WO2020137828A1 - Powder-dispersed liquid, method for producing layered product, method for producing polymer film, and method for producing coated woven fabric - Google Patents

Powder-dispersed liquid, method for producing layered product, method for producing polymer film, and method for producing coated woven fabric Download PDF

Info

Publication number
WO2020137828A1
WO2020137828A1 PCT/JP2019/049910 JP2019049910W WO2020137828A1 WO 2020137828 A1 WO2020137828 A1 WO 2020137828A1 JP 2019049910 W JP2019049910 W JP 2019049910W WO 2020137828 A1 WO2020137828 A1 WO 2020137828A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
polymer
dispersion liquid
layer
heat
Prior art date
Application number
PCT/JP2019/049910
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 山邊
細田 朋也
渉 笠井
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2020563179A priority Critical patent/JP7396301B2/en
Priority to CN201980085923.2A priority patent/CN113227216A/en
Publication of WO2020137828A1 publication Critical patent/WO2020137828A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present invention relates to a powder dispersion, a method for producing a laminate, a method for producing a polymer film, and a method for producing a coated woven fabric.
  • Fluoroolefin-based polymers such as polytetrafluoroethylene (PTFE), copolymers of tetrafluoroethylene and perfluoro(alkyl vinyl ether) (PFA), copolymers of tetrafluoroethylene and hexafluoropropylene (FEP), have releasability It has excellent physical properties, such as water repellency, oil repellency, chemical resistance, weather resistance, and heat resistance, and it is utilized for various industrial applications by utilizing its physical properties.
  • PTFE polytetrafluoroethylene
  • PFA perfluoro(alkyl vinyl ether)
  • FEP hexafluoropropylene
  • the powder dispersion liquid in which the powder of the fluoroolefin polymer is dispersed in the solvent is useful as a coating agent because the physical properties of the fluoroolefin polymer can be imparted to the surface of the base material when it is applied to the surface of various base materials.
  • Fluoroolefin-based polymers have unique properties. It is known that non-thermofusible polytetrafluoroethylene has unique physical properties represented by fibrillarity. If a dispersion liquid obtained by mixing a powder of non-heat-melting polytetrafluoroethylene and a powder of a heat-melting fluoroolefin polymer such as PFA or FEP is used, a molded article having physical properties of both polymers can be formed. Conceivable. However, such a dispersion has low dispersibility and is subjected to a dispersion treatment in which shear stress is applied in order to prepare a uniform dispersion, redisperse the dispersion after aging, or to further mix other components. Then, there is a problem that the non-thermofusible polytetrafluoroethylene is denatured due to, for example, becoming a fibril, and the dispersibility and moldability are lowered.
  • the molded product formed from such a dispersion has a problem that mechanical strength such as crack resistance and adhesiveness are still insufficient.
  • mechanical strength such as crack resistance and adhesiveness are still insufficient.
  • the crack resistance and the adhesiveness when the thickness of the molded product is increased or the molded product is stretched are still insufficient.
  • heat-fusible fluoropolymers such as modified PTFE, PFA and FEP have excellent heat resistance, chemical resistance, etc., as well as PTFE, and excellent moldability.
  • the molded product is not sufficient in adhesiveness to other materials and workability (flexibility such as stretchability and bending workability), and is formed from an aqueous dispersion containing a powder of a heat-meltable fluoropolymer. The tendency is remarkable in the molded articles produced.
  • a component for improving adhesiveness and workability is added to such an aqueous dispersion, there are problems that the dispersion state of the dispersion is deteriorated and the fluoropolymer physical properties in the molded product are deteriorated.
  • the present invention includes a powder of non-heat-melting polytetrafluoroethylene or a powder of heat-melting fluoropolymer, and a powder of a predetermined tetrafluoropolymer, without impairing the physical properties of both polymers, and with excellent processability
  • An object of the present invention is to provide a powder dispersion capable of forming a molded article exhibiting strong adhesiveness, a method for producing a laminate using the powder dispersion, a method for producing a polymer film, and a method for producing a coated woven fabric.
  • the present invention has the following aspects.
  • a fluoropolymer powder (1) having a unit based on tetrafluoroethylene and an oxygen-containing polar group, and a non-heat-meltable polytetrafluoroethylene powder (21) or a heat-meltable fluoropolymer powder (22).
  • the volume-based cumulative 50% diameter of the powder (1) is 0.01 to 75 ⁇ m
  • the volume-based cumulative 50% diameter of the powder (21) or the powder (22) is 0.01 to 100 ⁇ m.
  • ⁇ 3> The ratio by mass of the content of the fluoropolymer to the content of the non-heat-meltable polytetrafluoroethylene or the content of the heat-meltable fluoropolymer is 0.4 or less, ⁇ 1> Or ⁇ 2> powder dispersion.
  • ⁇ 4> The powder dispersion liquid according to any one of ⁇ 1> to ⁇ 3>, wherein the fluoropolymer has a melting temperature of 140 to 320° C.
  • ⁇ 5> The powder dispersion liquid according to any one of ⁇ 1> to ⁇ 4>, wherein the fluoropolymer includes a unit based on the monomer having the oxygen-containing polar group.
  • ⁇ 6> The powder dispersion liquid according to any one of the above ⁇ 1> to ⁇ 5>, wherein the oxygen-containing polar group is a hydroxyl group-containing group or a carbonyl group-containing group.
  • the non-thermofusible polytetrafluoroethylene has a fibrillation property.
  • the heat-meltable fluoropolymer is modified polytetrafluoroethylene, a copolymer of tetrafluoroethylene and perfluoro(alkyl vinyl ether), or a copolymer of tetrafluoroethylene and hexafluoropropylene.
  • Powder dispersion of any of ⁇ 9> The powder dispersion liquid according to any one of the above ⁇ 1> to ⁇ 8>, containing both the non-heat-meltable polytetrafluoroethylene powder (21) and the heat-meltable fluoropolymer powder (22).
  • the powder dispersion liquid according to any one of the above ⁇ 1> to ⁇ 9> further containing an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant.
  • the powder dispersion according to any one of the above ⁇ 1> to ⁇ 11> is applied to the surface of a base material, and the aqueous medium is removed by heating to form a polymer layer, which is composed of the base material.
  • a method for producing a laminate in which a substrate layer and the polymer layer are laminated in this order to obtain a laminate.
  • a coated woven fabric which is obtained by impregnating a woven fabric with the powder dispersion according to any one of the above ⁇ 1> to ⁇ 11>, and further drying the woven fabric to obtain a woven fabric coated with a polymer layer.
  • a molded article that is excellent in state stability such as dispersibility and storage stability, is resistant to cracking, and does not impair the physical properties of the non-thermofusible polytetrafluoroethylene, and exhibits strong adhesiveness.
  • Powder D50 is the volume-based cumulative 50% diameter
  • the particle size distribution is measured by the laser diffraction/scattering method
  • the cumulative volume is calculated with the total volume of the group of particles as 100%, and the cumulative volume is calculated on the cumulative curve. Is the particle size at the point where is 50%.
  • D90 of powder is the volume-based cumulative 90% diameter
  • the particle size distribution is measured by the laser diffraction/scattering method
  • the cumulative volume is calculated with the total volume of the particle group as 100%
  • the cumulative volume is calculated on the cumulative curve. Is the particle size at the point where is 90%.
  • the “unit” in a polymer may be an atomic group formed directly from a monomer by a polymerization reaction, and the polymer obtained by the polymerization reaction may be treated by a predetermined method to convert an atomic group in which a part of the structure is converted. May be Further, a unit based on the monomer A is also referred to as a monomer A unit.
  • the “viscosity of the powder dispersion” is a value measured with a B-type viscometer at room temperature (25° C.) under the condition of a rotation speed of 30 rpm. The measurement is repeated 3 times, and the average value of the measured values of 3 times is taken.
  • the "thixo ratio of the powder dispersion liquid” is a value calculated by dividing the viscosity ⁇ 1 measured under the condition of the rotation speed of 30 rpm by the viscosity ⁇ 2 measured under the condition of the rotation speed of 60 rpm. The measurement of each viscosity is repeated three times, and the average value of the three measured values is used.
  • the “melting temperature (melting point) of the polymer” is a temperature corresponding to the maximum value of the melting peak of the polymer measured by the differential scanning calorimetry (DSC) method.
  • “Peel strength of laminated body” means fixing a position of 50 mm from one end in the length direction of a laminated body cut out in a rectangular shape (length 100 mm, width 10 mm), pulling speed 50 mm/min, one end in the length direction. Is the maximum load (N/cm) applied when the metal foil and the resin layer are separated from each other at 90° to the laminate.
  • the "standard specific gravity of a polymer” is a standard specific gravity of a polymer measured according to ASTM D4895.
  • the “melt flow rate” is a melt mass flow rate (MFR) defined in JIS K 7210-1:2014 (corresponding international standard ISO 1133-1:2011).
  • the powder dispersion liquid (present dispersion liquid) of the present invention is a powder (1) of a polymer having a unit based on tetrafluoroethylene (TFE) (TFE unit) and an oxygen-containing polar group (hereinafter, also referred to as “F polymer”). And a powder (22) of non-heat-melting polytetrafluoroethylene (hereinafter also referred to as “non-heat-melting PTFE”) or a heat-melting fluoropolymer (hereinafter also referred to as “M polymer”) (22). ) And an aqueous medium.
  • TFE tetrafluoroethylene
  • F polymer oxygen-containing polar group
  • M polymer heat-melting fluoropolymer
  • the present dispersion liquid is a dispersion liquid in which the powder (1) and the powder (21) or the powder (22) are dispersed in the form of particles in an aqueous medium containing water as a main component.
  • the F polymer, non-thermofusible PTFE and M polymer are different polymers.
  • a molded article (including a molding site such as a polymer layer. The same applies hereinafter) formed from this dispersion liquid is used for individual fluoropolymers such as fibrillarity of non-heat-meltable PTFE and processability of heat-meltable fluoropolymer. It exhibits strong adhesiveness and crack resistance while having the unique physical properties of the polymer.
  • both the non-thermofusible PTFE and the F polymer are polymers containing TFE units, and they easily interact with each other and are easily fused and bonded.
  • the F polymer has an oxygen-containing polar group, it has high stability in an aqueous medium and interacts with the non-thermomelting PTFE to improve the dispersion stability of the powder. Conceivable. As a result, both powders are stabilized and uniformly dispersed in the aqueous medium, and this dispersion is considered to have excellent state stability.
  • the F polymer having an oxygen-containing polar group not only exhibits adhesiveness but also promotes interaction between the polymers, for example, formation of a matrix. It is considered that this interaction forms a state in which the respective polymer chains are likely to be uniformly entangled. As a result, it is considered that a molded article excellent in adhesiveness and crack resistance could be formed from the dispersion liquid without impairing the properties of the non-thermofusible PTFE.
  • both the M polymer and the F polymer are polymers having a fluorine atom, and it is easy for them to interact with each other and fuse and bond.
  • the F polymer has an oxygen-containing polar group, it has a high stability in an aqueous medium, and it is considered that the F polymer also interacts with the M polymer to improve the dispersion stability of the powder.
  • both powders are stabilized and uniformly dispersed in the aqueous medium, and this dispersion is considered to have excellent state stability.
  • the F polymer having an oxygen-containing polar group not only exhibits adhesiveness but also promotes interaction between the polymers, for example, formation of a matrix. It is considered that this interaction forms a state in which the respective polymer chains are likely to be uniformly entangled. As a result, it is considered that a molded article having excellent adhesiveness and processability could be formed from the dispersion without impairing the properties of the M polymer.
  • the powder (1) in the present invention is a powder containing an F polymer, and is preferably a powder composed of an F polymer.
  • the content of the F polymer in the powder (1) is preferably 80% by mass or more, and particularly preferably 100% by mass.
  • the D50 of the powder (1) is preferably 0.01 to 75 ⁇ m, more preferably 0.05 to 6 ⁇ m, and further preferably 0.1 to 4 ⁇ m.
  • Preferable embodiments of D50 of the powder (1) include a mode of 0.1 ⁇ m or more and less than 1 ⁇ m and a mode of 1 ⁇ m or more and 4 ⁇ m or less.
  • D90 of the powder (1) is preferably 8 ⁇ m or less, more preferably 6 ⁇ m or less.
  • D90 of the powder (1) is preferably 0.1 ⁇ m or more, more preferably 0.3 ⁇ m or more.
  • Preferable aspects of D90 of the powder (1) include an aspect of 0.3 ⁇ m or more and less than 2 ⁇ m and an aspect of 2 ⁇ m or more and 6 ⁇ m or less. In this case, it is easy to further improve the dispersion stability of this dispersion and the physical properties of the molded product. For example, if the D50 of the powder (1) is 0.1 ⁇ m or more and less than 1 ⁇ m, the dispersibility is more excellent, and a molded product having excellent mechanical strength such as stretching characteristics is easily obtained. When the D50 of the powder (1) is 1 ⁇ m or more and 4 ⁇ m or less, it is easy to obtain a molded product having excellent crack resistance.
  • the oxygen-containing polar group contained in the F polymer of the present invention may be contained in a unit based on a monomer having an oxygen-containing polar group, may be contained in a polymer end group, and may be surface-treated (radiation treatment, electron beam treatment). Treatment, corona treatment, plasma treatment, etc.), and the former is preferable. Further, the oxygen-containing polar group of the F polymer may be a group prepared by modifying a polymer having a group capable of forming an oxygen-containing polar group.
  • the oxygen-containing polar group contained in the polymer end group can be obtained by adjusting the components (polymerization initiator, chain transfer agent, etc.) used in the polymerization of the polymer.
  • the oxygen-containing polar group is a polar atomic group containing an oxygen atom. However, the oxygen-containing polar group does not include the ester bond itself and the ether bond itself, but includes an atomic group containing these bonds as a characteristic group.
  • the oxygen-containing polar group is preferably at least one group selected from the group consisting of a hydroxyl group-containing group, a carbonyl group-containing group, an acetal group and an oxycycloalkane group, more preferably a hydroxyl group-containing group or a carbonyl group-containing group, and -CF 2 CH 2 OH, —C(CF 3 ) 2 OH, 1,2-glycol group (—CH(OH)CH 2 OH), —CF 2 C(O)OH, >CFC(O)OH, carboxamide group (-C(O)NH 2, etc.), acid anhydride residue (-C(O)OC(O)-), imide residue (-C(O)NHC(O)-, etc.), dicarboxylic acid residue (—CH(C(O)OH)CH 2 C(O)OH and the like) or carbonate group (—OC(O)O—) is more preferable.
  • the oxycycloalkane group is preferably an epoxy group or an oxetanyl group.
  • the oxygen-containing polar group is a polar group and a cyclic group or its ring-opening group, a cyclic acid anhydride residue, Cyclic imide residues, cyclic carbonate groups, cyclic acetal groups, 1,2-dicarboxylic acid residues or 1,2-glycol groups are particularly preferred, and cyclic acid anhydride residues are most preferred.
  • the F polymer includes a TFE unit and a unit based on hexafluoropropylene (HFP), perfluoro(alkyl vinyl ether) (hereinafter also referred to as “PAVE”) or fluoroalkyl ethylene (hereinafter also referred to as “FAE”) (hereinafter, referred to as “FAE”).
  • a polymer containing a “PAE unit”) and a unit based on a monomer having an oxygen-containing polar group (hereinafter, also referred to as “polar unit”) is preferable.
  • the proportion of TFE units is preferably 50 to 99 mol%, more preferably 90 to 99 mol%, based on all units constituting the F polymer.
  • the PAE unit is preferably a unit based on PAVE or a unit based on HFP, and more preferably a unit based on PAVE. Two or more types of PAE units may be used.
  • the proportion of PAE units is preferably 0.5 to 9.97 mol% based on all units constituting the F polymer.
  • the polar unit is preferably a unit based on a monomer having an acid anhydride residue, a carbonate group, a cyclic acetal group, a 1,2-dicarboxylic acid residue, a 1,2-diol residue, or a 1,3-diol residue.
  • a unit based on a monomer having a cyclic acid anhydride residue or a cyclic carbonate group is more preferable, and a unit based on a monomer having a cyclic acid anhydride residue is further preferable.
  • the polarity unit may be one type or two or more types.
  • Examples of the monomer having a cyclic acid anhydride residue include itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride (also called hymic acid anhydride; hereinafter also referred to as “NAH”) or maleic anhydride. Acids are preferred and NAH is more preferred.
  • the proportion of the polar unit is preferably 0.01 to 3 mol% based on all units constituting the F polymer.
  • the F polymer in this case may further include a unit other than the TFE unit, the PAE unit, and the polar unit (hereinafter, also referred to as “other unit”).
  • the other unit may be one type or two or more types.
  • monomers forming other units include ethylene, propylene, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride (VDF), and chlorotrifluoroethylene (CTFE).
  • Other units are preferably ethylene, VDF or CTFE, more preferably ethylene.
  • the proportion of the other units in the F polymer is preferably 0 to 50 mol% and more preferably 0 to 40 mol% based on all the units constituting the F polymer.
  • the melting temperature of the F polymer is preferably 140 to 320°C, more preferably 200 to 320°C, and even more preferably 260 to 320°C. In this case, the fusion bondability between the F polymer and the non-thermofusible PTFE is balanced, the adhesiveness and crack resistance of the molded product are further improved, and the physical properties of the non-thermofusible PTFE are not easily impaired.
  • This dispersion liquid contains powder (21) or powder (22), may contain only powder (21), may contain only powder (22), and may contain powder (21) and powder (22). Both may be included.
  • the powder (21) is a powder containing non-heat-melting PTFE, and is preferably a powder containing non-heat-melting PTFE.
  • the content of the non-thermofusible PTFE in the powder (21) is preferably 80% by mass or more, more preferably 100% by mass.
  • the components (surfactant etc.) used in the production of the non-heat-melting PTFE are not included in the components other than the non-heat-melting PTFE.
  • the powder (22) in the present invention is a powder containing M polymer, and is preferably a powder composed of M polymer. 80 mass% or more is preferable and, as for content of F polymer in powder (22), 100 mass% is more preferable.
  • the D50 of the powder (21) is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 10 ⁇ m.
  • a preferred embodiment of D50 of the powder (21) is an embodiment of 0.1 to 1 ⁇ m.
  • the D90 of the powder (21) is preferably 200 ⁇ m or less, more preferably 20 ⁇ m or less.
  • D90 of the powder (21) is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more.
  • a specific preferred embodiment of D90 of the powder (21) is an embodiment having a particle size of 0.1 to 2 ⁇ m. In this case, the dispersibility of the powder (1) and the interaction between the powders are good, and the physical properties of the present dispersion and the molded product are likely to be further improved.
  • the D50 of the powder (1) is 0.1 ⁇ m or more and less than 1 ⁇ m or 1 ⁇ m or more and 4 ⁇ m or less
  • the D50 of the powder (21) is A mode in which D50 is 0.1 ⁇ m or more and 1 ⁇ m or less can be mentioned.
  • the dispersibility of the present dispersion is excellent, and a molded product having excellent mechanical strength such as stretching properties is easily obtained.
  • the D50 of the powder (22) is preferably 0.01 to 100 ⁇ m, more preferably 0.1 to 10 ⁇ m.
  • a preferred embodiment of D50 of the powder (22) is an embodiment of 0.1 to 1 ⁇ m.
  • the D90 of the powder (22) is preferably 200 ⁇ m or less, more preferably 20 ⁇ m or less.
  • D90 of the powder (22) is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more.
  • a preferred embodiment of D90 of the powder (22) is an embodiment having a particle size of 0.1 to 2 ⁇ m. In this case, the dispersibility of the powder (22) and the interaction with the powder (1) are good, and the adhesiveness of the molded article, crack resistance and physical properties of the M polymer are likely to be improved.
  • D50 of powder (1) is 0.1 ⁇ m or more and less than 1 ⁇ m or D50 is 1 ⁇ m or more and 4 ⁇ m or less, and powder (22) And D50 of 0.1 ⁇ m or more and 1 ⁇ m or less.
  • the dispersibility of the present dispersion is excellent, and a molded product having excellent mechanical strength such as stretching properties is easily obtained.
  • Non-heat-melting PTFE is polytetrafluoroethylene (PTFE), and in addition to a homopolymer of TFE, a so-called modified PTFE, which is a copolymer of a very small amount of comonomer (PAVE, HFP, FAE, etc.) and TFE, is also available. Included.
  • PTFE polytetrafluoroethylene
  • modified PTFE which is a copolymer of a very small amount of comonomer (PAVE, HFP, FAE, etc.) and TFE
  • the molded product obtained from the present dispersion not only exhibits strong adhesiveness and crack resistance, but also has a fibrous surface physical property and its porosity originally possessed by the non-heat-melting PTFE molded product. Hard to be damaged.
  • the proportion of TFE units in the non-thermofusible PTFE is preferably 99.5 mol% or more, more preferably 99.9 mol% or more, based on
  • the non-thermofusible PTFE is preferably a polymer obtained by emulsion polymerization of TFE in water.
  • the non-heat-meltable PTFE powder is a powder in which a polymer obtained by emulsion-polymerizing TFE in water is dispersed as particles in water. When using such powder, the powder dispersed in water may be used as it is, or the powder may be recovered from water and used.
  • Non-heat-melting PTFE is widely available as a powder or a dispersion thereof.
  • the non-thermofusible PTFE preferably has a fibrillation property. If it has a fibrillation property, a porous film can be easily produced by a stretching process.
  • the non-thermofusible PTFE having fibrillarity means PTFE that allows unextruded polymer powder to be paste extruded. That is, it means PTFE having strength or elongation in the molded product obtained by paste extrusion.
  • the number average molecular weight of the non-thermofusible PTFE is preferably 300,000 to 300,000,000, more preferably 500,000 to 25,000,000.
  • the standard specific gravity which is an index of the average molecular weight of the non-thermofusible PTFE, is preferably 2.14 to 2.22, more preferably 2.15 to 2.21.
  • the melt viscosity of the non-heat-melting PTFE at 380° C. is preferably 1 ⁇ 10 9 Pa ⁇ s or more. The upper limit of the melt viscosity is usually 1 ⁇ 10 10 Pa ⁇ s.
  • the fibrillability of the non-thermofusible PTFE is better and the molding excellent in mechanical properties and the like. Goods can be formed. Further, in this case, the state stability of the present dispersion is more likely to be improved.
  • the M polymer is a polymer containing a unit based on a fluoroolefin different from the F polymer (hereinafter, also referred to as “F unit”), and a polymer containing the F unit and having no oxygen-containing polar group is preferable.
  • the proportion of F units in the M polymer is preferably 50.0 mol% or more, more preferably 99.5 mol% or more, still more preferably 99.9 mol% or more, based on all units.
  • the fluoroolefin in the M polymer is preferably TFE or VDF, and more preferably TFE. Two or more kinds of fluoroolefins may be used.
  • the M polymer is preferably a copolymer of TFE and PAVE (PFA), a copolymer of TFE and HFP (FEP), a copolymer of TFE and ethylene (ETFE), a homopolymer of VDF (PVDF) or a low molecular weight PTFE, and a low molecular weight PTFE. More preferred is molecular weight PTFE.
  • low-molecular-weight PTFE also includes so-called modified PTFE, which is a copolymer of an extremely small amount of comonomer (PAVE, HFP, FAE, etc.) and TFE.
  • the PFA may also contain units based on monomers other than TFE and PAVE. The same applies to the other copolymers (FEP, ETFE, PVDF) described above.
  • One of the preferable embodiments of the M polymer is low molecular weight PTFE or modified PTFE.
  • the melt viscosity of the M polymer at 380° C. is preferably 1 ⁇ 10 2 to 1 ⁇ 10 6 Pa ⁇ s, more preferably 1 ⁇ 10 3 to 1 ⁇ 10 6 Pa ⁇ s.
  • the melting temperature of the polymer is preferably 321 to 340°C, more preferably 325 to 335°C.
  • the melt flow rate of the polymer is preferably 1 to 10 g/10 minutes, more preferably 1 to 5 g/10 minutes.
  • Low-molecular-weight PTFE is obtained by irradiating high-molecular-weight PTFE (melt viscosity is about 1 ⁇ 10 9 to 1 ⁇ 10 10 Pa ⁇ s) with radiation (International Publication No. 2018/026012, International Publication No. 2018). /026017, etc.), and PTFE obtained by polymerizing TFE to prepare PTFE to prepare a PTFE (JP-A-2009-1745, WO 2010/ 114033, JP-A-2005-232082, etc.).
  • a preferred specific example of the low molecular weight PTFE is PTFE having a number average molecular weight (Mn) of 200,000 or less calculated based on the following formula (1).
  • Mn 2.1 ⁇ 10 10 ⁇ Hc ⁇ 5.16
  • ⁇ Hc represents the heat of crystallization (cal/g) of the PTFE measured by the differential scanning calorimetry.
  • the Mn of this low molecular weight PTFE is preferably 10 or less, more preferably 50,000 or less.
  • the Mn of this low molecular weight PTFE is preferably 10,000 or more.
  • the melt viscosity of the M polymer at 380° C. is preferably 1 ⁇ 10 2 to 1 ⁇ 10 4 Pa ⁇ s, more preferably 1 ⁇ 10 2 to 1 ⁇ 10 3 Pa ⁇ s.
  • the melt flow rate of the M polymer is preferably 5 to 30 g/10 minutes, more preferably 5 to 20 g/10 minutes.
  • the melting temperature of the M polymer is preferably 260 to 320°C, more preferably 280 to 310°C.
  • melt viscosity, the melt flow rate and the melt temperature of PFA or FEP is within the above range, excellent molded products can be formed due to the physical properties of PFA or FEP (workability, mechanical strength, etc.). Not only that, the state stability of the dispersion is more likely to be improved.
  • the M polymer is preferably a polymer obtained by emulsion-polymerizing a fluoroolefin in water.
  • the M polymer powder is a powder in which a polymer obtained by emulsion-polymerizing a fluoroolefin in water is dispersed as particles in water. When using such powder, the powder dispersed in water may be used as it is, or the powder may be recovered from water and used.
  • the M polymer may be modified by surface treatment (radiation treatment, electron beam treatment, corona treatment, plasma treatment, etc.). Examples of such surface treatment methods include the methods described in International Publication No. 2018/026012 and International Publication No. 2018/026017.
  • As the M polymer a commercially available product is widely available as a powder or a dispersion liquid thereof.
  • the present dispersion may contain only non-thermofusible PTFE, may contain only M polymer, and may contain both non-heat-meltable PTFE and M polymer. Each polymer is preferably contained as a powder.
  • D50 of the non-heat-melting PTFE powder is preferably 0.1 to 1 ⁇ m, and its D90 is 0.1 to 2 ⁇ m. Is preferred.
  • the D50 of the M polymer powder is preferably 0.1 to 1 ⁇ m, and the D90 thereof is preferably 0.1 to 2 ⁇ m.
  • the mass ratio of the content of the F polymer to the content of the non-thermofusible PTFE or the content of the M polymer in this dispersion is preferably 0.4 or less, more preferably 0.15 or less.
  • the interaction between the powders is good, the state stability of the present dispersion is further improved, and the adhesiveness, crack resistance and physical properties between the polymers can be easily balanced.
  • the total content of the non-thermofusible PTFE and the M polymer is preferably 20 to 70% by mass, more preferably 30 to 60% by mass.
  • the present dispersion liquid preferably contains a dispersant from the viewpoint of improving the dispersibility of each powder and improving the moldability thereof.
  • the components used for producing the polymer for example, the surfactant used for emulsion-polymerizing the fluoroolefin) do not correspond to the dispersant in the present invention.
  • the dispersant is preferably a compound having a hydrophobic site and a hydrophilic site, and examples thereof include an acetylene-based surfactant, a silicone-based surfactant, and a fluorine-based surfactant. These dispersants are preferably nonionic.
  • the dispersant is preferably fluoroalcohol, more preferably fluoromonool or fluoropolyol.
  • the fluorine content of fluoromonool is preferably 10 to 50% by mass, more preferably 10 to 45% by mass, and further preferably 15 to 40% by mass.
  • the fluoromonool is preferably nonionic.
  • the hydroxyl value of fluoromonool is preferably 40 to 100 mgKOH/g, more preferably 50 to 100 mgKOH/g, and further preferably 60 to 100 mgKOH/g.
  • the fluoromonool is preferably a compound represented by the following formula (a).
  • Formula (a): R a - ( OQ a) ma -OH The symbols in the formulas have the following meanings.
  • R a represents a polyfluoroalkyl group or a polyfluoroalkyl group containing an etheric oxygen atom, and is —CH 2 (CF 2 ) 4 F, —CH 2 (CF 2 ) 6 F, —CH 2 CH 2 (CF 2 ) 4 F, —CH 2 CH 2 (CF 2 ) 6 F, —CH 2 CF 2 OCF 2 CF 2 OCF 2 CF 3 , —CH 2 CF(CF 3 )CF 2 OCF 2 CF 2 CF 3 , —CH 2 CF (CF 3) OCF 2 CF (CF 3) OCF 3, or -CH 2 CF 2 CHFO (CF 2 ) 3 OCF 3 are preferred.
