WO2020137718A1 - Vehicle-use sound outputting device - Google Patents

Vehicle-use sound outputting device Download PDF

Info

Publication number
WO2020137718A1
WO2020137718A1 PCT/JP2019/049501 JP2019049501W WO2020137718A1 WO 2020137718 A1 WO2020137718 A1 WO 2020137718A1 JP 2019049501 W JP2019049501 W JP 2019049501W WO 2020137718 A1 WO2020137718 A1 WO 2020137718A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
vehicle
wiring
connection point
open abnormality
Prior art date
Application number
PCT/JP2019/049501
Other languages
French (fr)
Japanese (ja)
Inventor
石川 貴之
淑 石川
Original Assignee
日本精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精機株式会社 filed Critical 日本精機株式会社
Publication of WO2020137718A1 publication Critical patent/WO2020137718A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections

Definitions

  • the present disclosure relates to a vehicle sound output device.
  • a vehicle instrument that detects an abnormal state such as a failure or disconnection of a drive circuit of a sounding body is known (for example, see Patent Document 1).
  • the above-described conventional technique detects an abnormal state based on a pulse signal (control signal) for ringing the sounding body, and therefore, in a situation where the control signal is generated (that is, the sounding body is ringing).
  • the abnormal condition can be detected only under the condition of causing it.
  • the present disclosure aims to detect an open abnormality in the wiring between the drive unit and the sounding body without the sounding of the sounding body.
  • a drive unit for generating a drive signal for ringing the sounding body A wire formed between the sounding body and the drive section, through which the drive signal flows, A vehicle sound output device is provided that includes an open abnormality detection unit that is electrically connected to the wiring and that detects an open abnormality related to the wiring when the drive signal does not flow in the wiring.
  • FIG. 3 is a diagram showing an example of mounting an on-vehicle instrument in the first embodiment.
  • FIG. 3 is a diagram showing an in-vehicle instrument according to the first embodiment.
  • FIG. 3 is a diagram showing a configuration of an in-vehicle instrument according to the first embodiment.
  • 5 is an explanatory diagram of an open abnormality detection unit according to the first embodiment.
  • FIG. It is explanatory drawing of an open abnormality. It is explanatory drawing of the detection principle of an open abnormality. It is explanatory drawing of a preferable execution timing of an open detection process.
  • FIG. 9 is an explanatory diagram of an open abnormality detection unit according to the second embodiment.
  • FIG. 1 is a diagram illustrating an example of mounting an on-vehicle instrument (vehicle instrument) A according to the first embodiment.
  • FIG. 2 is a diagram showing an in-vehicle instrument A in this embodiment.
  • FIG. 3 is a diagram showing the configuration of the on-vehicle instrument A in this embodiment.
  • an in-vehicle instrument A (an example of a vehicle sound output device) is incorporated and mounted in an instrument panel B provided on the front side of a driver's seat in a vehicle.
  • the display of the in-vehicle instrument A can be visually confirmed via the, and measurement information such as the traveling speed of the vehicle can be confirmed.
  • the in-vehicle instrument A functions as a complex instrument, and includes a display 1, an input unit 2, a microcomputer (abbreviation of microcomputer) 3A, a drive circuit 3B, and a sounding body ( Drive body) 4. These components are electrically connected via a circuit board, wiring, etc., and are housed in a case (housing) K made of synthetic resin or the like.
  • the case K includes a transparent case made of a transparent synthetic resin such as acrylic and a storage case made of a light-shielding synthetic resin for holding the circuit board, the sounding body 4 and the like so that the display of the display 1 can be seen. Together, they are fixed using hooks, screws, etc. not shown.
  • the display 1 indicates a display panel (display means) 11 that switches between transmission and non-transmission to form a display image, and an indicator unit such as a scale or a numerical value by rotating a motor that is a drive source.
  • the pointer type display unit 12 may be included.
  • the display device 1 displays desired vehicle information such as the traveling speed and traveling distance of the vehicle, the remaining capacity of the on-vehicle battery, and an alarm in a power-on state (operating state) of the vehicle such as during normal traveling based on a control signal from the microcomputer 3A. To display.
  • desired vehicle information such as the traveling speed and traveling distance of the vehicle, the remaining capacity of the on-vehicle battery, and an alarm in a power-on state (operating state) of the vehicle such as during normal traveling based on a control signal from the microcomputer 3A.
  • the display panel 11 may be, for example, a liquid crystal display panel including a backlight 11a including a light source such as a light emitting diode.
  • the display panel 11 generates and outputs a display screen according to the control signal from the microcomputer 3A, and also changes the output brightness of the backlight 11a based on the control signal from the microcomputer 3A.
  • the input means 2 may be a trip switch for switching and displaying the total traveled distance, the section traveled distance, etc. of the in-vehicle instrument A.
  • the input means 2 may also be used as a dimming switch for setting the illumination brightness of the vehicle-mounted instrument A including the display 1.
  • the input means 2 outputs an operation signal corresponding to the pressing operation of the vehicle user to the microcomputer 3A.
  • the input means 2 can be used together with or replaced with the steering switch C1.
  • the microcomputer 3A includes a storage unit 31 which is used as a storage area for storing a predetermined program and various data and a calculation, a CPU for performing calculation processing according to the predetermined program, an input/output interface and the like.
  • a storage unit 31 which is used as a storage area for storing a predetermined program and various data and a calculation
  • a CPU for performing calculation processing according to the predetermined program
  • an input/output interface and the like To input an operation signal from the input means 2 and vehicle information based on various sensors of the vehicle through a dedicated communication cable (multiplex communication line), and to control the display 1 and the sounding body 4 according to these signals.
  • the control signal of is generated and output.
  • the electronic control unit D and the main switch unit E are provided so as to be able to communicate with each other via a communication cable.
  • the microcomputer 3A can switch the display screen of the display panel 11 according to the operation of the input means 2 by starting the vehicle-mounted instrument A by turning on the main switch (start switch) of the main switch unit E.
  • the main switch unit E includes a switch for starting or ending the operation of the vehicle, and may be a button type or a key type.
  • the vehicle is an electric vehicle (electric vehicle or hybrid vehicle)
  • the main switch when the main switch is turned on, a state in which electric power can be supplied from a high voltage battery (not shown) to the vehicle drive motor (not shown),
  • the main switch When the main switch is turned off, a state in which the power supply is impossible is formed.
  • the vehicle is a non-electric type (vehicle equipped with only an engine as a drive source)
  • the main switch is turned on
  • the ignition switch is turned on
  • the main switch is turned off
  • the ignition switch is turned off.
  • the vehicle is a non-electric type and the on/off state of the main switch is linked to the on/off state of the ignition switch.
  • the drive circuit 3B is, for example, in the form of a voice IC (Integrated Circuit).
  • the drive circuit 3B drives the sounding body 4 based on the control signal from the microcomputer 3A.
  • the drive circuit 3B drives the sounding body 4 by applying a drive signal according to the control signal from the microcomputer 3A to the sounding body 4.
  • the microcomputer 3A and the drive circuit 3B form an example of a “drive unit” that generates a drive signal for causing the sounding body 4 to ring.
  • the drive circuit 3B transits between the reset release state after the reset release and the non-reset release state.
  • the drive circuit 3B shifts to the non-reset release state when reset in the reset release state, and shifts to the reset release state when reset is released in the non-reset release state.
  • the drive circuit 3B makes a transition between the ringing drive state in which the sounding body 4 rings and the non-ringing drive state.
  • the drive circuit 3B applies a constant voltage of 2.5 V to the sounding body 4 in the non-sounding drive state, and applies, for example, a sinusoidal drive signal to the sounding body 4 in the sounding drive state.
  • the sounding body 4 is a buzzer that sounds based on the control signal of the microcomputer 3A (and the drive signal based on it).
  • the sounding body 4 can prompt the vehicle user to warn the vehicle in synchronization with the alarm state, the vehicle state, and the display output by the display 1, based on the vehicle information from the various electronic control units D and various sensors.
  • on-vehicle instrument vehicle instrument
  • vehicle instrument vehicle instrument
  • other configurations are arbitrary as long as the configuration includes the microcomputer 3A, the drive circuit 3B, and the sounding body 4.
  • FIG. 4 is an explanatory diagram of the open abnormality detection unit 7, and is a diagram showing an example of a circuit configuration including the microcomputer 3A, the drive circuit 3B, and the sounding body 4.
  • FIG. 5 is a diagram schematically showing a state in which an open abnormality related to the wiring 90 has occurred in the circuit configuration of FIG.
  • FIG. 6 is an explanatory diagram of the voltage V(P2) that changes according to the presence/absence of an open abnormality, and is a diagram showing a time-series waveform of the voltage V(P2). Further, FIG. 6 shows the time series waveform of the voltage V(P2), the time series of the state of the terminal AD (“HIGH” or “LOW”) and the open state of the wiring 90 (whether there is an open abnormality). Changes are shown.
  • FIG. 4 a wiring 90 between the drive circuit 3B and the sounding body 4 is shown.
  • a drive signal or the like from the drive circuit 3B is passed through the wiring 90.
  • the wiring 90 includes two lines 91 and 92.
  • the line 91 has one end electrically connected to the sounding body 4 and the other end electrically connected to the connection point P0.
  • the connection point P0 is located between the output terminal SPP and the resistor R0, and one end of the resistor R0 is electrically connected to the ground.
  • the line 92 has one end electrically connected to the sounding body 4 and the other end electrically connected to the output terminal SPM. The voltage applied to the output terminals SPP and SPM is controlled by the drive circuit 3B.
  • the drive circuit 3B applies a voltage of 2.5 V to the output terminals SPP and SPM in the reset release state (and the non-sounding drive state).
  • the drive circuit 3B applies a negative-phase sine wave voltage (a voltage oscillating around 2.5 V) as a drive signal to the output terminals SPP and SPM.
  • the wiring 90 includes a connector 80.
  • the connector 80 includes a sounding body side connector portion 81 and a board side connector portion 82.
  • the sounding body side connector portion 81 and the board side connector portion 82 are electrically connected.
  • circuit parts other than the circuit part from the sounding body side connector part 81 to the sounding body 4 are formed on the same circuit board.
  • the in-vehicle instrument A includes an open abnormality detection unit 7 that detects an open abnormality related to the wiring 90.
  • the open abnormality related to the wiring 90 is typically caused by the disconnection of the wiring 90.
  • the disconnection of the wiring 90 may occur due to disconnection of the connector 80 (disconnection between the sounding body side connector section 81 and the board side connector section 82) (see FIG. 5).
  • the open abnormality detection unit 7 performs processing for detecting an open abnormality related to the wiring 90 (hereinafter, referred to as “non-reset release state”) in a state where no voltage is applied to the output terminals SPP and SPM (hereinafter, referred to as “non-reset release state”). This is referred to as "open detection processing").
  • the open abnormality detection unit 7 includes a pull-up circuit unit 401 (an example of a first circuit unit) and a pull-down circuit unit 402 (an example of a second circuit unit).
  • the pull-up circuit unit 401 is electrically connected to a connection point P1 on the line 91 (an example of a first connection point). Further, the pull-up circuit unit 401 is electrically connected to the microcomputer 3A (see terminal P in FIG. 4).
