WO2020137401A1 - Photocurable resin composition and method for manufacturing image display apparatus - Google Patents

Photocurable resin composition and method for manufacturing image display apparatus Download PDF

Info

Publication number
WO2020137401A1
WO2020137401A1 PCT/JP2019/047447 JP2019047447W WO2020137401A1 WO 2020137401 A1 WO2020137401 A1 WO 2020137401A1 JP 2019047447 W JP2019047447 W JP 2019047447W WO 2020137401 A1 WO2020137401 A1 WO 2020137401A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photocurable resin
meth
component
image display
Prior art date
Application number
PCT/JP2019/047447
Other languages
French (fr)
Japanese (ja)
Inventor
瑞生 岩田
靖実 遠藤
中村 司
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to CN201980082654.4A priority Critical patent/CN113195571B/en
Priority to EP19905454.5A priority patent/EP3904411B1/en
Priority to KR1020217017676A priority patent/KR102586595B1/en
Priority claimed from JP2019219557A external-priority patent/JP7319546B2/en
Publication of WO2020137401A1 publication Critical patent/WO2020137401A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a photocurable resin composition which can give a photocured product exhibiting excellent light transmittance and adhesiveness and which is preferably applicable to an inkjet coating method.
  • a liquid crystal display device, an organic EL display device, and the like are widely known as image display devices in which a light-transmitting cover member such as a transparent cover material and an image display member such as a liquid crystal display panel are laminated with a photo-curing resin layer interposed therebetween.
  • a display device has a photocurable resin composition obtained by applying a photocurable resin composition to the surface of either a flat image display member or a light-transmitting cover member by a die coating method or a screen coating method. Forming a physical film, irradiating the photo-curable resin composition film with ultraviolet rays to temporarily cure it to form a temporary-cured resin layer, and stacking the other member on the temporary-cured resin layer. It is manufactured by irradiating ultraviolet rays from the main curing resin layer.
  • a photo-curable resin composition contains a (meth)acrylate oligomer having a molecular weight of 5000 or more in addition to a (meth)acrylate monomer, and further, A photocurable resin composition containing a photo- or thermal radical polymerization initiator, the acrylic having a viscosity adjusted to 150 mPa ⁇ s or less, specifically 27 to 141 mPa ⁇ s (25° C.) (see Examples). A photocurable resin composition is used.
  • the photocurable resin composition used in Patent Document 1 is susceptible to oxygen inhibition because it uses a (meth)acrylate oligomer having a (meth)acryloyl group in combination with a (meth)acrylate monomer.
  • a (meth)acrylate oligomer having a (meth)acryloyl group in combination with a (meth)acrylate monomer.
  • strong tackiness is difficult to be exhibited, and good ejection may not be possible from an inkjet nozzle even within a predetermined viscosity range.
  • the present invention is to solve such conventional problems, the image display member and the light-transmissive cover member, a light-transmissive photo-curable resin layer formed from a photo-curable resin composition.
  • a problem resulting from the use of a (meth)acrylate oligomer having a (meth)acryloyl group as a photocurable resin composition applied using an inkjet coating method when manufacturing an image display device laminated via It is an object of the present invention to provide a photo-curable resin composition that does not have any of the above and can be ejected favorably in the inkjet coating method.
  • the present inventors have replaced the (meth)acrylate oligomer having a (meth)acryloyl group as the polymer substance to be used in combination with the (meth)acrylate monomer constituting the photocurable resin composition, and have a hydroxyl value of a predetermined value.
  • the above is used and a (meth)acrylate polymer having no (meth)acryloyl group is used, a hydrogen abstraction type photopolymerization initiator is used as a photopolymerization initiator, and the viscosity of the photocurable resin composition is 25
  • a (meth)acrylate polymer having no (meth)acryloyl group is used
  • a hydrogen abstraction type photopolymerization initiator is used as a photopolymerization initiator
  • the viscosity of the photocurable resin composition is 25
  • the inventors have found that the above-mentioned object can be achieved by adjusting the temperature at 10°C to 10 mPa ⁇ s or more and at 60°C to 30 mPa ⁇ s or less, and have completed the present invention.
  • a photocurable resin composition comprising the following components (A) to (D): ⁇ Component (A)> A (meth)acrylate polymer having a hydroxyl value of 120 mgKOH/g or more and having no (meth)acryloyl group; ⁇ Component (B)> Hydroxyl group-containing monofunctional (meth)acrylate monomer; ⁇ Component (C)> Hydroxyl-free monofunctional (meth)acrylate monomer; ⁇ Component (D)> Provided is a photocurable resin composition containing a hydrogen abstraction type photopolymerization initiator and having a viscosity of 10 mPa ⁇ s or more at 25° C. and 30 mPa ⁇ s or less at 60° C.
  • the present invention is a method for manufacturing an image display device, in which an image display member and a light-transmissive cover member are laminated via a light-transmissive photocurable resin layer formed of a photocurable resin composition. Then, the following steps (a) to (c): ⁇ Step (a)> A step of forming a photocurable resin composition film by discharging the above-mentioned photocurable resin composition of the present invention from a nozzle of an inkjet coating device on the surface of either one of the image display member and the light transmissive cover member.
  • ⁇ Step (b)> A step of laminating the other member on the photocurable resin composition film, and bonding the image display member and the light transmissive cover member; and ⁇ step (c)> There is a step of obtaining an image display device in which an image display member and a light transmissive cover member are laminated with a photocurable resin layer by irradiating the photocurable resin composition film sandwiched between both panels with ultraviolet rays to cure the film.
  • a manufacturing method is provided.
  • the present invention is a method for manufacturing an image display device, in which an image display member and a light-transmissive cover member are laminated via a light-transmissive photocurable resin layer formed of a photocurable resin composition. Then, the following steps (aa) to (dd): ⁇ Step (aa)> A step of forming a photocurable resin composition film by discharging the photocurable resin composition of the present invention from a nozzle of an inkjet coating device on the surface of either the image display member or the light transmissive cover member; ⁇ Step (bb)> A step of irradiating the photocurable resin composition film with ultraviolet rays to form a temporary curable resin layer; ⁇ Process (cc)> A step of laminating the other member on the temporarily cured resin layer and bonding the image display member and the light transmissive cover member; and ⁇ step (dd)> A manufacturing method including a step of obtaining an image display device in which an image display member and a light transmiss
  • the photocurable resin composition of the present invention is an image display device in which an image display member and a light transmissive cover member are laminated via a light transmissive photocurable resin layer formed of the photocurable resin composition.
  • a (meth)acrylate polymer having no (meth)acryloyl group is used, and a hydrogen abstraction type photopolymerization initiator is used as the photopolymerization initiator.
  • a (meth)acrylate polymer does not contribute to photopolymerization based on a (meth)acryloyl group, but hydrogen is abstracted by a hydrogen abstraction type photopolymerization initiator to generate a radical, and as a result, (meth)acrylate It can be incorporated into a polymer chain formed from a monomer as a side chain or a polymer cross-linked chain, and can impart good plasticity, film-forming property, and adhesiveness to the photocurable resin composition.
  • the photocurable resin composition of the present invention exhibits a viscosity of 10 mPa ⁇ s or more at 25° C. and 30 mPa ⁇ s or less at 60° C., it can be used under a wide range of inject coat temperature conditions including temperatures of 25° C. and 60° C. Therefore, good inkjet coatability can be exhibited.
  • FIG. 1 is an explanatory diagram of step (a) of the method for manufacturing an image display device of the present invention.
  • FIG. 2 is an explanatory diagram of step (a) of the method for manufacturing an image display device of the present invention.
  • FIG. 3 is an explanatory diagram of step (b) of the method for manufacturing an image display device of the present invention.
  • FIG. 4 is an explanatory diagram of step (b) of the method for manufacturing an image display device of the present invention.
  • FIG. 5 is an explanatory diagram of step (c) of the method for manufacturing an image display device of the present invention.
  • FIG. 6 is an explanatory diagram of step (aa) of the method for manufacturing an image display device of the present invention.
  • FIG. 7 is an explanatory diagram of step (aa) of the method for manufacturing an image display device of the present invention.
  • FIG. 8 is an explanatory diagram of step (bb) of the method for manufacturing an image display device of the present invention.
  • FIG. 9 is an explanatory diagram of step (bb) of the method for manufacturing an image display device of the present invention.
  • FIG. 10 is an explanatory diagram of step (cc) of the method for manufacturing an image display device of the present invention.
  • FIG. 11 is an explanatory diagram of step (dd) of the method for manufacturing an image display device of the present invention.
  • FIG. 12 is an explanatory diagram of a step (dd) of the method for manufacturing the image display device of the present invention.
  • the photocurable resin composition of the present invention will be described, and then a method for manufacturing an image display device using the photocurable resin composition will be described.
  • the photocurable resin composition of the present invention is an image display device in which an image display member and a light transmissive cover member are laminated via a light transmissive photocurable resin layer formed of the photocurable resin composition.
  • the image display device to which the photocurable resin composition of the present invention is preferably applied, and the image display member and the light-transmissive cover member constituting the image display device are also described in the description of the method for manufacturing the image display device of the present invention. explain.
  • the photocurable resin composition of the present invention has a hydroxyl value of 120 mgKOH/g or more, preferably in order to impart plasticity to the cured product and ensure good film-forming property (maintaining film property) and adhesiveness.
  • the content of the (meth)acrylate polymer is 170 mgKOH/g or more and does not have a (meth)acryloyl group. Having a hydroxyl value indicates having a hydroxyl group in the molecule, and by having a hydroxyl group, the side of the polymer chain cooperates with the hydrogen abstraction type photopolymerization initiator of the component (D) described later. It becomes possible to bind to chains.
  • (meth)acrylate is a term including acrylate and methacrylate.
  • the hydroxyl value means the mass of KOH required to neutralize the acetic acid generated by acetylating the hydroxyl group in 1 g of the polymer and then hydrolyzing the acetyl group ( mg). Therefore, the larger the hydroxyl value, the more hydroxyl groups.
  • the reason why the hydroxyl value of the (meth)acrylate polymer of the component (A) is 120 mgKOH/g or more is that when it is less than 120 mgKOH/g, the crosslink density of the cured product of the photocurable resin composition is low, especially at high temperature. This is because there is a tendency that the decrease in elastic modulus becomes remarkable.
  • the crosslink density of the cured product is simply increased, a polyfunctional (meth)acrylate monomer of the component (E) described later may be frequently used, but the cured product of the photocurable resin composition becomes brittle. Therefore, it is possible to impart good flexibility and cohesive force to the cured product by crosslinking with a polymer having a high molecular weight to some extent. Therefore, if the hydroxyl value is too high, the crosslink density of the cured product of the photocurable resin composition tends to be too high and the flexibility tends to be lost, so it is 400 mgKOH/g or less, preferably 350 mgKOH/g or less.
  • the reason why the (meth)acrylate polymer having no (meth)acryloyl group is used as the (meth)acrylate polymer of the component (A) is that when the (meth)acryloyl group is contained, the (meth)acrylate of the component (B) and the component (C) is This is to prevent the possibility that it will be excessively incorporated into the main chain of the polymer chain composed of the acrylate monomer, and this is prevented.
  • the weight average molecular weight Mw of the (meth)acrylate polymer of the component (A) is too small, the number of molecules into which hydroxyl groups have not been introduced increases, and the risk of bleeding and the like tends to increase. It is above, and if it is too large, ejection failure tends to occur due to an increase in viscosity, so it is preferably 500,000 or less, more preferably 300,000 or less.
  • the weight average molecular weight Mw and the number average molecular weight Mn of a polymer can be measured by gel permeation chromatography (GPC) (standard polystyrene molecular weight conversion).
  • the dispersity (Mw/Mn) of the (meth)acrylate polymer of the component (A) is too low, the polymer and unreacted monomers tend to be easily separated, so that it is preferably 3 or more. However, if it is too high, an undesired relatively low molecular weight polymer component will be mixed, so that it is preferably 10 or less.
  • a copolymer of a hydroxyl group-containing (meth)acrylate monomer and a hydroxyl group-free (meth)acrylate monomer can be preferably mentioned. It is preferably liquid at room temperature.
  • a homopolymer of a hydroxyl group-containing (meth)acrylate monomer can be exemplified, but the polarity of the polymer tends to be too high and tends to become a highly viscous liquid or solid at room temperature, and the compatibility with other components decreases. I am afraid to do so.
  • the hydroxyl group-containing (meth)acrylate monomer which is a monomer unit constituting the (meth)acrylate polymer of the component (A), is a (meth)acrylate having one or more hydroxyl groups in the molecule, and specifically, Hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 2-hydroxy-3-chloropropyl (meth)acrylate, 2-hydroxy -3-Phenoxypropyl (meth)acrylate, ethylene glycol (meth)acrylate, polyethylene glycol (meth)acrylate, propylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, cyclohexyl dimethanol mono (meth)acrylate, etc. it can.
  • 2-hydroxyethyl(meth)acrylate can be preferably exemplified in terms of polarity control and price.
  • Examples of the hydroxyl group-free (meth)acrylate monomer capable of constituting the (meth)acrylate polymer of the component (A) include, for example, monofunctional (meth)alkyl groups each having a linear or branched chain having 1 to 18 carbon atoms.
  • Acrylic acid alkyl esters are preferable, and examples thereof include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, pentyl (meth).
  • the (meth)acrylate polymer of the component (A) As a particularly preferred example of the (meth)acrylate polymer of the component (A), a copolymer of 2-hydroxyethyl acrylate and 2-ethylhexyl acrylate is mentioned from the viewpoints of availability and realization of the effects of the invention. You can Isobornyl acrylate may be further copolymerized.
  • the content of the (meth)acrylate polymer of the component (A) in the photocurable resin composition is liable to be brittle when it is too small, and therefore is preferably 1% by mass or more, more preferably 10% by mass or more, If the amount is too large, ejection failure tends to occur due to an increase in viscosity, so the content is preferably 55% by mass or less, more preferably 45% by mass or less.
  • the photocurable resin composition of the present invention contains a hydroxyl group-containing monofunctional (meth)acrylate monomer as a polymerization component.
  • the reason why the one containing a hydroxyl group is used is that it has a high affinity with the (meth)acrylate polymer containing a hydroxyl group as the component (A) and that the reliability is improved in a high temperature and high humidity environment.
  • a plurality of hydroxyl groups may exist in the monomer molecule, but one hydroxyl group is preferably present in the monomer molecule.
  • hydroxyl group-containing monofunctional (meth)acrylate monomer of the component (B) include monomers similar to the hydroxyl group-containing (meth)acrylate monomer capable of forming the (meth)acrylate polymer of the component (A). be able to. Among them, at least one selected from 4-hydroxybutyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate and 2-hydroxyethyl (meth)acrylate is preferable.
  • the content of the hydroxyl group-containing monofunctional (meth)acrylate monomer of the component (B) in the photocurable resin composition is preferably 1% by mass. As described above, more preferably 5% by mass or more, and if it is too large, the polarity balance of the resin before or after curing is disturbed, and the resin tends to be opaque. Therefore, it is preferably 30% by mass or less, more preferably 25% by mass. It is as follows.
  • the content of the hydroxyl group-containing monofunctional (meth)acrylate monomer of the component (B) in the photocurable resin composition is, in relation to the (meth)acrylate polymer of the component (A),
  • the content is preferably 1 to 3000 parts by mass with respect to 100 parts by mass of the meth)acrylate polymer. Within this range, the effect of maintaining high transparency in various environments can be obtained.
  • the photocurable resin composition of the present invention contains a hydroxyl group-free monofunctional (meth)acrylate monomer as a polymerization component.
  • the reason why the one not containing a hydroxyl group is used is to set the adhesiveness and the viscosity of the cured product of the photocurable resin composition composed of the component (A) and the component (B) to be in respective favorable ranges. ..
  • hydroxyl group-free monofunctional (meth)acrylate monomer of the component (C) include the same monomers as the hydroxyl group-free (meth)acrylate monomer that can form the (meth)acrylate polymer of the component (A). It can be illustrated. Among them, at least one selected from isostearyl (meth)acrylate and octyl (meth)acrylate is preferable.
  • the content of the hydroxyl group-free monofunctional (meth)acrylate monomer of the component (C) in the photocurable resin composition tends to be high when it is too small, it is preferably 30% by mass or more, more preferably It is 65% by mass or more, and if it is too large, it tends to become brittle, so it is preferably 90% by mass or less, more preferably 75% by mass or less.
  • the content of the hydroxyl group-free monofunctional (meth)acrylate monomer of the component (C) in the photocurable resin composition depends on the content of the component (A) in relation to the (meth)acrylate polymer of the component (A).
  • the content is preferably 54 to 9000 parts by mass with respect to 100 parts by mass of the (meth)acrylate polymer. Within this range, it is possible to obtain the effect of exhibiting high performance as an adhesive while maintaining high transparency in various environments.
  • the photocurable resin composition of the present invention contains, as a photopolymerization initiator, a hydrogen abstraction type photopolymerization initiator instead of an intramolecular cleavage type photopolymerization initiator such as a benzoin derivative. This is because the (meth)acrylate polymer containing a hydroxyl group of the component (A) is bonded to the side chain of the polymer chain.
  • hydrogen abstraction type photopolymerization initiator of the component (D) known hydrogen abstraction type photopolymerization initiators can be used, and examples thereof include diaryl ketones such as benphenone and phenylglyoxylates such as methylbenzoyl formate. The kind is mentioned. Methylbenzoyl formate can be mentioned as a preferable example in terms of yellowing-free and high hydrogen abstraction ability.
  • the content of the hydrogen abstraction type photopolymerization initiator of the component (D) in the photocurable resin composition is preferably 0.1% by mass or more, more preferably 1% by mass. It is preferably at least 10% by mass, more preferably at most 5% by mass, because it is more than 10% by mass, and if it is too large, it tends to cause environmental reliability deterioration.
  • the photocurable resin composition of the present invention may contain a polyfunctional (meth)acrylate monomer in order to improve the reaction rate and maintain the high temperature elastic modulus.
  • a polyfunctional (meth)acrylate monomer include 1,6-hexanediol diacrylate (HDDA), 1,9-nonanediol diacrylate, 1,10-decanediol diacrylate, trimethylolpropane triacrylate and penta.
  • Examples thereof include bifunctional or higher functional (meth)acrylates such as erythritol triacrylate and hydroxypivalic acid neopentyl glycol diacrylate.
  • polyfunctional (meth)acrylate monomer include at least one selected from trimethylolpropane triacrylate, pentaerythritol triacrylate, and neopentyl glycol diacrylate hydroxypivalate.
  • the content of the polyfunctional (meth)acrylate monomer of the component (E) in the photocurable resin composition is too low, the crosslinking density tends to be low, so the content is preferably 0.1% by mass or more, and more preferably It is 1 mass% or more, and if it is too large, it tends to become brittle, so it is preferably 5 mass% or less, more preferably 3 mass% or less.
  • the photocurable resin composition of the present invention contains various additives in addition to the above-mentioned components (A) to (D) and, if necessary, (E) as long as the effects of the present invention are not impaired. can do.
  • a polybutadiene-based plasticizer, a polyisoprene-based plasticizer, a phthalic acid ester-based plasticizer, an adipic acid ester-based plasticizer, or the like can be blended as a liquid plastic component for reducing the curing shrinkage rate.
  • a terpene resin, a rosin resin, a petroleum resin, or the like can be blended as a tackifier for improving tackiness.
  • a chain transfer agent for adjusting the molecular weight of the cured product 2-mercaptoethanol, lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-ethylhexyl thioglycolate, 2,3-dimethylcapto-1-propanol, ⁇ - Methyl styrene dimer etc. can be blended. Further, if necessary, a general additive such as an adhesion improver such as a silane coupling agent and an antioxidant can be contained.
  • the photocurable resin composition of the present invention contains the components described above, but has a viscosity of 10 mPa ⁇ s or more at 25° C., preferably in order to achieve good inkjet suitability under normal inkjet discharge conditions. Is adjusted to 15 mPa ⁇ s or more and 30 mPa ⁇ s or less at 60° C., preferably 20 mPa ⁇ s or less. Here, if it is less than 10 mPa ⁇ s at 25° C., dripping from the inkjet nozzle is likely to occur, and if it exceeds 30 mPa ⁇ s at 60° C., ejection failure is likely to occur.
  • the viscosity of the photocurable resin composition of the present invention can be adjusted by adjusting the type and content of each constituent component.
  • the photocurable resin composition of the present invention can be prepared by uniformly mixing the components (A) to (D) and other components to be blended as necessary according to a conventional method.
  • a light-transmissive cover member 1 is prepared, and as shown in FIG. 2, the surface 1a of the light-transmissive cover member 1 is coated with the photocurable resin composition 2 from the inkjet nozzle 3. Then, the photocurable resin composition film 4 is formed.
  • the coating thickness can be appropriately set according to the surface condition of the light transmissive cover member 1 and the image display member, the required film physical properties of the photocurable resin layer, and the like.
  • the application of the photocurable resin composition 2 may be performed multiple times so that the required thickness can be obtained.
  • the light-transmitting cover member 1 only needs to have light-transmitting properties so that an image formed on the image display member can be visually recognized, and is a plate-like material such as glass, acrylic resin, polyethylene terephthalate, polyethylene naphthalate, or polycarbonate. And sheet materials. These materials can be subjected to a single-sided or double-sided hard coat treatment, antireflection treatment, or the like. Physical properties such as thickness and elasticity of the light transmissive cover member 1 can be appropriately determined according to the purpose of use.
  • a position input element such as a touch pad is added to the plate-shaped material or the sheet-shaped material described above by a known adhesive or a temporary curing resin layer of the light-curable resin composition of the present invention. Also included are those integrated through a cured resin layer.
  • the properties of the photocurable resin composition 2 used in this step are liquid under inkjet conditions. Since a liquid material is used, even if the surface shape of the light transmissive cover member 1 or the surface shape of the image display member is distorted, the distortion can be canceled.
  • the image display member 5 is attached to the light transmissive cover member 1 from the photocurable resin composition film 4 side.
  • the bonding can be performed by applying pressure at 10° C. to 80° C. using a known pressure bonding device.
  • the image display member 5 may be a liquid crystal display panel, an organic EL display panel, a plasma display panel, a touch panel, or the like.
  • the touch panel refers to a display element such as a liquid crystal display panel and a position input element such as a touch pad, and a known adhesive or a temporarily cured resin layer or a cured resin layer of the photocurable resin composition of the present invention. It is integrated through. If the touch pad is already integrated with the light transmissive cover member 1, the touch panel may not be used as the image display member 5.
  • Step (c) (curing step)>
  • the photocurable resin composition film 4 formed in the step (b) is irradiated with ultraviolet rays UV from the light transmissive cover member 1 side to be cured, and as shown in FIG. Then, a light-transmissive photo-curable resin layer 6 is formed. Thereby, the image display device 100 is obtained.
  • the photo-curable resin composition film 4 is cured by making the photo-curable resin composition 2 in a liquid-free state, further imparting tackiness to the photo-curable resin layer 6, and turning it upside down. This is because the handling property is improved by preventing it from flowing down.
  • the level of such curing is such that the curing rate (gel fraction) of the light transmissive photocurable resin layer 6 is preferably 40% or more, more preferably 60% or more.
  • the curing rate (gel fraction) is the ratio of the abundance of the (meth)acryloyl group after UV irradiation to the abundance of the (meth)acryloyl group in the photocurable resin composition 2 before UV irradiation ( It is a numerical value defined as a consumption rate), and the larger the numerical value is, the more the curing progresses.
  • the curing rate is the absorption peak height (X) of 1640 to 1620 cm ⁇ 1 from the base line in the FT-IR measurement chart of the resin composition layer before ultraviolet irradiation, and the resin after ultraviolet irradiation. It can be calculated by substituting the absorption peak height (Y) from 1640 to 1620 cm ⁇ 1 from the baseline in the FT-IR measurement chart of the composition layer into the following mathematical formula.
  • the kind of light source, output, cumulative light amount, etc. are not particularly limited as long as the curing rate (gel fraction) can be cured so that the curing rate (gel fraction) is preferably 40% or more.
  • Photo-radical polymerization process conditions of (meth)acrylate can be adopted.
  • the light transmissive level of the light transmissive photo-curable resin layer 6 may be such that the image formed on the image display member 5 is visible.
  • the photo-curable resin composition may not be fully cured at once, but may be temporarily cured and then bonded, and further fully cured, as in the following steps (aa) to (dd).
  • the coating thickness can be appropriately set according to the surface condition of the light transmissive cover member 10 and the image display member, the required film physical properties of the photocurable resin layer, and the like.
  • the application of the photocurable resin composition 20 may be performed multiple times so as to obtain the required thickness.
  • Step (bb) temporary curing step>
  • the photo-curable resin composition film 40 formed in the step (aa) is irradiated with ultraviolet rays UV to be pre-cured, and as shown in FIG. To form.
  • the temporary curing is performed so that the photocurable resin composition 20 is in a state in which it does not flow significantly from a liquid state and does not flow down even when it is turned upside down to improve handleability.
  • the level of such temporary curing is that the curing rate (gel fraction) of the temporary curing resin layer 45 is preferably 40% or more, more preferably 60% or more.
  • the upper limit may be 100%, but is preferably less than 100%. It is more preferably less than 95%.
  • the light transmissive cover member 10 is attached to the image display member 50 from the side of the temporarily cured resin layer 45.
  • the bonding can be performed by applying pressure at 10° C. to 80° C. using a known pressure bonding device.
  • the reason why the main curing is performed in this step is that the temporarily cured resin layer 45 is sufficiently cured and the image display member 50 and the light transmissive cover member 10 are bonded and laminated.
  • the level of such main curing is set so as not to be lower than the curing rate of the temporary curing resin layer 45.
  • the curing rate (gel fraction) of the light-transmissive photocurable resin layer 60 is set to preferably 95% or more, more preferably 98% or more.
  • the light transmissive level of the light transmissive photo-curable resin layer 60 may be such that the image formed on the image display member 50 is visible.
  • the photocurable resin composition was applied to the light transmissive cover member, but it may be applied to the image display member and then the light transmissive cover member is laminated.
  • Examples 1 to 4 Comparative Examples 1 to 5
  • a photocurable resin composition was prepared by uniformly mixing the ingredients shown in Table 1. With respect to the obtained photocurable resin composition, “viscosity [mPa ⁇ s]” before photocuring was measured as follows, and the inkjet coating performance was determined. In addition, the “shear elastic modulus [Pa]”, “adhesive strength (split strength) [N/cm 2 ]”, and “light transmittance [%]” after photocuring were measured to determine the transparent adhesive performance.
  • the photocurable resin composition film was irradiated with UV light having an intensity of 200 mW/cm 2 so that the integrated light amount would be 2500 mJ/cm 2.
  • the photocurable resin composition film was cured by irradiation to form a light transmissive photocurable resin layer. Thereby, a sample for adhesive strength test was obtained. The adhesive strength of this sample was measured using a tensile tester (Autograph AGX-X, manufactured by Shimadzu Corporation; test speed 5 mm/min, test temperature 85° C.).
  • the composition film By irradiating the composition film with an ultraviolet ray having an intensity of 200 mW/cm 2 using an ultraviolet ray irradiator (LC-8, manufactured by Hamamatsu Photonics K.K.) so that the integrated light amount becomes 2500 mJ/cm 2.
  • the photocurable resin composition film was cured to form a light transmissive photocurable resin layer.
  • a light transmittance test sample was obtained. The 550 nm light transmittance of this sample was measured using a spectrophotometer (MPS-2450, manufactured by Shimadzu Corporation).
  • the photocurable resin compositions of Examples 1 to 4 have a hydroxyl value of 120 mgKOH/g or more, a (meth)acrylate polymer having no (meth)acryloyl group, and a hydroxyl group-containing monofunctional (meth)acrylate monomer. And a hydroxyl-free monofunctional (meth)acrylate monomer and a hydrogen abstraction type photopolymerization initiator, and the viscosity thereof is 10 mPa ⁇ s or more at 25° C. and 30 mPa ⁇ s or less at 60° C., The physical properties before curing and the physical properties after curing were at a level with no practical problems.
  • the reason why the viscosity at 60° C. is not measured is 30 mPa ⁇ s or less at 25° C., so that the viscosity at 60° C. becomes lower than that. Because it is clear. It is understood that when the amount of the hydroxyl group-containing (meth)acrylate polymer is relatively increased, the viscosity at 25° C. before curing is relatively increased.
  • the photocurable resin composition of the present invention can be applied by using an inkjet coating method, an image display device in which an image display device and a light transmissive cover member are laminated via a light transmissive photocurable resin layer. It is useful for forming a photo-curable resin layer in the production of