  • Q a represents an alkylene group having 1 to 4 carbon atoms, and is preferably an ethylene group (—CH 2 CH 2 —) or a propylene group (—CH 2 CH(CH 3 )—).
  • Q a may be composed of two or more kinds of groups. When it is composed of two or more kinds of groups, the groups may be arranged randomly or in a block.
  • ma represents an integer of 0 to 20, preferably an integer of 4 to 10.
  • the hydroxyl group of fluoromonool is preferably a secondary hydroxyl group or a tertiary hydroxyl group, and particularly preferably a secondary hydroxyl group.
  • fluoromonool examples include F(CF 2 ) 6 CH 2 (OCH 2 CH 2 ) 7 OCH 2 CH(CH 3 )OH, F(CF 2 ) 6 CH 2 (OCH 2 CH 2 ) 12 OCH 2 CH (CH 3) OH, F (CF 2) 6 CH 2 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH, F (CF 2) 6 CH 2 CH 2 (OCH 2 CH 2) 12 OCH 2 CH (CH 3) OH , F (CF 2) 4 CH 2 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH and the like.
  • fluoromonool can be obtained as a commercially available product ("Aluroma Co.,""FluowetN083","FluowetN050", etc.).
  • the fluorine content of the fluoropolyol is preferably 10 to 50% by mass, more preferably 10 to 45% by mass, and even more preferably 15 to 40% by mass.
  • the fluoropolyol is preferably nonionic.
  • the hydroxyl value of the fluoropolyol is preferably 10 to 35 mgKOH/g, more preferably 10 to 30 mgKOH/g, still more preferably 10 to 25 mgKOH/g.
  • the weight average molecular weight of the fluoropolyol is preferably 2,000 to 80,000, more preferably 6,000 to 20,000.
  • the fluoropolyol is preferably a fluoropolyol containing units based on fluoro(meth)acrylate.
  • (meth)acrylate is a general term for acrylate and methacrylate.
  • the fluoro(meth)acrylate is preferably a monomer represented by the following formula (f).
  • Formula (f): CH 2 CX f C(O)O-Q f- R f
  • X f represents a hydrogen atom, a chlorine atom or a methyl group
  • Q f represents an alkylene group having 1 to 4 carbon atoms or an oxyalkylene group having 2 to 4 carbon atoms.
  • fluoro(meth)acrylate examples include CH 2 ⁇ CHC(O)OCH 2 CH 2 (CF 2 ) 4 F and CH 2 ⁇ C(CH 3 )C(O)OCH 2 CH 2 (CF 2 ) 4.
  • fluoropolyol include copolymers of the monomer represented by the above formula (f) and the monomer represented by the following formula (o).
  • Formula (o): CH 2 CX o C(O)-(OZ o ) mo —OH
  • X o represents a hydrogen atom or a methyl group.
  • Z o represents an alkylene group having 1 to 4 carbon atoms, and an ethylene group (—CH 2 CH 2 —) is preferable.
  • mo is an integer of 1 to 200, preferably an integer of 4 to 30.
  • Z o may be composed of two or more kinds of groups. In this case, the arrangement of different alkylene groups may be random or block.
  • the fluoropolyol may be composed only of a unit based on the monomer represented by the formula (f) and a unit based on the monomer represented by the formula (o), and may further include another unit. ..
  • the content of the unit based on the monomer represented by the formula (f) with respect to all units contained in the fluoropolyol is preferably 60 to 90 mol%, more preferably 70 to 90 mol%.
  • the content of the unit based on the monomer represented by the formula (o) with respect to all units contained in the fluoropolyol is preferably 10 to 40 mol%, more preferably 10 to 30 mol%.
  • the total content of the unit based on the monomer represented by the formula (f) and the monomer represented by the formula (o) is preferably 90 to 100 mol %, based on all units contained in the fluoropolyol. Mol% is more preferred.
  • the proportion of fluoroalcohol in this dispersion is preferably 10% by mass or less, more preferably 1% by mass or less, and further preferably 0.01% by mass or less.
  • the lower limit of the above ratio is usually more than 0%.
  • the aqueous medium in the present invention is a dispersion medium of the present dispersion liquid and contains water as a main component.
  • the aqueous medium may consist only of water, or may consist of water and a water-soluble compound.
  • the water-soluble compound is preferably a compound which is liquid at 25° C. and does not react with each polymer or has extremely poor reactivity and can be easily removed by heating or the like.
  • the aqueous medium preferably contains water in an amount of 95% by mass or more, more preferably contains 99% by mass or more of water, and further preferably contains 100% by mass of water.
  • the proportion of the aqueous medium in this dispersion is preferably 15 to 65% by mass, more preferably 25 to 50% by mass. Within this range, the dispersibility of the present dispersion is excellent, and the resulting molded article is less likely to have a poor appearance.
  • the dispersion may contain F polymer, non-thermofusible PTFE or M polymer, and other materials other than the aqueous medium.
  • Other materials include thixotropic agents, fillers, defoamers, dehydrating agents, plasticizers, weathering agents, antioxidants, heat stabilizers, lubricants, antistatic agents, brighteners, colorants, conductive agents. , Release agents, surface treatment agents, viscosity modifiers, flame retardants. Other materials may or may not dissolve in the dispersion.
  • thermosetting resins epoxy resin, thermosetting polyimide resin, polyimide precursor (polyamic acid), acrylic resin, phenol resin, which are resins other than F polymer, non-thermofusible PTFE or M polymer.
  • heat-melting resin polyyester resin, polyolefin resin, styrene resin, polycarbonate, thermoplastic polyimide, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic poly
  • Etheramide polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid
  • the viscosity of this dispersion is preferably from 1 to 1000 mPa ⁇ s, more preferably from 5 to 500 mPa ⁇ s, even more preferably from 10 to 200 mPa ⁇ s.
  • the thixo ratio of this dispersion is preferably 0.8 to 2.2. In this case, it is easy to balance the dispersibility of the present dispersion and the coatability.
  • This dispersion can be produced by mixing the powder (1) with the powder (21) or the powder (22). Specifically, it is preferable that the dispersion liquid (p1) containing the powder (1) and the aqueous medium and the dispersion liquid (p2) containing the powder (21) or the powder (22) and the aqueous medium are mixed and produced. ..
  • the dispersion liquid (p1) and the dispersion liquid (p2) are preferably mixed in a state where the respective dispersion liquids are well dispersed.
  • the dispersion liquid (p1) when solid content is observed to be precipitated in the dispersion liquid (p1), the dispersion liquid (p1) is subjected to a dispersion treatment using a homodisper immediately before mixing, and further subjected to a dispersion treatment using a homogenizer to obtain a dispersion state. Is preferably improved. Particularly, when the dispersion liquid (p1) stored at 0 to 40° C. is used, it is preferable to perform the dispersion treatment.
  • the aqueous medium (dispersion medium) in the dispersion liquid (p1) and the dispersion liquid (p2) is preferably water.
  • This dispersion is excellent in dispersion stability and storage stability, and also excellent in handling property.
  • This dispersion can form a molded article having excellent crack resistance and strong adhesiveness without impairing the physical properties of the non-thermofusible PTFE or M polymer.
  • the present dispersion is applied to the surface of a base material and heated to form a polymer layer containing an F polymer and a non-thermofusible PTFE or M polymer. It is possible to manufacture a laminated body in which and are laminated in this order.
  • the polymer layer may be formed on at least one surface of the base material layer, the polymer layer may be formed only on one surface of the base material layer, or the polymer layer may be formed on both surfaces of the base material layer. ..
  • the coating method for the surface of the base material includes a spray method, a roll coating method, a spin coating method, a gravure coating method, a micro gravure coating method, a gravure offset method, a knife coating method, a kiss coating method, a bar coating method, a die coating method, a fountain. Examples include the Mayer bar method and the slot die coating method.
  • the polymer layer may be formed by heating, and it is preferable to heat the base material to a temperature at which the aqueous medium volatilizes (temperature range of 100 to 300° C.), and the base material at a temperature range (100 to 300° C.) at which the aqueous medium volatilizes.
  • the base material is heated to a temperature range (300 to 400° C.) in which the non-heat-melting PTFE is fired. That is, it is preferable that the polymer layer in the case of using the present dispersion liquid containing non-heat-melting PTFE contains the F polymer and is a polymer layer obtained by baking the non-heat-melting PTFE. In this case, the non-thermofusible PTFE may be partially calcined or completely calcined.
  • the polymer layer in the case of using the present dispersion liquid containing the M polymer is preferably a polymer layer containing the F polymer and the M polymer being melt-processed. In this case, the M polymer may be partially melt processed or may be completely melt processed.
  • Examples of the method for heating the base material include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays (infrared rays).
  • the atmosphere for heating the base material may be either under normal pressure or under reduced pressure.
  • the atmosphere in the holding is any of an oxidizing gas (oxygen gas etc.), a reducing gas (hydrogen gas etc.) and an inert gas (helium gas, neon gas, argon gas, nitrogen gas etc.). It may be.
  • the heating time of the substrate is usually 0.5 to 30 minutes.
  • the thickness of the polymer layer is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, still more preferably 10 ⁇ m or less.
  • the thickness of the polymer layer is preferably 0.1 ⁇ m or more, particularly preferably 4 ⁇ m or more. Within this range, a polymer layer having excellent crack resistance can be easily formed without impairing the physical properties of the non-heat-melting PTFE or M polymer.
  • the peel strength between the base material layer and the polymer layer is preferably 10 N/cm or more, and particularly preferably 15 N/cm or more.
  • the upper limit of the peel strength is usually 100 N/cm.
  • the material of the base material may be any of metals such as copper, aluminum, iron, nickel, zinc, alloys thereof, glass, resin, silicon and ceramics.
  • the shape of the base material may be any of a plane shape, a curved surface shape, an uneven shape, and may be a foil shape, a plate shape, a film shape, or a fibrous shape.
  • the laminate include a metal foil with a polymer layer, a metal foil as a base material, and a metal foil with a polymer layer, which has a metal foil layer and a polymer layer in this order.
  • An adhesive layer may be separately provided between the metal foil layer and the polymer layer, but since the polymer layer has excellent adhesiveness, the adhesive layer may not be provided.
  • a copper foil such as a rolled copper foil or an electrolytic copper foil can be mentioned.
  • the thickness of the metal foil in the laminate is preferably 3 to 18 ⁇ m, and the thickness of the polymer layer is preferably 1 to 50 ⁇ m.
  • the laminated body can be used as a printed wiring board having a polymer layer as an electrically insulating layer by forming a pattern circuit on the copper foil layer.
  • a substrate is a polyimide film, a laminate film having a polymer layer formed from the present dispersion liquid on at least one surface of a polyimide layer formed of the polyimide film, and more specifically.
  • a laminated film having a polymer layer formed from the present dispersion liquid on both surfaces of the polyimide layer can be mentioned.
  • An adhesive layer may be separately provided between the polyimide layer and the polymer layer, but since the polymer layer formed from the present dispersion has excellent adhesiveness, the adhesive layer may not be provided.
  • a preferred embodiment of the polyimide film is 2,2′,3,3′- or 3,3′,4,4′-biphenyltetracarboxylic dianhydride (3,3′,4,4′-benzophenonetetra).
  • a specific example of the polyimide film is Optical Type AF (manufactured by Kaneka North America). Such a polyimide film is useful as an insulating coating.
  • the basis weight is preferably 23.5 g/m 2 or less, and the loop stiffness value is preferably 0.45 g/cm or more.
  • the thickness of the polymer layer in the laminated film is preferably 1 to 200 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the thickness of the polyimide layer (polyimide film) is preferably 5 to 150 ⁇ m.
  • Such a laminated film has excellent electric insulation, abrasion resistance, hydrolysis resistance, etc., and can be used as a packaging material for electric insulation tape, electric cables or electric wires, for aerospace or electric vehicles, and electric wires. It can be used particularly preferably as a material or a cable material.
  • the laminate of the present invention has a polymer layer containing an F polymer and having excellent adhesiveness, it is possible to produce a composite laminate by laminating another material on the polymer layer of the laminate.
  • the first base material layer (the original base material layer of the laminate), the polymer layer, and the second base material are formed.
  • a second laminate of the second base material is laminated in this order to obtain a composite laminate.
  • the material of the second base material may be any of metals such as copper, aluminum, iron, nickel, zinc, alloys thereof, glass, resin, silicon and ceramics.
  • the shape of the second base material is not particularly limited, and may be any of a flat shape, a curved surface shape, an uneven shape, a foil shape, a plate shape, a film shape, and a fibrous shape.
  • Specific examples of the second base material include a heat resistant resin base material and a prepreg which is a precursor of a fiber reinforced resin plate.
  • a prepreg is a sheet-like base material obtained by impregnating a base material (tow, woven fabric, etc.) of reinforcing fibers (glass fiber, carbon fiber, etc.) with a resin (thermosetting resin, thermoplastic resin, etc. described above). ..
  • the heat resistant resin substrate is preferably a film containing a heat resistant resin, and may be a single layer or a multilayer. Examples of the heat resistant resin include polyimide, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyl ether ketone, polyamide imide, liquid crystalline polyester, PTFE and the like.
  • thermocompression bonding method As a method for pressure-bonding the surface of the polymer layer of the laminate and the second base material, a thermocompression bonding method can be mentioned.
  • the pressure bonding temperature is preferably 160 to 220°C.
  • the pressure bonding temperature is preferably 300 to 400°C.
  • the thermocompression bonding is preferably performed in a reduced pressure atmosphere, and particularly preferably performed in a vacuum degree of 20 kPa or less. Within this range, it is possible to prevent bubbles from entering the respective interfaces in the composite laminated body and suppress deterioration due to oxidation. Moreover, it is preferable that the temperature of the thermocompression bonding be raised after reaching the vacuum degree.
  • the pressure in thermocompression bonding is preferably 0.2 to 10 MPa.
  • the liquid layer forming material for forming the second polymer layer is applied to the surface of the polymer layer of the laminate to form the second polymer layer, the first base material layer, the polymer layer and the second A polymer laminate obtained by laminating the polymer layer of 1 above in this order is obtained.
  • the liquid layer forming material is not particularly limited, and the present dispersion liquid may be used.
  • the method for forming the second polymer layer is also not particularly limited and can be appropriately determined depending on the properties of the liquid layer forming material used. For example, when the layer forming material is the present dispersion liquid, the second polymer layer can be formed under the same conditions as the method for forming the polymer layer in the laminate. That is, when the layer forming material is the present dispersion liquid, the polymer layer can be formed into multiple layers to easily form a thicker polymer layer.
  • the composite laminate obtained by the production method include the present dispersion liquid and the composite laminate obtained by using the dispersion liquid containing the F polymer as a liquid layer forming material. Since the second polymer layer is formed on the polymer layer showing strong adhesion, a composite laminate having high peel strength can be obtained even by using the latter main dispersion. According to the laminate of the present invention, it can be said that a polymer layer having excellent crack resistance without deteriorating the physical properties of each polymer is formed. By removing the base material layer from the laminate, a polymer film containing each polymer uniformly can be obtained.
  • the non-heat-melting PTFE containing F polymer is a polymer film subjected to a baking treatment.
  • the non-thermofusible PTFE may be partially calcined or completely calcined.
  • the M polymer containing the F polymer is preferably a polymer film that has been subjected to a baking treatment. In this case, the M polymer may be partially calcined or completely calcined.
  • Examples of the method of removing the base material layer from the laminate include a method of peeling and removing the base material layer from the laminate, and a method of dissolving and removing the base material layer from the laminate.
  • the base material layer is made of copper foil
  • the base material layer is dissolved and removed by contacting the base material layer side surface of the laminate with an etching solution such as hydrochloric acid, and the polymer layer A polymer film composed solely can be easily obtained.
  • the range of the polymer in the polymer film is the same as the definition in the present dispersion liquid, including the preferable embodiments thereof.
  • the thickness of the polymer film is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, still more preferably 10 ⁇ m or less.
  • the thickness of the polymer film is preferably 1 ⁇ m or more, more preferably 4 ⁇ m or more. In this range, the polymer film is more excellent in adhesiveness and crack resistance without impairing the physical properties of each polymer.
  • a coated woven fabric which is a woven fabric coated with a polymer layer is obtained.
  • the woven cloth is a heat resistant woven cloth that is resistant to drying, and is preferably a glass fiber woven cloth, a carbon fiber woven cloth, an aramid fiber woven cloth or a metal fiber woven cloth, more preferably a glass fiber woven cloth or a carbon fiber woven cloth, and an electric cloth.
  • a plain woven glass fiber woven fabric composed of E glass yarn for electrical insulation defined by JIS R 3410:2006 is more preferable.
  • the woven fabric may be treated with a silane coupling agent from the viewpoint of enhancing the close contact adhesiveness with the polymer layer.
  • the total content of the F polymer and the non-thermofusible PTFE or M polymer in the coated woven fabric is preferably 30 to 80% by mass.
  • Examples of the method of impregnating the woven fabric with the present dispersion include a method of immersing the woven fabric in the present dispersion, and a method of applying the present dispersion to the woven fabric.
  • the number of times of immersion in the former method and the number of times of application in the latter method may each be once or twice or more. Since the present dispersion liquid containing an F polymer having excellent adhesion to other materials is used, a coated woven fabric having a high polymer content, in which the woven fabric and the polymer are firmly adhered at least at the number of times of dipping or application, can be obtained.
  • the method for drying the woven fabric can be appropriately determined depending on the type of the aqueous medium contained in the present dispersion liquid.
  • the woven fabric is subjected to ventilation drying in an atmosphere of 80 to 120°C.
  • the method of passing through a furnace is mentioned.
  • the polymer may be fired when the woven fabric is dried.
  • the method of firing the polymer can be appropriately determined depending on the type of each polymer, and examples thereof include a method of passing the woven fabric through a ventilation drying furnace in an atmosphere of 300 to 400° C.
  • the woven fabric may be dried and the polymer may be fired in one step.
  • the obtained coated woven fabric is excellent in properties such as high adhesion and adhesion between the polymer layer and the woven fabric, high surface smoothness, and little distortion.
  • a laminate obtained by thermocompression bonding such a coated woven fabric and a metal foil has high peel strength and is less likely to warp, and therefore can be suitably used as a printed circuit board material.
  • the present dispersion containing a woven fabric may be applied to the surface of a substrate and dried by heating to form a coated woven fabric layer containing an F polymer and non-heat-melting PTFE or M polymer and a woven fabric. Good.
  • the mode is not particularly limited, and if the main dispersion liquid containing a woven cloth is applied to a part of the inner wall surface of a molded product such as a tank, pipe, or container, and the molded product is heated while rotating, the inner wall of the molded product A coated woven fabric layer can be formed on the entire surface.
  • a coated woven fabric of the present invention is also useful as a method for lining the inner wall surface of molded articles such as tanks, pipes and containers.
  • ⁇ Crack resistance of polymer layer> Apply the powder dispersion on the surface of a stainless steel plate (thickness: 0.5 mm) with a vinyl tape attached to one edge, slide the rod along the edge, and then at 100°C for 3 minutes. It was dried three times and further heated at 340° C. for 10 minutes. As a result, a polymer layer having an inclined thickness was formed on the surface of the stainless steel plate due to the thickness of the vinyl tape attached to the edges. This stainless steel plate was visually confirmed, and the thickness of the polymer layer at the tip of the crack line generation part (the part where the polymer layer was thinnest) was measured using MINTEST3000 (manufactured by Electro Physik), and the following evaluation criteria were used. evaluated.
  • The thickness of the polymer layer at the tip where cracks occur is 10 ⁇ m or more.
  • The thickness of the polymer layer at the tip where cracks occur is 5 ⁇ m or more and less than 10 ⁇ m.
  • X The thickness of the polymer layer at the tip where cracks occur is less than 5 ⁇ m.
  • ⁇ Peel strength of laminate The position of 50 mm from one end in the length direction of the laminate cut out in a rectangular shape (length: 100 mm, width: 10 mm) was fixed, the pulling speed was 50 mm/min, and 90° from one end in the length direction to the laminate. Then, the maximum load applied when the metal foil layer and the polymer layer were peeled off was measured as the peeling strength (N/cm) and evaluated according to the following evaluation criteria. Good: Peel strength is 10 N/cm or more. X: Peel strength is less than 10 N/cm.
  • F polymer 1 copolymer containing TFE-based unit, NAH-based unit and PPVE-based unit in the order of 97.9 mol%, 0.1 mol% and 2.0 mol% (melting point: 300° C.)
  • Polymer A1 A copolymer containing 98.0 mol% and 2.0 mol% of units based on TFE and units based on PPVE, in this order, having no oxygen-containing polar group (melting point: 305° C.).
  • P polymer 1 non-heat-melting PTFE having a fibrillation property, containing 99.9 mol% or more of units based on TFE (standard specific gravity: 2.18, melt viscosity at 380° C.: 3.0 ⁇ 10 9 Pa ⁇ s)
  • M polymer 1 Thermomeltable modified PTFE (melt viscosity at 380° C.: 1 ⁇ 10 6 Pa ⁇ s) containing 99.5 mol% or more of TFE-based units and a very small amount of PFBE-based units
  • F powder 11 F polymer 1 powder (D50: 1.7 ⁇ m, D90: 3.8 ⁇ m)
  • F powder 12 powder of F polymer 1 (D50: 0.3 ⁇ m, D90: 1.8 ⁇ m) [This F powder 12 was obtained by subjecting F powder 11 to a wet jet mill.
  • Powder A1 Polymer A1 powder (D50: 0.3 ⁇ m, D90: 1.5 ⁇ m)
  • P powder 1 P polymer 1 powder (D50: 0.3 ⁇ m) [This P powder 1 is available as an aqueous dispersion of P powder 1.
  • M powder 1 powder of M polymer 1 (D50: 0.3 ⁇ m) [This M powder 1 is available as an aqueous dispersion of M powder 1].
  • M powder 1 powder of M polymer 1 (D50: 0.3 ⁇ m) [This M powder 1 is available as an aqueous dispersion of M powder 1].
  • FM1 F (CF 2) 6 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH ( fluorine content: 34 wt%, hydroxyl value: 78 mgKOH / g)
  • Example 1 Production Example of Powder Dispersion
  • Example 1-1 Production Example of Dispersion 1 Dispersion containing 30 parts by mass of F powder 12, 5 parts by mass of FM1 and 65 parts by mass of water, and P powder 1.
  • an aqueous dispersion containing 50% by mass Thereby, the respective powders are dispersed in water, and the powder dispersion liquid 1 (F polymer 1 containing 90 mass% of P polymer 1 and 10 mass% of F polymer 1 relative to the total of P polymer 1 and F polymer 1).
  • Example 1-2 to Example 1-9 Production Examples of Powder Dispersions 2 to 9 Powder Dispersions 2 to 9 were prepared in the same manner as in Example 1-1, except that the type of powder and the type of dispersant were changed. Got Table 1 below shows the type of each powder dispersion and the evaluation results of its storage stability.
  • Example 2 Production Example of Laminated Body
  • Example 2-1 Production Example of Laminated Body 1
  • the powder dispersion liquid 1 was applied to the surface of a copper foil and dried at 100°C for 10 minutes, and then under an inert gas atmosphere at 340°C. After firing for 10 minutes, it was gradually cooled. Thereby, a laminate (with a polymer layer) having a copper foil layer formed of a copper foil and a polymer layer (thickness: 5 ⁇ m) containing P polymer 1 and F polymer 1 formed on the surface of the copper foil layer Copper foil) 1 was obtained.
  • Laminates 2 to 9 were produced in the same manner as in Example 2-1 except that the type of powder dispersion was changed.
  • the evaluation results of the crack resistance of the powder dispersions 1 to 4 and 9 and the evaluation results of the peel strength of the laminates 1 to 9 are summarized in Table 2 below.
  • Example 3 Production Example of Polymer Membrane
  • Example 3-1 Production Example of Polymer Membrane 3
  • the powder dispersion 3 was applied onto the surface of a copper foil and dried at 100°C for 10 minutes, and then under an inert gas atmosphere at 340°C. After firing for 10 minutes, it was gradually cooled. Thereby, a laminate having a copper foil layer composed of a copper foil and a polymer layer containing P polymer 1 and F polymer 1 formed on the surface of the copper foil layer was obtained.
  • the operations of coating, drying and firing the powder dispersion liquid 3 on the surface of the polymer layer of this laminate were repeated under the same conditions. This increased the thickness of the polymer layer to 30 ⁇ m.
  • Example 3-2 Production Example of Polymer Membrane 4 and Polymer Membranes 7 to 9
  • the polymer membrane 4 was powder-dispersed from the powder dispersion 4 in the same manner as in Example 3-1, except that the type of powder dispersion was changed.
  • a polymer film 7 was obtained from the liquid 7
  • a polymer film 8 was obtained from the powder dispersion liquid 8
  • a polymer film 9 was obtained from the powder dispersion liquid 9.
  • Each of the polymer film 3, the polymer film 4, and the polymer film 9 was a porous film, and the rupture strength when subjected to the stretching treatment was the polymer film 3, the polymer film 4, and the polymer film 9 in descending order. .. Further, the polymer film was subjected to a stretching treatment (stretching ratio: 200%) to obtain a polymer film 3 to a stretched film 3, a polymer film 4 to a stretched film 4, and a polymer film 9 to a stretched film 9.
  • Each of the stretched membranes is a porous membrane, and when the open states are compared, the pore size distribution is in the order of the stretched membrane 3, the stretched membrane 4, and the stretched membrane 9 from the ascending order, and the dense porous membrane in this order. Had formed.
  • the breaking strengths when the polymer film 7, the polymer film 8 and the polymer film 9 were subjected to the stretching treatment were the polymer film 7, the polymer film 8 and the polymer film 9 in descending order.
  • the number of times until the thin film was cut was the polymer film 7, the polymer film 8, and the polymer film 9 in order from the largest.
  • Example 4 Production Example of Polymer Film (Part 2) Dispersion liquid containing 30 parts by mass of F powder 12, 5 parts by mass of FM1, and 65 parts by mass of water, water dispersion liquid containing 50 mass% of M powder 1 and water dispersion liquid containing 50 mass% of P powder 1. And mixed. As a result, the respective powders are dispersed in water, and 10% by mass of the M polymer 1, 10% by mass of the F polymer 1 and 10% by mass of the P polymer 1 with respect to the total of the M polymer 1, the F polymer 1 and the P polymer 1. A powder dispersion containing 80% by mass (content of F polymer 1/content of M polymer 1: 1.0) was obtained.
  • This powder dispersion was applied on the surface of a copper foil, dried at 100° C. for 10 minutes, baked at 340° C. for 10 minutes in an inert gas atmosphere, and then gradually cooled.
  • the operations of coating, drying and firing the powder dispersion on the surface of the polymer layer of this laminate were repeated under the same conditions. This increased the thickness of the polymer layer to 30 ⁇ m.
  • the copper foil layer of the laminate was removed with hydrochloric acid to obtain a polymer film containing M polymer 1, F polymer 1 and P polymer 1.
  • a stretching treatment stretch ratio: 200%)
  • a dense porous membrane with a small pore size distribution was obtained.
  • This dispersion can be used for the production of molded products such as films, impregnated products (prepregs, etc.), laminates (metal laminates such as copper foil with resin), mold release properties, electrical properties, water/oil repellency, resistance It can be used to manufacture molded products for applications requiring chemical resistance, weather resistance, heat resistance, slipperiness, wear resistance, etc. Molded products obtained from this dispersion are useful as antenna parts, printed circuit boards, aircraft parts, automotive parts, sports equipment, food industry products, paints, cosmetics, and the like.
  • Electrode binders for lithium secondary batteries, fuel cells, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