  • the pull-up circuit unit 401 is controlled by the microcomputer 3A.
  • the microcomputer 3A controls the pull-up circuit unit 401 to switch between a state in which the predetermined voltage V0 is applied to the connection point P1 and a state in which the predetermined voltage V0 is not applied to the connection point P1.
  • the microcomputer 3A turns on the transistor TR2
  • the base current of the transistor TR1 increases and the transistor TR1 turns on.
  • a predetermined voltage V0 is generated at the connection point P1.
  • the transistor TR2 is turned off
  • the base current of the transistor TR1 is reduced and the transistor TR1 is turned off.
  • the connection point P1 is electrically disconnected from the power supply voltage 400 (a state in which the predetermined voltage V0 is not applied to the connection point P1 is formed).
  • the pull-up circuit unit 401 applies a predetermined voltage V0 to the connection point P1 in the non-reset released state under the control of the microcomputer 3A.
  • the predetermined voltage V0 is an arbitrary voltage greater than 0, but in the present embodiment, as an example, it is a voltage between 4V and 5V (about 4.33V).
  • the pull-up circuit unit 401 is electrically connected to the power supply voltage 400 of 5V, and includes transistors TR1 and TR2 (an example of switching means), resistors R1, R2, R4, and the like.
  • the pull-down circuit unit 402 is electrically connected to a connection point P2 (an example of a second connection point) on the line 92. Further, the pull-down circuit unit 402 has a connection point P3, which is electrically connected to the microcomputer 3A via the resistor R3 (see terminal AD in FIG. 4) and also connected to the ground via the resistor R6. Electrically connected to. In this case, assuming that the voltage generated at the connection point P2 is V(P2), a voltage corresponding to the voltage V(P2) is generated at the terminal AD. In this way, the pull-down circuit unit 402 has a function of acquiring voltage information according to the voltage V(P2).
  • the microcomputer 3A When performing the open detection processing, the microcomputer 3A turns on the transistor TR2 of the pull-up circuit unit 401 in the non-reset release state, thereby forming a state in which the predetermined voltage V0 is applied to the connection point P1. Then, in this state, the microcomputer 3A detects the presence or absence of the open abnormality related to the wiring 90 based on the voltage (voltage information corresponding to the voltage V(P2)) appearing at the terminal AD. When the open detection process is completed, the microcomputer 3A turns off the transistor TR2 of the pull-up circuit unit 401 to electrically disconnect the power supply voltage 400 and the connection point P1.
  • the open abnormality related to the wiring 90 has not occurred, and the voltage V(P2) is the voltage corresponding to the predetermined voltage V0 (about 4.33V).
  • the voltage V(P2) becomes 0V.
  • the state (“HIGH” or “LOW”) of the terminal AD changes from “HIGH” to “LOW” at time t10.
  • the wiring 90 is related based on the state of the terminal AD (“HIGH” or “LOW”), that is, the voltage (voltage information corresponding to the voltage V(P2)) appearing at the terminal AD.
  • Open abnormality can be detected. That is, when the voltage appearing at the terminal AD is 0 V instead of the voltage (about 4.33 V) corresponding to the predetermined voltage V0, the open abnormality related to the wiring 90 can be detected. Therefore, for example, the microcomputer 3A detects the open abnormality related to the wiring 90 when the state of the terminal AD is “LOW” while the transistor TR2 of the pull-up circuit unit 401 is turned on in the non-reset release state. You can
  • the microcomputer 3A when the microcomputer 3A detects an open abnormality related to the wiring 90, it may output information informing that fact. For example, the microcomputer 3A may output information indicating the abnormality of the sounding body 4 on the display 1.
  • FIG. 7 is an explanatory diagram of a preferable execution timing of the open detection process, in which the ignition switch (indicated as “IGN” in the figure) is turned on/off, the state of the microcomputer 3A (wakeup/sleep state), The state of the drive circuit 3B (indicated as "voice IC” in the figure) (reset release state/non-reset release state), the output terminal SPP, the voltage of the SPM (0 V/2.5 V), and the state of the open detection process (FIG. Then, the execution state is expressed as “open detection”) in chronological order.
  • the ignition switch is turned on at time t0, and accordingly, the wake-up signal is input to the microcomputer 3A at time t1.
  • the open detection process is put into the execution state.
  • the open detection processing execution state continues until time t2. Therefore, the open detection processing period ⁇ T1 is a period from time t1 to time t2.
  • the length of the open detection processing period ⁇ T1 is set to the minimum length capable of detecting the presence or absence of the open abnormality related to the wiring 90, as described above.
  • the length of the open detection processing period ⁇ T1 is set within the range of 40 ms to 100 ms as the time required to capture the voltage information (“HIGH” or “LOW”) appearing at the terminal AD.
  • 40 ms considers a sampling time of 10 ms and absorption of chattering four times.
  • the reset release is executed for the drive circuit 3B, and the drive circuit 3B shifts from the non-reset release state to the reset release state.
  • the reset release is not executed for the drive circuit 3B at the same time when the wakeup signal is input to the microcomputer 3A, but after the wakeup signal is input to the microcomputer 3A,
  • the reset release is executed for the drive circuit 3B.
  • the open detection process can be executed in the non-reset released state.
  • the ignition switch is turned off at time t4.
  • the microcomputer 3A is maintained in the wake-up state, and the open detection process at the time of turning off the ignition switch described later can be executed.
  • the voltages of the output terminals SPP and SPM are changed from 2.5V to 0V. That is, the output of 2.5 V is stopped.
  • the open detection processing period ⁇ T2 is a period from time t6 to time t7.
  • the length of the open detection processing period ⁇ T2 may be the same as the open detection processing period ⁇ T1 when the ignition switch is turned on.
  • the sleep signal is input to the microcomputer 3A, and the microcomputer 3A shifts from the wakeup state to the sleep state.
  • the microcomputer 3A executes the open detection process triggered by each of the operation start (ignition switch on event) and the operation end (ignition switch off event) of the vehicle. ..
  • the open detection process can be executed without waiting for the timing of ringing the sounding body 4. Further, by using the start and end of operation of the vehicle, it is possible to minimize the influence on other functions due to the open detection process.
  • the open abnormality detection unit 7 performs the open detection process in the state where the drive signal is not generated by the drive circuit 3B (that is, the sounding body 4 is not sounded). Execute.
  • the open abnormality in the wiring 90 between the drive circuit 3B and the sounding body 4 can be detected without the sounding of the sounding body 4.
  • the open abnormality detection unit 7 uses the predetermined voltage V0 generated by the pull-up circuit unit 401 without using the drive signal from the drive circuit 3B and detects the open state. Execute the process.
  • the open abnormality in the wiring 90 between the drive circuit 3B and the sounding body 4 can be detected without the sounding of the sounding body 4. Therefore, according to the present embodiment, it is possible to detect the presence or absence of the open abnormality related to the wiring 90 even when the ringing condition of the sounding body 4 is not satisfied.
  • the microcomputer 3A executes the open detection process triggered by the start of operation of the vehicle, so that it is possible to check whether or not the sounding body 4 can be sounded at the start of operation of the vehicle.
  • the ringing possible state thereafter in FIG. 7, a state in which 2.5 V is applied to the output terminals SPP and SPM in the non-ringing state, including a trip state in which the vehicle is operable
  • the ringing possible state since it is possible to detect in advance whether or not the sounding body 4 can be sounded, it is possible to notify the user of the abnormality in advance. In this case, it is possible to reduce the inconvenience caused by the inability to ring the sounding body 4 in the ringable state.
  • the state in which the user does not perform repair or the like in response to the advance notice of abnormality can be said to be a state in which the user does not expect information notification (alert) by the sounding of the sounding body 4. It is possible to reduce the user's uncomfortable feeling that the sounding body 4 has not been sounded at the timing when the sounding 4 should be sounded.
  • the microcomputer 3A executes the open detection process triggered by the start and end of operation of the vehicle, but the present invention is not limited to this. That is, the microcomputer 3A may execute the open detection process triggered by only one of the operation start and the operation end of the vehicle. For example, the microcomputer 3A may execute the open detection process with only the start of operation of the vehicle as the start or end of operation of the vehicle.
  • the pull-up circuit unit 401 of the open abnormality detection unit 7 includes the transistors TR1 and TR2, so that the predetermined voltage V0 is applied to the connection point P1 and the connection point P1. It is possible to selectively form a state where the power supply voltage 400 and the power supply voltage 400 are electrically disconnected. Therefore, it is possible to form the state in which the predetermined voltage V0 is applied to the connection point P1 only in the execution state of the open detection process, so that the power supply voltage 400 and the connection point P1 are always electrically conducted, and the open detection process is executed. Power consumption can be reduced as compared with a configuration in which the power supply voltage 400 and the connection point P1 are electrically conducted in a period other than the period.
  • the pull-up circuit unit 401 may be a circuit that does not include the transistors TR1 and TR2 and the like, and always electrically connects the power supply voltage 400 to the connection point P1.
  • the open detection process can be executed to detect the presence or absence of an open abnormality in the wiring 90.
  • Example 2 Next, a second embodiment will be described. With regard to the present embodiment, constituent elements that may be the same as those in the above-described first embodiment may be assigned the same reference numerals and description thereof may be omitted.
  • the vehicle-mounted instrument (vehicle instrument) (not shown) in the second embodiment is different from the vehicle-mounted instrument A according to the first embodiment described above in that the open abnormality detection unit 7 is replaced by the open abnormality detection unit 7A.
  • FIG. 8 is an explanatory diagram of the open abnormality detection unit 7A according to the second embodiment.
  • the open abnormality detecting unit 7A according to the present embodiment differs from the open abnormality detecting unit 7 according to the first embodiment described above in that the pull-down circuit unit 402 is replaced by the pull-down circuit unit 402A.
  • the pull-down circuit unit 402A is different from the pull-down circuit unit 402 of the open abnormality detecting unit 7 according to the first embodiment described above in that one end is connected to the pull-up circuit unit 401. Specifically, in FIG. 8, the pull-down circuit unit 402A is electrically connected not to the connection point P3 between the connection point P2 and the resistance R6 but to the connection point P4 between the resistance R4 and the connection point P1. It Also in this case, the presence or absence of the open abnormality related to the wiring 90 can be detected based on the voltage appearing at the terminal AD, as in the first embodiment described above.
  • the voltage appearing at the terminal AD depends on the resistor R0.
  • the voltage appearing at the terminal AD is a value corresponding to the combined resistance of the resistor R0 and the internal resistance of the sounding body 4 and the resistor R6. Becomes Therefore, in the second embodiment, the presence or absence of the open abnormality related to the wiring 90 can be detected based on such a change in the voltage appearing at the terminal AD.
  • pull-down circuit unit 402A is electrically connected between the resistor R4 and the connection point P1 in FIG. 8, it may be electrically connected between the transistor TR1 and the resistor R4.
  • the open abnormality detecting unit 7 is provided outside the drive circuit 3B and the microcomputer 3A, but the present invention is not limited to this.
  • part of the open abnormality detection unit 7 may be realized in the drive circuit 3B.

