<合成例1>
 C1(2.50g,12.7mmol)及びB2(2.65g,13.4mmol)をNMP(15.5g)中で混合し、25℃で8時間反応させ、樹脂固形分濃度25質量%のポリアミド酸溶液(1)を得た。このポリアミド酸の数平均分子量(Mnともいう。)は28,200、重量平均分子量(Mwともいう。)は85,300であった。
"Synthesis of polyimide polymers"
<Synthesis example 1>
C1 (2.50 g, 12.7 mmol) and B2 (2.65 g, 13.4 mmol) were mixed in NMP (15.5 g) and reacted at 25° C. for 8 hours to give a polyamide having a resin solid content concentration of 25% by mass. An acid solution (1) was obtained. The number average molecular weight (also referred to as Mn) of this polyamic acid was 28,200, and the weight average molecular weight (also referred to as Mw) was 85,300.
<合成例2>
 C1(2.50g,12.7mmol)及びB2(2.40g,12.1mmol)をNMP(14.7g)中で混合し、25℃で8時間反応させ、樹脂固形分濃度25質量%のポリアミド酸溶液(2)を得た。このポリアミド酸の数平均分子量(Mnともいう。)は30,600、重量平均分子量(Mwともいう。)は89,500であった。
<Synthesis example 2>
C1 (2.50 g, 12.7 mmol) and B2 (2.40 g, 12.1 mmol) were mixed in NMP (14.7 g) and reacted at 25° C. for 8 hours to give a polyamide having a resin solid content concentration of 25% by mass. An acid solution (2) was obtained. The number average molecular weight (also referred to as Mn) of this polyamic acid was 30,600, and the weight average molecular weight (also referred to as Mw) was 89,500.
<合成例3>
 C2(2.04g,8.15mmol)及びB3(5.55g,19.4mmol)をNMP(20.0g)中で混合し、60℃で4時間反応させた後、C1(2.40g,12.2mmol)とNMP(10.0g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(3)を得た。このポリアミド酸のMnは26,900、Mwは77,500であった。
<Synthesis example 3>
C2 (2.04 g, 8.15 mmol) and B3 (5.55 g, 19.4 mmol) were mixed in NMP (20.0 g) and reacted at 60° C. for 4 hours, and then C1 (2.40 g, 12). .2 mmol) and NMP (10.0 g) were added and reacted at 40° C. for 6 hours to obtain a polyamic acid solution (3) having a resin solid content concentration of 25 mass %. The Mn of this polyamic acid was 26,900 and the Mw was 77,500.
<合成例4>
 合成例3で得られたポリアミド酸溶液(3)(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.50g)及びピリジン(1.90g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(500ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(4)を得た。このポリイミドのイミド化率は55%であり、Mnは23,300、Mwは59,800であった。
<Synthesis example 4>
After adding NMP to the polyamic acid solution (3) (20.0 g) obtained in Synthesis Example 3 and diluting it to 6% by mass, acetic anhydride (2.50 g) and pyridine (1.90 g) were added as imidization catalysts. The mixture was reacted at 80°C for 3 hours. The deposit obtained by throwing in this reaction solution in methanol (500 ml) was separated by filtration. Methanol wash|cleaned this deposit, it dried under reduced pressure at 100 degreeC, and the polyimide powder (4) was obtained. The imidation ratio of this polyimide was 55%, Mn was 23,300, and Mw was 59,800.
<合成例5>
 C2(2.30g,9.19mmol)、B1(1.56g,14.4mmol)及びB4(3.67g,9.64mmol)をNMP(20.5g)中で混合し、80℃で4時間反応させた後、C1(2.70g,13.8mmol)とNMP(10.2g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(5)を得た。このポリアミド酸のMnは21,800、Mwは62,300であった。
<Synthesis example 5>
C2 (2.30 g, 9.19 mmol), B1 (1.56 g, 14.4 mmol) and B4 (3.67 g, 9.64 mmol) were mixed in NMP (20.5 g) and reacted at 80° C. for 4 hours. After that, C1 (2.70 g, 13.8 mmol) and NMP (10.2 g) were added and reacted at 40° C. for 6 hours to obtain a polyamic acid solution (5) having a resin solid content concentration of 25 mass %. .. The Mn of this polyamic acid was 21,800 and the Mw was 62,300.
<合成例6>
 C2(2.38g,9.51mmol)、B1(1.47g,13.6mmol)及びB4(3.44g,9.04mmol)をNMP(20.2g)中で混合し、80℃で4時間反応させた後、C1(2.80g,14.3mmol)とNMP(10.1g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(6)を得た。このポリアミド酸のMnは23,100、Mwは68,000であった。
<Synthesis example 6>
C2 (2.38 g, 9.51 mmol), B1 (1.47 g, 13.6 mmol) and B4 (3.44 g, 9.04 mmol) were mixed in NMP (20.2 g) and reacted at 80° C. for 4 hours. After that, C1 (2.80 g, 14.3 mmol) and NMP (10.1 g) were added and reacted at 40° C. for 6 hours to obtain a polyamic acid solution (6) having a resin solid content concentration of 25 mass %. .. The Mn of this polyamic acid was 23,100 and the Mw was 68,000.