[Problem] To provide the following: a powder-dispersed liquid which contains a powder of a non-thermofusible polytetrafluoroethylene or a powder of a thermofusible fluoropolymer and a powder of a prescribed tetrafluoropolymer, which exhibits excellent workability without compromising the physical properties of both polymers, and which can form a molded article that exhibits strong adhesive properties; and a method for producing a layered product, a method for producing a polymer film and a method for producing a coated woven fabric using the powder-dispersed liquid. [Solution] This powder-dispersed liquid contains a powder (1) of a fluoropolymer having a unit derived from tetrafluoroethylene and an oxygen-containing polar group, a powder (21) of a non-thermofusible polytetrafluoroethylene or a powder (22) of a thermofusible fluoropolymer, and an aqueous medium.

Description

パウダー分散液、積層体の製造方法、ポリマー膜の製造方法及び被覆織布の製造方法Powder dispersion, method for producing laminate, method for producing polymer film, and method for producing coated woven fabric
 本発明は、パウダー分散液、積層体の製造方法、ポリマー膜の製造方法及び被覆織布の製造方法に関する。 The present invention relates to a powder dispersion, a method for producing a laminate, a method for producing a polymer film, and a method for producing a coated woven fabric.
 ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレンとペルフルオロ(アルキルビニルエーテル)とのコポリマー(PFA)、テトラフルオロエチレンとヘキサフルオロプロピレンとのコポリマー(FEP)等のフルオロオレフィン系ポリマーは、離型性、電気特性、撥水撥油性、耐薬品性、耐候性、耐熱性等の物性に優れており、その物性を活用して、種々の産業用途に利用されている。
 なかでも、フルオロオレフィン系ポリマーのパウダーが溶媒中に分散したパウダー分散液は、各種基材の表面に塗布すれば、その表面にフルオロオレフィン系ポリマーの物性を付与できるため、コーティング剤として有用である(特許文献1、2参照)。
Fluoroolefin-based polymers such as polytetrafluoroethylene (PTFE), copolymers of tetrafluoroethylene and perfluoro(alkyl vinyl ether) (PFA), copolymers of tetrafluoroethylene and hexafluoropropylene (FEP), have releasability It has excellent physical properties, such as water repellency, oil repellency, chemical resistance, weather resistance, and heat resistance, and it is utilized for various industrial applications by utilizing its physical properties.
Among them, the powder dispersion liquid in which the powder of the fluoroolefin polymer is dispersed in the solvent is useful as a coating agent because the physical properties of the fluoroolefin polymer can be imparted to the surface of the base material when it is applied to the surface of various base materials. (See Patent Documents 1 and 2).
国際公開第2018/016644号International Publication No. 2018/016644 国際公開第2008/018400号International Publication No. 2008/018400
 フルオロオレフィン系ポリマーは、それぞれ固有の性質を有している。
 非熱溶融性ポリテトラフルオロエチレンは、フィブリル性に代表される特異な物性を有することが知られている。非熱溶融性ポリテトラフルオロエチレンのパウダーと、PFA、FEP等の熱溶融性フルオロオレフィン系ポリマーのパウダーとを混合した分散液を用いれば、両者のポリマーの物性を具備する成形品を形成できると考えられる。
 しかし、かかる分散液は、分散性が低く、均一な分散液に調整したり、経時後に分散液を再分散させたり、他の成分を更に配合するために、せん断応力等をかける分散処理に供すると、非熱溶融性ポリテトラフルオロエチレンが、フィリブル化する等して変質し、分散性や成形性が低下する課題がある。
Fluoroolefin-based polymers have unique properties.
It is known that non-thermofusible polytetrafluoroethylene has unique physical properties represented by fibrillarity. If a dispersion liquid obtained by mixing a powder of non-heat-melting polytetrafluoroethylene and a powder of a heat-melting fluoroolefin polymer such as PFA or FEP is used, a molded article having physical properties of both polymers can be formed. Conceivable.
However, such a dispersion has low dispersibility and is subjected to a dispersion treatment in which shear stress is applied in order to prepare a uniform dispersion, redisperse the dispersion after aging, or to further mix other components. Then, there is a problem that the non-thermofusible polytetrafluoroethylene is denatured due to, for example, becoming a fibril, and the dispersibility and moldability are lowered.
 また、かかる分散液から形成される成形品には、耐クラック性等の機械的強度と接着性とが未だ充分ではないという課題がある。特に、成形品の厚さを増したり、成形品を延伸加工したりする際の、耐クラック性と接着性とが未だ充分ではない。 Moreover, the molded product formed from such a dispersion has a problem that mechanical strength such as crack resistance and adhesiveness are still insufficient. In particular, the crack resistance and the adhesiveness when the thickness of the molded product is increased or the molded product is stretched are still insufficient.
 一方、変性PTFE、PFA、FEP等の熱溶融性フルオロポリマーは、PTFE同様に耐熱性、耐薬品性等に優れ、成形性にも優れている。しかし、その成形品は、他の素材に対する接着性と加工性(延伸性、曲げ加工性等の柔軟性等)が、未だ充分ではなく、熱溶融性フルオロポリマーのパウダーを含む水分散液から形成される成形品においては、その傾向が顕著である。また、かかる水分散液に、接着性や加工性を向上させるための成分を配合すると、分散液の分散状態が低下したり、成形品におけるフルオロポリマー物性が低下する課題がある。 On the other hand, heat-fusible fluoropolymers such as modified PTFE, PFA and FEP have excellent heat resistance, chemical resistance, etc., as well as PTFE, and excellent moldability. However, the molded product is not sufficient in adhesiveness to other materials and workability (flexibility such as stretchability and bending workability), and is formed from an aqueous dispersion containing a powder of a heat-meltable fluoropolymer. The tendency is remarkable in the molded articles produced. In addition, when a component for improving adhesiveness and workability is added to such an aqueous dispersion, there are problems that the dispersion state of the dispersion is deteriorated and the fluoropolymer physical properties in the molded product are deteriorated.
 本発明は、非熱溶融性ポリテトラフルオロエチレンのパウダー又は熱溶融性フルオロポリマーのパウダーと、所定のテトラフルオロポリマーのパウダーとを含み、両者のポリマーの物性を損なわずに、加工性に優れるとともに、強固な接着性を示す成形品を形成できるパウダー分散液、かかるパウダー分散液を使用した積層体の製造方法、ポリマー膜の製造方法及び被覆織布の製造方法の提供を目的とする。 The present invention includes a powder of non-heat-melting polytetrafluoroethylene or a powder of heat-melting fluoropolymer, and a powder of a predetermined tetrafluoropolymer, without impairing the physical properties of both polymers, and with excellent processability An object of the present invention is to provide a powder dispersion capable of forming a molded article exhibiting strong adhesiveness, a method for producing a laminate using the powder dispersion, a method for producing a polymer film, and a method for producing a coated woven fabric.
 本発明は、下記の態様を有する。
 <1> テトラフルオロエチレンに基づく単位及び酸素含有極性基を有するフルオロポリマーのパウダー(1)と、非熱溶融性ポリテトラフルオロエチレンのパウダー(21)又は熱溶融性フルオロポリマーのパウダー(22)と、水性媒体とを含むパウダー分散液。
 <2> 前記パウダー(1)の体積基準累積50%径が、0.01~75μmであり、前記パウダー(21)又は前記パウダー(22)の体積基準累積50%径が、0.01~100μmである、上記<1>のパウダー分散液。
 <3> 前記非熱溶融性ポリテトラフルオロエチレンの含有量又は前記熱溶融性フルオロポリマーの含有量に対する前記フルオロポリマーの含有量の質量での比が、0.4以下である、上記<1>又は<2>のパウダー分散液。
 <4> 前記フルオロポリマーの溶融温度が、140~320℃である、上記<1>~<3>のいずれかのパウダー分散液。
 <5> 前記フルオロポリマーが、前記酸素含有極性基を有するモノマーに基づく単位を含む、上記<1>~<4>のいずれかのパウダー分散液。
 <6> 前記酸素含有極性基が、水酸基含有基又はカルボニル基含有基である、上記<1>~<5>のいずれかのパウダー分散液。
 <7> 前記非熱溶融性ポリテトラフルオロエチレンが、フィブリル性を有する、上記<1>~<6>のいずれかのパウダー分散液。
 <8> 前記熱溶融性フルオロポリマーが、変性ポリテトラフルオロエチレン、テトラフルオロエチレンとペルフルオロ(アルキルビニルエーテル)とのコポリマー又はテトラフルオロエチレンとヘキサフルオロプロピレンとのコポリマーである、上記<1>~<7>のいずれかのパウダー分散液。
 <9> 前記非熱溶融性ポリテトラフルオロエチレンのパウダー(21)及び前記熱溶融性フルオロポリマーのパウダー(22)の両方を含む、上記<1>~<8>のいずれかのパウダー分散液。
 <10> さらに、アセチレン系界面活性剤、シリコーン系界面活性剤又はフッ素系界面活性剤を含む、上記<1>~<9>のいずれかのパウダー分散液。
 <11> さらに、フッ素系界面活性剤を含み、前記フッ素系界面活性剤が、フルオロモノオール又はフルオロポリオールである、上記<1>~<10>のいずれかのパウダー分散液。
 <12> 上記<1>~<11>のいずれかのパウダー分散液を、基材の表面に塗布し、加熱により前記水性媒体を除去してポリマー層を形成し、前記基材で構成される基材層と前記ポリマー層とが、この順に積層された積層体を得る、積層体の製造方法。
 <13> 上記<1>~<11>のいずれかのパウダー分散液を、基材の表面に塗布し、加熱により前記水性媒体を除去してポリマー層を形成し、前記基材で構成される基材層と前記ポリマー層とが、この順に積層された積層体を得て、該積層体から前記基材層を除去して、前記ポリマー層で構成されるポリマー膜を得る、ポリマー膜の製造方法。
 <14> 上記<1>~<11>のいずれかのパウダー分散液を、織布に含浸させ、さらに前記織布を乾燥させる、ポリマー層で被覆された織布を得る、被覆織布の製造方法。
The present invention has the following aspects.
<1> A fluoropolymer powder (1) having a unit based on tetrafluoroethylene and an oxygen-containing polar group, and a non-heat-meltable polytetrafluoroethylene powder (21) or a heat-meltable fluoropolymer powder (22). , A powder dispersion containing an aqueous medium.
<2> The volume-based cumulative 50% diameter of the powder (1) is 0.01 to 75 μm, and the volume-based cumulative 50% diameter of the powder (21) or the powder (22) is 0.01 to 100 μm. The powder dispersion liquid according to <1> above.
<3> The ratio by mass of the content of the fluoropolymer to the content of the non-heat-meltable polytetrafluoroethylene or the content of the heat-meltable fluoropolymer is 0.4 or less, <1> Or <2> powder dispersion.
<4> The powder dispersion liquid according to any one of <1> to <3>, wherein the fluoropolymer has a melting temperature of 140 to 320° C.
<5> The powder dispersion liquid according to any one of <1> to <4>, wherein the fluoropolymer includes a unit based on the monomer having the oxygen-containing polar group.
<6> The powder dispersion liquid according to any one of the above <1> to <5>, wherein the oxygen-containing polar group is a hydroxyl group-containing group or a carbonyl group-containing group.
<7> The powder dispersion according to any one of the above <1> to <6>, wherein the non-thermofusible polytetrafluoroethylene has a fibrillation property.
<8> The heat-meltable fluoropolymer is modified polytetrafluoroethylene, a copolymer of tetrafluoroethylene and perfluoro(alkyl vinyl ether), or a copolymer of tetrafluoroethylene and hexafluoropropylene. <1> to <7 > Powder dispersion of any of
<9> The powder dispersion liquid according to any one of the above <1> to <8>, containing both the non-heat-meltable polytetrafluoroethylene powder (21) and the heat-meltable fluoropolymer powder (22).
<10> The powder dispersion liquid according to any one of the above <1> to <9>, further containing an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant.
<11> The powder dispersion liquid according to any one of <1> to <10>, further containing a fluorosurfactant, and the fluorosurfactant is fluoromonool or fluoropolyol.
<12> The powder dispersion according to any one of the above <1> to <11> is applied to the surface of a base material, and the aqueous medium is removed by heating to form a polymer layer, which is composed of the base material. A method for producing a laminate, in which a substrate layer and the polymer layer are laminated in this order to obtain a laminate.
<13> The powder dispersion according to any one of the above <1> to <11> is applied to the surface of a base material, and the aqueous medium is removed by heating to form a polymer layer, which is composed of the base material. Manufacture of a polymer film in which a base material layer and the polymer layer are laminated in this order to obtain a laminate, and the base material layer is removed from the laminate to obtain a polymer film composed of the polymer layer Method.
<14> Production of a coated woven fabric, which is obtained by impregnating a woven fabric with the powder dispersion according to any one of the above <1> to <11>, and further drying the woven fabric to obtain a woven fabric coated with a polymer layer. Method.
 本発明によれば、分散性、貯蔵安定性等の状態安定性に優れており、非熱溶融性ポリテトラフルオロエチレンの物性を損なわずに、クラックが生じにくく、強固な接着性を示す成形品を形成できる、パウダー分散液と、状態安定性に優れており、熱溶融性フルオロポリマーの物性を損なわずに、強固な接着性と良好な加工性とを示す成形品を形成できる、パウダー分散液とが提供される。また、かかるパウダー分散液を使用した積層体の製造方法、ポリマー膜の製造方法及び被覆織布の製造方法が提供される。 According to the present invention, a molded article that is excellent in state stability such as dispersibility and storage stability, is resistant to cracking, and does not impair the physical properties of the non-thermofusible polytetrafluoroethylene, and exhibits strong adhesiveness. A powder dispersion liquid capable of forming a powder, and a powder dispersion liquid having excellent state stability and capable of forming a molded article exhibiting strong adhesiveness and good processability without impairing the physical properties of the heat-meltable fluoropolymer. And are provided. Also provided are a method for producing a laminate, a method for producing a polymer film, and a method for producing a coated woven fabric using the powder dispersion.
 「パウダーのD50」は、体積基準累積50%径であり、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「パウダーのD90」は、体積基準累積90%径であり、レーザー回折・散乱法によって粒度分布を測定し、粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径である。
 ポリマーにおける「単位」は、重合反応によってモノマーから直接形成された原子団であってもよく、重合反応によって得られたポリマーを所定の方法で処理して、構造の一部が変換された原子団であってもよい。また、モノマーAに基づく単位をモノマーA単位とも記す。
 「パウダー分散液の粘度」とは、B型粘度計を用いて、室温下(25℃)で回転数が30rpmの条件下で測定される値である。測定を3回繰り返し、3回分の測定値の平均値とする。
 「パウダー分散液のチキソ比」とは、回転数が30rpmの条件で測定される粘度ηを回転数が60rpmの条件で測定される粘度ηで除して算出される値である。それぞれの粘度の測定は、3回繰り返し、3回分の測定値の平均値とする。
 「ポリマーの溶融温度(融点)」は、示差走査熱量測定(DSC)法で測定したポリマーの融解ピークの最大値に対応する温度である。
 「積層体の剥離強度」とは、矩形状(長さ100mm、幅10mm)に切り出した積層体の長さ方向の一端から50mmの位置を固定し、引張り速度50mm/分、長さ方向の片端から積層体に対して90°で、金属箔と樹脂層とを剥離させた際にかかる最大荷重(N/cm)である。
 「ポリマーの標準比重」は、ASTM D 4895に準拠して測定される、ポリマーの標準比重である。
 「溶融流れ速度」は、JIS K 7210-1:2014(対応国際規格ISO 1133-1:2011)に規定されるメルトマスフローレイト(MFR)である。
"Powder D50" is the volume-based cumulative 50% diameter, the particle size distribution is measured by the laser diffraction/scattering method, the cumulative volume is calculated with the total volume of the group of particles as 100%, and the cumulative volume is calculated on the cumulative curve. Is the particle size at the point where is 50%.
"D90 of powder" is the volume-based cumulative 90% diameter, the particle size distribution is measured by the laser diffraction/scattering method, the cumulative volume is calculated with the total volume of the particle group as 100%, and the cumulative volume is calculated on the cumulative curve. Is the particle size at the point where is 90%.
The “unit” in a polymer may be an atomic group formed directly from a monomer by a polymerization reaction, and the polymer obtained by the polymerization reaction may be treated by a predetermined method to convert an atomic group in which a part of the structure is converted. May be Further, a unit based on the monomer A is also referred to as a monomer A unit.
The “viscosity of the powder dispersion” is a value measured with a B-type viscometer at room temperature (25° C.) under the condition of a rotation speed of 30 rpm. The measurement is repeated 3 times, and the average value of the measured values of 3 times is taken.
The "thixo ratio of the powder dispersion liquid" is a value calculated by dividing the viscosity η 1 measured under the condition of the rotation speed of 30 rpm by the viscosity η 2 measured under the condition of the rotation speed of 60 rpm. The measurement of each viscosity is repeated three times, and the average value of the three measured values is used.
The “melting temperature (melting point) of the polymer” is a temperature corresponding to the maximum value of the melting peak of the polymer measured by the differential scanning calorimetry (DSC) method.
"Peel strength of laminated body" means fixing a position of 50 mm from one end in the length direction of a laminated body cut out in a rectangular shape (length 100 mm, width 10 mm), pulling speed 50 mm/min, one end in the length direction. Is the maximum load (N/cm) applied when the metal foil and the resin layer are separated from each other at 90° to the laminate.
The "standard specific gravity of a polymer" is a standard specific gravity of a polymer measured according to ASTM D4895.
The “melt flow rate” is a melt mass flow rate (MFR) defined in JIS K 7210-1:2014 (corresponding international standard ISO 1133-1:2011).
 本発明のパウダー分散液(本分散液)は、テトラフルオロエチレン(TFE)に基づく単位(TFE単位)及び酸素含有極性基を有するポリマー(以下、「Fポリマー」とも記す。)のパウダー(1)と、非熱溶融性ポリテトラフルオロエチレン(以下、「非熱溶融性PTFE」とも記す。)のパウダー(21)又は熱溶融性フルオロポリマー(以下、「Mポリマー」とも記す。)のパウダー(22)と、水性媒体とを含む。
 本分散液は、パウダー(1)とパウダー(21)又はパウダー(22)とが、水を主成分とする水性媒体中にそれぞれ粒子状に分散している分散液であるとも言える。
 なお、Fポリマー、非熱溶融性PTFE及びMポリマーは、それぞれ異なるポリマーである。
 本分散液から形成される成形品(ポリマー層等の成形部位を含む。以下、同様である。)は、非熱溶融性PTFEのフィブリル性、熱溶融性フルオロポリマーの加工性等の個々のフルオロポリマーの特異な物性を有しつつ、強固な接着性と耐クラック性とを発現する。
The powder dispersion liquid (present dispersion liquid) of the present invention is a powder (1) of a polymer having a unit based on tetrafluoroethylene (TFE) (TFE unit) and an oxygen-containing polar group (hereinafter, also referred to as “F polymer”). And a powder (22) of non-heat-melting polytetrafluoroethylene (hereinafter also referred to as “non-heat-melting PTFE”) or a heat-melting fluoropolymer (hereinafter also referred to as “M polymer”) (22). ) And an aqueous medium.
It can be said that the present dispersion liquid is a dispersion liquid in which the powder (1) and the powder (21) or the powder (22) are dispersed in the form of particles in an aqueous medium containing water as a main component.
The F polymer, non-thermofusible PTFE and M polymer are different polymers.
A molded article (including a molding site such as a polymer layer. The same applies hereinafter) formed from this dispersion liquid is used for individual fluoropolymers such as fibrillarity of non-heat-meltable PTFE and processability of heat-meltable fluoropolymer. It exhibits strong adhesiveness and crack resistance while having the unique physical properties of the polymer.
 その理由は必ずしも明確ではないが、以下の様に考えられる。
 パウダー(21)を含む本分散液では、非熱溶融性PTFEとFポリマーとは共にTFE単位を含むポリマーであり、相互作用して、融着して接合しやすい。また、Fポリマーは、酸素含有極性基を有しているため、水性媒体中での安定性が高く、非熱溶融性PTFEとも相互作用して、そのパウダーの分散安定性を向上させていると考えられる。その結果、両者のパウダーが水性媒体中で安定化して均一に分散するため、本分散液は状態安定性に優れていると考えられる。
 さらに、成形品の形成に際して、酸素含有極性基を有するFポリマーは、接着性を発現するだけでなく、ポリマー同士の間での相互作用、例えば、マトリックスの形成を促すと考えられる。この相互作用により、それぞれのポリマー鎖が均一に絡みやすい状態が形成されると考えられる。その結果、非熱溶融性PTFEの性質を損なうことなく、接着性と耐クラック性とに優れた成形品が、本分散液から形成できたと考えられる。
The reason is not always clear, but it is considered as follows.
In the present dispersion liquid containing the powder (21), both the non-thermofusible PTFE and the F polymer are polymers containing TFE units, and they easily interact with each other and are easily fused and bonded. Further, since the F polymer has an oxygen-containing polar group, it has high stability in an aqueous medium and interacts with the non-thermomelting PTFE to improve the dispersion stability of the powder. Conceivable. As a result, both powders are stabilized and uniformly dispersed in the aqueous medium, and this dispersion is considered to have excellent state stability.
Further, it is considered that in forming a molded article, the F polymer having an oxygen-containing polar group not only exhibits adhesiveness but also promotes interaction between the polymers, for example, formation of a matrix. It is considered that this interaction forms a state in which the respective polymer chains are likely to be uniformly entangled. As a result, it is considered that a molded article excellent in adhesiveness and crack resistance could be formed from the dispersion liquid without impairing the properties of the non-thermofusible PTFE.
 一方、パウダー(22)を含む本分散液でも、MポリマーとFポリマーとが共にフッ素原子を有するポリマーであり、相互作用して、融着して接合しやすい。また、Fポリマーは、酸素含有極性基を有しているため、水性媒体中での安定性が高く、Mポリマーとも相互作用して、そのパウダーの分散安定性を向上させていると考えられる。その結果、両者のパウダーが水性媒体中で安定化して均一に分散するため、本分散液は状態安定性に優れていると考えられる。
 さらに、成形品の形成に際して、酸素含有極性基を有するFポリマーは、接着性を発現するだけでなく、ポリマー同士の間での相互作用、例えば、マトリックスの形成を促すと考えられる。この相互作用により、それぞれのポリマー鎖が均一に絡みやすい状態が形成されると考えられる。その結果、Mポリマーの性質を損なうことなく、接着性と加工性とに優れた成形品が、本分散液から形成できたと考えられる。
On the other hand, even in the present dispersion liquid containing the powder (22), both the M polymer and the F polymer are polymers having a fluorine atom, and it is easy for them to interact with each other and fuse and bond. Further, since the F polymer has an oxygen-containing polar group, it has a high stability in an aqueous medium, and it is considered that the F polymer also interacts with the M polymer to improve the dispersion stability of the powder. As a result, both powders are stabilized and uniformly dispersed in the aqueous medium, and this dispersion is considered to have excellent state stability.
Further, it is considered that in forming a molded article, the F polymer having an oxygen-containing polar group not only exhibits adhesiveness but also promotes interaction between the polymers, for example, formation of a matrix. It is considered that this interaction forms a state in which the respective polymer chains are likely to be uniformly entangled. As a result, it is considered that a molded article having excellent adhesiveness and processability could be formed from the dispersion without impairing the properties of the M polymer.
 本発明におけるパウダー(1)は、Fポリマーを含むパウダーであり、Fポリマーからなるパウダーであるのが好ましい。パウダー(1)におけるFポリマーの含有量は、80質量%以上が好ましく、100質量%が特に好ましい。
 パウダー(1)のD50は、0.01~75μmが好ましく、0.05~6μmがより好ましく、0.1~4μmがさらに好ましい。パウダー(1)のD50の好適態様としては、0.1μm以上1μm未満である態様と、1μm以上4μm以下である態様とが挙げられる。
 パウダー(1)のD90は、8μm以下が好ましく、6μm以下がより好ましい。パウダー(1)のD90は、0.1μm以上が好ましく、0.3μm以上がより好ましい。パウダー(1)のD90の好適態様としては、0.3μm以上2μm未満である態様と、2μm以上6μm以下である態様とが挙げられる。
 この場合、本分散液の分散安定性と、成形品の物性を更に向上させやすい。例えば、パウダー(1)のD50が0.1μm以上1μm未満であれば、その分散性がより優れ、延伸特性等の機械的強度に優れた成形品が得られやすい。パウダー(1)のD50が1μm以上4μm以下であれば、耐クラック性に優れた成形品が得られやすい。
The powder (1) in the present invention is a powder containing an F polymer, and is preferably a powder composed of an F polymer. The content of the F polymer in the powder (1) is preferably 80% by mass or more, and particularly preferably 100% by mass.
The D50 of the powder (1) is preferably 0.01 to 75 μm, more preferably 0.05 to 6 μm, and further preferably 0.1 to 4 μm. Preferable embodiments of D50 of the powder (1) include a mode of 0.1 μm or more and less than 1 μm and a mode of 1 μm or more and 4 μm or less.
D90 of the powder (1) is preferably 8 μm or less, more preferably 6 μm or less. D90 of the powder (1) is preferably 0.1 μm or more, more preferably 0.3 μm or more. Preferable aspects of D90 of the powder (1) include an aspect of 0.3 μm or more and less than 2 μm and an aspect of 2 μm or more and 6 μm or less.
In this case, it is easy to further improve the dispersion stability of this dispersion and the physical properties of the molded product. For example, if the D50 of the powder (1) is 0.1 μm or more and less than 1 μm, the dispersibility is more excellent, and a molded product having excellent mechanical strength such as stretching characteristics is easily obtained. When the D50 of the powder (1) is 1 μm or more and 4 μm or less, it is easy to obtain a molded product having excellent crack resistance.
 本発明におけるFポリマーが有する酸素含有極性基は、酸素含有極性基を有するモノマーに基づく単位に含まれていてもよく、ポリマー末端基に含まれていてもよく、表面処理(放射線処理、電子線処理、コロナ処理、プラズマ処理等)によりポリマー中に含まれていてもよく、最前者が好ましい。また、Fポリマーが有する酸素含有極性基は、酸素含有極性基を形成し得る基を有するポリマーを変性して調製された基であってもよい。ポリマー末端基に含まれる酸素含有極性基は、そのポリマーの重合に際して使用する成分(重合開始剤、連鎖移動剤等)を調整することにより得られる。
 酸素含有極性基は、酸素原子を含有する極性の原子団である。ただし、酸素含有極性基には、エステル結合自体とエーテル結合自体とは含まれず、これらの結合を特性基として含む原子団は含まれる。
The oxygen-containing polar group contained in the F polymer of the present invention may be contained in a unit based on a monomer having an oxygen-containing polar group, may be contained in a polymer end group, and may be surface-treated (radiation treatment, electron beam treatment). Treatment, corona treatment, plasma treatment, etc.), and the former is preferable. Further, the oxygen-containing polar group of the F polymer may be a group prepared by modifying a polymer having a group capable of forming an oxygen-containing polar group. The oxygen-containing polar group contained in the polymer end group can be obtained by adjusting the components (polymerization initiator, chain transfer agent, etc.) used in the polymerization of the polymer.
The oxygen-containing polar group is a polar atomic group containing an oxygen atom. However, the oxygen-containing polar group does not include the ester bond itself and the ether bond itself, but includes an atomic group containing these bonds as a characteristic group.
 酸素含有極性基は、水酸基含有基、カルボニル基含有基、アセタール基及びオキシシクロアルカン基からなる群から選ばれる少なくとも1種の基が好ましく、水酸基含有基又はカルボニル基含有基がより好ましく、-CFCHOH、-C(CFOH、1,2-グリコール基(-CH(OH)CHOH)、-CFC(O)OH、>CFC(O)OH、カルボキシアミド基(-C(O)NH等)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)、ジカルボン酸残基(-CH(C(O)OH)CHC(O)OH等)又はカーボネート基(-OC(O)O-)がさらに好ましい。
 オキシシクロアルカン基は、エポキシ基又はオキセタニル基が好ましい。
 また、成形品の接着性、耐クラック性及びポリマーの物性を損ないにくい観点から、酸素含有極性基は、極性基であり環状基であるかその開環基である、環状酸無水物残基、環状イミド残基、環状カーボネート基、環状アセタール基、1,2-ジカルボン酸残基又は1,2-グリコール基が特に好ましく、環状酸無水物残基が最も好ましい。
The oxygen-containing polar group is preferably at least one group selected from the group consisting of a hydroxyl group-containing group, a carbonyl group-containing group, an acetal group and an oxycycloalkane group, more preferably a hydroxyl group-containing group or a carbonyl group-containing group, and -CF 2 CH 2 OH, —C(CF 3 ) 2 OH, 1,2-glycol group (—CH(OH)CH 2 OH), —CF 2 C(O)OH, >CFC(O)OH, carboxamide group (-C(O)NH 2, etc.), acid anhydride residue (-C(O)OC(O)-), imide residue (-C(O)NHC(O)-, etc.), dicarboxylic acid residue (—CH(C(O)OH)CH 2 C(O)OH and the like) or carbonate group (—OC(O)O—) is more preferable.
The oxycycloalkane group is preferably an epoxy group or an oxetanyl group.
Further, from the viewpoint of not easily impairing the adhesiveness of the molded article, crack resistance and physical properties of the polymer, the oxygen-containing polar group is a polar group and a cyclic group or its ring-opening group, a cyclic acid anhydride residue, Cyclic imide residues, cyclic carbonate groups, cyclic acetal groups, 1,2-dicarboxylic acid residues or 1,2-glycol groups are particularly preferred, and cyclic acid anhydride residues are most preferred.