Abstract

The present invention enables detection of an open abnormality in the wiring between a drive unit and a sound emitting body, without causing the sound emitting body to sound. Provided is a vehicle-use sound outputting device that includes: a sound emitting body; a drive unit that generates a drive signal for causing the sound emitting body to sound; wiring which is formed between the sound emitting body and the drive unit, and through which the drive signal propagates; and an open abnormality detection unit that is electrically connected to the wiring and that detects an open abnormality in the wiring, in a state where the drive signal is not propagating in the wiring.

Description

車両用音出力装置Sound output device for vehicle
 本開示は、車両用音出力装置に関する。 The present disclosure relates to a vehicle sound output device.
 発音体の駆動回路の故障や断線のような異常状態を検出する車両用計器が知られている(例えば特許文献1参照)。 A vehicle instrument that detects an abnormal state such as a failure or disconnection of a drive circuit of a sounding body is known (for example, see Patent Document 1).
特開2016-141383号公報JP, 2016-141383, A
 しかしながら、上記のような従来技術は、発音体を鳴動させるためのパルス信号(制御信号)に基づいて、異常状態を検出するものであるので、制御信号を発生させる状況下(すなわち発音体を鳴動させる状況下)でしか、異常状態を検出できない。 However, the above-described conventional technique detects an abnormal state based on a pulse signal (control signal) for ringing the sounding body, and therefore, in a situation where the control signal is generated (that is, the sounding body is ringing). The abnormal condition can be detected only under the condition of causing it.
 そこで、本開示は、発音体の鳴動を伴わずに、駆動部と発音体との間の配線におけるオープン異常を検出可能とすることを目的とする。 Therefore, the present disclosure aims to detect an open abnormality in the wiring between the drive unit and the sounding body without the sounding of the sounding body.
 1つの側面では、発音体と、
 前記発音体を鳴動させるための駆動信号を生成する駆動部と、
 前記発音体と前記駆動部との間に形成され、前記駆動信号が流れる配線と、
 前記配線に電気的に接続され、前記配線に前記駆動信号が流れていない状態において前記配線に係るオープン異常を検出するオープン異常検出部とを含む、車両用音出力装置が提供される。
In one aspect, with a sounder,
A drive unit for generating a drive signal for ringing the sounding body;
A wire formed between the sounding body and the drive section, through which the drive signal flows,
A vehicle sound output device is provided that includes an open abnormality detection unit that is electrically connected to the wiring and that detects an open abnormality related to the wiring when the drive signal does not flow in the wiring.
 本開示によれば、発音体の鳴動を伴わずに、駆動部と発音体との間の配線におけるオープン異常を検出することが可能となる。 According to the present disclosure, it is possible to detect an open abnormality in the wiring between the drive unit and the sounding body without the sounding of the sounding body.
実施例1における車載計器の搭載例を示す図である。FIG. 3 is a diagram showing an example of mounting an on-vehicle instrument in the first embodiment. 実施例1における車載計器を示す図である。FIG. 3 is a diagram showing an in-vehicle instrument according to the first embodiment. 実施例1における車載計器の構成を示す図である。FIG. 3 is a diagram showing a configuration of an in-vehicle instrument according to the first embodiment. 実施例1によるオープン異常検出部の説明図である。5 is an explanatory diagram of an open abnormality detection unit according to the first embodiment. FIG. オープン異常の説明図である。It is explanatory drawing of an open abnormality. オープン異常の検出原理の説明図である。It is explanatory drawing of the detection principle of an open abnormality. オープン検出処理の好ましい実行タイミングの説明図である。It is explanatory drawing of a preferable execution timing of an open detection process. 実施例2によるオープン異常検出部の説明図である。FIG. 9 is an explanatory diagram of an open abnormality detection unit according to the second embodiment.
 以下、添付図面を参照しながら各実施例について詳細に説明する。 Each embodiment will be described in detail below with reference to the accompanying drawings.
 [実施例1]
 図1は、実施例1における車載計器(車両用計器)Aの搭載例を示す図である。図2は、本実施例における車載計器Aを示す図である。図3は、本実施例における車載計器Aの構成を示す図である。
[Example 1]
FIG. 1 is a diagram illustrating an example of mounting an on-vehicle instrument (vehicle instrument) A according to the first embodiment. FIG. 2 is a diagram showing an in-vehicle instrument A in this embodiment. FIG. 3 is a diagram showing the configuration of the on-vehicle instrument A in this embodiment.
 図1に示すように、車載計器A(車両用音出力装置の一例)は、車両内の運転席前方側に設けられるインストルメントパネルBに組み込まれて搭載されており、運転者は、ステアリングCを介して車載計器Aの表示を視認し、車両の走行速度などの計測情報等を確認できる。 As shown in FIG. 1, an in-vehicle instrument A (an example of a vehicle sound output device) is incorporated and mounted in an instrument panel B provided on the front side of a driver's seat in a vehicle. The display of the in-vehicle instrument A can be visually confirmed via the, and measurement information such as the traveling speed of the vehicle can be confirmed.
 図2,3に示すように、車載計器Aは、複合計器として機能するものであり、表示器1と、入力手段2と、マイコン(マイクロコンピュータの略)3A、駆動回路3Bと、発音体(駆動体)4とを備えている。これらの構成は、回路基板や配線等を介して電気的に接続されており、合成樹脂などのケース(筐体)K内に収納される。なお、ケースKは、表示器1の表示がのぞめるようにアクリル等の透明な合成樹脂からなる透明ケースと、遮光性の合成樹脂からなり回路基板や発音体4等を保持する収納ケースとを嵌め合わせ、図示しないフックやビス等を用いて固定される。 As shown in FIGS. 2 and 3, the in-vehicle instrument A functions as a complex instrument, and includes a display 1, an input unit 2, a microcomputer (abbreviation of microcomputer) 3A, a drive circuit 3B, and a sounding body ( Drive body) 4. These components are electrically connected via a circuit board, wiring, etc., and are housed in a case (housing) K made of synthetic resin or the like. The case K includes a transparent case made of a transparent synthetic resin such as acrylic and a storage case made of a light-shielding synthetic resin for holding the circuit board, the sounding body 4 and the like so that the display of the display 1 can be seen. Together, they are fixed using hooks, screws, etc. not shown.
 表示器1は、図2に示すように、透過/不透過を切り替えて表示像を形成する表示パネル(表示手段)11や、駆動源となるモーターの回転によって目盛りや数値などの指標部を指示する指針式表示部12を含んでよい。 As shown in FIG. 2, the display 1 indicates a display panel (display means) 11 that switches between transmission and non-transmission to form a display image, and an indicator unit such as a scale or a numerical value by rotating a motor that is a drive source. The pointer type display unit 12 may be included.
 表示器1は、通常走行時など車両の電源投入状態(作動状態)において、車両の走行速度や走行距離、車載バッテリの残容量、警報など所望の車両情報を、マイコン3Aからの制御信号に基づいて表示する。 The display device 1 displays desired vehicle information such as the traveling speed and traveling distance of the vehicle, the remaining capacity of the on-vehicle battery, and an alarm in a power-on state (operating state) of the vehicle such as during normal traveling based on a control signal from the microcomputer 3A. To display.
 表示パネル11は、例えば、発光ダイオードなどの光源からなるバックライト11aを備えた液晶表示パネルであってよい。この場合、表示パネル11は、マイコン3Aからの制御信号に応じて、表示画面を生成して出力するとともに、このバックライト11aの出力輝度もマイコン3Aからの制御信号に基づいて変更する。 The display panel 11 may be, for example, a liquid crystal display panel including a backlight 11a including a light source such as a light emitting diode. In this case, the display panel 11 generates and outputs a display screen according to the control signal from the microcomputer 3A, and also changes the output brightness of the backlight 11a based on the control signal from the microcomputer 3A.
 入力手段2は、車載計器Aの積算走行距離や区間走行距離などを切り替え表示するためのトリップスイッチであってよい。また、入力手段2は、表示器1を含む車載計器Aの照明輝度を設定するための調光スイッチとして兼用されてもよい。なお、入力手段2は、車両利用者の押圧操作に応じた操作信号をマイコン3Aへ出力する。また、入力手段2は、ステアリングスイッチC1と併用、又は置き換えることもできる。 The input means 2 may be a trip switch for switching and displaying the total traveled distance, the section traveled distance, etc. of the in-vehicle instrument A. The input means 2 may also be used as a dimming switch for setting the illumination brightness of the vehicle-mounted instrument A including the display 1. The input means 2 outputs an operation signal corresponding to the pressing operation of the vehicle user to the microcomputer 3A. The input means 2 can be used together with or replaced with the steering switch C1.
 マイコン3Aは、所定プログラムや各種データの格納、演算時の記憶領域などに用いる記憶部31と、前記所定プログラムに従って演算処理するためのCPUと、入出力インターフェース等を含む。入力手段2からの操作信号や、車両の各種センサに基づく車両情報を専用の通信ケーブル(多重通信ライン)を介して入力し、これらの信号に応じて表示器1や発音体4を制御するための制御信号を生成し出力する。この場合、通信ケーブルを介して、各種電子制御ユニットDや、メインスイッチユニットEなどと通信可能に設けられる。 The microcomputer 3A includes a storage unit 31 which is used as a storage area for storing a predetermined program and various data and a calculation, a CPU for performing calculation processing according to the predetermined program, an input/output interface and the like. To input an operation signal from the input means 2 and vehicle information based on various sensors of the vehicle through a dedicated communication cable (multiplex communication line), and to control the display 1 and the sounding body 4 according to these signals. The control signal of is generated and output. In this case, the electronic control unit D and the main switch unit E are provided so as to be able to communicate with each other via a communication cable.
 マイコン3Aは、メインスイッチユニットEのメインスイッチ(起動スイッチ)がオンされることによって車載計器Aが起動し、入力手段2の操作に応じて、表示パネル11の表示画面を切り替えることができる。 The microcomputer 3A can switch the display screen of the display panel 11 according to the operation of the input means 2 by starting the vehicle-mounted instrument A by turning on the main switch (start switch) of the main switch unit E.
 なお、メインスイッチユニットEは、車両の作動を開始又は終了させるためのスイッチを含み、ボタン式であってもよいし、キー式であってもよい。車両が電動式(電気自動車又はハイブリッド車)である場合、メインスイッチがオンすると、車両駆動用モータ(図示せず)に高圧バッテリ(図示せず)からの電力供給が可能な状態が形成され、メインスイッチがオフすると、当該電力供給が不能な状態が形成される。また、車両が非電動式(駆動源としてエンジンのみを搭載する車両)である場合、メインスイッチがオンすると、イグニッションスイッチがオン状態となり、メインスイッチがオフすると、イグニッションスイッチがオフ状態となる。以下では、一例として、車両が非電動式であるとし、メインスイッチのオン/オフ状態がイグニッションスイッチのオン/オフ状態と連動しているものとする。 The main switch unit E includes a switch for starting or ending the operation of the vehicle, and may be a button type or a key type. When the vehicle is an electric vehicle (electric vehicle or hybrid vehicle), when the main switch is turned on, a state in which electric power can be supplied from a high voltage battery (not shown) to the vehicle drive motor (not shown), When the main switch is turned off, a state in which the power supply is impossible is formed. Further, when the vehicle is a non-electric type (vehicle equipped with only an engine as a drive source), when the main switch is turned on, the ignition switch is turned on, and when the main switch is turned off, the ignition switch is turned off. In the following, as an example, it is assumed that the vehicle is a non-electric type and the on/off state of the main switch is linked to the on/off state of the ignition switch.
