WO2020137241A1 - Water-absorbent resin particles and method for producing same - Google Patents

Water-absorbent resin particles and method for producing same Download PDF

Info

Publication number
WO2020137241A1
WO2020137241A1 PCT/JP2019/044901 JP2019044901W WO2020137241A1 WO 2020137241 A1 WO2020137241 A1 WO 2020137241A1 JP 2019044901 W JP2019044901 W JP 2019044901W WO 2020137241 A1 WO2020137241 A1 WO 2020137241A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resin particles
absorbent resin
particle size
absorbent
Prior art date
Application number
PCT/JP2019/044901
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 松原
武 南里
艶ブン 王
宮島 徹
Original Assignee
Sdpグローバル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sdpグローバル株式会社 filed Critical Sdpグローバル株式会社
Priority to CN201980085754.2A priority Critical patent/CN113227218A/en
Priority to JP2020562914A priority patent/JPWO2020137241A1/en
Publication of WO2020137241A1 publication Critical patent/WO2020137241A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to water absorbent resin particles and a method for producing the same.
  • hydrophilic fibers such as pulp and water-absorbent resin particles mainly containing acrylic acid (salt) is widely used as an absorber.
  • Consumers in recent years tend to demand more comfort, and the demand is shifting to sanitary materials having higher dryness and thinner thickness, and accordingly, those having high dryness are desired and hydrophilic It has been desired to reduce the amount of use of the functional fiber. Therefore, it has become necessary for the water-absorbent resin particles themselves to have the role of high initial absorption rate and liquid diffusibility that the hydrophilic fibers have been playing so far.
  • a method of physically increasing the surface area of the water absorbent resin is generally used.
  • a method of adding microballoons to the water absorbent resin Patent Document 1
  • a method of improving the water absorption rate by reducing the particle size of the water absorbent resin particles in the sieving process Patent Document 2
  • Patent Document 2 a method of improving the water absorption rate by reducing the particle size of the water absorbent resin particles in the sieving process
  • Patent Document 2 Patent Document 2
  • the content of hydrophilic fibers is higher than the content of water-absorbent resin particles.
  • the content of (1) is small or not contained, there is a problem that liquid is slowly drawn from the nonwoven fabric and leakage occurs.
  • Patent Documents 3, 4, and 5 it is known that the performance of the water absorbent resin is improved by controlling the particle size distribution within a certain range. There is a problem with the slow drainage and the leak is not improved. Further, a water-absorbent resin having a narrower particle size distribution has not been studied so far because of a problem in productivity.
  • the object of the present invention is to provide a water-absorbent resin particle that does not cause a problem of liquid leakage, even if the content of hydrophilic fibers in the absorbent is small, and that has high water-absorbing performance for blood. It is another object of the present invention to provide a water-absorbent resin particle capable of exhibiting an excellent dry feeling when used for an absorbent article, an absorber and an absorbent article containing the same, and a method for producing the water-absorbent resin particle.
  • resin particles containing a water-soluble vinyl monomer (a1) and a cross-linked polymer (A) containing a cross-linking agent (b) as an essential constituent unit are surface-crosslinked with at least one surface cross-linking agent (d).
  • Water-absorbent resin particles having a particle size of 30 to 0.75 are surface-crosslinked with at least one surface cross-linking agent (d).
  • Particle size distribution index (SPAN) (90% particle size in volume-based integrated particle size-10% particle size in volume-based integrated particle size)/(50% particle size in volume-based integrated particle size) (Equation 1)
  • the present invention also provides a method for producing the above water-absorbent resin, which comprises polymerizing a monomer composition containing a water-soluble vinyl monomer (a1) and a cross-linking agent (b) as essential constituent units to form a cross-linked polymer (A).
  • the melting point of is less than or equal to the temperature of the step of adding (C).
  • the water-absorbent resin particles of the present invention have a particle size and a particle size distribution within a specific range and exhibit an excellent absorption rate and liquid passage rate. It also shows excellent blood absorption and blood absorption rate. Therefore, the absorbent article to which the water-absorbent resin of the present invention is applied (paper diapers and sanitary napkins, etc.), even when the content of hydrophilic fibers in the absorbent is small, from the nonwoven fabric after contact with the liquid to be absorbed Drains quickly and does not leak.
  • the resin particles containing the cross-linked polymer (A) containing the water-soluble vinyl monomer (a1) and the cross-linking agent (b) as essential constituent units are formed by at least one surface cross-linking agent (d). It is a water-absorbent resin particle having a surface-crosslinked structure.
  • the water-soluble vinyl monomer (a1) in the present invention is not particularly limited, and known monomers, for example, at least one water-soluble substituent and ethylenic vinyl group disclosed in paragraphs 0007 to 0023 of Japanese Patent No. 36485553 are used.
  • Vinyl monomers having a saturated group for example, anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers), anionic vinyl monomers and nonionic compounds disclosed in paragraphs 0009 to 0024 of JP-A-2003-165883.
  • Vinyl monomer and cationic vinyl monomer and selected from the group consisting of carboxy group, sulfo group, phosphono group, hydroxyl group, carbamoyl group, amino group and ammonio group disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982.
  • Vinyl monomers having at least one of
  • the water-soluble vinyl monomer (a1) is preferably an anionic vinyl monomer, more preferably a carboxy (salt) group, a sulfo (salt) group, an amino group, a carbamoyl group, an ammonio group or a mono-, di- or tri-alkyl group. It is a vinyl monomer having an ammonio group. Among these, more preferably a vinyl monomer having a carboxy (salt) group or a carbamoyl group, further preferably (meth)acrylic acid (salt) and (meth)acrylamide, particularly preferably (meth)acrylic acid (salt), Most preferably, it is acrylic acid (salt).
  • a “carboxy (salt) group” means a “carboxy group” or a “carboxylate group”
  • a “sulfo (salt) group” means a “sulfo group” or a “sulfonate group”.
  • (meth)acrylic acid (salt) means acrylic acid, acrylic acid salt, methacrylic acid or methacrylic acid salt
  • (meth)acrylamide means acrylamide or methacrylamide.
  • the salt include alkali metal (lithium, sodium and potassium etc.) salts, alkaline earth metal (magnesium and calcium etc.) salts, ammonium (NH 4 ) salts and the like. Among these salts, the alkali metal salts and ammonium salts are preferable, the alkali metal salts are more preferable, and the sodium salts are particularly preferable, from the viewpoint of absorption characteristics.
  • an acid group-containing monomer such as acrylic acid or methacrylic acid
  • a part of the acid group-containing monomer can be neutralized with a base.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate and potassium carbonate
  • Neutralization may be carried out before or during the polymerization of the acid group-containing monomer in the production process of the water-absorbent resin, and the acid group-containing polymer may be added to the acid group-containing polymer in the state of a hydrogel containing the cross-linked polymer (A) described later. It can also be neutralized.
  • the degree of neutralization of the acid group is preferably 50 to 80 mol %.
  • the degree of neutralization is less than 50 mol %, the resulting hydrogel polymer may have high tackiness, which may deteriorate workability during production and use. Furthermore, the centrifugal retention amount of the water-absorbent resin particles obtained may decrease.
  • the degree of neutralization exceeds 80%, the pH of the obtained resin becomes high, and there is a possibility that the safety of the skin of the human body may be concerned.
  • the constitutional unit of the crosslinked polymer (A) in addition to the water-soluble vinyl monomer (a1), another vinyl monomer (a2) copolymerizable with them can be used as the constitutional unit.
  • the other vinyl monomer (a2) one type may be used alone, or two or more types may be used in combination.
  • the other copolymerizable vinyl monomer (a2) is not particularly limited and is known (for example, the hydrophobic vinyl monomer disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 36485553, JP-A No. 2003-165883).
  • the vinyl monomers disclosed in paragraph 0025 and paragraph 0058 of Japanese Unexamined Patent Application Publication No. 2005-75982) can be used. Specifically, for example, vinyl monomers (i) to (iii) below can be used. Can be used.
  • (I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, and vinylnaphthalene, and halogen-substituted styrene such as dichlorostyrene.
  • Styrene such as styrene, ⁇ -methylstyrene, vinyltoluene and hydroxystyrene, and vinylnaphthalene
  • halogen-substituted styrene such as dichlorostyrene.
  • the content of the other vinyl monomer (a2) unit is preferably 0 to 5 mol %, more preferably 0 to 3 mol based on the number of moles of the water-soluble vinyl monomer (a1) unit from the viewpoint of absorption performance and the like. %, particularly preferably 0 to 2 mol %, particularly preferably 0 to 1.5 mol %, and the content of other vinyl monomer (a2) units is 0 mol% from the viewpoint of absorption performance and the like. Most preferred.
  • the cross-linking agent (b) is not particularly limited and is known (for example, a cross-linking agent having two or more ethylenically unsaturated groups disclosed in paragraphs 0031 to 0034 of Japanese Patent No. 36485553, which reacts with a water-soluble substituent group).
  • Crosslinking agent having at least one functional group to be obtained and having at least one ethylenically unsaturated group, and crosslinking agent having at least two functional groups capable of reacting with a water-soluble substituent, JP-A-2003-165883 Cross-linking agent having two or more ethylenically unsaturated groups, a cross-linking agent having an ethylenically unsaturated group and a reactive functional group, and a cross-linking agent having two or more reactive substituents.
  • cross-linking vinyl monomer disclosed in paragraph 0059 of JP-A-2005-75982 and the cross-linking agent of the cross-linkable vinyl monomer disclosed in paragraphs 0015 to 0016 of JP-A-2005-95759 can be used. ..
  • a crosslinking agent having two or more ethylenically unsaturated groups is preferable from the viewpoint of absorption performance, and more preferable are poly(meth)allyl ethers of polyhydric alcohols having 2 to 40 carbon atoms and carbon numbers.
  • (Meth)acrylate of polyhydric alcohol having 2 to 40 carbons (meth)acrylamide of polyhydric alcohol having 2 to 40 carbons, polyallyl ether of polyhydric alcohol having 2 to 40 carbons, and most preferable Pentaerythritol triallyl ether.
  • the crosslinking agent (b) one type may be used alone, or two or more types may be used in combination.
  • the content (mol %) of the crosslinking agent (b) unit is the number of moles of the water-soluble vinyl monomer (a1) unit, and when other vinyl monomer (a2) is used, the total number of moles of (a1) to (a2) Based on the above, 0.001 to 5 is preferable, 0.005 to 3 is more preferable, and 0.01 to 1 is particularly preferable. Within this range, the absorption performance will be further improved.
  • the method for producing water-absorbent resin particles of the present invention comprises a cross-linked polymer (A) obtained by polymerizing a monomer composition containing the above-mentioned water-soluble vinyl monomer (a1) and a cross-linking agent (b) as essential constituent units. Polymerization step to obtain hydrous gel, kneading and chopping the hydrous gel to obtain hydrous gel particles, and gel pulverizing step, and drying and pulverizing the hydrous gel particles to classify resin particles containing a crosslinked polymer (A). Including the step of obtaining.
  • the polymerization step As the polymerization step, known solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization, etc.; JP-A-55-133413, etc.), known suspension polymerization method, reverse phase suspension polymerization (JP-B-54- 30710, JP 56-26909 A, JP 1-5808 A, etc.) to obtain a hydrogel containing a crosslinked polymer (A) (a hydrogel in which the crosslinked polymer contains water).
  • the crosslinked polymer (A) may be a single type or a mixture of two or more types.
  • the solution polymerization method is preferable, and since it is advantageous in terms of production cost that it is not necessary to use an organic solvent or the like, particularly preferable is the aqueous solution polymerization method, which has a large centrifugal retention amount, and water.
  • the aqueous solution adiabatic polymerization method is most preferable because a water-absorbent resin having a small amount of soluble components can be obtained and temperature control during polymerization is unnecessary.
  • a mixed solvent containing water and an organic solvent can be used, and as the organic solvent, methanol, ethanol, acetone, methylethylketone, N,N-dimethylformamide, dimethylsulfoxide and two or more of them can be used.
  • the amount of organic solvent used (% by weight) is preferably 40 or less, and more preferably 30 or less, based on the weight of water.
  • the polymerization concentration that is, the charged concentration (% by weight) of the water-soluble vinyl monomer (a1) and the other vinyl monomer (a2) in the polymerization liquid is not particularly limited, but the weight of the polymerization liquid, that is, the water-soluble vinyl monomer, for example, 10 to 55 are preferable, and 20 to 45 are more preferable, based on the total weight of the monomer (a1) and other vinyl monomer (a2), the solvent, the cross-linking agent (b) and the below-mentioned polymerization catalyst and polymerization control agent.
  • the productivity will be low, and if the polymerization concentration is higher than this range, side reactions such as self-crosslinking will occur, and the centrifugal retention amount of the water-absorbent resin particles obtained will be reduced.
  • radical polymerization catalysts When a catalyst is used for the polymerization, conventionally known radical polymerization catalysts can be used, and examples thereof include azo compounds [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis(2-amidinopropane) hydrochloride.
  • inorganic peroxides hydrogen peroxide, ammonium persulfate, potassium persulfate and sodium persulfate, etc.
  • organic peroxides benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, persuccinate] Oxide and di(2-ethoxyethyl)peroxydicarbonate and the like
  • redox catalyst alkali metal sulfite or bisulfite, ammonium sulfite, ammonium bisulfite and ascorbic acid and other reducing agents and alkali metal persulfate, (Combined with an oxidizing agent such as ammonium persulfate, hydrogen peroxide and organic peroxide).
  • the amount (% by weight) of the radical polymerization catalyst used is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. It is preferably from 5 to 5, more preferably from 0.001 to 2.
  • a polymerization control agent such as a chain transfer agent may be used in combination, if necessary, and specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptans, alkyl halides and thiocarbonyl compounds. Etc. These polymerization control agents may be used alone or in combination of two or more thereof.
  • the amount (% by weight) of the polymerization control agent is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. It is preferably from 5 to 5, more preferably from 0.001 to 2.
  • the polymerization may be carried out in the presence of a conventionally known dispersant or surfactant, if necessary. Further, in the case of the reverse phase suspension polymerization method, the polymerization can be carried out using a conventionally known hydrocarbon solvent such as xylene, normal hexane, and normal heptane.
  • the polymerization initiation temperature can be appropriately adjusted depending on the type of catalyst used, but is preferably 0 to 100°C, more preferably 2 to 80°C.
  • the gel crushing step is a step of kneading and cutting the hydrogel containing the crosslinked polymer (A) obtained in the above-mentioned polymerization step to obtain hydrogel particles.
  • the size (longest diameter) of the hydrogel particles after the gel crushing step is preferably 50 ⁇ m to 10 cm, more preferably 100 ⁇ m to 2 cm, and particularly preferably 500 ⁇ m to 1 cm. Within this range, the drying property in the drying step will be further improved.
  • the gel pulverization can be performed by a known method, and kneading and shredding can be performed using a pulverizing device (eg, kneader, universal mixer, uniaxial or biaxial kneading extruder, mincing machine, meat chopper, etc.).
  • a pulverizing device eg, kneader, universal mixer, uniaxial or biaxial kneading extruder, mincing machine, meat chopper, etc.
  • a crushing device equipped with a kneading and extruding mechanism for example, a uniaxial or biaxial kneading extruder, a mincing machine, etc. is preferable.
  • the solid content concentration (% by weight) of the gel in the gel crushing step is preferably 10 to 55, more preferably 25 to 45. If the solid content concentration is lower than this range, the productivity will be poor, and if it is higher than this range, the energy required for pulverization will be too high and the pulverization device may be damaged.
  • the gel temperature in the gel crushing step is preferably 70 to 120°C, more preferably 80 to 110°C. If the gel temperature is lower than this range, a cooling step is required after the polymerization step, unnecessary energy is required, and the stickiness of the gel increases, and the size of hydrous gel particles tends to increase, and the gel temperature falls within this range. If it is higher, bumping of water occurs and stable pulverization cannot be performed.
  • the hydrogel of the acid group-containing polymer obtained after the polymerization can be neutralized by mixing a base before or during the gel crushing step.
  • the preferred range of the base and the degree of neutralization used when neutralizing the acid group-containing polymer is the same as when the acid group-containing monomer is used.
  • the resin particles containing the crosslinked polymer (A) can be obtained by drying the hydrated gel particles, pulverizing and classifying them.
  • the method for drying the water-containing gel particles includes drying with hot air at a temperature of 80 to 230° C., thin film drying with a drum dryer heated to 100 to 230° C. (heating )
  • a reduced pressure drying method, a freeze drying method, an infrared drying method, decantation, filtration and the like can be applied.
  • the water content (% by weight) after drying is preferably 0 to 20, more preferably 1 to 15, particularly preferably 2 to 13, based on the weight of the crosslinked polymer (A). Most preferably, it is 3-12. Within this range, the absorption performance will be further improved.
  • the content (% by weight) of the organic solvent after drying is preferably 0 to 10, more preferably 0 to 5, and particularly preferably, based on the weight of the crosslinked polymer (A). It is 0 to 3, most preferably 0 to 1. Within this range, the absorbent performance of the water absorbent resin particles will be further improved.
  • the content and water content of the organic solvent are measured by an infrared moisture measuring instrument [for example, JE400 manufactured by KETT Co., Ltd.: 120 ⁇ 5° C., 30 minutes, atmospheric humidity before heating 50 ⁇ 10% RH, lamp specification 100V. , 40 W] and the weight loss of the measurement sample when heated.
  • an infrared moisture measuring instrument for example, JE400 manufactured by KETT Co., Ltd.: 120 ⁇ 5° C., 30 minutes, atmospheric humidity before heating 50 ⁇ 10% RH, lamp specification 100V. , 40 W] and the weight loss of the measurement sample when heated.
  • residual solvent and residual crosslinking component may be included to some extent as long as the performance is not impaired.
  • the particle size and particle size distribution of the resin particles containing the crosslinked polymer (A) are adjusted by classifying after crushing.
  • the method of crushing is not particularly limited, and a known crushing device (for example, a hammer crusher, an impact crusher, a roll crusher, a shett airflow crusher, etc.) can be used. Among these, a roll type crusher is preferable from the viewpoint of controlling the particle size distribution.
  • the sieve product after classification that is, the particles remaining on the sieve having a specific opening may be pulverized again.
  • the respective pulverizers may be the same, different pulverizers may be used, or different types of pulverizers may be used.
  • a plurality of sieves with specific openings may be used or a single sieve may be used for classification.
  • the classifying device is not particularly limited, but a known method such as a vibrating screen, an in-plane moving screen, a movable mesh type screen, a forced stirring screen, and a sonic screen is used, and a vibrating screen and an in-plane moving screen are preferably used.
  • a vibrating screen and an in-plane moving screen are preferably used.
  • some or all of the particles remaining on the sieve with a specific opening (oversize product) and particles that have passed through the sieve with a specific opening (undersize product) are removed. It is preferable.
  • the size of the sieve to be the sieve product is preferably 850 to 250 ⁇ m, more preferably 710 to 300 ⁇ m, particularly preferably 500 to 425 ⁇ m, and the size of the sieve to be the undersize product is preferably 500 to 90 ⁇ m, further preferably 425. ⁇ 106 ⁇ m, particularly preferably 300 ⁇ 150 ⁇ m. If the amount is out of these ranges, the ratio of the particles to be reused, which will be described later, increases, and not only the productivity decreases, but also the desired particle size distribution may not be obtained.
  • the weight average particle diameter ( ⁇ m) of the resin particles containing the crosslinked polymer (A) after classification is preferably 200 to 420, more preferably 250 to 410, particularly preferably 300 to 400, and most preferably 350 to 390. Is. When it is larger than this range, the absorption time by the Vortex method becomes long and the absorption amount of ion-exchanged water for 60 seconds decreases, and when it is smaller than this range, spot absorption and gel blocking are likely to occur.
  • the weight average particle diameter is determined by using a low tap test sieve shaker and a standard sieve (JIS Z8801-1:2006), Perry's Chemical Engineers Handbook 6th edition (MacGlow Hill Book Company, 1984). , Page 21). That is, the JIS standard sieve is combined from the top in the order of 1000 ⁇ m, 850 ⁇ m, 710 ⁇ m, 500 ⁇ m, 425 ⁇ m, 355 ⁇ m, 250 ⁇ m, 150 ⁇ m, 125 ⁇ m, 75 ⁇ m and 45 ⁇ m, and a saucer. About 50 g of the measurement particles are put into the uppermost sieve, and shaken for 5 minutes by a low tap test sieve shaker.
  • the weight of the measured particles on each sieve and the pan is weighed, and the total is taken as 100% by weight to obtain the weight fraction of the particles on each sieve, and this value is used as a logarithmic probability paper [the horizontal axis indicates the sieve opening (particle size ), the vertical axis is a weight fraction], and a line connecting the points is drawn to obtain a particle diameter corresponding to a weight fraction of 50% by weight, which is defined as a weight average particle diameter.
  • the content (% by weight) of is preferably 3 or less, more preferably 1 or less.
  • the content of the fine particles can be determined using the graph created when determining the above weight average particle diameter.
  • the particle size distribution index (SPAN) of the resin particles containing the crosslinked polymer (A) after classification, measured by an image analysis type particle size distribution measuring device, is 0.30 to 0.75. If it is higher than this range, the absorption amount of the ion-exchanged water absorbed for 60 seconds is deteriorated, and the drainage from the nonwoven fabric is deteriorated. Also, setting the SPAN lower than this range is not realistic because the reuse ratio of the water-absorbent resin particles becomes too high. It is preferably 0.30 to 0.65, more preferably 0.30 to 0.60.
  • the particle size distribution index indicates the degree of spread of the particle size distribution. The smaller this value, the narrower the particle size distribution and the more uniform the particle diameter.
  • SPAN can be calculated by measuring the weight fraction of 10%, the weight fraction of 50%, and the weight fraction of 90% using a logarithmic probability paper when measuring the weight average particle diameter. In the invention, the calculation can be performed in finer sections and a more accurate value can be obtained as compared with the method using the standard sieve, and therefore the calculation is performed by measuring with an image analysis type particle size distribution measuring device. For example, it can be measured using a Camsizer (registered trademark) image analysis system (Lecce Technology Co., Ltd.).
  • the particle size distribution index (SPAN) is calculated from (Equation 1).
  • the volume-based cumulative particle size here is the minimum value obtained by measuring the maximum crossover length (maximum code diameter) of the projected image of the particle from 64 directions, and the particle size (Xcmin) is measured. Particle diameters corresponding to 50% and 90% were determined.
  • Particle size distribution index (SPAN) (90% particle size in volume-based integrated particle size-10% particle size in volume-based integrated particle size)/(50% particle size in volume-based integrated particle size) (Equation 1)
  • the weight average particle diameter, the content of fine particles and the particle size distribution index (SPAN) of the water absorbent resin particles of the present invention can be adjusted even after the surface treatment step described later, but the surface treatment described below (including surface crosslinking) From the viewpoint of uniformity, it is preferable to adjust to the above range at the stage of resin particles before surface treatment.
  • the surface treatment described below including surface crosslinking
  • the water absorbent resin particles of the present invention preferably contain a hydrophobic substance (C) from the viewpoint of liquid diffusibility.
  • a hydrophobic substance (C) include a hydrophobic substance (C1) containing a hydrocarbon group and a hydrophobic substance (C2) which is a polysiloxane.
  • hydrophobic substance (C1) containing a hydrocarbon group polyolefin resin, polyolefin resin derivative, polystyrene resin, polystyrene resin derivative, wax, long chain fatty acid ester, long chain fatty acid and its salt, long chain aliphatic alcohol, Quaternary ammonium salt type surfactants, mixtures of two or more of these, and the like are included.
  • a weight of an olefin having 2 to 4 carbon atoms (ethylene, propylene, isobutylene, isoprene, etc.) as an essential constituent monomer (the content of the olefin is at least 50% by weight based on the weight of the polyolefin resin).
  • examples thereof include polymers having an average molecular weight of 1,000 to 1,000,000 (eg, polyethylene, polypropylene, polyisobutylene, poly(ethylene-isobutylene), isoprene and the like).
  • polystyrene resin derivative a polymer having a weight average molecular weight of 1,000 to 1,000,000 obtained by introducing a carboxy group (—COOH) or 1,3-oxo-2-oxapropylene (—COOCO—) into a polyolefin resin (for example, polyethylene heat Degradation products, polypropylene thermal degradation products, maleic acid modified polyethylene, chlorinated polyethylene, maleic acid modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, maleated Polybutadiene, ethylene-vinyl acetate copolymer, and ethylene-vinyl acetate copolymer maleated product ⁇ .
  • a polyolefin resin for example, polyethylene heat Degradation products, polypropylene thermal degradation products, maleic acid modified polyethylene, chlorinated polyethylene, maleic acid modified polypropylene, ethylene-acrylic acid copoly
  • polystyrene resin a polymer having a weight average molecular weight of 1,000 to 1,000,000 can be used.
  • polystyrene resin derivative a polymer having a weight average molecular weight of 1,000 to 1,000,000 (eg, styrene-containing styrene) as an essential constituent monomer (the content of styrene is at least 50% by weight based on the weight of the polystyrene derivative) is used.
  • styrene-containing styrene a polymer having a weight average molecular weight of 1,000 to 1,000,000 (eg, styrene-containing styrene) as an essential constituent monomer (the content of styrene is at least 50% by weight based on the weight of the polystyrene derivative) is used.
  • maleic anhydride copolymers, styrene-butadiene copolymers and styrene-isobutylene copolymers styrene-isobutylene copolymers.
  • waxes having a melting point of 50 to 200° C. for example, paraffin wax, beeswax, carnauba wax, beef tallow, etc.
  • the long-chain fatty acid ester is an ester of a fatty acid having 8 to 25 carbon atoms and an alcohol having 1 to 12 carbon atoms (for example, methyl laurate, ethyl laurate, methyl stearate, ethyl stearate, methyl oleate, oleic acid).
  • glycerin stearic acid monoester glycerin stearic acid diester, sucrose stearic acid monoester, sucrose stearic acid diester, and sucrose stearic acid triester are preferable from the viewpoint of the leak resistance of the absorbent article, and further.
  • Preferred are glycerin stearic acid monoester, glycerin stearic acid diester, sucrose stearic acid monoester and sucrose stearic acid diester.
  • Examples of the long-chain fatty acid and its salt include fatty acids having 8 to 25 carbon atoms (for example, lauric acid, palmitic acid, stearic acid, oleic acid, behenic acid, etc.).
  • Examples of the salt include salts with calcium, magnesium or aluminum (hereinafter, abbreviated as Ca, Mg, Al) ⁇ for example, Ca palmitate, Al palmitate, Ca stearate, Mg stearate, Al stearate, etc. ⁇ . From the viewpoint of leak resistance of the absorbent article, Ca stearate, Mg stearate, and Al stearate are preferable, and Mg stearate is more preferable.
  • long-chain aliphatic alcohols include aliphatic alcohols having 8 to 25 carbon atoms (eg, lauryl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, etc.). From the viewpoint of leakage resistance of the absorbent article, palmityl alcohol, stearyl alcohol and oleyl alcohol are preferable, and stearyl alcohol is more preferable.
  • quaternary ammonium salt type surfactant a quaternary ammonium salt containing 1 to 2 aliphatic chains having 8 to 25 carbon atoms (eg, didecyldimethylammonium chloride, benzyldimethyldecylammonium chloride, benzyldimethyl) And tetradecyl ammonium chloride, dimethyl distearyl ammonium chloride ⁇ , and preferably didecyl dimethyl ammonium chloride and dimethyl distearyl ammonium chloride.
  • Examples of the mixture of two or more of these include a mixture of a long-chain fatty acid ester and a long-chain aliphatic alcohol ⁇ for example, a mixture of sucrose stearate diester and stearyl alcohol ⁇ .
  • hydrophobic substance (C2) which is a polysiloxane, polydimethylsiloxane, polyether modified polysiloxane ⁇ polyoxyethylene modified polysiloxane and poly(oxyethylene/oxypropylene) modified polysiloxane etc. ⁇ , carboxy modified polysiloxane, epoxy Modified polysiloxanes, amino modified polysiloxanes, alkoxy modified polysiloxanes and the like and mixtures thereof are included.
  • the position of the organic group (modified group) of the modified silicone ⁇ polyether modified polysiloxane, carboxy modified polysiloxane, epoxy modified polysiloxane, amino modified polysiloxane, etc. ⁇ is not particularly limited, but the side chain of polysiloxane, polysiloxane , Both ends of the polysiloxane, one end of the polysiloxane, and both of the side chain and both ends of the polysiloxane.
  • the side chains of polysiloxane and both the side chains of polysiloxane and both ends are preferable, and the side chains and both ends of polysiloxane are more preferable, from the viewpoint of absorption characteristics.
  • the organic group (modifying group) of the polyether modified polysiloxane includes a group containing a polyoxyethylene group or a poly(oxyethylene/oxypropylene) group.
  • the content (number) of oxyethylene groups and/or oxypropylene groups contained in the polyether modified polysiloxane is preferably 2 to 40, more preferably 5 to 30, and particularly preferably, per 1 molecule of the polyether modified polysiloxane. It is 7 to 20, most preferably 10 to 15. Within this range, the absorption characteristics will be further improved.
  • the content (% by weight) of the oxyethylene group is preferably 1 to 30, more preferably 3 to 25, and particularly preferably 5 based on the weight of the polysiloxane. Is up to 20. Within this range, the absorption characteristics will be further improved.
  • the polyether-modified polysiloxane can be easily obtained from the market and, for example, the following commercial products ⁇ modified position, type of oxyalkylene ⁇ can be preferably exemplified. -Shin-Etsu Chemical Co., Ltd.
  • FZ-2110 both ends, oxyethylene and oxypropylene ⁇
  • FZ-2122 both ends, oxyethylene and oxypropylene ⁇
  • FZ-7006 both ends, oxyethylene and oxypropylene ⁇
  • FZ-2166 both ends, oxyethylene and oxypropylene ⁇
  • FZ-2164 both ends, oxyethylene and oxypropylene ⁇
  • FZ-2154 both ends, oxyethylene and oxypropylene ⁇
  • FZ-2203 both ends, oxy Ethylene and oxypropylene ⁇ and FZ-2207 ⁇ both ends, oxyethylene and oxypropylene ⁇
  • the organic group (modifying group) of the carboxy-modified polysiloxane includes a group containing a carboxy group and the like, and the organic group (modifying group) of the epoxy-modified polysiloxane includes a group containing an epoxy group etc.
  • Examples of the organic group (modifying group) of polysiloxane include a group containing an amino group (a primary, secondary, or tertiary amino group).
  • the content (g/mol) of the organic group (modifying group) of these modified silicones is preferably 200 to 11000, more preferably 600 to 8000, and particularly preferably 1000 to 4000 in terms of carboxy equivalent, epoxy equivalent or amino equivalent. Is. Within this range, the absorption characteristics will be further improved.
  • the carboxy equivalent is measured according to "16.
  • the carboxy-modified polysiloxane can be easily obtained from the market and, for example, the following commercial products ⁇ modified position, carboxy equivalent (g/mol) ⁇ can be preferably exemplified.
  • the epoxy-modified polysiloxane can be easily obtained from the market, and the following products ⁇ modified position, epoxy equivalent ⁇ can be preferably exemplified.
  • ⁇ Shin-Etsu Chemical Co., Ltd. X-22-343 ⁇ side chain, 525 ⁇ , KF-101 ⁇ side chain, 350 ⁇ , KF-1001 ⁇ side chain, 3500 ⁇ , X-22-2000 ⁇ side chain, 620 ⁇ , X-22-2046 ⁇ side chain, 600 ⁇ , KF-102 ⁇ side chain, 3600 ⁇ , X-22-4741 ⁇ side chain, 2500 ⁇ , KF-1002 ⁇ side chain, 4300 ⁇ , X-22-3000T ⁇ Side chain, 250 ⁇ , X-22-163 ⁇ both ends, 200 ⁇ , KF-105 ⁇ both ends, 490 ⁇ , X-22-163A ⁇ both ends, 1000 ⁇ , X-22-163B ⁇ both ends, 1750 ⁇ , X-22-163C ⁇ both ends, 2700 ⁇ , X
  • Amino-modified silicone can be easily obtained from the market and, for example, the following commercial products ⁇ modified position, amino equivalent ⁇ can be preferably exemplified.
  • the mixture examples include a mixture of polydimethylsiloxane and carboxyl-modified polysiloxane, and a mixture of polyether-modified polysiloxane and amino-modified polysiloxane.
  • the viscosity (mPa ⁇ s, 25° C.) of the hydrophobic substance that is a polysiloxane is preferably 10 to 5,000, more preferably 15 to 3,000, and particularly preferably 20 to 1,500. Within this range, the absorption characteristics, particularly the blood absorption characteristics, will be further improved.
  • the viscosity is JIS Z8803-1991 "Liquid viscosity" 9. Measured according to the viscosity measurement method using a cone and a cone-plate type rotational viscometer (for example, E-type viscometer whose temperature is adjusted to 25.0 ⁇ 0.5° C. (RE80L manufactured by Toki Sangyo Co., Ltd., radius 7 mm , Cone-shaped cone with an angle of 5.24 ⁇ 10 ⁇ 2 rad). ⁇
  • the HLB value of the hydrophobic substance (C) is preferably 1 to 9, more preferably 2 to 8, and particularly preferably 3 to 7. Within this range, the absorbent article has further improved resistance to leakage.
  • the HLB value means a hydrophilic-hydrophobic balance (HLB) value, and is determined by the Oda method (Introduction to New Surfactants, page 197, Takehiko Fujimoto, Sanyo Chemical Industry Co., Ltd., 1981). ..
  • the activator is preferably a hydrophobic substance which is a polysiloxane, and more preferably glycerin stearic acid monoester, glycerin stearic acid diester, sucrose stearic acid monoester, sucrose stearic acid diester, stearyl alcohol, dimethyl distearyl ammonium chloride, amino.
  • Modified polysiloxanes and carboxy modified polysiloxanes particularly preferably glycerin stearic acid diester, sucrose stearic acid monoester, sucrose stearic acid diester, stearyl alcohol, dimethyl distearyl ammonium chloride, and carboxy modified polysiloxane.
  • the content (% by weight) of the hydrophobic substance (C) is preferably 0.001 to 5.0, more preferably 0.08 to 1.0, and particularly preferably, based on the weight of the crosslinked polymer (A). Is 0.08 to 0.16. Within this range, the absorbent article is excellent in anti-fogging property, which is preferable.
  • the hydrophobic substance (C) may be added in any step such as a polymerization step, a gel crushing step, a surface treatment step of surface-treating with a surface cross-linking agent (d) described later, or the like, but the gel crushing It is preferable to add in the step or surface treatment step, and in the gel pulverizing step, a method of adding before and/or simultaneously kneading and shredding the hydrous gel is more preferable.
  • the temperature at which the hydrogel is kneaded and shredded is preferably 70 to 120°C, more preferably 80 to 110°C. If the temperature at which the hydrogel is kneaded and shredded is lower than this range, a cooling step is required after the polymerization step, which not only requires unnecessary energy but also increases the tackiness of the gel and tends to increase the size of the hydrogel particles. When the temperature at which the hydrogel is kneaded and shredded is higher than this range, bumping of water occurs and stable pulverization cannot be performed.
  • the melting point of the hydrophobic substance (C) is below the temperature of the step of adding (C).
  • the hydrophobic substance (C) is aggregated and present in the solid state, resulting in poor uniformity, and when it is in this range, the hydrophobic substance (C) is melted to cause gel surface
  • the water absorption time by the Vortex method can be shortened because the fine structure is maintained by preventing the gels from adhering to each other, the pulverization efficiency is improved, and the recycling rate of the water absorbent resin during classification can be reduced. it can.
  • the melting point of the hydrophobic substance (C) is lower than or equal to the temperature of the step of adding (C), for example, lower than or equal to the temperature at which the hydrogel is kneaded and shredded. Is below room temperature to 90° C., particularly preferably 50 to 80° C.
  • hydrophobic substance (C) having a melting point not higher than the temperature at which the hydrogel is kneaded and shredded are glycerin stearic acid monoester (melting point 78 to 81°C), glycerin stearic acid diester (melting point 72 to 74°C), and examples thereof include sugar stearates (60 to 80° C.), stearyl alcohol (59 to 60° C.), and polysiloxane hydrophobic substances (liquid at room temperature without melting point data). Further, the melting point may be lowered due to the presence of the hydrophobic substance in the mixture, or the substance may be dissolved in a solvent and added.
  • the water-absorbent resin particles of the present invention have a structure in which resin particles containing the crosslinked polymer (A) are surface-crosslinked with at least one surface crosslinking agent (d). Therefore, the production method of the present invention includes a step of surface-treating the resin particles containing the crosslinked polymer (A) with the surface crosslinking agent (d). By having a structure that has been surface-crosslinked with the surface-crosslinking agent (d), gel blocking can be suppressed, and when surface crosslinking is not carried out, the absorption amount under load and the liquid passage rate become low.
  • Known surface cross-linking agents (d) are disclosed in JP-A-59-189103, JP-A-58-180233, JP-A-61-16903, JP-A-61-212305, and JP-A-61-212305. 61-252212, JP-A-51-136588 and JP-A-61-257235 ⁇ surface cross-linking agents ⁇ polyhydric glycidyl, polyhydric alcohol, polyhydric amine, polyhydric aziridine, polyhydric isocyanate, Silane coupling agents, polyvalent metals, etc. can be used.
  • polyhydric glycidyl, polyhydric alcohol and polyhydric amine are preferred, more preferably polyhydric glycidyl and polyhydric alcohol, particularly preferably polyhydric glycidyl, most preferred.
  • Preferred is ethylene glycol diglycidyl ether.
  • the amount (% by weight) of the surface cross-linking agent (d) is not particularly limited because it can be variously changed depending on the type of the surface cross-linking agent (d), the conditions for cross-linking, the target performance, etc. From the viewpoint and the like, 0.001 to 3 is preferable, 0.005 to 2 is more preferable, and 0.01 to 1 is particularly preferable, based on the weight of the resin particles containing the crosslinked polymer (A).
  • the method of performing the surface treatment with the surface cross-linking agent (d) is a known method (for example, Japanese Patent No. 36485553, Japanese Patent Laid-Open No. 2003-165883, Japanese Patent Laid-Open No. 2005-75982, Japanese Patent Laid-Open No. 2005-95759). Can be applied.
  • the particle size may be adjusted by further sieving. Suitable ranges of the weight average particle diameter of the water-absorbent resin particles obtained after the particle size adjustment, the content of the fine particles, and the particle size distribution index (SPAN) will be described later.
  • the water-absorbent resin particles of the present invention may further contain inorganic fine particles and/or a polyvalent metal salt. Therefore, in the production method of the present invention, the resin particles containing the crosslinked polymer (A) are inorganic. A step of surface-treating with fine particles and/or a polyvalent metal salt may be included. By containing the inorganic fine particles and/or the polyvalent metal salt, the blocking resistance and the liquid passing speed of the water absorbent resin particles are improved.
  • the inorganic fine particles include silica, alumina, zirconia, titania, zinc oxide, talc and the like.
  • the polyvalent metal salt at least one metal selected from the group consisting of magnesium, calcium, zirconium, aluminum and titanium and an inorganic acid, for example, sulfuric acid, hydrochloric acid, nitric hydrobromic acid, sulfuric acid, sulfamic acid, Phosphoric acid or the like, or organic acids such as acetic acid, propionic acid, succinic acid, glycolic acid, stearic acid, lactic acid, malic acid, tartaric acid, citric acid, ascorbic acid, pamoic acid, maleic acid, hydroxymaleic acid, phenylacetic acid, Salts with glutamic acid, benzoic acid, salicylic acid, sulfanilic acid, 2-acetoxy-benzoic acid, fumaric acid, toluenesulfonic acid, methanesulfonic acid, ethane
  • the amount of the inorganic fine particles or polyvalent metal salt used is 0.01 to 2. based on the weight of the resin particles containing the crosslinked polymer (A). 0 is preferable, and 0.05 to 1.0 is more preferable.
  • the step of mixing with the inorganic fine particles and/or the polyvalent metal salt is performed before the step of performing the surface treatment with the surface cross-linking agent, after the above step, and the above step. It can be performed at any one of the above and the same time.
  • the particle size may be further adjusted after the step of performing the surface treatment with the inorganic fine particles and/or the polyvalent metal salt.
  • the water-absorbent resin particles of the present invention may contain other additives (for example, known antiseptics, antifungal agents, antibacterial agents, antioxidants, ultraviolet rays, etc. (Japanese Patent Laid-Open Nos. 2003-225565 and 2006-131767). Absorbents, colorants, fragrances, deodorants, organic fibrous substances, etc. ⁇ can also be included.
  • the content (% by weight) of the additive is preferably 0.001 to 10 based on the weight of the crosslinked polymer (A), more preferably 0.01 to 5, It is preferably 0.05 to 1, and most preferably 0.1 to 0.5.
  • crushed irregular shape flaky shape, pearl shape, rice grain shape, etc.
  • the irregular crushed shape is preferable from the viewpoint that it has good entanglement with the fibrous material for use in a disposable diaper and the like, and there is no fear of falling off from the fibrous material.
  • the apparent density (g/ml) of the water absorbent resin particles of the present invention is preferably 0.52 to 0.67, more preferably 0.55 to 0.65, and particularly preferably 0.57 to 0.63. .. Within this range, the absorbent article will have even better absorption characteristics.
  • the apparent density is measured at 25°C according to JIS K7365:1999.
  • the weight average particle diameter ( ⁇ m) of the water absorbent resin particles of the present invention is 200 to 420, preferably 250 to 410, more preferably 300 to 400, and most preferably 350 to 390.
  • the absorption time by the Vortex method becomes long, the absorption amount of ion-exchanged water for 60 seconds decreases, and the blood absorption time becomes long. If it is less than this range, spot absorption or gel blocking tends to occur.
  • the weight average particle diameter can be measured in the same manner as described above for the resin particles containing the crosslinked polymer (A), that is, the resin particles before surface crosslinking.
  • the content of fine particles is 3% by weight or less.
  • the content of fine particles can be measured in the same manner as described above.
  • the particle size distribution index (SPAN) of the water absorbent resin particles of the present invention measured by an image analysis type particle size distribution measuring device is 0.30 to 0.75, preferably 0.30 to 0.65, and more preferably It is 0.30 to 0.60. If it is higher than this range, the absorption amount of the ion-exchanged water absorbed for 60 seconds is deteriorated, and the drainage from the nonwoven fabric is deteriorated. Further, the blood absorption rate is deteriorated and the dryness is deteriorated. On the other hand, setting the SPAN lower than this range is not realistic because the reuse ratio of the water-absorbent resin particles becomes too high.
  • the particle size distribution index (SPAN) can be measured in the same manner as described above.
  • the water-absorbent resin particles of the present invention preferably have a liquid flow rate of physiological saline (saline concentration of 0.9% by weight; hereinafter the same) of 80 ml/min or more under a load of 0.71 kPa. More preferably, it is 100 ml/min or more. When it is 80 ml/min or more, the permeation rate into the absorber is high, and leakage can be reduced. The higher the upper limit is, the more preferable it is not particularly limited, but it is preferably 1000 ml/min or less from the viewpoint of being compatible with the centrifugal retention amount.
  • the liquid passing rate is measured by the following method.
  • ⁇ A measuring method of the permeation rate of physiological saline under a load of 0.71 kPa> 0.32 g of the measurement sample is immersed in 150 ml of physiological saline for 30 minutes to prepare hydrous gel particles. Then, a vertical cylinder [diameter (inner diameter) 25.4 mm, length 40 cm, graduation lines (m1) and (m2) are provided at positions of 40 ml and 60 ml from the bottom, respectively.
  • T1 the time required for the liquid level in the filtration cylindrical tube to change from the 60 ml scale line (m2) to the 40 ml scale line (m1). Minutes).
  • the temperature of the physiological saline used and the measurement atmosphere is 25°C ⁇ 2°C.
  • Flow rate (ml/min) 20 ml x 60/(T1-T2)
  • T2 is the time measured by the same operation as above in the case where there is no measurement sample.
  • the water-absorbent resin particles of the present invention preferably have an absorption time of 15-40 seconds by the Vortex method. More preferably, it is 20 to 35 seconds. If it is slower than 15 to 40 seconds, oblique leakage of the absorbent body is likely to occur, and if it is faster than this range, spot absorption is excessive and the permeation speed becomes slow.
  • the absorption time by the Vortex method is measured by the following method.
  • ⁇ Method of measuring absorption time by Vortex method Put 50 g of physiological saline in a 100 ml beaker and adjust the temperature to 25 ⁇ 2°C. Next, a stirrer piece (length 30 mm, center diameter 8 mm, end diameter 7 mm) is placed in the center of the beaker, and physiological saline is stirred at 600 rpm. 2.000 g of the measurement sample is put in the vicinity of the beaker wall surface. In addition, the measurement sample to be used is adjusted by using a sample splitter or the like so as to be sampled in a state of its typical particle size.
  • the time (seconds) until the measurement is started from the time when the measurement sample is added and the level of the liquid mixture of the measurement sample and physiological saline becomes flat (the point at which diffused light from the level disappears) Is the absorption time.
  • the test is conducted at 25 ⁇ 3° C. and 60 ⁇ 5 RH%.
  • the water-absorbent resin particles of the present invention preferably have a physiological saline retention of 25 to 45 g/g. Within this range, the absorber can sufficiently retain the liquid, and can be compatible with the liquid passage rate. The amount of physiological saline retained by centrifugation is measured by the following method.
  • Centrifuge retention amount (g/g) (h1)-(h2)
  • the temperature of the physiological saline used and the measurement atmosphere is 25°C ⁇ 2°C.
  • the weight of the tea bag after centrifugal dehydration is measured in the same manner as above except that the measurement sample is not used, and is designated as (h2).
  • the water-absorbent resin particles of the present invention preferably have an absorbed amount of physiological saline under a load of 15 to 30 g/g. Within this range, the liquid can be sufficiently absorbed even when the absorber is placed under a load.
  • the amount of physiological saline absorbed under load is measured by the following method.
  • ⁇ Measurement method of physiological saline absorption under load In a cylindrical plastic tube (inner diameter: 25 mm, height: 34 mm) with a nylon mesh of 63 ⁇ m (JIS Z8801-1:2006) attached to the bottom, a 30-mesh sieve and a 60-mesh sieve were used to measure 250-500 ⁇ m. After weighing 0.16 g of the measurement sample sieved in the range and arranging the cylindrical plastic tube vertically so that the measurement sample has a substantially uniform thickness on the nylon net, a weight (weight: 210.6 g, outer diameter: 24.5 mm,).
  • the water-absorbent resin particle of the present invention preferably absorbs ion-exchanged water for 60 seconds and has an absorption amount of 50 to 100 g/g. Within this range, the liquid is quickly drawn from the nonwoven fabric at a high swelling ratio and the dryness is enhanced.
  • the absorbed amount of ion-exchanged water absorbed for 60 seconds is measured by the following method.
  • the water absorbent resin particles of the present invention preferably have a blood absorption amount of 10 to 30 g/g, more preferably 12 to 30 g/g. If it is lower than this range, the amount of blood absorbed is low and the dryness may deteriorate. If it is higher than this range, the dryness is improved, but problems such as swelling of the absorbent body may occur.
  • the blood absorption amount is measured by the following method.
  • 15.0 g of horse blood (horse EDTA whole blood, manufactured by Japan Lamb Co., Ltd.) is prepared in a 100-ml beaker with a flat bottom defined in JIS R 3503, and a nylon mesh bag containing a measurement sample is immersed for 15 minutes. After 15 minutes, the nylon mesh is taken out and suspended for 1 minute to remove excess blood, and the weight (h3) is measured to obtain the blood absorption amount from the following formula.
  • the temperature of the horse blood and the measurement atmosphere used is 25°C ⁇ 2°C.
  • the water-absorbent resin particles of the present invention preferably have a blood absorption time of 120 seconds or less, more preferably 30 to 100 seconds. If it is higher than this range, the dryness becomes poor, and if it is lower than this range, spot absorption is excessive and the absorption speed to the absorber becomes slower, which may result in poor dryness.
  • the blood absorption time is measured by the following method.
  • the term “no fluidity” means that there is no blood that flows independently of the water-absorbent resin particles when the bottom surface of the screw vial is tilted at 45 degrees with respect to the horizontal.
  • the temperature of the horse blood and the measurement atmosphere used is 25°C ⁇ 2°C.
  • the water-absorbent resin particles of the present invention constitute, for example, an absorbent body used for sanitary materials such as paper diapers, sanitary napkins, incontinence pads, and medical pads, and are suitably used for absorbent articles provided with the absorbent body. It is suitably used particularly for for absorbing menses or blood.
  • the absorbent article for absorbing blood or menstrual blood for example, a sanitary napkin, a tampon, a medical sheet, a drip absorbent, a wound protective material, a wound healing material, a surgical liquid waste treatment agent and the like have blood absorption characteristics. Included items required.
  • An absorbent body using the water-absorbent resin particles of the present invention has an excellent absorption amount of body fluid such as menstrual blood or blood, an excellent liquid uptake rate, and a dry touch property under pressure after absorption.
  • the absorber of the present invention contains the water absorbent resin particles of the present invention and a nonwoven fabric.
  • the nonwoven fabric used in the present invention is not particularly limited as long as it is a known nonwoven fabric, but from the viewpoint of liquid permeability, flexibility and strength when used as an absorber, polyolefin such as polyethylene (PE) and polypropylene (PP). Fibers, polyester fibers such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyamide fibers such as nylon, rayon fibers, non-woven fabrics made of other synthetic fibers, cotton, silk, Non-woven fabrics produced by mixing hemp, pulp (cellulose) fibers, and the like are included.
  • PET polyethylene terephthalate
  • PET polytrimethylene terephthalate
  • PEN polyethylene naphthalate
  • polyamide fibers such as nylon, rayon fibers, non-woven fabrics made of other synthetic fibers, cotton, silk, Non-woven fabrics produced by mixing hemp, pulp (cellulose) fibers, and the like are included.
  • non-woven fabrics made of synthetic fibers are preferable, and more preferably non-woven fabrics made of rayon fibers, polyolefin fibers, and polyester fibers, from the viewpoint of increasing the strength of the absorber.
  • These non-woven fabrics may be a single non-woven fabric of the above fibers or a non-woven fabric in which two or more kinds of fibers are combined.
  • the non-woven fabric used in the present invention is a non-woven fabric that is appropriately bulky and has a large basis weight from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning properties to the absorber and accelerating the liquid permeation rate of the absorber.
  • the basis weight is preferably 5 to 300 g/m 2 , more preferably 8 to 200 g/m 2 , even more preferably 10 to 100 g/m 2 , and even more preferably 11 to 50 g/m 2.
  • the thickness of the nonwoven fabric is preferably 20 to 800 ⁇ m, more preferably 50 to 600 ⁇ m, and further preferably 80 to 450 ⁇ m.
  • the absorbent layer contains water-absorbent resin particles, a non-woven fabric and optionally an adhesive, and further contains a hydrophilic fiber such as fluff pulp, if desired.
  • the water-absorbent resin particles are evenly dispersed on the coated non-woven fabric, and if necessary, the non-woven fabric coated with the adhesive is further overlaid, and if necessary, heated under pressure. It is also formed by uniformly dispersing the mixed powder of the water-absorbent resin particles and the adhesive on the non-woven fabric, stacking the non-woven fabrics, and heating the mixture near the melting temperature of the adhesive, if necessary, by heating under pressure. To be done.
  • Fluff pulp can be evenly distributed between the non-woven fabric and the water-absorbent resin particles.
  • the absorbent layers may be stacked to form two or more layers.
  • Examples of the adhesive used in the present invention include rubber-based adhesives such as natural rubber-based, butyl rubber-based, and polyisoprene; styrene-isoprene block copolymer (SIS), styrene-butadiene block copolymer (SBS), Styrene-based elastomer adhesives such as styrene-isobutylene block copolymer (SIBS) and styrene-ethylene-butylene-styrene block copolymer (SEBS); ethylene-vinyl acetate copolymer (EVA) adhesives; ethylene-acrylic acid Ethylene-acrylic acid derivative copolymer adhesives such as ethyl copolymer (EEA) and ethylene-butyl acrylate copolymer (EBA); ethylene-acrylic acid copolymer (EAA) adhesives; copolymerized nylon and dimer Polyamide adhesives such as acid-based polyamides
  • an ethylene-vinyl acetate copolymer adhesive, a styrene-based elastomer adhesive from the viewpoint that the adhesive strength is strong and peeling of the nonwoven fabric in the water-absorbent sheet structure and the dissipation of the water-absorbent resin particles can be prevented
  • Polyolefin adhesives and polyester adhesives are preferred. These adhesives may be used alone or in combination of two or more.
  • the melting temperature (softening temperature) of the adhesive is 60 to 180 from the viewpoint of sufficiently fixing the water-absorbent resin particles to the nonwoven fabric and preventing thermal deterioration and deformation of the nonwoven fabric.
  • C. is preferable, 70 to 150.degree. C. is more preferable, and 75 to 125.degree. C. is further preferable.
  • the content ratio of the adhesive in the absorbent body is preferably 0.05 to 2.0 times, more preferably 0.08 to 1.5 times the content (mass basis) of the water absorbent resin particles, and more preferably 0. The range of 1 to 1.0 times is more preferable. From the viewpoint of preventing peeling of the non-woven fabric and dissipation of the water-absorbent resin particles by sufficient adhesion and improving the shape retention of the absorber, the content ratio of the adhesive is preferably 0.05 times or more, and the adhesion becomes strong.
  • the content ratio of the adhesive is preferably 2.0 times or less from the viewpoint of avoiding the swelling inhibition of the water-absorbent resin particles due to excess and improving the permeation rate of the absorber and the liquid leakage.
  • the weight% of the water-absorbent resin particles of the present invention and the above-mentioned non-woven fabric is 40% by weight or more based on the weight of the water-absorbent resin particles ⁇ weight of water-absorbent resin particles/(weight of water-absorbent resin particles+weight of non-woven fabric) ⁇ . Is more preferable, 60% by weight or more is more preferable, and 80% by weight is particularly preferable.
  • the above-mentioned absorber constitutes an absorbent article ⁇ paper diaper, sanitary napkin, etc. ⁇ .
  • a method of manufacturing an absorbent article, etc. is the same as the known one (except JP-A-2003-225565, JP-A-2006-131767, JP-A-2005-097569, etc.), except that the above-mentioned absorber is used. Is the same.
  • the gel was spread on a SUS bat (width 59 cm square, depth 5 cm) and dried at 150° C. for 45 minutes in a safety oven manufactured by ESPEC to obtain a dried body.
  • the dried material was crushed for the first time by a roll mill (clearance 0.4 mm), and then classified by a sieve composed of openings of 500 ⁇ m and openings of 150 ⁇ m in order from the top, and then the particles of 500 ⁇ m or more were roll-milled (
  • the second pulverization was performed with a clearance of 0.2 mm), and the second classification was performed using a sieve composed of openings 850 ⁇ m and openings 150 ⁇ m in order from the top. Particles between 500 ⁇ m and 150 ⁇ m in the first classification and particles between 850 ⁇ m and 150 ⁇ m in the second classification were mixed to obtain a resin particle (A-1) containing a crosslinked polymer.
  • Example 1 While stirring 100 parts of the resin particles (A-1) at high speed (high-speed stirring turbulator manufactured by Hosokawa Micron: rotation speed 2000 rpm), 0.06 part of ethylene glycol diglycidyl ether as a surface cross-linking agent and 1 part of propylene glycol 0.0 parts, 2.4 parts of water, 0.9 parts of Clevozol 30CAL25 (manufactured by Merck) as inorganic fine particles were added and mixed uniformly, and then dried by standing at 130° C. for 30 minutes, Water-absorbent resin particles (P-1) were obtained by passing through a sieve having an opening of 850 ⁇ m. The weight average particle diameter of (P-1) was 384 ⁇ m, and SPAN was 0.60.
  • Resin particles (A-2) containing a crosslinked polymer were obtained in the same manner except that the particles were mixed with particles having a particle size of 300 ⁇ m and 150 ⁇ m in the second classification. Immediately after shredding, the temperature of the gel was measured and found to be 79°C.
  • Example 2 Water-absorbent resin particles (P-2) were obtained in the same manner as in Example 1 except that the resin particles (A-1) were changed to (A-2).
  • the weight average particle diameter of (P-2) was 211 ⁇ m, and SPAN was 0.61.
  • Example 3 Water-absorbent resin particles (P-3) were obtained in the same manner as in Example 1, except that the resin particles (A-1) were changed to (A-3).
  • the weight average particle diameter of (P-3) was 387 ⁇ m, and SPAN was 0.32.
  • Example 4 While stirring 100 parts of the resin particles (A-4) at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), 0.06 part of ethylene glycol diglycidyl ether as a surface cross-linking agent and 1 part of propylene glycol 0.2 parts of water, 0.01 parts of a carboxy-modified polysiloxane (X-22-3701E (manufactured by Shin-Etsu Chemical Co., Ltd.)) as a hydrophobic substance (C) was added, and mixed uniformly. After that, it is dried by allowing it to stand at 130° C.
  • high-speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm high-speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm
  • ethylene glycol diglycidyl ether as a surface cross-linking agent
  • propylene glycol 0.2 parts of water 0.01 parts of a carboxy-modified
  • ⁇ Production Example 5 Resin particles containing a crosslinked polymer in the same manner as in Production Example 1 except that 0.124 parts of glycerin distearate ester was changed to 0.124 parts of magnesium stearate (manufactured by Fuji Film Wako Pure Chemical Industries, melting point 120° C.) ( A-5) was obtained. The temperature of the gel was measured immediately after chopping and it was 81°C.
  • Example 5 Water-absorbent resin particles (P-5) were obtained in the same manner as in Example 1, except that the resin particles (A-1) were changed to (A-5).
  • the weight average particle diameter of (P-5) was 390 ⁇ m, and SPAN was 0.64.
  • Example 6 While stirring 100 parts of the resin particles (A-1) at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: rotational speed 2000 rpm), 0.18 parts of ethylene glycol diglycidyl ether as a surface cross-linking agent and 1 part of propylene glycol 0.8 parts, water 4.8 parts, and a mixed solution of 0.3 parts of Clevozol 30CAL25 (manufactured by Merck) as inorganic fine particles, 0.8 parts of propylene glycol, 1.6 parts of water, and sodium aluminum sulfate as a polyvalent metal salt.
  • high-speed stirring turbulizer manufactured by Hosokawa Micron: rotational speed 2000 rpm 0.18 parts of ethylene glycol diglycidyl ether as a surface cross-linking agent and 1 part of propylene glycol 0.8 parts, water 4.8 parts, and a mixed solution of 0.3 parts of Clevozol 30CAL25 (manufactured by Merck) as inorganic fine particles,
  • a mixed solution of 0.30 parts of hexahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added at the same time, and after uniformly mixing, the mixture was dried by standing at 130° C. for 30 minutes, and then sieved with a sieve having an opening of 850 ⁇ m. By passing through, water-absorbent resin particles (P-6) were obtained.
  • the weight average particle diameter of (P-6) was 387 ⁇ m, and SPAN was 0.61.
  • the gel was spread on a SUS bat (width 59 cm square, depth 5 cm) and dried at 150° C. for 45 minutes in a safety oven manufactured by ESPEC to obtain a dried body.
  • the dried product was crushed for the first time by a roll mill (clearance: 0.3 mm), and then classified by a sieve composed of openings 600 ⁇ m and openings 300 ⁇ m in order from the top, and then particles of 600 ⁇ m or more were roll-milled (
  • the second pulverization was performed with a clearance of 0.2 mm), and the second classification was performed using a sieve composed of openings 850 ⁇ m and openings 150 ⁇ m in order from the top. Particles between 600 ⁇ m and 300 ⁇ m in the first classification and particles between 850 ⁇ m and 150 ⁇ m in the second classification were mixed to obtain a resin particle (A-6) containing a crosslinked polymer.
  • Example 7 While stirring 100 parts of the resin particles (A-6) at high speed (high-speed stirring turbulator manufactured by Hosokawa Micron: rotation speed 2000 rpm), 0.01 part of ethylene glycol diglycidyl ether as a surface cross-linking agent and 1 part of propylene glycol A mixed solution of 0.0 parts and 2.1 parts of water was added and uniformly mixed, and then dried by standing at 130° C. for 30 minutes to obtain 0.2 parts of Aerosil 200 (manufactured by Nippon Aerosil) as inorganic fine particles. Was mixed and passed through a sieve having an opening of 850 ⁇ m to obtain water absorbent resin particles (P-7). The weight average particle diameter of (P-7) was 412 ⁇ m, and SPAN was 0.71.
  • ⁇ Production Example 7 500 parts of hydrous gel (1) prepared in the same manner as in Production Example 1 was shredded at a gel temperature of 90° C. with a mincing machine (ROYAL 12VR-400K, plate diameter 8 mm) to obtain a 48.5% sodium hydroxide aqueous solution 128. .42 parts was added and mixed, and once kneaded and shredded, 0.124 parts of glycerin distearate ester (manufactured by Fuji Film Wako Pure Chemical Industries, melting point 73° C.) was added and mixed as a hydrophobic substance (C). Then, the mixture was kneaded and shredded three times. The temperature of the gel was measured immediately after chopping and it was 82°C.
  • a mincing machine ROYAL 12VR-400K, plate diameter 8 mm
  • the gel was spread on a SUS bat (width 59 cm square, depth 5 cm) and dried at 150° C. for 45 minutes in a safety oven manufactured by ESPEC to obtain a dried body.
  • the dried product is crushed with a roll mill (clearance 0.3 mm), and is classified with a sieve composed of openings 710 ⁇ m and openings 150 ⁇ m in order from the top, particles between 710 ⁇ m and 150 ⁇ m are collected, and a crosslinked polymer is contained. Resin particles (A-7) were obtained.
  • Example 1 The same operation as in Example 1 was carried out except that the resin particles (A-1) were changed to (A-7) to obtain comparative water absorbent resin particles (R-1).
  • the weight average particle diameter of (R-1) was 398 ⁇ m, and SPAN was 0.99.
  • a mincing machine ROYAL 12VR-400K, plate diameter 8 mm
  • the gel was spread on a SUS bat (width 59 cm square, depth 5 cm) and dried at 150° C. for 45 minutes in a safety oven manufactured by ESPEC to obtain a dried body.
  • the dried product is crushed with a roll mill (clearance 0.4 mm), and is classified with a sieve composed of openings 710 ⁇ m and openings 300 ⁇ m in order from the top, particles between 710 ⁇ m and 300 ⁇ m are collected, and a crosslinked polymer is contained. Resin particles (A-8) were obtained.
  • Example 2 The same operation as in Example 1 was carried out except that the resin particles (A-1) were changed to (A-8) to obtain comparative water absorbent resin particles (R-2).
  • the weight average particle diameter of (R-2) was 461 ⁇ m, and SPAN was 0.72.
  • ⁇ Production Example 9 500 parts of hydrous gel (1) prepared in the same manner as in Production Example 1 was shredded at a gel temperature of 90° C. with a mincing machine (ROYAL 12VR-400K, plate diameter 8 mm) to obtain a 48.5% sodium hydroxide aqueous solution 128. .42 parts was added and mixed, and once kneaded and shredded, 0.124 parts of glycerin distearate ester (manufactured by Fuji Film Wako Pure Chemical Industries, melting point 73° C.) was added and mixed as a hydrophobic substance (C). Then, the mixture was kneaded and shredded three times. The temperature of the gel was measured immediately after chopping and it was 82°C.
  • a mincing machine ROYAL 12VR-400K, plate diameter 8 mm
  • the gel was spread on a SUS bat (width 59 cm square, depth 5 cm) and dried at 150° C. for 45 minutes in a safety oven manufactured by ESPEC to obtain a dried body.
  • the dried product was pulverized with a roll mill (clearance 0.2 mm), and classified with a sieve having an opening of 300 ⁇ m to collect particles of 300 ⁇ m or less to obtain resin particles (A-9) containing a crosslinked polymer.
  • ⁇ Production Example 10 500 parts of the hydrogel (1) prepared in the same manner as in Production Example 1 was subdivided into about 1 mm square pieces with scissors, and 128.42 parts of a 48.5% sodium hydroxide aqueous solution was added and mixed. The gel was spread on a SUS bat (width 59 cm square, depth 5 cm) and dried at 150° C. for 55 minutes in a safety oven manufactured by ESPEC to obtain a dried body.
  • the dried material was crushed for the first time by a roll mill (clearance 0.4 mm), and then classified by a sieve composed of openings of 500 ⁇ m and openings of 150 ⁇ m in order from the top, and then the particles of 500 ⁇ m or more were roll-milled (
  • the second pulverization was performed with a clearance of 0.2 mm), and the second classification was performed using a sieve composed of openings 850 ⁇ m and openings 150 ⁇ m in order from the top. Particles between 500 ⁇ m and 150 ⁇ m in the first classification and particles between 850 ⁇ m and 150 ⁇ m in the second classification were mixed to obtain a resin particle (A-10) containing a crosslinked polymer.
  • Example 5 The same operation as in Example 4 was carried out except that the resin particles (A-4) were changed to (A-10) to obtain comparative water absorbent resin particles (R-5).
  • the weight average particle diameter of (R-5) was 385 ⁇ m, and SPAN was 0.69.
  • reaction solution was prepared, and nitrogen was flowed into this reaction solution for 30 minutes to degas. Then, 2.67 parts of a 10% sodium persulfate aqueous solution and 2.22 parts of a 0.1% ascorbic acid aqueous solution were added to the reaction solution while stirring. Polymerization started after about 1 minute, the polymerization was continued while stirring at 25 to 95° C. for 30 minutes, and after 30 minutes, the hydrogel (3) was taken out.
  • the hydrogel (3) was cut into pieces of about 5 mm, spread on a wire mesh with an opening of 300 ⁇ m, and dried with hot air at 180° C. for 50 minutes to obtain a dried body.
  • the dried product was pulverized with a roll mill (clearance 0.3 mm) and classified with a sieve having openings 600 ⁇ m and openings 180 ⁇ m in order from the top. 20 parts of particles having passed through a mesh of 180 ⁇ m were agitated with 30 parts of 90° C. water in a jacketed container capable of high-speed stirring for 3 minutes to granulate, put on a 300 ⁇ m wire net, and dried at 150° C. for 2 hours. ..
  • the dried product was pulverized with a roll mill (clearance 0.4 mm), and was classified with a sieve composed of openings 850 ⁇ m, 600 ⁇ m, 300 ⁇ m, 150 ⁇ m, 90 ⁇ m, and 45 ⁇ m in order from the top, and 0.57% of particles of 850 ⁇ m or more, 600-850 ⁇ m particles are mixed so as to contain 15%, 300-600 ⁇ m particles are 68.62%, 150-300 ⁇ m particles are 15%, 90-150 ⁇ m particles are 0.81%, and a cross-linked polymer is contained. Resin particles (A-12) were obtained.
  • Absorbent articles-1 and absorbent articles-2 were prepared in the following manner using the water-absorbent resin particles obtained in Examples 1 to 7 and Comparative Examples 1 to 7, respectively, and surface nonwoven fabrics were prepared.
  • the dryness (whitening time), the oblique leak test (leakage amount), the amount of reversion, and the absorption time test (absorption time) were evaluated.
  • a styrene-butadiene-styrene copolymer (SBS; softening point 85° C.) was used as an adhesive on a non-woven fabric A (unit weight 40 g/m 2 , thickness 0.5 mm, made of polypropylene) chopped into a rectangle of 10 cm ⁇ 40 cm.
  • a hot-melt coating machine (AD41, manufactured by Nordson) was applied uniformly so that the basis weight was 2.85 g/m 2 .
  • the evaluation sample ⁇ respective water-absorbent resin particles ⁇ 11.6 g (weight per unit area 290 g/m 2 ) was evenly spread on the surface coated with the adhesive, and then the non-woven fabric B was cut into a rectangle of 10 cm ⁇ 40 cm (weight per unit area). 45 g/m 2 , thickness 7.0 mm, made of polypropylene).
  • a sheet of non-woven fabric A-water-absorbent resin-non-woven fabric B was sandwiched between acrylic plates (thickness: 4 mm) and pressed at a pressure of 5 kg/cm 2 for 30 seconds.
  • the acrylic plate on the non-woven fabric A side is removed, the adhesive, the water-absorbent resin and the non-woven fabric B are laminated in the same manner as described above, sandwiched between the acrylic plates again, and pressed at a pressure of 5 kg/cm 2 for 30 seconds, Each absorber using each water-absorbent resin particle was prepared.
  • a polyethylene sheet (polyethylene film UB-1 manufactured by Tama Poly Co., Ltd.) is arranged on one surface of each of the above-mentioned absorbers, and a non-woven fabric (basis weight 20 g/m 2 , Ertus Guard manufactured by Asahi Kasei Corporation) is arranged on the opposite surface of each absorbent body.
  • a sex article-1 was prepared.
  • Each absorbent article-1 was placed on a table having an inclination of 40 degrees so that the long side was along the inclined surface, and 2 cm of the upper side was fixed to the table with gum tape. 80 ml of physiological saline was dropped from a position of 1 cm in height from the upper end to the center position on the left and right, 10 cm from the upper end, and the weight of the physiological saline leaked from the lower end of the absorber was measured to obtain the leak amount (g). ..
  • Each absorbent article-2 was prepared by arranging a polyethylene sheet (polyethylene film UB-1 manufactured by Tama Poly Co., Ltd.) on the back surface and a non-woven fabric (basis weight 20 g/m 2 , Eltas Guard manufactured by Asahi Kasei Corporation) on the front surface.
  • a polyethylene sheet polyethylene film UB-1 manufactured by Tama Poly Co., Ltd.
  • a non-woven fabric basic weight 20 g/m 2 , Eltas Guard manufactured by Asahi Kasei Corporation
  • weight average particle size, particle size distribution index (SPAN) measured by an image analysis type particle size distribution measuring device blood absorption amount, blood absorption time, physiological saline flow rate under a load of 0.71 kPa , Absorption time by Vortex method, Apparent density, Centrifuge retention of physiological saline, Absorption of physiological saline under load, Absorption of ion-exchanged water for 60 seconds, Dryability test (whitening time) by draining, oblique leakage Tables 1 and 2 show the test (leakage amount), absorption time, blood dryness evaluation (blood reversion amount), and blood absorption time evaluation results.
  • PPN particle size distribution index
  • the absorbent resin particles of the present invention have a weight average particle diameter and a particle size distribution index (SPAN) in a specific range, and the absorbent resin particles are Both the amount of reversion and the evaluation result of the absorption time related to the dryness are excellent. It is also found that the absorbent resin particles of the present invention are superior to the comparative examples in terms of blood absorption amount and blood absorption time of the absorbent resin particles themselves.
  • the water-absorbent resin particles of the present invention have a specific weight average particle size range, a narrow particle size distribution (low particle size distribution index SPAN), and a physiological saline flow rate of 80 ml/min under a load of 0.71 kPa.
  • the absorption time by the Vortex method is within a specific range.
  • the absorption amount of ion-exchanged water for 60 seconds is high and the whitening time is short, so the liquid from the nonwoven fabric under high swelling ratio It can be said that it is excellent in dryness because it is found to have good pullability.
  • the absorption time by the Vortex method is short, the amount of leakage is small, and when the flow rate of physiological saline is 80 ml/min or more under a load of 0.71 kPa, the absorption time of the absorber is short, and It can be said that leakage is reduced when used.
  • the comparative example 1 has a high particle size distribution index SPAN, a low blood absorption amount, a large reversion amount, a 60-second absorption amount of ion-exchanged water, and a low whitening time. ing.
  • Comparative Example 2 since the weight average particle size is too large, the blood absorption amount is low and the blood absorption time is long, the reversion amount is further deteriorated, and the absorption amount by the Vortex method is long, the amount of leakage is large, Exchanged water is absorbed for 60 seconds and the absorbed amount is low, and the whitening time is long.
  • Comparative Example 3 since the weight average particle size is too small, spot absorption and gel blocking are likely to occur.
  • Example 1 in which a hydrophobic substance (C) having a melting point equal to or lower than the gel temperature for kneading and shredding in the gel crushing step is added has a low particle size distribution index SPAN, It can be seen that the process has the effect of lowering the particle size distribution index. In other words, when the same particle size distribution index is obtained by the sieving operation, the recycling rate in Example 1 can be reduced as compared with Examples 4 and 5, and the productivity is high.
  • C hydrophobic substance having a melting point equal to or lower than the gel temperature for kneading and shredding in the gel crushing step
  • the water-absorbent resin particles of the present invention can be applied not only to an absorbent body containing water-absorbent resin particles and a nonwoven fabric, but also to an absorbent body containing water-absorbent resin particles and a fibrous material. It is useful for absorbent articles provided (paper diapers, sanitary napkins, medical blood-holding agents, etc.).
  • absorbent articles for menstrual blood or blood absorption such as sanitary napkins, tampons, medical sheets, drip absorbents, wound protection materials, wound healing materials, surgical waste liquid treatment agents, etc. Useful for.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided are water-absorbent resin particles that quickly draw liquid from a nonwoven fabric and do not pose the problem of liquid leakage even if the content of hydrophilic fibers in an absorber is small, and water-absorbent resin particles having high absorption performance for blood capable of actualizing an excellent dry feeling when used in an absorbent article, an absorber and an absorbent article containing the same, and a method for producing water-absorbent resin particles. The present invention is water-absorbent resin particles having a structure in which resin particles containing a crosslinked polymer (A) having as essential structural units a water-soluble vinyl monomer (a1) and a crosslinking agent (b) are surface crosslinked by at least one surface crosslinking agent (d), wherein the water-absorbent resin particles have a weight average particle size of 200-420 μm and a particle size distribution index (SPAN), measured by an image analysis-type particle size distribution measurement device, of 0.30-0.75.