Abstract

Provided is a photocurable resin composition that can achieve good discharging in an inkjet coating method, the photocurable resin composition: containing a (meth)acrylate polymer that has a hydroxyl value of 120 mgKOH/g or greater and that does not have a (meth)acryloyl group, a hydroxyl-group-containing monofunctional (meth)acrylate monomer, a hydroxyl-group-free monofunctional (meth)acrylate monomer, and a hydrogen-abstracting photopolymerization initiator; and having a viscosity of 10 mPa•s or greater at 25ºC and 30 mPa•s or less at 60ºC.

Description

光硬化性樹脂組成物及び画像表示装置の製造方法Photocurable resin composition and method for manufacturing image display device
 本発明は、優れた光透過性と密着性とを示す光硬化物を与えることができ、しかもインクジェットコート法に好ましく適用可能な光硬化性樹脂組成物に関する。 The present invention relates to a photocurable resin composition which can give a photocured product exhibiting excellent light transmittance and adhesiveness and which is preferably applicable to an inkjet coating method.
 透明カバー材等の光透過性カバー部材と液晶表示パネル等の画像表示部材とが光硬化樹脂層を介して積層されている画像表示装置として、液晶表示装置や有機EL表示装置等が広く知られている。このような表示装置は、従来、フラットな画像表示部材又は光透過性カバー部材のいずれか一方の表面に光硬化性樹脂組成物をダイコート法やスクリーンコート法等で塗布して光硬化性樹脂組成物膜を形成し、この光硬化性樹脂組成物膜に紫外線を照射して仮硬化させて仮硬化樹脂層を形成し、仮硬化樹脂層に他方の部材を積層し、光透過性カバー部材側から紫外線を照射して仮硬化樹脂層を本硬化させることにより製造されている。 A liquid crystal display device, an organic EL display device, and the like are widely known as image display devices in which a light-transmitting cover member such as a transparent cover material and an image display member such as a liquid crystal display panel are laminated with a photo-curing resin layer interposed therebetween. ing. Conventionally, such a display device has a photocurable resin composition obtained by applying a photocurable resin composition to the surface of either a flat image display member or a light-transmitting cover member by a die coating method or a screen coating method. Forming a physical film, irradiating the photo-curable resin composition film with ultraviolet rays to temporarily cure it to form a temporary-cured resin layer, and stacking the other member on the temporary-cured resin layer. It is manufactured by irradiating ultraviolet rays from the main curing resin layer.
 ところで、近年、湾曲した画像表示装置が上市されるようなり、横樋状、ボウル状等の形状に湾曲した画像表示部材又は光透過性カバー部材に光硬化性樹脂組成物を塗布することが行われるようになっている。この場合、画像表示部材又は光透過性カバー部材の中心部には光硬化性樹脂組成物を比較的厚く塗布し、周縁部に向かって徐々に薄く塗布する必要があるため、従来のダイコート法やスクリーンコート法に代えて、インク塗布量を微細領域毎に容易に設定できるインクジェットコート法で光硬化性樹脂組成物を画像表示部材又は光透過性カバー部材に塗布することが提案されている(特許文献1)。 By the way, in recent years, curved image display devices have been put on the market, and a photocurable resin composition is applied to an image display member or a light-transmissive cover member that is curved in a gutter shape, a bowl shape, or the like. It is like this. In this case, since it is necessary to apply the photocurable resin composition relatively thickly to the central portion of the image display member or the light transmissive cover member and gradually thinly apply it toward the peripheral portion, the conventional die coating method or Instead of the screen coating method, it has been proposed to apply the photocurable resin composition to the image display member or the light transmissive cover member by an ink jet coating method that can easily set the ink application amount for each fine region (Patent Reference 1).
 特許文献1では、画像表示装置の製造にインクジェットコート法を適用するために、光硬化性樹脂組成物として、(メタ)アクリレートモノマーに加えて分子量5000以上の(メタ)アクリレートオリゴマーを含有し、更に光又は熱ラジカル重合開始剤を含有する光硬化性樹脂組成物であって、粘度が150mPa・s以下、具体的には27~141mPa・s(25℃)(実施例参照)に調整されたアクリル系光硬化性樹脂組成物を使用している。 In Patent Document 1, in order to apply the inkjet coating method to the production of an image display device, a photo-curable resin composition contains a (meth)acrylate oligomer having a molecular weight of 5000 or more in addition to a (meth)acrylate monomer, and further, A photocurable resin composition containing a photo- or thermal radical polymerization initiator, the acrylic having a viscosity adjusted to 150 mPa·s or less, specifically 27 to 141 mPa·s (25° C.) (see Examples). A photocurable resin composition is used.
特開2017-210578号公報JP, 2017-210578, A
 しかしながら、特許文献1で使用されている光硬化性樹脂組成物は、(メタ)アクリレートモノマーに(メタ)アクリロイル基を有する(メタ)アクリレートオリゴマーを併用しているため、酸素阻害の影響を受けやすく、強いタック性が発現しにくいという問題があり、また所定の粘度範囲内であっても、インクジェットノズルから良好な吐出ができない場合があった。 However, the photocurable resin composition used in Patent Document 1 is susceptible to oxygen inhibition because it uses a (meth)acrylate oligomer having a (meth)acryloyl group in combination with a (meth)acrylate monomer. However, there is a problem that strong tackiness is difficult to be exhibited, and good ejection may not be possible from an inkjet nozzle even within a predetermined viscosity range.
 本発明は、このような従来の課題を解決しようとするものであり、画像表示部材と光透過性カバー部材とが、光硬化性樹脂組成物から形成された光透過性の光硬化樹脂層を介して積層された画像表示装置を製造する際に、インクジェットコート法を利用して塗布される光硬化性樹脂組成物として、(メタ)アクリロイル基を有する(メタ)アクリレートオリゴマーの使用に由来する問題がなく、インクジェットコート法において良好な吐出が可能な光硬化性樹脂組成物を提供することを目的とする。 The present invention is to solve such conventional problems, the image display member and the light-transmissive cover member, a light-transmissive photo-curable resin layer formed from a photo-curable resin composition. A problem resulting from the use of a (meth)acrylate oligomer having a (meth)acryloyl group as a photocurable resin composition applied using an inkjet coating method when manufacturing an image display device laminated via It is an object of the present invention to provide a photo-curable resin composition that does not have any of the above and can be ejected favorably in the inkjet coating method.
 本願発明者らは、光硬化性樹脂組成物を構成する(メタ)アクリレートモノマーに併用すべき高分子物質として、(メタ)アクリロイル基を有する(メタ)アクリレートオリゴマーに代えて、水酸基価が所定数値以上であり且つ(メタ)アクリロイル基を有さない(メタ)アクリレートポリマーを使用し、しかも光重合開始剤として水素引き抜き型光重合開始剤を使用し、更に光硬化性樹脂組成物の粘度を25℃で10mPa・s以上、60℃で30mPa・s以下に調整することにより、上述の目的を達成できることを見出し、本発明を完成させるに至った。 The present inventors have replaced the (meth)acrylate oligomer having a (meth)acryloyl group as the polymer substance to be used in combination with the (meth)acrylate monomer constituting the photocurable resin composition, and have a hydroxyl value of a predetermined value. The above is used and a (meth)acrylate polymer having no (meth)acryloyl group is used, a hydrogen abstraction type photopolymerization initiator is used as a photopolymerization initiator, and the viscosity of the photocurable resin composition is 25 The inventors have found that the above-mentioned object can be achieved by adjusting the temperature at 10°C to 10 mPa·s or more and at 60°C to 30 mPa·s or less, and have completed the present invention.
 すなわち、本発明は、画像表示部材と光透過性カバー部材とが、光硬化性樹脂組成物から形成された光透過性の光硬化樹脂層を介して積層された画像表示装置に適用され得る当該光硬化性樹脂組成物であって、以下の成分(A)~(D):
<成分(A)>
 水酸基価が120mgKOH/g以上であって、(メタ)アクリロイル基を有さない(メタ)アクリレートポリマー;
<成分(B)>
 水酸基含有単官能(メタ)アクリレートモノマー;
<成分(C)>
 水酸基非含有単官能(メタ)アクリレートモノマー;
<成分(D)>
 水素引き抜き型光重合開始剤
を含有し、粘度が25℃で10mPa・s以上であり且つ60℃で30mPa・s以下である光硬化性樹脂組成物を提供する。
That is, the present invention can be applied to an image display device in which an image display member and a light-transmissive cover member are laminated via a light-transmissive photo-curable resin layer formed of a photo-curable resin composition. A photocurable resin composition comprising the following components (A) to (D):
<Component (A)>
A (meth)acrylate polymer having a hydroxyl value of 120 mgKOH/g or more and having no (meth)acryloyl group;
<Component (B)>
Hydroxyl group-containing monofunctional (meth)acrylate monomer;
<Component (C)>
Hydroxyl-free monofunctional (meth)acrylate monomer;
<Component (D)>
Provided is a photocurable resin composition containing a hydrogen abstraction type photopolymerization initiator and having a viscosity of 10 mPa·s or more at 25° C. and 30 mPa·s or less at 60° C.
 また、本発明は、画像表示部材と光透過性カバー部材とが、光硬化性樹脂組成物から形成された光透過性の光硬化樹脂層を介して積層された画像表示装置の製造方法であって、以下の工程(a)~(c):
<工程(a)>
 画像表示部材又は光透過性カバー部材のいずれか一方の部材表面に、上述の本発明の光硬化性樹脂組成物をインクジェットコート装置のノズルから吐出させて光硬化性樹脂組成物膜を形成する工程;
<工程(b)>
 光硬化性樹脂組成物膜に他方の部材を積層し、画像表示部材と光透過性カバー部材とを貼り合わせる工程;及び
<工程(c)>
 両パネルに挟持された光硬化性樹脂組成物膜に紫外線を照射して硬化させることにより、画像表示部材と光透過性カバー部材とを光硬化樹脂層で積層した画像表示装置を得る工程
を有する製造方法を提供する。
Further, the present invention is a method for manufacturing an image display device, in which an image display member and a light-transmissive cover member are laminated via a light-transmissive photocurable resin layer formed of a photocurable resin composition. Then, the following steps (a) to (c):
<Step (a)>
A step of forming a photocurable resin composition film by discharging the above-mentioned photocurable resin composition of the present invention from a nozzle of an inkjet coating device on the surface of either one of the image display member and the light transmissive cover member. ;
<Step (b)>
A step of laminating the other member on the photocurable resin composition film, and bonding the image display member and the light transmissive cover member; and <step (c)>
There is a step of obtaining an image display device in which an image display member and a light transmissive cover member are laminated with a photocurable resin layer by irradiating the photocurable resin composition film sandwiched between both panels with ultraviolet rays to cure the film. A manufacturing method is provided.
 また、本発明は、画像表示部材と光透過性カバー部材とが、光硬化性樹脂組成物から形成された光透過性の光硬化樹脂層を介して積層された画像表示装置の製造方法であって、以下の工程(aa)~(dd):
<工程(aa)>
 画像表示部材又は光透過性カバー部材のいずれか一方の部材表面に、本発明の光硬化性樹脂組成物をインクジェットコート装置のノズルから吐出させて光硬化性樹脂組成物膜を形成する工程;
<工程(bb)>
 光硬化性樹脂組成物膜に紫外線を照射して、仮硬化樹脂層を形成する工程;
<工程(cc)>
 仮硬化樹脂層に他方の部材を積層し、画像表示部材と光透過性カバー部材とを貼り合わせる工程;及び
<工程(dd)>
 両パネルに挟持された仮硬化樹脂層に紫外線を照射して本硬化させることにより、画像表示部材と光透過性カバー部材とを光硬化樹脂層で積層した画像表示装置を得る工程
を有する製造方法を提供する。
Further, the present invention is a method for manufacturing an image display device, in which an image display member and a light-transmissive cover member are laminated via a light-transmissive photocurable resin layer formed of a photocurable resin composition. Then, the following steps (aa) to (dd):
<Step (aa)>
A step of forming a photocurable resin composition film by discharging the photocurable resin composition of the present invention from a nozzle of an inkjet coating device on the surface of either the image display member or the light transmissive cover member;
<Step (bb)>
A step of irradiating the photocurable resin composition film with ultraviolet rays to form a temporary curable resin layer;
<Process (cc)>
A step of laminating the other member on the temporarily cured resin layer and bonding the image display member and the light transmissive cover member; and <step (dd)>
A manufacturing method including a step of obtaining an image display device in which an image display member and a light transmissive cover member are laminated with a photocurable resin layer by irradiating an ultraviolet ray to a temporary curable resin layer sandwiched between both panels to perform main curing. I will provide a.
 本発明の光硬化性樹脂組成物は、画像表示部材と光透過性カバー部材とが、光硬化性樹脂組成物から形成された光透過性の光硬化樹脂層を介して積層された画像表示装置に適用され得る当該光硬化性樹脂組成物であり、主たる重合成分である(メタ)アクリレートモノマーに併用すべき成分として、該モノマーと重合し得る(メタ)アクリロイル基を有するオリゴマーではなく、水酸基価が120mgKOH/g以上であって、(メタ)アクリロイル基を有さない(メタ)アクリレートポリマーを使用し、しかも光重合開始剤として水素引き抜き型光重合開始剤とを使用する。このような(メタ)アクリレートポリマーは、(メタ)アクリロイル基に基づく光重合には寄与しないが、水素引き抜き型光重合開始剤により水素が引き抜かれてラジカルを生成し、その結果、(メタ)アクリレートモノマーから形成される重合鎖に、側鎖として組み込まれ若しくはポリマー架橋鎖として組み込まれ、光硬化性樹脂組成物に良好な可塑性、成膜性、接着性を付与することができる。 The photocurable resin composition of the present invention is an image display device in which an image display member and a light transmissive cover member are laminated via a light transmissive photocurable resin layer formed of the photocurable resin composition. Which is a photocurable resin composition that can be applied to, and is not an oligomer having a (meth)acryloyl group that can be polymerized with the monomer as a component to be used in combination with a (meth)acrylate monomer that is a main polymerization component, and has a hydroxyl value. Is 120 mgKOH/g or more, a (meth)acrylate polymer having no (meth)acryloyl group is used, and a hydrogen abstraction type photopolymerization initiator is used as the photopolymerization initiator. Such a (meth)acrylate polymer does not contribute to photopolymerization based on a (meth)acryloyl group, but hydrogen is abstracted by a hydrogen abstraction type photopolymerization initiator to generate a radical, and as a result, (meth)acrylate It can be incorporated into a polymer chain formed from a monomer as a side chain or a polymer cross-linked chain, and can impart good plasticity, film-forming property, and adhesiveness to the photocurable resin composition.