 駆動回路3Bは、例えば音声IC(Integrated Circuit)の形態である。駆動回路3Bは、マイコン3Aからの制御信号に基づいて、発音体4を駆動する。駆動回路3Bは、マイコン3Aからの制御信号に応じた駆動信号を発音体4に印加することで、発音体4を駆動する。なお、本実施例では、マイコン3A及び駆動回路3Bが、発音体4を鳴動させるための駆動信号を生成する「駆動部」の一例を形成する。 The drive circuit 3B is, for example, in the form of a voice IC (Integrated Circuit). The drive circuit 3B drives the sounding body 4 based on the control signal from the microcomputer 3A. The drive circuit 3B drives the sounding body 4 by applying a drive signal according to the control signal from the microcomputer 3A to the sounding body 4. In addition, in the present embodiment, the microcomputer 3A and the drive circuit 3B form an example of a “drive unit” that generates a drive signal for causing the sounding body 4 to ring.
 駆動回路3Bは、リセット解除された後のリセット解除状態と、非リセット解除状態との間で遷移する。駆動回路3Bは、リセット解除状態においてリセットされると非リセット解除状態へ移行し、非リセット解除状態においてリセット解除されるとリセット解除状態に移行する。 The drive circuit 3B transits between the reset release state after the reset release and the non-reset release state. The drive circuit 3B shifts to the non-reset release state when reset in the reset release state, and shifts to the reset release state when reset is released in the non-reset release state.
 駆動回路3Bは、非リセット解除状態においては、発音体4を鳴動させる鳴動駆動状態と、非鳴動駆動状態との間で遷移する。駆動回路3Bは、非鳴動駆動状態では、発音体4に対して2.5Vの一定電圧を印加し、鳴動駆動状態では、発音体4に対して、例えば正弦波の駆動信号を印加する。 In the non-reset release state, the drive circuit 3B makes a transition between the ringing drive state in which the sounding body 4 rings and the non-ringing drive state. The drive circuit 3B applies a constant voltage of 2.5 V to the sounding body 4 in the non-sounding drive state, and applies, for example, a sinusoidal drive signal to the sounding body 4 in the sounding drive state.
 発音体4は、マイコン3Aの制御信号(及びそれに基づく駆動信号)に基づいて鳴動するブザーである。発音体4は、各種電子制御ユニットDや各種センサからの車両情報に基づいて、車両利用者に警報状態や車両状態、表示器1による表示出力と同期した注意喚起を促すことができる。 The sounding body 4 is a buzzer that sounds based on the control signal of the microcomputer 3A (and the drive signal based on it). The sounding body 4 can prompt the vehicle user to warn the vehicle in synchronization with the alarm state, the vehicle state, and the display output by the display 1, based on the vehicle information from the various electronic control units D and various sensors.
 なお、以上説明した車載計器(車両用計器)Aは、あくまで一例であり、マイコン3Aと、駆動回路3Bと、発音体4と、を備える構成であれば、他の構成は任意である。 Note that the on-vehicle instrument (vehicle instrument) A described above is merely an example, and other configurations are arbitrary as long as the configuration includes the microcomputer 3A, the drive circuit 3B, and the sounding body 4.
 図4は、オープン異常検出部7の説明図であり、マイコン3Aと、駆動回路3Bと、発音体4とを含む回路構成の一例を示す図である。図5は、図4の回路構成において、配線90に係るオープン異常が発生している状態を模式的に示す図である。図6は、オープン異常の有無に応じて変化する電圧V(P2)の説明図であり、電圧V(P2)の時系列波形を示す図である。また、図6には、電圧V(P2)の時系列波形とともに、端子ADの状態(“HIGH”又は“LOW”)と、配線90に係るオープン状態(オープン異常の有無)のそれぞれの時系列変化が示される。 FIG. 4 is an explanatory diagram of the open abnormality detection unit 7, and is a diagram showing an example of a circuit configuration including the microcomputer 3A, the drive circuit 3B, and the sounding body 4. FIG. 5 is a diagram schematically showing a state in which an open abnormality related to the wiring 90 has occurred in the circuit configuration of FIG. FIG. 6 is an explanatory diagram of the voltage V(P2) that changes according to the presence/absence of an open abnormality, and is a diagram showing a time-series waveform of the voltage V(P2). Further, FIG. 6 shows the time series waveform of the voltage V(P2), the time series of the state of the terminal AD (“HIGH” or “LOW”) and the open state of the wiring 90 (whether there is an open abnormality). Changes are shown.
 図4には、駆動回路3Bと発音体4との間の配線90が示される。配線90には、駆動回路3Bからの駆動信号等が流される。配線90は、2本のライン91,92を含む。ライン91は、一端が発音体4に電気的に接続され、他端が接続点P0に電気的に接続される。接続点P0は、出力端子SPPと抵抗R0との間に位置し、抵抗R0の一端は、グランドに電気的に接続される。ライン92は、一端が発音体4に電気的に接続され、他端が出力端子SPMに電気的に接続される。出力端子SPP、SPMに印加される電圧は、駆動回路3Bにより制御される。本実施例では、一例として、駆動回路3Bは、リセット解除状態(かつ非鳴動駆動状態)において、出力端子SPP、SPMに2.5Vの電圧を印加する。なお、鳴動駆動状態では、駆動回路3Bは、出力端子SPP、SPMに、駆動信号として、逆相の正弦波の電圧(2.5Vを中心として振動する電圧)を印加する。 In FIG. 4, a wiring 90 between the drive circuit 3B and the sounding body 4 is shown. A drive signal or the like from the drive circuit 3B is passed through the wiring 90. The wiring 90 includes two lines 91 and 92. The line 91 has one end electrically connected to the sounding body 4 and the other end electrically connected to the connection point P0. The connection point P0 is located between the output terminal SPP and the resistor R0, and one end of the resistor R0 is electrically connected to the ground. The line 92 has one end electrically connected to the sounding body 4 and the other end electrically connected to the output terminal SPM. The voltage applied to the output terminals SPP and SPM is controlled by the drive circuit 3B. In the present embodiment, as an example, the drive circuit 3B applies a voltage of 2.5 V to the output terminals SPP and SPM in the reset release state (and the non-sounding drive state). In the ringing drive state, the drive circuit 3B applies a negative-phase sine wave voltage (a voltage oscillating around 2.5 V) as a drive signal to the output terminals SPP and SPM.
 また、図4では、配線90は、コネクタ80を含む。コネクタ80は、発音体側コネクタ部81と、基板側コネクタ部82とを含む。発音体側コネクタ部81と基板側コネクタ部82とは電気的に接続される。なお、図4において、発音体側コネクタ部81から発音体4までの回路部以外の回路部は、同一の回路基板上に形成される。 Further, in FIG. 4, the wiring 90 includes a connector 80. The connector 80 includes a sounding body side connector portion 81 and a board side connector portion 82. The sounding body side connector portion 81 and the board side connector portion 82 are electrically connected. In FIG. 4, circuit parts other than the circuit part from the sounding body side connector part 81 to the sounding body 4 are formed on the same circuit board.
 本実施例では、車載計器Aは、配線90に係るオープン異常を検出するオープン異常検出部7を備える。配線90に係るオープン異常は、典型的には、配線90の断線により発生する。配線90の断線は、コネクタ80の外れ(発音体側コネクタ部81と基板側コネクタ部82との間の外れ)によって生じる場合(図5参照)がある。 In the present embodiment, the in-vehicle instrument A includes an open abnormality detection unit 7 that detects an open abnormality related to the wiring 90. The open abnormality related to the wiring 90 is typically caused by the disconnection of the wiring 90. The disconnection of the wiring 90 may occur due to disconnection of the connector 80 (disconnection between the sounding body side connector section 81 and the board side connector section 82) (see FIG. 5).
 オープン異常検出部7は、出力端子SPP、SPMに電圧が印加されていない状態(以下、「非リセット解除状態」とも称する)において、配線90に係るオープン異常を検出するための処理(以下、「オープン検出処理」と称する)を行う。 The open abnormality detection unit 7 performs processing for detecting an open abnormality related to the wiring 90 (hereinafter, referred to as “non-reset release state”) in a state where no voltage is applied to the output terminals SPP and SPM (hereinafter, referred to as “non-reset release state”). This is referred to as "open detection processing").
 オープン異常検出部7は、図4に示すように、プルアップ回路部401(第1回路部の一例)と、プルダウン回路部402(第2回路部の一例)とを含む。 As shown in FIG. 4, the open abnormality detection unit 7 includes a pull-up circuit unit 401 (an example of a first circuit unit) and a pull-down circuit unit 402 (an example of a second circuit unit).
 プルアップ回路部401は、ライン91における接続点P1(第1接続点の一例)に電気的に接続される。また、プルアップ回路部401は、マイコン3Aに電気的に接続される(図4の端子P参照)。 The pull-up circuit unit 401 is electrically connected to a connection point P1 on the line 91 (an example of a first connection point). Further, the pull-up circuit unit 401 is electrically connected to the microcomputer 3A (see terminal P in FIG. 4).
 プルアップ回路部401は、マイコン3Aにより制御される。マイコン3Aは、プルアップ回路部401を制御して、接続点P1に所定電圧V0を印加する状態と、接続点P1に所定電圧V0を印加しない状態とを切り替える。具体的には、マイコン3Aは、トランジスタTR2をオンさせると、トランジスタTR1のベース電流が増加して、トランジスタTR1がオンする。トランジスタTR1がオンすると、所定電圧V0が接続点P1に発生する。また、トランジスタTR2をオフさせると、トランジスタTR1のベース電流が低下して、トランジスタTR1がオフする。トランジスタTR1がオフすると、電源電圧400から接続点P1が電気的に切り離される(接続点P1に所定電圧V0が印加されない状態が形成される)。 The pull-up circuit unit 401 is controlled by the microcomputer 3A. The microcomputer 3A controls the pull-up circuit unit 401 to switch between a state in which the predetermined voltage V0 is applied to the connection point P1 and a state in which the predetermined voltage V0 is not applied to the connection point P1. Specifically, when the microcomputer 3A turns on the transistor TR2, the base current of the transistor TR1 increases and the transistor TR1 turns on. When the transistor TR1 is turned on, a predetermined voltage V0 is generated at the connection point P1. Further, when the transistor TR2 is turned off, the base current of the transistor TR1 is reduced and the transistor TR1 is turned off. When the transistor TR1 is turned off, the connection point P1 is electrically disconnected from the power supply voltage 400 (a state in which the predetermined voltage V0 is not applied to the connection point P1 is formed).
 プルアップ回路部401は、マイコン3Aによる制御下で、非リセット解除状態において、接続点P1に所定電圧V0を印加する。所定電圧V0は、0よりも大きい任意の電圧であるが、本実施例では、一例として、4V~5Vの間の電圧(約4.33V)である。具体的には、プルアップ回路部401は、5Vの電源電圧400に電気的に接続され、トランジスタTR1、TR2(切替手段の一例)、抵抗R1,R2,R4等を含む。 The pull-up circuit unit 401 applies a predetermined voltage V0 to the connection point P1 in the non-reset released state under the control of the microcomputer 3A. The predetermined voltage V0 is an arbitrary voltage greater than 0, but in the present embodiment, as an example, it is a voltage between 4V and 5V (about 4.33V). Specifically, the pull-up circuit unit 401 is electrically connected to the power supply voltage 400 of 5V, and includes transistors TR1 and TR2 (an example of switching means), resistors R1, R2, R4, and the like.