<合成例7>
 合成例6で得られたポリアミド酸溶液(6)(20.0g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(2.55g)及びピリジン(1.95g)を加え、80℃で4時間反応させた。この反応溶液をメタノール(500ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥してポリイミド粉末(7)を得た。このポリイミドのイミド化率は62%であり、Mnは21,400、Mwは49,700であった。
<Synthesis example 7>
NMP was added to the polyamic acid solution (6) (20.0 g) obtained in Synthesis Example 6 to dilute it to 6% by mass, and then acetic anhydride (2.55 g) and pyridine (1.95 g) were added as imidization catalysts. The mixture was reacted at 80°C for 4 hours. The deposit obtained by throwing in this reaction solution in methanol (500 ml) was separated by filtration. Methanol wash|cleaned this deposit, it dried under reduced pressure at 100 degreeC, and the polyimide powder (7) was obtained. The imidation ratio of this polyimide was 62%, Mn was 21,400 and Mw was 49,700.
<合成例8>
 C2(2.47g,9.87mmol)、B1(1.52g,14.1mmol)、B2(0.93g,4.69mmol)及びB5(2.31g,4.69mmol)をNMP(20.2g)中で混合し、80℃で6時間反応させた後、C1(2.90g,14.8mmol)とNMP(10.1g)を加え、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(8)を得た。このポリアミド酸のMnは23,700、Mwは69,100であった。
<Synthesis example 8>
NMP (20.2g) of C2 (2.47g, 9.87mmol), B1 (1.52g, 14.1mmol), B2 (0.93g, 4.69mmol) and B5 (2.31g, 4.69mmol). After mixing in and reacting at 80° C. for 6 hours, C1 (2.90 g, 14.8 mmol) and NMP (10.1 g) were added and reacted at 40° C. for 6 hours to give a resin solid content concentration of 25 mass. % Polyamic acid solution (8) was obtained. The Mn of this polyamic acid was 23,700 and the Mw was 69,100.
<合成例9>
 C3(5.20g,23.2mmol)、B1(1.43g,13.2mmol)及びB4(3.35g,8.80mmol)をNMP(30.4g)中で混合し、40℃で4時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(9)を得た。このポリアミド酸のMnは26,800、Mwは77,200であった。
<Synthesis example 9>
C3 (5.20 g, 23.2 mmol), B1 (1.43 g, 13.2 mmol) and B4 (3.35 g, 8.80 mmol) were mixed in NMP (30.4 g) and reacted at 40° C. for 4 hours. Thus, a polyamic acid solution (9) having a resin solid content concentration of 25 mass% was obtained. The Mn of this polyamic acid was 26,800 and the Mw was 77,200.
<合成例10>
 C3(5.40g,24.1mmol)、B1(1.73g,16.0mmol)、B2(0.45g,2.27mmol)及びB5(2.26g,4.59mmol)をNMP(29.5g)中で混合し、40℃で6時間反応させ、樹脂固形分濃度が25質量%のポリアミド酸溶液(10)を得た。このポリアミド酸のMnは23,100、Mwは70,900であった。
<Synthesis example 10>
N3 (29.5 g) of C3 (5.40 g, 24.1 mmol), B1 (1.73 g, 16.0 mmol), B2 (0.45 g, 2.27 mmol) and B5 (2.26 g, 4.59 mmol). The mixture was mixed in and reacted at 40° C. for 6 hours to obtain a polyamic acid solution (10) having a resin solid content concentration of 25 mass %. The Mn of this polyamic acid was 23,100 and the Mw was 70,900.
<合成例11>
 窒素雰囲気下、B2(0.43g,2.17mmol)、B3(2.50g,8.73mmol)、ピリジン(2.15g)及びNMP(34.8g)を加え、撹拌して溶解させ、C4(3.20g,10.8mmol)を加え、15℃で15時間反応させた。その後、アクリロイルクロリド(0.05g)を加え、15℃で4時間反応させた。この反応溶液を水(500g)中に投入し、得られた沈殿物を濾別した。この沈殿物をイソプロピルアルコールで洗浄し、100℃で減圧乾燥してポリアミド酸アルキルエステル粉末(11)を得た。このポリアミド酸アルキルエステルのMnは20,200、Mwは41,200であった。
<Synthesis example 11>
Under a nitrogen atmosphere, B2 (0.43 g, 2.17 mmol), B3 (2.50 g, 8.73 mmol), pyridine (2.15 g) and NMP (34.8 g) were added, and the mixture was stirred to dissolve, and C4( 3.20 g, 10.8 mmol) was added, and the mixture was reacted at 15° C. for 15 hours. Then, acryloyl chloride (0.05 g) was added, and the mixture was reacted at 15° C. for 4 hours. The deposit obtained by throwing in this reaction solution in water (500g) was separated by filtration. The precipitate was washed with isopropyl alcohol and dried under reduced pressure at 100° C. to obtain polyamic acid alkyl ester powder (11). The Mn of this polyamic acid alkyl ester was 20,200 and the Mw was 41,200.
 合成例で得られたポリイミド系重合体を表1に示す。
Figure JPOXMLDOC01-appb-T000018
*1:ポリアミド酸。   *2:ポリアミド酸アルキルエステル。
Table 1 shows the polyimide-based polymers obtained in the synthesis examples.
Figure JPOXMLDOC01-appb-T000018
*1: Polyamic acid. *2: Polyamic acid alkyl ester.
「液晶配向処理剤の製造」
 下記する実施例1~14及び比較例1~4では、液晶配向処理剤の製造例を記載する。また、この液晶配向処理剤は、評価のためにも使用される。
 得られた液晶配向処理剤を表2~表4に示す。
「液晶配向処理剤の保存安定性試験」
 実施例及び比較例で得られた液晶配向処理剤を用いて、保存安定性試験を行った。具体的には、液晶配向処理剤を細孔径1μmのメンブランフィルタで加圧濾過し、-15℃で72時間保管した。その後、目視観察にて、液晶配向処理剤中の濁りや析出物の発生を確認した。その結果、実施例及び比較例のすべての液晶配向処理剤は、濁りや析出物が見られず、均一な溶液であった。
"Manufacture of liquid crystal alignment treatment agents"
In Examples 1 to 14 and Comparative Examples 1 to 4 described below, production examples of liquid crystal alignment treatment agents will be described. The liquid crystal alignment treatment agent is also used for evaluation.