 Fポリマーは、TFE単位と、ヘキサフルオロプロピレン(HFP)、ペルフルオロ(アルキルビニルエーテル)(以下、「PAVE」とも記す。)又はフルオロアルキルエチレン(以下、「FAE」とも記す。)に基づく単位(以下、「PAE単位」とも記す。)と、酸素含有極性基を有するモノマーに基づく単位(以下、「極性単位」とも記す。)とを含むポリマーが好ましい。
 TFE単位の割合は、Fポリマーを構成する全単位のうち、50~99モル%が好ましく、90~99モル%がより好ましい。
 PAE単位は、PAVEに基づく単位又はHFPに基づく単位が好ましく、PAVEに基づく単位がより好ましい。PAE単位は、2種類以上であってもよい。
 PAE単位の割合は、Fポリマーを構成する全単位のうち、0.5~9.97モル%が好ましい。
The F polymer includes a TFE unit and a unit based on hexafluoropropylene (HFP), perfluoro(alkyl vinyl ether) (hereinafter also referred to as “PAVE”) or fluoroalkyl ethylene (hereinafter also referred to as “FAE”) (hereinafter, referred to as “FAE”). A polymer containing a “PAE unit”) and a unit based on a monomer having an oxygen-containing polar group (hereinafter, also referred to as “polar unit”) is preferable.
The proportion of TFE units is preferably 50 to 99 mol%, more preferably 90 to 99 mol%, based on all units constituting the F polymer.
The PAE unit is preferably a unit based on PAVE or a unit based on HFP, and more preferably a unit based on PAVE. Two or more types of PAE units may be used.
The proportion of PAE units is preferably 0.5 to 9.97 mol% based on all units constituting the F polymer.
 PAVEとしては、CF=CFOCF(PMVE)、CF=CFOCFCF、CF=CFOCFCFCF(PPVE)、CF=CFOCFCFCFCF、CF=CFO(CFFが挙げられ、PMVE又はPPVEが好ましい。
 FAEとしては、CH=CH(CFF(PFEE)、CH=CH(CFF、CH=CH(CFF(PFBE)、CH=CF(CFH、CH=CF(CFHが挙げられ、PFEE又はPFBEが好ましい。
The PAVE, CF 2 = CFOCF 3 ( PMVE), CF 2 = CFOCF 2 CF 3, CF 2 = CFOCF 2 CF 2 CF 3 (PPVE), CF 2 = CFOCF 2 CF 2 CF 2 CF 3, CF 2 = CFO (CF 2) 8 F can be mentioned, PMVE or PPVE is preferred.
The FAE, CH 2 = CH (CF 2) 2 F (PFEE), CH 2 = CH (CF 2) 3 F, CH 2 = CH (CF 2) 4 F (PFBE), CH 2 = CF (CF 2 ) 3 H, CH 2 = CF (CF 2) 4 H can be mentioned, PFEE or PFBE is preferred.
 極性単位は、酸無水物残基、カーボネート基、環状アセタール基、1,2-ジカルボン酸残基、1,2-ジオール残基、又は1,3-ジオール残基を有するモノマーに基づく単位が好ましく、環状酸無水物残基又は環状カーボネート基を有するモノマーに基づく単位がより好ましく、環状酸無水物残基を有するモノマーに基づく単位がさらに好ましい。極性単位は、1種類であってもよく、2種類以上であってもよい。
 環状酸無水物残基を有するモノマーは、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸;以下、「NAH」とも記す。)又は無水マレイン酸が好ましく、NAHがより好ましい。
 極性単位の割合は、Fポリマーを構成する全単位のうち、0.01~3モル%が好ましい。
The polar unit is preferably a unit based on a monomer having an acid anhydride residue, a carbonate group, a cyclic acetal group, a 1,2-dicarboxylic acid residue, a 1,2-diol residue, or a 1,3-diol residue. A unit based on a monomer having a cyclic acid anhydride residue or a cyclic carbonate group is more preferable, and a unit based on a monomer having a cyclic acid anhydride residue is further preferable. The polarity unit may be one type or two or more types.
Examples of the monomer having a cyclic acid anhydride residue include itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride (also called hymic acid anhydride; hereinafter also referred to as “NAH”) or maleic anhydride. Acids are preferred and NAH is more preferred.
The proportion of the polar unit is preferably 0.01 to 3 mol% based on all units constituting the F polymer.
 また、この場合のFポリマーは、TFE単位、PAE単位及び極性単位以外の単位(以下、「他の単位」とも記す。)を、さらに含んでいてもよい。他の単位は、1種類であってもよく、2種類以上であってもよい。
 他の単位を形成するモノマーとしては、エチレン、プロピレン、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン(VDF)、クロロトリフルオロエチレン(CTFE)が挙げられる。他の単位は、エチレン、VDF又はCTFEが好ましく、エチレンがより好ましい。
 Fポリマーにおける他の単位の割合は、Fポリマーを構成する全単位のうち、0~50モル%が好ましく、0~40モル%がより好ましい。
In addition, the F polymer in this case may further include a unit other than the TFE unit, the PAE unit, and the polar unit (hereinafter, also referred to as “other unit”). The other unit may be one type or two or more types.
Examples of monomers forming other units include ethylene, propylene, vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride (VDF), and chlorotrifluoroethylene (CTFE). Other units are preferably ethylene, VDF or CTFE, more preferably ethylene.
The proportion of the other units in the F polymer is preferably 0 to 50 mol% and more preferably 0 to 40 mol% based on all the units constituting the F polymer.
 Fポリマーの溶融温度は、140~320℃が好ましく、200~320℃がより好ましく、260~320℃がさらに好ましい。この場合、Fポリマーと非熱溶融性PTFEとの融着性がバランスし、成形品の接着性と耐クラック性とを更に向上させつつ、非熱溶融性PTFEの物性を損ないにくい。 The melting temperature of the F polymer is preferably 140 to 320°C, more preferably 200 to 320°C, and even more preferably 260 to 320°C. In this case, the fusion bondability between the F polymer and the non-thermofusible PTFE is balanced, the adhesiveness and crack resistance of the molded product are further improved, and the physical properties of the non-thermofusible PTFE are not easily impaired.
 本分散液は、パウダー(21)又はパウダー(22)を含み、パウダー(21)のみを含んでいてもよく、パウダー(22)のみを含んでいてもよく、パウダー(21)及びパウダー(22)の両方を含んでいてもよい。
 パウダー(21)は、非熱溶融性PTFEを含むパウダーであり、非熱溶融性PTFEからなるパウダーであるのが好ましい。パウダー(21)における非熱溶融性PTFEの含有量は、80質量%以上が好ましく、100質量%がより好ましい。なお、本明細書においては、非熱溶融性PTFEの製造において使用された成分(界面活性剤等)は、非熱溶融性PTFE以外の成分には含めない。
 本発明におけるパウダー(22)は、Mポリマーを含むパウダーであり、Mポリマーからなるパウダーであるのが好ましい。パウダー(22)におけるFポリマーの含有量は、80質量%以上が好ましく、100質量%がより好ましい。
This dispersion liquid contains powder (21) or powder (22), may contain only powder (21), may contain only powder (22), and may contain powder (21) and powder (22). Both may be included.
The powder (21) is a powder containing non-heat-melting PTFE, and is preferably a powder containing non-heat-melting PTFE. The content of the non-thermofusible PTFE in the powder (21) is preferably 80% by mass or more, more preferably 100% by mass. In this specification, the components (surfactant etc.) used in the production of the non-heat-melting PTFE are not included in the components other than the non-heat-melting PTFE.
The powder (22) in the present invention is a powder containing M polymer, and is preferably a powder composed of M polymer. 80 mass% or more is preferable and, as for content of F polymer in powder (22), 100 mass% is more preferable.
 パウダー(21)のD50は、0.01~100μmが好ましく、0.1~10μmがより好ましい。パウダー(21)のD50の好適態様としては、0.1~1μmである態様が挙げられる。
 パウダー(21)のD90は、200μm以下が好ましく、20μm以下がより好ましい。パウダー(21)のD90は、0.1μm以上が好ましく、0.2μm以上がより好ましい。パウダー(21)のD90の具体的な好適態様としては、0.1~2μmである態様が挙げられる。
 この場合、パウダー(1)の分散性とパウダー同士の間での相互作用とが良好となり、本分散液と成形品との物性を更に向上させやすい。
The D50 of the powder (21) is preferably 0.01 to 100 μm, more preferably 0.1 to 10 μm. A preferred embodiment of D50 of the powder (21) is an embodiment of 0.1 to 1 μm.
The D90 of the powder (21) is preferably 200 μm or less, more preferably 20 μm or less. D90 of the powder (21) is preferably 0.1 μm or more, more preferably 0.2 μm or more. A specific preferred embodiment of D90 of the powder (21) is an embodiment having a particle size of 0.1 to 2 μm.
In this case, the dispersibility of the powder (1) and the interaction between the powders are good, and the physical properties of the present dispersion and the molded product are likely to be further improved.
 パウダー(1)のD50と、パウダー(21)のD50との関係の好適な態様としては、パウダー(1)のD50が0.1μm以上1μm未満又は1μm以上4μm以下であり、パウダー(21)のD50が0.1μm以上1μm以下である態様が挙げられる。前者の態様においては、本分散液の分散性が優れ、延伸特性等の機械的強度に優れた成形品が得られやすい。後者の態様においては、耐クラック性に優れた成形品が得られやすい。 As a preferred embodiment of the relationship between the D50 of the powder (1) and the D50 of the powder (21), the D50 of the powder (1) is 0.1 μm or more and less than 1 μm or 1 μm or more and 4 μm or less, and the D50 of the powder (21) is A mode in which D50 is 0.1 μm or more and 1 μm or less can be mentioned. In the former embodiment, the dispersibility of the present dispersion is excellent, and a molded product having excellent mechanical strength such as stretching properties is easily obtained. In the latter embodiment, it is easy to obtain a molded article having excellent crack resistance.
 パウダー(22)のD50は、0.01~100μmが好ましく、0.1~10μmがより好ましい。パウダー(22)のD50の好適態様としては、0.1~1μmである態様が挙げられる。
 パウダー(22)のD90は、200μm以下が好ましく、20μm以下がより好ましい。パウダー(22)のD90は、0.1μm以上が好ましく、0.2μm以上がより好ましい。パウダー(22)のD90の好適態様としては、0.1~2μmである態様が挙げられる。この場合、パウダー(22)の分散性とパウダー(1)との相互作用とが良好となり、成形品の接着性、耐クラック性及びMポリマーの物性が向上しやすい。
The D50 of the powder (22) is preferably 0.01 to 100 μm, more preferably 0.1 to 10 μm. A preferred embodiment of D50 of the powder (22) is an embodiment of 0.1 to 1 μm.
The D90 of the powder (22) is preferably 200 μm or less, more preferably 20 μm or less. D90 of the powder (22) is preferably 0.1 μm or more, more preferably 0.2 μm or more. A preferred embodiment of D90 of the powder (22) is an embodiment having a particle size of 0.1 to 2 μm. In this case, the dispersibility of the powder (22) and the interaction with the powder (1) are good, and the adhesiveness of the molded article, crack resistance and physical properties of the M polymer are likely to be improved.
 パウダー(1)のD50とパウダー(22)のD50との関係の好適な態様としては、パウダー(1)のD50が0.1μm以上1μm未満又はD50が1μm以上4μm以下であり、パウダー(22)のD50が0.1μm以上1μm以下である態様が挙げられる。前者の態様においては、本分散液の分散性が優れ、延伸特性等の機械的強度に優れた成形品が得られやすい。後者の態様においては、耐クラック性に優れた成形品が得られやすい。 As a preferred aspect of the relationship between D50 of powder (1) and D50 of powder (22), D50 of powder (1) is 0.1 μm or more and less than 1 μm or D50 is 1 μm or more and 4 μm or less, and powder (22) And D50 of 0.1 μm or more and 1 μm or less. In the former embodiment, the dispersibility of the present dispersion is excellent, and a molded product having excellent mechanical strength such as stretching properties is easily obtained. In the latter embodiment, it is easy to obtain a molded article having excellent crack resistance.
 非熱溶融性PTFEは、ポリテトラフルオロエチレン(PTFE)であり、TFEのホモポリマーに加えて、極微量のコモノマー(PAVE、HFP、FAE等)とTFEとのコポリマーである、所謂、変性PTFEも包含される。
 上述した通り、本分散液から得られる成形品は、強固な接着性と耐クラック性とを示すだけでなく、非熱溶融性PTFEの成形品が本来有する繊維状の表面物性やその多孔性が損なわれにくい。
 非熱溶融性PTFEにおけるTFE単位の割合は、全単位のうち、99.5モル%以上が好ましく、99.9モル%以上がより好ましい。
Non-heat-melting PTFE is polytetrafluoroethylene (PTFE), and in addition to a homopolymer of TFE, a so-called modified PTFE, which is a copolymer of a very small amount of comonomer (PAVE, HFP, FAE, etc.) and TFE, is also available. Included.
As described above, the molded product obtained from the present dispersion not only exhibits strong adhesiveness and crack resistance, but also has a fibrous surface physical property and its porosity originally possessed by the non-heat-melting PTFE molded product. Hard to be damaged.
The proportion of TFE units in the non-thermofusible PTFE is preferably 99.5 mol% or more, more preferably 99.9 mol% or more, based on all units.
 非熱溶融性PTFEは、水中でTFEを乳化重合して得られるポリマーであるのが好ましい。かかる非熱溶融性PTFEのパウダーは、水中でTFEを乳化重合して得られるポリマーが粒子として水に分散したパウダーである。かかるパウダーの使用に際しては、水に分散したパウダーをそのまま使用してもよく、水からパウダーを回収して使用してもよい。
 非熱溶融性PTFEは、パウダー、その分散液として、市販品を広く入手できる。
 非熱溶融性PTFEは、フィブリル性を有するのが好ましい。フィブリル性を有すれば、延伸処理により容易に多孔質膜を製造しやすい。なお、フィブリル性を有する非熱溶融性PTFEとは、未焼成のポリマー粉末がペースト押出できるPTFEを意味する。すなわち、ペースト押出で得られる成形物に強度又は伸びがあるPTFEを意味する。
The non-thermofusible PTFE is preferably a polymer obtained by emulsion polymerization of TFE in water. The non-heat-meltable PTFE powder is a powder in which a polymer obtained by emulsion-polymerizing TFE in water is dispersed as particles in water. When using such powder, the powder dispersed in water may be used as it is, or the powder may be recovered from water and used.
Non-heat-melting PTFE is widely available as a powder or a dispersion thereof.
The non-thermofusible PTFE preferably has a fibrillation property. If it has a fibrillation property, a porous film can be easily produced by a stretching process. The non-thermofusible PTFE having fibrillarity means PTFE that allows unextruded polymer powder to be paste extruded. That is, it means PTFE having strength or elongation in the molded product obtained by paste extrusion.
 非熱溶融性PTFEの数平均分子量は、30万~30000万が好ましく、50万~2500万がより好ましい。
 非熱溶融性PTFEの平均分子量の指標である標準比重は、2.14~2.22が好ましく、2.15~2.21がより好ましい。
 非熱溶融性PTFEの380℃における溶融粘度は、1×10Pa・s以上が好ましい。前記溶融粘度の上限は、通常、1×1010Pa・sである。
 非熱溶融性PTFEの数平均分子量、標準比重及び溶融粘度のうちの少なくとも一つが、上記範囲にあれば、非熱溶融性PTFEのフィブリル性がより良好であり、機械的物性等により優れた成形品が形成できる。また、この場合、本分散液の状態安定性がより向上しやすい。
The number average molecular weight of the non-thermofusible PTFE is preferably 300,000 to 300,000,000, more preferably 500,000 to 25,000,000.
The standard specific gravity, which is an index of the average molecular weight of the non-thermofusible PTFE, is preferably 2.14 to 2.22, more preferably 2.15 to 2.21.
The melt viscosity of the non-heat-melting PTFE at 380° C. is preferably 1×10 9 Pa·s or more. The upper limit of the melt viscosity is usually 1×10 10 Pa·s.
When at least one of the number average molecular weight, the standard specific gravity and the melt viscosity of the non-thermofusible PTFE is in the above range, the fibrillability of the non-thermofusible PTFE is better and the molding excellent in mechanical properties and the like. Goods can be formed. Further, in this case, the state stability of the present dispersion is more likely to be improved.
 Mポリマーは、Fポリマーとは異なるフルオロオレフィンに基づく単位(以下、「F単位」とも記す。)を含むポリマーであり、F単位を含み酸素含有極性基を有さないポリマーが好ましい。
 MポリマーにおけるF単位の割合は、全単位のうち、50.0モル%以上が好ましく、99.5モル%以上がより好ましく、99.9モル%以上がさらに好ましい。
 Mポリマーにおけるフルオロオレフィンは、TFE又はVDFが好ましく、TFEがより好ましい。フルオロオレフィンは、2種類以上であってもよい。
The M polymer is a polymer containing a unit based on a fluoroolefin different from the F polymer (hereinafter, also referred to as “F unit”), and a polymer containing the F unit and having no oxygen-containing polar group is preferable.
The proportion of F units in the M polymer is preferably 50.0 mol% or more, more preferably 99.5 mol% or more, still more preferably 99.9 mol% or more, based on all units.
The fluoroolefin in the M polymer is preferably TFE or VDF, and more preferably TFE. Two or more kinds of fluoroolefins may be used.
 Mポリマーは、TFEとPAVEとのコポリマー(PFA)、TFEとHFPとのコポリマー(FEP)、TFEとエチレンとのコポリマー(ETFE)、VDFのホモポリマー(PVDF)又は低分子量のPTFEが好ましく、低分子量のPTFEがより好ましい。
 なお、低分子量のPTFEには、TFEのホモポリマーに加えて、極微量のコモノマー(PAVE、HFP、FAE等)とTFEとのコポリマーである、所謂、変性PTFEも包含される。また、PFAは、TFE及びPAVE以外のモノマーに基づく単位を含んでいてもよい。上述した他のコポリマー(FEP、ETFE、PVDF)においても同様である。
 Mポリマーの好適な態様の一つとしては、低分子量PTFE又は変性PTFEが挙げられる。
The M polymer is preferably a copolymer of TFE and PAVE (PFA), a copolymer of TFE and HFP (FEP), a copolymer of TFE and ethylene (ETFE), a homopolymer of VDF (PVDF) or a low molecular weight PTFE, and a low molecular weight PTFE. More preferred is molecular weight PTFE.
In addition to the homopolymer of TFE, low-molecular-weight PTFE also includes so-called modified PTFE, which is a copolymer of an extremely small amount of comonomer (PAVE, HFP, FAE, etc.) and TFE. The PFA may also contain units based on monomers other than TFE and PAVE. The same applies to the other copolymers (FEP, ETFE, PVDF) described above.
One of the preferable embodiments of the M polymer is low molecular weight PTFE or modified PTFE.
 この場合のMポリマーの380℃における溶融粘度は、1×10~1×10Pa・sが好ましく、1×10~1×10Pa・sがより好ましい。
 この場合のポリマーの溶融温度は、321~340℃が好ましく、325~335℃がより好ましい。
 この場合のポリマーの溶融流れ速度は、1~10g/10分が好ましく、1~5g/10分がより好ましい。
 低分子量PTFE又は変性PTFEの溶融粘度、溶融流れ速度、溶融温度の少なくとも一つが、上記範囲にあれば、これらのPTFEの物性(加工性、機械的強度等)により優れた成形品が形成できる。また、この場合、本分散液中でパウダー(22)とパウダー(1)との相互作用が向上して、本分散液の状態安定性がより向上しやすい。
In this case, the melt viscosity of the M polymer at 380° C. is preferably 1×10 2 to 1×10 6 Pa·s, more preferably 1×10 3 to 1×10 6 Pa·s.
In this case, the melting temperature of the polymer is preferably 321 to 340°C, more preferably 325 to 335°C.
In this case, the melt flow rate of the polymer is preferably 1 to 10 g/10 minutes, more preferably 1 to 5 g/10 minutes.
When at least one of the melt viscosity, melt flow rate and melt temperature of the low molecular weight PTFE or modified PTFE is within the above range, a molded article excellent in physical properties of these PTFEs (workability, mechanical strength, etc.) can be formed. Moreover, in this case, the interaction between the powder (22) and the powder (1) in the main dispersion is improved, and the state stability of the main dispersion is more likely to be improved.
 低分子量のPTFEは、高分子量のPTFE(溶融粘度が1×10~1×1010Pa・s程度)に放射線を照射して得られるPTFE(国際公開第2018/026012号、国際公開第2018/026017号等に記載のポリマー)であってもよく、TFEを重合してPTFEを製造する際に連鎖移動剤を調整して得られるPTFE(特開2009-1745号公報、国際公開第2010/114033号、特開2015-232082号公報等に記載のポリマー)であってもよい。 Low-molecular-weight PTFE is obtained by irradiating high-molecular-weight PTFE (melt viscosity is about 1×10 9 to 1×10 10 Pa·s) with radiation (International Publication No. 2018/026012, International Publication No. 2018). /026017, etc.), and PTFE obtained by polymerizing TFE to prepare PTFE to prepare a PTFE (JP-A-2009-1745, WO 2010/ 114033, JP-A-2005-232082, etc.).
 低分子量PTFEの好適な具体例としては、下式(1)に基づいて算出される数平均分子量(Mn)が20万以下であるPTFEが挙げられる。
 Mn = 2.1×1010×ΔHc-5.16 ・・・ (1)
 式(1)中、ΔHcは、示差走査熱量分析法により測定される前記PTFEの結晶化熱量(cal/g)を示す。
 この低分子量PTFEのMnは、10以下が好ましく、5万以下がより好ましい。この低分子量PTFEのMnは、1万以上が好ましい。
A preferred specific example of the low molecular weight PTFE is PTFE having a number average molecular weight (Mn) of 200,000 or less calculated based on the following formula (1).
Mn=2.1×10 10 ×ΔHc −5.16 (1)
In the formula (1), ΔHc represents the heat of crystallization (cal/g) of the PTFE measured by the differential scanning calorimetry.
The Mn of this low molecular weight PTFE is preferably 10 or less, more preferably 50,000 or less. The Mn of this low molecular weight PTFE is preferably 10,000 or more.
 また、Mポリマーの好適な態様の一つとしては、PFA又はFEPが挙げられる。
 この場合のMポリマーの380℃における溶融粘度は、1×10~1×10Pa・sが好ましく、1×10~1×10Pa・sがより好ましい。
 この場合のMポリマーの溶融流れ速度は、5~30g/10分が好ましく、5~20g/10分がより好ましい。
 この場合のMポリマーの溶融温度は、260~320℃が好ましく、280~310℃がより好ましい。
 PFA又はFEPの溶融粘度、溶融流れ速度及び溶融温度のうちの少なくとも一つが、上記範囲にあれば、これらのPFA又はFEPの物性(加工性、機械的強度等)により優れた成形品が形成できるだけでなく、本分散液の状態安定性がより向上しやすい。
Moreover, PFA or FEP is mentioned as one of the suitable aspects of M polymer.
In this case, the melt viscosity of the M polymer at 380° C. is preferably 1×10 2 to 1×10 4 Pa·s, more preferably 1×10 2 to 1×10 3 Pa·s.
In this case, the melt flow rate of the M polymer is preferably 5 to 30 g/10 minutes, more preferably 5 to 20 g/10 minutes.
In this case, the melting temperature of the M polymer is preferably 260 to 320°C, more preferably 280 to 310°C.
If at least one of the melt viscosity, the melt flow rate and the melt temperature of PFA or FEP is within the above range, excellent molded products can be formed due to the physical properties of PFA or FEP (workability, mechanical strength, etc.). Not only that, the state stability of the dispersion is more likely to be improved.
 Mポリマーは、水中でフルオロオレフィンを乳化重合して得られるポリマーであるのが好ましい。かかるMポリマーのパウダーは、水中でフルオロオレフィンを乳化重合して得られるポリマーが粒子として水に分散したパウダーである。かかるパウダーの使用に際しては、水に分散したパウダーをそのまま使用してもよく、水からパウダーを回収して使用してもよい。
 Mポリマーは、表面処理(放射線処理、電子線処理、コロナ処理、プラズマ処理等)により改質されていてもよい。かかる表面処理の方法としては、国際公開第2018/026012号、国際公開第2018/026017号等に記載される方法が挙げられる。
 Mポリマーは、パウダー、又は、その分散液として、市販品を広く入手できる。
The M polymer is preferably a polymer obtained by emulsion-polymerizing a fluoroolefin in water. The M polymer powder is a powder in which a polymer obtained by emulsion-polymerizing a fluoroolefin in water is dispersed as particles in water. When using such powder, the powder dispersed in water may be used as it is, or the powder may be recovered from water and used.
The M polymer may be modified by surface treatment (radiation treatment, electron beam treatment, corona treatment, plasma treatment, etc.). Examples of such surface treatment methods include the methods described in International Publication No. 2018/026012 and International Publication No. 2018/026017.
As the M polymer, a commercially available product is widely available as a powder or a dispersion liquid thereof.
 本分散液は、非熱溶融性PTFEのみを含んでいてもよく、Mポリマーのみを含んでいてもよく、非熱溶融性PTFE及びMポリマーの両方を含んでいてもよい。なお、それぞれのポリマーは、パウダーとして含まれるのが好ましい。
 本分散液が非熱溶融性PTFE及びMポリマーの両方を含む場合、非熱溶融性PTFEのパウダー(パウダー(21))のD50は0.1~1μmが好ましく、そのD90は0.1~2μmが好ましい。また、この場合、Mポリマーのパウダー(パウダー(22))のD50は0.1~1μmが好ましく、そのD90は0.1~2μmが好ましい。
The present dispersion may contain only non-thermofusible PTFE, may contain only M polymer, and may contain both non-heat-meltable PTFE and M polymer. Each polymer is preferably contained as a powder.
When this dispersion contains both non-heat-melting PTFE and M polymer, D50 of the non-heat-melting PTFE powder (powder (21)) is preferably 0.1 to 1 μm, and its D90 is 0.1 to 2 μm. Is preferred. In this case, the D50 of the M polymer powder (powder (22)) is preferably 0.1 to 1 μm, and the D90 thereof is preferably 0.1 to 2 μm.
 この場合、本分散液における非熱溶融性PTFEの含有量又はMポリマーの含有量に対するFポリマーの含有量の質量での比は、0.4以下が好ましく、0.15以下がより好ましい。この場合、パウダー同士の間での相互作用が良好となり、本分散液の状態安定性がさらに向上し、成形品の接着性、耐クラック性及びポリマー同士の間の物性をバランスさせやすい。
 また、この場合、非熱溶融性PTFEとMポリマーとの合計での含有量は、20~70質量%が好ましく、30~60質量%がより好ましい。
In this case, the mass ratio of the content of the F polymer to the content of the non-thermofusible PTFE or the content of the M polymer in this dispersion is preferably 0.4 or less, more preferably 0.15 or less. In this case, the interaction between the powders is good, the state stability of the present dispersion is further improved, and the adhesiveness, crack resistance and physical properties between the polymers can be easily balanced.
In this case, the total content of the non-thermofusible PTFE and the M polymer is preferably 20 to 70% by mass, more preferably 30 to 60% by mass.
 本分散液は、それぞれのパウダーの分散性を向上させ、その成形性を向上させる観点から、分散剤を含むのが好ましい。なお、ポリマーを製造する際に使用される成分(例えば、フルオロオレフィンを乳化重合する際に用いられる界面活性剤)は、本発明における分散剤には該当しない。 The present dispersion liquid preferably contains a dispersant from the viewpoint of improving the dispersibility of each powder and improving the moldability thereof. The components used for producing the polymer (for example, the surfactant used for emulsion-polymerizing the fluoroolefin) do not correspond to the dispersant in the present invention.
 分散剤は、疎水部位と親水部位とを有する化合物が好ましく、アセチレン系界面活性剤、シリコーン系界面活性剤、フッ素系界面活性剤が挙げられる。これらの分散剤は、ノニオン性が好ましい。
 分散剤は、フルオロアルコールが好ましく、フルオロモノオール又はフルオロポリオールがより好ましい。
 フルオロモノオールのフッ素含有量は、10~50質量%が好ましく、10~45質量%がより好ましく、15~40質量%がさらに好ましい。
 フルオロモノオールは、ノニオン性であるのが好ましい。
 フルオロモノオールの水酸基価は、40~100mgKOH/gが好ましく、50~100mgKOH/gがより好ましく、60~100mgKOH/gがさらに好ましい。
The dispersant is preferably a compound having a hydrophobic site and a hydrophilic site, and examples thereof include an acetylene-based surfactant, a silicone-based surfactant, and a fluorine-based surfactant. These dispersants are preferably nonionic.
The dispersant is preferably fluoroalcohol, more preferably fluoromonool or fluoropolyol.
The fluorine content of fluoromonool is preferably 10 to 50% by mass, more preferably 10 to 45% by mass, and further preferably 15 to 40% by mass.
The fluoromonool is preferably nonionic.
The hydroxyl value of fluoromonool is preferably 40 to 100 mgKOH/g, more preferably 50 to 100 mgKOH/g, and further preferably 60 to 100 mgKOH/g.
 フルオロモノオールは、下式(a)で表される化合物が好ましい。
 式(a):R-(OQma-OH
 式中の記号は、下記の意味を示す。
 Rは、ポリフルオロアルキル基又はエーテル性酸素原子を含むポリフルオロアルキル基を示し、-CH(CFF、-CH(CFF、-CHCH(CFF、-CHCH(CFF、-CHCFOCFCFOCFCF、-CHCF(CF)CFOCFCFCF、-CHCF(CF)OCFCF(CF)OCF、又は-CHCFCHFO(CFOCFが好ましい。
 Qは、炭素数1~4のアルキレン基を示し、エチレン基(-CHCH-)又はプロピレン基(-CHCH(CH)-)が好ましい。Qは、2種以上の基からなっていてもてよい。2種以上の基からなっている場合、基の並び方は、ランダム状であってもよく、ブロック状であってもよい。
 maは、0~20の整数を示し、4~10の整数が好ましい。
 フルオロモノオールの水酸基は、2級水酸基又は3級水酸基が好ましく、2級水酸基が特に好ましい。
The fluoromonool is preferably a compound represented by the following formula (a).
Formula (a): R a - ( OQ a) ma -OH
The symbols in the formulas have the following meanings.
R a represents a polyfluoroalkyl group or a polyfluoroalkyl group containing an etheric oxygen atom, and is —CH 2 (CF 2 ) 4 F, —CH 2 (CF 2 ) 6 F, —CH 2 CH 2 (CF 2 ) 4 F, —CH 2 CH 2 (CF 2 ) 6 F, —CH 2 CF 2 OCF 2 CF 2 OCF 2 CF 3 , —CH 2 CF(CF 3 )CF 2 OCF 2 CF 2 CF 3 , —CH 2 CF (CF 3) OCF 2 CF (CF 3) OCF 3, or -CH 2 CF 2 CHFO (CF 2 ) 3 OCF 3 are preferred.
Q a represents an alkylene group having 1 to 4 carbon atoms, and is preferably an ethylene group (—CH 2 CH 2 —) or a propylene group (—CH 2 CH(CH 3 )—). Q a may be composed of two or more kinds of groups. When it is composed of two or more kinds of groups, the groups may be arranged randomly or in a block.
ma represents an integer of 0 to 20, preferably an integer of 4 to 10.
The hydroxyl group of fluoromonool is preferably a secondary hydroxyl group or a tertiary hydroxyl group, and particularly preferably a secondary hydroxyl group.
 フルオロモノオールの具体例としては、F(CFCH(OCHCHOCHCH(CH)OH、F(CFCH(OCHCH12OCHCH(CH)OH、F(CFCHCH(OCHCHOCHCH(CH)OH、F(CFCHCH(OCHCH12OCHCH(CH)OH、F(CFCHCH(OCHCHOCHCH(CH)OHが挙げられる。
 かかるフルオロモノオールは、市販品(アークロマ社製、「Fluowet N083」、「Fluowet N050」等)として入手できる。
Specific examples of the fluoromonool include F(CF 2 ) 6 CH 2 (OCH 2 CH 2 ) 7 OCH 2 CH(CH 3 )OH, F(CF 2 ) 6 CH 2 (OCH 2 CH 2 ) 12 OCH 2 CH (CH 3) OH, F (CF 2) 6 CH 2 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH, F (CF 2) 6 CH 2 CH 2 (OCH 2 CH 2) 12 OCH 2 CH (CH 3) OH , F (CF 2) 4 CH 2 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH and the like.
Such fluoromonool can be obtained as a commercially available product ("Aluroma Co.,""FluowetN083","FluowetN050", etc.).
 フルオロポリオールのフッ素含有量は、10~50質量%が好ましく、10~45質量%がより好ましく、15~40質量%がさらに好ましい。
 フルオロポリオールは、ノニオン性であるのが好ましい。