 プルダウン回路部402は、ライン92における接続点P2(第2接続点の一例)に電気的に接続される。また、プルダウン回路部402は、接続点P3を有し、接続点P3は、抵抗R3を介してマイコン3Aに電気的に接続される(図4の端子AD参照)とともに、抵抗R6を介してグランドに電気的に接続される。この場合、接続点P2に発生する電圧をV(P2)とすると、端子ADには、電圧V(P2)に対応する電圧が生じる。このように、プルダウン回路部402は、電圧V(P2)に応じた電圧情報を取得する機能を有する。 The pull-down circuit unit 402 is electrically connected to a connection point P2 (an example of a second connection point) on the line 92. Further, the pull-down circuit unit 402 has a connection point P3, which is electrically connected to the microcomputer 3A via the resistor R3 (see terminal AD in FIG. 4) and also connected to the ground via the resistor R6. Electrically connected to. In this case, assuming that the voltage generated at the connection point P2 is V(P2), a voltage corresponding to the voltage V(P2) is generated at the terminal AD. In this way, the pull-down circuit unit 402 has a function of acquiring voltage information according to the voltage V(P2).
 マイコン3Aは、オープン検出処理を行う際、非リセット解除状態においてプルアップ回路部401のトランジスタTR2をオンさせることで、接続点P1に所定電圧V0を印加する状態を形成する。そして、この状態において、マイコン3Aは、端子ADに現れる電圧(電圧V(P2)に応じた電圧情報)に基づいて、配線90に係るオープン異常の有無を検出する。そして、マイコン3Aは、オープン検出処理を終了すると、プルアップ回路部401のトランジスタTR2をオフさせることで、電源電圧400と接続点P1とを電気的に切り離す。 When performing the open detection processing, the microcomputer 3A turns on the transistor TR2 of the pull-up circuit unit 401 in the non-reset release state, thereby forming a state in which the predetermined voltage V0 is applied to the connection point P1. Then, in this state, the microcomputer 3A detects the presence or absence of the open abnormality related to the wiring 90 based on the voltage (voltage information corresponding to the voltage V(P2)) appearing at the terminal AD. When the open detection process is completed, the microcomputer 3A turns off the transistor TR2 of the pull-up circuit unit 401 to electrically disconnect the power supply voltage 400 and the connection point P1.
 ここで、配線90に係るオープン異常が発生していない場合は、非リセット解除状態においてプルアップ回路部401のトランジスタTR2がオンすると、電圧V(P2)は、所定電圧V0に対応した電圧(約4.33V)となり、端子ADの状態が“HIGH”となる。 Here, when the open abnormality related to the wiring 90 does not occur, when the transistor TR2 of the pull-up circuit unit 401 is turned on in the non-reset release state, the voltage V(P2) changes to the voltage (about 4.33V), and the state of the terminal AD becomes "HIGH".
 これに対して、配線90に係るオープン異常が発生した場合、非リセット解除状態においてプルアップ回路部401のトランジスタTR2がオンすると、電圧V(P2)は、駆動回路3Bの出力端子SPMの電圧に対応する電圧(すなわち0V)となり、端子ADの状態が“LOW”となる。 On the other hand, when the open abnormality related to the wiring 90 occurs, when the transistor TR2 of the pull-up circuit unit 401 is turned on in the non-reset release state, the voltage V(P2) becomes the voltage of the output terminal SPM of the drive circuit 3B. The corresponding voltage (that is, 0 V) is obtained, and the state of the terminal AD becomes "LOW".
 具体的には、図6を参照するに、図6では、時点t10までは、配線90に係るオープン異常が発生しておらず、電圧V(P2)は、所定電圧V0に対応した電圧(約4.33V)である。しかしながら、時点t10で例えばコネクタ80の外れが発生すると、電圧V(P2)は、0Vとなる。この結果、端子ADの状態(“HIGH”又は“LOW”)が、時点t10で、“HIGH”から“LOW”に変化する。 Specifically, referring to FIG. 6, in FIG. 6, until the time t10, the open abnormality related to the wiring 90 has not occurred, and the voltage V(P2) is the voltage corresponding to the predetermined voltage V0 (about 4.33V). However, if the connector 80 is disconnected at time t10, the voltage V(P2) becomes 0V. As a result, the state (“HIGH” or “LOW”) of the terminal AD changes from “HIGH” to “LOW” at time t10.
 このようにして、本実施例では、端子ADの状態(“HIGH”又は“LOW”)、すなわち端子ADに現れる電圧(電圧V(P2)に応じた電圧情報)に基づいて、配線90に係るオープン異常を検出できる。すなわち、端子ADに現れる電圧が、所定電圧V0に対応した電圧(約4.33V)ではなく、0Vである場合に、配線90に係るオープン異常を検出できる。従って、例えば、マイコン3Aは、非リセット解除状態においてプルアップ回路部401のトランジスタTR2をオンさせた状態において、端子ADの状態が“LOW”である場合に、配線90に係るオープン異常を検出してよい。 Thus, in this embodiment, the wiring 90 is related based on the state of the terminal AD (“HIGH” or “LOW”), that is, the voltage (voltage information corresponding to the voltage V(P2)) appearing at the terminal AD. Open abnormality can be detected. That is, when the voltage appearing at the terminal AD is 0 V instead of the voltage (about 4.33 V) corresponding to the predetermined voltage V0, the open abnormality related to the wiring 90 can be detected. Therefore, for example, the microcomputer 3A detects the open abnormality related to the wiring 90 when the state of the terminal AD is “LOW” while the transistor TR2 of the pull-up circuit unit 401 is turned on in the non-reset release state. You can
 なお、マイコン3Aは、配線90に係るオープン異常を検出した場合、その旨を知らせる情報を出力してよい。例えば、マイコン3Aは、発音体4の異常を知らせる情報を、表示器1上に出力してよい。 Note that when the microcomputer 3A detects an open abnormality related to the wiring 90, it may output information informing that fact. For example, the microcomputer 3A may output information indicating the abnormality of the sounding body 4 on the display 1.
 次に、図7を参照して、オープン検出処理の好ましい実行タイミングについて説明する。 Next, a preferable execution timing of the open detection process will be described with reference to FIG.
 図7は、オープン検出処理の好ましい実行タイミングの説明図であり、上から順に、イグニッションスイッチ(図では「IGN」と表記)のオン/オフ状態、マイコン3Aの状態(ウェイクアップ/スリープ状態)、駆動回路3B(図では、「音声IC」と表記)の状態(リセット解除状態/非リセット解除状態)、出力端子SPP、SPMの電圧(0V/2.5V)、及びオープン検出処理の状態(図では、実行状態が「オープン検出」と表記)が、時系列で示される。 FIG. 7 is an explanatory diagram of a preferable execution timing of the open detection process, in which the ignition switch (indicated as “IGN” in the figure) is turned on/off, the state of the microcomputer 3A (wakeup/sleep state), The state of the drive circuit 3B (indicated as "voice IC" in the figure) (reset release state/non-reset release state), the output terminal SPP, the voltage of the SPM (0 V/2.5 V), and the state of the open detection process (FIG. Then, the execution state is expressed as “open detection”) in chronological order.
 図7では、時点t0でイグニッションスイッチがオンとなり、それに応じて時点t1で、マイコン3Aにウェイクアップ信号が入力される。マイコン3Aにウェイクアップ信号が入力されると、オープン検出処理が実行状態となる。オープン検出処理の実行状態は、時点t2まで継続する。従って、オープン検出処理期間ΔT1は、時点t1から時点t2までの期間となる。オープン検出処理期間ΔT1の長さは、上述のように、配線90に係るオープン異常の有無を検出できるような最小限な長さに設定される。例えば、オープン検出処理期間ΔT1の長さは、端子ADに現れる電圧情報(“HIGH”又は“LOW”)の取り込みに必要な時間として、40msから100msの範囲内に設定される。例えば、40msは、10msのサンプリング時間と、4回のチャタリングの吸収を考慮したものである。 In FIG. 7, the ignition switch is turned on at time t0, and accordingly, the wake-up signal is input to the microcomputer 3A at time t1. When the wake-up signal is input to the microcomputer 3A, the open detection process is put into the execution state. The open detection processing execution state continues until time t2. Therefore, the open detection processing period ΔT1 is a period from time t1 to time t2. The length of the open detection processing period ΔT1 is set to the minimum length capable of detecting the presence or absence of the open abnormality related to the wiring 90, as described above. For example, the length of the open detection processing period ΔT1 is set within the range of 40 ms to 100 ms as the time required to capture the voltage information (“HIGH” or “LOW”) appearing at the terminal AD. For example, 40 ms considers a sampling time of 10 ms and absorption of chattering four times.
 時点t2では、駆動回路3Bに対してリセット解除が実行され、駆動回路3Bは、非リセット解除状態からリセット解除状態へと移行する。このようにして、本実施例では、マイコン3Aにウェイクアップ信号が入力されると同時に駆動回路3Bに対してリセット解除が実行されるのではなく、マイコン3Aにウェイクアップ信号が入力されてから、オープン検出処理期間ΔT1の経過後に、駆動回路3Bに対してリセット解除が実行される。これにより、非リセット解除状態においてオープン検出処理を実行できる。なお、駆動回路3Bがリセット解除状態に至ると、時点t3から出力端子SPP、SPMの電圧が2.5Vに固定される。 At time t2, the reset release is executed for the drive circuit 3B, and the drive circuit 3B shifts from the non-reset release state to the reset release state. In this way, in this embodiment, the reset release is not executed for the drive circuit 3B at the same time when the wakeup signal is input to the microcomputer 3A, but after the wakeup signal is input to the microcomputer 3A, After the open detection processing period ΔT1 has elapsed, the reset release is executed for the drive circuit 3B. As a result, the open detection process can be executed in the non-reset released state. When the drive circuit 3B reaches the reset release state, the voltage of the output terminals SPP and SPM is fixed to 2.5V from the time t3.
 その後、時点t4でイグニッションスイッチがオフとなる。なお、この時点t4では、マイコン3Aはウェイクアップ状態で維持され、後述のイグニッションスイッチオフ時のオープン検出処理の実行が可能とされる。時点t4より後の時点t5では、出力端子SPP、SPMの電圧が2.5Vから0Vへと変更される。すなわち、2.5Vの出力が停止される。 After that, the ignition switch is turned off at time t4. At this time point t4, the microcomputer 3A is maintained in the wake-up state, and the open detection process at the time of turning off the ignition switch described later can be executed. At time t5 after time t4, the voltages of the output terminals SPP and SPM are changed from 2.5V to 0V. That is, the output of 2.5 V is stopped.
 そして、時点t6で、駆動回路3Bがリセット解除状態から非リセット解除状態へと移行すると、オープン検出処理が実行状態となる。オープン検出処理の実行状態は、時点t7まで継続する。従って、オープン検出処理期間ΔT2は、時点t6から時点t7までの期間となる。オープン検出処理期間ΔT2の長さは、イグニッションスイッチオン時のオープン検出処理期間ΔT1と同じであってよい。時点t7で、マイコン3Aにスリープ信号が入力され、マイコン3Aは、ウェイクアップ状態からスリープ状態へと移行する。 Then, at the time t6, when the drive circuit 3B shifts from the reset release state to the non-reset release state, the open detection process becomes the execution state. The execution state of the open detection process continues until time t7. Therefore, the open detection processing period ΔT2 is a period from time t6 to time t7. The length of the open detection processing period ΔT2 may be the same as the open detection processing period ΔT1 when the ignition switch is turned on. At time t7, the sleep signal is input to the microcomputer 3A, and the microcomputer 3A shifts from the wakeup state to the sleep state.
 このように、図7に示す例によれば、マイコン3Aは、車両の作動開始(イグニッションスイッチのオンイベント)及び作動終了(イグニッションスイッチのオフイベント)のそれぞれを契機として、オープン検出処理を実行する。これにより、発音体4を鳴動させるタイミングを待たずに、オープン検出処理を実行できる。また、車両の作動開始及び作動終了を利用することで、オープン検出処理に起因した他の機能への影響を最小限に抑えることができる。 As described above, according to the example shown in FIG. 7, the microcomputer 3A executes the open detection process triggered by each of the operation start (ignition switch on event) and the operation end (ignition switch off event) of the vehicle. .. As a result, the open detection process can be executed without waiting for the timing of ringing the sounding body 4. Further, by using the start and end of operation of the vehicle, it is possible to minimize the influence on other functions due to the open detection process.
 以上説明した本実施例によれば、とりわけ、以下のような優れた効果が奏される。 According to the present embodiment described above, the following excellent effects are achieved.