The obtained liquid crystal alignment treatment agents are shown in Tables 2 to 4.
"Storage stability test for liquid crystal alignment agents"
A storage stability test was conducted using the liquid crystal alignment treatment agents obtained in Examples and Comparative Examples. Specifically, the liquid crystal alignment treatment agent was pressure-filtered with a membrane filter having a pore size of 1 μm and stored at −15° C. for 72 hours. Then, by visual observation, it was confirmed that turbidity and precipitates were generated in the liquid crystal alignment treatment agent. As a result, all the liquid crystal alignment treatment agents of Examples and Comparative Examples were uniform solutions without turbidity or precipitates.
「密着性の評価」
 実施例及び比較例で得られた液晶配向処理剤を、純水で洗浄した100mm×100mmのITO電極付きPET基板(縦:100mm、横:100mm、厚さ:0.1mm)のITO面上にスピンコートにて塗布をし、ホットプレート上にて120℃で2分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。この液晶配向膜付きのITO基板を2枚用意し、それぞれ、100×20mm(縦×横)の大きさに切り取った。
"Adhesion evaluation"
The liquid crystal alignment treatment agents obtained in Examples and Comparative Examples were applied on the ITO surface of a 100 mm×100 mm PET electrode-attached PET substrate (length: 100 mm, width: 100 mm, thickness: 0.1 mm) washed with pure water. Application was performed by spin coating, and heat treatment was performed on a hot plate at 120° C. for 2 minutes to obtain an ITO substrate with a liquid crystal alignment film having a thickness of 100 nm. Two ITO substrates with the liquid crystal alignment film were prepared and cut into a size of 100×20 mm (length×width).
 次に、一方の基板の液晶配向膜面に6μmのスペーサを塗布し、もう一方の基板の液晶配向膜面上には、シール剤(723K1、協立化学産業社製)を塗布し、これらの基板の液晶配向膜面が向き合うように貼り合わせを行った。その際、シール剤の塗布量は、貼り合わせ後のシール剤の面積が5×50mm(縦×横)になるように調整した。その後、貼り合わせ後の基板に、照度20mW/cmのメタルハライドランプを用いて、365nmの波長換算で3J/cm2の紫外線を照射し、その後、熱循環型クリーンオーブンにて120℃で60分間加熱処理をして、密着性の評価用のセルを作製した。
 密着性の評価は、卓上型精密万能試験機(AGS-X 500N、島津製作所社製)を用いて行った。具体的には、得られたセルの上下の端の部分を固定した後、上下方向に引っ張った際の破断強度(N)を測定した。評価は、破断強度の値が大きいものほど密着性に優れる、即ち、本評価に優れるとした。
 表5~表7中に結果を示す。
Next, a 6 μm spacer is applied to the liquid crystal alignment film surface of one substrate, and a sealant (723K1, manufactured by Kyoritsu Chemical Industry Co., Ltd.) is applied to the liquid crystal alignment film surface of the other substrate. The bonding was performed so that the liquid crystal alignment film surfaces of the substrates face each other. At that time, the application amount of the sealing agent was adjusted so that the area of the sealing agent after the bonding was 5×50 mm (length×width). Then, the bonded substrates are irradiated with 3 J/cm 2 of ultraviolet rays at a wavelength of 365 nm by using a metal halide lamp with an illuminance of 20 mW/cm 2 , and then heated at 120° C. for 60 minutes in a heat circulation type clean oven. After the treatment, a cell for evaluation of adhesion was produced.
The evaluation of the adhesiveness was performed using a tabletop precision universal testing machine (AGS-X 500N, manufactured by Shimadzu Corporation). Specifically, after fixing the upper and lower ends of the obtained cell, the breaking strength (N) when pulled in the vertical direction was measured. In the evaluation, the larger the value of the breaking strength, the more excellent the adhesion is, that is, the more excellent this evaluation is.
The results are shown in Tables 5 to 7.
「液晶表示素子の作製及び恒温恒湿耐性の評価」
 実施例及び比較例で得られた液晶配向処理剤を、細孔径1μmのメンブランフィルタで加圧濾過し、純水及びIPAにて洗浄を行ったITO電極付き基板(縦40mm×横30mm、厚さ0.7mm)のITO面にスピンコートし、ホットプレート上にて120℃で2分間、熱循環型クリーンオーブンにて230℃で30分間加熱処理をして、膜厚が100nmの液晶配向膜付きのITO基板を得た。次に、この基板の液晶配向膜面をロール径が120mmのラビング装置で、レーヨン布を用いて、ロール回転数が500rpm、ロール進行速度が30mm/sec、押し込み量が0.3mmの条件でラビング処理した。
"Production of liquid crystal display element and evaluation of constant temperature and humidity resistance"
The liquid crystal alignment treatment agents obtained in Examples and Comparative Examples were pressure-filtered with a membrane filter having a pore size of 1 μm, and washed with pure water and IPA. A substrate with ITO electrodes (length 40 mm×width 30 mm, thickness) (0.7 mm) ITO surface is spin-coated, and heat-treated at 120° C. for 2 minutes on a hot plate and at 230° C. for 30 minutes in a heat circulation type clean oven to have a liquid crystal alignment film with a thickness of 100 nm. The ITO substrate of was obtained. Next, the liquid crystal alignment film surface of this substrate was rubbed with a rubbing device having a roll diameter of 120 mm under the conditions of a roll rotation speed of 500 rpm, a roll advancing speed of 30 mm/sec, and a pushing amount of 0.3 mm. Processed.