 フルオロポリオールの水酸基価は、10~35mgKOH/gが好ましく、10~30mgKOH/gがより好ましく、10~25mgKOH/gがさらに好ましい。
 フルオロポリオールの重量平均分子量は、2000~80000が好ましく、6000~20000がより好ましい。
 フルオロポリオールは、フルオロ(メタ)アクリレートに基づく単位を含むフルオロポリオールが好ましい。なお、「(メタ)アクリレート」とは、アクリレートとメタクリレートとの総称である。
The fluorine content of the fluoropolyol is preferably 10 to 50% by mass, more preferably 10 to 45% by mass, and even more preferably 15 to 40% by mass.
The fluoropolyol is preferably nonionic.
The hydroxyl value of the fluoropolyol is preferably 10 to 35 mgKOH/g, more preferably 10 to 30 mgKOH/g, still more preferably 10 to 25 mgKOH/g.
The weight average molecular weight of the fluoropolyol is preferably 2,000 to 80,000, more preferably 6,000 to 20,000.
The fluoropolyol is preferably a fluoropolyol containing units based on fluoro(meth)acrylate. In addition, "(meth)acrylate" is a general term for acrylate and methacrylate.
 フルオロ(メタ)アクリレートは、下式(f)で表されるモノマーが好ましい。
 式(f):CH=CXC(O)O-Q-R
 式中の記号は、下記の意味を示す。
 Xは、水素原子、塩素原子又はメチル基を示す。
 Qは、炭素数1~4のアルキレン基又は炭素数2~4のオキシアルキレン基を示す。
 Rは、炭素数1~6のポリフルオロアルキル基、エーテル性酸素原子を含む炭素数3~6のポリフルオロアルキル基又は炭素数4~12のポリフルオロアルケニル基を示し、-CF(CF)(C(CF(CF)(=C(CF))、-C(CF)=C(CF(CF、-(CFF又は-(CFFが好ましい。
The fluoro(meth)acrylate is preferably a monomer represented by the following formula (f).
Formula (f): CH 2 =CX f C(O)O-Q f- R f
The symbols in the formulas have the following meanings.
X f represents a hydrogen atom, a chlorine atom or a methyl group.
Q f represents an alkylene group having 1 to 4 carbon atoms or an oxyalkylene group having 2 to 4 carbon atoms.
R f represents a polyfluoroalkyl group having 1 to 6 carbon atoms, a polyfluoroalkyl group having 3 to 6 carbon atoms containing an etheric oxygen atom, or a polyfluoroalkenyl group having 4 to 12 carbon atoms, and —CF(CF 3 )(C(CF(CF 3 ) 2 )(=C(CF 3 ) 2 )), —C(CF 3 )═C(CF(CF 3 ) 2 ) 2 , —(CF 2 ) 4 F or −( CF 2 ) 6 F is preferred.
 フルオロ(メタ)アクリレートの具体例としては、CH=CHC(O)OCHCH(CFF、CH=C(CH)C(O)OCHCH(CFF、CH=CHC(O)OCHCH(CFF、CH=C(CH)C(O)OCHCH(CFF、CH=CHC(O)OCHCHOCF(CF)(C(CF(CF)(=C(CF))、CH=C(CH)C(O)OCHCHOC(CF)=C(CF(CF、CH=CHC(O)OCHCHCHCHOCF(CF)(C(CF(CF)(=C(CF))、CH=C(CH)C(O)OCHCHCHCHOC(CF)=C(CF(CFが挙げられる。 Specific examples of the fluoro(meth)acrylate include CH 2 ═CHC(O)OCH 2 CH 2 (CF 2 ) 4 F and CH 2 ═C(CH 3 )C(O)OCH 2 CH 2 (CF 2 ) 4. F, CH 2 = CHC (O ) OCH 2 CH 2 (CF 2) 6 F, CH 2 = C (CH 3) C (O) OCH 2 CH 2 (CF 2) 6 F, CH 2 = CHC (O) OCH 2 CH 2 OCF (CF 3 ) (C (CF (CF 3) 2) (= C (CF 3) 2)), CH 2 = C (CH 3) C (O) OCH 2 CH 2 OC (CF 3 ) = C (CF (CF 3 ) 2) 2, CH 2 = CHC (O) OCH 2 CH 2 CH 2 CH 2 OCF (CF 3) (C (CF (CF 3) 2) (= C (CF 3) 2)), CH 2 = C (CH 3) C (O) OCH 2 CH 2 CH 2 CH 2 OC (CF 3) = C (CF (CF 3) 2) 2 and the like.
 フルオロポリオールの好適な具体例としては、上式(f)で表されるモノマー及び下式(o)で表されるモノマーのコポリマーが挙げられる。
 式(o):CH=CXC(O)-(OZmo-OH
 式中の記号は、下記の意味を示す。
 Xは、水素原子又はメチル基を示す。
 Zは、炭素数1~4のアルキレン基を示し、エチレン基(-CHCH-)が好ましい。
 moは、1~200の整数であり、4~30の整数が好ましい。
 なお、Zは、2種以上の基からなっていてもよい。この場合、異種のアルキレン基の並び方は、ランダム状であってもよく、ブロック状であってもよい。
 式(o)表される化合物を使用すると、本分散液の分散性に優れるだけでなく、成形品の濡れ性、接着性等の物性が特に向上しやすい。
Preferable specific examples of the fluoropolyol include copolymers of the monomer represented by the above formula (f) and the monomer represented by the following formula (o).
Formula (o): CH 2 =CX o C(O)-(OZ o ) mo —OH
The symbols in the formulas have the following meanings.
X o represents a hydrogen atom or a methyl group.
Z o represents an alkylene group having 1 to 4 carbon atoms, and an ethylene group (—CH 2 CH 2 —) is preferable.
mo is an integer of 1 to 200, preferably an integer of 4 to 30.
In addition, Z o may be composed of two or more kinds of groups. In this case, the arrangement of different alkylene groups may be random or block.
When the compound represented by the formula (o) is used, not only the dispersibility of the present dispersion is excellent, but also the physical properties such as wettability and adhesiveness of the molded product are likely to be improved.
 式(o)で表されるモノマーの具体例としては、CH=CHCOO(CHCHO)OH、CH=CHCOO(CHCHO)10OH、CH=CHCOO(CHCHO)12OH、CH=CHCOOCHCHCHCHO(CHCHO)OH、CH=CHCOOCHCHCHCHO(CHCHO)10OH、CH=CHCOOCHCHCHCHO(CHCHO)12OH、CH=C(CH)COO(CHCH(CH)O)OH、CH=C(CH)COO(CHCH(CH)O)12OH、CH=C(CH)COO(CHCH(CH)O)16OH、CH=C(CH)COOCHCHCHCHO(CHCH(CH)O)OH、CH=C(CH)COOCHCHCHCHO(CHCH(CH)O)12OH、CH=C(CH)COOCHCHCHCHO(CHCH(CH)O)16OHが挙げられる。 Specific examples of the monomer represented by the formula (o) include CH 2 ═CHCOO(CH 2 CH 2 O) 8 OH, CH 2 ═CHCOO(CH 2 CH 2 O) 10 OH, CH 2 ═CHCOO(CH 2 CH 2 O) 12 OH, CH 2 = CHCOOCH 2 CH 2 CH 2 CH 2 O (CH 2 CH 2 O) 8 OH, CH 2 = CHCOOCH 2 CH 2 CH 2 CH 2 O (CH 2 CH 2 O) 10 OH , CH 2 =CHCOOCH 2 CH 2 CH 2 CH 2 O(CH 2 CH 2 O) 12 OH, CH 2 =C(CH 3 )COO(CH 2 CH(CH 3 )O) 8 OH, CH 2 =C( CH 3) COO (CH 2 CH (CH 3) O) 12 OH, CH 2 = C (CH 3) COO (CH 2 CH (CH 3) O) 16 OH, CH 2 = C (CH 3) COOCH 2 CH 2 CH 2 CH 2 O (CH 2 CH (CH 3) O) 8 OH, CH 2 = C (CH 3) COOCH 2 CH 2 CH 2 CH 2 O (CH 2 CH (CH 3) O) 12 OH, CH 2 = C (CH 3) COOCH 2 CH 2 CH 2 CH 2 O (CH 2 CH (CH 3) O) 16 OH and the like.
 上記フルオロポリオールは、式(f)で表されるモノマーに基づく単位と式(o)で表されるモノマーに基づく単位とのみからなっていてもよく、さらに他の単位をさらに含んでいてもよい。
 上記フルオロポリオールに含まれる全単位に対する式(f)で表されるモノマーに基づく単位の含有量は、60~90モル%が好ましく、70~90モル%がより好ましい。
 上記フルオロポリオールに含まれる全単位に対する式(o)で表されるモノマーに基づく単位の含有量は、10~40モル%が好ましく、10~30モル%がより好ましい。
 上記フルオロポリオールに含まれる全単位に対する、式(f)で表されるモノマーに基づく単位と式(o)で表されるモノマーとの合計での含有量は、90~100モル%が好ましく、100モル%がより好ましい。
 本分散液におけるフルオロアルコールの割合は、10質量%以下が好ましく、1質量%以下がより好ましく、0.01質量%以下がさらに好ましい。上記割合の下限は、通常、0%超である。
The fluoropolyol may be composed only of a unit based on the monomer represented by the formula (f) and a unit based on the monomer represented by the formula (o), and may further include another unit. ..
The content of the unit based on the monomer represented by the formula (f) with respect to all units contained in the fluoropolyol is preferably 60 to 90 mol%, more preferably 70 to 90 mol%.
The content of the unit based on the monomer represented by the formula (o) with respect to all units contained in the fluoropolyol is preferably 10 to 40 mol%, more preferably 10 to 30 mol%.
The total content of the unit based on the monomer represented by the formula (f) and the monomer represented by the formula (o) is preferably 90 to 100 mol %, based on all units contained in the fluoropolyol. Mol% is more preferred.
The proportion of fluoroalcohol in this dispersion is preferably 10% by mass or less, more preferably 1% by mass or less, and further preferably 0.01% by mass or less. The lower limit of the above ratio is usually more than 0%.
 本発明における水性媒体は、本分散液の分散媒であり、水を主成分とする。
 水性媒体は、水のみからなってもよく、水と水溶性化合物とからなっていてもよい。
 ただし、水溶性化合物としては、25℃で液状であり、それぞれのポリマーと反応しないか或いは反応性が極めて乏しく、加熱等によって容易に除去できる化合物が好ましい。また、水性媒体は、水を95質量%以上含むのが好ましく、水を99質量%以上含むのがより好ましく、水を100質量%含むのがさらに好ましい。
 本分散液における水性媒体の割合は、15~65質量%が好ましく、25~50質量%がより好ましい。この範囲において、本分散液の塗布性が優れ、かつ得られる成形品において外観不良が起こりにくい。
The aqueous medium in the present invention is a dispersion medium of the present dispersion liquid and contains water as a main component.
The aqueous medium may consist only of water, or may consist of water and a water-soluble compound.
However, the water-soluble compound is preferably a compound which is liquid at 25° C. and does not react with each polymer or has extremely poor reactivity and can be easily removed by heating or the like. The aqueous medium preferably contains water in an amount of 95% by mass or more, more preferably contains 99% by mass or more of water, and further preferably contains 100% by mass of water.
The proportion of the aqueous medium in this dispersion is preferably 15 to 65% by mass, more preferably 25 to 50% by mass. Within this range, the dispersibility of the present dispersion is excellent, and the resulting molded article is less likely to have a poor appearance.
 本分散液は、Fポリマー、非熱溶融性PTFE又はMポリマー、並びに水性媒体以外の他の材料を含んでいてもよい。他の材料としては、チキソ性付与剤、充填剤、消泡剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、難燃剤が挙げられる。他の材料は、本分散液に溶解してもよく、溶解しなくてもよい。 The dispersion may contain F polymer, non-thermofusible PTFE or M polymer, and other materials other than the aqueous medium. Other materials include thixotropic agents, fillers, defoamers, dehydrating agents, plasticizers, weathering agents, antioxidants, heat stabilizers, lubricants, antistatic agents, brighteners, colorants, conductive agents. , Release agents, surface treatment agents, viscosity modifiers, flame retardants. Other materials may or may not dissolve in the dispersion.
 他の材料としては、Fポリマー、非熱溶融性PTFE又はMポリマー以外の樹脂である、熱硬化性樹脂(エポキシ樹脂、熱硬化性ポリイミド樹脂、ポリイミド前駆体(ポリアミック酸)、アクリル樹脂、フェノール樹脂、ポリエステル樹脂、ポリオレフィン樹脂、変性ポリフェニレンエーテル樹脂、ビスマレイミド樹脂、多官能シアン酸エステル樹脂、多官能マレイミド-シアン酸エステル樹脂、多官能性マレイミド樹脂、ビニルエステル樹脂、尿素樹脂、ジアリルフタレート樹脂、メラニン樹脂、グアナミン樹脂、メラミン-尿素共縮合樹脂等)、熱溶融性樹脂(ポリエステル樹脂、ポリオレフィン樹脂、スチレン樹脂、ポリカーボネート、熱可塑性ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルファイド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、ポリフェニレンエーテル等。)や、反応性アルコキシシラン、カーボンブラック、無機フィラー(ガラス微小球、セラミック微小球等の中空無機微小球)が挙げられる。 As other materials, thermosetting resins (epoxy resin, thermosetting polyimide resin, polyimide precursor (polyamic acid), acrylic resin, phenol resin, which are resins other than F polymer, non-thermofusible PTFE or M polymer. , Polyester resin, polyolefin resin, modified polyphenylene ether resin, bismaleimide resin, polyfunctional cyanate ester resin, polyfunctional maleimide-cyanate ester resin, polyfunctional maleimide resin, vinyl ester resin, urea resin, diallyl phthalate resin, melanin Resin, guanamine resin, melamine-urea co-condensation resin, etc., heat-melting resin (polyester resin, polyolefin resin, styrene resin, polycarbonate, thermoplastic polyimide, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic poly) Etheramide, polyphenylene sulfide, polyallyl ether ketone, polyamideimide, liquid crystalline polyester, polyphenylene ether, etc.), reactive alkoxysilane, carbon black, inorganic filler (glass microspheres, ceramic microspheres, etc., hollow inorganic microspheres) ) Is mentioned.
 本分散液の粘度は、1~1000mPa・sが好ましく、5~500mPa・sがより好ましく、10~200mPa・sがさらに好ましい。
 本分散液のチキソ比は、0.8~2.2が好ましい。
 この場合、本分散液の分散性と塗工性とをバランスさせやすい。
The viscosity of this dispersion is preferably from 1 to 1000 mPa·s, more preferably from 5 to 500 mPa·s, even more preferably from 10 to 200 mPa·s.
The thixo ratio of this dispersion is preferably 0.8 to 2.2.
In this case, it is easy to balance the dispersibility of the present dispersion and the coatability.
 本分散液は、パウダー(1)とパウダー(21)又はパウダー(22)とを混合して製造できる。具体的には、パウダー(1)及び水性媒体を含む分散液(p1)と、パウダー(21)又はパウダー(22)と水性媒体を含む分散液(p2)とを混合して製造するのが好ましい。
 分散液(p1)と分散液(p2)とは、それぞれの分散液が良好に分散した状態で混合するのが好ましい。例えば、分散液(p1)に固形分の沈降が認められる場合には、混合直前に、分散液(p1)をホモディスパーを用いて分散処理し、更にホモジナイザーを用いて分散処理して、分散状態を向上させるのが好ましい。特に、0~40℃で貯蔵した分散液(p1)を使用する際は、これらの分散処理をするのが好ましい。
 分散液(p1)及び分散液(p2)における水性媒体(分散媒)は、それぞれ水であるのが好ましい。
This dispersion can be produced by mixing the powder (1) with the powder (21) or the powder (22). Specifically, it is preferable that the dispersion liquid (p1) containing the powder (1) and the aqueous medium and the dispersion liquid (p2) containing the powder (21) or the powder (22) and the aqueous medium are mixed and produced. ..
The dispersion liquid (p1) and the dispersion liquid (p2) are preferably mixed in a state where the respective dispersion liquids are well dispersed. For example, when solid content is observed to be precipitated in the dispersion liquid (p1), the dispersion liquid (p1) is subjected to a dispersion treatment using a homodisper immediately before mixing, and further subjected to a dispersion treatment using a homogenizer to obtain a dispersion state. Is preferably improved. Particularly, when the dispersion liquid (p1) stored at 0 to 40° C. is used, it is preferable to perform the dispersion treatment.
The aqueous medium (dispersion medium) in the dispersion liquid (p1) and the dispersion liquid (p2) is preferably water.
 本分散液は、分散安定性及び貯蔵安定性に優れ、ハンドリング性にも優れている。本分散液が、非熱溶融性PTFE又はMポリマーの物性を損なわずに、耐クラック性に優れた、強固な接着性を示す成形品を形成できる。
 本分散液を、基材の表面に塗布し、加熱してFポリマーと非熱溶融性PTFE又はMポリマーとを含むポリマー層を形成すれば、上記基材で構成される基材層とポリマー層とが、この順に積層された積層体を製造できる。
 この積層体における、Fポリマー、パウダー(1)、非熱溶融性PTFE、Mポリマー、パウダー(21)、パウダー(22)及び水性媒体の範囲は、その好適な態様も含めて、本分散液における定義と同様である。また、基材層の表面の少なくとも片面にポリマー層が形成されればよく、基材層の片面のみにポリマー層が形成されてもよく、基材層の両面にポリマー層が形成されてもよい。
This dispersion is excellent in dispersion stability and storage stability, and also excellent in handling property. This dispersion can form a molded article having excellent crack resistance and strong adhesiveness without impairing the physical properties of the non-thermofusible PTFE or M polymer.
The present dispersion is applied to the surface of a base material and heated to form a polymer layer containing an F polymer and a non-thermofusible PTFE or M polymer. It is possible to manufacture a laminated body in which and are laminated in this order.
The ranges of the F polymer, the powder (1), the non-heat-melting PTFE, the M polymer, the powder (21), the powder (22), and the aqueous medium in this laminate, including the preferred embodiments thereof, in the present dispersion liquid Same as the definition. Further, the polymer layer may be formed on at least one surface of the base material layer, the polymer layer may be formed only on one surface of the base material layer, or the polymer layer may be formed on both surfaces of the base material layer. ..
 基材の表面への塗布方法としては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法が挙げられる。
 ポリマー層の形成は、加熱により行われればよく、基材を水性媒体が揮発する温度(100~300℃の温度領域)に加熱するのが好ましく、基材を水性媒体が揮発する温度領域(100~300℃)に加熱し、更に、基材を非熱溶融性PTFEが焼成する温度領域(300~400℃)に加熱するのがより好ましい。
 つまり、非熱溶融性PTFEを含む本分散液を使用した場合のポリマー層は、Fポリマーを含み、非熱溶融性PTFEが焼成処理されたポリマー層であるのが好ましい。この場合、非熱溶融性PTFEは、部分的に焼成処理されていてもよく、完全に焼成処理されていてもよい。
 また、Mポリマーを含む本分散液を使用した場合のポリマー層は、Fポリマーを含み、Mポリマーが溶融処理されたポリマー層であるのが好ましい。この場合、Mポリマーは、部分的に溶融処理されていてもよく、完全に溶融処理されていてもよい。
The coating method for the surface of the base material includes a spray method, a roll coating method, a spin coating method, a gravure coating method, a micro gravure coating method, a gravure offset method, a knife coating method, a kiss coating method, a bar coating method, a die coating method, a fountain. Examples include the Mayer bar method and the slot die coating method.
The polymer layer may be formed by heating, and it is preferable to heat the base material to a temperature at which the aqueous medium volatilizes (temperature range of 100 to 300° C.), and the base material at a temperature range (100 to 300° C.) at which the aqueous medium volatilizes. More preferably, the base material is heated to a temperature range (300 to 400° C.) in which the non-heat-melting PTFE is fired.
That is, it is preferable that the polymer layer in the case of using the present dispersion liquid containing non-heat-melting PTFE contains the F polymer and is a polymer layer obtained by baking the non-heat-melting PTFE. In this case, the non-thermofusible PTFE may be partially calcined or completely calcined.
In addition, the polymer layer in the case of using the present dispersion liquid containing the M polymer is preferably a polymer layer containing the F polymer and the M polymer being melt-processed. In this case, the M polymer may be partially melt processed or may be completely melt processed.
 基材の加熱の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、熱線(赤外線)を照射する方法等が挙げられる。
 基材の加熱における雰囲気は、常圧下、減圧下のいずれの状態であってよい。また、前記保持における雰囲気は、酸化性ガス(酸素ガス等。)、還元性ガス(水素ガス等。)、不活性ガス(ヘリウムガス、ネオンガス、アルゴンガス、窒素ガス等。)のいずれの雰囲気であってもよい。
 基材の加熱時間は、通常は、0.5~30分である。
 ポリマー層の厚さは、50μm以下が好ましく、30μm以下がより好ましく、10μm以下がさらに好ましい。ポリマー層の厚さは、0.1μm以上が好ましく、4μm以上が特に好ましい。この範囲において、非熱溶融性PTFE又はMポリマーの物性を損なわずに、耐クラック性に優れたポリマー層を容易に形成できる。
Examples of the method for heating the base material include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays (infrared rays).
The atmosphere for heating the base material may be either under normal pressure or under reduced pressure. The atmosphere in the holding is any of an oxidizing gas (oxygen gas etc.), a reducing gas (hydrogen gas etc.) and an inert gas (helium gas, neon gas, argon gas, nitrogen gas etc.). It may be.
The heating time of the substrate is usually 0.5 to 30 minutes.
The thickness of the polymer layer is preferably 50 μm or less, more preferably 30 μm or less, still more preferably 10 μm or less. The thickness of the polymer layer is preferably 0.1 μm or more, particularly preferably 4 μm or more. Within this range, a polymer layer having excellent crack resistance can be easily formed without impairing the physical properties of the non-heat-melting PTFE or M polymer.
 積層体においては、基材層とポリマー層とが強固に接着されている。基材層とポリマー層との剥離強度は、10N/cm以上が好ましく、15N/cm以上が特に好ましい。上記剥離強度の上限は、通常、100N/cmである。
 基材の材質は、銅、アルミ、鉄、ニッケル、亜鉛、これらの合金等の金属、ガラス、樹脂、シリコン、セラミックスのいずれであってもよい。
 基材の形状は、平面状、曲面状、凹凸状のいずれであってもよく、箔状、板状、膜状、繊維状のいずれであってもよい。
 積層体の具体例としては、基材が金属箔であり、金属箔で構成される金属箔層とポリマー層とを、この順に有するポリマー層付金属箔が挙げられる。金属箔層とポリマー層との間には、接着層が別に設けられていてもよいが、ポリマー層は接着性に優れるため、接着層は設けられていなくてもよい。
In the laminate, the base material layer and the polymer layer are firmly adhered. The peel strength between the base material layer and the polymer layer is preferably 10 N/cm or more, and particularly preferably 15 N/cm or more. The upper limit of the peel strength is usually 100 N/cm.
The material of the base material may be any of metals such as copper, aluminum, iron, nickel, zinc, alloys thereof, glass, resin, silicon and ceramics.
The shape of the base material may be any of a plane shape, a curved surface shape, an uneven shape, and may be a foil shape, a plate shape, a film shape, or a fibrous shape.
Specific examples of the laminate include a metal foil with a polymer layer, a metal foil as a base material, and a metal foil with a polymer layer, which has a metal foil layer and a polymer layer in this order. An adhesive layer may be separately provided between the metal foil layer and the polymer layer, but since the polymer layer has excellent adhesiveness, the adhesive layer may not be provided.
 金属箔の好適な態様としては、圧延銅箔、電解銅箔等の銅箔が挙げられる。積層体における、金属箔の厚さは3~18μmが好ましく、ポリマー層の厚さは1~50μmが好ましい。
 積層体は、銅箔層にパターン回路を形成すれば、ポリマー層を電気絶縁層とするプリント配線板として使用できる。
As a preferable aspect of the metal foil, a copper foil such as a rolled copper foil or an electrolytic copper foil can be mentioned. The thickness of the metal foil in the laminate is preferably 3 to 18 μm, and the thickness of the polymer layer is preferably 1 to 50 μm.
The laminated body can be used as a printed wiring board having a polymer layer as an electrically insulating layer by forming a pattern circuit on the copper foil layer.
 積層体の具体例としては、基材がポリイミドフィルムであり、ポリイミドフィルムで構成されるポリイミド層の少なくとも一方の表面に、本分散液から形成されたポリマー層を有する積層フィルムも挙げられ、より具体的には、ポリイミド層の両面に、本分散液から形成されたポリマー層を有する積層フィルムが挙げられる。
 ポリイミド層とポリマー層との間には、接着層が別に設けられていてもよいが、本分散液から形成されるポリマー層は接着性に優れるため、接着層は設けられていなくてもよい。
As a specific example of the laminate, a substrate is a polyimide film, a laminate film having a polymer layer formed from the present dispersion liquid on at least one surface of a polyimide layer formed of the polyimide film, and more specifically. Specifically, a laminated film having a polymer layer formed from the present dispersion liquid on both surfaces of the polyimide layer can be mentioned.
An adhesive layer may be separately provided between the polyimide layer and the polymer layer, but since the polymer layer formed from the present dispersion has excellent adhesiveness, the adhesive layer may not be provided.
 ポリイミドフィルムの好適な態様としては、2,2’,3,3’-又は3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物等。)を主成分とする成分と、パラフェニレンジアミンを主成分とする成分との重合体のフィルムが挙げられる。ポリイミドフィルムの具体例としては、Apical TypeAF(カネカノースアメリカ製)が挙げられる。
 かかるポリイミドフィルムは、絶縁被覆体として有用である。その秤量は23.5g/m以下が好ましく、かつ、そのループスティフネス値は0.45g/cm以上が好ましい。
 かかる積層フィルムにおける、ポリマー層の厚さは、1~200μmが好ましく、5~20μmがより好ましい。また、ポリイミド層(ポリイミドフィルム)の厚さは、5~150μmが好ましい。
A preferred embodiment of the polyimide film is 2,2′,3,3′- or 3,3′,4,4′-biphenyltetracarboxylic dianhydride (3,3′,4,4′-benzophenonetetra). Carboxylic acid dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, etc.) as a main component, and a polymer film of a component mainly containing paraphenylenediamine Can be mentioned. A specific example of the polyimide film is Optical Type AF (manufactured by Kaneka North America).
Such a polyimide film is useful as an insulating coating. The basis weight is preferably 23.5 g/m 2 or less, and the loop stiffness value is preferably 0.45 g/cm or more.
The thickness of the polymer layer in the laminated film is preferably 1 to 200 μm, more preferably 5 to 20 μm. The thickness of the polyimide layer (polyimide film) is preferably 5 to 150 μm.
 かかる積層フィルムは、電気絶縁性、耐摩耗性、耐加水分解性等に優れており、電気絶縁性テープや電気ケーブル又は電気ワイヤーの包装材として使用でき、航空宇宙用又は電気自動車用の、電線材料又はケーブル材料として、特に好適に使用できる。 Such a laminated film has excellent electric insulation, abrasion resistance, hydrolysis resistance, etc., and can be used as a packaging material for electric insulation tape, electric cables or electric wires, for aerospace or electric vehicles, and electric wires. It can be used particularly preferably as a material or a cable material.
 本発明の積層体は、Fポリマーを含み接着性に優れたポリマー層を有するため、積層体のポリマー層に、更に他の材料を積層して、複合積層体を製造することもできる。
 積層体のポリマー層の表面と第2の基材とを圧着させれば、第1の基材層(積層体の元の基材層)と、ポリマー層と、第2の基材で構成される第2の基材層とが、この順に積層された複合積層体が得られる。
Since the laminate of the present invention has a polymer layer containing an F polymer and having excellent adhesiveness, it is possible to produce a composite laminate by laminating another material on the polymer layer of the laminate.
When the surface of the polymer layer of the laminate and the second base material are pressure-bonded to each other, the first base material layer (the original base material layer of the laminate), the polymer layer, and the second base material are formed. A second laminate of the second base material is laminated in this order to obtain a composite laminate.
 第2の基材の材質は、銅、アルミ、鉄、ニッケル、亜鉛、これらの合金等の金属、ガラス、樹脂、シリコン、セラミックスのいずれであってもよい。
 第2の基材の形状も、特に限定されず、平面状、曲面状、凹凸状のいずれであってもよく、箔状、板状、膜状、繊維状のいずれであってもよい。
 第2の基材の具体例としては、耐熱性樹脂基材、繊維強化樹脂板の前駆体であるプリプレグ等が挙げられる。
 プリプレグとは、強化繊維(ガラス繊維、炭素繊維等)の基材(トウ、織布等)に樹脂(上述した熱硬化性樹脂や熱可塑性樹脂等)を含浸させたシート状の基材である。
 耐熱性樹脂基材は、耐熱性樹脂を含むフィルムが好ましく、単層であってもよく多層であってもよい。
 耐熱性樹脂としては、ポリイミド、ポリアリレート、ポリスルホン、ポリアリルスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリルエーテルケトン、ポリアミドイミド、液晶性ポリエステル、PTFE等が挙げられる。
The material of the second base material may be any of metals such as copper, aluminum, iron, nickel, zinc, alloys thereof, glass, resin, silicon and ceramics.
The shape of the second base material is not particularly limited, and may be any of a flat shape, a curved surface shape, an uneven shape, a foil shape, a plate shape, a film shape, and a fibrous shape.
Specific examples of the second base material include a heat resistant resin base material and a prepreg which is a precursor of a fiber reinforced resin plate.
A prepreg is a sheet-like base material obtained by impregnating a base material (tow, woven fabric, etc.) of reinforcing fibers (glass fiber, carbon fiber, etc.) with a resin (thermosetting resin, thermoplastic resin, etc. described above). ..
The heat resistant resin substrate is preferably a film containing a heat resistant resin, and may be a single layer or a multilayer.
Examples of the heat resistant resin include polyimide, polyarylate, polysulfone, polyallylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyallyl ether ketone, polyamide imide, liquid crystalline polyester, PTFE and the like.
 積層体のポリマー層の表面と第2の基材とを圧着させる方法としては、熱圧着法が挙げられる。
 第2の基材がプリプレグである場合の圧着温度は、160~220℃が好ましい。
 第2の基材が耐熱性樹脂基材である場合の圧着温度は、300~400℃が好ましい。
 熱圧着は、減圧雰囲気下で行うことが好ましく、20kPa以下の真空度で行うのが特に好ましい。この範囲において、複合積層体における、それぞれの界面への気泡混入が抑制でき、酸化による劣化を抑制できる。また、熱圧着は上記真空度に到達した後に昇温することが好ましい。
 熱圧着における圧力は、0.2~10MPaが好ましい。
As a method for pressure-bonding the surface of the polymer layer of the laminate and the second base material, a thermocompression bonding method can be mentioned.
When the second base material is a prepreg, the pressure bonding temperature is preferably 160 to 220°C.
When the second substrate is a heat resistant resin substrate, the pressure bonding temperature is preferably 300 to 400°C.
The thermocompression bonding is preferably performed in a reduced pressure atmosphere, and particularly preferably performed in a vacuum degree of 20 kPa or less. Within this range, it is possible to prevent bubbles from entering the respective interfaces in the composite laminated body and suppress deterioration due to oxidation. Moreover, it is preferable that the temperature of the thermocompression bonding be raised after reaching the vacuum degree.
The pressure in thermocompression bonding is preferably 0.2 to 10 MPa.
 積層体のポリマー層の表面に第2のポリマー層を形成する液状の層形成材料を塗布し、第2のポリマー層を形成させれば、第1の基材層と、ポリマー層と、第2のポリマー層とが、この順に積層された複合積層体が得られる。
 液状の層形成材料は、特に限定されず、本分散液を使用してもよい。
 第2のポリマー層の形成方法も、特に限定されず、使用する液状の層形成材料の性質によって適宜決定できる。例えば、前記層形成材料が、本分散液である場合には、積層体におけるポリマー層の形成方法と同様の条件にしたがって、第2のポリマー層を形成できる。つまり、上記層形成材料が本分散液であれば、ポリマー層を多層化して、より厚膜のポリマー層を容易に形成できる。