 まず、本実施例によれば、オープン異常検出部7は、上述のように、駆動回路3Bにより駆動信号が生成されていない状態(すなわち発音体4が鳴動されていない状態)においてオープン検出処理を実行する。これにより、発音体4の鳴動を伴わずに、駆動回路3Bと発音体4との間の配線90におけるオープン異常を検出できる。より具体的には、本実施例によれば、オープン異常検出部7は、駆動回路3Bによる駆動信号を利用せずに、プルアップ回路部401が生成する所定電圧V0を利用して、オープン検出処理を実行する。これにより、発音体4の鳴動を伴わずに、駆動回路3Bと発音体4との間の配線90におけるオープン異常を検出できる。従って、本実施例によれば、発音体4の鳴動条件が成立しない場合でも、配線90に係るオープン異常の有無を検出できる。 First, according to the present embodiment, as described above, the open abnormality detection unit 7 performs the open detection process in the state where the drive signal is not generated by the drive circuit 3B (that is, the sounding body 4 is not sounded). Execute. Thus, the open abnormality in the wiring 90 between the drive circuit 3B and the sounding body 4 can be detected without the sounding of the sounding body 4. More specifically, according to the present embodiment, the open abnormality detection unit 7 uses the predetermined voltage V0 generated by the pull-up circuit unit 401 without using the drive signal from the drive circuit 3B and detects the open state. Execute the process. Thus, the open abnormality in the wiring 90 between the drive circuit 3B and the sounding body 4 can be detected without the sounding of the sounding body 4. Therefore, according to the present embodiment, it is possible to detect the presence or absence of the open abnormality related to the wiring 90 even when the ringing condition of the sounding body 4 is not satisfied.
 また、本実施例では、マイコン3Aは、車両の作動開始を契機として、オープン検出処理を実行するので、車両の作動開始時に、発音体4を鳴動させることができるか否かをチェックできる。この場合、その後の鳴動可能状態(図7において、非鳴動状態で出力端子SPP、SPMに2.5Vが印加されている状態であって、車両が運行可能な状態であるトリップ状態を含む状態)において、発音体4を鳴動できるか否かを事前に検知できるので、ユーザに当該異常を事前に通知することが可能となる。この場合、鳴動可能状態中に発音体4を鳴動させることができないことに起因した不都合を低減できる。すなわち、仮に事前の異常通知に応答してユーザが修理等を行わない状態は、ユーザが発音体4の鳴動による情報の通知(注意喚起)を期待していない状態ということができるので、発音体4が鳴動されるべきタイミングで発音体4が鳴動されなかったことに対するユーザの違和感等を低減できる。 Further, in the present embodiment, the microcomputer 3A executes the open detection process triggered by the start of operation of the vehicle, so that it is possible to check whether or not the sounding body 4 can be sounded at the start of operation of the vehicle. In this case, the ringing possible state thereafter (in FIG. 7, a state in which 2.5 V is applied to the output terminals SPP and SPM in the non-ringing state, including a trip state in which the vehicle is operable) Since it is possible to detect in advance whether or not the sounding body 4 can be sounded, it is possible to notify the user of the abnormality in advance. In this case, it is possible to reduce the inconvenience caused by the inability to ring the sounding body 4 in the ringable state. That is, the state in which the user does not perform repair or the like in response to the advance notice of abnormality can be said to be a state in which the user does not expect information notification (alert) by the sounding of the sounding body 4. It is possible to reduce the user's uncomfortable feeling that the sounding body 4 has not been sounded at the timing when the sounding 4 should be sounded.
 なお、本実施例では、マイコン3Aは、車両の作動開始及び作動終了のそれぞれを契機として、オープン検出処理を実行するが、これに限られない。すなわち、マイコン3Aは、車両の作動開始及び作動終了のいずれか一方のみを契機として、オープン検出処理を実行してもよい。例えば、マイコン3Aは、車両の作動開始及び作動終了のうちの、車両の作動開始のみを契機として、オープン検出処理を実行してもよい。 In the present embodiment, the microcomputer 3A executes the open detection process triggered by the start and end of operation of the vehicle, but the present invention is not limited to this. That is, the microcomputer 3A may execute the open detection process triggered by only one of the operation start and the operation end of the vehicle. For example, the microcomputer 3A may execute the open detection process with only the start of operation of the vehicle as the start or end of operation of the vehicle.
 また、本実施例では、上述のように、オープン異常検出部7のプルアップ回路部401は、トランジスタTR1、TR2を備えることで、接続点P1に所定電圧V0を印加した状態と、接続点P1と電源電圧400とを電気的に切り離した状態とを選択的に形成できる。従って、オープン検出処理の実行状態においてのみ、接続点P1に所定電圧V0を印加した状態を形成できるので、電源電圧400と接続点P1とを常に電気的に導通させる構成や、オープン検出処理を実行する期間以外の期間にも電源電圧400と接続点P1とを電気的に導通させる構成に比べて、電力消費を低減できる。ただし、変形例では、プルアップ回路部401は、トランジスタTR1、TR2等を備えず、電源電圧400を接続点P1に常に電気的に接続させる回路であってもよい。このような変形例によっても、上述した実施例と同様に、オープン検出処理を実行して、配線90に係るオープン異常の有無を検出できる。 Further, in the present embodiment, as described above, the pull-up circuit unit 401 of the open abnormality detection unit 7 includes the transistors TR1 and TR2, so that the predetermined voltage V0 is applied to the connection point P1 and the connection point P1. It is possible to selectively form a state where the power supply voltage 400 and the power supply voltage 400 are electrically disconnected. Therefore, it is possible to form the state in which the predetermined voltage V0 is applied to the connection point P1 only in the execution state of the open detection process, so that the power supply voltage 400 and the connection point P1 are always electrically conducted, and the open detection process is executed. Power consumption can be reduced as compared with a configuration in which the power supply voltage 400 and the connection point P1 are electrically conducted in a period other than the period. However, in a modified example, the pull-up circuit unit 401 may be a circuit that does not include the transistors TR1 and TR2 and the like, and always electrically connects the power supply voltage 400 to the connection point P1. According to such a modified example as well, similar to the above-described embodiment, the open detection process can be executed to detect the presence or absence of an open abnormality in the wiring 90.
 [実施例2]
 次に、実施例2について説明する。本実施例に関しては、上述した実施例1と同様であってよい構成要素については、同一の参照符号を付して説明を省略する場合がある。
[Example 2]
Next, a second embodiment will be described. With regard to the present embodiment, constituent elements that may be the same as those in the above-described first embodiment may be assigned the same reference numerals and description thereof may be omitted.
 実施例2における車載計器(車両用計器)(図示せず)は、上述した実施例1による車載計器Aに対して、オープン異常検出部7がオープン異常検出部7Aで置換された点が異なる。 The vehicle-mounted instrument (vehicle instrument) (not shown) in the second embodiment is different from the vehicle-mounted instrument A according to the first embodiment described above in that the open abnormality detection unit 7 is replaced by the open abnormality detection unit 7A.
 図8は、実施例2によるオープン異常検出部7Aの説明図である。 FIG. 8 is an explanatory diagram of the open abnormality detection unit 7A according to the second embodiment.
 本実施例によるオープン異常検出部7Aは、上述した実施例1によるオープン異常検出部7に対して、プルダウン回路部402がプルダウン回路部402Aで置換された点が異なる。 The open abnormality detecting unit 7A according to the present embodiment differs from the open abnormality detecting unit 7 according to the first embodiment described above in that the pull-down circuit unit 402 is replaced by the pull-down circuit unit 402A.
 プルダウン回路部402Aは、上述した実施例1によるオープン異常検出部7のプルダウン回路部402に対して、プルアップ回路部401に一端が接続される点が異なる。具体的には、図8では、プルダウン回路部402Aは、接続点P2と抵抗R6との間の接続点P3ではなく、抵抗R4と接続点P1との間の接続点P4に電気的に接続される。この場合も、上述した実施例1と同様、端子ADで現れる電圧に基づいて、配線90に係るオープン異常の有無を検出できる。 The pull-down circuit unit 402A is different from the pull-down circuit unit 402 of the open abnormality detecting unit 7 according to the first embodiment described above in that one end is connected to the pull-up circuit unit 401. Specifically, in FIG. 8, the pull-down circuit unit 402A is electrically connected not to the connection point P3 between the connection point P2 and the resistance R6 but to the connection point P4 between the resistance R4 and the connection point P1. It Also in this case, the presence or absence of the open abnormality related to the wiring 90 can be detected based on the voltage appearing at the terminal AD, as in the first embodiment described above.
 具体的には、非リセット解除状態においてプルアップ回路部401のトランジスタTR2をオンさせた状態において、配線90に係るオープン異常が発生している場合は、端子ADで現れる電圧は、抵抗R0に応じた値となるのに対して、配線90に係るオープン異常が発生していない場合は、端子ADで現れる電圧は、抵抗R0と発音体4の内部抵抗及び抵抗R6との合成抵抗に応じた値となる。従って、実施例2では、このような端子ADで現れる電圧の変化に基づいて、配線90に係るオープン異常の有無を検出できる。 Specifically, in the non-reset released state, when the transistor TR2 of the pull-up circuit unit 401 is turned on, when the open abnormality related to the wiring 90 occurs, the voltage appearing at the terminal AD depends on the resistor R0. On the other hand, when the open abnormality related to the wiring 90 does not occur, the voltage appearing at the terminal AD is a value corresponding to the combined resistance of the resistor R0 and the internal resistance of the sounding body 4 and the resistor R6. Becomes Therefore, in the second embodiment, the presence or absence of the open abnormality related to the wiring 90 can be detected based on such a change in the voltage appearing at the terminal AD.
 なお、図8では、プルダウン回路部402Aは、抵抗R4と接続点P1との間に電気的に接続されるが、トランジスタTR1と抵抗R4との間に電気的に接続されてもよい。 Although the pull-down circuit unit 402A is electrically connected between the resistor R4 and the connection point P1 in FIG. 8, it may be electrically connected between the transistor TR1 and the resistor R4.
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。 Although each embodiment has been described in detail above, the invention is not limited to a specific embodiment, and various modifications and changes can be made within the scope of the claims. Further, it is possible to combine all or a plurality of the constituent elements of the above-described embodiments.
 なお、上述した実施例では、オープン異常検出部7は、駆動回路3Bやマイコン3Aの外部に設けられるが、これに限られない。例えば、オープン異常検出部7の一部が駆動回路3B内で実現されてもよい。 In the above-described embodiment, the open abnormality detecting unit 7 is provided outside the drive circuit 3B and the microcomputer 3A, but the present invention is not limited to this. For example, part of the open abnormality detection unit 7 may be realized in the drive circuit 3B.
1 表示器
2 入力手段
3A マイコン
3B 駆動回路
4 発音体
7 オープン異常検出部
7A オープン異常検出部
11 表示パネル
12 指針式表示部
31 記憶部
80 コネクタ
81 発音体側コネクタ部
82 基板側コネクタ部
90 配線
91 ライン
92 ライン
400 電源電圧
401 プルアップ回路部
402 プルダウン回路部
402A プルダウン回路部
A 車載計器(車両用計器)
DESCRIPTION OF SYMBOLS 1 display 2 input means 3A microcomputer 3B drive circuit 4 sounding body 7 open abnormality detecting section 7A open abnormality detecting section 11 display panel 12 pointer type display section 31 storage section 80 connector 81 sounding body side connector section 82 board side connector section 90 wiring 91 Line 92 Line 400 Power supply voltage 401 Pull-up circuit unit 402 Pull-down circuit unit 402A Pull-down circuit unit A In-vehicle instrument (vehicle instrument)