 その後、ラビング処理後の基板を2枚用意し、一方の基板の液晶配向膜面に4μmのスペーサを塗布し、もう一方の基板の4辺の液晶配向膜面上には、シール剤(XN-1500T)(協立化学産業社製)を塗布し、これらの基板の液晶配向膜面が向き合うように貼り合わせを行った。その際、それぞれの基板のラビング方向が逆方向になるように貼り合わせた。次に、熱循環型クリーンオーブンにて120℃で90分間加熱処理をして、空セルを作製した。この空セルに減圧注入法によって液晶を注入し、注入口を封止して液晶セルを得た。なお、実施例1~5、14、比較例1、2では、液晶にポジ型液晶(MLC-2003)(メルク社製)を用い、実施例6~13、比較例3、4では、液晶にネガ型液晶(MLC-6608、メルク社製)を用いた。 Then, two substrates after the rubbing treatment are prepared, a spacer of 4 μm is applied to the liquid crystal alignment film surface of one substrate, and a sealant (XN- 1500T) (manufactured by Kyoritsu Kagaku Sangyo Co., Ltd.) was applied, and the substrates were laminated so that the liquid crystal alignment film surfaces of these substrates face each other. At that time, the substrates were laminated so that the rubbing directions of the substrates were opposite to each other. Next, heat treatment was performed at 120° C. for 90 minutes in a heat circulation type clean oven to prepare an empty cell. Liquid crystal was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain a liquid crystal cell. In Examples 1 to 5 and 14 and Comparative Examples 1 and 2, a positive type liquid crystal (MLC-2003) (manufactured by Merck) was used as the liquid crystal, and in Examples 6 to 13 and Comparative Examples 3 and 4, the liquid crystal was used. Negative liquid crystal (MLC-6608, manufactured by Merck) was used.
 偏光顕微鏡(ECLIPSE E600WPOL、ニコン社製)による観察より、実施例及び比較例で得られたすべての液晶セルとも、均一な液晶配向性を示していることを確認した。
 その後、液晶セルを温度80℃、湿度90%RHの恒温恒湿槽内に48時間保管し、液晶セルの剥離と気泡の有無を確認した。具体的には、液晶セルの剥離(液晶配向膜とシール剤との間、及び液晶配向膜とITO電極との間で剥がれている状態)が起こっていないもの、及び液晶セル内に気泡が発生していないものを、本評価に優れるとした(表中の良好表示)。その際、実施例1~3、6~9、11、12においては、前記の標準試験に加え、強調試験として、温度80℃、湿度90%RHの恒温恒湿槽内に144時間保管した後の確認も行った。なお、評価方法は前記と同様である。
 表5~表7中に、結果を示す。
From observation with a polarization microscope (ECLIPSE E600WPOL, manufactured by Nikon Corporation), it was confirmed that all the liquid crystal cells obtained in Examples and Comparative Examples exhibited uniform liquid crystal alignment.
Then, the liquid crystal cell was stored in a constant temperature and constant humidity chamber at a temperature of 80° C. and a humidity of 90% RH for 48 hours, and peeling of the liquid crystal cell and the presence or absence of bubbles were confirmed. Specifically, the liquid crystal cell is not peeled (a state where it is peeled between the liquid crystal alignment film and the sealant and between the liquid crystal alignment film and the ITO electrode), and bubbles are generated in the liquid crystal cell. Those which were not evaluated were considered to be excellent in this evaluation (good display in the table). At that time, in Examples 1 to 3, 6 to 9, 11, and 12, in addition to the standard test described above, as an emphasized test, after storing for 144 hours in a constant temperature and humidity chamber at a temperature of 80° C. and a humidity of 90% RH, I also checked. The evaluation method is the same as above.
The results are shown in Tables 5 to 7.
<実施例1>
 合成例1で得られたポリアミド酸溶液(1)(10.0g)に、A1(0.20g)、NMP(23.8g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(1)を得た。
<実施例2>
 合成例2で得られたポリアミド酸溶液(2)(10.0g)に、A1(0.20g)、NMP(23.8g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(2)を得た。
<Example 1>
A1 (0.20 g), NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (1) (10.0 g) obtained in Synthesis Example 1, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (1) was obtained.
<Example 2>
A1 (0.20 g), NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (2) (10.0 g) obtained in Synthesis Example 2, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (2) was obtained.
<実施例3>
 合成例2で得られたポリアミド酸溶液(2)(10.0g)に、A1(0.20g)、K2(0.13g)、NMP(23.8g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(3)を得た。
<実施例4>
 合成例3で得られたポリアミド酸溶液(3)(10.0g)に、A1(0.13g)、NMP(19.9g)及びBCS(11.8g)を加え、25℃で15時間撹拌して、液晶配向処理剤(4)を得た。
<Example 3>
A1 (0.20 g), K2 (0.13 g), NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (2) (10.0 g) obtained in Synthesis Example 2, The mixture was stirred at 25°C for 15 hours to obtain a liquid crystal alignment treatment agent (3).
<Example 4>
A1 (0.13 g), NMP (19.9 g) and BCS (11.8 g) were added to the polyamic acid solution (3) (10.0 g) obtained in Synthesis Example 3, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (4) was obtained.
<実施例5>
 合成例4で得られたポリイミド粉末(4)(2.50g)に、NEP(31.3g)を加え、60℃で24時間攪拌して溶解させた。この溶液に、A1(0.13g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(5)を得た。
<実施例6>
 合成例5で得られたポリアミド酸溶液(5)(10.0g)に、A1(0.18g)、NMP(16.0g)及びBCS(15.7g)を加え、25℃で15時間撹拌して、液晶配向処理剤(6)を得た。
<Example 5>
NEP (31.3 g) was added to the polyimide powder (4) (2.50 g) obtained in Synthesis Example 4, and the mixture was stirred at 60° C. for 24 hours to be dissolved. A1 (0.13 g) and BCS (7.83 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (5).
<Example 6>
A1 (0.18 g), NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (5) (10.0 g) obtained in Synthesis Example 5, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (6) was obtained.
<実施例7>
 合成例6で得られたポリアミド酸溶液(6)(10.0g)に、A1(0.18g)、NMP(16.0g)及びBCS(15.7g)を加え、25℃で15時間撹拌して、液晶配向処理剤(7)を得た。
<実施例8>
 合成例7で得られたポリイミド粉末(7)(2.50g)に、NEP(23.5g)を加え、60℃で24時間攪拌して溶解させた。この溶液に、A1(0.13g)、BCS(7.83g)及びPB(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(8)を得た。
<Example 7>
A1 (0.18 g), NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (6) (10.0 g) obtained in Synthesis Example 6, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (7) was obtained.
<Example 8>
NEP (23.5 g) was added to the polyimide powder (7) (2.50 g) obtained in Synthesis Example 7, and the mixture was stirred at 60° C. for 24 hours to be dissolved. A1 (0.13 g), BCS (7.83 g) and PB (7.83 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (8).
<実施例9>
 合成例7で得られたポリイミド粉末(7)(2.50g)に、NEP(23.5g)を加え、60℃で24時間攪拌して溶解させた。この溶液に、A1(0.13g)、K1(0.18g)、BCS(7.83g)及びPB(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(9)を得た。
<実施例10>
 合成例8で得られたポリアミド酸溶液(8)(10.0g)に、A1(0.08g)、NMP(12.1g)、BCS(11.8g)及びPB(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(10)を得た。
<Example 9>
NEP (23.5 g) was added to the polyimide powder (7) (2.50 g) obtained in Synthesis Example 7, and the mixture was stirred at 60° C. for 24 hours to be dissolved. A1 (0.13 g), K1 (0.18 g), BCS (7.83 g) and PB (7.83 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to prepare a liquid crystal alignment treatment agent (9). Got
<Example 10>
A1 (0.08 g), NMP (12.1 g), BCS (11.8 g) and PB (7.83 g) were added to the polyamic acid solution (8) (10.0 g) obtained in Synthesis Example 8, The mixture was stirred at 25°C for 15 hours to obtain a liquid crystal alignment treatment agent (10).
<実施例11>
 合成例9で得られたポリアミド酸溶液(9)(10.0g)に、A1(0.25g)、NMP(16.0g)及びBCS(15.7g)を加え、25℃で15時間撹拌して、液晶配向処理剤(11)を得た。
<実施例12>
 合成例9で得られたポリアミド酸溶液(9)(10.0g)に、A1(0.25g)、K2(0.08g)、NMP(16.0g)及びBCS(15.7g)を加え、25℃で15時間撹拌して、液晶配向処理剤(12)を得た。
<Example 11>
A1 (0.25 g), NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (9) (10.0 g) obtained in Synthesis Example 9, and the mixture was stirred at 25° C. for 15 hours. Thus, a liquid crystal alignment treatment agent (11) was obtained.
<Example 12>
To the polyamic acid solution (9) (10.0 g) obtained in Synthesis Example 9, A1 (0.25 g), K2 (0.08 g), NMP (16.0 g) and BCS (15.7 g) were added, The mixture was stirred at 25°C for 15 hours to obtain a liquid crystal alignment treatment agent (12).
<実施例13>
 合成例10で得られたポリアミド酸溶液(10)(10.0g)に、A1(0.08g)、K1(0.18g)、NMP(16.0g)、BCS(7.83g)及びPB(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(13)を得た。
<実施例14>
 合成例11で得られたポリアミド酸アルキルエステル粉末(11)(2.50g)に、NMP(31.3g)を加え、40℃で24時間攪拌して溶解させた。この溶液に、A1(0.13g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(14)を得た。
<Example 13>
In the polyamic acid solution (10) (10.0 g) obtained in Synthesis Example 10, A1 (0.08 g), K1 (0.18 g), NMP (16.0 g), BCS (7.83 g) and PB( 7.83 g) was added and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (13).
<Example 14>
NMP (31.3 g) was added to the polyamic acid alkyl ester powder (11) (2.50 g) obtained in Synthesis Example 11 and dissolved by stirring at 40° C. for 24 hours. A1 (0.13 g) and BCS (7.83 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (14).
<比較例1>
 合成例1で得られたポリアミド酸溶液(1)(10.0g)に、NMP(23.8g)及びBCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(15)を得た。
<比較例2>
 合成例4で得られたポリイミド粉末(4)(2.50g)に、NEP(31.3g)を加え、60℃で24時間攪拌して溶解させた。この溶液に、BCS(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(16)を得た。
<Comparative Example 1>
NMP (23.8 g) and BCS (7.83 g) were added to the polyamic acid solution (1) (10.0 g) obtained in Synthesis Example 1, and the mixture was stirred at 25° C. for 15 hours to prepare a liquid crystal alignment treatment agent ( 15) was obtained.