Description

吸水性樹脂粒子及びその製造方法Water absorbent resin particles and method for producing the same
 本発明は吸水性樹脂粒子及びその製造方法に関するものである。 The present invention relates to water absorbent resin particles and a method for producing the same.
 紙おむつ、生理用ナプキン、失禁パット等の衛生材料には、パルプ等の親水性繊維とアクリル酸(塩)等を主原料とする吸水性樹脂粒子との混合物が吸収体として幅広く利用されている。近年の消費者は、より快適性を求める傾向にあり、よりドライ性が高くかつより薄型の衛生材料へと需要が遷移しており、これに伴ってドライ性が高いものが望まれ、また親水性繊維の使用量低減が望まれるようになってきた。そのため、これまで親水性繊維が担ってきた初期の高い吸収速度や液拡散性の役割を吸水性樹脂粒子それ自体に求められるようになった。また、吸収体の表面ドライ性を向上させるために、吸水性樹脂粒子自体の吸水速度だけでなく、吸収性物品に使用されている表面不織布からの液引きの速い吸水性樹脂粒子が強く望まれている。 For hygiene materials such as disposable diapers, sanitary napkins and incontinence pads, a mixture of hydrophilic fibers such as pulp and water-absorbent resin particles mainly containing acrylic acid (salt) is widely used as an absorber. Consumers in recent years tend to demand more comfort, and the demand is shifting to sanitary materials having higher dryness and thinner thickness, and accordingly, those having high dryness are desired and hydrophilic It has been desired to reduce the amount of use of the functional fiber. Therefore, it has become necessary for the water-absorbent resin particles themselves to have the role of high initial absorption rate and liquid diffusibility that the hydrophilic fibers have been playing so far. Further, in order to improve the surface dryness of the absorbent body, not only the water absorption rate of the water-absorbent resin particles themselves, but also the water-absorbent resin particles with fast liquid drawing from the surface nonwoven fabric used in the absorbent article are strongly desired. ing.
 吸水性樹脂粒子の吸水速度を向上させる手段としては、吸水性樹脂の表面積を物理的に大きくする方法が一般的である。例えば、吸水性樹脂にマイクロバルーンを添加する方法(特許文献1)や篩分工程で吸水性樹脂粒子の粒度を小さくすることで吸水速度を向上させる方法(特許文献2)等が提案されている。しかし、これらの吸水性樹脂粒子を吸収性物品(紙おむつ等)に適用した吸収体において、親水性繊維の含有量が吸水性樹脂粒子の含有量よりも多い場合には問題ないが、親水性繊維の含有量が少ないもしくは含有しない場合には、不織布からの液引きが遅く、漏れが発生する問題があった。 As a means for improving the water absorption rate of the water absorbent resin particles, a method of physically increasing the surface area of the water absorbent resin is generally used. For example, a method of adding microballoons to the water absorbent resin (Patent Document 1), a method of improving the water absorption rate by reducing the particle size of the water absorbent resin particles in the sieving process (Patent Document 2), and the like have been proposed. .. However, in an absorbent body in which these water-absorbent resin particles are applied to absorbent articles (paper diapers, etc.), there is no problem if the content of hydrophilic fibers is higher than the content of water-absorbent resin particles. When the content of (1) is small or not contained, there is a problem that liquid is slowly drawn from the nonwoven fabric and leakage occurs.
 一方、粒度分布をある範囲に制御することで吸水性樹脂の性能が向上すること(特許文献3、4、5)が知られているが、ここで開示されている粒度分布範囲ではなお不織布からの液引きが遅く問題があり、漏れも改善されていない。また、もっと狭い粒度分布の吸水性樹脂は、生産性に問題があるためにこれまでに検討されてこなかった。 On the other hand, it is known that the performance of the water absorbent resin is improved by controlling the particle size distribution within a certain range (Patent Documents 3, 4, and 5). There is a problem with the slow drainage and the leak is not improved. Further, a water-absorbent resin having a narrower particle size distribution has not been studied so far because of a problem in productivity.
 また、吸収する対象が血液の場合、尿と違いタンパク質成分や血球成分等の固形分が多いために水分が少なく、経血の場合は血液と比べてさらに水分が少ないため、尿が吸収対象である場合と比べて吸水性能が低くなるという問題がある。 When blood is absorbed, unlike urine, it contains less solids such as protein and blood cells, and when it is menstrual blood, it has less water than blood. There is a problem that the water absorption performance is lower than in some cases.
 従来、血液の吸収性能を向上させる技術として、吸水性樹脂粒子の表面にカオリナイトを付着させ、吸水性樹脂粒子表面が湿潤することによる血液吸収阻害を改善することによって、血液に対して優れた吸収性能を有する血液吸収材料の製造方法が知られている(特許文献6、7参照)。また、吸水性樹脂粒子に水溶性カチオン性ポリマーを付着させ、血液中の赤血球を凝集させることによって、赤血球が吸水性樹脂粒子表面に堆積することによる皮膜形成を抑制し、優れた血液吸収性能を有する生理用品が知られている(特許文献8参照)。その他、特定の溶解度パラメータを持つ添加剤を添加することで血液吸収量を増やす方法(特許文献9参照)、吸水性樹脂粒子の粒度分布を2山にすることで血液の繰り返し吸収性を向上させる方法(特許文献10参照)等が開示されている。しかしながら、上記従来の技術では、血液に対して吸収性能が十分に発揮されずに吸収体のドライ感に問題があるのみならず、特定の粒度分布にする場合には、そのために特殊な生産プロセスが必要になる等、生産性にも課題があった。 Conventionally, as a technique for improving the absorption performance of blood, by attaching kaolinite to the surface of the water-absorbent resin particles and improving the blood absorption inhibition due to wetting of the water-absorbent resin particles, it is excellent for blood. There is known a method for producing a blood absorbing material having absorption performance (see Patent Documents 6 and 7). Further, by attaching a water-soluble cationic polymer to the water-absorbent resin particles and agglutinating the red blood cells in the blood, it is possible to suppress the film formation due to the accumulation of red blood cells on the surface of the water-absorbent resin particles, and to obtain excellent blood absorption performance. A sanitary product has is known (see Patent Document 8). In addition, a method of increasing the blood absorption amount by adding an additive having a specific solubility parameter (see Patent Document 9), and improving the repetitive absorbability of blood by making the particle size distribution of the water-absorbent resin particles double A method (see Patent Document 10) and the like are disclosed. However, in the above-mentioned conventional technique, not only the absorption performance is not sufficiently exhibited for blood, but there is a problem in the dry feeling of the absorber, and when a specific particle size distribution is used, a special production process is required for that purpose. There was also a problem in productivity, such as the need for.
特表2012-522880号公報Special table 2012-522880 bulletin 特開平11-43508号公報JP-A-11-43508 特開2004-261797号公報JP 2004-261797 A 特表2009-510177号公報Japanese Patent Publication No. 2009-510177 特開2017-222875号公報JP, 2017-222875, A 国際公開第00/10496号パンフレットWO 00/10496 pamphlet 特開2000-51690号公報Japanese Patent Laid-Open No. 2000-51690 特開2016-107100号公報JP, 2016-107100, A 特開2018-021133号公報Japanese Patent Laid-Open No. 2018-021133 特開平11-246625号公報Japanese Patent Laid-Open No. 11-246625
 本発明の目的は、吸収体中の親水性繊維の含有量が少ない場合でも、不織布からの液引きが速く、液漏れの問題を生じない吸水性樹脂粒子、また、血液に対する高い吸水性能を有し、吸収性物品に使用したときに優れたドライ感を発揮できる吸水性樹脂粒子、これを含む吸収体及び吸収性物品、並びに吸水性樹脂粒子の製造方法を提供することである。 The object of the present invention is to provide a water-absorbent resin particle that does not cause a problem of liquid leakage, even if the content of hydrophilic fibers in the absorbent is small, and that has high water-absorbing performance for blood. It is another object of the present invention to provide a water-absorbent resin particle capable of exhibiting an excellent dry feeling when used for an absorbent article, an absorber and an absorbent article containing the same, and a method for producing the water-absorbent resin particle.
 本発明は、水溶性ビニルモノマー(a1)及び架橋剤(b)を必須構成単位とする架橋重合体(A)を含有する樹脂粒子が少なくとも1種の表面架橋剤(d)により表面架橋された構造を有する吸水性樹脂粒子であって、重量平均粒子径が200~420μmであり、画像解析式粒度分布測定装置により測定される下記の式1で表される粒度分布指数(SPAN)が0.30~0.75である吸水性樹脂粒子である。
 粒度分布指数(SPAN)=(体積基準積算粒度で90%の粒子径-体積基準積算粒度で10%の粒子径)/(体積基準積算粒度で50%の粒子径)       (式1)
 本発明はまた、上記吸水性樹脂の製造方法であって、水溶性ビニルモノマー(a1)及び架橋剤(b)を必須構成単位とする単量体組成物を重合し、架橋重合体(A)を含む含水ゲルを得る重合工程、前記含水ゲルを混練細断し、含水ゲル粒子を得るゲル粉砕工程、前記含水ゲル粒子を乾燥、粉砕後に分級し、(A)を含有する樹脂粒子を得る工程、及び前記樹脂粒子を表面架橋剤(d)により表面処理する表面処理工程を含み、前記ゲル粉砕工程又は表面処理工程で疎水性物質(C)を添加し、その際前記疎水性物質(C)の融点が(C)を添加する工程の温度以下である、吸水性樹脂粒子の製造方法である。
In the present invention, resin particles containing a water-soluble vinyl monomer (a1) and a cross-linked polymer (A) containing a cross-linking agent (b) as an essential constituent unit are surface-crosslinked with at least one surface cross-linking agent (d). The water-absorbent resin particles having a structure, having a weight average particle diameter of 200 to 420 μm, and having a particle size distribution index (SPAN) represented by the following formula 1 measured by an image analysis type particle size distribution measuring device of 0. Water-absorbent resin particles having a particle size of 30 to 0.75.
Particle size distribution index (SPAN)=(90% particle size in volume-based integrated particle size-10% particle size in volume-based integrated particle size)/(50% particle size in volume-based integrated particle size) (Equation 1)
The present invention also provides a method for producing the above water-absorbent resin, which comprises polymerizing a monomer composition containing a water-soluble vinyl monomer (a1) and a cross-linking agent (b) as essential constituent units to form a cross-linked polymer (A). A step of obtaining a hydrogel containing water, a step of kneading and chopping the hydrogel to obtain hydrogel particles, a step of pulverizing the hydrogel particles, a step of drying and pulverizing the hydrogel particles to obtain resin particles containing (A) And a surface treatment step of surface-treating the resin particles with a surface cross-linking agent (d), wherein a hydrophobic substance (C) is added in the gel crushing step or the surface treatment step, at which time the hydrophobic substance (C) is added. The melting point of is less than or equal to the temperature of the step of adding (C).
 本発明の吸水性樹脂粒子は、特定範囲の粒子径と粒度分布を有し、優れた吸収速度と通液速度を示す。また、優れた血液吸収量と血液吸収速度を示す。従って、本発明の吸水性樹脂を適用した吸収性物品(紙おむつ及び生理用ナプキン等)は、吸収体中の親水性繊維の含有量が少ない場合でも、吸収させる液体と接触した後の不織布からの液引きが速く、液漏れが少ない。 The water-absorbent resin particles of the present invention have a particle size and a particle size distribution within a specific range and exhibit an excellent absorption rate and liquid passage rate. It also shows excellent blood absorption and blood absorption rate. Therefore, the absorbent article to which the water-absorbent resin of the present invention is applied (paper diapers and sanitary napkins, etc.), even when the content of hydrophilic fibers in the absorbent is small, from the nonwoven fabric after contact with the liquid to be absorbed Drains quickly and does not leak.
 本発明の吸水性樹脂は、水溶性ビニルモノマー(a1)及び架橋剤(b)を必須構成単位とする架橋重合体(A)を含有する樹脂粒子が少なくとも1種の表面架橋剤(d)により表面架橋された構造を有する吸水性樹脂粒子である。 In the water-absorbent resin of the present invention, the resin particles containing the cross-linked polymer (A) containing the water-soluble vinyl monomer (a1) and the cross-linking agent (b) as essential constituent units are formed by at least one surface cross-linking agent (d). It is a water-absorbent resin particle having a surface-crosslinked structure.
 本発明における水溶性ビニルモノマー(a1)としては特に限定はなく、公知のモノマー、例えば、特許第3648553号公報の0007~0023段落に開示されている少なくとも1個の水溶性置換基とエチレン性不飽和基とを有するビニルモノマー(例えばアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー)、特開2003-165883号公報の0009~0024段落に開示されているアニオン性ビニルモノマー、非イオン性ビニルモノマー及びカチオン性ビニルモノマー並びに特開2005-75982号公報の0041~0051段落に開示されているカルボキシ基、スルホ基、ホスホノ基、水酸基、カルバモイル基、アミノ基及びアンモニオ基からなる群から選ばれる少なくとも1種を有するビニルモノマーが使用できる。 The water-soluble vinyl monomer (a1) in the present invention is not particularly limited, and known monomers, for example, at least one water-soluble substituent and ethylenic vinyl group disclosed in paragraphs 0007 to 0023 of Japanese Patent No. 36485553 are used. Vinyl monomers having a saturated group (for example, anionic vinyl monomers, nonionic vinyl monomers and cationic vinyl monomers), anionic vinyl monomers and nonionic compounds disclosed in paragraphs 0009 to 0024 of JP-A-2003-165883. Vinyl monomer and cationic vinyl monomer, and selected from the group consisting of carboxy group, sulfo group, phosphono group, hydroxyl group, carbamoyl group, amino group and ammonio group disclosed in paragraphs 0041 to 0051 of JP-A-2005-75982. Vinyl monomers having at least one of
 水溶性ビニルモノマー(a1)としては、好ましくはアニオン性ビニルモノマー、より好ましくはカルボキシ(塩)基、スルホ(塩)基、アミノ基、カルバモイル基、アンモニオ基又はモノ-、ジ-若しくはトリ-アルキルアンモニオ基を有するビニルモノマーである。これらのなかでは、より好ましくはカルボキシ(塩)基又はカルバモイル基を有するビニルモノマー、さらに好ましくは(メタ)アクリル酸(塩)及び(メタ)アクリルアミド、特に好ましくは(メタ)アクリル酸(塩)、最も好ましくはアクリル酸(塩)である。 The water-soluble vinyl monomer (a1) is preferably an anionic vinyl monomer, more preferably a carboxy (salt) group, a sulfo (salt) group, an amino group, a carbamoyl group, an ammonio group or a mono-, di- or tri-alkyl group. It is a vinyl monomer having an ammonio group. Among these, more preferably a vinyl monomer having a carboxy (salt) group or a carbamoyl group, further preferably (meth)acrylic acid (salt) and (meth)acrylamide, particularly preferably (meth)acrylic acid (salt), Most preferably, it is acrylic acid (salt).
 なお、「カルボキシ(塩)基」は「カルボキシ基」又は「カルボキシレート基」を意味し、「スルホ(塩)基」は「スルホ基」又は「スルホネート基」を意味する。また、(メタ)アクリル酸(塩)はアクリル酸、アクリル酸塩、メタクリル酸又はメタクリル酸塩を意味し、(メタ)アクリルアミドはアクリルアミド又はメタクリルアミドを意味する。また、塩としては、アルカリ金属(リチウム、ナトリウム及びカリウム等)塩、アルカリ土類金属(マグネシウム及びカルシウム等)塩又はアンモニウム(NH)塩等が含まれる。これらの塩のうち、吸収特性の観点等から、アルカリ金属塩及びアンモニウム塩が好ましく、さらに好ましくはアルカリ金属塩、特に好ましくはナトリウム塩である。 In addition, a "carboxy (salt) group" means a "carboxy group" or a "carboxylate group", and a "sulfo (salt) group" means a "sulfo group" or a "sulfonate group". Further, (meth)acrylic acid (salt) means acrylic acid, acrylic acid salt, methacrylic acid or methacrylic acid salt, and (meth)acrylamide means acrylamide or methacrylamide. Examples of the salt include alkali metal (lithium, sodium and potassium etc.) salts, alkaline earth metal (magnesium and calcium etc.) salts, ammonium (NH 4 ) salts and the like. Among these salts, the alkali metal salts and ammonium salts are preferable, the alkali metal salts are more preferable, and the sodium salts are particularly preferable, from the viewpoint of absorption characteristics.
 水溶性ビニルモノマー(a1)としてアクリル酸やメタクリル酸等の酸基含有モノマーを用いる場合、酸基含有モノマーの一部を塩基で中和することができる。中和する塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物や、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩を通常使用できる。中和は吸水性樹脂の製造工程において、酸基含有モノマーの重合前及び重合中のいずれで行っても良いし、後述する架橋重合体(A)を含む含水ゲルの状態で酸基含有ポリマーを中和することもできる。 When an acid group-containing monomer such as acrylic acid or methacrylic acid is used as the water-soluble vinyl monomer (a1), a part of the acid group-containing monomer can be neutralized with a base. As the base to be neutralized, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide and alkali metal carbonates such as sodium carbonate, sodium hydrogen carbonate and potassium carbonate can be usually used. Neutralization may be carried out before or during the polymerization of the acid group-containing monomer in the production process of the water-absorbent resin, and the acid group-containing polymer may be added to the acid group-containing polymer in the state of a hydrogel containing the cross-linked polymer (A) described later. It can also be neutralized.
 酸基含有モノマーを用いる場合の酸基の中和度は、50~80モル%であることが好ましい。中和度が50モル%未満の場合、得られる含水ゲル重合体の粘着性が高くなり、製造時及び使用時の作業性が悪化する場合がある。更に得られる吸水性樹脂粒子の遠心保持量が低下する場合がある。一方、中和度が80%を超える場合、得られた樹脂のpHが高くなり人体の皮膚に対する安全性が懸念される場合がある。 When the acid group-containing monomer is used, the degree of neutralization of the acid group is preferably 50 to 80 mol %. When the degree of neutralization is less than 50 mol %, the resulting hydrogel polymer may have high tackiness, which may deteriorate workability during production and use. Furthermore, the centrifugal retention amount of the water-absorbent resin particles obtained may decrease. On the other hand, when the degree of neutralization exceeds 80%, the pH of the obtained resin becomes high, and there is a possibility that the safety of the skin of the human body may be concerned.
 架橋重合体(A)の構成単位として、水溶性ビニルモノマー(a1)の他に、これらと共重合可能なその他のビニルモノマー(a2)を構成単位とすることができる。その他のビニルモノマー(a2)は1種を単独で用いても、2種以上を併用してもよい。 As the constitutional unit of the crosslinked polymer (A), in addition to the water-soluble vinyl monomer (a1), another vinyl monomer (a2) copolymerizable with them can be used as the constitutional unit. As the other vinyl monomer (a2), one type may be used alone, or two or more types may be used in combination.
 共重合可能なその他のビニルモノマー(a2)としては特に限定はなく、公知(例えば、特許第3648553号公報の0028~0029段落に開示されている疎水性ビニルモノマー、特開2003-165883号公報の0025段落及び特開2005-75982号公報の0058段落に開示されているビニルモノマー等)の疎水性ビニルモノマー等が使用でき、具体的には例えば下記の(i)~(iii)のビニルモノマー等が使用できる。
(i)炭素数8~30の芳香族エチレン性モノマー
 スチレン、α-メチルスチレン、ビニルトルエン及びヒドロキシスチレン等のスチレン、並びにビニルナフタレン、並びにジクロルスチレン等のスチレンのハロゲン置換体等。
(ii)炭素数2~20の脂肪族エチレン性モノマー
 アルケン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン及びオクタデセン等);並びにアルカジエン(ブタジエン及びイソプレン等)等。
(iii)炭素数5~15の脂環式エチレン性モノマー
 モノエチレン性不飽和モノマー(ピネン、リモネン及びインデン等);並びにポリエチレン性ビニルモノマー[シクロペンタジエン、ビシクロペンタジエン及びエチリデンノルボルネン等]等。
The other copolymerizable vinyl monomer (a2) is not particularly limited and is known (for example, the hydrophobic vinyl monomer disclosed in paragraphs 0028 to 0029 of Japanese Patent No. 36485553, JP-A No. 2003-165883). The vinyl monomers disclosed in paragraph 0025 and paragraph 0058 of Japanese Unexamined Patent Application Publication No. 2005-75982) can be used. Specifically, for example, vinyl monomers (i) to (iii) below can be used. Can be used.
(I) Aromatic ethylenic monomer having 8 to 30 carbon atoms Styrene such as styrene, α-methylstyrene, vinyltoluene and hydroxystyrene, and vinylnaphthalene, and halogen-substituted styrene such as dichlorostyrene.
(Ii) C2-C20 aliphatic ethylenic monomer alkenes (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.); and alkadienes (butadiene, isoprene, etc.).
(Iii) C5-C15 alicyclic ethylenic monomers, monoethylenically unsaturated monomers (pinene, limonene, indene, etc.); and polyethylene vinyl monomers [cyclopentadiene, bicyclopentadiene, ethylidene norbornene, etc.] and the like.
 その他のビニルモノマー(a2)単位の含有量は、吸収性能等の観点から、水溶性ビニルモノマー(a1)単位のモル数に基づいて、0~5モル%が好ましく、更に好ましくは0~3モル%、特に好ましくは0~2モル%、とりわけ好ましくは0~1.5モル%であり、吸収性能等の観点から、その他のビニルモノマー(a2)単位の含有量が0モル%であることが最も好ましい。 The content of the other vinyl monomer (a2) unit is preferably 0 to 5 mol %, more preferably 0 to 3 mol based on the number of moles of the water-soluble vinyl monomer (a1) unit from the viewpoint of absorption performance and the like. %, particularly preferably 0 to 2 mol %, particularly preferably 0 to 1.5 mol %, and the content of other vinyl monomer (a2) units is 0 mol% from the viewpoint of absorption performance and the like. Most preferred.
 架橋剤(b)としては特に限定はなく公知(例えば、特許第3648553号公報の0031~0034段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、水溶性置換基と反応し得る官能基を少なくとも1個有してかつ少なくとも1個のエチレン性不飽和基を有する架橋剤及び水溶性置換基と反応し得る官能基を少なくとも2個有する架橋剤、特開2003-165883号公報の0028~0031段落に開示されているエチレン性不飽和基を2個以上有する架橋剤、エチレン性不飽和基と反応性官能基とを有する架橋剤及び反応性置換基を2個以上有する架橋剤、特開2005-75982号公報の0059段落に開示されている架橋性ビニルモノマー並びに特開2005-95759号公報の0015~0016段落に開示されている架橋性ビニルモノマー)の架橋剤等が使用できる。これらの内、吸収性能等の観点から、エチレン性不飽和基を2個以上有する架橋剤が好ましく、更に好ましいのは、炭素数2~40の多価アルコールのポリ(メタ)アリルエーテル、炭素数2~40の多価アルコールの(メタ)アクリレート、炭素数2~40の多価アルコールの(メタ)アクリルアミド、特に好ましいのは炭素数2~40の多価アルコールのポリアリルエーテル、最も好ましいのはペンタエリスリトールトリアリルエーテルである。架橋剤(b)は1種を単独で用いても、2種以上を併用してもよい。 The cross-linking agent (b) is not particularly limited and is known (for example, a cross-linking agent having two or more ethylenically unsaturated groups disclosed in paragraphs 0031 to 0034 of Japanese Patent No. 36485553, which reacts with a water-soluble substituent group). Crosslinking agent having at least one functional group to be obtained and having at least one ethylenically unsaturated group, and crosslinking agent having at least two functional groups capable of reacting with a water-soluble substituent, JP-A-2003-165883 Cross-linking agent having two or more ethylenically unsaturated groups, a cross-linking agent having an ethylenically unsaturated group and a reactive functional group, and a cross-linking agent having two or more reactive substituents. The cross-linking vinyl monomer disclosed in paragraph 0059 of JP-A-2005-75982 and the cross-linking agent of the cross-linkable vinyl monomer disclosed in paragraphs 0015 to 0016 of JP-A-2005-95759 can be used. .. Among these, a crosslinking agent having two or more ethylenically unsaturated groups is preferable from the viewpoint of absorption performance, and more preferable are poly(meth)allyl ethers of polyhydric alcohols having 2 to 40 carbon atoms and carbon numbers. (Meth)acrylate of polyhydric alcohol having 2 to 40 carbons, (meth)acrylamide of polyhydric alcohol having 2 to 40 carbons, polyallyl ether of polyhydric alcohol having 2 to 40 carbons, and most preferable Pentaerythritol triallyl ether. As the crosslinking agent (b), one type may be used alone, or two or more types may be used in combination.
 架橋剤(b)単位の含有量(モル%)は、水溶性ビニルモノマー(a1)単位のモル数、その他のビニルモノマー(a2)を用いる場合は(a1)~(a2)の合計モル数に基づいて、0.001~5が好ましく、更に好ましくは0.005~3、特に好ましくは0.01~1である。この範囲であると、吸収性能が更に良好となる。 The content (mol %) of the crosslinking agent (b) unit is the number of moles of the water-soluble vinyl monomer (a1) unit, and when other vinyl monomer (a2) is used, the total number of moles of (a1) to (a2) Based on the above, 0.001 to 5 is preferable, 0.005 to 3 is more preferable, and 0.01 to 1 is particularly preferable. Within this range, the absorption performance will be further improved.
 本発明の吸水性樹脂粒子の製造方法は、前述した水溶性ビニルモノマー(a1)及び架橋剤(b)を必須構成単位とする単量体組成物を重合し、架橋重合体(A)を含む含水ゲルを得る重合工程、前記含水ゲルを混練細断し、含水ゲル粒子を得るゲル粉砕工程、及び前記含水ゲル粒子を乾燥、粉砕後に分級し、架橋重合体(A)を含有する樹脂粒子を得る工程を含む。 The method for producing water-absorbent resin particles of the present invention comprises a cross-linked polymer (A) obtained by polymerizing a monomer composition containing the above-mentioned water-soluble vinyl monomer (a1) and a cross-linking agent (b) as essential constituent units. Polymerization step to obtain hydrous gel, kneading and chopping the hydrous gel to obtain hydrous gel particles, and gel pulverizing step, and drying and pulverizing the hydrous gel particles to classify resin particles containing a crosslinked polymer (A). Including the step of obtaining.
 重合工程としては、公知の溶液重合(断熱重合、薄膜重合及び噴霧重合法等;特開昭55-133413号公報等)や、公知の懸濁重合法や逆相懸濁重合(特公昭54-30710号公報、特開昭56-26909号公報及び特開平1-5808号公報等)によって架橋重合体(A)を含む含水ゲル(架橋重合体が水を含んだ含水ゲル状物)を得ることができる。架橋重合体(A)は、1種単独でも良いし、2種以上の混合物であっても良い。 As the polymerization step, known solution polymerization (adiabatic polymerization, thin film polymerization, spray polymerization, etc.; JP-A-55-133413, etc.), known suspension polymerization method, reverse phase suspension polymerization (JP-B-54- 30710, JP 56-26909 A, JP 1-5808 A, etc.) to obtain a hydrogel containing a crosslinked polymer (A) (a hydrogel in which the crosslinked polymer contains water). You can The crosslinked polymer (A) may be a single type or a mixture of two or more types.
 重合方法の内、好ましいのは溶液重合法であり、有機溶媒等を使用する必要がなく生産コスト面で有利なことから、特に好ましいのは水溶液重合法であり、遠心保持量が大きく、且つ水可溶性成分量の少ない吸水性樹脂が得られ、重合時の温度コントロールが不要である点から、水溶液断熱重合法が最も好ましい。 Among the polymerization methods, the solution polymerization method is preferable, and since it is advantageous in terms of production cost that it is not necessary to use an organic solvent or the like, particularly preferable is the aqueous solution polymerization method, which has a large centrifugal retention amount, and water. The aqueous solution adiabatic polymerization method is most preferable because a water-absorbent resin having a small amount of soluble components can be obtained and temperature control during polymerization is unnecessary.
 水溶液重合を行う場合、水と有機溶媒とを含む混合溶媒を使用することができ、有機溶媒としては、メタノール、エタノール、アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、ジメチルスルホキシド及びこれらの2種以上の混合物を挙げられる。
 水溶液重合を行う場合、有機溶媒の使用量(重量%)は、水の重量を基準として40以下が好ましく、更に好ましくは30以下である。
When carrying out aqueous solution polymerization, a mixed solvent containing water and an organic solvent can be used, and as the organic solvent, methanol, ethanol, acetone, methylethylketone, N,N-dimethylformamide, dimethylsulfoxide and two or more of them can be used. A mixture of
When carrying out aqueous solution polymerization, the amount of organic solvent used (% by weight) is preferably 40 or less, and more preferably 30 or less, based on the weight of water.
 重合濃度、即ち、重合液中の水溶性ビニルモノマー(a1)およびその他のビニルモノマー(a2)の仕込濃度(重量%)は、特に制限されないが、重合液の重量、即ち、例えば、水溶性ビニルモノマー(a1)およびその他のビニルモノマー(a2)、溶媒、架橋剤(b)および後述の重合触媒、重合コントロール剤の合計重量、に基づいて10~55が好ましく、20~45が更に好ましい。重合濃度がこの範囲より低い場合生産性が低くなり、重合濃度がこの範囲より高い場合、自己架橋等の副反応がおこることにより、得られる吸水性樹脂粒子の遠心保持量が低下する。 The polymerization concentration, that is, the charged concentration (% by weight) of the water-soluble vinyl monomer (a1) and the other vinyl monomer (a2) in the polymerization liquid is not particularly limited, but the weight of the polymerization liquid, that is, the water-soluble vinyl monomer, for example, 10 to 55 are preferable, and 20 to 45 are more preferable, based on the total weight of the monomer (a1) and other vinyl monomer (a2), the solvent, the cross-linking agent (b) and the below-mentioned polymerization catalyst and polymerization control agent. If the polymerization concentration is lower than this range, the productivity will be low, and if the polymerization concentration is higher than this range, side reactions such as self-crosslinking will occur, and the centrifugal retention amount of the water-absorbent resin particles obtained will be reduced.
 重合に触媒を用いる場合、従来公知のラジカル重合用触媒が使用可能であり、例えば、アゾ化合物[アゾビスイソブチロニトリル、アゾビスシアノ吉草酸及び2,2’-アゾビス(2-アミジノプロパン)ハイドロクロライド等]、無機過酸化物(過酸化水素、過硫酸アンモニウム、過硫酸カリウム及び過硫酸ナトリウム等)、有機過酸化物[過酸化ベンゾイル、ジ-t-ブチルパーオキサイド、クメンヒドロパーオキサイド、コハク酸パーオキサイド及びジ(2-エトキシエチル)パーオキシジカーボネート等]及びレドックス触媒(アルカリ金属の亜硫酸塩又は重亜硫酸塩、亜硫酸アンモニウム、重亜硫酸アンモニウム及びアスコルビン酸等の還元剤とアルカリ金属の過硫酸塩、過硫酸アンモニウム、過酸化水素及び有機過酸化物等の酸化剤との組み合わせよりなるもの)等が挙げられる。これらの触媒は、単独で使用してもよく、これらの2種以上を併用しても良い。
 ラジカル重合触媒の使用量(重量%)は、水溶性ビニルモノマー(a1)の、その他のビニルモノマー(a2)を用いる場合は(a1)~(a2)の、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。
When a catalyst is used for the polymerization, conventionally known radical polymerization catalysts can be used, and examples thereof include azo compounds [azobisisobutyronitrile, azobiscyanovaleric acid and 2,2′-azobis(2-amidinopropane) hydrochloride. Etc.], inorganic peroxides (hydrogen peroxide, ammonium persulfate, potassium persulfate and sodium persulfate, etc.), organic peroxides [benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, persuccinate] Oxide and di(2-ethoxyethyl)peroxydicarbonate and the like] and redox catalyst (alkali metal sulfite or bisulfite, ammonium sulfite, ammonium bisulfite and ascorbic acid and other reducing agents and alkali metal persulfate, (Combined with an oxidizing agent such as ammonium persulfate, hydrogen peroxide and organic peroxide). These catalysts may be used alone or in combination of two or more.
The amount (% by weight) of the radical polymerization catalyst used is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. It is preferably from 5 to 5, more preferably from 0.001 to 2.
 重合時には、必要に応じて連鎖移動剤等の重合コントロール剤を併用しても良く、これらの具体例としては、次亜リン酸ナトリウム、亜リン酸ナトリウム、アルキルメルカプタン、ハロゲン化アルキル、チオカルボニル化合物等が挙げられる。これらの重合コントロール剤は、単独で使用してもよく、これらの2種以上を併用しても良い。
 重合コントロール剤の使用量(重量%)は、水溶性ビニルモノマー(a1)の、その他のビニルモノマー(a2)を用いる場合は(a1)~(a2)の、合計重量に基づいて、0.0005~5が好ましく、更に好ましくは0.001~2である。
During the polymerization, a polymerization control agent such as a chain transfer agent may be used in combination, if necessary, and specific examples thereof include sodium hypophosphite, sodium phosphite, alkyl mercaptans, alkyl halides and thiocarbonyl compounds. Etc. These polymerization control agents may be used alone or in combination of two or more thereof.
The amount (% by weight) of the polymerization control agent is 0.0005 based on the total weight of the water-soluble vinyl monomer (a1) and (a1) to (a2) when the other vinyl monomer (a2) is used. It is preferably from 5 to 5, more preferably from 0.001 to 2.
 重合方法として懸濁重合法又は逆相懸濁重合法をとる場合は、必要に応じて、従来公知の分散剤又は界面活性剤の存在下に重合を行っても良い。また、逆相懸濁重合法の場合、従来公知のキシレン、ノルマルヘキサン及びノルマルヘプタン等の炭化水素系溶媒を使用して重合を行うことができる。 When the suspension polymerization method or the reverse phase suspension polymerization method is adopted as the polymerization method, the polymerization may be carried out in the presence of a conventionally known dispersant or surfactant, if necessary. Further, in the case of the reverse phase suspension polymerization method, the polymerization can be carried out using a conventionally known hydrocarbon solvent such as xylene, normal hexane, and normal heptane.
 重合開始温度は、使用する触媒の種類によって適宜調整することができるが、0~100℃が好ましく、更に好ましくは2~80℃である。 The polymerization initiation temperature can be appropriately adjusted depending on the type of catalyst used, but is preferably 0 to 100°C, more preferably 2 to 80°C.
 ゲル粉砕工程は、前記の重合工程により得られた架橋重合体(A)を含む含水ゲルを混練細断し、含水ゲル粒子を得る工程である。ゲル粉砕工程後の含水ゲル粒子の大きさ(最長径)は50μm~10cmが好ましく、更に好ましくは100μm~2cm、特に好ましくは500μm~1cmである。この範囲であると、乾燥工程での乾燥性が更に良好となる。 The gel crushing step is a step of kneading and cutting the hydrogel containing the crosslinked polymer (A) obtained in the above-mentioned polymerization step to obtain hydrogel particles. The size (longest diameter) of the hydrogel particles after the gel crushing step is preferably 50 μm to 10 cm, more preferably 100 μm to 2 cm, and particularly preferably 500 μm to 1 cm. Within this range, the drying property in the drying step will be further improved.
 ゲル粉砕は、公知の方法で行うことができ、粉砕装置(例えば、ニーダー、万能混合機、一軸又は二軸の混練押し出し機、ミンチ機およびミートチョッパー等)を使用して混練細断できる。Vortex法による吸水時間を制御する観点から、混練押出機構を備えた粉砕装置(例えば一軸又は二軸の混練押し出し機、ミンチ機等)が好ましい。 The gel pulverization can be performed by a known method, and kneading and shredding can be performed using a pulverizing device (eg, kneader, universal mixer, uniaxial or biaxial kneading extruder, mincing machine, meat chopper, etc.). From the viewpoint of controlling the water absorption time by the Vortex method, a crushing device equipped with a kneading and extruding mechanism (for example, a uniaxial or biaxial kneading extruder, a mincing machine, etc.) is preferable.
 ゲル粉砕工程でのゲルの固形分濃度(重量%)は10~55が好ましく、25~45が更に好ましい。固形分濃度がこの範囲より低いと生産性が悪くなり、この範囲より高いと粉砕に必要なエネルギーが高くなりすぎるため粉砕装置が破損する可能性がある。 The solid content concentration (% by weight) of the gel in the gel crushing step is preferably 10 to 55, more preferably 25 to 45. If the solid content concentration is lower than this range, the productivity will be poor, and if it is higher than this range, the energy required for pulverization will be too high and the pulverization device may be damaged.