 しかも、本発明の光硬化性樹脂組成物は、25℃で10mPa・s以上、60℃で30mPa・s以下の粘度を示すので、25℃、60℃という温度を含む広いインジェットコート温度条件下で良好なインクジェットコート適性を示すことができる。 Moreover, since the photocurable resin composition of the present invention exhibits a viscosity of 10 mPa·s or more at 25° C. and 30 mPa·s or less at 60° C., it can be used under a wide range of inject coat temperature conditions including temperatures of 25° C. and 60° C. Therefore, good inkjet coatability can be exhibited.
図1は、本発明の画像表示装置の製造方法の工程(a)の説明図である。FIG. 1 is an explanatory diagram of step (a) of the method for manufacturing an image display device of the present invention. 図2は、本発明の画像表示装置の製造方法の工程(a)の説明図である。FIG. 2 is an explanatory diagram of step (a) of the method for manufacturing an image display device of the present invention. 図3は、本発明の画像表示装置の製造方法の工程(b)の説明図である。FIG. 3 is an explanatory diagram of step (b) of the method for manufacturing an image display device of the present invention. 図4は、本発明の画像表示装置の製造方法の工程(b)の説明図である。FIG. 4 is an explanatory diagram of step (b) of the method for manufacturing an image display device of the present invention. 図5は、本発明の画像表示装置の製造方法の工程(c)の説明図である。FIG. 5 is an explanatory diagram of step (c) of the method for manufacturing an image display device of the present invention. 図6は、本発明の画像表示装置の製造方法の工程(aa)の説明図である。FIG. 6 is an explanatory diagram of step (aa) of the method for manufacturing an image display device of the present invention. 図7は、本発明の画像表示装置の製造方法の工程(aa)の説明図である。FIG. 7 is an explanatory diagram of step (aa) of the method for manufacturing an image display device of the present invention. 図8は、本発明の画像表示装置の製造方法の工程(bb)の説明図である。FIG. 8 is an explanatory diagram of step (bb) of the method for manufacturing an image display device of the present invention. 図9は、本発明の画像表示装置の製造方法の工程(bb)の説明図である。FIG. 9 is an explanatory diagram of step (bb) of the method for manufacturing an image display device of the present invention. 図10は、本発明の画像表示装置の製造方法の工程(cc)の説明図である。FIG. 10 is an explanatory diagram of step (cc) of the method for manufacturing an image display device of the present invention. 図11は、本発明の画像表示装置の製造方法の工程(dd)の説明図である。FIG. 11 is an explanatory diagram of step (dd) of the method for manufacturing an image display device of the present invention. 図12は、本発明の画像表示装置の製造方法の工程(dd)の説明図である。FIG. 12 is an explanatory diagram of a step (dd) of the method for manufacturing the image display device of the present invention.
 以下、まず、本発明の光硬化性樹脂組成物について説明し、その後に当該光硬化性樹脂組成物を利用して画像表示装置を製造する方法について説明する。 Hereinafter, first, the photocurable resin composition of the present invention will be described, and then a method for manufacturing an image display device using the photocurable resin composition will be described.
<光硬化性樹脂組成物>
 本発明の光硬化性樹脂組成物は、画像表示部材と光透過性カバー部材とが、光硬化性樹脂組成物から形成された光透過性の光硬化樹脂層を介して積層された画像表示装置に好ましく適用され得る当該光硬化性樹脂組成物であって、以下の成分(A)、成分(B)、成分(C)及び成分(D)を含有し、粘度が25℃で10mPa・s以上であり且つ60℃で30mPa・s以下のものである。
<Photocurable resin composition>
The photocurable resin composition of the present invention is an image display device in which an image display member and a light transmissive cover member are laminated via a light transmissive photocurable resin layer formed of the photocurable resin composition. A photocurable resin composition which can be preferably applied to, comprising the following component (A), component (B), component (C) and component (D) and having a viscosity of 10 mPa·s or more at 25° C. And 30 mPa·s or less at 60°C.
 なお、本発明の光硬化性樹脂組成物が好ましく適用できる画像表示装置、及びそれを構成する画像表示部材や光透過性カバー部材については、本発明の画像表示装置の製造方法の説明において併せて説明する。 The image display device to which the photocurable resin composition of the present invention is preferably applied, and the image display member and the light-transmissive cover member constituting the image display device are also described in the description of the method for manufacturing the image display device of the present invention. explain.
<成分(A)>
 本発明の光硬化性樹脂組成物は、硬化物に可塑性を付与するとともに、良好な成膜性(膜性維持)と接着性とを確保するために、水酸基価が120mgKOH/g以上、好ましくは170mgKOH/g以上であって、(メタ)アクリロイル基を有さない(メタ)アクリレートポリマーを含有する。水酸基価を有することは分子内に水酸基を有していることを示しており、水酸基を有することで、後述する成分(D)の水素引き抜き型光重合開始剤と協働して重合鎖の側鎖に結合することが可能となる。なお、本明細書において、「(メタ)アクリレート」は、アクリレートとメタクリレートとを包含する用語である。
<Component (A)>
The photocurable resin composition of the present invention has a hydroxyl value of 120 mgKOH/g or more, preferably in order to impart plasticity to the cured product and ensure good film-forming property (maintaining film property) and adhesiveness. The content of the (meth)acrylate polymer is 170 mgKOH/g or more and does not have a (meth)acryloyl group. Having a hydroxyl value indicates having a hydroxyl group in the molecule, and by having a hydroxyl group, the side of the polymer chain cooperates with the hydrogen abstraction type photopolymerization initiator of the component (D) described later. It becomes possible to bind to chains. In addition, in this specification, "(meth)acrylate" is a term including acrylate and methacrylate.
 成分(A)の(メタ)アクリレートポリマーに関し、水酸基価とは、ポリマー1g中の水酸基をアセチル化した後、アセチル基を加水分解して生じた酢酸を中和するのに要したKOHの質量(mg)である。従って、水酸基価が大きいほど水酸基が多いことを意味する。成分(A)の(メタ)アクリレートポリマーの水酸基価を120mgKOH/g以上としたのは、120mgKOH/g未満であると、光硬化性樹脂組成物の硬化物の架橋密度が低く、特に高温下での弾性率低下が顕著になるという傾向があるからである。なお、その硬化物の架橋密度だけを単に増大させるのであれば、後述の成分(E)の多官能(メタ)アクリレートモノマーを多用すればよいが、光硬化性樹脂組成物の硬化物が脆くなることが懸念されるため、ある程度分子量の高いポリマーで架橋させることで、良好な柔軟性と凝集力とを硬化物に付与することが可能になる。従って、水酸基価が高すぎると光硬化性樹脂組成物の硬化物の架橋密度が高くなり過ぎ、柔軟性が失われる傾向があるので、400mgKOH/g以下、好ましくは350mgKOH/g以下である。 Regarding the (meth)acrylate polymer of the component (A), the hydroxyl value means the mass of KOH required to neutralize the acetic acid generated by acetylating the hydroxyl group in 1 g of the polymer and then hydrolyzing the acetyl group ( mg). Therefore, the larger the hydroxyl value, the more hydroxyl groups. The reason why the hydroxyl value of the (meth)acrylate polymer of the component (A) is 120 mgKOH/g or more is that when it is less than 120 mgKOH/g, the crosslink density of the cured product of the photocurable resin composition is low, especially at high temperature. This is because there is a tendency that the decrease in elastic modulus becomes remarkable. In addition, if only the crosslinking density of the cured product is simply increased, a polyfunctional (meth)acrylate monomer of the component (E) described later may be frequently used, but the cured product of the photocurable resin composition becomes brittle. Therefore, it is possible to impart good flexibility and cohesive force to the cured product by crosslinking with a polymer having a high molecular weight to some extent. Therefore, if the hydroxyl value is too high, the crosslink density of the cured product of the photocurable resin composition tends to be too high and the flexibility tends to be lost, so it is 400 mgKOH/g or less, preferably 350 mgKOH/g or less.
 また、成分(A)の(メタ)アクリレートポリマーとして(メタ)アクリロイル基を有さないものを使用する理由は、(メタ)アクリロイル基を有すると、成分(B)及び成分(C)の(メタ)アクリレートモノマーから構成される重合鎖の主鎖に過度に組み込まれてしまう可能性が高まるので、それを防止するためである。 In addition, the reason why the (meth)acrylate polymer having no (meth)acryloyl group is used as the (meth)acrylate polymer of the component (A) is that when the (meth)acryloyl group is contained, the (meth)acrylate of the component (B) and the component (C) is This is to prevent the possibility that it will be excessively incorporated into the main chain of the polymer chain composed of the acrylate monomer, and this is prevented.
 成分(A)の(メタ)アクリレートポリマーの重量平均分子量Mwは、小さ過ぎると水酸基が導入されていない分子が増え、ブリード等のリスク上昇の傾向があるので、好ましくは5000以上、より好ましくは100000以上であり、大き過ぎると粘度上昇による吐出不良となる傾向があるので、好ましくは500000以下、より好ましくは300000以下である。なお、本明細書中、ポリマーの重量平均分子量Mw及び数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)で測定することができる(標準ポリスチレン分子量換算)。 If the weight average molecular weight Mw of the (meth)acrylate polymer of the component (A) is too small, the number of molecules into which hydroxyl groups have not been introduced increases, and the risk of bleeding and the like tends to increase. It is above, and if it is too large, ejection failure tends to occur due to an increase in viscosity, so it is preferably 500,000 or less, more preferably 300,000 or less. In addition, in this specification, the weight average molecular weight Mw and the number average molecular weight Mn of a polymer can be measured by gel permeation chromatography (GPC) (standard polystyrene molecular weight conversion).
 また、成分(A)の(メタ)アクリレートポリマーの分散度(Mw/Mn)は、低過ぎると、ポリマーと未反応のモノマー類とが分離し易くなる傾向があるので、好ましくは3以上であり、高すぎると望まれない比較的低分子量のポリマー成分を混入させることになるので、好ましくは10以下である。 Further, if the dispersity (Mw/Mn) of the (meth)acrylate polymer of the component (A) is too low, the polymer and unreacted monomers tend to be easily separated, so that it is preferably 3 or more. However, if it is too high, an undesired relatively low molecular weight polymer component will be mixed, so that it is preferably 10 or less.
 このような成分(A)の(メタ)アクリレートポリマーとしては、水酸基含有(メタ)アクリレートモノマーと水酸基非含有(メタ)アクリレートモノマーとのコポリマーを好ましく挙げることができる。常温で液状であることが好ましい。なお、水酸基含有(メタ)アクリレートモノマーのホモポリマーも例示できるが、ポリマーの極性が高くなり過ぎ、常温で高粘度液体もしくは固体となってしまう傾向があり、また他の成分との相溶性が低下することが懸念される。 As such a (meth)acrylate polymer of the component (A), a copolymer of a hydroxyl group-containing (meth)acrylate monomer and a hydroxyl group-free (meth)acrylate monomer can be preferably mentioned. It is preferably liquid at room temperature. In addition, a homopolymer of a hydroxyl group-containing (meth)acrylate monomer can be exemplified, but the polarity of the polymer tends to be too high and tends to become a highly viscous liquid or solid at room temperature, and the compatibility with other components decreases. I am afraid to do so.
 成分(A)の(メタ)アクリレートポリマーを構成するモノマー単位である水酸基含有(メタ)アクリレートモノマーとは、分子中に1以上の水酸基を有する(メタ)アクリレートであり、具体的には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-クロロプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、エチレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、プロピレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、シクロヘキシルジメタノールモノ(メタ)アクリレート等を挙げることできる。中でも、極性コントロールや価格の点で2-ヒドロキシエチル(メタ)アクリレートを好ましく例示することができる。 The hydroxyl group-containing (meth)acrylate monomer, which is a monomer unit constituting the (meth)acrylate polymer of the component (A), is a (meth)acrylate having one or more hydroxyl groups in the molecule, and specifically, Hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 2-hydroxy-3-chloropropyl (meth)acrylate, 2-hydroxy -3-Phenoxypropyl (meth)acrylate, ethylene glycol (meth)acrylate, polyethylene glycol (meth)acrylate, propylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, cyclohexyl dimethanol mono (meth)acrylate, etc. it can. Among them, 2-hydroxyethyl(meth)acrylate can be preferably exemplified in terms of polarity control and price.
 成分(A)の(メタ)アクリレートポリマーを構成することができる水酸基非含有(メタ)アクリレートモノマーとしては、例えば、アルキル基の炭素数が1~18の直鎖又は分岐を有する単官能(メタ)アクリル酸アルキルエステルが好ましく、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、トリデシル(メタ)アクリレート等が挙げられる。 Examples of the hydroxyl group-free (meth)acrylate monomer capable of constituting the (meth)acrylate polymer of the component (A) include, for example, monofunctional (meth)alkyl groups each having a linear or branched chain having 1 to 18 carbon atoms. Acrylic acid alkyl esters are preferable, and examples thereof include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, pentyl (meth). ) Acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth) ) Acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, tridecyl (meth)acrylate and the like.
 成分(A)の(メタ)アクリレートポリマーの特に好ましい例としては、入手容易性や発明の効果の実現性等の観点から、2-ヒドロキシエチルアクリレートと2-エチルヘキシルアクリレートとの共重合体を挙げることができる。イソボルニルアクリレートを更に共重合させてよい。 As a particularly preferred example of the (meth)acrylate polymer of the component (A), a copolymer of 2-hydroxyethyl acrylate and 2-ethylhexyl acrylate is mentioned from the viewpoints of availability and realization of the effects of the invention. You can Isobornyl acrylate may be further copolymerized.
 成分(A)の(メタ)アクリレートポリマーの光硬化性樹脂組成物中の含有量は、少なすぎると脆くなる傾向があるので、好ましくは1質量%以上、より好ましくは10質量%以上であり、多すぎると粘度上昇による吐出不良となる傾向があるので、好ましくは55質量%以下、より好ましくは45質量%以下である。 The content of the (meth)acrylate polymer of the component (A) in the photocurable resin composition is liable to be brittle when it is too small, and therefore is preferably 1% by mass or more, more preferably 10% by mass or more, If the amount is too large, ejection failure tends to occur due to an increase in viscosity, so the content is preferably 55% by mass or less, more preferably 45% by mass or less.
<成分(B)>
 本発明の光硬化性樹脂組成物は、重合成分として水酸基含有単官能(メタ)アクリレートモノマーを含有する。水酸基を含有するものを使用する理由は、成分(A)の水酸基を含有する(メタ)アクリレートポリマーとの親和性が高く、また、高温高湿環境における信頼性向上のためである。この場合、水酸基は、モノマー分子内に複数個あってもよいが、モノマー分子中に1個存在することが好ましい。
<Component (B)>
The photocurable resin composition of the present invention contains a hydroxyl group-containing monofunctional (meth)acrylate monomer as a polymerization component. The reason why the one containing a hydroxyl group is used is that it has a high affinity with the (meth)acrylate polymer containing a hydroxyl group as the component (A) and that the reliability is improved in a high temperature and high humidity environment. In this case, a plurality of hydroxyl groups may exist in the monomer molecule, but one hydroxyl group is preferably present in the monomer molecule.
 成分(B)の水酸基含有単官能(メタ)アクリレートモノマーの具体例としては、成分(A)の(メタ)アクリレートポリマーを構成することができる水酸基含有(メタ)アクリレートモノマーと同様のモノマーを例示することができる。中でも、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート及び2-ヒドロキシエチル(メタ)アクリレートから選択される少なくとも一種が好ましい。 Specific examples of the hydroxyl group-containing monofunctional (meth)acrylate monomer of the component (B) include monomers similar to the hydroxyl group-containing (meth)acrylate monomer capable of forming the (meth)acrylate polymer of the component (A). be able to. Among them, at least one selected from 4-hydroxybutyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate and 2-hydroxyethyl (meth)acrylate is preferable.
 成分(B)の水酸基含有単官能(メタ)アクリレートモノマーの光硬化性樹脂組成物中の含有量は、少なすぎると高温高湿環境における信頼性不足となる傾向があるので、好ましくは1質量%以上、より好ましくは5質量%以上であり、多すぎると硬化前もしくは硬化後の樹脂の極性のバランスが崩れ、不透明となる傾向があるので、好ましくは30質量%以下、より好ましくは25質量%以下である。 When the content of the hydroxyl group-containing monofunctional (meth)acrylate monomer of the component (B) in the photocurable resin composition is too small, the reliability in a high temperature and high humidity environment tends to be insufficient, and therefore, the content is preferably 1% by mass. As described above, more preferably 5% by mass or more, and if it is too large, the polarity balance of the resin before or after curing is disturbed, and the resin tends to be opaque. Therefore, it is preferably 30% by mass or less, more preferably 25% by mass. It is as follows.
 なお、成分(B)の水酸基含有単官能(メタ)アクリレートモノマーの光硬化性樹脂組成物中の含有量は、成分(A)の(メタ)アクリレートポリマーとの関係では、成分(A)の(メタ)アクリレートポリマー100質量部に対し、好ましくは1~3000質量部含有する。この範囲内であれば、様々な環境下で高い透明性が維持できるという効果が得られる。 The content of the hydroxyl group-containing monofunctional (meth)acrylate monomer of the component (B) in the photocurable resin composition is, in relation to the (meth)acrylate polymer of the component (A), The content is preferably 1 to 3000 parts by mass with respect to 100 parts by mass of the meth)acrylate polymer. Within this range, the effect of maintaining high transparency in various environments can be obtained.
<成分(C)>
 本発明の光硬化性樹脂組成物は、重合成分として水酸基非含有単官能(メタ)アクリレートモノマーを含有する。水酸基を含有しないものを使用する理由は、成分(A)と成分(B)とから構成される光硬化性樹脂組成物の硬化物の接着性や粘度をそれぞれ良好な範囲に設定するためである。
<Component (C)>
The photocurable resin composition of the present invention contains a hydroxyl group-free monofunctional (meth)acrylate monomer as a polymerization component. The reason why the one not containing a hydroxyl group is used is to set the adhesiveness and the viscosity of the cured product of the photocurable resin composition composed of the component (A) and the component (B) to be in respective favorable ranges. ..
 成分(C)の水酸基非含有単官能(メタ)アクリレートモノマーの具体例としては、成分(A)の(メタ)アクリレートポリマーを構成することができる水酸基非含有(メタ)アクリレートモノマーと同様のモノマーを例示することができる。中でも、イソステアリル(メタ)アクリレート及びオクチル(メタ)アクリレートから選択される少なくとも一種が好ましい。 Specific examples of the hydroxyl group-free monofunctional (meth)acrylate monomer of the component (C) include the same monomers as the hydroxyl group-free (meth)acrylate monomer that can form the (meth)acrylate polymer of the component (A). It can be illustrated. Among them, at least one selected from isostearyl (meth)acrylate and octyl (meth)acrylate is preferable.
 成分(C)の水酸基非含有単官能(メタ)アクリレートモノマーの光硬化性樹脂組成物中の含有量は、少なすぎると高粘度となる傾向があるので、好ましくは30質量%以上、より好ましくは65質量%以上であり、多すぎると脆くなる傾向があるので、好ましくは90質量%以下、より好ましくは75質量%以下である。 Since the content of the hydroxyl group-free monofunctional (meth)acrylate monomer of the component (C) in the photocurable resin composition tends to be high when it is too small, it is preferably 30% by mass or more, more preferably It is 65% by mass or more, and if it is too large, it tends to become brittle, so it is preferably 90% by mass or less, more preferably 75% by mass or less.
 なお、成分(C)の水酸基非含有単官能(メタ)アクリレートモノマーの光硬化性樹脂組成物中の含有量は、成分(A)の(メタ)アクリレートポリマーとの関係では、成分(A)の(メタ)アクリレートポリマー100質量部に対し、好ましくは54~9000質量部含有する。この範囲内であれば、様々な環境下で高い透明性を維持しつつ、接着剤として高いパフォーマンスを発揮できるという効果が得られる。 The content of the hydroxyl group-free monofunctional (meth)acrylate monomer of the component (C) in the photocurable resin composition depends on the content of the component (A) in relation to the (meth)acrylate polymer of the component (A). The content is preferably 54 to 9000 parts by mass with respect to 100 parts by mass of the (meth)acrylate polymer. Within this range, it is possible to obtain the effect of exhibiting high performance as an adhesive while maintaining high transparency in various environments.
<成分(D)>
 本発明の光硬化性樹脂組成物は、光重合開始剤として、ベンゾイン誘導体のような分子内開裂型光重合開始剤ではなく、水素引き抜き型光重合開始剤を含有する。成分(A)の水酸基を含有する(メタ)アクリレートポリマーを、重合鎖の側鎖に結合させるためである。
<Component (D)>
The photocurable resin composition of the present invention contains, as a photopolymerization initiator, a hydrogen abstraction type photopolymerization initiator instead of an intramolecular cleavage type photopolymerization initiator such as a benzoin derivative. This is because the (meth)acrylate polymer containing a hydroxyl group of the component (A) is bonded to the side chain of the polymer chain.
 成分(D)の水素引き抜き型光重合開始剤としては、公知の水素引き抜き型光重合開始剤を使用することができ、例えば、ベンフェノン等のジアリールケトン類、メチルベンゾイルフォルメート等のフェニルグリオキシレート類が挙げられる。好ましい例としては、無黄変かつ高い水素引き抜き能力の点からメチルベンゾイルフォルメートを挙げることができる。 As the hydrogen abstraction type photopolymerization initiator of the component (D), known hydrogen abstraction type photopolymerization initiators can be used, and examples thereof include diaryl ketones such as benphenone and phenylglyoxylates such as methylbenzoyl formate. The kind is mentioned. Methylbenzoyl formate can be mentioned as a preferable example in terms of yellowing-free and high hydrogen abstraction ability.
 成分(D)の水素引き抜き型光重合開始剤の光硬化性樹脂組成物中の含有量は、少なすぎると架橋不足となる傾向があるので、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、多すぎると環境信頼性悪化の原因となる傾向があるので、好ましくは10質量%以下、より好ましくは5質量%以下である。 When the content of the hydrogen abstraction type photopolymerization initiator of the component (D) in the photocurable resin composition is too small, the crosslinking tends to be insufficient, so that the content is preferably 0.1% by mass or more, more preferably 1% by mass. It is preferably at least 10% by mass, more preferably at most 5% by mass, because it is more than 10% by mass, and if it is too large, it tends to cause environmental reliability deterioration.
<成分E>
 本発明の光硬化性樹脂組成物は、反応速度向上や高温弾性率維持のために、多官能(メタ)アクリレートモノマーを含有することができる。多官能(メタ)アクリレートモノマーの具体例としては、1,6-ヘキサンジオールジアクリレート(HDDA)、1,9-ノナンジオールジアクリレート、1,10-デカンジオールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレートなどの2官能以上の(メタ)アクリレート類等が挙げられる。これらは、発明の効果を損なわない限り、水酸基などの他の官能基を有することができる。中でも、多官能(メタ)アクリレートモノマーの好ましい具体例として、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、及びヒドロキシピバリン酸ネオペンチルグリコールジアクリレートから選択される少なくとも一種を挙げることができる。
<Component E>
The photocurable resin composition of the present invention may contain a polyfunctional (meth)acrylate monomer in order to improve the reaction rate and maintain the high temperature elastic modulus. Specific examples of the polyfunctional (meth)acrylate monomer include 1,6-hexanediol diacrylate (HDDA), 1,9-nonanediol diacrylate, 1,10-decanediol diacrylate, trimethylolpropane triacrylate and penta. Examples thereof include bifunctional or higher functional (meth)acrylates such as erythritol triacrylate and hydroxypivalic acid neopentyl glycol diacrylate. These may have other functional groups such as a hydroxyl group as long as the effects of the invention are not impaired. Among them, preferred specific examples of the polyfunctional (meth)acrylate monomer include at least one selected from trimethylolpropane triacrylate, pentaerythritol triacrylate, and neopentyl glycol diacrylate hydroxypivalate.
 成分(E)の多官能(メタ)アクリレートモノマーの光硬化性樹脂組成物中の含有量は、少なすぎると低架橋密度となる傾向があるので、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、多すぎると脆くなる傾向があるので、好ましくは5質量%以下、より好ましくは3質量%以下である。 If the content of the polyfunctional (meth)acrylate monomer of the component (E) in the photocurable resin composition is too low, the crosslinking density tends to be low, so the content is preferably 0.1% by mass or more, and more preferably It is 1 mass% or more, and if it is too large, it tends to become brittle, so it is preferably 5 mass% or less, more preferably 3 mass% or less.
<その他の成分>
 本発明の光硬化性樹脂組成物には、上述した成分(A)~(D)、更に必要に応じて(E)に加えて、本発明の効果を損なわない範囲で種々の添加剤を配合することができる。例えば、硬化収縮率を低減させるための液状可塑成分として、ポリブタジエン系可塑剤、ポリイソプレン系可塑剤、フタル酸エステル系可塑剤、アジピン酸エステル系可塑剤などを配合することができる。また、タック性を向上させるための粘着付与剤(タッキファイヤ)として、テルペン系樹脂、ロジン樹脂、石油樹脂などを配合することができる。また、硬化物の分子量の調整のために連鎖移動剤として、2-メルカプトエタノール、ラウリルメルカプタン、グリシジルメルカプタン、メルカプト酢酸、チオグリコール酸2-エチルヘキシル、2,3-ジメチルカプト-1-プロパノール、α-メチルスチレンダイマーなどを配合することができる。更に、必要に応じて、シランカップリング剤等の接着改善剤、酸化防止剤等の一般的な添加剤を含有することができる。
<Other ingredients>
The photocurable resin composition of the present invention contains various additives in addition to the above-mentioned components (A) to (D) and, if necessary, (E) as long as the effects of the present invention are not impaired. can do. For example, a polybutadiene-based plasticizer, a polyisoprene-based plasticizer, a phthalic acid ester-based plasticizer, an adipic acid ester-based plasticizer, or the like can be blended as a liquid plastic component for reducing the curing shrinkage rate. In addition, a terpene resin, a rosin resin, a petroleum resin, or the like can be blended as a tackifier for improving tackiness. Further, as a chain transfer agent for adjusting the molecular weight of the cured product, 2-mercaptoethanol, lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-ethylhexyl thioglycolate, 2,3-dimethylcapto-1-propanol, α- Methyl styrene dimer etc. can be blended. Further, if necessary, a general additive such as an adhesion improver such as a silane coupling agent and an antioxidant can be contained.
<光硬化性樹脂組成物の粘度特性>
 本発明の光硬化性樹脂組成物は、以上説明した成分を含有するものであるが、通常のインクジェット吐出条件で良好なインクジェット適性を実現するために、粘度が25℃で10mPa・s以上、好ましくは15mPa・s以上、且つ60℃で30mPa・s以下、好ましくは20mPa・s以下に調整されている。ここで、25℃で10mPa・s未満であると、インクジェットノズルからの液だれが生じやすくなり、60℃で30mPa・sを超えると、不吐出が発生しやすくなる。なお、光硬化性樹脂組成物の粘度は、一般的な粘弾性測定装置で測定することができる。具体例としては、レオメータ(Haake RheoSress600、Thermo Fisher Scientific社; 測定条件:コーンローター、φ=35mm、ローター角度2°、剪断速度120 1/s)を用いて測定することができる。
<Viscosity characteristics of photocurable resin composition>
The photocurable resin composition of the present invention contains the components described above, but has a viscosity of 10 mPa·s or more at 25° C., preferably in order to achieve good inkjet suitability under normal inkjet discharge conditions. Is adjusted to 15 mPa·s or more and 30 mPa·s or less at 60° C., preferably 20 mPa·s or less. Here, if it is less than 10 mPa·s at 25° C., dripping from the inkjet nozzle is likely to occur, and if it exceeds 30 mPa·s at 60° C., ejection failure is likely to occur. The viscosity of the photocurable resin composition can be measured with a general viscoelasticity measuring device. As a specific example, it can be measured using a rheometer (Haake RheoStress 600, Thermo Fisher Scientific Co.; measurement conditions: cone rotor, φ=35 mm, rotor angle 2°, shear rate 120 1/s).
 本発明の光硬化樹脂組成物の粘度の調整は、各構成成分の種類、含有量等を調整することにより行うことができる。 The viscosity of the photocurable resin composition of the present invention can be adjusted by adjusting the type and content of each constituent component.
<光硬化性樹脂組成物の調製>
 本発明の光硬化性樹脂組成物は、成分(A)~(D)及び必要に応じて配合される他の成分とを常法に従って均一に混合することにより調製することができる。
<Preparation of photocurable resin composition>
The photocurable resin composition of the present invention can be prepared by uniformly mixing the components (A) to (D) and other components to be blended as necessary according to a conventional method.
<画像表示装置の製造方法>
 次に、以下、工程(a)~(c)を有する本発明の画像表示装置の製造方法を、図面を参照しながら工程毎に詳細に説明する。なお、図面において、同じ図番は同一又は類似の構成要素を表している。
<Method of manufacturing image display device>
Next, the method for manufacturing the image display device of the present invention including the steps (a) to (c) will be described in detail for each step with reference to the drawings. In the drawings, the same drawing numbers represent the same or similar components.
<工程(a)(塗布工程)>
 まず、図1に示すように、光透過性カバー部材1を用意し、図2に示すように、光透過性カバー部材1の表面1aに、光硬化性樹脂組成物2をインクジェットノズル3から塗布し、光硬化性樹脂組成物膜4を形成する。この場合の塗布厚は、光透過性カバー部材1や画像表示部材の表面状態、必要とする光硬化樹脂層の膜物性等に応じて適宜設定することができる。
<Process (a) (coating process)>
First, as shown in FIG. 1, a light-transmissive cover member 1 is prepared, and as shown in FIG. 2, the surface 1a of the light-transmissive cover member 1 is coated with the photocurable resin composition 2 from the inkjet nozzle 3. Then, the photocurable resin composition film 4 is formed. In this case, the coating thickness can be appropriately set according to the surface condition of the light transmissive cover member 1 and the image display member, the required film physical properties of the photocurable resin layer, and the like.
 なお、この光硬化性樹脂組成物2の塗布は、必要な厚みが得られるように複数回行ってもよい。 The application of the photocurable resin composition 2 may be performed multiple times so that the required thickness can be obtained.
 光透過性カバー部材1としては、画像表示部材に形成された画像が視認可能となるような光透過性があればよく、ガラス、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート等の板状材料やシート状材料が挙げられる。これらの材料には、片面又は両面ハードコート処理、反射防止処理などを施すことができる。光透過性カバー部材1の厚さや弾性などの物性は、使用目的に応じて適宜決定することができる。 The light-transmitting cover member 1 only needs to have light-transmitting properties so that an image formed on the image display member can be visually recognized, and is a plate-like material such as glass, acrylic resin, polyethylene terephthalate, polyethylene naphthalate, or polycarbonate. And sheet materials. These materials can be subjected to a single-sided or double-sided hard coat treatment, antireflection treatment, or the like. Physical properties such as thickness and elasticity of the light transmissive cover member 1 can be appropriately determined according to the purpose of use.
 また、光透過性カバー部材1には、上述の板状材料やシート状材料にタッチパッドなどのような位置入力素子を公知の接着剤や本発明の光硬化性樹脂組成物の仮硬化樹脂層や硬化樹脂層を介して一体化したものも含まれる。 Further, in the light-transmitting cover member 1, a position input element such as a touch pad is added to the plate-shaped material or the sheet-shaped material described above by a known adhesive or a temporary curing resin layer of the light-curable resin composition of the present invention. Also included are those integrated through a cured resin layer.
 本工程で使用する光硬化性樹脂組成物2の性状はインクジェット条件下で液状である。液状のものを使用するので、光透過性カバー部材1の表面形状や画像表示部材の表面形状に歪みがあってもその歪みをキャンセルできる。 The properties of the photocurable resin composition 2 used in this step are liquid under inkjet conditions. Since a liquid material is used, even if the surface shape of the light transmissive cover member 1 or the surface shape of the image display member is distorted, the distortion can be canceled.
<工程(b)(貼り合わせ工程)>
 次に、図3に示すように、画像表示部材5を、光透過性カバー部材1の光硬化性樹脂組成物膜4側から貼り合わせる。貼り合わせは、公知の圧着装置を用いて、10℃~80℃で加圧することにより行うことができる。
<Process (b) (bonding process)>
Next, as shown in FIG. 3, the image display member 5 is attached to the light transmissive cover member 1 from the photocurable resin composition film 4 side. The bonding can be performed by applying pressure at 10° C. to 80° C. using a known pressure bonding device.
 画像表示部材5としては、液晶表示パネル、有機EL表示パネル、プラズマ表示パネル、タッチパネル等を挙げることができる。ここで、タッチパネルとは、液晶表示パネルのような表示素子とタッチパッドのような位置入力素子とを、公知の接着剤や本発明の光硬化性樹脂組成物の仮硬化樹脂層や硬化樹脂層を介して一体化したものである。なお、タッチパッドが光透過性カバー部材1にすでに一体化されている場合には、画像表示部材5としてタッチパネルを採用しなくてもよい。 The image display member 5 may be a liquid crystal display panel, an organic EL display panel, a plasma display panel, a touch panel, or the like. Here, the touch panel refers to a display element such as a liquid crystal display panel and a position input element such as a touch pad, and a known adhesive or a temporarily cured resin layer or a cured resin layer of the photocurable resin composition of the present invention. It is integrated through. If the touch pad is already integrated with the light transmissive cover member 1, the touch panel may not be used as the image display member 5.
<工程(c)(硬化工程)>
 次に、図4に示すように、工程(b)で形成された光硬化性樹脂組成物膜4に対し、光透過性カバー部材1側から紫外線UVを照射し硬化させ、図5に示すように光透過性の光硬化樹脂層6を形成する。これにより画像表示装置100が得られる。なお、光硬化性樹脂組成物膜4を硬化させるのは、光硬化性樹脂組成物2を液状から流動しない状態にし、更に光硬化樹脂層6に粘着性を付与し、また、天地逆転させても流れ落ちないようにして取り扱い性を向上させるためである。このような硬化のレベルは、光透過性の光硬化樹脂層6の硬化率(ゲル分率)が好ましくは40%以上、より好ましくは60%以上となるようなレベルである。ここで、硬化率(ゲル分率)とは、紫外線照射前の光硬化性樹脂組成物2中の(メタ)アクリロイル基の存在量に対する紫外線照射後の(メタ)アクリロイル基の存在量の割合(消費量割合)と定義される数値であり、この数値が大きい程、硬化が進行していることを示す。
<Step (c) (curing step)>
Next, as shown in FIG. 4, the photocurable resin composition film 4 formed in the step (b) is irradiated with ultraviolet rays UV from the light transmissive cover member 1 side to be cured, and as shown in FIG. Then, a light-transmissive photo-curable resin layer 6 is formed. Thereby, the image display device 100 is obtained. The photo-curable resin composition film 4 is cured by making the photo-curable resin composition 2 in a liquid-free state, further imparting tackiness to the photo-curable resin layer 6, and turning it upside down. This is because the handling property is improved by preventing it from flowing down. The level of such curing is such that the curing rate (gel fraction) of the light transmissive photocurable resin layer 6 is preferably 40% or more, more preferably 60% or more. Here, the curing rate (gel fraction) is the ratio of the abundance of the (meth)acryloyl group after UV irradiation to the abundance of the (meth)acryloyl group in the photocurable resin composition 2 before UV irradiation ( It is a numerical value defined as a consumption rate), and the larger the numerical value is, the more the curing progresses.
 なお、硬化率(ゲル分率)は、紫外線照射前の樹脂組成物層のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(X)と、紫外線照射後の樹脂組成物層のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(Y)とを、以下の数式に代入することにより算出することができる。 The curing rate (gel fraction) is the absorption peak height (X) of 1640 to 1620 cm −1 from the base line in the FT-IR measurement chart of the resin composition layer before ultraviolet irradiation, and the resin after ultraviolet irradiation. It can be calculated by substituting the absorption peak height (Y) from 1640 to 1620 cm −1 from the baseline in the FT-IR measurement chart of the composition layer into the following mathematical formula.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 紫外線の照射に関し、硬化率(ゲル分率)が好ましくは40%以上となるように硬化させることができる限り、光源の種類、出力、累積光量などは特に制限はなく、公知の紫外線照射による(メタ)アクリレートの光ラジカル重合プロセス条件を採用することができる。 Regarding the irradiation of ultraviolet rays, the kind of light source, output, cumulative light amount, etc. are not particularly limited as long as the curing rate (gel fraction) can be cured so that the curing rate (gel fraction) is preferably 40% or more. Photo-radical polymerization process conditions of (meth)acrylate can be adopted.
 なお、光透過性の光硬化樹脂層6の光透過性のレベルは、画像表示部材5に形成された画像が視認可能となるような光透過性であればよい。 It should be noted that the light transmissive level of the light transmissive photo-curable resin layer 6 may be such that the image formed on the image display member 5 is visible.
 また、光硬化性樹脂組成物を一度に本硬化させずに、以下の工程(aa)~(dd)のように、仮硬化させた後に貼り合わせ、更に本硬化させてもよい。 Alternatively, the photo-curable resin composition may not be fully cured at once, but may be temporarily cured and then bonded, and further fully cured, as in the following steps (aa) to (dd).
<工程(aa)(塗布工程)>
 まず、図6に示すように、光透過性カバー部材10を用意し、図7に示すように、光透過性カバー部材10の表面10aに、光硬化性樹脂組成物20をインクジェットノズル30から塗布し、光硬化性樹脂組成物膜40を形成する。この場合の塗布厚は、光透過性カバー部材10や画像表示部材の表面状態、必要とする光硬化樹脂層の膜物性等に応じて適宜設定することができる。
<Process (aa) (coating process)>
First, as shown in FIG. 6, a light transmissive cover member 10 is prepared, and as shown in FIG. 7, the photocurable resin composition 20 is applied to the surface 10 a of the light transmissive cover member 10 from the inkjet nozzle 30. Then, the photocurable resin composition film 40 is formed. In this case, the coating thickness can be appropriately set according to the surface condition of the light transmissive cover member 10 and the image display member, the required film physical properties of the photocurable resin layer, and the like.
 なお、この光硬化性樹脂組成物20の塗布は、必要な厚みが得られるように複数回行ってもよい。 The application of the photocurable resin composition 20 may be performed multiple times so as to obtain the required thickness.
<工程(bb)(仮硬化工程)>
 次に、図8に示すように、工程(aa)で形成された光硬化性樹脂組成物膜40に対し紫外線UVを照射して仮硬化させることにより図9に示すように仮硬化樹脂層45を形成する。ここで、仮硬化させるのは、光硬化性樹脂組成物20を液状から著しく流動しない状態にし、天地逆転させても流れ落ちないようにして取り扱い性を向上させるためである。このような仮硬化のレベルは、仮硬化樹脂層45の硬化率(ゲル分率)が、好ましくは40%以上、より好ましくは60%以上である。上限は100%でもよいが、好ましくは100%未満である。より好ましくは95%未満である。
<Step (bb) (temporary curing step)>
Next, as shown in FIG. 8, the photo-curable resin composition film 40 formed in the step (aa) is irradiated with ultraviolet rays UV to be pre-cured, and as shown in FIG. To form. Here, the temporary curing is performed so that the photocurable resin composition 20 is in a state in which it does not flow significantly from a liquid state and does not flow down even when it is turned upside down to improve handleability. The level of such temporary curing is that the curing rate (gel fraction) of the temporary curing resin layer 45 is preferably 40% or more, more preferably 60% or more. The upper limit may be 100%, but is preferably less than 100%. It is more preferably less than 95%.
<工程(cc)(貼り合わせ工程)>
 次に、図10に示すように、画像表示部材50に、光透過性カバー部材10をその仮硬化樹脂層45側から貼り合わせる。貼り合わせは、公知の圧着装置を用いて、10℃~80℃で加圧することにより行うことができる。
<Process (cc) (bonding process)>
Next, as shown in FIG. 10, the light transmissive cover member 10 is attached to the image display member 50 from the side of the temporarily cured resin layer 45. The bonding can be performed by applying pressure at 10° C. to 80° C. using a known pressure bonding device.
<工程(dd)(本硬化工程)>
 次に、図11に示すように、画像表示部材50と光透過性カバー部材10との間に挟持されている仮硬化樹脂層45に対し光透過性カバー部材10側から紫外線UVを照射して本硬化させる。これにより、画像表示部材50と光透過性カバー部材10とを光透過性の光硬化樹脂層60を介して積層して画像表示装置100を得る(図12)。なお、仮硬化樹脂層の硬化率が100%である場合には、本工程(dd)を省いてもよいが、確実に本硬化させるために常に実施することが好ましい。
<Process (dd) (main curing process)>
Next, as shown in FIG. 11, the provisionally cured resin layer 45 sandwiched between the image display member 50 and the light transmissive cover member 10 is irradiated with ultraviolet UV from the light transmissive cover member 10 side. Harden. As a result, the image display member 50 and the light-transmissive cover member 10 are laminated with the light-transmissive photo-curable resin layer 60 interposed therebetween to obtain the image display device 100 (FIG. 12 ). In addition, when the curing rate of the temporarily cured resin layer is 100%, the main step (dd) may be omitted, but it is preferable to always carry out in order to surely perform the main curing.
 また、本工程において本硬化させるのは、仮硬化樹脂層45を十分に硬化させて、画像表示部材50と光透過性カバー部材10とを接着し積層するためである。このような本硬化のレベルは、仮硬化樹脂層45の硬化率よりも低くならないように設定される。通常、光透過性の光硬化樹脂層60の硬化率(ゲル分率)を好ましくは95%以上、より好ましくは98%以上となるように設定する。 Further, the reason why the main curing is performed in this step is that the temporarily cured resin layer 45 is sufficiently cured and the image display member 50 and the light transmissive cover member 10 are bonded and laminated. The level of such main curing is set so as not to be lower than the curing rate of the temporary curing resin layer 45. Usually, the curing rate (gel fraction) of the light-transmissive photocurable resin layer 60 is set to preferably 95% or more, more preferably 98% or more.
 なお、光透過性の光硬化樹脂層60の光透過性のレベルは、画像表示部材50に形成された画像が視認可能となるような光透過性であればよい。なお、以上の工程(aa)~(dd)では光硬化樹脂組成物を光透過性カバー部材に塗布したが、画像表示部材に塗布し、その後に光透過性カバー部材を積層してもよい。 It should be noted that the light transmissive level of the light transmissive photo-curable resin layer 60 may be such that the image formed on the image display member 50 is visible. In the above steps (aa) to (dd), the photocurable resin composition was applied to the light transmissive cover member, but it may be applied to the image display member and then the light transmissive cover member is laminated.
 以下、本発明を実施例により具体的に説明するが、本発明は、これらの実施例に限定されるものではない。なお、実施例、比較例で使用した成分は以下のとおりである。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. The components used in Examples and Comparative Examples are as follows.
(メタ)アクリレートポリマー
 ヒタロイド(登録商標)7927(日立化成(株));MW190,000、170mgKOH/g
 ARUFON(登録商標)UH-2041(東亞合成(株));MW 2,500、120mgKOH/g
 ARUFON(登録商標)UH-2000(東亞合成(株));MW 11,000、20mgKOH/g
 ARUFON(登録商標)UP-1110(東亞合成(株));MW 2,500、0mgKOH/g
(Meth)acrylate polymer Hitaloid (registered trademark) 7927 (Hitachi Chemical Co., Ltd.); MW190,000, 170 mgKOH/g
ARUFON (registered trademark) UH-2041 (Toagosei Co., Ltd.); MW 2,500, 120 mgKOH/g
ARUFON (registered trademark) UH-2000 (Toagosei Co., Ltd.); MW 11,000, 20 mgKOH/g
ARUFON (registered trademark) UP-1110 (Toagosei Co., Ltd.); MW 2,500, 0 mgKOH/g
水酸基含有単官能(メタ)アクリレートモノマー
 4-HBA(4-ヒドロキシブチルアクリレート)
水酸基非含有単官能(メタ)アクリレートモノマー
 ISTA(イソステアリルアクリレート)
 NOA(ノルマルオクチルアクリレート)
Hydroxyl group-containing monofunctional (meth)acrylate monomer 4-HBA (4-hydroxybutyl acrylate)
Hydroxyl-free monofunctional (meth)acrylate monomer ISTA (isostearyl acrylate)
NOA (Normal Octyl Acrylate)
多官能(メタ)アクリレートモノマー
 TMPTA(トリメチロールプロパントリアクリレート)
Polyfunctional (meth)acrylate monomer TMPTA (trimethylolpropane triacrylate)
水素引き抜き型光重合開始剤
 Omnirad(登録商標)MBF(IGM Resins B.V.)、メチルベンゾイルフォルメート
Hydrogen abstraction type photopolymerization initiator Omnirad (registered trademark) MBF (IGM Resins BV), methylbenzoyl formate
開裂型光重合開始剤
 Speedcure(登録商標)84LC(ランブソンジャパン(株))
Cleavage type photopolymerization initiator Speedcure (registered trademark) 84LC (Lamson Japan KK)
  実施例1~4、比較例1~5
 表1に示す配合成分を均一に混合することにより光硬化性樹脂組成物を調製した。得られた光硬化性樹脂組成物について、光硬化前の「粘度[mPa・s]」を以下のように測定し、インクジェット塗布性能を判定した。また、光硬化後の「シェア弾性率[Pa]」、「接着強度(割裂強度)[N/cm]」、「光透過率[%]」を測定し、透明接着剤性能を判定した。
Examples 1 to 4, Comparative Examples 1 to 5
A photocurable resin composition was prepared by uniformly mixing the ingredients shown in Table 1. With respect to the obtained photocurable resin composition, "viscosity [mPa·s]" before photocuring was measured as follows, and the inkjet coating performance was determined. In addition, the “shear elastic modulus [Pa]”, “adhesive strength (split strength) [N/cm 2 ]”, and “light transmittance [%]” after photocuring were measured to determine the transparent adhesive performance.
<光硬化前>
 光硬化性樹脂組成物の25℃及び60℃における粘度を、レオメータ(Haake RheoSress600、Thermo Fisher Scientific社;測定条件:コーンローター、φ=35mm、ローター角度2°、剪断速度120 1/s)を用いて測定した。測定結果を表1に示す。
<Before photo-curing>
The viscosity at 25° C. and 60° C. of the photocurable resin composition was measured using a rheometer (Haake RheoStress 600, Thermo Fisher Scientific Co.; measurement conditions: cone rotor, φ=35 mm, rotor angle 2°, shear rate 120 1/s). Was measured. The measurement results are shown in Table 1.
(インクジェット塗布性能の判定)
 光硬化性樹脂組成物の25℃における粘度が10mPa・s以上で且つ60℃における粘度が30mPa・s以下である場合、当該光硬化性樹脂組成物のインクジェット塗布性能を良好と判定し、25℃における粘度が10mPa・s未満の場合又は60℃における粘度が30mPa・sを超える場合、当該光硬化性樹脂組成物のインクジェット塗布性能を不良と判定した。
(Judgement of inkjet coating performance)
When the viscosity of the photocurable resin composition at 25° C. is 10 mPa·s or more and the viscosity at 60° C. is 30 mPa·s or less, the inkjet coating performance of the photocurable resin composition is determined to be good, and the viscosity is 25° C. When the viscosity at 10 is less than 10 mPa·s or the viscosity at 60° C. exceeds 30 mPa·s, the inkjet coating performance of the photocurable resin composition was determined to be poor.
<光硬化後>
 光硬化性樹脂組成物の光硬化後の「シェア弾性率[Pa]」、「接着強度(割裂強度)[N/cm]」、「光透過率[%]」を以下に説明するように測定した。
<After photo-curing>
The “shear elastic modulus [Pa]”, “adhesive strength (splitting strength) [N/cm 2 ]”, and “light transmittance [%]” of the photocurable resin composition after photocuring are described below. It was measured.
(シェア弾性率[Pa])
 光硬化性樹脂組成物に対して、紫外線照射装置(LC-8、浜松ホトニクス(株)製)を用いて、積算光量が2500mJ/cmとなるように、200mW/cm強度の紫外線を照射することにより光硬化性樹脂組成物を硬化させた。得られた硬化物の25℃及び85℃におけるシェア弾性率を、レオメータ(Haake MarkII、Thermo Fisher Scientific社;測定条件:コーンローター、φ=8mm、周波数1Hz)を用いて測定した。測定結果を表1に示す。
(Share elastic modulus [Pa])
Using a UV irradiation device (LC-8, manufactured by Hamamatsu Photonics K.K.), the photocurable resin composition is irradiated with UV light having an intensity of 200 mW/cm 2 so that the integrated light amount becomes 2500 mJ/cm 2. By doing so, the photocurable resin composition was cured. The shear modulus at 25° C. and 85° C. of the obtained cured product was measured using a rheometer (Haake MarkII, Thermo Fisher Scientific; measurement conditions: cone rotor, φ=8 mm, frequency 1 Hz). The measurement results are shown in Table 1.
(接着強度(割裂強度)[N/cm])
 スライドグラス(松波硝子工業(株)製)(40(W)×70(L)×0.4(t)mm、型番S1112)を2枚用意し、一方のスライドグラスの中央に、光硬化性樹脂組成物を直径5mm、平均150μmの厚みで塗布し、光硬化性樹脂組成物膜を形成した後、他方のスライドグラスを直交させるように載置し、2枚のスライドグラスに挟持されている光硬化性樹脂組成物膜に対して、紫外線照射装置(LC-8、浜松ホトニクス(株)製)を用いて、積算光量が2500mJ/cmとなるように、200mW/cm強度の紫外線を照射することにより光硬化性樹脂組成物膜を硬化させ、光透過性の光硬化樹脂層を形成した。これにより、接着強度試験用サンプルが得られた。このサンプルの接着強度を、引張試験機(Autograph AGX-X,(株)島津製作所製;試験速度5mm/min、試験温度85℃)を用いて測定した。
(Adhesive strength (split strength) [N/cm 2 ])
Two slide glasses (manufactured by Matsunami Glass Industry Co., Ltd.) (40 (W) x 70 (L) x 0.4 (t) mm, model number S1112) were prepared, and one of the slide glasses had a photo-curing property. The resin composition is applied with a diameter of 5 mm and an average thickness of 150 μm to form a photocurable resin composition film, and then the other slide glass is placed so as to be orthogonal to each other and sandwiched between two slide glasses. Using a UV irradiation device (LC-8, manufactured by Hamamatsu Photonics K.K.), the photocurable resin composition film was irradiated with UV light having an intensity of 200 mW/cm 2 so that the integrated light amount would be 2500 mJ/cm 2. The photocurable resin composition film was cured by irradiation to form a light transmissive photocurable resin layer. Thereby, a sample for adhesive strength test was obtained. The adhesive strength of this sample was measured using a tensile tester (Autograph AGX-X, manufactured by Shimadzu Corporation; test speed 5 mm/min, test temperature 85° C.).
(光透過率[%])
 スライドグラス(松波硝子工業(株)製)(40(W)×70(L)×0.4(t)mm、型番S1112)を2枚用意し、一方のスライドグラスの中央に、光硬化性樹脂組成物を直径5mm、平均150μmの厚みで塗布し、光硬化性樹脂組成物膜を形成した後、他方のスライドグラスを載置し、2枚のスライドグラスに挟持されている光硬化性樹脂組成物膜に対して、紫外線照射装置(LC-8、浜松ホトニクス(株)製)を用いて、積算光量が2500mJ/cmとなるように、200mW/cm強度の紫外線を照射することにより光硬化性樹脂組成物膜を硬化させ、光透過性の光硬化樹脂層を形成した。これにより、光透過率試験用サンプルが得られた。このサンプルの550nm光透過率を、分光光度計(MPS-2450、(株)島津製作所製)を用いて測定した。
(Light transmittance [%])
Two slide glasses (manufactured by Matsunami Glass Industry Co., Ltd.) (40 (W) x 70 (L) x 0.4 (t) mm, model number S1112) were prepared, and one of the slide glasses had a photo-curing property. A photo-curable resin sandwiched between two slide glasses after the resin composition is applied with a diameter of 5 mm and a thickness of 150 μm on average to form a photo-curable resin composition film. By irradiating the composition film with an ultraviolet ray having an intensity of 200 mW/cm 2 using an ultraviolet ray irradiator (LC-8, manufactured by Hamamatsu Photonics K.K.) so that the integrated light amount becomes 2500 mJ/cm 2. The photocurable resin composition film was cured to form a light transmissive photocurable resin layer. As a result, a light transmittance test sample was obtained. The 550 nm light transmittance of this sample was measured using a spectrophotometer (MPS-2450, manufactured by Shimadzu Corporation).
(透明接着剤性能判定)
 光硬化性樹脂組成物の光硬化後の接着強度が70N/cm以上である場合、透明接着剤性能を良好と判定し、70N/cm未満である場合、透明接着剤性能を不良と判定した。
(Transparent adhesive performance judgment)
When the adhesive strength of the photocurable resin composition after photocuring is 70 N/cm 2 or more, the transparent adhesive performance is determined to be good, and when it is less than 70 N/cm 2 , the transparent adhesive performance is determined to be poor. did.
<インクジェット塗布可能な光学用接着剤としての適用可否>
光硬化性樹脂組成物の「インクジェット塗布性能判定」及び「透明接着剤性能判定」のいずれかが「不良」判定である場合には、インクジェット適用性が不良と判定し、双方が「良好」判定である場合には、インクジェット適用性が良好と判定した。
<Applicability as an optical adhesive that can be applied by inkjet>
If either "inkjet coating performance judgment" or "transparent adhesive performance judgment" of the photocurable resin composition is "defective", the inkjet applicability is judged to be poor, and both are judged to be "good". When it was, the inkjet applicability was determined to be good.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(評価結果の考察)
 実施例1~4の光硬化性樹脂組成物は、水酸基価が120mgKOH/g以上であって、(メタ)アクリロイル基を有さない(メタ)アクリレートポリマーと、水酸基含有単官能(メタ)アクリレートモノマーと、水酸基非含有単官能(メタ)アクリレートモノマーと、水素引き抜き型光重合開始剤とを含有し、その粘度が25℃で10mPa・s以上であり且つ60℃で30mPa・s以下であるので、硬化前物性も及び硬化後物性も実用上問題のないレベルであった。実施例1~3の光硬化性樹脂組成物について、60℃における粘度を測定していない理由は、25℃において30mPa・s以下であるため、60℃における粘度はそれよりも更に低い粘度になることが明らかだからである。なお、水酸基含有(メタ)アクリレートポリマーの配合が相対的に多くなると、硬化前の25℃における粘度が相対的に高くなることがわかる。
(Discussion of evaluation results)
The photocurable resin compositions of Examples 1 to 4 have a hydroxyl value of 120 mgKOH/g or more, a (meth)acrylate polymer having no (meth)acryloyl group, and a hydroxyl group-containing monofunctional (meth)acrylate monomer. And a hydroxyl-free monofunctional (meth)acrylate monomer and a hydrogen abstraction type photopolymerization initiator, and the viscosity thereof is 10 mPa·s or more at 25° C. and 30 mPa·s or less at 60° C., The physical properties before curing and the physical properties after curing were at a level with no practical problems. With respect to the photocurable resin compositions of Examples 1 to 3, the reason why the viscosity at 60° C. is not measured is 30 mPa·s or less at 25° C., so that the viscosity at 60° C. becomes lower than that. Because it is clear. It is understood that when the amount of the hydroxyl group-containing (meth)acrylate polymer is relatively increased, the viscosity at 25° C. before curing is relatively increased.
 他方、比較例1の場合、水素引き抜き型光重合開始剤ではなく開裂型光重合開始剤を使用したので、硬化後の接着強度が不十分であった。比較例2の場合、水酸基価が20mgKOH/gの(メタ)アクリレートポリマーを使用したので、硬化後の接着強度が不十分であった。また、比較例3の場合、(メタ)アクリレートポリマーとして水酸基を含有しないものを使用したので、硬化後の接着強度が不十分であった。比較例4の場合、(メタ)アクリレートポリマーの含有量が多すぎたので、硬化前の粘度が高すぎ、インクジェット塗布性能に問題があった。比較例5の場合、(メタ)アクリレートポリマーを使用しないので、硬化後の接着強度が不十分であった。 On the other hand, in the case of Comparative Example 1, since the cleavage type photopolymerization initiator was used instead of the hydrogen abstraction type photopolymerization initiator, the adhesive strength after curing was insufficient. In the case of Comparative Example 2, since the (meth)acrylate polymer having a hydroxyl value of 20 mgKOH/g was used, the adhesive strength after curing was insufficient. Further, in the case of Comparative Example 3, since the (meth)acrylate polymer containing no hydroxyl group was used, the adhesive strength after curing was insufficient. In the case of Comparative Example 4, since the content of the (meth)acrylate polymer was too large, the viscosity before curing was too high, and there was a problem in the inkjet coating performance. In the case of Comparative Example 5, since the (meth)acrylate polymer was not used, the adhesive strength after curing was insufficient.
 本発明の光硬化性樹脂組成物は、インクジェットコート法を利用して塗布出来るので、画像表示装置と光透過性カバー部材とが光透過性の光硬化樹脂層を介して積層された画像表示装置を製造する際に、光硬化樹脂層の形成に有用である。 Since the photocurable resin composition of the present invention can be applied by using an inkjet coating method, an image display device in which an image display device and a light transmissive cover member are laminated via a light transmissive photocurable resin layer. It is useful for forming a photo-curable resin layer in the production of
 1、10 光透過性カバー部材
 1a、10a 光透過性カバー部材の表面
 2、20 光硬化性樹脂組成物
 3、30 インクジェットノズル
 4、40 光硬化性樹脂組成物膜
 45 仮硬化樹脂層
 5、50 画像表示部材
 6、60 光硬化樹脂層
 100 画像表示装置
1, 10 Light- transmissive cover member 1a, 10a Surface of light- transmissive cover member 2, 20 Photocurable resin composition 3, 30 Inkjet nozzle 4, 40 Photocurable resin composition film 45 Temporary cured resin layer 5, 50 Image display member 6,60 Photocurable resin layer 100 Image display device

Claims (12)

  1.  画像表示部材と光透過性カバー部材とが、光硬化性樹脂組成物から形成された光透過性の光硬化樹脂層を介して積層された画像表示装置に適用され得る当該光硬化性樹脂組成物であって、以下の成分(A)~(D):
    <成分(A)>
     水酸基価が120mgKOH/g以上であって、(メタ)アクリロイル基を有さない(メタ)アクリレートポリマー;
    <成分(B)>
     水酸基含有単官能(メタ)アクリレートモノマー;
    <成分(C)>
     水酸基非含有単官能(メタ)アクリレートモノマー;
    <成分(D)>
     水素引き抜き型光重合開始剤
    を含有し、粘度が25℃で10mPa・s以上であり且つ60℃で30mPa・s以下である光硬化性樹脂組成物。
    The photocurable resin composition that can be applied to an image display device in which an image display member and a light transmissive cover member are laminated via a light transmissive photocurable resin layer formed of a photocurable resin composition And the following components (A) to (D):
    <Component (A)>
    A (meth)acrylate polymer having a hydroxyl value of 120 mgKOH/g or more and having no (meth)acryloyl group;
    <Component (B)>
    Hydroxyl group-containing monofunctional (meth)acrylate monomer;
    <Component (C)>
    Hydroxyl-free monofunctional (meth)acrylate monomer;
    <Component (D)>
    A photocurable resin composition containing a hydrogen abstraction type photopolymerization initiator and having a viscosity of 10 mPa·s or more at 25° C. and 30 mPa·s or less at 60° C.
  2.  光硬化性樹脂組成物中の各成分の含有量が、
    成分(A):1~55質量%、
    成分(B):1~30質量%、
    成分(C):30~90質量%、
    成分(D):0.1~10質量%
    である請求項1記載の光硬化性樹脂組成物。
    The content of each component in the photocurable resin composition,
    Component (A): 1 to 55% by mass,
    Component (B): 1 to 30% by mass,
    Component (C): 30 to 90% by mass,
    Component (D): 0.1-10% by mass
    The photocurable resin composition according to claim 1, which is
  3.  光硬化性樹脂組成物中の各成分の含有量が、
    成分(A):10~45質量%、
    成分(B):5~25質量%、
    成分(C):65~75質量%、
    成分(D):1~5質量%
    である請求項1記載の光硬化性樹脂組成物。
    The content of each component in the photocurable resin composition,
    Component (A): 10 to 45% by mass,
    Component (B): 5 to 25% by mass,
    Component (C): 65 to 75% by mass,
    Component (D): 1 to 5 mass%
    The photocurable resin composition according to claim 1, which is
  4.  成分(A)100質量部に対し、成分(B)を1~3000質量部含有する請求項1~3のいずれかに記載の光硬化性樹脂組成物。 The photocurable resin composition according to any one of claims 1 to 3, which contains 1 to 3000 parts by mass of the component (B) with respect to 100 parts by mass of the component (A).
  5.  成分(A)の(メタ)アクリレートポリマーが、2-ヒドロキシエチルアクリレートと2-エチルヘキシルアクリレートとの共重合体である請求項1~4のいずれかに記載の光硬化性樹脂組成物。 The photocurable resin composition according to any one of claims 1 to 4, wherein the (meth)acrylate polymer of the component (A) is a copolymer of 2-hydroxyethyl acrylate and 2-ethylhexyl acrylate.
  6.  成分(B)の水酸基含有単官能(メタ)アクリレートモノマーが、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートから選択される少なくとも一種である請求項1~5のいずれかに記載の光硬化性樹脂組成物。 The hydroxyl group-containing monofunctional (meth)acrylate monomer of the component (B) is at least one selected from 4-hydroxybutyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate. The photocurable resin composition described.
  7.  成分(C)の水酸基非含有単官能(メタ)アクリレートモノマーが、イソステアリル(メタ)アクリレート及びオクチル(メタ)アクリレートから選択される少なくとも一種である請求項1~6のいずれかに記載の光硬化性樹脂組成物。 The photo-curing according to any one of claims 1 to 6, wherein the hydroxyl group-free monofunctional (meth)acrylate monomer of the component (C) is at least one selected from isostearyl (meth)acrylate and octyl (meth)acrylate. Resin composition.
  8.  成分(D)の水素引き抜き型光重合開始剤が、メチルベンゾイルフォルメートである請求項1~7のいずれかに記載の光硬化性樹脂組成物。 The photocurable resin composition according to any one of claims 1 to 7, wherein the hydrogen abstraction type photopolymerization initiator of the component (D) is methylbenzoyl formate.
  9.  更に、成分(E)
    <成分(E)>
     多官能(メタ)アクリレートモノマー
    を、光硬化性樹脂組成物中に0.1~5質量%含有する請求項1~8のいずれかに記載の光硬化性樹脂組成物。
    Furthermore, the component (E)
    <Component (E)>
    The photocurable resin composition according to any one of claims 1 to 8, wherein the photocurable resin composition contains a polyfunctional (meth)acrylate monomer in an amount of 0.1 to 5% by mass.
  10.  成分(E)の多官能(メタ)アクリレートモノマーが、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレートから選択される少なくとも一種である請求項9記載の光硬化性樹脂組成物。 The photocurable resin composition according to claim 9, wherein the polyfunctional (meth)acrylate monomer of the component (E) is at least one selected from trimethylolpropane triacrylate and pentaerythritol triacrylate.
  11.  画像表示部材と光透過性カバー部材とが、光硬化性樹脂組成物から形成された光透過性の光硬化樹脂層を介して積層された画像表示装置の製造方法であって、以下の工程(a)~(c):
    <工程(a)>
     画像表示部材又は光透過性カバー部材のいずれか一方の部材表面に、請求項1記載の光硬化性樹脂組成物をインクジェットコート装置のノズルから吐出させて光硬化性樹脂組成物膜を形成する工程;
    <工程(b)>
     光硬化性樹脂組成物膜に他方の部材を積層し、画像表示部材と光透過性カバー部材とを貼り合わせる工程;及び
    <工程(c)>
     両パネルに挟持された光硬化性樹脂組成物膜に紫外線を照射して硬化させることにより、画像表示部材と光透過性カバー部材とを光硬化樹脂層で積層した画像表示装置を得る工程
    を有する製造方法。
    A method for manufacturing an image display device in which an image display member and a light-transmissive cover member are laminated via a light-transmissive photo-curable resin layer formed of a photo-curable resin composition, which comprises the following steps ( a) to (c):
    <Step (a)>
    A step of forming a photocurable resin composition film by discharging the photocurable resin composition according to claim 1 from a nozzle of an inkjet coating device on the surface of either the image display member or the light transmissive cover member. ;
    <Step (b)>
    A step of laminating the other member on the photocurable resin composition film, and bonding the image display member and the light transmissive cover member; and <step (c)>
    There is a step of obtaining an image display device in which an image display member and a light transmissive cover member are laminated with a photocurable resin layer by irradiating the photocurable resin composition film sandwiched between both panels with ultraviolet rays to cure the film. Production method.
  12.  画像表示部材と光透過性カバー部材とが、光硬化性樹脂組成物から形成された光透過性の光硬化樹脂層を介して積層された画像表示装置の製造方法であって、以下の工程(aa)~(dd):
    <工程(aa)>
     画像表示部材又は光透過性カバー部材のいずれか一方の部材表面に、請求項1記載の光硬化性樹脂組成物をインクジェットコート装置のノズルから吐出させて光硬化性樹脂組成物膜を形成する工程;
    <工程(bb)>
     光硬化性樹脂組成物膜に紫外線を照射して、仮硬化樹脂層を形成する工程;
    <工程(cc)>
     仮硬化樹脂層に他方の部材を積層し、画像表示部材と光透過性カバー部材とを貼り合わせる工程;及び
    <工程(dd)>
     両パネルに挟持された仮硬化樹脂層に紫外線を照射して本硬化させることにより、画像表示部材と光透過性カバー部材とを光硬化樹脂層で積層した画像表示装置を得る工程
    を有する製造方法。
    A method for manufacturing an image display device in which an image display member and a light-transmissive cover member are laminated via a light-transmissive photo-curable resin layer formed of a photo-curable resin composition, which comprises the following steps ( aa) to (dd):
    <Step (aa)>
    A step of forming a photocurable resin composition film by discharging the photocurable resin composition according to claim 1 from a nozzle of an inkjet coating device on the surface of either the image display member or the light transmissive cover member. ;
    <Step (bb)>
    A step of irradiating the photocurable resin composition film with ultraviolet rays to form a temporary curable resin layer;
    <Process (cc)>
    A step of laminating the other member on the temporarily cured resin layer and bonding the image display member and the light transmissive cover member; and <step (dd)>
    A manufacturing method including a step of obtaining an image display device in which an image display member and a light transmissive cover member are laminated with a photocurable resin layer by irradiating an ultraviolet ray to a temporary curable resin layer sandwiched between both panels to perform main curing. ..
PCT/JP2019/047447 2018-12-26 2019-12-04 Photocurable resin composition and method for manufacturing image display apparatus WO2020137401A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980082654.4A CN113195571B (en) 2018-12-26 2019-12-04 Photocurable resin composition and method for manufacturing image display device
EP19905454.5A EP3904411B1 (en) 2018-12-26 2019-12-04 Photocurable resin composition and method for producing image display device
KR1020217017676A KR102586595B1 (en) 2018-12-26 2019-12-04 Photocurable resin composition and method for producing image display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018242140 2018-12-26
JP2018-242140 2018-12-26
JP2019-219557 2019-12-04
JP2019219557A JP7319546B2 (en) 2018-12-26 2019-12-04 PHOTOCURABLE RESIN COMPOSITION AND METHOD FOR MANUFACTURING IMAGE DISPLAY DEVICE

Publications (1)

Publication Number Publication Date
WO2020137401A1 true WO2020137401A1 (en) 2020-07-02

Family

ID=71125976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047447 WO2020137401A1 (en) 2018-12-26 2019-12-04 Photocurable resin composition and method for manufacturing image display apparatus

Country Status (1)

Country Link
WO (1) WO2020137401A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042793A1 (en) * 2021-09-14 2023-03-23 デクセリアルズ株式会社 Photocurable composition for ink-jet printing, method for producing image display device, and image display device
WO2023228803A1 (en) * 2022-05-25 2023-11-30 コニカミノルタ株式会社 Active ray-curable composition, method for producing cured film, cured film, and cured film production device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140329927A1 (en) * 2011-12-07 2014-11-06 Kyoung Jin Ha Photocurable adhesive composition and display device comprising same
JP2015004038A (en) * 2013-06-24 2015-01-08 宇部興産株式会社 Photocurable aqueous resin dispersion and elastomer laminate
WO2015046422A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Photocurable resin composition, image display device and method for manufacturing image display device
JP2015134847A (en) * 2014-01-16 2015-07-27 理想科学工業株式会社 Colored resin particle dispersion and inkjet ink
JP2016011416A (en) * 2014-06-06 2016-01-21 株式会社リコー Photopolymerizable composition, photopolymerizable ink, composition housing container, method for forming image or cured product, device for forming image or cured product, and image or cured product
JP2016065183A (en) * 2014-09-26 2016-04-28 オリジン電気株式会社 Adhesion method excellent in shading part curability
JP2017210578A (en) 2016-05-27 2017-11-30 協立化学産業株式会社 Curable resin composition
JP2018062590A (en) * 2016-10-14 2018-04-19 株式会社スリーボンド Photocurable composition
JP2019108426A (en) * 2017-12-15 2019-07-04 東亞合成株式会社 Active energy ray-curable adhesive composition, and laminate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140329927A1 (en) * 2011-12-07 2014-11-06 Kyoung Jin Ha Photocurable adhesive composition and display device comprising same
JP2015004038A (en) * 2013-06-24 2015-01-08 宇部興産株式会社 Photocurable aqueous resin dispersion and elastomer laminate
WO2015046422A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Photocurable resin composition, image display device and method for manufacturing image display device
JP2015134847A (en) * 2014-01-16 2015-07-27 理想科学工業株式会社 Colored resin particle dispersion and inkjet ink
JP2016011416A (en) * 2014-06-06 2016-01-21 株式会社リコー Photopolymerizable composition, photopolymerizable ink, composition housing container, method for forming image or cured product, device for forming image or cured product, and image or cured product
JP2016065183A (en) * 2014-09-26 2016-04-28 オリジン電気株式会社 Adhesion method excellent in shading part curability
JP2017210578A (en) 2016-05-27 2017-11-30 協立化学産業株式会社 Curable resin composition
JP2018062590A (en) * 2016-10-14 2018-04-19 株式会社スリーボンド Photocurable composition
JP2019108426A (en) * 2017-12-15 2019-07-04 東亞合成株式会社 Active energy ray-curable adhesive composition, and laminate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042793A1 (en) * 2021-09-14 2023-03-23 デクセリアルズ株式会社 Photocurable composition for ink-jet printing, method for producing image display device, and image display device
WO2023228803A1 (en) * 2022-05-25 2023-11-30 コニカミノルタ株式会社 Active ray-curable composition, method for producing cured film, cured film, and cured film production device

Similar Documents

Publication Publication Date Title
JP4824544B2 (en) Adhesive blends, articles and methods
JP5525819B2 (en) Acrylic hot melt adhesive
JP6193427B1 (en) Photocurable resin composition for tape
KR101780457B1 (en) Transparent double-sided adhesive sheet and image display device using same
JP6513347B2 (en) Adhesive sheet
JP2008280390A (en) Adhesive composition, and adhesive product and display using the same
JP7319546B2 (en) PHOTOCURABLE RESIN COMPOSITION AND METHOD FOR MANUFACTURING IMAGE DISPLAY DEVICE
TWI738661B (en) Photocurable resin composition and manufacturing method of image display device
JP6556550B2 (en) Photo-curable adhesive composition
JP2009227891A (en) Self-adhesive sheet
WO2020137401A1 (en) Photocurable resin composition and method for manufacturing image display apparatus
JP2023123450A (en) Photocurable resin composition and method for manufacturing image display device
CN110930864B (en) Method for manufacturing image display device
JP6697395B2 (en) UV curable acrylic polymer and UV curable acrylic hot melt adhesive containing the same
JP7278967B2 (en) Optical transparent adhesive sheet
JP2017179230A (en) Optical transparent adhesive sheet
JP2013203977A (en) Tacky sheet and non-tacky sheet
WO2021177320A1 (en) Method for manufacturing image display device
WO2023074554A1 (en) Photocurable adhesive sheet
JP2022131865A (en) Adhesive sheet, laminate, and optical device and image display device
JP2021140142A (en) Manufacturing method for image display device
JP2022131872A (en) Method for manufacturing laminate
JP5886905B2 (en) Method for producing pressure-sensitive adhesive composition, method for producing pressure-sensitive adhesive film, raw material composition for pressure-sensitive adhesive, and pressure-sensitive adhesive film
JP2022131864A (en) Adhesive sheet, laminate, and optical device and image display device
JP2022131868A (en) Adhesive sheet, laminate, and optical device and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217017676

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019905454

Country of ref document: EP

Effective date: 20210726