<Comparative example 2>
NEP (31.3 g) was added to the polyimide powder (4) (2.50 g) obtained in Synthesis Example 4, and the mixture was stirred at 60° C. for 24 hours to be dissolved. BCS (7.83 g) was added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (16).
<比較例3>
 合成例5で得られたポリアミド酸溶液(5)(10.0g)に、NMP(16.0g)及びBCS(15.7g)を加え、25℃で15時間撹拌して、液晶配向処理剤(17)を得た。
<比較例4>
 合成例7で得られたポリイミド粉末(7)(2.50g)に、NEP(23.5g)を加え、60℃で24時間攪拌して溶解させた。この溶液に、BCS(7.83g)及びPB(7.83g)を加え、25℃で15時間撹拌して、液晶配向処理剤(18)を得た。
<Comparative example 3>
NMP (16.0 g) and BCS (15.7 g) were added to the polyamic acid solution (5) (10.0 g) obtained in Synthesis Example 5, and the mixture was stirred at 25° C. for 15 hours to prepare a liquid crystal alignment treatment agent ( 17) was obtained.
<Comparative example 4>
NEP (23.5 g) was added to the polyimide powder (7) (2.50 g) obtained in Synthesis Example 7, and the mixture was stirred at 60° C. for 24 hours to be dissolved. BCS (7.83 g) and PB (7.83 g) were added to this solution, and the mixture was stirred at 25° C. for 15 hours to obtain a liquid crystal alignment treatment agent (18).
<実施例1~14及び比較例1~4>
 上記で得られた液晶配向処理剤(1)~(18)を用いて、上述の条件で、「密着性の評価」及び「液晶表示素子の作製及び恒温恒湿耐性の評価」を行った。
 なお、液晶配向処理剤(1)~(18)には、いずれも、濁りや析出などの異常は見られず、均一な溶液であることが確認された。
<Examples 1 to 14 and Comparative Examples 1 to 4>
Using the liquid crystal alignment treatment agents (1) to (18) obtained above, "adhesion evaluation" and "production of liquid crystal display element and evaluation of constant temperature and humidity resistance" were performed under the above conditions.
No abnormalities such as turbidity or precipitation were observed in any of the liquid crystal alignment treatment agents (1) to (18), and it was confirmed that they were uniform solutions.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
*3:重合体100質量部に対する特定化合物の含有量(質量部)を示す。
*4:重合体100質量部に対する架橋性化合物の含有量(質量部)を示す。
Figure JPOXMLDOC01-appb-T000021
*3: Indicates the content (parts by mass) of the specific compound with respect to 100 parts by mass of the polymer.
*4: Indicates the content (parts by mass) of the crosslinkable compound with respect to 100 parts by mass of the polymer.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
*5:素子内に極少量の気泡が見られた。
*6:素子内に少量の気泡が見られた(*5よりも多い)。
*7:素子内に気泡が見られた(*6よりも多い)。
Figure JPOXMLDOC01-appb-T000024
*5: A very small amount of bubbles were found in the device.
*6: A small amount of bubbles were found in the element (more than *5).
*7: Bubbles were found in the element (more than *6).
 上記の結果からわかるように、特定化合物を含む液晶配向処理剤を用いた実施例は、それを含まない液晶配向処理剤の比較例に比べて、密着性に優れ、かつ、液晶セルを、高温高湿下で長期間保管しても、液晶セルの剥離が起こらなかった。具体的には、同一の条件での比較において、実施例1と比較例1との比較、実施例5と比較例2との比較、実施例6と比較例3との比較、及び実施例8と比較例4との比較である。 As can be seen from the above results, the examples using the liquid crystal alignment treatment agent containing the specific compound were excellent in adhesiveness as compared with the comparative examples of the liquid crystal alignment treatment agent not containing it, and the liquid crystal cell was Even when stored under high humidity for a long time, the liquid crystal cell did not peel off. Specifically, in comparison under the same conditions, comparison between Example 1 and Comparative Example 1, comparison between Example 5 and Comparative Example 2, comparison between Example 6 and Comparative Example 3, and Example 8 And Comparative Example 4.
 また、重合体にポリイミド系重合体を用いた場合において、そのポリマ末端がカルボン酸無水物或いはジカルボン酸の構造であるもの、即ち、ジアミン成分とテトラカルボン酸成分の重合反応の際、テトラカルボン酸成分の合計モル数がジアミン成分のモル数よりも大きいものは、ポリマ末端がアミノ基の構造のもの(前記重合反応の際、テトラカルボン酸成分の合計モル数がジアミン成分のモル数よりも小さいもの)に比べて、強調試験における液晶セル内の気泡の発生が抑制された。具体的には、同一の条件での比較において、実施例1と実施例2との比較、及び実施例6と実施例7との比較である。 When a polyimide-based polymer is used as the polymer, the polymer terminal has a structure of a carboxylic acid anhydride or a dicarboxylic acid, that is, during the polymerization reaction of a diamine component and a tetracarboxylic acid component, a tetracarboxylic acid Those in which the total number of moles of the components is larger than the number of moles of the diamine component have a polymer terminal having a structure of an amino group (in the polymerization reaction, the total number of moles of the tetracarboxylic acid component is smaller than the number of moles of the diamine component. The occurrence of bubbles in the liquid crystal cell in the emphasis test was suppressed as compared with that of No. Specifically, in comparison under the same conditions, there are comparison between Example 1 and Example 2 and comparison between Example 6 and Example 7.
 加えて、液晶配向処理剤中に架橋性化合物を導入した場合、強調試験において、液晶セル内に気泡は発生しなかった。具体的には、同一の条件での比較において、実施例2と実施例3との比較、実施例8と実施例9との比較、及び実施例11と実施例12との比較である。 In addition, when a crosslinkable compound was introduced into the liquid crystal alignment treatment agent, no bubbles were generated in the liquid crystal cell in the emphasis test. Specifically, in the comparison under the same conditions, there are a comparison between Example 2 and Example 3, a comparison between Example 8 and Example 9, and a comparison between Example 11 and Example 12.
 本発明の液晶配向処理剤から得られた液晶配向膜を用いることで、液晶表示素子の基板間の接着性が高く、更には、長時間、高温高湿に曝される過酷な環境においても、液晶表示素子内の気泡の発生や素子の剥がれを抑制することができる液晶表示素子は、特に、が得られる。そのため、スマートフォン、携帯電話などのモバイル機器用の液晶表示素子に、好適に用いることができる。
 なお、2018年12月27日に出願された日本特許出願2018-246261号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
By using the liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention, the adhesiveness between the substrates of the liquid crystal display device is high, further, even in a harsh environment exposed to high temperature and high humidity for a long time, The liquid crystal display device capable of suppressing the generation of bubbles in the liquid crystal display device and the peeling of the device is particularly obtained. Therefore, it can be suitably used for a liquid crystal display element for mobile devices such as smartphones and mobile phones.
The entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2018-246261 filed on Dec. 27, 2018 are cited herein as disclosure of the specification of the present invention. , Take in.

Claims (13)

  1.  下記式[1]で表される基を有する化合物を含有することを特徴とする液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000001
    (*は、他の構造との結合部位を表す。)
    A liquid crystal alignment treatment agent comprising a compound having a group represented by the following formula [1].
    Figure JPOXMLDOC01-appb-C000001
    (* represents a binding site with another structure.)
  2.  前記式[1]で表される基を有する化合物が、下記式[1a]で表される化合物である請求項1に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000002
    (Xは、下記式[1-a]~式[1-k]からなる群から選ばれる少なくとも1種を示す。Xは単結合又は炭素数1~18の有機基を示す。Xは前記式[1]を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (Tは炭素数1~3のアルキル基を示す。)
    The liquid crystal alignment treatment agent according to claim 1, wherein the compound having a group represented by the formula [1] is a compound represented by the following formula [1a].
    Figure JPOXMLDOC01-appb-C000002
    (X 1 is represented by the following formula [1-a] ~ formula [1-k] consisting of indicating at least one selected from the group .X 2 represents a single bond or an organic group having a carbon number of 1 ~ 18 .X 3 Represents the above formula [1].
    Figure JPOXMLDOC01-appb-C000003
    (T A represents an alkyl group having 1 to 3 carbon atoms.)
  3.  前記式[1a]で表される化合物が、下式A1で表される化合物である請求項2に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000004
    The liquid crystal alignment treatment agent according to claim 2, wherein the compound represented by the formula [1a] is a compound represented by the following formula A1.
    Figure JPOXMLDOC01-appb-C000004
  4.  アクリルポリマー、メタクリルポリマー、ノボラック樹脂、ポリヒドロキシスチレン、ポリイミド前駆体、ポリイミド、ポリアミド、ポリエステル、セルロース、及びポリシロキサンからなる群から選ばれる少なくとも1種の重合体を含有する請求項1~3のいずれか一項に記載の液晶配向処理剤。 Any one of claims 1 to 3 containing at least one polymer selected from the group consisting of acrylic polymer, methacrylic polymer, novolac resin, polyhydroxystyrene, polyimide precursor, polyimide, polyamide, polyester, cellulose, and polysiloxane. The liquid crystal alignment treatment agent according to item 1.
  5.  ジアミン成分とテトラカルボン酸成分との反応で得られるポリイミド前駆体又は該ポリイミド前駆体をイミド化したポリイミドからなる重合体を含有する請求項1~3のいずれか一項に記載の液晶配向処理剤。 The liquid crystal alignment treatment agent according to any one of claims 1 to 3, containing a polyimide precursor obtained by a reaction of a diamine component and a tetracarboxylic acid component or a polymer made of a polyimide obtained by imidizing the polyimide precursor. ..
  6.  前記ジアミン成分とテトラカルボン酸成分との反応において、ジアミン成分の合計モル数を1.0にした際のテトラカルボン酸成分の合計モル数が1.05~1.20である請求項5に記載の液晶配向処理剤。 The total number of moles of the tetracarboxylic acid component is 1.05 to 1.20 when the total number of moles of the diamine component is 1.0 in the reaction between the diamine component and the tetracarboxylic acid component. Liquid crystal alignment treatment agent.
  7.  前記式[1]で表される基を有する化合物を、前記重合体100質量部に対して、0.1~30質量部含有する請求項4~6のいずれか一項に記載の液晶配向処理剤。 7. The liquid crystal alignment treatment according to claim 4, wherein the compound having a group represented by the formula [1] is contained in an amount of 0.1 to 30 parts by mass based on 100 parts by mass of the polymer. Agent.
  8.  更に、エポキシ基、イソシアネート基、オキセタン基及びシクロカーボネート基から選ばれる架橋性化合物、ヒドロキシル基、ヒドロキシアルキル基及び炭素数1~3のアルコキシアルキル基からなる群から選ばれる架橋性化合物、又は重合性不飽和結合基を有する架橋性化合物から選ばれる少なくとも1種の架橋性化合物を含む請求項1~7のいずれか一項に記載の液晶配向処理剤。 Furthermore, a crosslinkable compound selected from an epoxy group, an isocyanate group, an oxetane group and a cyclocarbonate group, a crosslinkable compound selected from the group consisting of a hydroxyl group, a hydroxyalkyl group and an alkoxyalkyl group having 1 to 3 carbon atoms, or a polymerizable compound. 8. The liquid crystal alignment treatment agent according to claim 1, containing at least one crosslinkable compound selected from crosslinkable compounds having an unsaturated bond group.
  9.  前記架橋性化合物が、下式K1又はK2で表される化合物である請求項8に記載の液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000005
    The liquid crystal alignment treatment agent according to claim 8, wherein the crosslinkable compound is a compound represented by the following formula K1 or K2.
    Figure JPOXMLDOC01-appb-C000005
  10.  前記架橋性化合物を、前記重合体100質量部に対して、0.1~100質量部含有する請求項8又は9に記載の液晶配向処理剤。 The liquid crystal alignment treatment agent according to claim 8 or 9, wherein the crosslinkable compound is contained in an amount of 0.1 to 100 parts by mass based on 100 parts by mass of the polymer.
  11.  請求項1~10のいずれか一項に記載の液晶配向処理剤から得られる液晶配向膜。 A liquid crystal alignment film obtained from the liquid crystal alignment treatment agent according to any one of claims 1 to 10.
  12.  請求項11に記載の液晶配向膜を有する液晶表示素子。 A liquid crystal display device having the liquid crystal alignment film according to claim 11.
  13.  モバイル機器である請求項12に記載の液晶表示素子。 The liquid crystal display element according to claim 12, which is a mobile device.
PCT/JP2019/050687 2018-12-27 2019-12-24 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element WO2020138109A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980086391.4A CN113260910A (en) 2018-12-27 2019-12-24 Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP2020563321A JP7392663B2 (en) 2018-12-27 2019-12-24 Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
KR1020217019557A KR20210108962A (en) 2018-12-27 2019-12-24 Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018246261 2018-12-27
JP2018-246261 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138109A1 true WO2020138109A1 (en) 2020-07-02

Family

ID=71129434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050687 WO2020138109A1 (en) 2018-12-27 2019-12-24 Liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display element

Country Status (5)

Country Link
JP (1) JP7392663B2 (en)
KR (1) KR20210108962A (en)
CN (1) CN113260910A (en)
TW (1) TW202035663A (en)
WO (1) WO2020138109A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037524A (en) * 1983-08-10 1985-02-26 Hitachi Ltd Liquid crystal display device
JPH10148835A (en) * 1996-11-19 1998-06-02 Hitachi Chem Co Ltd Liquid crystal alignment layer
JP2014527555A (en) * 2011-08-02 2014-10-16 ロリク アーゲーRolic Ag Photo-alignment material
US20150291882A1 (en) * 2013-05-31 2015-10-15 Boe Techinology Group Co., Ltd. Alignment and flattening material compositions, display device comprising same and process for adjusting display color

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171762A (en) 1985-01-28 1986-08-02 Japan Synthetic Rubber Co Ltd Soluble polyimide resin composition
JP2980080B2 (en) 1997-10-09 1999-11-22 ジェイエスアール株式会社 Liquid crystal alignment agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037524A (en) * 1983-08-10 1985-02-26 Hitachi Ltd Liquid crystal display device
JPH10148835A (en) * 1996-11-19 1998-06-02 Hitachi Chem Co Ltd Liquid crystal alignment layer
JP2014527555A (en) * 2011-08-02 2014-10-16 ロリク アーゲーRolic Ag Photo-alignment material
US20150291882A1 (en) * 2013-05-31 2015-10-15 Boe Techinology Group Co., Ltd. Alignment and flattening material compositions, display device comprising same and process for adjusting display color

Also Published As

Publication number Publication date
KR20210108962A (en) 2021-09-03
TW202035663A (en) 2020-10-01
JP7392663B2 (en) 2023-12-06
JPWO2020138109A1 (en) 2021-11-11
CN113260910A (en) 2021-08-13

Similar Documents

Publication Publication Date Title
JP5428336B2 (en) Coating liquid, liquid crystal alignment film and liquid crystal display element using the same
JP5035517B2 (en) Liquid crystal aligning agent and liquid crystal display element using the same
JPWO2010074269A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR102596591B1 (en) Compounds, liquid crystal compositions, and liquid crystal display devices
TWI801402B (en) Resin composition, resin film and liquid crystal display element
JP5158314B2 (en) Liquid crystal aligning agent and liquid crystal display element
JP7424364B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
KR102534332B1 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP7392663B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP7424366B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP7424315B2 (en) Liquid crystal alignment treatment agent, liquid crystal alignment film and liquid crystal display element
JP2017083660A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal element
WO2021065933A1 (en) Liquid crystal light control element
JP4092558B2 (en) New liquid crystal alignment treatment agent
JPWO2020175518A1 (en) Liquid crystal display element and its manufacturing method
KR20210130723A (en) Resin composition, resin film and liquid crystal display element
JP2024009757A (en) Liquid crystal alignment agent, manufacturing method therefor, liquid crystal alignment film, and liquid crystal element
WO2019181885A1 (en) Liquid crystal display element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902971

Country of ref document: EP

Kind code of ref document: A1