 ゲル粉砕工程でのゲル温度は70~120℃が好ましく、80~110℃が更に好ましい。ゲル温度がこの範囲より低いと、重合工程後に冷却工程が必要になり不要なエネルギーが必要になるばかりでなくゲルの粘着性が上がり含水ゲル粒子の大きさが大きくなりやすく、ゲル温度がこの範囲より高いと水の突沸が生じ安定的に粉砕ができない。 The gel temperature in the gel crushing step is preferably 70 to 120°C, more preferably 80 to 110°C. If the gel temperature is lower than this range, a cooling step is required after the polymerization step, unnecessary energy is required, and the stickiness of the gel increases, and the size of hydrous gel particles tends to increase, and the gel temperature falls within this range. If it is higher, bumping of water occurs and stable pulverization cannot be performed.
 また、前述のとおり、重合後に得られた酸基含有ポリマーの含水ゲルを、ゲル粉砕工程前又はゲル粉砕工程中に塩基を混合して、中和することもできる。なお、酸基含有ポリマーを中和する場合に使用する塩基や中和度の好ましい範囲は、酸基含有モノマーを用いる場合と同様である。 Further, as described above, the hydrogel of the acid group-containing polymer obtained after the polymerization can be neutralized by mixing a base before or during the gel crushing step. The preferred range of the base and the degree of neutralization used when neutralizing the acid group-containing polymer is the same as when the acid group-containing monomer is used.
 架橋重合体(A)を含有する樹脂粒子は、前記含水ゲル粒子を乾燥し、粉砕後に分級することで得ることができる。 The resin particles containing the crosslinked polymer (A) can be obtained by drying the hydrated gel particles, pulverizing and classifying them.
 含水ゲル粒子を乾燥(溶媒の留去を含む。)する方法としては、80~230℃の温度の熱風で乾燥する方法、100~230℃に加熱されたドラムドライヤー等による薄膜乾燥法、(加熱)減圧乾燥法、凍結乾燥法、赤外線による乾燥法、デカンテーション及び濾過等が適用できる。 The method for drying the water-containing gel particles (including distilling off the solvent) includes drying with hot air at a temperature of 80 to 230° C., thin film drying with a drum dryer heated to 100 to 230° C. (heating ) A reduced pressure drying method, a freeze drying method, an infrared drying method, decantation, filtration and the like can be applied.
 溶媒に水を含む場合、乾燥後の含水率(重量%)は、架橋重合体(A)の重量に基づいて、0~20が好ましく、更に好ましくは1~15、特に好ましくは2~13、最も好ましくは3~12である。この範囲であると、吸収性能が更に良好となる。 When the solvent contains water, the water content (% by weight) after drying is preferably 0 to 20, more preferably 1 to 15, particularly preferably 2 to 13, based on the weight of the crosslinked polymer (A). Most preferably, it is 3-12. Within this range, the absorption performance will be further improved.
 溶媒に有機溶媒を含む場合、乾燥後の有機溶媒の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0~10が好ましく、更に好ましくは0~5、特に好ましくは0~3、最も好ましくは0~1である。この範囲であると、吸水性樹脂粒子の吸収性能が更に良好となる。 When the solvent contains an organic solvent, the content (% by weight) of the organic solvent after drying is preferably 0 to 10, more preferably 0 to 5, and particularly preferably, based on the weight of the crosslinked polymer (A). It is 0 to 3, most preferably 0 to 1. Within this range, the absorbent performance of the water absorbent resin particles will be further improved.
 なお、有機溶媒の含有量及び水分は、赤外水分測定器[例えば、(株)KETT社製JE400等:120±5℃、30分、加熱前の雰囲気湿度50±10%RH、ランプ仕様100V、40W]により加熱したときの測定試料の重量減量から求められる。 In addition, the content and water content of the organic solvent are measured by an infrared moisture measuring instrument [for example, JE400 manufactured by KETT Co., Ltd.: 120±5° C., 30 minutes, atmospheric humidity before heating 50±10% RH, lamp specification 100V. , 40 W] and the weight loss of the measurement sample when heated.
 なお、乾燥後、その性能を損なわない範囲で、残留溶媒や残存架橋成分等の他の成分を多少含んでも良い。 After drying, other components such as residual solvent and residual crosslinking component may be included to some extent as long as the performance is not impaired.
 架橋重合体(A)を含有する樹脂粒子は、粉砕後に分級することで粒度および粒度分布が調整される。粉砕する方法については、特に限定はなく、公知の粉砕装置(例えば、ハンマー式粉砕機、衝撃式粉砕機、ロール式粉砕機及びシェット気流式粉砕機等)が使用できる。これらの内、粒度分布を制御する観点からロール式粉砕機が好ましい。また、粒度分布を制御するために分級後に篩上品、すなわち、特定の目開きの篩上に残存した粒子、を再度粉砕しても良い。篩上品を再度粉砕する場合には、それぞれの粉砕機は同じであってもよく、あるいは異なる粉砕機を用いても良く、違う種類の粉砕機を用いても良い。 The particle size and particle size distribution of the resin particles containing the crosslinked polymer (A) are adjusted by classifying after crushing. The method of crushing is not particularly limited, and a known crushing device (for example, a hammer crusher, an impact crusher, a roll crusher, a shett airflow crusher, etc.) can be used. Among these, a roll type crusher is preferable from the viewpoint of controlling the particle size distribution. Further, in order to control the particle size distribution, the sieve product after classification, that is, the particles remaining on the sieve having a specific opening may be pulverized again. When the sieved product is pulverized again, the respective pulverizers may be the same, different pulverizers may be used, or different types of pulverizers may be used.
 分級する方法については、粉砕された樹脂粒子の粒度分布を制御するために、特定の目開きの篩を複数もしくは単独で用いて分級しても良い。分級装置は特に限定されないが、振動篩、面内運動篩、可動網式篩、強制撹拌篩、音波篩等の公知の方法が用いられ、好ましくは振動篩、面内運動篩が用いられる。樹脂粒子の粒度分布を制御するためには、特定の目開きの篩上に残存した粒子(篩上品)と特定の目開きの篩を通過した粒子(篩下品)の一部またはすべてを除去することが好ましい。 Regarding the classification method, in order to control the particle size distribution of the crushed resin particles, a plurality of sieves with specific openings may be used or a single sieve may be used for classification. The classifying device is not particularly limited, but a known method such as a vibrating screen, an in-plane moving screen, a movable mesh type screen, a forced stirring screen, and a sonic screen is used, and a vibrating screen and an in-plane moving screen are preferably used. In order to control the particle size distribution of resin particles, some or all of the particles remaining on the sieve with a specific opening (oversize product) and particles that have passed through the sieve with a specific opening (undersize product) are removed. It is preferable.
 篩上品とする篩の目開きは850~250μmが好ましく、更に好ましくは710~300μm、特に好ましくは500~425μmであり、篩下品とする篩の目開きは500~90μmが好ましく、更に好ましくは425~106μm、特に好ましくは300~150μmである。これらの範囲から外れると後述する再利用する粒子の割合が増え、生産性が低下するばかりでなく、目的の粒度分布が得られない可能性がある。 The size of the sieve to be the sieve product is preferably 850 to 250 μm, more preferably 710 to 300 μm, particularly preferably 500 to 425 μm, and the size of the sieve to be the undersize product is preferably 500 to 90 μm, further preferably 425. ˜106 μm, particularly preferably 300˜150 μm. If the amount is out of these ranges, the ratio of the particles to be reused, which will be described later, increases, and not only the productivity decreases, but also the desired particle size distribution may not be obtained.
 なお、篩で除去した粒子(特に、篩下品)は再利用する公知の技術が利用可能である。例えば、温水と吸水性樹脂の微粉を混合し乾燥する方法(米国特許第6228930号明細書)や、吸水性樹脂の微粉を水溶性ビニルモノマーと混合し重合する方法(米国特許第5264495号明細書)、吸水性樹脂の微粉に水を加え特定の面圧以上で造粒する方法(欧州特許第844270号明細書)、吸水性樹脂の微粉を十分に湿潤させ非晶質のゲルを形成し乾燥・粉砕する方法(米国特許第4950692号明細書)、吸水性樹脂の微粉と重合ゲルを混合する方法(米国特許第5478879号明細書)などを用いることが可能である。 Note that known technology for reusing particles removed by sieving (particularly unsieved products) can be used. For example, a method of mixing hot water and fine powder of a water-absorbent resin and drying (US Pat. No. 6,228,930) or a method of mixing fine powder of a water-absorbent resin with a water-soluble vinyl monomer and polymerizing (US Pat. No. 5,264,495). ), a method in which water is added to fine powder of the water-absorbent resin and granulation is performed at a specific surface pressure or higher (European Patent No. 844270), the fine powder of the water-absorbent resin is sufficiently moistened to form an amorphous gel and dried. It is possible to use a method of pulverizing (US Pat. No. 4,950,692), a method of mixing fine powder of a water absorbent resin and a polymer gel (US Pat. No. 5,478,879), and the like.
 分級後の架橋重合体(A)を含有する樹脂粒子の重量平均粒子径(μm)は、200~420が好ましく、更に好ましくは250~410、特に好ましくは300~400、最も好ましくは350~390である。この範囲より大きいと、Vortex法による吸収時間が長くなり、イオン交換水60秒吸収量が減り、この範囲より小さいと、スポット吸収やゲルブロッキングを生じやすくなる。 The weight average particle diameter (μm) of the resin particles containing the crosslinked polymer (A) after classification is preferably 200 to 420, more preferably 250 to 410, particularly preferably 300 to 400, and most preferably 350 to 390. Is. When it is larger than this range, the absorption time by the Vortex method becomes long and the absorption amount of ion-exchanged water for 60 seconds decreases, and when it is smaller than this range, spot absorption and gel blocking are likely to occur.
 なお、重量平均粒子径は、ロータップ試験篩振とう機及び標準ふるい(JIS Z8801-1:2006)を用いて、ペリーズ・ケミカル・エンジニアーズ・ハンドブック第6版(マックグローヒル・ブック・カンパニー、1984、21頁)に記載の方法で測定される。すなわち、JIS標準ふるいを、上から1000μm、850μm、710μm、500μm、425μm、355μm、250μm、150μm、125μm、75μm及び45μm、並びに受け皿、の順に組み合わせる。最上段のふるいに測定粒子の約50gを入れ、ロータップ試験篩振とう機で5分間振とうさせる。各ふるい及び受け皿上の測定粒子の重量を秤量し、その合計を100重量%として各ふるい上の粒子の重量分率を求め、この値を対数確率紙[横軸がふるいの目開き(粒子径)、縦軸が重量分率]にプロットした後、各点を結ぶ線を引き、重量分率が50重量%に対応する粒子径を求め、これを重量平均粒子径とする。 The weight average particle diameter is determined by using a low tap test sieve shaker and a standard sieve (JIS Z8801-1:2006), Perry's Chemical Engineers Handbook 6th edition (MacGlow Hill Book Company, 1984). , Page 21). That is, the JIS standard sieve is combined from the top in the order of 1000 μm, 850 μm, 710 μm, 500 μm, 425 μm, 355 μm, 250 μm, 150 μm, 125 μm, 75 μm and 45 μm, and a saucer. About 50 g of the measurement particles are put into the uppermost sieve, and shaken for 5 minutes by a low tap test sieve shaker. The weight of the measured particles on each sieve and the pan is weighed, and the total is taken as 100% by weight to obtain the weight fraction of the particles on each sieve, and this value is used as a logarithmic probability paper [the horizontal axis indicates the sieve opening (particle size ), the vertical axis is a weight fraction], and a line connecting the points is drawn to obtain a particle diameter corresponding to a weight fraction of 50% by weight, which is defined as a weight average particle diameter.
 分級後の架橋重合体(A)を含有する樹脂粒子に含まれる微粒子の含有量は少ない方が吸収性能が良好となるため、樹脂粒子の合計重量に占める106μm以下(好ましくは150μm以下)の微粒子の含有率(重量%)は3以下が好ましく、更に好ましくは1以下である。微粒子の含有量は、上記の重量平均粒子径を求める際に作成するグラフを用いて求めることができる。 Since the smaller the content of the fine particles contained in the resin particles containing the crosslinked polymer (A) after classification, the better the absorption performance, fine particles having a particle size of 106 μm or less (preferably 150 μm or less) in the total weight of the resin particles. The content (% by weight) of is preferably 3 or less, more preferably 1 or less. The content of the fine particles can be determined using the graph created when determining the above weight average particle diameter.
 分級後の架橋重合体(A)を含有する樹脂粒子の画像解析式粒度分布測定装置により測定される粒度分布指数(SPAN)は、0.30~0.75である。この範囲より高いと、イオン交換水の60秒吸い上げ吸収量が悪化し、不織布からの液引きが悪くなる。また、この範囲より低いSPANにすることは吸水性樹脂粒子の再利用率が高くなりすぎるため現実的ではない。好ましくは0.30~0.65、より好ましくは0.30~0.60である。 The particle size distribution index (SPAN) of the resin particles containing the crosslinked polymer (A) after classification, measured by an image analysis type particle size distribution measuring device, is 0.30 to 0.75. If it is higher than this range, the absorption amount of the ion-exchanged water absorbed for 60 seconds is deteriorated, and the drainage from the nonwoven fabric is deteriorated. Also, setting the SPAN lower than this range is not realistic because the reuse ratio of the water-absorbent resin particles becomes too high. It is preferably 0.30 to 0.65, more preferably 0.30 to 0.60.
 粒度分布指数(SPAN)は粒度分布の広がり度合を示すもので、この値が小さいほど粒度分布が狭く粒子径が揃っていることを示す。SPANは、重量平均粒子径を測定する際に、重量分率10%、重量分率50%、重量分率90%を対数確率紙を用いて求めることにより計算することも可能であるが、本発明では、標準ふるいを用いる方法よりも細かい区分で計算でき、より正確な値を求めることができることから、画像解析式粒度分布測定装置により測定することにより算出する。例えばCamsizer(登録商標)画像分析システム(レッチェテクノロジー社)を用いて測定することができる。 The particle size distribution index (SPAN) indicates the degree of spread of the particle size distribution. The smaller this value, the narrower the particle size distribution and the more uniform the particle diameter. SPAN can be calculated by measuring the weight fraction of 10%, the weight fraction of 50%, and the weight fraction of 90% using a logarithmic probability paper when measuring the weight average particle diameter. In the invention, the calculation can be performed in finer sections and a more accurate value can be obtained as compared with the method using the standard sieve, and therefore the calculation is performed by measuring with an image analysis type particle size distribution measuring device. For example, it can be measured using a Camsizer (registered trademark) image analysis system (Lecce Technology Co., Ltd.).
 粒度分布指数(SPAN)は(式1)より求められる。ここでの体積基準積算粒度は粒子の投影像の最大差し渡し長さ(最大コード径)を64方向から測定した最小値を粒子径(Xcmin)とし、粒度分布を測定した後、積算体積10%、50%および90%に相当する粒子径を求めた。
 粒度分布指数(SPAN)=(体積基準積算粒度で90%の粒子径-体積基準積算粒度で10%の粒子径)/(体積基準積算粒度で50%の粒子径)      (式1)
The particle size distribution index (SPAN) is calculated from (Equation 1). The volume-based cumulative particle size here is the minimum value obtained by measuring the maximum crossover length (maximum code diameter) of the projected image of the particle from 64 directions, and the particle size (Xcmin) is measured. Particle diameters corresponding to 50% and 90% were determined.
Particle size distribution index (SPAN)=(90% particle size in volume-based integrated particle size-10% particle size in volume-based integrated particle size)/(50% particle size in volume-based integrated particle size) (Equation 1)
 なお、本発明の吸水性樹脂粒子の重量平均粒子径、微粒子の含有量及び粒度分布指数(SPAN)は後述する表面処理工程後にも調整可能であるが、後述する表面処理(表面架橋を含む)の均一性の観点から、表面処理前の樹脂粒子の段階で上記範囲に調整することが好ましい。 The weight average particle diameter, the content of fine particles and the particle size distribution index (SPAN) of the water absorbent resin particles of the present invention can be adjusted even after the surface treatment step described later, but the surface treatment described below (including surface crosslinking) From the viewpoint of uniformity, it is preferable to adjust to the above range at the stage of resin particles before surface treatment.
 本発明の吸水性樹脂粒子は、液拡散性の観点から疎水性物質(C)を含有することが好ましい。疎水性物質(C)としては、炭化水素基を含有する疎水性物質(C1)及びポリシロキサンである疎水性物質(C2)等が含まれる。 The water absorbent resin particles of the present invention preferably contain a hydrophobic substance (C) from the viewpoint of liquid diffusibility. Examples of the hydrophobic substance (C) include a hydrophobic substance (C1) containing a hydrocarbon group and a hydrophobic substance (C2) which is a polysiloxane.
 炭化水素基を含有する疎水性物質(C1)としては、ポリオレフィン樹脂、ポリオレフィン樹脂誘導体、ポリスチレン樹脂、ポリスチレン樹脂誘導体、ワックス、長鎖脂肪酸エステル、長鎖脂肪酸及びその塩、長鎖脂肪族アルコール、第四級アンモニウム塩型界面活性剤、及びこれらの2種以上の混合物等が含まれる。 As the hydrophobic substance (C1) containing a hydrocarbon group, polyolefin resin, polyolefin resin derivative, polystyrene resin, polystyrene resin derivative, wax, long chain fatty acid ester, long chain fatty acid and its salt, long chain aliphatic alcohol, Quaternary ammonium salt type surfactants, mixtures of two or more of these, and the like are included.
 ポリオレフィン樹脂としては、炭素数2~4のオレフィン{エチレン、プロピレン、イソブチレン及びイソプレン等}を必須構成単量体(オレフィンの含有量はポリオレフィン樹脂の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体{たとえば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(エチレン-イソブチレン)及びイソプレン等}が挙げられる。 As a polyolefin resin, a weight of an olefin having 2 to 4 carbon atoms (ethylene, propylene, isobutylene, isoprene, etc.) as an essential constituent monomer (the content of the olefin is at least 50% by weight based on the weight of the polyolefin resin). Examples thereof include polymers having an average molecular weight of 1,000 to 1,000,000 (eg, polyethylene, polypropylene, polyisobutylene, poly(ethylene-isobutylene), isoprene and the like).
 ポリオレフィン樹脂誘導体としては、ポリオレフィン樹脂にカルボキシ基(-COOH)や1,3-オキソ-2-オキサプロピレン(-COOCO-)等を導入した重量平均分子量1000~100万の重合体{たとえば、ポリエチレン熱減成体、ポリプロピレン熱減成体、マレイン酸変性ポリエチレン、塩素化ポリエチレン、マレイン酸変性ポリプロピレン、エチレン-アクリル酸共重合体、エチレン-無水マレイン酸共重合体、イソブチレン-無水マレイン酸共重合体、マレイン化ポリブタジエン、エチレン-酢酸ビニル共重合体及びエチレン-酢酸ビニル共重合体のマレイン化物等}が挙げられる。 As the polyolefin resin derivative, a polymer having a weight average molecular weight of 1,000 to 1,000,000 obtained by introducing a carboxy group (—COOH) or 1,3-oxo-2-oxapropylene (—COOCO—) into a polyolefin resin (for example, polyethylene heat Degradation products, polypropylene thermal degradation products, maleic acid modified polyethylene, chlorinated polyethylene, maleic acid modified polypropylene, ethylene-acrylic acid copolymer, ethylene-maleic anhydride copolymer, isobutylene-maleic anhydride copolymer, maleated Polybutadiene, ethylene-vinyl acetate copolymer, and ethylene-vinyl acetate copolymer maleated product}.
 ポリスチレン樹脂としては、重量平均分子量1000~100万の重合体等が使用できる。 As the polystyrene resin, a polymer having a weight average molecular weight of 1,000 to 1,000,000 can be used.
 ポリスチレン樹脂誘導体としては、スチレンを必須構成単量体(スチレンの含有量は、ポリスチレン誘導体の重量に基づいて、少なくとも50重量%)としてなる重量平均分子量1000~100万の重合体{たとえば、スチレン-無水マレイン酸共重合体、スチレン-ブタジエン共重合体及びスチレン-イソブチレン共重合体等}が挙げられる。 As the polystyrene resin derivative, a polymer having a weight average molecular weight of 1,000 to 1,000,000 (eg, styrene-containing styrene) as an essential constituent monomer (the content of styrene is at least 50% by weight based on the weight of the polystyrene derivative) is used. And maleic anhydride copolymers, styrene-butadiene copolymers and styrene-isobutylene copolymers.
 ワックスとしては、融点50~200℃のワックス{たとえば、パラフィンワックス、ミツロウ、カルナウバワックス及び牛脂等}が挙げられる。 Examples of the wax include waxes having a melting point of 50 to 200° C. (for example, paraffin wax, beeswax, carnauba wax, beef tallow, etc.).
 長鎖脂肪酸エステルとしては、炭素数8~25の脂肪酸と炭素数1~12のアルコールとのエステル{たとえば、ラウリン酸メチル、ラウリン酸エチル、ステアリン酸メチル、ステアリン酸エチル、オレイン酸メチル、オレイン酸エチル、グリセリンラウリン酸モノエステル、グリセリンステアリン酸モノエステル、グリセリンステアリン酸ジエステル、グリセリンオレイン酸モノエステル、ペンタエリスリットラウリン酸モノエステル、ペンタエリスリットステアリン酸モノエステル、ペンタエリスリットオレイン酸モノエステル、ソルビットラウリン酸モノエステル、ソルビットステアリン酸モノエステル、ソルビットオレイン酸モノエステル、ショ糖パルミチン酸モノエステル、ショ糖パルミチン酸ジエステル、ショ糖パルミチン酸トリエステル、ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ショ糖ステアリン酸トリエステル及び牛脂等}が挙げられる。これらのうち、吸収性物品の耐モレ性の観点等から、グリセリンステアリン酸モノエステル、グリセリンステアリン酸ジエステル、ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ショ糖ステアリン酸トリエステルが好ましく、さらに好ましくはグリセリンステアリン酸モノエステル、グリセリンステアリン酸ジエステル、ショ糖ステアリン酸モノエステル及びショ糖ステアリン酸ジエステルである。 The long-chain fatty acid ester is an ester of a fatty acid having 8 to 25 carbon atoms and an alcohol having 1 to 12 carbon atoms (for example, methyl laurate, ethyl laurate, methyl stearate, ethyl stearate, methyl oleate, oleic acid). Ethyl, glycerin lauric acid monoester, glycerin stearic acid monoester, glycerin stearic acid diester, glycerin oleic acid monoester, pentaerythritol lauric acid monoester, pentaerythritol stearic acid monoester, pentaerythritol oleic acid monoester, sorbit Lauric acid monoester, sorbit stearic acid monoester, sorbit oleic acid monoester, sucrose palmitic acid monoester, sucrose palmitic acid diester, sucrose palmitic acid triester, sucrose stearic acid monoester, sucrose stearic acid diester, Sucrose stearic acid triester, beef tallow, and the like}. Among these, glycerin stearic acid monoester, glycerin stearic acid diester, sucrose stearic acid monoester, sucrose stearic acid diester, and sucrose stearic acid triester are preferable from the viewpoint of the leak resistance of the absorbent article, and further. Preferred are glycerin stearic acid monoester, glycerin stearic acid diester, sucrose stearic acid monoester and sucrose stearic acid diester.
 長鎖脂肪酸及びその塩としては、炭素数8~25の脂肪酸{たとえば、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸、及びベヘニン酸等}が挙げられる。塩としてはカルシウム、マグネシウム又はアルミニウム(以下、Ca、Mg、Alと略す)との塩{たとえば、パルミチン酸Ca、パルミチン酸Al、ステアリン酸Ca、ステアリン酸Mg、ステアリン酸Al等}が挙げられる。吸収性物品の耐モレ性の観点等から、ステアリン酸Ca、ステアリン酸Mg、ステアリン酸Alが好ましく、さらに好ましくはステアリン酸Mgである。 Examples of the long-chain fatty acid and its salt include fatty acids having 8 to 25 carbon atoms (for example, lauric acid, palmitic acid, stearic acid, oleic acid, behenic acid, etc.). Examples of the salt include salts with calcium, magnesium or aluminum (hereinafter, abbreviated as Ca, Mg, Al) {for example, Ca palmitate, Al palmitate, Ca stearate, Mg stearate, Al stearate, etc.}. From the viewpoint of leak resistance of the absorbent article, Ca stearate, Mg stearate, and Al stearate are preferable, and Mg stearate is more preferable.
 長鎖脂肪族アルコールとしては、炭素数8~25の脂肪族アルコール{たとえば、ラウリルアルコール、パルミチルアルコール、ステアリルアルコール、オレイルアルコール等}が挙げられる。吸収性物品の耐モレ性の観点等から、パルミチルアルコール、ステアリルアルコール、オレイルアルコールが好ましく、さらに好ましくはステアリルアルコールである。 Examples of long-chain aliphatic alcohols include aliphatic alcohols having 8 to 25 carbon atoms (eg, lauryl alcohol, palmityl alcohol, stearyl alcohol, oleyl alcohol, etc.). From the viewpoint of leakage resistance of the absorbent article, palmityl alcohol, stearyl alcohol and oleyl alcohol are preferable, and stearyl alcohol is more preferable.
 第四級アンモニウム塩型界面活性剤としては、炭素数8~25の脂肪族鎖を1~2個含有する第四級アンモニウム塩{たとえば、ジデシルジメチルアンモニウムクロライド、ベンジルジメチルデシルアンモニウムクロライド、ベンジルジメチルテトラデシルアンモニウムクロライド、ジメチルジステアリルアンモニウムクロライド}が挙げられ、好ましくは、ジデシルジメチルアンモニウムクロライド、ジメチルジステアリルアンモニウムクロライドである。 As the quaternary ammonium salt type surfactant, a quaternary ammonium salt containing 1 to 2 aliphatic chains having 8 to 25 carbon atoms (eg, didecyldimethylammonium chloride, benzyldimethyldecylammonium chloride, benzyldimethyl) And tetradecyl ammonium chloride, dimethyl distearyl ammonium chloride}, and preferably didecyl dimethyl ammonium chloride and dimethyl distearyl ammonium chloride.
 これらの2種以上の混合物としては、長鎖脂肪酸エステルと長鎖脂肪族アルコールとの混合物{例えば、ショ糖ステアリン酸ジエステルとステアリルアルコールとの混合物等}が挙げられる。 Examples of the mixture of two or more of these include a mixture of a long-chain fatty acid ester and a long-chain aliphatic alcohol {for example, a mixture of sucrose stearate diester and stearyl alcohol}.
 ポリシロキサンである疎水性物質(C2)としては、ポリジメチルシロキサン、ポリエーテル変性ポリシロキサン{ポリオキシエチレン変性ポリシロキサン及びポリ(オキシエチレン・オキシプロピレン)変性ポリシロキサン等}、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン、アミノ変性ポリシロキサン、アルコキシ変性ポリシロキサン等及びこれらの混合物等が含まれる。 As the hydrophobic substance (C2) which is a polysiloxane, polydimethylsiloxane, polyether modified polysiloxane {polyoxyethylene modified polysiloxane and poly(oxyethylene/oxypropylene) modified polysiloxane etc.}, carboxy modified polysiloxane, epoxy Modified polysiloxanes, amino modified polysiloxanes, alkoxy modified polysiloxanes and the like and mixtures thereof are included.
 変性シリコーン{ポリエーテル変性ポリシロキサン、カルボキシ変性ポリシロキサン、エポキシ変性ポリシロキサン及びアミノ変性ポリシロキサン等}の有機基(変性基)の位置としては特に限定はしないが、ポリシロキサンの側鎖、ポリシロキサンの両末端、ポリシロキサンの片末端、ポリシロキサンの側鎖と両末端との両方のいずれでもよい。これらのうち、吸収特性の観点等から、ポリシロキサンの側鎖及びポリシロキサンの側鎖と両末端との両方が好ましく、さらに好ましくはポリシロキサンの側鎖と両末端との両方である。 The position of the organic group (modified group) of the modified silicone {polyether modified polysiloxane, carboxy modified polysiloxane, epoxy modified polysiloxane, amino modified polysiloxane, etc.} is not particularly limited, but the side chain of polysiloxane, polysiloxane , Both ends of the polysiloxane, one end of the polysiloxane, and both of the side chain and both ends of the polysiloxane. Of these, the side chains of polysiloxane and both the side chains of polysiloxane and both ends are preferable, and the side chains and both ends of polysiloxane are more preferable, from the viewpoint of absorption characteristics.
 ポリエーテル変性ポリシロキサンの有機基(変性基)としては、ポリオキシエチレン基又はポリ(オキシエチレン・オキシプロピレン)基を含有する基等が含まれる。ポリエーテル変性ポリシロキサンに含まれるオキシエチレン基及び/又はオキシプロピレン基の含有量(個)は、ポリエーテル変性ポリシロキサン1分子あたり、2~40が好ましく、さらに好ましくは5~30、特に好ましくは7~20、最も好ましくは10~15である。この範囲であると、吸収特性がさらに良好となる。また、オキシエチレン基及びオキシプロピレン基を含む場合、オキシエチレン基の含有量(重量%)は、ポリシロキサンの重量に基づいて、1~30が好ましく、さらに好ましくは3~25、特に好ましくは5~20である。この範囲であると、吸収特性がさらに良好となる。 The organic group (modifying group) of the polyether modified polysiloxane includes a group containing a polyoxyethylene group or a poly(oxyethylene/oxypropylene) group. The content (number) of oxyethylene groups and/or oxypropylene groups contained in the polyether modified polysiloxane is preferably 2 to 40, more preferably 5 to 30, and particularly preferably, per 1 molecule of the polyether modified polysiloxane. It is 7 to 20, most preferably 10 to 15. Within this range, the absorption characteristics will be further improved. When it contains an oxyethylene group and an oxypropylene group, the content (% by weight) of the oxyethylene group is preferably 1 to 30, more preferably 3 to 25, and particularly preferably 5 based on the weight of the polysiloxane. Is up to 20. Within this range, the absorption characteristics will be further improved.
 ポリエーテル変性ポリシロキサンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、オキシアルキレンの種類}が好ましく例示できる。
・信越化学工業株式会社製
 KF-945{側鎖、オキシエチレン及びオキシプロピレン}、KF-6020{側鎖、オキシエチレン及びオキシプロピレン}、X-22-6191{側鎖、オキシエチレン及びオキシプロピレン}、X-22-4952{側鎖、オキシエチレン及びオキシプロピレン}、X-22-4272{側鎖、オキシエチレン及びオキシプロピレン}、X-22-6266{側鎖、オキシエチレン及びオキシプロピレン}
The polyether-modified polysiloxane can be easily obtained from the market and, for example, the following commercial products {modified position, type of oxyalkylene} can be preferably exemplified.
-Shin-Etsu Chemical Co., Ltd. KF-945 {side chain, oxyethylene and oxypropylene}, KF-6020 {side chain, oxyethylene and oxypropylene}, X-22-6191 {side chain, oxyethylene and oxypropylene} , X-22-4952 {side chain, oxyethylene and oxypropylene}, X-22-4272 {side chain, oxyethylene and oxypropylene}, X-22-6266 {side chain, oxyethylene and oxypropylene}
・東レ・ダウコーニング株式会社製
 FZ-2110{両末端、オキシエチレン及びオキシプロピレン}、FZ-2122{両末端、オキシエチレン及びオキシプロピレン}、FZ-7006{両末端、オキシエチレン及びオキシプロピレン}、FZ-2166{両末端、オキシエチレン及びオキシプロピレン}、FZ-2164{両末端、オキシエチレン及びオキシプロピレン}、FZ-2154{両末端、オキシエチレン及びオキシプロピレン}、FZ-2203{両末端、オキシエチレン及びオキシプロピレン}及びFZ-2207{両末端、オキシエチレン及びオキシプロピレン}
-Toray Dow Corning Co., Ltd. FZ-2110 {both ends, oxyethylene and oxypropylene}, FZ-2122 {both ends, oxyethylene and oxypropylene}, FZ-7006 {both ends, oxyethylene and oxypropylene}, FZ-2166 {both ends, oxyethylene and oxypropylene}, FZ-2164 {both ends, oxyethylene and oxypropylene}, FZ-2154 {both ends, oxyethylene and oxypropylene}, FZ-2203 {both ends, oxy Ethylene and oxypropylene} and FZ-2207 {both ends, oxyethylene and oxypropylene}
 カルボキシ変性ポリシロキサンの有機基(変性基)としてはカルボキシ基を含有する基等が含まれ、エポキシ変性ポリシロキサンの有機基(変性基)としてはエポキシ基を含有する基等が含まれ、アミノ変性ポリシロキサンの有機基(変性基)としてはアミノ基(1、2、3級アミノ基)を含有する基等が含まれる。これらの変性シリコーンの有機基(変性基)の含有量(g/mol)は、カルボキシ当量、エポキシ当量又はアミノ当量として、200~11000が好ましく、さらに好ましくは600~8000、特に好ましくは1000~4000である。この範囲であると、吸収特性がさらに良好となる。なお、カルボキシ当量は、JIS C2101:1999の「16.全酸価試験」に準拠して測定される。また、エポキシ当量は、JIS K7236:2001に準拠して求められる。また、アミノ当量は、JIS K2501:2003の「8.電位差滴定法(塩基価・塩酸法)」に準拠して測定される。 The organic group (modifying group) of the carboxy-modified polysiloxane includes a group containing a carboxy group and the like, and the organic group (modifying group) of the epoxy-modified polysiloxane includes a group containing an epoxy group etc. Examples of the organic group (modifying group) of polysiloxane include a group containing an amino group (a primary, secondary, or tertiary amino group). The content (g/mol) of the organic group (modifying group) of these modified silicones is preferably 200 to 11000, more preferably 600 to 8000, and particularly preferably 1000 to 4000 in terms of carboxy equivalent, epoxy equivalent or amino equivalent. Is. Within this range, the absorption characteristics will be further improved. The carboxy equivalent is measured according to "16. Total acid value test" of JIS C2101:1999. The epoxy equivalent is calculated according to JIS K7236:2001. The amino equivalent is measured according to JIS K2501:2003 “8. Potentiometric titration method (base number/hydrochloric acid method)”.
 カルボキシ変性ポリシロキサンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、カルボキシ当量(g/mol)}が好ましく例示できる。
・信越化学工業株式会社製
 X-22-3701E{側鎖、4000}、X-22-162C{両末端、2300}、X-22-3710{片末端、1450}
The carboxy-modified polysiloxane can be easily obtained from the market and, for example, the following commercial products {modified position, carboxy equivalent (g/mol)} can be preferably exemplified.
・Shin-Etsu Chemical Co., Ltd. X-22-3701E {side chain, 4000}, X-22-162C {both ends, 2300}, X-22-3710 {one end, 1450}
・東レ・ダウコーニング株式会社製
 BY 16-880{側鎖、3500}、BY 16-750{両末端、750}、BY 16-840{側鎖、3500}、SF8418{側鎖、3500}
・By Toray Dow Corning Co., Ltd. BY 16-880 {side chain, 3500}, BY 16-750 {both ends, 750}, BY 16-840 {side chain, 3500}, SF8418 {side chain, 3500}
 エポキシ変性ポリシロキサンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、エポキシ当量}が好ましく例示できる。
・信越化学工業株式会社製
 X-22-343{側鎖、525}、KF-101{側鎖、350}、KF-1001{側鎖、3500}、X-22-2000{側鎖、620}、X-22-2046{側鎖、600}、KF-102{側鎖、3600}、X-22-4741{側鎖、2500}、KF-1002{側鎖、4300}、X-22-3000T{側鎖、250}、X-22-163{両末端、200}、KF-105{両末端、490}、X-22-163A{両末端、1000}、X-22-163B{両末端、1750}、X-22-163C{両末端、2700}、X-22-169AS{両末端、500}、X-22-169B{両末端、1700}、X-22-173DX{片末端、4500}、X-22-9002{側鎖・両末端、5000}
The epoxy-modified polysiloxane can be easily obtained from the market, and the following products {modified position, epoxy equivalent} can be preferably exemplified.
・Shin-Etsu Chemical Co., Ltd. X-22-343 {side chain, 525}, KF-101 {side chain, 350}, KF-1001 {side chain, 3500}, X-22-2000 {side chain, 620} , X-22-2046 {side chain, 600}, KF-102 {side chain, 3600}, X-22-4741 {side chain, 2500}, KF-1002 {side chain, 4300}, X-22-3000T {Side chain, 250}, X-22-163 {both ends, 200}, KF-105 {both ends, 490}, X-22-163A {both ends, 1000}, X-22-163B {both ends, 1750}, X-22-163C {both ends, 2700}, X-22-169AS {both ends, 500}, X-22-169B {both ends, 1700}, X-22-173DX {one end, 4500} , X-22-9002 {side chain/both ends, 5000}
・東レ・ダウコーニング株式会社製
 FZ-3720{側鎖、1200}、BY 16-839{側鎖、3700}、SF 8411{側鎖、3200}、SF 8413{側鎖、3800}、SF 8421{側鎖、11000}、BY 16-876{側鎖、2800}、FZ-3736{側鎖、5000}、BY 16-855D{側鎖、180}、BY 16-8{側鎖、3700}
-Toray Dow Corning Co., Ltd. FZ-3720 {side chain, 1200}, BY 16-839 {side chain, 3700}, SF 8411 {side chain, 3200}, SF 8413 {side chain, 3800}, SF 8421{ Side chain, 11000}, BY 16-876 {side chain, 2800}, FZ-3736 {side chain, 5000}, BY 16-855D {side chain, 180}, BY 16-8 {side chain, 3700}
 アミノ変性シリコーンは、市場から容易に入手でき、たとえば、以下の商品{変性位置、アミノ当量}が好ましく例示できる。
・信越化学工業株式会社製
 KF-865{側鎖、5000}、KF-864{側鎖、3800}、KF-859{側鎖、6000}、KF-393{側鎖、350}、KF-860{側鎖、7600}、KF-880{側鎖、1800}、KF-8004{側鎖、1500}、KF-8002{側鎖、1700}、KF-8005{側鎖、11000}、KF-867{側鎖、1700}、X-22-3820W{側鎖、55000}、KF-869{側鎖、8800}、KF-861{側鎖、2000}、X-22-3939A{側鎖、1500}、KF-877{側鎖、5200}、PAM-E{両末端、130}、KF-8010{両末端、430}、X-22-161A{両末端、800}、X-22-161B{両末端、1500}、KF-8012{両末端、2200}、KF-8008{両末端、5700}、X-22-1660B-3{両末端、2200}、KF-857{側鎖、2200}、KF-8001{側鎖、1900}、KF-862{側鎖、1900}、X-22-9192{側鎖、6500}
Amino-modified silicone can be easily obtained from the market and, for example, the following commercial products {modified position, amino equivalent} can be preferably exemplified.