If the liquid layer forming material for forming the second polymer layer is applied to the surface of the polymer layer of the laminate to form the second polymer layer, the first base material layer, the polymer layer and the second A polymer laminate obtained by laminating the polymer layer of 1 above in this order is obtained.
The liquid layer forming material is not particularly limited, and the present dispersion liquid may be used.
The method for forming the second polymer layer is also not particularly limited and can be appropriately determined depending on the properties of the liquid layer forming material used. For example, when the layer forming material is the present dispersion liquid, the second polymer layer can be formed under the same conditions as the method for forming the polymer layer in the laminate. That is, when the layer forming material is the present dispersion liquid, the polymer layer can be formed into multiple layers to easily form a thicker polymer layer.
 かかる製造方法で得られる複合積層体の具体例としては、本分散液や、Fポリマーを含む分散液を液状の層形成材料として得られる複合積層体が挙げられる。第2のポリマー層は強固な接着性を示すポリマー層上に形成されるため、後者の本分散液を用いても剥離強度の高い複合積層体が得られる。
 本発明の積層体によれば、それぞれのポリマーの物性を損なわずに耐クラック性にも優れた、ポリマー層が形成されるとも言える。積層体から基材層を除去すれば、それぞれのポリマーを均質に含むポリマー膜が得られる。
 非熱溶融性PTFEを含むポリマー膜において、Fポリマーを含む非熱溶融性PTFEが焼成処理されたポリマー膜であるのが好ましい。この場合、非熱溶融性PTFEは、部分的に焼成処理されていてもよく、完全に焼成処理されていてもよい。
 Mポリマーを含むポリマー膜において、Fポリマーを含むMポリマーが焼成処理されたポリマー膜であるのが好ましい。この場合、Mポリマーは、部分的に焼成処理されていてもよく、完全に焼成処理されていてもよい。
Specific examples of the composite laminate obtained by the production method include the present dispersion liquid and the composite laminate obtained by using the dispersion liquid containing the F polymer as a liquid layer forming material. Since the second polymer layer is formed on the polymer layer showing strong adhesion, a composite laminate having high peel strength can be obtained even by using the latter main dispersion.
According to the laminate of the present invention, it can be said that a polymer layer having excellent crack resistance without deteriorating the physical properties of each polymer is formed. By removing the base material layer from the laminate, a polymer film containing each polymer uniformly can be obtained.
In the polymer film containing non-heat-melting PTFE, it is preferable that the non-heat-melting PTFE containing F polymer is a polymer film subjected to a baking treatment. In this case, the non-thermofusible PTFE may be partially calcined or completely calcined.
In the polymer film containing the M polymer, the M polymer containing the F polymer is preferably a polymer film that has been subjected to a baking treatment. In this case, the M polymer may be partially calcined or completely calcined.
 積層体から基材層を除去する方法としては、積層体から基材層を剥離させて除去する方法、積層体から基材層を溶解させて除去する方法が挙げられる。例えば、基材層が銅箔で構成される場合には、積層体の基材層側の面を塩酸等のエッチング液に接触させれば、基材層が溶解して除去されて、ポリマー層単独で構成されるポリマー膜が容易に得られる。
 ポリマー膜におけるポリマーの範囲は、その好適な態様も含めて、本分散液における定義と同様である。
 ポリマー膜の厚さは、50μm以下が好ましく、30μm以下がより好ましく、10μm以下がさらに好ましい。ポリマー膜の厚さは、1μm以上が好ましく、4μm以上がより好ましい。この範囲において、ポリマー膜は、それぞれのポリマーの物性を損なわずに、接着性と耐クラック性とにより優れる。
Examples of the method of removing the base material layer from the laminate include a method of peeling and removing the base material layer from the laminate, and a method of dissolving and removing the base material layer from the laminate. For example, when the base material layer is made of copper foil, the base material layer is dissolved and removed by contacting the base material layer side surface of the laminate with an etching solution such as hydrochloric acid, and the polymer layer A polymer film composed solely can be easily obtained.
The range of the polymer in the polymer film is the same as the definition in the present dispersion liquid, including the preferable embodiments thereof.
The thickness of the polymer film is preferably 50 μm or less, more preferably 30 μm or less, still more preferably 10 μm or less. The thickness of the polymer film is preferably 1 μm or more, more preferably 4 μm or more. In this range, the polymer film is more excellent in adhesiveness and crack resistance without impairing the physical properties of each polymer.
 本分散液は、織布に含浸させ、さらに織布を乾燥させれば、ポリマー層で被覆された織布である、被覆織布が得られる。
 織布は、乾燥に耐える耐熱性織布であり、ガラス繊維織布、カーボン繊維織布、アラミド繊維織布又は金属繊維織布が好ましく、ガラス繊維織布又はカーボン繊維織布がより好ましく、電気絶縁性の観点からは、JIS R 3410:2006で定められる電気絶縁用Eガラスヤーンより構成される平織のガラス繊維織布がさらに好ましい。織布は、ポリマー層との密着接着性を高める観点から、シランカップリング剤で処理されていてもよい。
 被覆織布における、Fポリマーと、非熱溶融性PTFE又はMポリマーとの合計での含有量は、30~80質量%が好ましい。
By impregnating a woven fabric with the dispersion liquid and further drying the woven fabric, a coated woven fabric which is a woven fabric coated with a polymer layer is obtained.
The woven cloth is a heat resistant woven cloth that is resistant to drying, and is preferably a glass fiber woven cloth, a carbon fiber woven cloth, an aramid fiber woven cloth or a metal fiber woven cloth, more preferably a glass fiber woven cloth or a carbon fiber woven cloth, and an electric cloth. From the viewpoint of insulating properties, a plain woven glass fiber woven fabric composed of E glass yarn for electrical insulation defined by JIS R 3410:2006 is more preferable. The woven fabric may be treated with a silane coupling agent from the viewpoint of enhancing the close contact adhesiveness with the polymer layer.
The total content of the F polymer and the non-thermofusible PTFE or M polymer in the coated woven fabric is preferably 30 to 80% by mass.
 本分散液を織布に含浸させる方法はとしては、本分散液中に織布を浸漬する方法や、本分散液を織布に塗布する方法が挙げられる。前者の方法における浸漬回数、及び、後者の方法における塗布回数は、それぞれ、1回であってもよく、2回以上であってもよい。他の材料との接着性に優れるFポリマーを含む本分散液を使用するため、浸漬回数又は塗布回数が少なくとも、織布とポリマーとが強固に接着した、ポリマー含有量が高い被覆織布が得られる。
 織布を乾燥させる方法は、本分散液に含まれる水性媒体の種類によって、適宜決定でき、例えば、水性媒体が水のみからなる場合には、織布を80~120℃の雰囲気にある通風乾燥炉に通す方法が挙げられる。
 織布を乾燥させるに際しては、ポリマーを焼成させてもよい。ポリマーを焼成させる方法は、それぞれのポリマーの種類によって適宜決定でき、例えば、織布を300~400℃の雰囲気にある通風乾燥炉に通す方法が挙げられる。なお、織布の乾燥とポリマーの焼成とは、一段階で実施してもよい。
Examples of the method of impregnating the woven fabric with the present dispersion include a method of immersing the woven fabric in the present dispersion, and a method of applying the present dispersion to the woven fabric. The number of times of immersion in the former method and the number of times of application in the latter method may each be once or twice or more. Since the present dispersion liquid containing an F polymer having excellent adhesion to other materials is used, a coated woven fabric having a high polymer content, in which the woven fabric and the polymer are firmly adhered at least at the number of times of dipping or application, can be obtained. To be
The method for drying the woven fabric can be appropriately determined depending on the type of the aqueous medium contained in the present dispersion liquid. For example, when the aqueous medium is composed of only water, the woven fabric is subjected to ventilation drying in an atmosphere of 80 to 120°C. The method of passing through a furnace is mentioned.
The polymer may be fired when the woven fabric is dried. The method of firing the polymer can be appropriately determined depending on the type of each polymer, and examples thereof include a method of passing the woven fabric through a ventilation drying furnace in an atmosphere of 300 to 400° C. The woven fabric may be dried and the polymer may be fired in one step.
 得られる被覆織布は、ポリマー層がFポリマーを含むため、ポリマー層と織布との密着接着性が高い、表面の平滑性が高い、歪が少ない等の特性に優れている。かかる被覆織布と金属箔とを熱圧着させることにより得られる積層体は、剥離強度が高く、反りにくいため、プリント基板材料として好適に使用できる。
 また、織布を含む本分散液を、基材の表面に塗布し、加熱により乾燥させ、Fポリマーと非熱溶融性PTFE又はMポリマーと織布とを含む被覆織布層を形成させてもよい。これにより、上記基材で構成される基材層と被覆織布層とが、この順に積層された積層体を製造できる。その態様も、特に限定されず、槽、配管、容器等の成形品の内壁面の一部に織布を含む本分散液を塗布し、成形品を回転させながら加熱すれば、成形品の内壁全面に被覆織布層を形成できる。本発明の被覆織布の製造方法は、槽、配管、容器等の成形品の内壁面のライニング方法としても有用である。
Since the polymer layer contains the F polymer, the obtained coated woven fabric is excellent in properties such as high adhesion and adhesion between the polymer layer and the woven fabric, high surface smoothness, and little distortion. A laminate obtained by thermocompression bonding such a coated woven fabric and a metal foil has high peel strength and is less likely to warp, and therefore can be suitably used as a printed circuit board material.
Alternatively, the present dispersion containing a woven fabric may be applied to the surface of a substrate and dried by heating to form a coated woven fabric layer containing an F polymer and non-heat-melting PTFE or M polymer and a woven fabric. Good. This makes it possible to manufacture a laminate in which the base material layer composed of the base material and the coated woven fabric layer are laminated in this order. The mode is not particularly limited, and if the main dispersion liquid containing a woven cloth is applied to a part of the inner wall surface of a molded product such as a tank, pipe, or container, and the molded product is heated while rotating, the inner wall of the molded product A coated woven fabric layer can be formed on the entire surface. INDUSTRIAL APPLICABILITY The method for producing a coated woven fabric of the present invention is also useful as a method for lining the inner wall surface of molded articles such as tanks, pipes and containers.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 各種測定方法を以下に示す。
 <パウダーのD50及びD90>
 レーザー回折・散乱式粒度分布測定装置(堀場製作所社製、「LA-920測定器」)を用い、パウダーを水中に分散させて測定した。
 <パウダー分散液の貯蔵安定性>
 パウダー分散液を25℃にて1週間放置した後の、状態を目視確認し、以下の評価基準で評価した。
 〇:沈降物が確認されない。
 △:沈降物が確認されるが、手で振ると再分散する。
 ×:沈降物が確認され、手で振るだけでは再分散しない。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
Various measuring methods are shown below.
<D50 and D90 of powder>
The powder was dispersed in water and measured using a laser diffraction/scattering type particle size distribution measuring device (“LA-920 measuring device” manufactured by Horiba Ltd.).
<Storage stability of powder dispersion>
After the powder dispersion was left at 25° C. for 1 week, the state was visually confirmed and evaluated according to the following evaluation criteria.
◯: No sediment is confirmed.
Δ: A sediment is confirmed, but it is redispersed when shaken by hand.
X: A sediment was confirmed, and it was not redispersed only by shaking by hand.
 <ポリマー層のクラック耐性>
 一端辺にビニールテープが貼られたステンレス板(厚さ:0.5mm)の表面にパウダー分散液を塗布し、その端辺に沿って棒をスライドさせならした後、100℃にて3分間、3回乾燥し、更に340℃にて10分間加熱した。これにより、ステンレス板の表面に、端辺に貼られたビニールテープの厚さに起因して、厚さが傾斜したポリマー層を形成した。このステンレス板を目視で確認し、クラック線の発生部分の先端(最もポリマー層が薄い部分)のポリマー層の厚さを、MINITEST3000(Electro Physik社製)を用いて測定し、以下の評価基準で評価した。
 〇:クラックが発生する先端のポリマー層の厚さが10μm以上である。
 △:クラックが発生する先端のポリマー層の厚さが5μm以上10μm未満である。
 ×:クラックが発生する先端のポリマー層の厚さが5μm未満である。
<Crack resistance of polymer layer>
Apply the powder dispersion on the surface of a stainless steel plate (thickness: 0.5 mm) with a vinyl tape attached to one edge, slide the rod along the edge, and then at 100°C for 3 minutes. It was dried three times and further heated at 340° C. for 10 minutes. As a result, a polymer layer having an inclined thickness was formed on the surface of the stainless steel plate due to the thickness of the vinyl tape attached to the edges. This stainless steel plate was visually confirmed, and the thickness of the polymer layer at the tip of the crack line generation part (the part where the polymer layer was thinnest) was measured using MINTEST3000 (manufactured by Electro Physik), and the following evaluation criteria were used. evaluated.
◯: The thickness of the polymer layer at the tip where cracks occur is 10 μm or more.
Δ: The thickness of the polymer layer at the tip where cracks occur is 5 μm or more and less than 10 μm.
X: The thickness of the polymer layer at the tip where cracks occur is less than 5 μm.
 <積層体の剥離強度>
 矩形状(長さ:100mm、幅:10mm)に切り出した積層体の長さ方向の一端から50mmの位置を固定し、引張り速度50mm/分、長さ方向の片端から積層体に対して90°で、金属箔層とポリマー層とを剥離させた際にかかる最大荷重を剥離強度(N/cm)として測定し、以下の評価基準で評価した。
 〇:剥離強度が10N/cm以上である。
 ×:剥離強度が10N/cm未満である。
<Peel strength of laminate>
The position of 50 mm from one end in the length direction of the laminate cut out in a rectangular shape (length: 100 mm, width: 10 mm) was fixed, the pulling speed was 50 mm/min, and 90° from one end in the length direction to the laminate. Then, the maximum load applied when the metal foil layer and the polymer layer were peeled off was measured as the peeling strength (N/cm) and evaluated according to the following evaluation criteria.
Good: Peel strength is 10 N/cm or more.
X: Peel strength is less than 10 N/cm.
 使用した材料を以下に示す。
 [ポリマー及びそのパウダー]
 Fポリマー1:TFEに基づく単位、NAHに基づく単位及びPPVEに基づく単位を、この順に97.9モル%、0.1モル%、2.0モル%含むコポリマー(融点:300℃)
 ポリマーA1:TFEに基づく単位及びPPVEに基づく単位を、この順に98.0モル%、2.0モル%含む、酸素含有極性基を有さないコポリマー(融点:305℃)。
 Pポリマー1:TFEに基づく単位を99.9モル%以上含む、フィブリル性を有する非熱溶融性PTFE(標準比重:2.18、380℃における溶融粘度:3.0×10Pa・s)
 Mポリマー1:TFEに基づく単位を99.5モル%以上含み、極微量のPFBEに基づく単位を含む、熱溶融性の変性PTFE(380℃における溶融粘度:1×10Pa・s)
The materials used are shown below.
[Polymer and its powder]
F polymer 1: copolymer containing TFE-based unit, NAH-based unit and PPVE-based unit in the order of 97.9 mol%, 0.1 mol% and 2.0 mol% (melting point: 300° C.)
Polymer A1: A copolymer containing 98.0 mol% and 2.0 mol% of units based on TFE and units based on PPVE, in this order, having no oxygen-containing polar group (melting point: 305° C.).
P polymer 1: non-heat-melting PTFE having a fibrillation property, containing 99.9 mol% or more of units based on TFE (standard specific gravity: 2.18, melt viscosity at 380° C.: 3.0×10 9 Pa·s)
M polymer 1: Thermomeltable modified PTFE (melt viscosity at 380° C.: 1×10 6 Pa·s) containing 99.5 mol% or more of TFE-based units and a very small amount of PFBE-based units
 Fパウダー11:Fポリマー1のパウダー(D50:1.7μm、D90:3.8μm)
 Fパウダー12:Fポリマー1のパウダー(D50:0.3μm、D90:1.8μm)[このFパウダー12は、Fパウダー11を湿式ジェットミルに供して得た。]
 パウダーA1:ポリマーA1のパウダー(D50:0.3μm、D90:1.5μm)
 Pパウダー1:Pポリマー1のパウダー(D50:0.3μm)[このPパウダー1は、Pパウダー1の水分散液として入手できる。]
 Mパウダー1:Mポリマー1のパウダー(D50:0.3μm)[このMパウダー1は、Mパウダー1の水分散液として入手できる。]
F powder 11: F polymer 1 powder (D50: 1.7 μm, D90: 3.8 μm)
F powder 12: powder of F polymer 1 (D50: 0.3 μm, D90: 1.8 μm) [This F powder 12 was obtained by subjecting F powder 11 to a wet jet mill. ]
Powder A1: Polymer A1 powder (D50: 0.3 μm, D90: 1.5 μm)
P powder 1: P polymer 1 powder (D50: 0.3 μm) [This P powder 1 is available as an aqueous dispersion of P powder 1. ]
M powder 1: powder of M polymer 1 (D50: 0.3 μm) [This M powder 1 is available as an aqueous dispersion of M powder 1]. ]
 [分散剤]
 FM1:F(CFCH(OCHCHOCHCH(CH)OH(フッ素含有量:34質量%、水酸基価:78mgKOH/g)
 FP1:CH=C(CH)C(O)OCHCH(CFFに基づく単位とCH=C(CH)C(O)(OCHCH23OHに基づく単位とを含むコポリマー(フッ素含有量:35質量%、水酸基価:19mgKOH/g)
[Dispersant]
FM1: F (CF 2) 6 CH 2 (OCH 2 CH 2) 7 OCH 2 CH (CH 3) OH ( fluorine content: 34 wt%, hydroxyl value: 78 mgKOH / g)
FP1: CH 2 = C (CH 3) C (O) OCH 2 CH 2 (CF 2) units based on 6 F and CH 2 = C (CH 3) C (O) (OCH 2 CH 2) based on 23 OH Copolymer containing units (fluorine content: 35% by mass, hydroxyl value: 19 mgKOH/g)
 [例1]パウダー分散液の製造例
 [例1-1]分散液1の製造例
 30質量部のFパウダー12、5質量部のFM1及び65質量部の水を含む分散液と、Pパウダー1を50質量%含む水分散液とを混合した。これにより、それぞれのパウダーが水中に分散し、Pポリマー1とFポリマー1との合計に対して、Pポリマー1を90質量%、Fポリマー1を10質量%含むパウダー分散液1(Fポリマー1の含有量/Pポリマー1の含有量:0.11)を得た。
 [例1-2~例1-9]パウダー分散液2~9の製造例
 パウダーの種類と分散剤の種類とを変更した以外は、例1-1と同様にして、パウダー分散液2~9を得た。それぞれのパウダー分散液の種類と、その貯蔵安定性の評価結果を、下表1にまとめて示す。
[Example 1] Production Example of Powder Dispersion [Example 1-1] Production Example of Dispersion 1 Dispersion containing 30 parts by mass of F powder 12, 5 parts by mass of FM1 and 65 parts by mass of water, and P powder 1. Was mixed with an aqueous dispersion containing 50% by mass. Thereby, the respective powders are dispersed in water, and the powder dispersion liquid 1 (F polymer 1 containing 90 mass% of P polymer 1 and 10 mass% of F polymer 1 relative to the total of P polymer 1 and F polymer 1). Content/P polymer 1 content: 0.11).
[Example 1-2 to Example 1-9] Production Examples of Powder Dispersions 2 to 9 Powder Dispersions 2 to 9 were prepared in the same manner as in Example 1-1, except that the type of powder and the type of dispersant were changed. Got Table 1 below shows the type of each powder dispersion and the evaluation results of its storage stability.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [例2]積層体の製造例
 [例2-1]積層体1の製造例
 パウダー分散液1を銅箔の表面に塗布し、100℃で10分間乾燥し、不活性ガス雰囲気下、340℃で10分間焼成した後に徐冷した。これにより、銅箔で構成された銅箔層と、銅箔層の表面に形成されたPポリマー1とFポリマー1とを含むポリマー層(厚さ:5μm)とを有する積層体(ポリマー層付銅箔)1を得た。
 [例2-2~例2~9]積層体2~9の製造例
 パウダー分散液の種類を変更した以外は、例2-1と同様にして、積層体2~9を製造した。
 パウダー分散液1~4及び9のクラック耐性の評価結果と、積層体1~9の剥離強度の評価結果とを、下表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
[Example 2] Production Example of Laminated Body [Example 2-1] Production Example of Laminated Body 1 The powder dispersion liquid 1 was applied to the surface of a copper foil and dried at 100°C for 10 minutes, and then under an inert gas atmosphere at 340°C. After firing for 10 minutes, it was gradually cooled. Thereby, a laminate (with a polymer layer) having a copper foil layer formed of a copper foil and a polymer layer (thickness: 5 μm) containing P polymer 1 and F polymer 1 formed on the surface of the copper foil layer Copper foil) 1 was obtained.
[Example 2-2 to Examples 2 to 9] Production Examples of Laminates 2 to 9 Laminates 2 to 9 were produced in the same manner as in Example 2-1 except that the type of powder dispersion was changed.
The evaluation results of the crack resistance of the powder dispersions 1 to 4 and 9 and the evaluation results of the peel strength of the laminates 1 to 9 are summarized in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 [例3]ポリマー膜の製造例
 [例3-1]ポリマー膜3の製造例
 パウダー分散液3を銅箔の表面に塗布し、100℃で10分間乾燥し、不活性ガス雰囲気下、340℃で10分間焼成した後に徐冷した。これにより、銅箔で構成される銅箔層と、銅箔層の表面に形成されたPポリマー1とFポリマー1とを含むポリマー層とを有する積層体を得た。この積層体のポリマー層の表面へのパウダー分散液3の塗布、乾燥、焼成の操作を同じ条件にて繰り返した。これにより、ポリマー層の厚さを30μmまで増大させた。その後、積層体の銅箔層を塩酸で除去して、Pポリマー1とFポリマー1とを含むポリマー膜3を得た。
 [例3-2]ポリマー膜4及びポリマー膜7~9の製造例
 パウダー分散液の種類を変更した以外は、例3-1と同様にして、パウダー分散液4からポリマー膜4を、パウダー分散液7からポリマー膜7を、パウダー分散液8からポリマー膜8を、パウダー分散液9からポリマー膜9をそれぞれ得た。
[Example 3] Production Example of Polymer Membrane [Example 3-1] Production Example of Polymer Membrane 3 The powder dispersion 3 was applied onto the surface of a copper foil and dried at 100°C for 10 minutes, and then under an inert gas atmosphere at 340°C. After firing for 10 minutes, it was gradually cooled. Thereby, a laminate having a copper foil layer composed of a copper foil and a polymer layer containing P polymer 1 and F polymer 1 formed on the surface of the copper foil layer was obtained. The operations of coating, drying and firing the powder dispersion liquid 3 on the surface of the polymer layer of this laminate were repeated under the same conditions. This increased the thickness of the polymer layer to 30 μm. Then, the copper foil layer of the laminate was removed with hydrochloric acid to obtain a polymer film 3 containing P polymer 1 and F polymer 1.
[Example 3-2] Production Example of Polymer Membrane 4 and Polymer Membranes 7 to 9 The polymer membrane 4 was powder-dispersed from the powder dispersion 4 in the same manner as in Example 3-1, except that the type of powder dispersion was changed. A polymer film 7 was obtained from the liquid 7, a polymer film 8 was obtained from the powder dispersion liquid 8, and a polymer film 9 was obtained from the powder dispersion liquid 9.
 ポリマー膜3、ポリマー膜4及びポリマー膜9は、いずれも多孔質膜であり、延伸処理に供した場合の破断強度は、大きい順から、ポリマー膜3、ポリマー膜4、ポリマー膜9であった。
 また、ポリマー膜を延伸処理(延伸率:200%)に供して、ポリマー膜3から延伸膜3を、ポリマー膜4から延伸膜4を、ポリマー膜9から延伸膜9を、それぞれ得た。それぞれの延伸膜は、多孔質の膜であり、開孔状態を比較すると、孔径分布は、小さい順から延伸膜3、延伸膜4、延伸膜9の順であり、この順に緻密な多孔質膜を形成していた。
 ポリマー膜7、ポリマー膜8及びポリマー膜9を延伸処理に供した場合の破断強度は、大きい順から、ポリマー膜7、ポリマー膜8、ポリマー膜9であった。また、それぞれの薄膜を繰返折曲試験に供した結果、薄膜が切断するまでの回数は、大きい順から、ポリマー膜7、ポリマー膜8、ポリマー膜9であった。
Each of the polymer film 3, the polymer film 4, and the polymer film 9 was a porous film, and the rupture strength when subjected to the stretching treatment was the polymer film 3, the polymer film 4, and the polymer film 9 in descending order. ..
Further, the polymer film was subjected to a stretching treatment (stretching ratio: 200%) to obtain a polymer film 3 to a stretched film 3, a polymer film 4 to a stretched film 4, and a polymer film 9 to a stretched film 9. Each of the stretched membranes is a porous membrane, and when the open states are compared, the pore size distribution is in the order of the stretched membrane 3, the stretched membrane 4, and the stretched membrane 9 from the ascending order, and the dense porous membrane in this order. Had formed.
The breaking strengths when the polymer film 7, the polymer film 8 and the polymer film 9 were subjected to the stretching treatment were the polymer film 7, the polymer film 8 and the polymer film 9 in descending order. As a result of subjecting each thin film to the repeated bending test, the number of times until the thin film was cut was the polymer film 7, the polymer film 8, and the polymer film 9 in order from the largest.
 [例4]ポリマー膜の製造例(その2)
 30質量部のFパウダー12、5質量部のFM1、及び65質量部の水を含む分散液と、Mパウダー1を50質量%含む水分散液と、Pパウダー1を50質量%含む水分散液とを混合した。これにより、それぞれのパウダーが水中に分散し、Mポリマー1とFポリマー1とPポリマー1との合計に対して、Mポリマー1を10質量%、Fポリマー1を10質量%、Pポリマー1を80質量%含むパウダー分散液(Fポリマー1の含有量/Mポリマー1の含有量:1.0)を得た。
 このパウダー分散液を銅箔の表面に塗布し、100℃で10分間乾燥し、不活性ガス雰囲気下、340℃で10分間焼成した後に徐冷した。これにより、銅箔で構成される銅箔層と、銅箔層の表面に形成されたポリマー層とを有する積層体を得た。この積層体のポリマー層の表面へのパウダー分散液の塗布、乾燥、焼成の操作を同じ条件にて繰り返した。これにより、ポリマー層の厚さを30μmまで増大させた。その後、積層体の銅箔層を塩酸で除去して、Mポリマー1とFポリマー1とPポリマー1とを含むポリマー膜を得た。このポリマー膜を延伸処理(延伸率:200%)に供すると、孔径分布の小さい緻密な多孔質膜が得られた。
[Example 4] Production Example of Polymer Film (Part 2)
Dispersion liquid containing 30 parts by mass of F powder 12, 5 parts by mass of FM1, and 65 parts by mass of water, water dispersion liquid containing 50 mass% of M powder 1 and water dispersion liquid containing 50 mass% of P powder 1. And mixed. As a result, the respective powders are dispersed in water, and 10% by mass of the M polymer 1, 10% by mass of the F polymer 1 and 10% by mass of the P polymer 1 with respect to the total of the M polymer 1, the F polymer 1 and the P polymer 1. A powder dispersion containing 80% by mass (content of F polymer 1/content of M polymer 1: 1.0) was obtained.
This powder dispersion was applied on the surface of a copper foil, dried at 100° C. for 10 minutes, baked at 340° C. for 10 minutes in an inert gas atmosphere, and then gradually cooled. This obtained the laminated body which has the copper foil layer comprised with copper foil, and the polymer layer formed in the surface of the copper foil layer. The operations of coating, drying and firing the powder dispersion on the surface of the polymer layer of this laminate were repeated under the same conditions. This increased the thickness of the polymer layer to 30 μm. Then, the copper foil layer of the laminate was removed with hydrochloric acid to obtain a polymer film containing M polymer 1, F polymer 1 and P polymer 1. When this polymer membrane was subjected to a stretching treatment (stretching ratio: 200%), a dense porous membrane with a small pore size distribution was obtained.
 本分散液は、フィルム、含浸物(プリプレグ等)、積層板(樹脂付銅箔等の金属積層板)等の成形品の製造に使用でき、離型性、電気特性、撥水撥油性、耐薬品性、耐候性、耐熱性、滑り性、耐摩耗性等が要求される用途の成形品の製造に使用できる。本分散液から得られる成形品は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、塗料、化粧品等として有用であり、具体的には、電線被覆材(航空機用電線等)、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、分離膜(精密濾過膜、限外濾過膜、逆浸透膜、イオン交換膜、透析膜、気体分離膜等)、電極バインダー(リチウム二次電池用、燃料電池用等)、コピーロール、家具、自動車ダッシュボート、家電製品等のカバー、摺動部材(荷重軸受、すべり軸、バルブ、ベアリング、歯車、カム、ベルトコンベア、食品搬送用ベルト等)、工具(シャベル、やすり、きり、のこぎり等)、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材として有用である。 This dispersion can be used for the production of molded products such as films, impregnated products (prepregs, etc.), laminates (metal laminates such as copper foil with resin), mold release properties, electrical properties, water/oil repellency, resistance It can be used to manufacture molded products for applications requiring chemical resistance, weather resistance, heat resistance, slipperiness, wear resistance, etc. Molded products obtained from this dispersion are useful as antenna parts, printed circuit boards, aircraft parts, automotive parts, sports equipment, food industry products, paints, cosmetics, and the like. Electric wires, etc.), electrical insulation tape, oil drilling insulation tape, printed circuit board materials, separation membranes (microfiltration membranes, ultrafiltration membranes, reverse osmosis membranes, ion exchange membranes, dialysis membranes, gas separation membranes, etc.), Electrode binders (for lithium secondary batteries, fuel cells, etc.), covers for copy rolls, furniture, automobile dashboards, home appliances, etc., sliding members (load bearings, sliding shafts, valves, bearings, gears, cams, belt conveyors) , Food conveying belts, etc.), tools (shovels, files, cuts, saws, etc.), boilers, hoppers, pipes, ovens, baking molds, chutes, dies, toilet bowls, container coating materials.

Claims (14)

  1.  テトラフルオロエチレンに基づく単位及び酸素含有極性基を有するフルオロポリマーのパウダー(1)と、非熱溶融性ポリテトラフルオロエチレンのパウダー(21)又は熱溶融性フルオロポリマーのパウダー(22)と、水性媒体とを含むパウダー分散液。 Fluoropolymer powder (1) having a unit based on tetrafluoroethylene and an oxygen-containing polar group (1), non-heat-meltable polytetrafluoroethylene powder (21) or heat-meltable fluoropolymer powder (22), and aqueous medium Powder dispersion containing and.
  2.  前記パウダー(1)の体積基準累積50%径が、0.01~75μmであり、前記パウダー(21)又は前記パウダー(22)の体積基準累積50%径が、0.01~100μmである、請求項1に記載のパウダー分散液。 The volume-based cumulative 50% diameter of the powder (1) is 0.01 to 75 μm, and the volume-based cumulative 50% diameter of the powder (21) or the powder (22) is 0.01 to 100 μm. The powder dispersion liquid according to claim 1.
  3.  前記非熱溶融性ポリテトラフルオロエチレンの含有量又は前記熱溶融性フルオロポリマーの含有量に対する前記フルオロポリマーの含有量の質量での比が、0.4以下である、請求項1又は2に記載のパウダー分散液。 The mass ratio of the content of the fluoropolymer to the content of the non-heat-meltable polytetrafluoroethylene or the content of the heat-meltable fluoropolymer is 0.4 or less. Powder dispersion.
  4.  前記フルオロポリマーの溶融温度が、140~320℃である、請求項1~3のいずれか1項に記載のパウダー分散液。 The powder dispersion liquid according to any one of claims 1 to 3, wherein a melting temperature of the fluoropolymer is 140 to 320°C.
  5.  前記フルオロポリマーが、前記酸素含有極性基を有するモノマーに基づく単位を含む、請求項1~4のいずれか1項に記載のパウダー分散液。 The powder dispersion liquid according to any one of claims 1 to 4, wherein the fluoropolymer includes units based on the monomer having the oxygen-containing polar group.
  6.  前記酸素含有極性基が、水酸基含有基又はカルボニル基含有基である、請求項1~5のいずれか1項に記載のパウダー分散液。 The powder dispersion liquid according to any one of claims 1 to 5, wherein the oxygen-containing polar group is a hydroxyl group-containing group or a carbonyl group-containing group.
  7.  前記非熱溶融性ポリテトラフルオロエチレンが、フィブリル性を有する、請求項1~6のいずれか1項に記載のパウダー分散液。 The powder dispersion liquid according to any one of claims 1 to 6, wherein the non-thermofusible polytetrafluoroethylene has a fibrillation property.
  8.  前記熱溶融性フルオロポリマーが、変性ポリテトラフルオロエチレン、テトラフルオロエチレンとペルフルオロ(アルキルビニルエーテル)とのコポリマー又はテトラフルオロエチレンとヘキサフルオロプロピレンとのコポリマーである、請求項1~7のいずれか1項に記載のパウダー分散液。 The heat-meltable fluoropolymer is a modified polytetrafluoroethylene, a copolymer of tetrafluoroethylene and perfluoro(alkyl vinyl ether), or a copolymer of tetrafluoroethylene and hexafluoropropylene. The powder dispersion described in.
  9.  前記非熱溶融性ポリテトラフルオロエチレンのパウダー(21)及び前記熱溶融性フルオロポリマーのパウダー(22)の両方を含む、請求項1~8のいずれか1項に記載のパウダー分散液。 The powder dispersion liquid according to any one of claims 1 to 8, comprising both the non-heat-meltable polytetrafluoroethylene powder (21) and the heat-meltable fluoropolymer powder (22).
  10.  さらに、アセチレン系界面活性剤、シリコーン系界面活性剤又はフッ素系界面活性剤を含む、請求項1~9のいずれか1項に記載のパウダー分散液。 The powder dispersion liquid according to any one of claims 1 to 9, further containing an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant.
  11.  さらに、フッ素系界面活性剤を含み、前記フッ素系界面活性剤が、フルオロモノオール又はフルオロポリオールである、請求項1~10のいずれか1項に記載のパウダー分散液。 The powder dispersion liquid according to any one of claims 1 to 10, further comprising a fluorosurfactant, and the fluorosurfactant is fluoromonool or fluoropolyol.
  12.  請求項1~11のいずれか1項に記載のパウダー分散液を、基材の表面に塗布し、加熱により前記水性媒体を除去してポリマー層を形成し、前記基材で構成される基材層と前記ポリマー層とが、この順に積層された積層体を得る、積層体の製造方法。 A substrate comprising the powder dispersion according to any one of claims 1 to 11 which is applied to the surface of a substrate and which is heated to remove the aqueous medium to form a polymer layer, the substrate being the substrate. A method for producing a laminate, in which a layer and the polymer layer are laminated in this order to obtain a laminate.
  13.  請求項1~11のいずれか1項に記載のパウダー分散液を、基材の表面に塗布し、加熱により前記水性媒体を除去してポリマー層を形成し、前記基材で構成される基材層と前記ポリマー層とが、この順に積層された積層体を得て、該積層体から前記基材層を除去して、前記ポリマー層で構成されるポリマー膜を得る、ポリマー膜の製造方法。 A substrate comprising the powder dispersion according to any one of claims 1 to 11 which is applied to the surface of a substrate and which is heated to remove the aqueous medium to form a polymer layer, the substrate being the substrate. A method for producing a polymer film, comprising: obtaining a laminate in which a layer and the polymer layer are laminated in this order, and removing the base material layer from the laminate to obtain a polymer film including the polymer layer.
  14.  請求項1~11のいずれか1項に記載のパウダー分散液を、織布に含浸させ、さらに前記織布を乾燥させる、ポリマー層で被覆された織布を得る、被覆織布の製造方法。 A method for producing a coated woven fabric, wherein a woven fabric is impregnated with the powder dispersion according to any one of claims 1 to 11, and the woven fabric is dried to obtain a woven fabric coated with a polymer layer.
PCT/JP2019/049910 2018-12-25 2019-12-19 Powder-dispersed liquid, method for producing layered product, method for producing polymer film, and method for producing coated woven fabric WO2020137828A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020563179A JP7396301B2 (en) 2018-12-25 2019-12-19 Powder dispersion liquid, laminate manufacturing method, polymer film manufacturing method, and covering woven fabric manufacturing method
CN201980085923.2A CN113227216A (en) 2018-12-25 2019-12-19 Powder dispersion, method for producing laminate, method for producing polymer film, and method for producing coated woven fabric

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-240872 2018-12-25
JP2018240873 2018-12-25
JP2018-240873 2018-12-25
JP2018240872 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020137828A1 true WO2020137828A1 (en) 2020-07-02

Family

ID=71128618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049910 WO2020137828A1 (en) 2018-12-25 2019-12-19 Powder-dispersed liquid, method for producing layered product, method for producing polymer film, and method for producing coated woven fabric

Country Status (3)

Country Link
JP (1) JP7396301B2 (en)
CN (1) CN113227216A (en)
WO (1) WO2020137828A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259992A1 (en) * 2021-06-09 2022-12-15 Agc株式会社 Sheet
WO2023276946A1 (en) * 2021-06-30 2023-01-05 Agc株式会社 Composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114575165A (en) * 2022-03-08 2022-06-03 江苏博诚新科技材料有限公司 Preparation method of high-flexibility folding-resistant polytetrafluoroethylene glass fiber material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106170A (en) * 1990-08-28 1992-04-08 Asahi Glass Co Ltd Aqueous dispersion and water-base coating composition
JP2007509223A (en) * 2003-10-24 2007-04-12 スリーエム イノベイティブ プロパティズ カンパニー Aqueous dispersion of polytetrafluoroethylene particles
JP2008050455A (en) * 2006-08-24 2008-03-06 Daikin Ind Ltd Aqueous dispersion of fluorine-containing resin
JP2009538968A (en) * 2006-05-31 2009-11-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Concentrated fluoropolymer dispersions stabilized with anionic polyelectrolyte dispersants
WO2013157647A1 (en) * 2012-04-20 2013-10-24 ダイキン工業株式会社 Composition mainly composed of ptfe, mixed powder, molding material, filtering medium for filter, air filter unit, and porous membrane manufacturing method
JP2017222761A (en) * 2016-06-14 2017-12-21 三菱鉛筆株式会社 Fluororesin nonaqueous dispersion, fluororesin-containing thermosetting resin composition prepared therewith and cured product thereof
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04106170A (en) * 1990-08-28 1992-04-08 Asahi Glass Co Ltd Aqueous dispersion and water-base coating composition
JP2007509223A (en) * 2003-10-24 2007-04-12 スリーエム イノベイティブ プロパティズ カンパニー Aqueous dispersion of polytetrafluoroethylene particles
JP2009538968A (en) * 2006-05-31 2009-11-12 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Concentrated fluoropolymer dispersions stabilized with anionic polyelectrolyte dispersants
JP2008050455A (en) * 2006-08-24 2008-03-06 Daikin Ind Ltd Aqueous dispersion of fluorine-containing resin
WO2013157647A1 (en) * 2012-04-20 2013-10-24 ダイキン工業株式会社 Composition mainly composed of ptfe, mixed powder, molding material, filtering medium for filter, air filter unit, and porous membrane manufacturing method
JP2017222761A (en) * 2016-06-14 2017-12-21 三菱鉛筆株式会社 Fluororesin nonaqueous dispersion, fluororesin-containing thermosetting resin composition prepared therewith and cured product thereof
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022259992A1 (en) * 2021-06-09 2022-12-15 Agc株式会社 Sheet
WO2023276946A1 (en) * 2021-06-30 2023-01-05 Agc株式会社 Composition

Also Published As

Publication number Publication date
TW202039676A (en) 2020-11-01
CN113227216A (en) 2021-08-06
JP7396301B2 (en) 2023-12-12
JPWO2020137828A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP7435441B2 (en) Powder dispersions, laminates, membranes and impregnated woven fabrics
JP7396301B2 (en) Powder dispersion liquid, laminate manufacturing method, polymer film manufacturing method, and covering woven fabric manufacturing method
JP2020158720A (en) Composite particles, dispersion liquid, method for producing laminate, method for producing film and method for producing coated woven fabric
CN113348208B (en) Dispersion liquid
CN112236473B (en) Dispersion liquid, method for producing resin-containing metal foil, and method for producing printed board
JPWO2018212285A1 (en) Fluororesin film and laminate, and method for producing hot-press laminate
US20200317948A1 (en) Dispersion, and methods for producing metal laminate and printed board
WO2019230569A1 (en) Method for producing resin-clad metal foil, resin-clad metal foil, laminate, and printed circuit board
KR20210137426A (en) Liquid composition, powder, and method for preparing powder
WO2020059606A1 (en) Laminate, printed board, and method for manufacturing same
WO2020158604A1 (en) Laminate, method for producing same, method for producing composite laminate, and method for producing polymer film
WO2020071381A1 (en) Dispersion
KR20230010621A (en) Method for producing a laminate having a layer containing a thermally meltable tetrafluoroethylene-based polymer
JP2021075030A (en) Laminate, method for producing laminate, sheet and printed circuit board
JP2020111696A (en) Liquid composition and method for producing laminate
JP2020070401A (en) Dispersion liquid
CN113631669B (en) Liquid composition
TWI840480B (en) Powder dispersion, method for producing laminate, method for producing polymer film, and method for producing coated fabric
JP2020083990A (en) Manufacturing method of composite, and composite
JP2019181735A (en) Manufacturing method of laminate and manufacturing method of substrate
WO2020171024A1 (en) Laminate, and method for producing laminate
TW202111027A (en) Method for producing container with content and liquid composition
TW202140649A (en) Method for producing surface-modified tetrafluoroethylene-based polymer, method for producing modified powder, liquid composition, method for producing modified molded article, and modified molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563179

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902480

Country of ref document: EP

Kind code of ref document: A1