Claims (4)

  1.  発音体と、
     前記発音体を鳴動させるための駆動信号を生成する駆動部と、
     前記発音体と前記駆動部との間に形成され、前記駆動信号が流れる配線と、
     前記配線に電気的に接続され、前記配線に前記駆動信号が流れていない状態において前記配線に係るオープン異常を検出するオープン異常検出部とを含む、車両用音出力装置。
    With a sounding body,
    A drive unit for generating a drive signal for ringing the sounding body;
    A wire formed between the sounding body and the drive section, through which the drive signal flows,
    A sound output device for a vehicle, comprising: an open abnormality detection unit that is electrically connected to the wiring and that detects an open abnormality related to the wiring when the drive signal does not flow through the wiring.
  2.  前記オープン異常検出部は、
     前記配線における第1接続点に電気的に接続され、前記第1接続点に所定電圧を印加可能な第1回路部と、
     前記配線における前記第1接続点とは異なる第2接続点に電気的に接続される第2回路部とを含み、
     前記第2回路部に基づいて、前記第1接続点と前記第2接続点との間における前記オープン異常を検出する、請求項1に記載の車両用音出力装置。
    The open abnormality detection unit,
    A first circuit portion electrically connected to a first connection point of the wiring and capable of applying a predetermined voltage to the first connection point;
    A second circuit portion electrically connected to a second connection point different from the first connection point in the wiring,
    The vehicle sound output device according to claim 1, wherein the open abnormality is detected between the first connection point and the second connection point based on the second circuit unit.
  3.  前記第1回路部は、前記第1接続点に前記所定電圧が印加された状態と、前記第1接続点に前記所定電圧が印加されない状態とを切り替えるための切替手段を備え、
     前記オープン異常検出部は、前記第1接続点に前記所定電圧が印加された状態において、前記第2回路部の電圧に基づいて、前記オープン異常を検出する、請求項2に記載の車両用音出力装置。
    The first circuit unit includes switching means for switching between a state in which the predetermined voltage is applied to the first connection point and a state in which the predetermined voltage is not applied to the first connection point,
    The vehicle sound according to claim 2, wherein the open abnormality detecting unit detects the open abnormality based on the voltage of the second circuit unit in a state where the predetermined voltage is applied to the first connection point. Output device.
  4.  前記オープン異常検出部は、車両の作動開始及び作動終了の少なくともいずれか一方を契機として、前記オープン異常を検出するための処理を実行する、請求項1~3のうちのいずれか1項に記載の車両用音出力装置。 4. The open abnormality detection unit executes the process for detecting the open abnormality, triggered by at least one of the operation start and the operation end of the vehicle, according to any one of claims 1 to 3. Sound output device for vehicles.
PCT/JP2019/049501 2018-12-25 2019-12-18 Vehicle-use sound outputting device WO2020137718A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-241501 2018-12-25
JP2018241501 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020137718A1 true WO2020137718A1 (en) 2020-07-02