・Shin-Etsu Chemical Co., Ltd. KF-86 {side chain, 5000}, KF-864 {side chain, 3800}, KF-859 {side chain, 6000}, KF-393 {side chain, 350}, KF-860 {Side chain, 7600}, KF-880 {Side chain, 1800}, KF-8004 {Side chain, 1500}, KF-8002 {Side chain, 1700}, KF-8005 {Side chain, 11000}, KF-867 {Side chain, 1700}, X-22-3820W {Side chain, 55000}, KF-869 {Side chain, 8800}, KF-861 {Side chain, 2000}, X-22-3939A {Side chain, 1500} , KF-877 {side chain, 5200}, PAM-E {both ends, 130}, KF-8010 {both ends, 430}, X-22-161A {both ends, 800}, X-22-161B {both End, 1500}, KF-8012 {both ends, 2200}, KF-8008 {both ends, 5700}, X-22-1660B-3 {both ends, 2200}, KF-857 {side chain, 2200}, KF -8001 {side chain, 1900}, KF-862 {side chain, 1900}, X-22-9192 {side chain, 6500}
・東レ・ダウコーニング株式会社製
 FZ-3707{側鎖、1500}、FZ-3504{側鎖、1000}、BY 16-205{側鎖、4000}、FZ-3760{側鎖、1500}、FZ-3705{側鎖、4000}、BY 16-209{側鎖、1800}、FZ-3710{側鎖、1800}、SF 8417{側鎖、1800}、BY 16-849{側鎖、600}、BY 16-850{側鎖、3300}、BY 16-879B{側鎖、8000}、BY 16-892{側鎖、2000}、FZ-3501{側鎖、3000}、FZ-3785{側鎖、6000}、BY 16-872{側鎖、1800}、BY 16-213{側鎖、2700}、BY 16-203{側鎖、1900}、BY 16-898{側鎖、2900}、BY 16-890{側鎖、1900}、BY 16-893{側鎖、4000}、FZ-3789{側鎖、1900}、BY 16-871{両末端、130}、BY 16-853C{両末端、360}、BY 16-853U{両末端、450}
-Toray Dow Corning Co., Ltd. FZ-3707 {side chain, 1500}, FZ-3504 {side chain, 1000}, BY 16-205 {side chain, 4000}, FZ-3760 {side chain, 1500}, FZ -3705 {side chain, 4000}, BY 16-209 {side chain, 1800}, FZ-3710 {side chain, 1800}, SF 8417 {side chain, 1800}, BY 16-849 {side chain, 600}, BY 16-850 {side chain, 3300}, BY 16-879B {side chain, 8000}, BY 16-892 {side chain, 2000}, FZ-3501 {side chain, 3000}, FZ-3785 {side chain, 6000}, BY 16-872 {side chain, 1800}, BY 16-213 {side chain, 2700}, BY 16-203 {side chain, 1900}, BY 16-898 {side chain, 2900}, BY 16- 890 {side chain, 1900}, BY 16-893 {side chain, 4000}, FZ-3789 {side chain, 1900}, BY 16-871 {both ends, 130}, BY 16-853C {both ends, 360} , BY 16-853U {both ends, 450}
 これらの混合物としては、ポリジメチルシロキサンとカルボキシル変性ポリシロキサンとの混合物、及びポリエーテル変性ポリシロキサンとアミノ変性ポリシロキサンとの混合物等が挙げられる。 Examples of the mixture include a mixture of polydimethylsiloxane and carboxyl-modified polysiloxane, and a mixture of polyether-modified polysiloxane and amino-modified polysiloxane.
 ポリシロキサンである疎水性物質の粘度(mPa・s、25℃)は、10~5000が好ましく、さらに好ましくは15~3000、特に好ましくは20~1500である。この範囲であると、吸収特性、特に血液吸収特性がさらに良好となる。なお、粘度は、JIS Z8803-1991「液体の粘度」9.円すい及び円すい-平板形回転粘度計による粘度測定法に準拠して測定される{たとえば、25.0±0.5℃に温度調節したE型粘度計(東機産業株式会社製RE80L、半径7mm、角度5.24×10-2radの円すい型コーン)を用いて測定される。} The viscosity (mPa·s, 25° C.) of the hydrophobic substance that is a polysiloxane is preferably 10 to 5,000, more preferably 15 to 3,000, and particularly preferably 20 to 1,500. Within this range, the absorption characteristics, particularly the blood absorption characteristics, will be further improved. The viscosity is JIS Z8803-1991 "Liquid viscosity" 9. Measured according to the viscosity measurement method using a cone and a cone-plate type rotational viscometer (for example, E-type viscometer whose temperature is adjusted to 25.0±0.5° C. (RE80L manufactured by Toki Sangyo Co., Ltd., radius 7 mm , Cone-shaped cone with an angle of 5.24×10 −2 rad). }
 疎水性物質(C)のHLB値は、1~9が好ましく、さらに好ましくは2~8、特に好ましくは3~7である。この範囲であると、吸収性物品の耐モレ性がさらに良好となる。なお、HLB値は、親水性-疎水性バランス(HLB)値を意味し、小田法(新・界面活性剤入門、197頁、藤本武彦、三洋化成工業株式会社発行、1981年発行)により求められる。 The HLB value of the hydrophobic substance (C) is preferably 1 to 9, more preferably 2 to 8, and particularly preferably 3 to 7. Within this range, the absorbent article has further improved resistance to leakage. The HLB value means a hydrophilic-hydrophobic balance (HLB) value, and is determined by the Oda method (Introduction to New Surfactants, page 197, Takehiko Fujimoto, Sanyo Chemical Industry Co., Ltd., 1981). ..
 これらの疎水性物質(C)のうち、吸収性物品の液拡散性、血液吸収性の観点等から、長鎖脂肪酸エステル、長鎖脂肪酸塩、長鎖脂肪酸族アルコール、第四級アンモニウム塩型界面活性剤、ポリシロキサンである疎水性物質が好ましく、さらに好ましくはグリセリンステアリン酸モノエステル、グリセリンステアリン酸ジエステル、ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ステアリルアルコール、ジメチルジステアリルアンモニウムクロライド、アミノ変性ポリシロキサン、カルボキシ変性ポリシロキサン、特に好ましくはグリセリンステアリン酸ジエステル、ショ糖ステアリン酸モノエステル、ショ糖ステアリン酸ジエステル、ステアリルアルコール、ジメチルジステアリルアンモニウムクロライド、カルボキシ変性ポリシロキサンである。 Of these hydrophobic substances (C), long-chain fatty acid esters, long-chain fatty acid salts, long-chain fatty acid alcohols, and quaternary ammonium salt-type interfaces from the viewpoints of liquid diffusion and blood absorbability of absorbent articles, etc. The activator is preferably a hydrophobic substance which is a polysiloxane, and more preferably glycerin stearic acid monoester, glycerin stearic acid diester, sucrose stearic acid monoester, sucrose stearic acid diester, stearyl alcohol, dimethyl distearyl ammonium chloride, amino. Modified polysiloxanes and carboxy modified polysiloxanes, particularly preferably glycerin stearic acid diester, sucrose stearic acid monoester, sucrose stearic acid diester, stearyl alcohol, dimethyl distearyl ammonium chloride, and carboxy modified polysiloxane.
 疎水性物質(C)の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0.001~5.0が好ましく、さらに好ましくは0.08~1.0、特に好ましくは0.08~0.16である。この範囲であると、吸収性物品の耐カブレ性に優れるため好ましい。 The content (% by weight) of the hydrophobic substance (C) is preferably 0.001 to 5.0, more preferably 0.08 to 1.0, and particularly preferably, based on the weight of the crosslinked polymer (A). Is 0.08 to 0.16. Within this range, the absorbent article is excellent in anti-fogging property, which is preferable.
 疎水性物質(C)を添加する方法としては、重合工程、ゲル粉砕工程、後述する表面架橋剤(d)により表面処理する表面処理工程等、いずれの工程で添加しても良いが、ゲル粉砕工程又は表面処理工程で添加することが好ましく、ゲル粉砕工程において、含水ゲルを混練細断する前及び/又は含水ゲルを混練細断すると同時に添加する方法がさらに好ましい。 The hydrophobic substance (C) may be added in any step such as a polymerization step, a gel crushing step, a surface treatment step of surface-treating with a surface cross-linking agent (d) described later, or the like, but the gel crushing It is preferable to add in the step or surface treatment step, and in the gel pulverizing step, a method of adding before and/or simultaneously kneading and shredding the hydrous gel is more preferable.
 ゲル粉砕工程において、含水ゲルを混練細断する温度は、70~120℃が好ましく、さらに好ましくは80~110℃である。含水ゲルを混練細断する温度がこの範囲より低いと、重合工程後に冷却工程が必要になり不要なエネルギーが必要になるばかりでなくゲルの粘着性が上がり含水ゲル粒子の大きさが大きくなりやすく、含水ゲルを混練細断する温度がこの範囲より高いと水の突沸が生じ安定的に粉砕ができない。 In the gel crushing step, the temperature at which the hydrogel is kneaded and shredded is preferably 70 to 120°C, more preferably 80 to 110°C. If the temperature at which the hydrogel is kneaded and shredded is lower than this range, a cooling step is required after the polymerization step, which not only requires unnecessary energy but also increases the tackiness of the gel and tends to increase the size of the hydrogel particles. When the temperature at which the hydrogel is kneaded and shredded is higher than this range, bumping of water occurs and stable pulverization cannot be performed.
 また、疎水性物質(C)の融点は、(C)を添加する工程の温度以下である。融点がこの範囲より高いと、疎水性物質(C)が固体状態で凝集して存在してしまい均一性が悪くなり、この範囲であると、疎水性物質(C)が融解することによりゲル表面に広がり、ゲル同士の合着を防ぐことにより微細構造が維持されることからVortex法による吸水時間を短くすることができ、粉砕効率が上がり、分級時の吸水性樹脂のリサイクル率を下げることができる。従って、本発明の製造方法では、疎水性物質(C)の融点は、(C)を添加する工程の温度以下の温度、例えば、含水ゲルを混練細断する温度以下であり、この場合、好ましくは室温以下~90℃、特に好ましくは50~80℃である。含水ゲルを混練細断する温度以下の融点を持つ疎水性物質(C)の例としては、グリセリンステアリン酸モノエステル(融点78~81℃)、グリセリンステアリン酸ジエステル(融点72~74℃)、ショ糖ステアリン酸エステル(60~80℃)、ステアリルアルコール(59~60℃)、ポリシロキサンである疎水性物質(融点データなく室温で液体)等が挙げられる。また、疎水性物質が混合物と存在することで融点が低くなっていてもよく、溶媒に溶解して添加してもよい。 Also, the melting point of the hydrophobic substance (C) is below the temperature of the step of adding (C). When the melting point is higher than this range, the hydrophobic substance (C) is aggregated and present in the solid state, resulting in poor uniformity, and when it is in this range, the hydrophobic substance (C) is melted to cause gel surface The water absorption time by the Vortex method can be shortened because the fine structure is maintained by preventing the gels from adhering to each other, the pulverization efficiency is improved, and the recycling rate of the water absorbent resin during classification can be reduced. it can. Therefore, in the production method of the present invention, the melting point of the hydrophobic substance (C) is lower than or equal to the temperature of the step of adding (C), for example, lower than or equal to the temperature at which the hydrogel is kneaded and shredded. Is below room temperature to 90° C., particularly preferably 50 to 80° C. Examples of the hydrophobic substance (C) having a melting point not higher than the temperature at which the hydrogel is kneaded and shredded are glycerin stearic acid monoester (melting point 78 to 81°C), glycerin stearic acid diester (melting point 72 to 74°C), and Examples thereof include sugar stearates (60 to 80° C.), stearyl alcohol (59 to 60° C.), and polysiloxane hydrophobic substances (liquid at room temperature without melting point data). Further, the melting point may be lowered due to the presence of the hydrophobic substance in the mixture, or the substance may be dissolved in a solvent and added.
 本発明の吸水性樹脂粒子は、架橋重合体(A)を含有する樹脂粒子が少なくとも1種の表面架橋剤(d)により表面架橋された構造を有する。従って、本発明の製造方法は、架橋重合体(A)を含有する樹脂粒子を表面架橋剤(d)により表面処理する工程含む。表面架橋剤(d)により表面架橋された構造を有することにより、ゲルブロッキングを抑制でき、表面架橋を実施しない場合、荷重下吸収量及び通液速度が低くなる。 The water-absorbent resin particles of the present invention have a structure in which resin particles containing the crosslinked polymer (A) are surface-crosslinked with at least one surface crosslinking agent (d). Therefore, the production method of the present invention includes a step of surface-treating the resin particles containing the crosslinked polymer (A) with the surface crosslinking agent (d). By having a structure that has been surface-crosslinked with the surface-crosslinking agent (d), gel blocking can be suppressed, and when surface crosslinking is not carried out, the absorption amount under load and the liquid passage rate become low.
 表面架橋剤(d)としては、公知{特開昭59-189103号公報、特開昭58-180233号公報、特開昭61-16903号公報、特開昭61-211305号公報、特開昭61-252212号公報、特開昭51-136588号公報及び特開昭61-257235号公報等}の表面架橋剤{多価グリシジル、多価アルコール、多価アミン、多価アジリジン、多価イソシアネート、シランカップリング剤及び多価金属等}等が使用できる。これらの表面架橋剤のうち、経済性及び吸収特性の観点から、多価グリシジル、多価アルコール及び多価アミンが好ましく、さらに好ましくは多価グリシジル及び多価アルコール、特に好ましくは多価グリシジル、最も好ましくはエチレングリコールジグリシジルエーテルである。 Known surface cross-linking agents (d) are disclosed in JP-A-59-189103, JP-A-58-180233, JP-A-61-16903, JP-A-61-212305, and JP-A-61-212305. 61-252212, JP-A-51-136588 and JP-A-61-257235} surface cross-linking agents {polyhydric glycidyl, polyhydric alcohol, polyhydric amine, polyhydric aziridine, polyhydric isocyanate, Silane coupling agents, polyvalent metals, etc. can be used. Among these surface cross-linking agents, from the viewpoint of economic efficiency and absorption characteristics, polyhydric glycidyl, polyhydric alcohol and polyhydric amine are preferred, more preferably polyhydric glycidyl and polyhydric alcohol, particularly preferably polyhydric glycidyl, most preferred. Preferred is ethylene glycol diglycidyl ether.
 表面架橋剤(d)の使用量(重量%)は、表面架橋剤(d)の種類、架橋させる条件、目標とする性能等により種々変化させることができるため特に限定はないが、吸収特性の観点等から、架橋重合体(A)を含有する樹脂粒子の重量に基づいて、0.001~3が好ましく、さらに好ましくは0.005~2、特に好ましくは0.01~1である。 The amount (% by weight) of the surface cross-linking agent (d) is not particularly limited because it can be variously changed depending on the type of the surface cross-linking agent (d), the conditions for cross-linking, the target performance, etc. From the viewpoint and the like, 0.001 to 3 is preferable, 0.005 to 2 is more preferable, and 0.01 to 1 is particularly preferable, based on the weight of the resin particles containing the crosslinked polymer (A).
 表面架橋剤(d)により表面処理をする方法は、公知{たとえば、特許第3648553号公報、特開2003-165883号公報、特開2005-75982号公報、特開2005-95759号公報}の方法が適用できる。 The method of performing the surface treatment with the surface cross-linking agent (d) is a known method (for example, Japanese Patent No. 36485553, Japanese Patent Laid-Open No. 2003-165883, Japanese Patent Laid-Open No. 2005-75982, Japanese Patent Laid-Open No. 2005-95759). Can be applied.
 表面架橋剤(d)により表面処理する工程を行った後、更に篩別して粒度調整しても良い。粒度調整後に得られた吸水性樹脂粒子の重量平均粒子径、微粒子の含有量、及び粒度分布指数(SPAN)の好適な範囲は後述する。 After the step of surface-treating with the surface cross-linking agent (d), the particle size may be adjusted by further sieving. Suitable ranges of the weight average particle diameter of the water-absorbent resin particles obtained after the particle size adjustment, the content of the fine particles, and the particle size distribution index (SPAN) will be described later.
 本発明の吸水性樹脂粒子は、更に無機微粒子及び/又は多価金属塩を含有してもよく、このために、本発明の製造方法は、架橋重合体(A)を含有する樹脂粒子を無機微粒子及び/又は多価金属塩により表面処理する工程を含んでも良い。無機微粒子及び/又は多価金属塩を含有することで、吸水性樹脂粒子の耐ブロッキング性及び通液速度が向上する。 The water-absorbent resin particles of the present invention may further contain inorganic fine particles and/or a polyvalent metal salt. Therefore, in the production method of the present invention, the resin particles containing the crosslinked polymer (A) are inorganic. A step of surface-treating with fine particles and/or a polyvalent metal salt may be included. By containing the inorganic fine particles and/or the polyvalent metal salt, the blocking resistance and the liquid passing speed of the water absorbent resin particles are improved.
 無機微粒子としては、シリカ、アルミナ、ジルコニア、チタニア、酸化亜鉛、タルク等が挙げられる。また、多価金属塩としては、マグネシウム、カルシウム、ジルコニウム、アルミニウム及びチタニウムからなる群から選ばれる少なくとも1種の金属と無機酸、例えば、硫酸、塩酸、硝酸臭化水素酸、硫酸、スルファミン酸、リン酸等、又は有機酸、例えば、酢酸、プロピオン酸、コハク酸、グリコール酸、ステアリン酸、乳酸、リンゴ酸、酒石酸、クエン酸、アスコルビン酸、パモ酸、マレイン酸、ヒドロキシマレイン酸、フェニル酢酸、グルタミン酸、安息香酸、サリチル酸、スルファニル酸、2-アセトキシ-安息香酸、フマル酸、トルエンスルホン酸、メタンスルホン酸、エタンジスルホン酸、シュウ酸、イセチオン酸、トリフルオロ酢酸(TFA)等)、との塩が挙げられる。これらのうち、好ましくはシリカ、アルミナ、硫酸アルミニウム、硫酸ナトリウムアルミニウム、乳酸アルミニウムである。これらは1種を単独で用いても良いし、2種以上を併用しても良い。 Examples of the inorganic fine particles include silica, alumina, zirconia, titania, zinc oxide, talc and the like. As the polyvalent metal salt, at least one metal selected from the group consisting of magnesium, calcium, zirconium, aluminum and titanium and an inorganic acid, for example, sulfuric acid, hydrochloric acid, nitric hydrobromic acid, sulfuric acid, sulfamic acid, Phosphoric acid or the like, or organic acids such as acetic acid, propionic acid, succinic acid, glycolic acid, stearic acid, lactic acid, malic acid, tartaric acid, citric acid, ascorbic acid, pamoic acid, maleic acid, hydroxymaleic acid, phenylacetic acid, Salts with glutamic acid, benzoic acid, salicylic acid, sulfanilic acid, 2-acetoxy-benzoic acid, fumaric acid, toluenesulfonic acid, methanesulfonic acid, ethanedisulfonic acid, oxalic acid, isethionic acid, trifluoroacetic acid (TFA), etc. Are listed. Of these, silica, alumina, aluminum sulfate, sodium aluminum sulfate, and aluminum lactate are preferable. These may be used alone or in combination of two or more.
 無機微粒子又は多価金属塩の使用量(重量%)は、通液性や耐ブロッキング性の観点から、架橋重合体(A)を含有する樹脂粒子の重量に基づいて、0.01~2.0が好ましく、更に好ましくは0.05~1.0である。 From the viewpoint of liquid permeability and blocking resistance, the amount of the inorganic fine particles or polyvalent metal salt used (% by weight) is 0.01 to 2. based on the weight of the resin particles containing the crosslinked polymer (A). 0 is preferable, and 0.05 to 1.0 is more preferable.
 無機微粒子及び/又は多価金属塩により表面処理する場合、無機微粒子及び/又は多価金属塩と混合する工程は、前記の表面架橋剤により表面処理をする工程前、上記工程後、及び上記工程と同時のいずれにおいても行うことができる。 When the surface treatment is performed with the inorganic fine particles and/or the polyvalent metal salt, the step of mixing with the inorganic fine particles and/or the polyvalent metal salt is performed before the step of performing the surface treatment with the surface cross-linking agent, after the above step, and the above step. It can be performed at any one of the above and the same time.
 本発明の製造方法において、無機微粒子及び/又は多価金属塩により表面処理する工程を行った後、更に粒度調整を行っても良い。 In the production method of the present invention, the particle size may be further adjusted after the step of performing the surface treatment with the inorganic fine particles and/or the polyvalent metal salt.
 本発明の吸水性樹脂粒子には、他の添加剤{たとえば、公知(特開2003-225565号、特開2006-131767号等)の防腐剤、防かび剤、抗菌剤、酸化防止剤、紫外線吸収剤、着色剤、芳香剤、消臭剤及び有機質繊維状物等}を含むこともできる。これらの添加剤を含有させる場合、添加剤の含有量(重量%)は、架橋重合体(A)の重量に基づいて、0.001~10が好ましく、さらに好ましくは0.01~5、特に好ましくは0.05~1、最も好ましくは0.1~0.5である。 The water-absorbent resin particles of the present invention may contain other additives (for example, known antiseptics, antifungal agents, antibacterial agents, antioxidants, ultraviolet rays, etc. (Japanese Patent Laid-Open Nos. 2003-225565 and 2006-131767). Absorbents, colorants, fragrances, deodorants, organic fibrous substances, etc.} can also be included. When these additives are contained, the content (% by weight) of the additive is preferably 0.001 to 10 based on the weight of the crosslinked polymer (A), more preferably 0.01 to 5, It is preferably 0.05 to 1, and most preferably 0.1 to 0.5.
 本発明の吸水性樹脂粒子の形状については、不定形破砕状、リン片状、パール状及び米粒状等が挙げられる。これらのうち、紙おむつ用途等での繊維状物とのからみが良く、繊維状物からの脱落の心配がないという観点から、不定形破砕状が好ましい。 Regarding the shape of the water-absorbent resin particles of the present invention, crushed irregular shape, flaky shape, pearl shape, rice grain shape, etc. may be mentioned. Among them, the irregular crushed shape is preferable from the viewpoint that it has good entanglement with the fibrous material for use in a disposable diaper and the like, and there is no fear of falling off from the fibrous material.
 本発明の吸水性樹脂粒子の見掛け密度(g/ml)は、0.52~0.67が好ましく、さらに好ましくは0.55~0.65、特に好ましくは0.57~0.63である。この範囲であると、吸収性物品の吸収特性がさらに良好となる。なお、見掛け密度は、JIS K7365:1999に準拠して、25℃で測定される。 The apparent density (g/ml) of the water absorbent resin particles of the present invention is preferably 0.52 to 0.67, more preferably 0.55 to 0.65, and particularly preferably 0.57 to 0.63. .. Within this range, the absorbent article will have even better absorption characteristics. The apparent density is measured at 25°C according to JIS K7365:1999.
 本発明の吸水性樹脂粒子の重量平均粒子径(μm)は、200~420であり、好ましくは250~410、更に好ましくは300~400、最も好ましくは350~390である。200~420の範囲より大きいと、Vortex法による吸収時間が長くなり、イオン交換水60秒吸収量が減り、血液吸収時間が長くなる。この範囲より小さいと、スポット吸収やゲルブロッキングを生じやすくなる。なお、重量平均粒子径は、架橋重合体(A)を含有する樹脂粒子、すなわち表面架橋前の樹脂粒子、における前述と同様にして測定できる。 The weight average particle diameter (μm) of the water absorbent resin particles of the present invention is 200 to 420, preferably 250 to 410, more preferably 300 to 400, and most preferably 350 to 390. When it is larger than the range of 200 to 420, the absorption time by the Vortex method becomes long, the absorption amount of ion-exchanged water for 60 seconds decreases, and the blood absorption time becomes long. If it is less than this range, spot absorption or gel blocking tends to occur. The weight average particle diameter can be measured in the same manner as described above for the resin particles containing the crosslinked polymer (A), that is, the resin particles before surface crosslinking.
 本発明の吸水性樹脂粒子の微粒子の含有量は少ない方が吸収性能がよく、全粒子に占める106μm以下の微粒子の含有量が3重量%以下が好ましく、さらに好ましくは全粒子に占める150μm以下の微粒子の含有量が3重量%以下である。なお、微粒子の含有量は前述と同様にして測定できる。 The smaller the content of the fine particles of the water-absorbent resin particles of the present invention, the better the absorption performance, and the content of the fine particles of 106 μm or less in all particles is preferably 3% by weight or less, more preferably 150 μm or less in all particles. The content of fine particles is 3% by weight or less. The content of fine particles can be measured in the same manner as described above.
 本発明の吸水性樹脂粒子の画像解析式粒度分布測定装置により測定される粒度分布指数(SPAN)は、0.30~0.75であり、好ましくは0.30~0.65、より好ましくは0.30~0.60である。この範囲より高いと、イオン交換水の60秒吸い上げ吸収量が悪化し、不織布からの液引きが悪くなる。また、血液吸収速度が悪化し、ドライ性が悪くなる。一方、この範囲より低いSPANにすることは吸水性樹脂粒子の再利用率が高くなりすぎるため現実的ではない。なお、粒度分布指数(SPAN)は前述と同様にして測定できる。 The particle size distribution index (SPAN) of the water absorbent resin particles of the present invention measured by an image analysis type particle size distribution measuring device is 0.30 to 0.75, preferably 0.30 to 0.65, and more preferably It is 0.30 to 0.60. If it is higher than this range, the absorption amount of the ion-exchanged water absorbed for 60 seconds is deteriorated, and the drainage from the nonwoven fabric is deteriorated. Further, the blood absorption rate is deteriorated and the dryness is deteriorated. On the other hand, setting the SPAN lower than this range is not realistic because the reuse ratio of the water-absorbent resin particles becomes too high. The particle size distribution index (SPAN) can be measured in the same manner as described above.
 本発明の吸水性樹脂粒子は、0.71kPaの荷重下における生理食塩水(食塩濃度0.9重量%。以下おなじ)の通液速度が80ml/分以上であることが好ましい。さらに好ましくは100ml/分以上である。80ml/分以上であれば、吸収体への浸透速度が速く、モレを低減できる。上限値は高いほど好ましく特に制限されないが、遠心保持量と両立する観点から、好ましくは1000ml/分以下である。なお、通液速度は以下の方法により測定される。 The water-absorbent resin particles of the present invention preferably have a liquid flow rate of physiological saline (saline concentration of 0.9% by weight; hereinafter the same) of 80 ml/min or more under a load of 0.71 kPa. More preferably, it is 100 ml/min or more. When it is 80 ml/min or more, the permeation rate into the absorber is high, and leakage can be reduced. The higher the upper limit is, the more preferable it is not particularly limited, but it is preferably 1000 ml/min or less from the viewpoint of being compatible with the centrifugal retention amount. The liquid passing rate is measured by the following method.
<0.71kPaの荷重下における生理食塩水の通液速度の測定方法>
 測定試料0.32gを150ml生理食塩水に30分間浸漬して含水ゲル粒子を調製する。そして、垂直に立てた円筒[直径(内径)25.4mm、長さ40cm、底部から40mlの位置及び60mlの位置にそれぞれ目盛り線(m1)及び(m2)が設けてある。]の底部に、金網(目開き106μm、JIS Z8801-1:2006)と、開閉自在のコック(内径5mm、長さ10cm)とを有する濾過円筒管内に、コックを閉鎖した状態で、調製した含水ゲル粒子を生理食塩水と共に移した後、この含水ゲル粒子の上に円形金網(目開き150μm、直径25mm:金網面に対して垂直に結合する加圧軸(重さ22g、長さ47cm)を有する)を金網と含水ゲル粒子とが接触するように載せ、更に加圧軸におもり(14.8g)を載せ、1分間静置する。引き続き、コックを開き、濾過円筒管内の液面が60ml目盛り線(m2)から40ml目盛り線(m1)になるのに要する時間(T1;秒)を計測し、次式より通液速度(ml/分)を求める。なお、使用する生理食塩水及び測定雰囲気の温度は25℃±2℃で行う。
通液速度(ml/分)=20ml×60/(T1-T2)
 なお、T2は、測定試料の無い場合について上記と同様の操作により計測した時間である。
<A measuring method of the permeation rate of physiological saline under a load of 0.71 kPa>
0.32 g of the measurement sample is immersed in 150 ml of physiological saline for 30 minutes to prepare hydrous gel particles. Then, a vertical cylinder [diameter (inner diameter) 25.4 mm, length 40 cm, graduation lines (m1) and (m2) are provided at positions of 40 ml and 60 ml from the bottom, respectively. ] The water content prepared with the cock closed in a filtration cylindrical tube having a wire mesh (opening 106 μm, JIS Z8801-1:2006) and an openable/closable cock (inner diameter 5 mm, length 10 cm) After transferring the gel particles together with physiological saline, a circular wire mesh (opening 150 μm, diameter 25 mm: a pressure axis (weight 22 g, length 47 cm) that is connected perpendicularly to the wire mesh surface is placed on the water-containing gel particles. ) Is placed so that the metal net and the hydrogel particles come into contact with each other, and a weight (14.8 g) is further placed on the pressure shaft and left still for 1 minute. Then, open the cock and measure the time (T1; seconds) required for the liquid level in the filtration cylindrical tube to change from the 60 ml scale line (m2) to the 40 ml scale line (m1). Minutes). The temperature of the physiological saline used and the measurement atmosphere is 25°C ± 2°C.
Flow rate (ml/min) = 20 ml x 60/(T1-T2)
Note that T2 is the time measured by the same operation as above in the case where there is no measurement sample.
 本発明の吸水性樹脂粒子は、Vortex法による吸収時間が15~40秒であることが好ましい。さらに好ましくは20~35秒である。15~40秒より遅いと、吸収体の斜めモレが起こりやすく、この範囲より速いと過剰にスポット吸収するため浸透速度が遅くなる。なお、Vortex法による吸収時間は以下の方法により測定される。 The water-absorbent resin particles of the present invention preferably have an absorption time of 15-40 seconds by the Vortex method. More preferably, it is 20 to 35 seconds. If it is slower than 15 to 40 seconds, oblique leakage of the absorbent body is likely to occur, and if it is faster than this range, spot absorption is excessive and the permeation speed becomes slow. The absorption time by the Vortex method is measured by the following method.
<Vortex法による吸収時間の測定方法>
 100mlビーカーに50gの生理食塩水を入れ、25±2℃に温度調整を行う。次にスターラーピース(長さ30mm、中心部直径8mm、端部直径7mm)をビーカーの中央部に入れ、生理食塩水を600rpmで撹拌する。ビーカー壁面付近に測定試料2.000gを投入する。なお、使用する測定試料はその代表的粒子径の状態でサンプリングされるように、サンプルスプリッター等を用いて調整する。測定試料を投入し終わった時点から計測をスタートし、測定試料と生理食塩水とからなる混合液の液面が平らになる(液面からの乱反射光が消失する点)までの時間(秒)を吸収時間とする。なお、試験は25±3℃、60±5RH%の条件下で行う。
<Method of measuring absorption time by Vortex method>
Put 50 g of physiological saline in a 100 ml beaker and adjust the temperature to 25±2°C. Next, a stirrer piece (length 30 mm, center diameter 8 mm, end diameter 7 mm) is placed in the center of the beaker, and physiological saline is stirred at 600 rpm. 2.000 g of the measurement sample is put in the vicinity of the beaker wall surface. In addition, the measurement sample to be used is adjusted by using a sample splitter or the like so as to be sampled in a state of its typical particle size. The time (seconds) until the measurement is started from the time when the measurement sample is added and the level of the liquid mixture of the measurement sample and physiological saline becomes flat (the point at which diffused light from the level disappears) Is the absorption time. The test is conducted at 25±3° C. and 60±5 RH%.
 本発明の吸水性樹脂粒子は、生理食塩水の遠心保持量が25~45g/gであることが好ましい。この範囲であると、吸収体が十分に液を保持でき、通液速度と両立することができる。なお、生理食塩水の遠心保持量は以下の方法により測定される。 The water-absorbent resin particles of the present invention preferably have a physiological saline retention of 25 to 45 g/g. Within this range, the absorber can sufficiently retain the liquid, and can be compatible with the liquid passage rate. The amount of physiological saline retained by centrifugation is measured by the following method.
<生理食塩水の遠心保持量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網で作成したティーバッグ(縦20cm、横10cm)に測定試料1.00gを入れ、生理食塩水1,000ml中に無撹拌下、1時間浸漬した後、15分間吊るして水切りする。その後、ティーバッグごと、遠心分離器にいれ、150Gで90秒間遠心脱水して余剰の生理食塩水を取り除き、ティーバックを含めた重量(h1)を測定し次式から遠心保持量を求める。
遠心保持量(g/g)=(h1)-(h2)
 なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃とする。測定試料を用いない以外は上記と同様にして、遠心脱水後のティーバックの重量を測定し(h2)とする。
<Method of measuring the amount of saline retained by centrifugation>
1.00 g of the measurement sample was placed in a tea bag (length 20 cm, width 10 cm) made of nylon mesh with an opening of 63 μm (JIS Z8801-1:2006), and immersed in 1,000 ml of physiological saline solution for 1 hour without stirring. After that, hang it for 15 minutes to drain water. Then, each tea bag is placed in a centrifuge, centrifugally dehydrated at 150 G for 90 seconds to remove excess physiological saline, and the weight (h1) including tea bag is measured to determine the centrifugal retention amount from the following formula.
Centrifuge retention amount (g/g) = (h1)-(h2)
The temperature of the physiological saline used and the measurement atmosphere is 25°C ± 2°C. The weight of the tea bag after centrifugal dehydration is measured in the same manner as above except that the measurement sample is not used, and is designated as (h2).
 本発明の吸水性樹脂粒子は、生理食塩水の荷重下吸収量が15~30g/gであることが好ましい。この範囲であると、吸収体が荷重下に置かれても十分に液を吸収することができる。なお、生理食塩水の荷重下吸収量は以下の方法により測定される。 The water-absorbent resin particles of the present invention preferably have an absorbed amount of physiological saline under a load of 15 to 30 g/g. Within this range, the liquid can be sufficiently absorbed even when the absorber is placed under a load. The amount of physiological saline absorbed under load is measured by the following method.
<生理食塩水の荷重下吸収量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網を底面に貼った円筒型プラスチックチューブ(内径:25mm、高さ:34mm)内に、30メッシュふるいと60メッシュふるいを用いて250~500μmの範囲にふるい分けした測定試料0.16gを秤量し、円筒型プラスチックチューブを垂直にしてナイロン網上に測定試料がほぼ均一厚さになるように整えた後、この測定試料の上に分銅(重量:210.6g、外径:24.5mm、)を乗せる。この円筒型プラスチックチューブ全体の重量(M1)を計量した後、生理食塩水60mlの入ったシャーレ(直径:12cm)の中に測定試料及び分銅の入った円筒型プラスチックチューブを垂直に立ててナイロン網側を下面にして生理食塩水に浸し、60分静置する。60分後に、円筒型プラスチックチューブをシャーレから引き上げ、これを斜めに傾けて底部に付着した生理食塩水を一箇所に集めて水滴として垂らすことで余分な生理食塩水を除去した後、測定試料及び分銅の入った円筒型プラスチックチューブ全体の重量(M2)を計量し、次式から荷重下吸収量を求める。なお、使用した生理食塩水及び測定雰囲気の温度は25℃±2℃である。
荷重下吸収量(g/g)={(M2)-(M1)}/0.16
<Measurement method of physiological saline absorption under load>
In a cylindrical plastic tube (inner diameter: 25 mm, height: 34 mm) with a nylon mesh of 63 μm (JIS Z8801-1:2006) attached to the bottom, a 30-mesh sieve and a 60-mesh sieve were used to measure 250-500 μm. After weighing 0.16 g of the measurement sample sieved in the range and arranging the cylindrical plastic tube vertically so that the measurement sample has a substantially uniform thickness on the nylon net, a weight (weight: 210.6 g, outer diameter: 24.5 mm,). After measuring the total weight (M1) of the cylindrical plastic tube, the cylindrical plastic tube containing the measurement sample and the weight was vertically set in a petri dish (diameter: 12 cm) containing 60 ml of physiological saline, and a nylon mesh was used. The side is placed as the lower surface and the plate is immersed in physiological saline and left standing for 60 minutes. After 60 minutes, the cylindrical plastic tube was pulled up from the petri dish, the physiological saline adhering to the bottom was collected at one position by tilting it to remove excess physiological saline by dropping it as a water drop, and then a measurement sample and The total weight (M2) of the cylindrical plastic tube containing the weight is measured, and the absorption amount under load is calculated from the following formula. The temperature of the physiological saline used and the measuring atmosphere is 25°C ± 2°C.
Absorption under load (g/g)={(M2)-(M1)}/0.16
 本発明の吸水性樹脂粒子は、イオン交換水の60秒吸い上げ吸収量が50~100g/gであることが好ましい。この範囲であると、高膨潤倍率での不織布からの液引きが速くドライ性が高まる。なお、イオン交換水の60秒吸い上げ吸収量は以下の方法により測定される。 The water-absorbent resin particle of the present invention preferably absorbs ion-exchanged water for 60 seconds and has an absorption amount of 50 to 100 g/g. Within this range, the liquid is quickly drawn from the nonwoven fabric at a high swelling ratio and the dryness is enhanced. The absorbed amount of ion-exchanged water absorbed for 60 seconds is measured by the following method.
<イオン交換水の60秒吸い上げ吸収量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網を底面に貼った円筒型プラスチックチューブ(内径:25mm、高さ:34mm)内に、測定試料0.16gを秤量し、円筒型プラスチックチューブを垂直にしてナイロン網上に測定試料がほぼ均一厚さになるように整えた後、この円筒型プラスチックチューブ全体の重量(M1)を計量する。つぎに、イオン交換水60mlの入ったシャーレ(直径:12cm)の中に測定試料の入った円筒型プラスチックチューブを垂直に立ててナイロン網側を下面にしてイオン交換水に浸し、60秒静置する。60秒後に、円筒型プラスチックチューブをシャーレから引き上げ、測定試料及び円筒型プラスチックチューブ全体の重量(M2)を計量し、次式からイオン交換水の60秒吸い上げ吸収量を求める。なお、使用したイオン交換水及び測定雰囲気の温度は25℃±2℃である。
イオン交換水の60秒吸い上げ吸収量(g/g)={(M2)-(M1)}/0.16
<Measurement method for absorption of ion-exchanged water for 60 seconds>
0.16 g of the measurement sample was weighed into a cylindrical plastic tube (inner diameter: 25 mm, height: 34 mm) having a nylon net with an opening of 63 μm (JIS Z8801-1:2006) attached to the bottom surface, and the cylindrical plastic tube was attached. After vertically arranging the measurement sample on a nylon net so as to have a substantially uniform thickness, the total weight (M1) of the cylindrical plastic tube is measured. Next, a cylindrical plastic tube containing the measurement sample was placed vertically in a Petri dish (diameter: 12 cm) containing 60 ml of ion-exchanged water, soaked in ion-exchanged water with the nylon net side facing down and left for 60 seconds. To do. After 60 seconds, the cylindrical plastic tube is pulled up from the petri dish, the weight (M2) of the measurement sample and the entire cylindrical plastic tube is weighed, and the absorbed amount of ion-exchanged water is absorbed for 60 seconds from the following formula. The temperature of the ion-exchanged water used and the measurement atmosphere is 25°C ± 2°C.
Absorption amount of ion-exchanged water for 60 seconds (g/g)={(M2)-(M1)}/0.16
 本発明の吸水性樹脂粒子は、血液吸収量が10~30g/gが好ましく、より好ましくは12~30g/gである。この範囲より低いと、血液の吸収量が低くドライ性が悪くなる場合がある。この範囲より高いとドライ性は向上するものの、吸収体の膨れ等の問題が発生することがある。なお、血液吸収量は以下の方法により測定される。 The water absorbent resin particles of the present invention preferably have a blood absorption amount of 10 to 30 g/g, more preferably 12 to 30 g/g. If it is lower than this range, the amount of blood absorbed is low and the dryness may deteriorate. If it is higher than this range, the dryness is improved, but problems such as swelling of the absorbent body may occur. The blood absorption amount is measured by the following method.
 <血液吸収量の測定方法>
 目開き63μm(JIS Z8801-1:2006)のナイロン網で作製したティーバッグ(縦3.5cm、横3.5cm)に測定試料0.100gを加えて、四方をヒートシールする。あらかじめJIS R 3503に規定する底面が平らな100mlのビーカーに馬血(馬EDTA全血、有限会社ジャパンラム製)15.0gを用意し、測定試料の入ったナイロンメッシュ袋を15分間浸漬させる。15分後にナイロンメッシュを取り出し、1分間吊るして余分な血を除き、重量(h3)を測定し次式から血液吸収量を求める。なお、使用する馬血及び測定雰囲気の温度は25℃±2℃とする。重量(h4)は、測定試料の無い場合について上記と同様の操作により計測したティーバッグの重量である。
血液吸収量(g/g)=((h3)-(h4))/0.100
<Measurement method of blood absorption>
0.100 g of the measurement sample is added to a tea bag (3.5 cm in length, 3.5 cm in width) made of a nylon net having an opening of 63 μm (JIS Z8801-1:2006), and heat sealed on all sides. In advance, 15.0 g of horse blood (horse EDTA whole blood, manufactured by Japan Lamb Co., Ltd.) is prepared in a 100-ml beaker with a flat bottom defined in JIS R 3503, and a nylon mesh bag containing a measurement sample is immersed for 15 minutes. After 15 minutes, the nylon mesh is taken out and suspended for 1 minute to remove excess blood, and the weight (h3) is measured to obtain the blood absorption amount from the following formula. The temperature of the horse blood and the measurement atmosphere used is 25°C ± 2°C. The weight (h4) is the weight of the tea bag measured by the same operation as above when there is no measurement sample.
Blood absorption (g/g)=((h3)-(h4))/0.100
 本発明の吸水性樹脂粒子は、血液吸収時間が120秒以下が好ましく、より好ましくは30~100秒である。この範囲より高いと、ドライ性が悪くなり、この範囲より低いと過剰にスポット吸収するため吸収体への吸収速度が遅くなりドライ性が悪くなる場合がある。なお、血液吸収時間は以下の方法により測定される。 The water-absorbent resin particles of the present invention preferably have a blood absorption time of 120 seconds or less, more preferably 30 to 100 seconds. If it is higher than this range, the dryness becomes poor, and if it is lower than this range, spot absorption is excessive and the absorption speed to the absorber becomes slower, which may result in poor dryness. The blood absorption time is measured by the following method.
 <血液吸収時間の測定方法>
 9mlのスクリューバイアル瓶に測定試料0.2gを底面全体に均一に散布し、馬血(馬EDTA全血、有限会社ジャパンラム製)1.0gを一気に投入してから馬血の流動性がなくなるまでの時間(秒)を肉眼で測定して血液吸収速度(秒)とする。なお、本測定において、流動性がなくなるとは、スクリューバイアル瓶の底面を水平に対して45度傾けたとき、吸水性樹脂粒子から独立して流動する血液がない状態を意味する。なお、使用する馬血及び測定雰囲気の温度は25℃±2℃とする。
<Measurement method of blood absorption time>
0.2 g of the measurement sample was evenly spread over the entire bottom surface in a 9 ml screw vial, and 1.0 g of horse blood (horse EDTA whole blood, manufactured by Japan Lamb Co., Ltd.) was added all at once, and then the horse blood lost its fluidity. The time until (second) is measured with the naked eye and used as the blood absorption rate (second). In addition, in this measurement, the term “no fluidity” means that there is no blood that flows independently of the water-absorbent resin particles when the bottom surface of the screw vial is tilted at 45 degrees with respect to the horizontal. The temperature of the horse blood and the measurement atmosphere used is 25°C ± 2°C.
 本発明の吸水性樹脂粒子は、例えば、紙おむつ、生理用ナプキン、失禁パッド、医療用パッド等の衛生材料に用いられる吸収体を構成するものであり、吸収体を備える吸収性物品に好適に用いられ、特に経血又は血液吸収用に対して好適に用いられる。血液又は経血の吸収用である吸収性物品としては、例えば、生理用ナプキン、タンポン、医療用シート、ドリップ吸収剤、創傷保護材、創傷治癒材、手術用廃液処理剤等々の血液吸収特性が要求される物品が挙げられる。 The water-absorbent resin particles of the present invention constitute, for example, an absorbent body used for sanitary materials such as paper diapers, sanitary napkins, incontinence pads, and medical pads, and are suitably used for absorbent articles provided with the absorbent body. It is suitably used particularly for for absorbing menses or blood. As the absorbent article for absorbing blood or menstrual blood, for example, a sanitary napkin, a tampon, a medical sheet, a drip absorbent, a wound protective material, a wound healing material, a surgical liquid waste treatment agent and the like have blood absorption characteristics. Included items required.
 本発明の吸水性樹脂粒子が使用された吸収体は、経血又は血液等の体液の吸収量に優れ、液の取り込み速度に優れるとともに、吸収後の加圧下のドライタッチ性に優れる。 An absorbent body using the water-absorbent resin particles of the present invention has an excellent absorption amount of body fluid such as menstrual blood or blood, an excellent liquid uptake rate, and a dry touch property under pressure after absorption.
 本発明の吸収体は、本発明の吸水性樹脂粒子と不織布とを含有する。 The absorber of the present invention contains the water absorbent resin particles of the present invention and a nonwoven fabric.
 本発明に用いられる不織布としては、公知の不織布であれば特に限定されないが、液体浸透性、柔軟性及び吸収体とした際の強度の観点から、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン繊維、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)等のポリエステル繊維、ナイロン等のポリアミド繊維、レーヨン繊維、その他の合成繊維製からなる不織布や、綿、絹、麻、パルプ(セルロース)繊維等が混合されて製造された不織布等が挙げられる。これらの不織布のなかでも、吸収体の強度を高める等の観点から、合成繊維の不織布が好ましく、更に好ましくはレーヨン繊維、ポリオレフィン繊維、ポリエステル繊維からなる不織布である。これらの不織布は、前記繊維の単独の不織布でもよく、2種以上の繊維を組み合わせた不織布でもよい。 The nonwoven fabric used in the present invention is not particularly limited as long as it is a known nonwoven fabric, but from the viewpoint of liquid permeability, flexibility and strength when used as an absorber, polyolefin such as polyethylene (PE) and polypropylene (PP). Fibers, polyester fibers such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polyamide fibers such as nylon, rayon fibers, non-woven fabrics made of other synthetic fibers, cotton, silk, Non-woven fabrics produced by mixing hemp, pulp (cellulose) fibers, and the like are included. Among these non-woven fabrics, non-woven fabrics made of synthetic fibers are preferable, and more preferably non-woven fabrics made of rayon fibers, polyolefin fibers, and polyester fibers, from the viewpoint of increasing the strength of the absorber. These non-woven fabrics may be a single non-woven fabric of the above fibers or a non-woven fabric in which two or more kinds of fibers are combined.
 本発明に用いられる不織布は吸収体に、良好な液体浸透性、柔軟性、強度やクッション性を付与すること及び吸収体の液体浸透速度を速める観点から、適度に嵩高く、目付量が大きい不織布が好ましい。その目付量は、好ましくは5~300g/mであり、より好ましくは8~200g/mであり、さらに好ましくは10~100g/mであり、よりさらに好ましくは11~50g/mである。また、不織布の厚さとしては、20~800μmの範囲が好ましく、50~600μmの範囲がより好ましく、80~450μmの範囲がさらに好ましい。 The non-woven fabric used in the present invention is a non-woven fabric that is appropriately bulky and has a large basis weight from the viewpoint of imparting good liquid permeability, flexibility, strength and cushioning properties to the absorber and accelerating the liquid permeation rate of the absorber. Is preferred. The basis weight is preferably 5 to 300 g/m 2 , more preferably 8 to 200 g/m 2 , even more preferably 10 to 100 g/m 2 , and even more preferably 11 to 50 g/m 2. Is. The thickness of the nonwoven fabric is preferably 20 to 800 μm, more preferably 50 to 600 μm, and further preferably 80 to 450 μm.
 本発明の吸収体において、吸収層は、吸水性樹脂粒子、不織布及び必要により接着剤を含有し、所望によりさらにフラッフパルプ等の親水性繊維を含有してなるものであり、例えば、接着剤を塗布した不織布上に、吸水性樹脂粒子を均一に散布した後、要すれば接着剤を塗布した不織布をさらに重ねて、要すれば圧力下で加熱することにより形成される。また、不織布上で吸水性樹脂粒子と接着剤の混合粉末を均一に散布し、さらに不織布を重ねて、接着剤の溶融温度付近で加熱すること、要すれば圧力下で加熱することによっても形成される。上記不織布と吸水性樹脂粒子の間にフラッフパルプを均一に散布することができる。
 本発明の吸収体において、吸収層を重ねて、2層以上にすることもできる。
In the absorbent body of the present invention, the absorbent layer contains water-absorbent resin particles, a non-woven fabric and optionally an adhesive, and further contains a hydrophilic fiber such as fluff pulp, if desired. The water-absorbent resin particles are evenly dispersed on the coated non-woven fabric, and if necessary, the non-woven fabric coated with the adhesive is further overlaid, and if necessary, heated under pressure. It is also formed by uniformly dispersing the mixed powder of the water-absorbent resin particles and the adhesive on the non-woven fabric, stacking the non-woven fabrics, and heating the mixture near the melting temperature of the adhesive, if necessary, by heating under pressure. To be done. Fluff pulp can be evenly distributed between the non-woven fabric and the water-absorbent resin particles.
In the absorbent body of the present invention, the absorbent layers may be stacked to form two or more layers.
 本発明に用いられる接着剤としては、例えば、天然ゴム系、ブチルゴム系、ポリイソプレン等のゴム系接着剤;スチレン-イソプレンブロック共重合体(SIS)、スチレン-ブタジエンブロック共重合体(SBS)、スチレン-イソブチレンブロック共重合体(SIBS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)等のスチレン系エラストマー接着剤;エチレン-酢酸ビニル共重合体(EVA)接着剤;エチレン-アクリル酸エチル共重合体(EEA)、エチレン-アクリル酸ブチル共重合体(EBA)等のエチレン-アクリル酸誘導体共重合系接着剤;エチレン-アクリル酸共重合体(EAA)接着剤;共重合ナイロン、ダイマー酸ベースポリアミド等のポリアミド系接着剤;ポリエチレン、ポリプロピレン、アタクチックポリプロピレン、共重合ポリオレフィン等のポリオレフィン系接着剤;ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、共重合ポリエステル等のポリエステル系接着剤等、及びアクリル系接着剤が挙げられる。本発明においては、接着力が強く、吸水シート構成体における不織布の剥離や吸水性樹脂粒子の散逸を防ぐことができるという観点から、エチレン-酢酸ビニル共重合体接着剤、スチレン系エラストマー接着剤、ポリオレフィン系接着剤及びポリエステル系接着剤が好ましい。これらの接着剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of the adhesive used in the present invention include rubber-based adhesives such as natural rubber-based, butyl rubber-based, and polyisoprene; styrene-isoprene block copolymer (SIS), styrene-butadiene block copolymer (SBS), Styrene-based elastomer adhesives such as styrene-isobutylene block copolymer (SIBS) and styrene-ethylene-butylene-styrene block copolymer (SEBS); ethylene-vinyl acetate copolymer (EVA) adhesives; ethylene-acrylic acid Ethylene-acrylic acid derivative copolymer adhesives such as ethyl copolymer (EEA) and ethylene-butyl acrylate copolymer (EBA); ethylene-acrylic acid copolymer (EAA) adhesives; copolymerized nylon and dimer Polyamide adhesives such as acid-based polyamides; Polyolefin adhesives such as polyethylene, polypropylene, atactic polypropylene, copolymerized polyolefins; Polyester adhesives such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), copolymerized polyesters Etc., and acrylic adhesives. In the present invention, an ethylene-vinyl acetate copolymer adhesive, a styrene-based elastomer adhesive, from the viewpoint that the adhesive strength is strong and peeling of the nonwoven fabric in the water-absorbent sheet structure and the dissipation of the water-absorbent resin particles can be prevented Polyolefin adhesives and polyester adhesives are preferred. These adhesives may be used alone or in combination of two or more.
 熱溶融型の接着剤を使用する場合、接着剤の溶融温度(軟化温度)は、吸水性樹脂粒子を不織布に十分に固定するとともに、不織布の熱劣化や変形を防止する観点から、60~180℃が好ましく、70~150℃がより好ましく、75~125℃がさらに好ましい。 When a heat-melting type adhesive is used, the melting temperature (softening temperature) of the adhesive is 60 to 180 from the viewpoint of sufficiently fixing the water-absorbent resin particles to the nonwoven fabric and preventing thermal deterioration and deformation of the nonwoven fabric. C. is preferable, 70 to 150.degree. C. is more preferable, and 75 to 125.degree. C. is further preferable.
 吸収体における接着剤の含有割合は、吸水性樹脂粒子の含有量(質量基準)の0.05~2.0倍の範囲が好ましく、0.08~1.5倍の範囲がより好ましく、0.1~1.0倍の範囲がさらに好ましい。十分な接着によって不織布の剥離や吸水性樹脂粒子の散逸を防止し、吸収体の形態保持性を高める観点から、接着剤の含有割合は0.05倍以上であることが好ましく、接着が強くなり過ぎることによる吸水性樹脂粒子の膨潤阻害を回避し、吸収体の浸透速度や液漏れを改善する観点から、接着剤の含有割合は2.0倍以下であることが好ましい。 The content ratio of the adhesive in the absorbent body is preferably 0.05 to 2.0 times, more preferably 0.08 to 1.5 times the content (mass basis) of the water absorbent resin particles, and more preferably 0. The range of 1 to 1.0 times is more preferable. From the viewpoint of preventing peeling of the non-woven fabric and dissipation of the water-absorbent resin particles by sufficient adhesion and improving the shape retention of the absorber, the content ratio of the adhesive is preferably 0.05 times or more, and the adhesion becomes strong. The content ratio of the adhesive is preferably 2.0 times or less from the viewpoint of avoiding the swelling inhibition of the water-absorbent resin particles due to excess and improving the permeation rate of the absorber and the liquid leakage.
 本発明の吸水性樹脂粒子と上述の不織布の重量を基準とした吸水性樹脂粒子の重量%{吸水性樹脂粒子の重量/(吸水性樹脂粒子の重量+不織布の重量)}は40重量%以上が好ましく、さらに好ましくは60重量%以上、特に好ましくは80重量%である。 The weight% of the water-absorbent resin particles of the present invention and the above-mentioned non-woven fabric is 40% by weight or more based on the weight of the water-absorbent resin particles {weight of water-absorbent resin particles/(weight of water-absorbent resin particles+weight of non-woven fabric)}. Is more preferable, 60% by weight or more is more preferable, and 80% by weight is particularly preferable.
 また、上記の吸収体は吸収性物品{紙おむつや生理用ナプキン等}を構成することが好ましい。吸収性物品の製造方法等は、公知のもの{特開2003-225565号公報、特開2006-131767号公報及び特開2005-097569号公報等}の吸収体を上記の吸収体に変更する以外は同様である。 Moreover, it is preferable that the above-mentioned absorber constitutes an absorbent article {paper diaper, sanitary napkin, etc.}. A method of manufacturing an absorbent article, etc., is the same as the known one (except JP-A-2003-225565, JP-A-2006-131767, JP-A-2005-097569, etc.), except that the above-mentioned absorber is used. Is the same.
 以下、実施例及び比較例により本発明をさらに説明するが、本発明はこれらに限定されるものではない。なお、特に定めない限り、部は重量部、%は重量%を示す。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Unless otherwise specified, parts are parts by weight and% is% by weight.
<製造例1>
 水溶性ビニルモノマー(a1-1){アクリル酸、三菱化学株式会社製、純度100%}155部、架橋剤(b-1){ペンタエリスリトールトリアリルエーテル、ダイソ-株式会社製}0.50部及び脱イオン水340.39部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.62部、2%アスコルビン酸水溶液1.16部及び2%の2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]水溶液2.33部を添加・混合して重合を開始させた。混合物の温度が90℃に達した後、90±2℃で約5時間重合することにより含水ゲル(1)を得た。
<Production Example 1>
Water-soluble vinyl monomer (a1-1) {acrylic acid, manufactured by Mitsubishi Chemical Corporation, purity 100%} 155 parts, crosslinking agent (b-1) {pentaerythritol triallyl ether, manufactured by Daiso Corporation} 0.50 parts And 340.39 parts of deionized water were maintained at 3° C. with stirring and mixing. After nitrogen was introduced into this mixture to adjust the dissolved oxygen amount to 1 ppm or less, 0.62 parts of a 1% aqueous hydrogen peroxide solution, 1.16 parts of a 2% aqueous ascorbic acid solution and 2% of 2,2'-azobis[ 2.33 parts of an aqueous solution of 2-methyl-N-(2-hydroxyethyl)-propionamide] was added and mixed to initiate polymerization. After the temperature of the mixture reached 90° C., the mixture was polymerized at 90±2° C. for about 5 hours to obtain a hydrogel (1).
 次にこの含水ゲル(1)500部をゲル温度90℃でミンチ機(ROYAL社製12VR-400K、目皿径8mm)で細断しながら48.5%水酸化ナトリウム水溶液128.42部を添加して混合し、1回混練細断後、引き続き疎水性物質(C)としてグリセリンジステアリン酸エステル(富士フィルム和光純薬製、融点73℃)0.124部を添加して混合し、3回混練細断した。細断直後にゲルの温度を測定したところ82℃であった。SUSバット(幅59cm角、深さ5cm)にゲルを敷き詰め、ESPEC社製セーフティーオーブンにて150℃で45分乾燥し、乾燥体を得た。乾燥体をロールミル(クリアランス0.4mm)で1回目の粉砕をし、上から順に目開き500μmと目開き150μmで構成される篩にて1回目の分級した後、500μm以上の粒分をロールミル(クリアランス0.2mm)で2回目の粉砕をし、上から順に目開き850μmと目開き150μmで構成される篩にて2回目の分級をした。1回目の分級での500μmと150μmの間の粒子と2回目の分級での850μmと150μmの間の粒子を混合し、架橋重合体を含有する樹脂粒子(A-1)を得た。 Next, 128 parts of a 48.5% aqueous sodium hydroxide solution was added while chopping 500 parts of this hydrogel (1) at a gel temperature of 90° C. with a mincing machine (ROYAL 12VR-400K, plate diameter 8 mm). After mixing and kneading once and then shredding, 0.124 parts of glycerin distearate ester (manufactured by Fuji Film Wako Pure Chemical Industries, melting point 73° C.) as a hydrophobic substance (C) is added and mixed, and kneaded three times. Shredded. The temperature of the gel was measured immediately after chopping and it was 82°C. The gel was spread on a SUS bat (width 59 cm square, depth 5 cm) and dried at 150° C. for 45 minutes in a safety oven manufactured by ESPEC to obtain a dried body. The dried material was crushed for the first time by a roll mill (clearance 0.4 mm), and then classified by a sieve composed of openings of 500 μm and openings of 150 μm in order from the top, and then the particles of 500 μm or more were roll-milled ( The second pulverization was performed with a clearance of 0.2 mm), and the second classification was performed using a sieve composed of openings 850 μm and openings 150 μm in order from the top. Particles between 500 μm and 150 μm in the first classification and particles between 850 μm and 150 μm in the second classification were mixed to obtain a resin particle (A-1) containing a crosslinked polymer.
<実施例1>
 樹脂粒子(A-1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、表面架橋剤としてのエチレングリコールジグリシジルエーテル0.06部、プロピレングリコール1.0部、水2.4部、無機微粒子としてクレボゾール30CAL25(メルク製)0.9部を混合した混合溶液を添加し、均一混合した後、130℃で30分間静置することで乾燥し、目開き850μmの篩を通過させることで、吸水性樹脂粒子(P-1)を得た。(P-1)の重量平均粒子径は384μm、SPANは0.60であった。
<Example 1>
While stirring 100 parts of the resin particles (A-1) at high speed (high-speed stirring turbulator manufactured by Hosokawa Micron: rotation speed 2000 rpm), 0.06 part of ethylene glycol diglycidyl ether as a surface cross-linking agent and 1 part of propylene glycol 0.0 parts, 2.4 parts of water, 0.9 parts of Clevozol 30CAL25 (manufactured by Merck) as inorganic fine particles were added and mixed uniformly, and then dried by standing at 130° C. for 30 minutes, Water-absorbent resin particles (P-1) were obtained by passing through a sieve having an opening of 850 μm. The weight average particle diameter of (P-1) was 384 μm, and SPAN was 0.60.
<製造例2>
 製造例1において、グリセリンジステアリン酸エステル0.124部を0.248部に変更し、1回目の粉砕のロールミルクリアランスを0.2mm、1回目の分級での篩の目開きを300μmと150μmとして300μm以上の粒子を2回目の粉砕に供し、2回目の粉砕のロールミルクリアランスを0.2mm、2回目の分級での篩の目開きを300μmと150μmとして1回目の分級での300μmと150μmの間の粒子と2回目の分級での300μmと150μmの間の粒子を混合した以外は同様にして、架橋重合体を含有する樹脂粒子(A-2)を得た。細断直後にゲルの温度を測定したところ79℃であった。
<Production Example 2>
In Production Example 1, 0.124 parts of glycerin distearate was changed to 0.248 parts, the roll mill clearance of the first grinding was 0.2 mm, and the sieve openings in the first classification were 300 μm and 150 μm, and 300 μm. The above particles were subjected to the second pulverization, the roll mill clearance of the second pulverization was 0.2 mm, and the sieve openings in the second classification were 300 μm and 150 μm, and the particle size was between 300 μm and 150 μm in the first classification. Resin particles (A-2) containing a crosslinked polymer were obtained in the same manner except that the particles were mixed with particles having a particle size of 300 μm and 150 μm in the second classification. Immediately after shredding, the temperature of the gel was measured and found to be 79°C.
<実施例2>
 樹脂粒子(A-1)を(A-2)に変更したこと以外は、実施例1と同様の操作を行い、吸水性樹脂粒子(P-2)を得た。(P-2)の重量平均粒子径は211μm、SPANは0.61であった。
<Example 2>
Water-absorbent resin particles (P-2) were obtained in the same manner as in Example 1 except that the resin particles (A-1) were changed to (A-2). The weight average particle diameter of (P-2) was 211 μm, and SPAN was 0.61.
<製造例3>
 製造例2において、1回目の粉砕のロールミルクリアランスを0.3mm、1回目の分級での篩の目開きを425μmと300μmとして425μm以上の粒子を2回目の粉砕に供し、2回目の粉砕のロールミルクリアランスを0.3mm、2回目の分級での篩の目開きを425μmと300μmとして1回目および2回目の分級での425μmと300μmの間の粒子を混合した以外は同様にして、架橋重合体を含有する樹脂粒子(A-3)を得た。細断直後にゲルの温度を測定したところ82℃であった。
<Production Example 3>
In Production Example 2, the roll mill clearance of the first crushing was 0.3 mm, the sieve openings in the first classification were 425 μm and 300 μm, and particles of 425 μm or more were subjected to the second crushing, and the second crushing roll mill. A cross-linked polymer was prepared in the same manner except that the clearance was 0.3 mm, the sieve openings in the second classification were 425 μm and 300 μm, and particles between 425 μm and 300 μm in the first and second classification were mixed. Resin particles (A-3) were obtained. The temperature of the gel was measured immediately after chopping and it was 82°C.
<実施例3>
 樹脂粒子(A-1)を(A-3)に変更したこと以外は、実施例1と同様の操作を行い、吸水性樹脂粒子(P-3)を得た。(P-3)の重量平均粒子径は387μm、SPANは0.32であった。
<Example 3>
Water-absorbent resin particles (P-3) were obtained in the same manner as in Example 1, except that the resin particles (A-1) were changed to (A-3). The weight average particle diameter of (P-3) was 387 μm, and SPAN was 0.32.
<製造例4>
 製造例1において、グリセリンジステアリン酸エステル0.124部を用いなかった以外は同様にして架橋重合体を含有する樹脂粒子(A-4)を得た。細断直後にゲルの温度を測定したところ83℃であった。
<Production Example 4>
Resin particles (A-4) containing a crosslinked polymer were obtained in the same manner as in Production Example 1 except that 0.124 parts of glycerin distearate ester was not used. The temperature of the gel was measured immediately after chopping and it was 83°C.
<実施例4>
 樹脂粒子(A-4)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、表面架橋剤としてのエチレングリコールジグリシジルエーテル0.06部、プロピレングリコール1.2部、水2.4部、疎水性物質(C)としてカルボキシ変性ポリシロキサン(X-22-3701E(信越化学工業製)))を0.01部混合した混合溶液を添加し、均一混合した後、130℃で30分間静置することで乾燥し、無機微粒子としてアエロジル200(日本アエロジル製)0.2部を混合し、目開き850μmの篩を通過させることで、吸水性樹脂粒子(P-4)を得た。(P-4)の重量平均粒子径は384μm、SPANは0.71であった。
<Example 4>
While stirring 100 parts of the resin particles (A-4) at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), 0.06 part of ethylene glycol diglycidyl ether as a surface cross-linking agent and 1 part of propylene glycol 0.2 parts of water, 0.01 parts of a carboxy-modified polysiloxane (X-22-3701E (manufactured by Shin-Etsu Chemical Co., Ltd.)) as a hydrophobic substance (C) was added, and mixed uniformly. After that, it is dried by allowing it to stand at 130° C. for 30 minutes, 0.2 parts of Aerosil 200 (manufactured by Nippon Aerosil Co., Ltd.) is mixed as inorganic fine particles, and the mixture is passed through a sieve with an opening of 850 μm to give water-absorbent resin particles ( P-4) was obtained. The weight average particle diameter of (P-4) was 384 μm, and SPAN was 0.71.
<製造例5>
 製造例1において、グリセリンジステアリン酸エステル0.124部をステアリン酸マグネシウム(富士フィルム和光純薬製、融点120℃)0.124部に変更した以外は同様にして架橋重合体を含有する樹脂粒子(A-5)を得た。細断直後にゲルの温度を測定したところ81℃であった。
<Production Example 5>
Resin particles containing a crosslinked polymer in the same manner as in Production Example 1 except that 0.124 parts of glycerin distearate ester was changed to 0.124 parts of magnesium stearate (manufactured by Fuji Film Wako Pure Chemical Industries, melting point 120° C.) ( A-5) was obtained. The temperature of the gel was measured immediately after chopping and it was 81°C.
<実施例5>
 樹脂粒子(A-1)を(A-5)に変更したこと以外は、実施例1と同様の操作を行い、吸水性樹脂粒子(P-5)を得た。(P-5)の重量平均粒子径は390μm、SPANは0.64であった。
<Example 5>
Water-absorbent resin particles (P-5) were obtained in the same manner as in Example 1, except that the resin particles (A-1) were changed to (A-5). The weight average particle diameter of (P-5) was 390 μm, and SPAN was 0.64.
<実施例6>
 樹脂粒子(A-1)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、表面架橋剤としてのエチレングリコールジグリシジルエーテル0.18部、プロピレングリコール1.8部、水4.8部、無機微粒子としてクレボゾール30CAL25(メルク製)0.3部を混合した混合溶液とプロピレングリコール0.8部と水1.6部と多価金属塩として硫酸アルミニウムナトリウム16水和物(富士フィルム和光純薬製)を0.30部混合した混合溶液を同時に添加し、均一混合した後、130℃で30分間静置することで乾燥し、目開き850μmの篩を通過させることで、吸水性樹脂粒子(P-6)を得た。(P-6)の重量平均粒子径は387μm、SPANは0.61であった。
<Example 6>
While stirring 100 parts of the resin particles (A-1) at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: rotational speed 2000 rpm), 0.18 parts of ethylene glycol diglycidyl ether as a surface cross-linking agent and 1 part of propylene glycol 0.8 parts, water 4.8 parts, and a mixed solution of 0.3 parts of Clevozol 30CAL25 (manufactured by Merck) as inorganic fine particles, 0.8 parts of propylene glycol, 1.6 parts of water, and sodium aluminum sulfate as a polyvalent metal salt. A mixed solution of 0.30 parts of hexahydrate (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) was added at the same time, and after uniformly mixing, the mixture was dried by standing at 130° C. for 30 minutes, and then sieved with a sieve having an opening of 850 μm. By passing through, water-absorbent resin particles (P-6) were obtained. The weight average particle diameter of (P-6) was 387 μm, and SPAN was 0.61.
<製造例6>
 水溶性ビニルモノマー(a1-1){アクリル酸、三菱化学株式会社製、純度100%}135部、架橋剤(b-1){ペンタエリスリトールトリアリルエーテル、ダイソー株式会社製}0.37部及び脱イオン水356.38部を攪拌・混合しながら3℃に保った。この混合物中に窒素を流入して溶存酸素量を1ppm以下とした後、1%過酸化水素水溶液0.50部、2%アスコルビン酸水溶液1.0部及び2%の2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩水溶液6.75部を添加・混合して重合を開始させた。混合物の温度が82℃に達した後、82±2℃で約8時間重合することにより含水ゲル(2)を得た。
<Production Example 6>
Water-soluble vinyl monomer (a1-1) {acrylic acid, manufactured by Mitsubishi Chemical Corporation, purity 100%} 135 parts, crosslinking agent (b-1) {pentaerythritol triallyl ether, manufactured by Daiso Corporation} 0.37 parts and 356.38 parts of deionized water was kept at 3° C. with stirring and mixing. After nitrogen was introduced into this mixture to adjust the dissolved oxygen content to 1 ppm or less, 0.50 parts of 1% hydrogen peroxide solution, 1.0 parts of 2% ascorbic acid solution and 2% of 2,2'-azobis( Polymerization was initiated by adding and mixing 6.75 parts of a 2-methylpropionamidine)dihydrochloride aqueous solution. After the temperature of the mixture reached 82°C, the mixture was polymerized at 82±2°C for about 8 hours to obtain a hydrogel (2).
 次にこの含水ゲル(2)500部をゲル温度82℃でミンチ機(ROYAL社製12VR-400K、目皿径8mm)で細断しながら48.5%水酸化ナトリウム水溶液111.50部を添加して混合し、1回混練細断後、引き続き疎水性物質(C)としてカチオンDSV(三洋化成工業製、主成分ジステアリルジメチルアンモニウムクロリド、融点63℃)0.216部を添加して混合し、3回混練細断した。細断直後にゲルの温度を測定したところ71℃であった。SUSバット(幅59cm角、深さ5cm)にゲルを敷き詰め、ESPEC社製セーフティーオーブンにて150℃で45分乾燥し、乾燥体を得た。乾燥体をロールミル(クリアランス0.3mm)で1回目の粉砕をし、上から順に目開き600μmと目開き300μmで構成される篩にて1回目の分級した後、600μm以上の粒分をロールミル(クリアランス0.2mm)で2回目の粉砕をし、上から順に目開き850μmと目開き150μmで構成される篩にて2回目の分級をした。1回目の分級での600μmと300μmの間の粒子と2回目の分級での850μmと150μmの間の粒子を混合し、架橋重合体を含有する樹脂粒子(A-6)を得た。 Next, 500 parts of this water-containing gel (2) was chopped at a gel temperature of 82° C. with a mincing machine (ROYAL 12VR-400K, plate diameter 8 mm) and 111.50 parts of a 48.5% aqueous sodium hydroxide solution was added. After mixing and kneading and shredding once, 0.216 parts of cation DSV (manufactured by Sanyo Kasei Co., Ltd., main component distearyldimethylammonium chloride, melting point 63° C.) is added as a hydrophobic substance (C) and mixed. The mixture was kneaded and chopped 3 times. Immediately after shredding, the temperature of the gel was measured and found to be 71°C. The gel was spread on a SUS bat (width 59 cm square, depth 5 cm) and dried at 150° C. for 45 minutes in a safety oven manufactured by ESPEC to obtain a dried body. The dried product was crushed for the first time by a roll mill (clearance: 0.3 mm), and then classified by a sieve composed of openings 600 μm and openings 300 μm in order from the top, and then particles of 600 μm or more were roll-milled ( The second pulverization was performed with a clearance of 0.2 mm), and the second classification was performed using a sieve composed of openings 850 μm and openings 150 μm in order from the top. Particles between 600 μm and 300 μm in the first classification and particles between 850 μm and 150 μm in the second classification were mixed to obtain a resin particle (A-6) containing a crosslinked polymer.
<実施例7>
 樹脂粒子(A-6)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、表面架橋剤としてのエチレングリコールジグリシジルエーテル0.01部、プロピレングリコール1.0部、水2.1部を混合した混合溶液を添加し、均一混合した後、130℃で30分間静置することで乾燥し、無機微粒子としてアエロジル200(日本アエロジル製)0.2部を混合し、目開き850μmの篩を通過させることで、吸水性樹脂粒子(P-7)を得た。(P-7)の重量平均粒子径は412μm、SPANは0.71であった。
<Example 7>
While stirring 100 parts of the resin particles (A-6) at high speed (high-speed stirring turbulator manufactured by Hosokawa Micron: rotation speed 2000 rpm), 0.01 part of ethylene glycol diglycidyl ether as a surface cross-linking agent and 1 part of propylene glycol A mixed solution of 0.0 parts and 2.1 parts of water was added and uniformly mixed, and then dried by standing at 130° C. for 30 minutes to obtain 0.2 parts of Aerosil 200 (manufactured by Nippon Aerosil) as inorganic fine particles. Was mixed and passed through a sieve having an opening of 850 μm to obtain water absorbent resin particles (P-7). The weight average particle diameter of (P-7) was 412 μm, and SPAN was 0.71.
<製造例7>
 製造例1と同様に作成した含水ゲル(1)500部をゲル温度90℃でミンチ機(ROYAL社製12VR-400K、目皿径8mm)で細断しながら48.5%水酸化ナトリウム水溶液128.42部を添加して混合し、1回混練細断後、引き続き疎水性物質(C)としてグリセリンジステアリン酸エステル(富士フィルム和光純薬製、融点73℃)0.124部を添加して混合し、3回混練細断した。細断直後にゲルの温度を測定したところ82℃であった。SUSバット(幅59cm角、深さ5cm)にゲルを敷き詰め、ESPEC社製セーフティーオーブンにて150℃で45分乾燥し、乾燥体を得た。乾燥体をロールミル(クリアランス0.3mm)で粉砕し、上から順に目開き710μmと目開き150μmで構成される篩にて分級し710μmと150μmの間の粒子を回収し、架橋重合体を含有する樹脂粒子(A-7)を得た。
<Production Example 7>
500 parts of hydrous gel (1) prepared in the same manner as in Production Example 1 was shredded at a gel temperature of 90° C. with a mincing machine (ROYAL 12VR-400K, plate diameter 8 mm) to obtain a 48.5% sodium hydroxide aqueous solution 128. .42 parts was added and mixed, and once kneaded and shredded, 0.124 parts of glycerin distearate ester (manufactured by Fuji Film Wako Pure Chemical Industries, melting point 73° C.) was added and mixed as a hydrophobic substance (C). Then, the mixture was kneaded and shredded three times. The temperature of the gel was measured immediately after chopping and it was 82°C. The gel was spread on a SUS bat (width 59 cm square, depth 5 cm) and dried at 150° C. for 45 minutes in a safety oven manufactured by ESPEC to obtain a dried body. The dried product is crushed with a roll mill (clearance 0.3 mm), and is classified with a sieve composed of openings 710 μm and openings 150 μm in order from the top, particles between 710 μm and 150 μm are collected, and a crosslinked polymer is contained. Resin particles (A-7) were obtained.
<比較例1>
 樹脂粒子(A-1)を(A-7)に変更したこと以外は、実施例1と同様の操作を行い、比較用の吸水性樹脂粒子(R-1)を得た。(R-1)の重量平均粒子径は398μm、SPANは0.99であった。
<Comparative Example 1>
The same operation as in Example 1 was carried out except that the resin particles (A-1) were changed to (A-7) to obtain comparative water absorbent resin particles (R-1). The weight average particle diameter of (R-1) was 398 μm, and SPAN was 0.99.
<製造例8>
 製造例1と同様に作成した含水ゲル(1)500部をゲル温度90℃でミンチ機(ROYAL社製12VR-400K、目皿径8mm)で細断しながら48.5%水酸化ナトリウム水溶液128.42部を添加して混合し、1回混練細断後、引き続き疎水性物質(C)としてグリセリンジステアリン酸エステル(富士フィルム和光純薬製、融点73℃)0.124部を添加して混合し、3回混練細断した。細断直後にゲルの温度を測定したところ82℃であった。SUSバット(幅59cm角、深さ5cm)にゲルを敷き詰め、ESPEC社製セーフティーオーブンにて150℃で45分乾燥し、乾燥体を得た。乾燥体をロールミル(クリアランス0.4mm)で粉砕し、上から順に目開き710μmと目開き300μmで構成される篩にて分級し710μmと300μmの間の粒子を回収し、架橋重合体を含有する樹脂粒子(A-8)を得た。
<Production Example 8>
500 parts of hydrous gel (1) prepared in the same manner as in Production Example 1 was shredded at a gel temperature of 90° C. with a mincing machine (ROYAL 12VR-400K, plate diameter 8 mm) to obtain a 48.5% sodium hydroxide aqueous solution 128. .42 parts was added and mixed, and once kneaded and shredded, 0.124 parts of glycerin distearate ester (manufactured by Fuji Film Wako Pure Chemical Industries, melting point 73° C.) was added and mixed as a hydrophobic substance (C). Then, the mixture was kneaded and shredded three times. The temperature of the gel was measured immediately after chopping and it was 82°C. The gel was spread on a SUS bat (width 59 cm square, depth 5 cm) and dried at 150° C. for 45 minutes in a safety oven manufactured by ESPEC to obtain a dried body. The dried product is crushed with a roll mill (clearance 0.4 mm), and is classified with a sieve composed of openings 710 μm and openings 300 μm in order from the top, particles between 710 μm and 300 μm are collected, and a crosslinked polymer is contained. Resin particles (A-8) were obtained.
<比較例2>
 樹脂粒子(A-1)を(A-8)に変更したこと以外は、実施例1と同様の操作を行い、比較用の吸水性樹脂粒子(R-2)を得た。(R-2)の重量平均粒子径は461μm、SPANは0.72であった。
<Comparative example 2>
The same operation as in Example 1 was carried out except that the resin particles (A-1) were changed to (A-8) to obtain comparative water absorbent resin particles (R-2). The weight average particle diameter of (R-2) was 461 μm, and SPAN was 0.72.
<比較例3>
 クレボゾール30CAL25を用いなかった以外は、実施例1と同様の操作を行い、比較用の吸水性樹脂粒子(R-3)を得た。(R-3)の重量平均粒子径は388μm、SPANは0.61であった。
<Comparative example 3>
The same operation as in Example 1 was carried out except that Clevozol 30CAL25 was not used, to obtain comparative water-absorbent resin particles (R-3). The weight average particle diameter of (R-3) was 388 μm, and SPAN was 0.61.
<製造例9>
 製造例1と同様に作成した含水ゲル(1)500部をゲル温度90℃でミンチ機(ROYAL社製12VR-400K、目皿径8mm)で細断しながら48.5%水酸化ナトリウム水溶液128.42部を添加して混合し、1回混練細断後、引き続き疎水性物質(C)としてグリセリンジステアリン酸エステル(富士フィルム和光純薬製、融点73℃)0.124部を添加して混合し、3回混練細断した。細断直後にゲルの温度を測定したところ82℃であった。SUSバット(幅59cm角、深さ5cm)にゲルを敷き詰め、ESPEC社製セーフティーオーブンにて150℃で45分乾燥し、乾燥体を得た。乾燥体をロールミル(クリアランス0.2mm)で粉砕し、目開き300μmの篩にて分級し300μm以下の粒子を回収し、架橋重合体を含有する樹脂粒子(A-9)を得た。
<Production Example 9>
500 parts of hydrous gel (1) prepared in the same manner as in Production Example 1 was shredded at a gel temperature of 90° C. with a mincing machine (ROYAL 12VR-400K, plate diameter 8 mm) to obtain a 48.5% sodium hydroxide aqueous solution 128. .42 parts was added and mixed, and once kneaded and shredded, 0.124 parts of glycerin distearate ester (manufactured by Fuji Film Wako Pure Chemical Industries, melting point 73° C.) was added and mixed as a hydrophobic substance (C). Then, the mixture was kneaded and shredded three times. The temperature of the gel was measured immediately after chopping and it was 82°C. The gel was spread on a SUS bat (width 59 cm square, depth 5 cm) and dried at 150° C. for 45 minutes in a safety oven manufactured by ESPEC to obtain a dried body. The dried product was pulverized with a roll mill (clearance 0.2 mm), and classified with a sieve having an opening of 300 μm to collect particles of 300 μm or less to obtain resin particles (A-9) containing a crosslinked polymer.
<比較例4>
 樹脂粒子(A-1)を(A-9)に変更したこと以外は、実施例1と同様の操作を行い、比較用の吸水性樹脂粒子(R-4)を得た。(R-4)の重量平均粒子径は170μm、SPANは0.75であった。
<Comparative example 4>
The same operation as in Example 1 was carried out except that the resin particles (A-1) were changed to (A-9) to obtain comparative water absorbent resin particles (R-4). The weight average particle diameter of (R-4) was 170 μm, and SPAN was 0.75.
<製造例10>
 製造例1と同様に作成した含水ゲル(1)500部をはさみで約1mm角に細分し、48.5%水酸化ナトリウム水溶液128.42部を添加して混合した。SUSバット(幅59cm角、深さ5cm)にゲルを敷き詰め、ESPEC社製セーフティーオーブンにて150℃で55分乾燥し、乾燥体を得た。乾燥体をロールミル(クリアランス0.4mm)で1回目の粉砕をし、上から順に目開き500μmと目開き150μmで構成される篩にて1回目の分級した後、500μm以上の粒分をロールミル(クリアランス0.2mm)で2回目の粉砕をし、上から順に目開き850μmと目開き150μmで構成される篩にて2回目の分級をした。1回目の分級での500μmと150μmの間の粒子と2回目の分級での850μmと150μmの間の粒子を混合し、架橋重合体を含有する樹脂粒子(A-10)を得た。
<Production Example 10>
500 parts of the hydrogel (1) prepared in the same manner as in Production Example 1 was subdivided into about 1 mm square pieces with scissors, and 128.42 parts of a 48.5% sodium hydroxide aqueous solution was added and mixed. The gel was spread on a SUS bat (width 59 cm square, depth 5 cm) and dried at 150° C. for 55 minutes in a safety oven manufactured by ESPEC to obtain a dried body. The dried material was crushed for the first time by a roll mill (clearance 0.4 mm), and then classified by a sieve composed of openings of 500 μm and openings of 150 μm in order from the top, and then the particles of 500 μm or more were roll-milled ( The second pulverization was performed with a clearance of 0.2 mm), and the second classification was performed using a sieve composed of openings 850 μm and openings 150 μm in order from the top. Particles between 500 μm and 150 μm in the first classification and particles between 850 μm and 150 μm in the second classification were mixed to obtain a resin particle (A-10) containing a crosslinked polymer.
<比較例5>
 樹脂粒子(A-4)を(A-10)に変更したこと以外は、実施例4と同様の操作を行い、比較用の吸水性樹脂粒子(R-5)を得た。(R-5)の重量平均粒子径は385μm、SPANは0.69であった。
<Comparative Example 5>
The same operation as in Example 4 was carried out except that the resin particles (A-4) were changed to (A-10) to obtain comparative water absorbent resin particles (R-5). The weight average particle diameter of (R-5) was 385 μm, and SPAN was 0.69.
<比較例6> 特開2004-261797号公報の実施例1(0082~0085段落)に開示されている方法を参考にし比較用の吸水性樹脂粒子を得た。即ち、シグマ型羽根を2本有するジャケット付きステンレス型双腕型ニーダーに蓋を付けて形成した反応器中でアクリル酸158.3部と水301.5部と48.5%水酸化ナトリウム水溶液129.3部を混合し71.3モル%の中和率を有するアクリル酸ナトリウムの水溶液(単量体濃度39%)を調製し、ポリエチレングリコールジアクリレート(Mw=523)0.85部を溶解させ反応液とし、この反応液に窒素を30分流入し脱気した。続いて、反応液に10%過硫酸ナトリウム水溶液2.67部および0.1%アスコルビン酸水溶液2.22部を撹拌しながら添加した。約1分後に重合が開始し、25~95℃で30分間撹拌しながら重合を継続し、30分後に含水ゲル(3)を取り出した。 <Comparative Example 6> Water-absorbent resin particles for comparison were obtained with reference to the method disclosed in Example 1 (paragraphs 0082 to 0085) of JP2004-261797A. That is, 158.3 parts of acrylic acid, 301.5 parts of water, and 48.5% sodium hydroxide aqueous solution 129 were placed in a reactor formed by attaching a lid to a stainless steel double-arm kneader with a jacket having two sigma type blades. .3 parts were mixed to prepare an aqueous solution of sodium acrylate having a neutralization ratio of 71.3 mol% (monomer concentration 39%), and 0.85 parts of polyethylene glycol diacrylate (Mw=523) was dissolved. A reaction solution was prepared, and nitrogen was flowed into this reaction solution for 30 minutes to degas. Then, 2.67 parts of a 10% sodium persulfate aqueous solution and 2.22 parts of a 0.1% ascorbic acid aqueous solution were added to the reaction solution while stirring. Polymerization started after about 1 minute, the polymerization was continued while stirring at 25 to 95° C. for 30 minutes, and after 30 minutes, the hydrogel (3) was taken out.
 含水ゲル(3)は約5mmに細断されており、目開き300μmの金網の上に広げ180℃50分熱風乾燥し乾燥体を得た。乾燥体をロールミル(クリアランス0.3mm)で粉砕し上から順に目開き600μmと目開き180μmで構成される篩にて分級した。目開き180μmを通過した粒子20部を30部の90℃の水と高速撹拌可能なジャケット付容器内で3分間撹拌し造粒を行い、300μmの金網に乗せ、150℃2時間乾燥を行った。乾燥後ロールミル(クリアランス0.3mm)で粉砕し上から順に目開き850μmと目開き150μmで構成される篩にて分級した。600μmと180μmの間の粒子90部と、850μmと150μmの間の粒子を10部を混合することで架橋重合体を含有する樹脂粒子(A-11)を得た。 The hydrogel (3) was cut into pieces of about 5 mm, spread on a wire mesh with an opening of 300 μm, and dried with hot air at 180° C. for 50 minutes to obtain a dried body. The dried product was pulverized with a roll mill (clearance 0.3 mm) and classified with a sieve having openings 600 μm and openings 180 μm in order from the top. 20 parts of particles having passed through a mesh of 180 μm were agitated with 30 parts of 90° C. water in a jacketed container capable of high-speed stirring for 3 minutes to granulate, put on a 300 μm wire net, and dried at 150° C. for 2 hours. .. After drying, it was pulverized with a roll mill (clearance 0.3 mm) and classified with a sieve composed of openings 850 μm and openings 150 μm in order from the top. 90 parts of particles of 600 μm to 180 μm and 10 parts of particles of 850 μm to 150 μm were mixed to obtain resin particles (A-11) containing a crosslinked polymer.
 樹脂粒子(A-11)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、表面架橋剤としての1,4-ブタンジオール1.0部、水4.0部を混合した混合溶液を添加し、均一混合した後、195℃で20分間静置することで乾燥し、目開き600μmの篩を通過させ、無機微粒子としてアエロジル200(日本アエロジル製)0.3部を混合することで、比較用の吸水性樹脂粒子(R-6)を得た。(R-6)の重量平均粒子径は317μm、SPANは0.97であった。 While stirring 100 parts of the resin particles (A-11) at high speed (high speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), 1.0 part of 1,4-butanediol as a surface cross-linking agent and 4 parts of water were added thereto. After adding a mixed solution containing 0.0 part of the mixture and uniformly mixing the mixture, the mixture was dried by allowing it to stand at 195° C. for 20 minutes, and passed through a sieve having an opening of 600 μm to obtain Aerosil 200 (manufactured by Nippon Aerosil) as inorganic fine particles. By mixing 3 parts by weight, comparative water absorbent resin particles (R-6) were obtained. The weight average particle diameter of (R-6) was 317 μm, and SPAN was 0.97.
<比較例7> 特表2017-222875号公報の実施例1(0088~0091段落)に開示されている方法を参考にし含水ゲルの乾燥体を得た。即ち、アクリル酸100g、架橋剤としてポリエチレングリコールジアクリレート(Mw=523)0.5g、UV開始剤としてジフェニル(2,4,6-トリメチルベンゾイル)-ホスフィンオキシド0.033g、50%苛性ソーダ水溶液(NaOH)83.3g、および水89.8gを混合して、単量体の濃度が45重量%のモノマー水溶液組成物を製造した。つぎに、前記モノマー水溶液組成物を連続移動するコンベヤベルトからなる重合器の供給部を介して投入した後、UV照射装置により紫外線を照射(照射量:2mW/cm)し、2分間UV重合を進行させて、含水ゲル(4)を製造した。 Comparative Example 7 A dried hydrogel was obtained with reference to the method disclosed in Example 1 (paragraphs 1988 to 0091) of JP-T-2017-222875. That is, 100 g of acrylic acid, 0.5 g of polyethylene glycol diacrylate (Mw=523) as a cross-linking agent, 0.033 g of diphenyl(2,4,6-trimethylbenzoyl)-phosphine oxide as a UV initiator, 50% caustic soda solution (NaOH). ) 83.3 g and 89.8 g of water were mixed to prepare a monomer aqueous solution composition having a monomer concentration of 45% by weight. Next, after the monomer aqueous solution composition was introduced through a supply section of a polymerization vessel consisting of a conveyor belt that continuously moves, it was irradiated with ultraviolet rays by a UV irradiation device (irradiation amount: 2 mW/cm 2 ) and UV polymerization was performed for 2 minutes. Was carried out to prepare a hydrogel (4).
 含水ゲル(4)を切断機に移送した後、0.2cmに切断し、160℃で30分間熱風乾燥機で乾燥し乾燥体を得た。乾燥体をロールミル(クリアランス0.4mm)で粉砕し、上から順に目開き850μm、600μm、300μm、150μm、90μm、45μmで構成される篩にて分級し、850μm以上の粒子を0.57%、600~850μmの粒子を15%、300~600μmの粒子を68.62%、150~300μmの粒子を15%、90~150μmの粒子を0.81%含むように混合し、架橋重合体を含有する樹脂粒子(A-12)を得た。 After transferring the hydrogel (4) to a cutting machine, it was cut into 0.2 cm and dried at 160°C for 30 minutes with a hot air dryer to obtain a dried body. The dried product was pulverized with a roll mill (clearance 0.4 mm), and was classified with a sieve composed of openings 850 μm, 600 μm, 300 μm, 150 μm, 90 μm, and 45 μm in order from the top, and 0.57% of particles of 850 μm or more, 600-850 μm particles are mixed so as to contain 15%, 300-600 μm particles are 68.62%, 150-300 μm particles are 15%, 90-150 μm particles are 0.81%, and a cross-linked polymer is contained. Resin particles (A-12) were obtained.
 樹脂粒子(A-12)100部を高速攪拌(細川ミクロン製高速攪拌タービュライザー:回転数2000rpm)しながら、これに、表面架橋剤としてのエチレングリコールジグリシジルエーテル0.05部、プロピレングリコール0.10部、水4.85部を混合した混合溶液を添加し、均一混合した後、130℃で40分間静置することで乾燥し、目開き850μmの篩を通過させ、目開き150μmの篩上品を回収することで、比較用の吸水性樹脂粒子(R-7)を得た。(R-7)の重量平均粒子径は424μm、SPANは1.11であった。 While stirring 100 parts of resin particles (A-12) at high speed (high-speed stirring turbulizer manufactured by Hosokawa Micron: rotation speed 2000 rpm), 0.05 part of ethylene glycol diglycidyl ether as a surface cross-linking agent and 0 parts of propylene glycol were used as a surface cross-linking agent. A mixed solution of 10 parts and 4.85 parts of water was added, and after uniform mixing, the mixture was dried by standing at 130° C. for 40 minutes, passed through a sieve with an opening of 850 μm, and sieve with an opening of 150 μm. By collecting the fine product, comparative water absorbent resin particles (R-7) were obtained. The weight average particle diameter of (R-7) was 424 μm, and SPAN was 1.11.
 実施例1~7および比較例1~7で得たそれぞれの吸水性樹脂粒子を用いて、以下のようにして、吸収性物品-1、吸収性物品-2(紙おむつ)を調製し、表面不織布からの液引きによるドライ性(白化時間)および斜めモレ試験(モレ量)、逆戻り量、吸収時間試験(吸収時間)を評価した。 Absorbent articles-1 and absorbent articles-2 (paper diapers) were prepared in the following manner using the water-absorbent resin particles obtained in Examples 1 to 7 and Comparative Examples 1 to 7, respectively, and surface nonwoven fabrics were prepared. The dryness (whitening time), the oblique leak test (leakage amount), the amount of reversion, and the absorption time test (absorption time) were evaluated.
<吸収体の調製>
 10cm×40cmの長方形に細断した不織布A(目付量40g/m、厚さ0.5mm、ポリプロピレン製)に、接着剤としてスチレン-ブタジエン-スチレン共重合体(SBS;軟化点85℃)をホットメルト塗布機(AD41、Nordson製)で目付量2.85g/mとなるように均一に塗布した。接着剤を塗布した面に、評価試料{それぞれの吸水性樹脂粒子}11.6g(目付量290g/m)を均一に散布した後、10cm×40cmの長方形に細断した不織布B(目付量45g/m、厚さ7.0mm、ポリプロピレン製)を重ねた。不織布A-吸水性樹脂-不織布Bとなったシートをアクリル板(厚み4mm)で挟み、5kg/cmの圧力で30秒間プレスした。プレス後、不織布A側のアクリル板を取り外し、上記と同様の方法で、接着剤と吸水性樹脂および不織布Bを積層し、再びアクリル板で挟み、5kg/cmの圧力で30秒間プレスし、それぞれの吸水性樹脂粒子を用いた各吸収体を調製した。
<Preparation of absorber>
A styrene-butadiene-styrene copolymer (SBS; softening point 85° C.) was used as an adhesive on a non-woven fabric A (unit weight 40 g/m 2 , thickness 0.5 mm, made of polypropylene) chopped into a rectangle of 10 cm×40 cm. A hot-melt coating machine (AD41, manufactured by Nordson) was applied uniformly so that the basis weight was 2.85 g/m 2 . The evaluation sample {respective water-absorbent resin particles} 11.6 g (weight per unit area 290 g/m 2 ) was evenly spread on the surface coated with the adhesive, and then the non-woven fabric B was cut into a rectangle of 10 cm×40 cm (weight per unit area). 45 g/m 2 , thickness 7.0 mm, made of polypropylene). A sheet of non-woven fabric A-water-absorbent resin-non-woven fabric B was sandwiched between acrylic plates (thickness: 4 mm) and pressed at a pressure of 5 kg/cm 2 for 30 seconds. After pressing, the acrylic plate on the non-woven fabric A side is removed, the adhesive, the water-absorbent resin and the non-woven fabric B are laminated in the same manner as described above, sandwiched between the acrylic plates again, and pressed at a pressure of 5 kg/cm 2 for 30 seconds, Each absorber using each water-absorbent resin particle was prepared.
<吸収性物品-1の調製>
 上記各吸収体の片方の面に、ポリエチレンシート(タマポリ社製ポリエチレンフィルムUB-1)、反対側の面に不織布(坪量20g/m、旭化成社製エルタスガード)を配置することにより各吸収性物品-1を調製した。
<Preparation of absorbent article-1>
A polyethylene sheet (polyethylene film UB-1 manufactured by Tama Poly Co., Ltd.) is arranged on one surface of each of the above-mentioned absorbers, and a non-woven fabric (basis weight 20 g/m 2 , Ertus Guard manufactured by Asahi Kasei Corporation) is arranged on the opposite surface of each absorbent body. A sex article-1 was prepared.
<表面不織布からの液引きによるドライ性試験>
 横11cm×縦41cm×高さ4cmで上部(11cm×41cmの面)が空いた箱(ステンレス製)の中に上記で作成した各吸収性物品-1を入れた。25±5℃に調整したイオン交換水500mlを用意し、吸収体を入れた箱の中へ一気に流し込んだ。イオン交換水が吸収体と接触したと同時に時間の計測を開始した。表面不織布に保持された脱イオン水が吸水性樹脂に吸収され、表面不織布が白く見える範囲が不織布の半分になるまでの時間を白化時間(秒)とした。なお、測定は180秒で打ち切った。
<Drying property test by drawing liquid from surface non-woven fabric>
Each of the absorbent articles-1 prepared above was placed in a box (made of stainless steel) having a width of 11 cm, a length of 41 cm, a height of 4 cm, and an upper portion (11 cm×41 cm surface) vacant. 500 ml of ion-exchanged water adjusted to 25±5° C. was prepared and poured into the box containing the absorber at once. The time measurement was started at the same time when the ion-exchanged water came into contact with the absorber. The time until the deionized water retained on the surface non-woven fabric was absorbed by the water absorbent resin and the area where the surface non-woven fabric appeared white was half of the non-woven fabric was defined as the whitening time (second). The measurement was stopped in 180 seconds.
<斜めモレ試験>
 40度の傾斜を持つ台に長辺が傾斜面に添うように各吸収性物品-1を乗せ、上辺2cmをガムテープにより台に固定した。上端から10cm部分、左右の中心位置へ滴下ロートで生理食塩水80mlを高さ1cmのところから滴下し、吸収体下端から漏れ出た生理食塩水の重量を計測し、モレ量(g)とした。
<Diagonal leak test>
Each absorbent article-1 was placed on a table having an inclination of 40 degrees so that the long side was along the inclined surface, and 2 cm of the upper side was fixed to the table with gum tape. 80 ml of physiological saline was dropped from a position of 1 cm in height from the upper end to the center position on the left and right, 10 cm from the upper end, and the weight of the physiological saline leaked from the lower end of the absorber was measured to obtain the leak amount (g). ..
<吸収時間試験>
 各吸収性物品-1を平板の上に乗せ、吸収性物品の中心部に直径6cm高さ3cmのSUS製リングを置き、吸収体の中心部に滴下ロートで生理食塩水80mlを高さ1cmのところから滴下した。5分間静置後に再度滴下ロートで生理食塩水80mlを高さ1cmのところから滴下し、吸収体と接触したと同時に時間の計測を開始した。SUS製リング内の生理食塩水が吸収体に吸収され目視で確認できなくなるまでの時間を吸収時間(秒)とした。
<Absorption time test>
Each absorbent article-1 was placed on a flat plate, a SUS ring having a diameter of 6 cm and a height of 3 cm was placed at the center of the absorbent article, and 80 ml of physiological saline was added to the center of the absorbent body at a height of 1 cm with a dropping funnel. It was dripped from there. After standing for 5 minutes, 80 ml of physiological saline was again dropped from a height of 1 cm with a dropping funnel, and the measurement of time was started at the same time when the absorbent was contacted. The absorption time (second) was defined as the time until the physiological saline in the SUS ring was absorbed by the absorber and could not be visually confirmed.
<吸収性物品-2の調製>
 フラッフパルプ400部と評価試料{実施例及び比較例で得られた各吸収性樹脂粒子}100部とを気流型混合装置{株式会社オーテック社製パッドフォーマー}で混合して、混合物を得た後、この混合物を坪量約500g/mとなるように均一にアクリル板(厚み4mm)上に積層し、5Kg/cmの圧力で30秒間プレスし、それぞれの吸水性樹脂粒子を用いた各吸収体を得た。この各吸収体を5cm×20cmの長方形に裁断し、その上下に吸収体と同じ大きさの吸水紙(坪量15.5g/m、アドバンテック社製、フィルターペーパー2番)を配置し、さらにポリエチレンシート(タマポリ社製ポリエチレンフィルムUB-1)を裏面に、不織布(坪量20g/m、旭化成社製エルタスガード)を表面に配置することにより各吸収性物品-2を調製した。
<Preparation of absorbent article-2>
400 parts of fluff pulp and 100 parts of the evaluation sample {each absorbent resin particle obtained in the examples and comparative examples} were mixed with an air flow type mixing device {pad former made by Autech Co., Ltd.} to obtain a mixture. Then, this mixture was uniformly laminated on an acrylic plate (thickness: 4 mm) so that the basis weight was about 500 g/m 2, and pressed at a pressure of 5 Kg/cm 2 for 30 seconds to use each water-absorbent resin particle. Each absorber was obtained. Each of the absorbers was cut into a rectangle of 5 cm×20 cm, and water absorbent paper (basis weight: 15.5 g/m 2 , Advantech, filter paper No. 2) of the same size as the absorber was arranged above and below the absorber. Each absorbent article-2 was prepared by arranging a polyethylene sheet (polyethylene film UB-1 manufactured by Tama Poly Co., Ltd.) on the back surface and a non-woven fabric (basis weight 20 g/m 2 , Eltas Guard manufactured by Asahi Kasei Corporation) on the front surface.
 <吸収性物品の血液ドライ性評価>
 上記で作成した各吸収性物品-2を平板の上に乗せ、吸収性物品の中心部に馬血(馬EDTA全血、有限会社ジャパンラム製)5gを一気に注ぎ、吸収体と接触したと同時に時間の計測を開始した。表面の馬血が吸収体に吸収され目視で確認できなくなるまでの時間を血液吸収時間(秒)とした。また、5分経過後あらかじめ重量(W0)を測定した5cm×5cmの大きさに細断したろ紙20枚を吸収性物品中心部に乗せ、175gの錘を乗せ20秒間保持し、再度ろ紙の重量(W1)を測定した。次式から血液逆戻り量(g)を計算した。なお、吸収時間が遅いとドライ感を感じるまでの時間が長くなることからドライ性が悪く、逆戻り量が多いと長時間経った後でもドライ性が悪くなる。
 血液逆戻り量(g)=W1(g)-W0(g)
<Evaluation of blood dryness of absorbent articles>
Each absorbent article-2 prepared above was placed on a flat plate, and 5 g of horse blood (horse EDTA whole blood, manufactured by Japan Lamb Co., Ltd.) was poured all at once in the center of the absorbent article, and at the same time when it contacted the absorbent body. Time measurement has started. The time until the surface horse blood was absorbed by the absorber and could not be visually confirmed was defined as the blood absorption time (second). In addition, after 5 minutes, the weight (W0) was previously measured, and 20 pieces of filter paper shredded into a size of 5 cm×5 cm were placed on the central part of the absorbent article, a weight of 175 g was placed on the absorbent article, and the weight was held for 20 seconds. (W1) was measured. The blood reversion amount (g) was calculated from the following formula. It should be noted that if the absorption time is slow, it takes a long time to feel a dry feeling, and thus the dryness is poor.
Blood reversion amount (g)=W1(g)-W0(g)
 実施例1~7の吸水性樹脂粒子(P-1)~(P-7)及び比較例1~7の吸水性樹脂粒子(R-1)~(R-7)およびこれらを用いて作成した各吸収体について、重量平均粒子径、画像解析式粒度分布測定装置により測定される粒度分布指数(SPAN)、血液吸収量、血液吸収時間、0.71kPaの荷重下における生理食塩水の通液速度、Vortex法による吸収時間、見かけ密度、生理食塩水の遠心保持量、生理食塩水の荷重下吸収量、イオン交換水の60秒吸い上げ吸収量、液引きによるドライ性試験(白化時間)、斜めモレ試験(モレ量)、吸収時間、血液ドライ性評価(血液逆戻り量)、血液吸収時間の評価結果を表1、2に示す。 Water-absorbent resin particles (P-1) to (P-7) of Examples 1 to 7 and water-absorbent resin particles (R-1) to (R-7) of Comparative Examples 1 to 7 and were prepared using these. For each absorber, weight average particle size, particle size distribution index (SPAN) measured by an image analysis type particle size distribution measuring device, blood absorption amount, blood absorption time, physiological saline flow rate under a load of 0.71 kPa , Absorption time by Vortex method, Apparent density, Centrifuge retention of physiological saline, Absorption of physiological saline under load, Absorption of ion-exchanged water for 60 seconds, Dryability test (whitening time) by draining, oblique leakage Tables 1 and 2 show the test (leakage amount), absorption time, blood dryness evaluation (blood reversion amount), and blood absorption time evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2からわかるように、本発明の吸収性樹脂粒子は重量平均粒子径及び粒度分布指数(SPAN)が特定の範囲にあり、比較例の吸収性樹脂粒子と比較して、吸収体のドライ性に関連する逆戻り量及び吸収時間の評価結果のいずれもが優れている。また、吸収性樹脂粒子自体の血液吸収量及び血液吸収時間についても、本発明の吸収性樹脂粒子は比較例と比較して優位であることが分かる。また本発明の吸水性樹脂粒子は特定の重量平均粒子径範囲にあり、粒度分布が狭く(粒度分布指数SPANが低い)、0.71kPaの荷重下における生理食塩水の通液速度が80ml/分以上あり、Vortex法よる吸収時間が特定の範囲にある。粒度分布が狭く、Vortex法による吸収時間が特定の範囲にあると、イオン交換水の60秒吸い上げ吸収量が高く、白化時間が短くなっていることから、高膨潤倍率下での不織布からの液引き性が良いことがわかり、ドライ性に優れていると言える。また、Vortex法による吸収時間が短いとモレ量が少なく、0.71kPaの荷重下における生理食塩水の通液速度が80ml/分以上あると、吸収体の吸収時間が短くなっており、長時間使用した際にモレが低減するといえる。詳細に比較例を確認していくと、比較例1では粒度分布指数SPANが高く、血液吸収量が低く、逆戻り量が多く、イオン交換水の60秒吸い上げ吸収量が低く、白化時間が長くなっている。比較例2では重量平均粒子径が大きすぎるために、血液吸収量が低くかつ血液吸収時間が長いため、逆戻り量がさらに悪化し、Vortex法による吸収時間が長いためにモレ量が多く、更にイオン交換水60秒吸い上げ吸収量が低くなり白化時間が長くなっている。比較例3では重量平均粒子径が小さすぎるために、スポット吸収やゲルブロッキングが生じやすくなっており、Vortex法による吸収時間は短いものの通液速度は遅く、白化時間が長く、吸収体の吸収時間が長くなっている。比較例4では0.71kPaの荷重下における生理食塩水の通液速度が低いため、吸収体の吸収時間が長くなっている。比較例5ではゲル粉砕工程に押出混練機構を用いておらずVortex法による吸収時間が長くなっており白化時間およびモレ量が多くなっている。比較例6,7では粒度分布が狭いことを特徴とした公知文献のトレースを行ったが、本発明に比べ粒度分布が広く白化時間が長い。 As can be seen from Tables 1 and 2, the absorbent resin particles of the present invention have a weight average particle diameter and a particle size distribution index (SPAN) in a specific range, and the absorbent resin particles are Both the amount of reversion and the evaluation result of the absorption time related to the dryness are excellent. It is also found that the absorbent resin particles of the present invention are superior to the comparative examples in terms of blood absorption amount and blood absorption time of the absorbent resin particles themselves. The water-absorbent resin particles of the present invention have a specific weight average particle size range, a narrow particle size distribution (low particle size distribution index SPAN), and a physiological saline flow rate of 80 ml/min under a load of 0.71 kPa. As described above, the absorption time by the Vortex method is within a specific range. When the particle size distribution is narrow and the absorption time by the Vortex method is within a specific range, the absorption amount of ion-exchanged water for 60 seconds is high and the whitening time is short, so the liquid from the nonwoven fabric under high swelling ratio It can be said that it is excellent in dryness because it is found to have good pullability. Further, when the absorption time by the Vortex method is short, the amount of leakage is small, and when the flow rate of physiological saline is 80 ml/min or more under a load of 0.71 kPa, the absorption time of the absorber is short, and It can be said that leakage is reduced when used. When the detailed comparative examples are confirmed, the comparative example 1 has a high particle size distribution index SPAN, a low blood absorption amount, a large reversion amount, a 60-second absorption amount of ion-exchanged water, and a low whitening time. ing. In Comparative Example 2, since the weight average particle size is too large, the blood absorption amount is low and the blood absorption time is long, the reversion amount is further deteriorated, and the absorption amount by the Vortex method is long, the amount of leakage is large, Exchanged water is absorbed for 60 seconds and the absorbed amount is low, and the whitening time is long. In Comparative Example 3, since the weight average particle size is too small, spot absorption and gel blocking are likely to occur. Although the absorption time by the Vortex method is short, the liquid passing speed is slow, the whitening time is long, and the absorption time of the absorber is long. Is getting longer. In Comparative Example 4, the physiological saline solution passing rate under a load of 0.71 kPa is low, and therefore the absorption time of the absorber is long. In Comparative Example 5, the extrusion kneading mechanism was not used in the gel crushing step, and the absorption time by the Vortex method was long, and the whitening time and the amount of leakage were large. In Comparative Examples 6 and 7, tracing of a known document was performed which is characterized by a narrow particle size distribution, but the particle size distribution is wider and the whitening time is longer than in the present invention.
 更に、実施例1と実施例4、5を比較するとゲル粉砕工程で混練細断するゲル温度以下の融点を持つ疎水性物質(C)を添加した実施例1が粒度分布指数SPANが低く、本工程が粒度分布指数を低くする効果があることがみてとれる。言い換えると、篩操作によって同一粒度分布指数を得る場合、実施例1においては実施例4、5よりもリサイクル率を減らすことが可能であり、生産性が高い。 Further, comparing Example 1 with Examples 4 and 5, Example 1 in which a hydrophobic substance (C) having a melting point equal to or lower than the gel temperature for kneading and shredding in the gel crushing step is added has a low particle size distribution index SPAN, It can be seen that the process has the effect of lowering the particle size distribution index. In other words, when the same particle size distribution index is obtained by the sieving operation, the recycling rate in Example 1 can be reduced as compared with Examples 4 and 5, and the productivity is high.
 本発明の吸水性樹脂粒子は、吸水性樹脂粒子と不織布を含有してなる吸収体のみならず、吸水性樹脂粒子と繊維状物とを含有してなる吸収体に適用でき、この吸収体を備えてなる吸収性物品{紙おむつ、生理用ナプキンおよび医療用保血剤等}に有用である。また、ペット尿吸収剤、携帯トイレ用尿ゲル化剤、青果物用鮮度保持剤、肉類・魚介類用ドリップ吸収剤、保冷剤、使い捨てカイロ、電池用ゲル化剤、植物・土壌用保水剤、結露防止剤、止水剤、パッキング剤および人口雪等の種々の用途にも使用できる。特に、高い血液吸収性能を有することから、生理用ナプキン、タンポン、医療用シート、ドリップ吸収剤、創傷保護材、創傷治癒材、手術用廃液処理剤等の経血又は血液吸収用の吸収性物品に有用である。 The water-absorbent resin particles of the present invention can be applied not only to an absorbent body containing water-absorbent resin particles and a nonwoven fabric, but also to an absorbent body containing water-absorbent resin particles and a fibrous material. It is useful for absorbent articles provided (paper diapers, sanitary napkins, medical blood-holding agents, etc.). In addition, pet urine absorbent, urine gelling agent for mobile toilets, freshness-maintaining agent for fruits and vegetables, drip absorbent for meat and seafood, ice pack, disposable body warmer, gelling agent for batteries, water retention agent for plants and soil, dew condensation It can also be used in various applications such as preventive agents, waterstop agents, packing agents and artificial snow. In particular, since it has high blood absorption performance, absorbent articles for menstrual blood or blood absorption such as sanitary napkins, tampons, medical sheets, drip absorbents, wound protection materials, wound healing materials, surgical waste liquid treatment agents, etc. Useful for.

Claims (14)

  1.  水溶性ビニルモノマー(a1)及び架橋剤(b)を必須構成単位とする架橋重合体(A)を含有する樹脂粒子が少なくとも1種の表面架橋剤(d)により表面架橋された構造を有する吸水性樹脂粒子であって、重量平均粒子径が200~420μmであり、画像解析式粒度分布測定装置により測定される下記の式1で表される粒度分布指数(SPAN)が0.30~0.75である吸水性樹脂粒子。
     粒度分布指数(SPAN)=(体積基準積算粒度で90%の粒子径-体積基準積算粒度で10%の粒子径)/(体積基準積算粒度で50%の粒子径)   (式1)
    Water absorption having a structure in which resin particles containing a water-soluble vinyl monomer (a1) and a cross-linked polymer (A) containing a cross-linking agent (b) as an essential constituent unit are surface-cross-linked with at least one surface cross-linking agent (d). Resin particles having a weight average particle diameter of 200 to 420 μm and a particle size distribution index (SPAN) represented by the following formula 1 measured by an image analysis type particle size distribution measuring device of 0.30 to 0. 75 water-absorbent resin particles.
    Particle size distribution index (SPAN)=(90% particle size in volume-based integrated particle size-10% particle size in volume-based integrated particle size)/(50% particle size in volume-based integrated particle size) (Equation 1)
  2.  さらに、疎水性物質(C)を含有する請求項1に記載の吸水性樹脂粒子。 The water absorbent resin particles according to claim 1, further containing a hydrophobic substance (C).
  3.  0.71kPaの荷重下における0.9重量%生理食塩水の通液速度が80ml/分以上であり、Vortex法による吸収時間が15~40秒である請求項1又は2に記載の吸水性樹脂粒子。 The water-absorbent resin according to claim 1 or 2, wherein the rate of passage of 0.9 wt% physiological saline under a load of 0.71 kPa is 80 ml/min or more, and the absorption time by the Vortex method is 15 to 40 seconds. particle.
  4.  血液吸収量が10~30g/gであり、血液が投入されてから血液の流動性がなくなるまでの時間である血液吸収時間が120秒以下である請求項1~3のいずれかに記載の吸水性樹脂粒子。 The water absorption amount according to any one of claims 1 to 3, which has a blood absorption amount of 10 to 30 g/g and a blood absorption time of 120 seconds or less, which is a time from when the blood is added to when the fluidity of the blood disappears. Resin particles.
  5.  粒子形状が不定形破砕状である請求項1~4のいずれかに記載の吸水性樹脂粒子。 The water-absorbent resin particle according to any one of claims 1 to 4, wherein the particle shape is an irregular crushed shape.
  6.  無機微粒子及び/又は多価金属塩を含む請求項1~5のいずれかに記載の吸水性樹脂粒子。 The water-absorbent resin particles according to any one of claims 1 to 5, containing inorganic fine particles and/or a polyvalent metal salt.
  7.  0.9重量%生理食塩水の遠心保持量が25~45g/gであり、0.9重量%生理食塩水の荷重下吸収量が15~30g/gである請求項1~6のいずれかに記載の吸水性樹脂粒子。 7. The centrifugal retention amount of 0.9 wt% physiological saline is 25 to 45 g/g, and the absorption amount of 0.9 wt% physiological saline under load is 15 to 30 g/g. The water-absorbent resin particles according to.
  8. イオン交換水の60秒吸い上げ吸収量が50~100g/gである請求項1~7のいずれかに記載の吸水性樹脂粒子。 The water-absorbent resin particles according to any one of claims 1 to 7, wherein the ion-exchanged water is absorbed for 60 seconds and has an absorption amount of 50 to 100 g/g.
  9.  請求項1~8のいずれかに記載の吸水性樹脂粒子と不織布とを含有する吸収体。 An absorber containing the water-absorbent resin particles according to any one of claims 1 to 8 and a nonwoven fabric.
  10.  請求項9に記載の吸収体を備える吸収性物品。 An absorbent article comprising the absorbent body according to claim 9.
  11.  経血又は血液の吸収用である請求項10に記載の吸収性物品。 The absorbent article according to claim 10, which is for absorbing menstrual blood or blood.
  12.  請求項1~5のいずれかに記載の吸水性樹脂粒子の製造方法であって、水溶性ビニルモノマー(a1)及び架橋剤(b)を必須構成単位とする単量体組成物を重合し、架橋重合体(A)を含む含水ゲルを得る重合工程、前記含水ゲルを混練細断し、含水ゲル粒子を得るゲル粉砕工程、前記含水ゲル粒子を乾燥、粉砕後に分級し、(A)を含有する樹脂粒子を得る工程、及び前記樹脂粒子を表面架橋剤(d)により表面処理する表面処理工程を含み、前記ゲル粉砕工程又は表面処理工程で疎水性物質(C)を添加し、その際前記疎水性物質(C)の融点が(C)を添加する工程の温度以下である、吸水性樹脂粒子の製造方法。 The method for producing water-absorbent resin particles according to any one of claims 1 to 5, wherein a monomer composition containing the water-soluble vinyl monomer (a1) and the crosslinking agent (b) as essential constituent units is polymerized, Polymerization step for obtaining a hydrogel containing the crosslinked polymer (A), gel crushing step for kneading and chopping the hydrogel to obtain hydrogel particles, drying and classifying the hydrogel particles, and containing (A) And a surface treatment step of surface-treating the resin particles with a surface cross-linking agent (d), wherein a hydrophobic substance (C) is added in the gel crushing step or the surface treatment step, in which case A method for producing water-absorbent resin particles, wherein the melting point of the hydrophobic substance (C) is not higher than the temperature of the step of adding (C).
  13.  ゲル粉砕工程において、ゲル粉砕前及び/又はゲル粉砕と同時に疎水性物質(C)を添加する請求項12に記載の吸水性樹脂粒子の製造方法。 The method for producing water-absorbent resin particles according to claim 12, wherein the hydrophobic substance (C) is added before and/or at the same time as the gel grinding in the gel grinding step.
  14.  混練細断温度が、70~120℃の温度である請求項12又は13に記載の吸水性樹脂粒子の製造方法。 The method for producing water-absorbent resin particles according to claim 12 or 13, wherein the kneading and shredding temperature is a temperature of 70 to 120°C.
PCT/JP2019/044901 2018-12-26 2019-11-15 Water-absorbent resin particles and method for producing same WO2020137241A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980085754.2A CN113227218A (en) 2018-12-26 2019-11-15 Water-absorbent resin particles and method for producing same
JP2020562914A JPWO2020137241A1 (en) 2018-12-26 2019-11-15 Water-absorbent resin particles and their manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-242578 2018-12-26
JP2018242577 2018-12-26
JP2018-242577 2018-12-26
JP2018242578 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020137241A1 true WO2020137241A1 (en) 2020-07-02

Family

ID=71126485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044901 WO2020137241A1 (en) 2018-12-26 2019-11-15 Water-absorbent resin particles and method for producing same

Country Status (3)

Country Link
JP (2) JPWO2020137241A1 (en)
CN (1) CN113227218A (en)
WO (1) WO2020137241A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239723A1 (en) 2021-05-12 2022-11-17 株式会社日本触媒 Poly(meth)acrylic acid (salt) water-absorbing resin and absorbent article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI807852B (en) * 2022-06-09 2023-07-01 臺灣塑膠工業股份有限公司 Superabsorbent polymers and method of fabricating the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068731A (en) * 2004-08-06 2006-03-16 Nippon Shokubai Co Ltd Particulate water absorbent mainly composed of water absorbing resin, manufacturing method therefor, and absorptive article
JP2011526962A (en) * 2008-07-07 2011-10-20 ビーエーエスエフ ソシエタス・ヨーロピア Production of absorbent polymer particles by polymerization of droplets of monomer solution
WO2017170501A1 (en) * 2016-03-28 2017-10-05 株式会社日本触媒 Water-absorbing agent and method for producing same, and absorbent article produced using water-absorbing agent
JP2018053041A (en) * 2016-09-27 2018-04-05 森下仁丹株式会社 Plurality of water-absorbing polymer particles, and method for producing plurality of water-absorbing polymer particles
WO2018116893A1 (en) * 2016-12-20 2018-06-28 花王株式会社 Absorbent body and method for producing same
WO2018225815A1 (en) * 2017-06-09 2018-12-13 Sdpグローバル株式会社 Water absorbent resin particles and production method therefor
CN110117372A (en) * 2018-02-07 2019-08-13 上海华谊新材料有限公司 Absorbing particles, preparation method and use

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ191703A (en) * 1978-10-05 1981-12-15 Unilever Ltd Absorbent material surface treated with aliphatic hydrocarbon or nonionic derivative thereof
JP2006055833A (en) * 2004-03-29 2006-03-02 Nippon Shokubai Co Ltd Particulate water absorbing agent with water-absorbing resin as main component
TW200720347A (en) * 2005-09-30 2007-06-01 Nippon Catalytic Chem Ind Water-absorbent agent composition and method for manufacturing the same
US8729190B2 (en) * 2007-03-01 2014-05-20 Nippon Shokubai Co., Ltd. Particular water-absorbent agent having water-absorbent resin as main component
US8742023B2 (en) * 2008-12-26 2014-06-03 San-Dia Polymers, Ltd. Absorbent resin particle, process for producing the same, absorber containing the same, and absorbent article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068731A (en) * 2004-08-06 2006-03-16 Nippon Shokubai Co Ltd Particulate water absorbent mainly composed of water absorbing resin, manufacturing method therefor, and absorptive article
JP2011526962A (en) * 2008-07-07 2011-10-20 ビーエーエスエフ ソシエタス・ヨーロピア Production of absorbent polymer particles by polymerization of droplets of monomer solution
WO2017170501A1 (en) * 2016-03-28 2017-10-05 株式会社日本触媒 Water-absorbing agent and method for producing same, and absorbent article produced using water-absorbing agent
JP2018053041A (en) * 2016-09-27 2018-04-05 森下仁丹株式会社 Plurality of water-absorbing polymer particles, and method for producing plurality of water-absorbing polymer particles
WO2018116893A1 (en) * 2016-12-20 2018-06-28 花王株式会社 Absorbent body and method for producing same
WO2018225815A1 (en) * 2017-06-09 2018-12-13 Sdpグローバル株式会社 Water absorbent resin particles and production method therefor
CN110117372A (en) * 2018-02-07 2019-08-13 上海华谊新材料有限公司 Absorbing particles, preparation method and use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022239723A1 (en) 2021-05-12 2022-11-17 株式会社日本触媒 Poly(meth)acrylic acid (salt) water-absorbing resin and absorbent article
KR20240005044A (en) 2021-05-12 2024-01-11 가부시키가이샤 닛폰 쇼쿠바이 Poly(meth)acrylic acid (salt)-based absorbent resin and absorbent

Also Published As

Publication number Publication date
JPWO2020137241A1 (en) 2021-11-04
JP2023099531A (en) 2023-07-13
CN113227218A (en) 2021-08-06

Similar Documents

Publication Publication Date Title
JP6722654B2 (en) Aqueous liquid absorbent resin particle production method, aqueous liquid absorbent resin particle, absorbent body and absorbent article
CN104023690B (en) Absorbent resin powder and employ absorber and the absorbent commodity of this absorbent resin powder
WO2018147317A1 (en) Water-absorbent resin particles, and absorber and absorbent article in which same are used
JP2023099531A (en) Production method of water-absorbing resin particle
CN104023756A (en) Absorbent article
JP2018127508A (en) Absorptive resin particle and method for producing the same
JPWO2016143739A1 (en) Method for producing aqueous liquid absorbent resin particles, absorbent body and absorbent article
JP7278443B2 (en) Absorbent article manufacturing method
WO2018179995A1 (en) Absorbent body and absorbent article comprising the same
JP2020125472A (en) Water-absorbing resin particles and method for producing the same
JPWO2016114245A1 (en) Absorbent articles
JP7257090B2 (en) Water-absorbing resin particles and method for producing the same
JP7120739B2 (en) Absorbent resin composition particles and method for producing the same
JP7165753B2 (en) Water-absorbing resin particles and method for producing the same
JP2018039924A (en) Method for producing aqueous liquid absorptive resin particle
JP2018016750A (en) Water-absorbing resin particle and method for producing the same
JP2020097731A (en) Water-absorbing resin particle, absorber containing the same, and water absorptive article
JP7339253B2 (en) Water absorbent resin particles, absorbent body and absorbent article containing the same
JPWO2018225815A1 (en) Water-absorbing resin particles and method for producing the same
JP7453918B2 (en) Water-absorbing resin particles and their manufacturing method
JP6898842B2 (en) Absorbent resin particles, absorbers containing them and absorbent articles
JP6952648B2 (en) Absorbent article
JP2011032442A (en) Absorptive resin particles, absorptive material and absorptive article
JP6935996B2 (en) Aqueous liquid absorbent resin particles and absorbents and absorbent articles using them
WO2019059019A1 (en) Water-absorbing resin composition and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19906279

Country of ref document: EP

Kind code of ref document: A1