Family

ID=71129113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049501 WO2020137718A1 (en) 2018-12-25 2019-12-18 Vehicle-use sound outputting device

Country Status (1)

Country Link
WO (1) WO2020137718A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176952A (en) * 1988-01-06 1989-07-13 Clarion Co Ltd Trouble diagnostic device for audio equipment
JPH10153634A (en) * 1996-11-21 1998-06-09 Matsushita Electric Ind Co Ltd Self-diagnosis device for speaker output
JP2013063706A (en) * 2011-09-17 2013-04-11 Denso Corp Abnormality detection device of speaker circuit for vehicle operation notification sound generation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01176952A (en) * 1988-01-06 1989-07-13 Clarion Co Ltd Trouble diagnostic device for audio equipment
JPH10153634A (en) * 1996-11-21 1998-06-09 Matsushita Electric Ind Co Ltd Self-diagnosis device for speaker output
JP2013063706A (en) * 2011-09-17 2013-04-11 Denso Corp Abnormality detection device of speaker circuit for vehicle operation notification sound generation

Similar Documents

Publication Publication Date Title
US9481288B1 (en) Driver information and alerting system
JP2011225189A (en) Vehicle failure warning device and vehicle failure warning system
WO2020137718A1 (en) Vehicle-use sound outputting device
JP6561716B2 (en) Vehicle information providing device
WO2000018615A9 (en) Composite device for vehicle
JP2015194980A (en) Information providing device for vehicles
JP7476806B2 (en) Vehicle sound output device
WO2020162490A1 (en) Vehicle-use sound output device
JP2012076585A (en) Display device for vehicle
JP3709989B2 (en) Instrument device
JP2006256568A (en) Vehicular instrument
JP6774028B2 (en) Control device
JP3215595B2 (en) Combination meter for automobile
JP2015212130A (en) On-vehicle alarm device
JP2024053589A (en) Vehicle display device
CN218929392U (en) Vehicle-mounted display screen
JP5234246B2 (en) Vehicle instrument
JP6354986B2 (en) Vehicle instrument
JP2016141383A (en) Vehicle instrument
KR200375201Y1 (en) Time announcement voice generator for a car
JP2016112953A (en) Instrument for vehicle
KR910001243Y1 (en) Mode turning circuit of the sound synthesis
KR100709582B1 (en) Information reset apparatus in cluster of car
JP2011195007A (en) Display device for vehicle
JP5733021B2 (en) Vehicle display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP