WO2020136931A1 - Vacuum circuit breaker system and abnormality diagnosis method for vacuum circuit breaker - Google Patents

Vacuum circuit breaker system and abnormality diagnosis method for vacuum circuit breaker Download PDF

Info

Publication number
WO2020136931A1
WO2020136931A1 PCT/JP2019/017239 JP2019017239W WO2020136931A1 WO 2020136931 A1 WO2020136931 A1 WO 2020136931A1 JP 2019017239 W JP2019017239 W JP 2019017239W WO 2020136931 A1 WO2020136931 A1 WO 2020136931A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
capacitor
supply capacitor
circuit breaker
vacuum circuit
Prior art date
Application number
PCT/JP2019/017239
Other languages
French (fr)
Japanese (ja)
Inventor
研吾 後藤
佐藤 隆
佐藤 和弘
深大 佐藤
雅人 藪
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2020136931A1 publication Critical patent/WO2020136931A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B3/00Apparatus specially adapted for the manufacture, assembly, or maintenance of boards or switchgear

Definitions

  • the present invention relates to a vacuum circuit breaker system having a vacuum circuit breaker and a method for diagnosing an abnormality in a vacuum circuit breaker, and particularly to monitoring the electrostatic capacity of a power supply capacitor installed in the vacuum circuit breaker.
  • the vacuum circuit breaker system is provided with a power supply capacitor that supplies power to the vacuum circuit breaker.
  • This power supply capacitor needs to monitor (measure) the electrostatic capacity of the power supply capacitor in order to diagnose (determine) the deterioration state of the power supply capacitor.
  • Patent Document 1 In this publication, in order to enable capacity appropriateness diagnosis of a capacitor of a power device (vacuum circuit breaker) in operation, a power source for charging the capacitor and a capacitor for discharging energy of the capacitor are connected in parallel. Discharge circuit, a resistance voltage divider circuit for measuring the voltage drop during discharge, a measurement circuit for measuring the divided voltage, and a diagnostic circuit for judging the quality of the capacitor capacity from the time change of the voltage due to discharge. The provided capacitor capacity diagnostic device is described (see summary).
  • Patent Document 1 describes a capacitor capacity diagnosis device capable of diagnosing the capacity of a capacitor of a power device (vacuum circuit breaker) that is in operation, and determines the quality of the capacitor capacity from the time change of the voltage due to discharge. Is listed.
  • the capacitor capacity diagnosing device described in Patent Document 1 measures the capacitor voltage due to discharge, which requires a relatively long time, when determining whether the capacitance of the power supply capacitor is good or bad. Does not consider the measurement time of the capacitance of the capacitor.
  • the present invention provides a vacuum circuit breaker system and a vacuum circuit breaker abnormality diagnosis method for measuring the electrostatic capacity of a power supply capacitor that supplies power to the vacuum circuit breaker in a relatively short time.
  • a vacuum circuit breaker system includes a power supply capacitor, an electromagnet driven by the power supply capacitor, a voltage sensor for measuring the voltage of the power supply capacitor, a vacuum circuit breaker having the same, and a voltage sensor for measurement.
  • the operation time measuring unit that measures the capacitor charging time of the power supply capacitor based on the measured voltage of the power supply capacitor, the capacitor charging time of the power supply capacitor measured by the operation time measuring unit, and the pre-measured initial capacitor of the power supply capacitor. It is characterized by including a state monitoring device including: a comparing unit that compares the charging time and determines whether or not there is an abnormality in the power supply capacitor.
  • the vacuum circuit breaker abnormality diagnosis method of the present invention measures the capacitor charging time of the power supply capacitor based on the voltage of the power supply capacitor measured by the voltage sensor that measures the voltage of the power supply capacitor, and measures the measured power supply. It is characterized in that the capacitor charging time of the capacitor is compared with the pre-measured initial capacitor charging time of the power supply capacitor to determine whether or not there is an abnormality in the power supply capacitor.
  • the present invention it is possible to provide a vacuum circuit breaker system and a vacuum circuit breaker abnormality diagnosis method for measuring the electrostatic capacity of a power supply capacitor that supplies power to a vacuum circuit breaker in a relatively short time.
  • FIG. 1 is an explanatory view (side view) for explaining the vacuum circuit breaker system according to the present embodiment.
  • the vacuum circuit breaker system (switch gear) 150a described in the present embodiment includes a vacuum circuit breaker chamber 154a in which a vacuum circuit breaker 156a is installed, a measuring instrument chamber 152a in which a control unit 250 and a state monitoring device are installed, and a vacuum circuit breaker. It has a busbar chamber 153 in which a busbar 162 which is a control line or a power line connecting between the chamber 154a and the measuring instrument chamber 152a is installed.
  • the vacuum circuit breaker system 150a described in the present embodiment is particularly designed for a railway for electric railway which has a built-in power supply capacitor that may be repeatedly charged and discharged frequently (repeated opening and closing operations frequently) to shorten the life. It is preferably applied to a circuit breaker.
  • control unit 250 controls opening/closing of the vacuum circuit breaker 156a, and controls ON/OFF of the power supply capacitor of the vacuum circuit breaker 156a based on a signal from the state monitoring device.
  • the state monitoring device installed in the measuring instrument room 152a measures the operating time (capacitor charging time) of the power supply capacitor of the vacuum circuit breaker 156a (capacitor charging time) measuring unit 220, the measured operating time ( A comparison unit 221 that compares the capacitor charging time) with a preset (measured) operation time (initial capacitor charging time 202b). If the result of the comparison indicates that the capacitor is in an abnormal state, the abnormal state (power supply capacitor) 16 has an abnormal state display section 222 for displaying 16).
  • the state monitoring device described in this embodiment diagnoses an abnormal state of the power supply capacitor.
  • FIG. 2 is an explanatory diagram (front view) illustrating the vacuum circuit breaker according to the present embodiment.
  • the vacuum circuit breaker 156 a installed inside the mechanism case 10 has an electromagnet (electromagnetic actuator) 14 and a power supply capacitor 16 for driving the electromagnet 14.
  • a voltage sensor 17 that measures the voltage across the power supply capacitor 16 is installed near the power supply capacitor 16 in the power supply capacitor 16. Then, the change in the voltage of the power supply capacitor 16 measured by the voltage sensor 17, that is, the change in the charging time of the power supply capacitor 16 is monitored (measured), and the change in the capacitance of the power supply capacitor 16 is monitored (measured). To do.
  • the power supply capacitor 16 supplies (energizes) electric power to the electromagnet 14 of the vacuum circuit breaker 156a to drive (open contact operation) the electromagnet 14.
  • FIG. 3 is an explanatory diagram for explaining the relationship between the voltage of the power supply capacitor and the opening contact closing command waveform.
  • the capacitor voltage 300 of the power supply capacitor 16 drops (discharges) from the initial capacitor voltage 301 to the capacitor discharge voltage 302 according to the opening-closing command (waveform) 101, and then rises from the capacitor discharge voltage 302 to the capacitor charge voltage 303. (Charge)
  • the capacitor charging time 201b is shorter than the capacitor discharging time 201a. Therefore, in the present embodiment, the capacitor capacity (electrostatic capacity) of the power supply capacitor 16 that supplies power to the vacuum circuit breaker 156a is measured using the capacitor charge time 201b that is shorter than the capacitor discharge time 201a. ..
  • FIG. 4 is an explanatory diagram (block diagram) illustrating the state monitoring device of the vacuum circuit breaker according to the present embodiment, and shows the connection between the vacuum circuit breaker chamber 154a and the measuring instrument chamber 152a.
  • the state monitoring device installed in the measuring instrument room 152a has an operating time (capacitor charging time) measuring unit 220, a comparing unit 221, and an abnormal state displaying unit 222.
  • the capacitor discharge time 201a transiting from the initial capacitor voltage 301 to the capacitor discharge voltage 302 and the capacitor discharge voltage 302 to the capacitor charge described in FIG.
  • the capacitor charging time 201b that changes to the voltage 303 is measured by the operation time measuring unit 220 based on the voltage of the power supply capacitor 16 measured by the voltage sensor 17 installed in the vacuum circuit breaker chamber 154a. Then, the operation time measurement unit 220 outputs the measured capacitor charging time 201b to the comparison unit 221. In addition, the capacitor discharge time 201a may be output to the comparison unit 221.
  • the comparison unit 221 inputs the preset (measured) initial capacitor charging time 202b of the power supply capacitor 16 as a determination value.
  • the preset (measured) initial capacitor discharge time 202a of the power supply capacitor 16 may be input.
  • the initial capacitor charging time 202b and the initial capacitor discharging time 202a are measured in advance, and the comparison unit 221 may store the values measured in advance when the power supply capacitor 16 is in the normal state. ..
  • the comparing unit 221 compares the initial capacitor charging time 202b input to the comparing unit 221 with the capacitor charging time 201b measured by the operation time measuring unit 220 and output to the comparing unit 221.
  • the capacitor charging time 201b is shorter than the initial capacitor charging time 202b (capacitor charging time 201b ⁇ initial capacitor charging time 202b), it is in an abnormal state (capacitor capacity of the power supply capacitor 16). It is determined that (capacitance) has decreased), and that effect is output to the abnormal state display unit 222.
  • the comparison unit 221 determines (diagnoses) whether there is an abnormality in the power supply capacitor 16.
  • a certain allowable range (+ ⁇ ) may be set. That is, the capacitor charging time 201b+ ⁇ may be smaller than the initial capacitor charging time 202b. It should be noted that this certain allowable range (+ ⁇ ) can be appropriately set according to the useful life of the power supply capacitor 16 (usage environment or operating condition).
  • the abnormal state display unit 222 displays that effect. That is, the abnormal state display unit 222 displays an abnormal state when the result of comparison by the comparison unit 221 (result of comparison) indicates that the capacitor charging time 201b is shorter than the initial capacitor charging time 202b.
  • RC the capacitance C of the power supply capacitor
  • R the resistance of the circuit.
  • the circuit (voltage sensor 17) that measures the voltage of the power supply capacitor 16 of the vacuum circuit breaker 156a is installed, and the power supply capacitor when the vacuum circuit breaker 156a is opened.
  • the capacitance of the power supply capacitor 16 is measured by measuring the capacitor charging time of 16 and comparing it with a previously determined determination value (initial capacitor charging time of the power supply capacitor 16).
  • the electrostatic capacity of the power supply capacitor 16 that supplies power to the vacuum circuit breaker 156a can be measured in a relatively short time, and the deterioration state (abnormal state) of the power supply capacitor 16 can be diagnosed (determined).
  • the influence on the capacitor charging voltage is small, so that the capacitance of the power supply capacitor 16 can be accurately measured from the capacitor charging time.
  • the deterioration state of the power supply capacitor 16 can be determined.
  • noise when noise is superimposed on the measurement signal, when an excessive short-circuit current occurs (flows) in a circuit installed near the vacuum circuit breaker 156a, noise occurs near the vacuum circuit breaker 156a, This is a case where noise is superimposed on the measurement signal in the process of converting the capacitor current into the capacitor voltage.
  • the electrostatic capacitance of the power supply capacitor 16 can be accurately measured, and the deterioration state of the power supply capacitor 16 can be determined early. it can.
  • FIG. 5 is an explanatory diagram (front view) illustrating the vacuum circuit breaker according to the second embodiment.
  • the vacuum circuit breaker 156b described in the present embodiment has a temperature measuring unit (temperature sensor) 223 that measures the capacitor temperature of the power supply capacitor 16 in addition to the vacuum circuit breaker 156a described in the first embodiment.
  • a temperature measuring unit temperature sensor 223 that measures the capacitor temperature of the power supply capacitor 16 in addition to the vacuum circuit breaker 156a described in the first embodiment.
  • FIG. 6 is an explanatory diagram (block diagram) illustrating a vacuum circuit breaker state monitoring device according to the second embodiment, showing a connection between the vacuum circuit breaker chamber 154b and the measuring instrument chamber 152b.
  • the condition monitoring device installed in the measuring instrument room 152b described in the present embodiment is the operation time (capacitor charging time) measuring unit 220, the comparison unit 221, and the abnormal condition display installed in the condition monitoring device described in the first embodiment.
  • the unit 222 In addition to the unit 222, it has a capacitance correction unit 310 that corrects the capacitance of the power supply capacitor 16.
  • the capacitance correction unit 310 inputs the capacitor temperature 502 of the power supply capacitor 16 measured by the temperature measurement unit 223. Further, the capacitance correction unit 310 inputs the temperature characteristic 204 of the capacitance of the power supply capacitor 16.
  • the capacitor charging time 201b of the power supply capacitor 16 (capacitor discharging time 201a) and the initial capacitor charging time 202b of the power supply capacitor 16 (initial capacitor discharging time 202a) are compared.
  • the capacitance of the power supply capacitor 16 is further corrected based on the capacitor temperature 502 and the temperature characteristic 204 of the capacitance of the power supply capacitor 16.
  • the power supply capacitor 16 is a film capacitor
  • FIG. 7 is an explanatory diagram illustrating the temperature characteristic of the capacitance of the power supply capacitor.
  • the temperature characteristic 204a of the capacitance of the power supply capacitor 16 is the temperature characteristic 204a of the capacitance of the power supply capacitor 16 is the initial capacitor static.
  • the capacitance increases as the temperature of the capacitance 203 rises (rises from a predetermined temperature).
  • the temperature characteristic 204b of the capacitance of the power supply capacitor 16 is determined by the temperature rise from the initial capacitor capacitance 203 (rise from a predetermined temperature). The capacitance decreases.
  • the capacitance of the power supply capacitor 16 decreases. In the case of the polypropylene film material, the capacitance of the power supply capacitor 16 increases. On the other hand, when the capacitor temperature 502 is higher than the temperature measured in advance, even if the power supply capacitor 16 is not deteriorated, in the case of the polyester film material, the capacitance of the power supply capacitor 16 increases. In the case of the film material polypropylene, the capacitance of the power supply capacitor 16 decreases.
  • the capacitance correction unit 310 calculates the correction amount of the capacitance of the power supply capacitor 16 based on the capacitor temperature 502 and the temperature characteristic 204 of the capacitance of the power supply capacitor 16. Then, the capacitance correction unit 310 outputs the calculated correction amount of the capacitance of the power supply capacitor 16 to the comparison unit 221.
  • the decreased electrostatic capacity (amount of decrease in electrostatic capacity) is used as the temperature characteristic of the capacitor temperature 502 and the electrostatic capacity of the power supply capacitor 16.
  • the correction amount of the electrostatic capacity of the power supply capacitor 16 calculated based on 204 is used for correction. That is, the capacitance of the power supply capacitor 16 is increased (decrease amount+correction amount) or decreased (decrease amount-correction amount) using the capacitance correction amount with respect to the capacitance decrease amount. ..
  • the relationship between the capacitor temperature and the capacitance measured in advance can be used.
  • the capacitance does not necessarily have to monotonically increase or monotonically decrease with increasing temperature.
  • such a temperature characteristic of the capacitance of the power supply capacitor may be stored as a function, and the capacitance may be calculated based on the measured capacitor temperature 502.
  • the capacitance of the power supply capacitor 16 calculated based on the capacitor charging time 201b (capacitor discharging time 201a) and the initial capacitor charging time 202b (initial capacitor discharging time 202a) is used as the capacitor temperature. Since the capacitance of the power supply capacitor 16 calculated based on 502 and the temperature characteristic 204 of the capacitance is used for correction, the capacitance of the power supply capacitor 16 can be accurately measured. The deterioration state of can be accurately determined.
  • FIG. 8 is an explanatory diagram (block diagram) illustrating a vacuum circuit breaker state monitoring device according to the third embodiment, showing a connection between the vacuum circuit breaker chamber 154c and the measuring instrument chamber 152c.
  • the condition monitoring device installed in the measuring instrument room 152c described in this embodiment is the operating time (capacitor charging time) measuring unit 220, the comparing unit 221, and the abnormal condition display installed in the condition monitoring device described in the second embodiment.
  • a capacitor charging time correction unit 311 that corrects the capacitor charging time 201b of the power supply capacitor 16 is provided.
  • a permanent magnet (not shown) installed in the electromagnet 14 and a power supply capacitor 16 are connected by a lead wire (not shown), and the lead wire It has a conductor temperature measuring unit (not shown) for measuring temperature (conductor temperature).
  • the capacitor charging time correction unit 311 inputs the conductor temperature 503 measured by the conductor temperature measuring unit. Further, the capacitor charging time correction unit 311 inputs the temperature characteristic 205 of the lead wire resistance.
  • the capacitor charging time 201b (capacitor discharging time 201a) of the power supply capacitor 16 and the initial capacitor charging time 202b (initial capacitor discharging time 202a) of the power supply capacitor 16 are set. Compare.
  • the electrostatic capacitance correction unit 310 causes the electrostatic capacitance of the power supply capacitor 16 to be calculated based on the capacitor temperature 502 and the temperature characteristic 204 of the electrostatic capacitance of the power supply capacitor 16. Correct the capacity.
  • the capacitor charging time correction unit 311 further corrects the capacitor charging time 201b of the power supply capacitor 16 based on the conductor temperature 503 and the temperature characteristic 205 of the conductor resistance.
  • the conductor connecting the power supply capacitor 16 and the permanent magnet has a relationship between the conductor temperature 503 and the conductor resistance (temperature characteristic 205 of the conductor resistance), as shown in equation (1).
  • ⁇ (T) 1.5475+0.0068725 ⁇ T...Equation (1)
  • ⁇ (T) is the resistivity (10 ⁇ 8 ) at the temperature T (conductor resistance)
  • T is the temperature (conductor temperature).
  • the resistance R is ⁇ (T) ⁇ (conductor wire length ⁇ conductor wire cross-sectional area), and (conductor wire length ⁇ conductor wire cross-sectional area) is constant, so the change in resistance R is ⁇ ( The same tendency as the change of T) will be shown.
  • conductor resistance changes according to conductor temperature.
  • the wire resistance increases (decreases).
  • the charging time t of the power supply capacitor 16, which is determined by the product RC ( t) of the electrostatic capacity C and the resistance R, changes as the resistance R changes. That is, even when the electrostatic capacitance C is constant, the charging time t also increases (decreases) as the resistance R increases (decreases). Then, even when the charging time t is constant, the resistance R increases and the electrostatic capacitance C decreases.
  • the charging time t changes even when the capacitance C is constant. Therefore, the charging time t is calculated in consideration of the temperature characteristic 205 of the wire resistance.
  • the capacitance of the power supply capacitor 16 can be measured more accurately, and the deterioration state of the power supply capacitor 16 can be determined more accurately.
  • the present invention is not limited to the above-described embodiments, but includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Abnormal state display section 223... Temperature measuring section, 250... Control section , 300... Capacitor voltage, 301... Initial capacitor voltage, 302... Capacitor discharge voltage, 303... Capacitor charging voltage, 310... Capacitance correction unit, 311... Capacitor charging time correction unit, 502... Capacitor temperature, 503... Conductor temperature

Abstract

The present invention provides a vacuum circuit breaker system for measuring the capacitance of a power supply capacitor that supplies power to a vacuum circuit breaker in a relatively short time. This vacuum circuit breaker system is characterized by comprising: a vacuum circuit breaker comprising a power supply capacitor, an electromagnet that is driven by the power supply capacitor, and a voltage sensor that measures the voltage of the power supply capacitor; and a state monitoring device comprising an operating time measurement unit that measures the capacitor charging time of the power supply capacitor on the basis of the voltage of the power supply capacitor, which has been measured by the voltage sensor, and a comparison unit that compares the capacitor charging time of the power supply capacitor, which has been measured by the operating time measurement unit, and the initial capacitor charging time of the power supply capacitor, which has been previously measured, and determines the presence or absence of abnormality of the power supply capacitor.

Description

真空遮断器システムおよび真空遮断器の異常診断方法Vacuum circuit breaker system and vacuum circuit breaker abnormality diagnosis method
 本発明は、真空遮断器を有する真空遮断器システムおよび真空遮断器の異常診断方法に関するものであり、特に、真空遮断器に設置される電源コンデンサの静電容量を監視するものである。 The present invention relates to a vacuum circuit breaker system having a vacuum circuit breaker and a method for diagnosing an abnormality in a vacuum circuit breaker, and particularly to monitoring the electrostatic capacity of a power supply capacitor installed in the vacuum circuit breaker.
 真空遮断器システムには、真空遮断器に電力を供給する電源コンデンサが設置される。
この電源コンデンサは、電源コンデンサの劣化状態を診断(判定)するため、電源コンデンサの静電容量を監視(計測)する必要がある。
The vacuum circuit breaker system is provided with a power supply capacitor that supplies power to the vacuum circuit breaker.
This power supply capacitor needs to monitor (measure) the electrostatic capacity of the power supply capacitor in order to diagnose (determine) the deterioration state of the power supply capacitor.
 こうした本技術分野の背景技術として、国際公開WO2010/150599号公報(特許文献1)がある。この公報には、運用中の電力用機器(真空遮断器)のコンデンサの容量適否診断を可能とするため、コンデンサに充電するための電源と、コンデンサのエネルギを放電させるためコンデンサに並列に接続される放電回路と、放電時の電圧低下を測定するための抵抗分圧回路と、分圧電圧を測定する測定回路と、放電による電圧の時間変化からコンデンサ容量の良否を判定する診断回路と、を備えたコンデンサ容量診断装置が記載されている(要約参照)。 As a background art of this technical field, there is International Publication WO 2010/150599 (Patent Document 1). In this publication, in order to enable capacity appropriateness diagnosis of a capacitor of a power device (vacuum circuit breaker) in operation, a power source for charging the capacitor and a capacitor for discharging energy of the capacitor are connected in parallel. Discharge circuit, a resistance voltage divider circuit for measuring the voltage drop during discharge, a measurement circuit for measuring the divided voltage, and a diagnostic circuit for judging the quality of the capacitor capacity from the time change of the voltage due to discharge. The provided capacitor capacity diagnostic device is described (see summary).
国際公開WO2010/150599号公報International publication WO2010/150599
 特許文献1には、運用中の電力用機器(真空遮断器)のコンデンサの容量適否診断を可能とするコンデンサ容量診断装置が記載され、放電による電圧の時間変化からコンデンサ容量の良否を判定することが記載されている。 Patent Document 1 describes a capacitor capacity diagnosis device capable of diagnosing the capacity of a capacitor of a power device (vacuum circuit breaker) that is in operation, and determines the quality of the capacitor capacity from the time change of the voltage due to discharge. Is listed.
 しかし、特許文献1に記載されているコンデンサ容量診断装置は、電源コンデンサの静電容量の良否を判定する際に、比較的長時間を必要とする放電によるコンデンサ電圧を計測するものであり、電源コンデンサの静電容量の計測時間を考慮していない。 However, the capacitor capacity diagnosing device described in Patent Document 1 measures the capacitor voltage due to discharge, which requires a relatively long time, when determining whether the capacitance of the power supply capacitor is good or bad. Does not consider the measurement time of the capacitance of the capacitor.
 そこで、本発明は、比較的短時間にて、真空遮断器に電力を供給する電源コンデンサの静電容量を計測する真空遮断器システムおよび真空遮断器の異常診断方法を提供する。 Therefore, the present invention provides a vacuum circuit breaker system and a vacuum circuit breaker abnormality diagnosis method for measuring the electrostatic capacity of a power supply capacitor that supplies power to the vacuum circuit breaker in a relatively short time.
 上記課題を解決するため、本発明の真空遮断器システムは、電源コンデンサと、電源コンデンサで駆動する電磁石と、電源コンデンサの電圧を計測する電圧センサと、有する真空遮断器と、電圧センサにて計測された電源コンデンサの電圧に基づいて、電源コンデンサのコンデンサ充電時間を計測する動作時間計測部と、動作時間計測部にて計測された電源コンデンサのコンデンサ充電時間と予め計測された電源コンデンサの初期コンデンサ充電時間とを比較し、電源コンデンサの異常の有無を判定する比較部と、を有する状態監視装置と、を有することを特徴とする。 In order to solve the above problems, a vacuum circuit breaker system according to the present invention includes a power supply capacitor, an electromagnet driven by the power supply capacitor, a voltage sensor for measuring the voltage of the power supply capacitor, a vacuum circuit breaker having the same, and a voltage sensor for measurement. The operation time measuring unit that measures the capacitor charging time of the power supply capacitor based on the measured voltage of the power supply capacitor, the capacitor charging time of the power supply capacitor measured by the operation time measuring unit, and the pre-measured initial capacitor of the power supply capacitor. It is characterized by including a state monitoring device including: a comparing unit that compares the charging time and determines whether or not there is an abnormality in the power supply capacitor.
 また、本発明の真空遮断器の異常診断方法は、電源コンデンサの電圧を計測する電圧センサにて計測された電源コンデンサの電圧に基づいて、電源コンデンサのコンデンサ充電時間を計測し、計測された電源コンデンサのコンデンサ充電時間と予め計測された電源コンデンサの初期コンデンサ充電時間とを比較し、電源コンデンサの異常の有無を判定する、ことを特徴とする。 In addition, the vacuum circuit breaker abnormality diagnosis method of the present invention measures the capacitor charging time of the power supply capacitor based on the voltage of the power supply capacitor measured by the voltage sensor that measures the voltage of the power supply capacitor, and measures the measured power supply. It is characterized in that the capacitor charging time of the capacitor is compared with the pre-measured initial capacitor charging time of the power supply capacitor to determine whether or not there is an abnormality in the power supply capacitor.
 本発明によれば、比較的短時間にて、真空遮断器に電力を供給する電源コンデンサの静電容量を計測する真空遮断器システムおよび真空遮断器の異常診断方法を提供することができる。 According to the present invention, it is possible to provide a vacuum circuit breaker system and a vacuum circuit breaker abnormality diagnosis method for measuring the electrostatic capacity of a power supply capacitor that supplies power to a vacuum circuit breaker in a relatively short time.
 なお、上記した以外の課題、構成および効果は、下記する実施例の説明により明らかにされる。 The problems, configurations, and effects other than those described above will be clarified by the description of the embodiments below.
本実施例に係る真空遮断器システムを説明する説明図である。It is explanatory drawing explaining the vacuum circuit breaker system which concerns on a present Example. 本実施例に係る真空遮断器を説明する説明図である。It is explanatory drawing explaining the vacuum circuit breaker which concerns on a present Example. 電源コンデンサの電圧と開極投入指令波形との関係を説明する説明図である。It is explanatory drawing explaining the relationship between the voltage of a power supply capacitor, and an opening contact closing command waveform. 本実施例に係る真空遮断器の状態監視装置を説明する説明図である。It is explanatory drawing explaining the state monitoring apparatus of the vacuum circuit breaker which concerns on a present Example. 実施例2に係る真空遮断器を説明する説明図である。It is explanatory drawing explaining the vacuum circuit breaker which concerns on Example 2. 実施例2に係る真空遮断器の状態監視装置を説明する説明図である。It is explanatory drawing explaining the state monitoring apparatus of the vacuum circuit breaker which concerns on Example 2. 電源コンデンサの静電容量の温度特性を説明する説明図である。It is explanatory drawing explaining the temperature characteristic of the electrostatic capacitance of a power supply capacitor. 実施例3に係る真空遮断器の状態監視装置を説明する説明図である。It is explanatory drawing explaining the state monitoring apparatus of the vacuum circuit breaker which concerns on Example 3.
 以下、本発明の実施例を、図面を使用して説明する。なお、同一または類似の構成には、同一の符号を付し、説明が重複する場合には、その説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the same or similar configurations are denoted by the same reference numerals, and when the description is duplicated, the description may be omitted.
 図1は、本実施例に係る真空遮断器システムを説明する説明図(側面図)である。 FIG. 1 is an explanatory view (side view) for explaining the vacuum circuit breaker system according to the present embodiment.
 本実施例に記載する真空遮断器システム(スイッチギア)150aは、真空遮断器156aが設置される真空遮断器室154a、制御部250や状態監視装置が設置される計測器室152a、真空遮断器室154aと計測器室152aとの間を連結する制御線や電力線である母線162が設置される母線室153を有する。 The vacuum circuit breaker system (switch gear) 150a described in the present embodiment includes a vacuum circuit breaker chamber 154a in which a vacuum circuit breaker 156a is installed, a measuring instrument chamber 152a in which a control unit 250 and a state monitoring device are installed, and a vacuum circuit breaker. It has a busbar chamber 153 in which a busbar 162 which is a control line or a power line connecting between the chamber 154a and the measuring instrument chamber 152a is installed.
 なお、本実施例に記載する真空遮断器システム150aは、特に、多頻度に充放電を繰り返し(多頻度に開閉動作を繰り返し)寿命が短くなる可能性がある電源コンデンサを内蔵した電鉄用の真空遮断器に適用することが好ましい。 In addition, the vacuum circuit breaker system 150a described in the present embodiment is particularly designed for a railway for electric railway which has a built-in power supply capacitor that may be repeatedly charged and discharged frequently (repeated opening and closing operations frequently) to shorten the life. It is preferably applied to a circuit breaker.
 ここで、制御部250は、真空遮断器156aを開閉制御し、状態監視装置からの信号に基づいて真空遮断器156aの電源コンデンサをON/OFF制御するものである。 Here, the control unit 250 controls opening/closing of the vacuum circuit breaker 156a, and controls ON/OFF of the power supply capacitor of the vacuum circuit breaker 156a based on a signal from the state monitoring device.
 また、計測器室152aに設置される状態監視装置は、真空遮断器156aの電源コンデンサの動作時間(コンデンサ充電時間)を計測する動作時間(コンデンサ充電時間)計測部220、計測された動作時間(コンデンサ充電時間)と予め設定(計測)された動作時間(初期コンデンサ充電時間202b)とを比較する比較部221、比較の結果、異常状態であると判定された場合に、その異常状態(電源コンデンサ16の静電容量の減少)を表示する異常状態表示部222を有する。 Further, the state monitoring device installed in the measuring instrument room 152a measures the operating time (capacitor charging time) of the power supply capacitor of the vacuum circuit breaker 156a (capacitor charging time) measuring unit 220, the measured operating time ( A comparison unit 221 that compares the capacitor charging time) with a preset (measured) operation time (initial capacitor charging time 202b). If the result of the comparison indicates that the capacitor is in an abnormal state, the abnormal state (power supply capacitor) 16 has an abnormal state display section 222 for displaying 16).
 つまり、本実施例に記載する状態監視装置は、電源コンデンサの異常状態を診断するものである。 That is, the state monitoring device described in this embodiment diagnoses an abnormal state of the power supply capacitor.
 図2は、本実施例に係る真空遮断器を説明する説明図(正面図)である。 FIG. 2 is an explanatory diagram (front view) illustrating the vacuum circuit breaker according to the present embodiment.
 機構ケース10の内部に設置される真空遮断器156aは、電磁石(電磁操作器)14、電磁石14を駆動するための電源コンデンサ16を有する。 The vacuum circuit breaker 156 a installed inside the mechanism case 10 has an electromagnet (electromagnetic actuator) 14 and a power supply capacitor 16 for driving the electromagnet 14.
 この電源コンデンサ16には、電源コンデンサ16の両端電圧を計測する電圧センサ17が、電源コンデンサ16の近傍に設置される。そして、この電圧センサ17にて計測された電源コンデンサ16の電圧の変化、つまり、電源コンデンサ16の充電時間の変化を監視(計測)し、電源コンデンサ16の静電容量の変化を監視(計測)する。 A voltage sensor 17 that measures the voltage across the power supply capacitor 16 is installed near the power supply capacitor 16 in the power supply capacitor 16. Then, the change in the voltage of the power supply capacitor 16 measured by the voltage sensor 17, that is, the change in the charging time of the power supply capacitor 16 is monitored (measured), and the change in the capacitance of the power supply capacitor 16 is monitored (measured). To do.
 なお、電源コンデンサ16は、真空遮断器156aの電磁石14に電力を供給(通電)し、電磁石14を駆動(開極動作)させる。 Note that the power supply capacitor 16 supplies (energizes) electric power to the electromagnet 14 of the vacuum circuit breaker 156a to drive (open contact operation) the electromagnet 14.
 図3は、電源コンデンサの電圧と開極投入指令波形との関係を説明する説明図である。 FIG. 3 is an explanatory diagram for explaining the relationship between the voltage of the power supply capacitor and the opening contact closing command waveform.
 電源コンデンサ16のコンデンサ電圧300は、開極投入指令(波形)101に応じて、初期コンデンサ電圧301からコンデンサ放電電圧302まで降下(放電)し、その後、コンデンサ放電電圧302からコンデンサ充電電圧303まで上昇(充電)する。 The capacitor voltage 300 of the power supply capacitor 16 drops (discharges) from the initial capacitor voltage 301 to the capacitor discharge voltage 302 according to the opening-closing command (waveform) 101, and then rises from the capacitor discharge voltage 302 to the capacitor charge voltage 303. (Charge)
 ここで、初期コンデンサ電圧301からコンデンサ放電電圧302まで放電される(推移する)時間(コンデンサ放電時間201a)とコンデンサ放電電圧302からコンデンサ充電電圧303まで充電される(推移する)時間(コンデンサ充電時間201b)とにおいては、コンデンサ放電時間201aよりコンデンサ充電時間201bが短時間である。そこで、本実施例では、コンデンサ放電時間201aに比較して短時間なコンデンサ充電時間201bを使用して、真空遮断器156aに電力を供給する電源コンデンサ16のコンデンサ容量(静電容量)を計測する。 Here, the time for discharging (transitioning) from the initial capacitor voltage 301 to the capacitor discharging voltage 302 (capacitor discharging time 201a) and the time for charging (transitioning) from the capacitor discharging voltage 302 to the capacitor charging voltage 303 (capacitor charging time) 201b), the capacitor charging time 201b is shorter than the capacitor discharging time 201a. Therefore, in the present embodiment, the capacitor capacity (electrostatic capacity) of the power supply capacitor 16 that supplies power to the vacuum circuit breaker 156a is measured using the capacitor charge time 201b that is shorter than the capacitor discharge time 201a. ..
 図4は、本実施例に係る真空遮断器の状態監視装置を説明する説明図(ブロック図)であり、真空遮断器室154aと計測器室152aとの接続を示すものである。 FIG. 4 is an explanatory diagram (block diagram) illustrating the state monitoring device of the vacuum circuit breaker according to the present embodiment, and shows the connection between the vacuum circuit breaker chamber 154a and the measuring instrument chamber 152a.
 計測器室152aに設置される状態監視装置は、動作時間(コンデンサ充電時間)計測部220、比較部221、異常状態表示部222を有する。 The state monitoring device installed in the measuring instrument room 152a has an operating time (capacitor charging time) measuring unit 220, a comparing unit 221, and an abnormal state displaying unit 222.
 図3に記載される、真空遮断器156aの開動作時(開極投入指令時)における、初期コンデンサ電圧301からコンデンサ放電電圧302まで推移するコンデンサ放電時間201a、および、コンデンサ放電電圧302からコンデンサ充電電圧303まで推移するコンデンサ充電時間201bを、真空遮断器室154aに設置される電圧センサ17にて計測された電源コンデンサ16の電圧に基づいて、動作時間計測部220にて、計測する。そして、動作時間計測部220は、計測されるコンデンサ充電時間201bを、比較部221に出力する。合わせて、コンデンサ放電時間201aを、比較部221に出力してもよい。 In the opening operation of the vacuum circuit breaker 156a (at the time of opening contact command), the capacitor discharge time 201a transiting from the initial capacitor voltage 301 to the capacitor discharge voltage 302 and the capacitor discharge voltage 302 to the capacitor charge described in FIG. The capacitor charging time 201b that changes to the voltage 303 is measured by the operation time measuring unit 220 based on the voltage of the power supply capacitor 16 measured by the voltage sensor 17 installed in the vacuum circuit breaker chamber 154a. Then, the operation time measurement unit 220 outputs the measured capacitor charging time 201b to the comparison unit 221. In addition, the capacitor discharge time 201a may be output to the comparison unit 221.
 比較部221は、判定値として、予め設定(計測)された電源コンデンサ16の初期コンデンサ充電時間202bを入力する。また、合わせて、予め設定(計測)された電源コンデンサ16の初期コンデンサ放電時間202aを入力してもよい。なお、この初期コンデンサ充電時間202bや初期コンデンサ放電時間202aは、予め計測されるものであり、電源コンデンサ16の正常状態の際に予め計測された値を、比較部221が保存していてもよい。 The comparison unit 221 inputs the preset (measured) initial capacitor charging time 202b of the power supply capacitor 16 as a determination value. In addition, in addition, the preset (measured) initial capacitor discharge time 202a of the power supply capacitor 16 may be input. The initial capacitor charging time 202b and the initial capacitor discharging time 202a are measured in advance, and the comparison unit 221 may store the values measured in advance when the power supply capacitor 16 is in the normal state. ..
 そして、比較部221は、比較部221に入力される初期コンデンサ充電時間202bと、動作時間計測部220にて計測され、比較部221に出力されるコンデンサ充電時間201bと、を比較する。 Then, the comparing unit 221 compares the initial capacitor charging time 202b input to the comparing unit 221 with the capacitor charging time 201b measured by the operation time measuring unit 220 and output to the comparing unit 221.
 比較部221にて、比較の結果、コンデンサ充電時間201bが初期コンデンサ充電時間202bよりも短い場合(コンデンサ充電時間201b<初期コンデンサ充電時間202b)には、異常状態である(電源コンデンサ16のコンデンサ容量(静電容量)が減少した)と判定され、その旨を、異常状態表示部222に出力する。 As a result of comparison in the comparison unit 221, if the capacitor charging time 201b is shorter than the initial capacitor charging time 202b (capacitor charging time 201b<initial capacitor charging time 202b), it is in an abnormal state (capacitor capacity of the power supply capacitor 16). It is determined that (capacitance) has decreased), and that effect is output to the abnormal state display unit 222.
 つまり、比較部221は、電源コンデンサ16の異常の有無を判定(診断)するものである。 That is, the comparison unit 221 determines (diagnoses) whether there is an abnormality in the power supply capacitor 16.
 この際、一定の許容範囲(+α)を設定してもよい。つまり、コンデンサ充電時間201b+α<初期コンデンサ充電時間202bとしてもよい。なお、この一定の許容範囲(+α)は、電源コンデンサ16の耐用年数(使用環境や運転条件)に応じて、適宜設定することができる。 At this time, a certain allowable range (+α) may be set. That is, the capacitor charging time 201b+α may be smaller than the initial capacitor charging time 202b. It should be noted that this certain allowable range (+α) can be appropriately set according to the useful life of the power supply capacitor 16 (usage environment or operating condition).
 そして、異常状態表示部222は、その旨を表示する。つまり、異常状態表示部222は、比較部221にて比較された結果(比較の結果)、コンデンサ充電時間201bが初期コンデンサ充電時間202bより短い場合に、異常状態として表示する。 Then, the abnormal state display unit 222 displays that effect. That is, the abnormal state display unit 222 displays an abnormal state when the result of comparison by the comparison unit 221 (result of comparison) indicates that the capacitor charging time 201b is shorter than the initial capacitor charging time 202b.
 ここで、電源コンデンサの充電時間t(時定数)と電源コンデンサの静電容量Cとの関係について説明する。電源コンデンサの充電時間tは、電源コンデンサの静電容量Cと回路の抵抗Rとの積RC(=t)により決定される。電源コンデンサの静電容量Cが減少すると、この積RCも減少するため、電源コンデンサの充電時間tも減少し、電源コンデンサの充電時間tの減少により、電源コンデンサの静電容量Cの減少を、定量的に判定することができる。本実施例では、電源コンデンサの静電容量Cの変化に比較して、回路の抵抗Rの変化は極めて小さい(ほぼ一定と考えられる)ため、電源コンデンサの静電容量Cの減少と、電源コンデンサの充電時間tの減少と、を関係づけて、定量的に判定する。 Here, the relationship between the charging time t (time constant) of the power supply capacitor and the electrostatic capacitance C of the power supply capacitor will be described. The charging time t of the power supply capacitor is determined by the product RC (=t) of the capacitance C of the power supply capacitor and the resistance R of the circuit. When the capacitance C of the power supply capacitor decreases, this product RC also decreases, so the charging time t of the power supply capacitor also decreases, and the decrease of the charging time t of the power supply capacitor causes the decrease of the capacitance C of the power supply capacitor. It can be quantitatively determined. In the present embodiment, the change in the resistance R of the circuit is extremely small compared to the change in the electrostatic capacity C of the power supply capacitor (which is considered to be almost constant). And the decrease of the charging time t are correlated and quantitatively determined.
 このように、本実施例に記載する真空遮断器システムは、真空遮断器156aの電源コンデンサ16の電圧を計測する回路(電圧センサ17)を設置し、真空遮断器156aの開動作時における電源コンデンサ16のコンデンサ充電時間を計測し、予め計測された判定値(電源コンデンサ16の初期コンデンサ充電時間)と比較し、電源コンデンサ16の静電容量を計測するものである。 As described above, in the vacuum circuit breaker system described in the present embodiment, the circuit (voltage sensor 17) that measures the voltage of the power supply capacitor 16 of the vacuum circuit breaker 156a is installed, and the power supply capacitor when the vacuum circuit breaker 156a is opened. The capacitance of the power supply capacitor 16 is measured by measuring the capacitor charging time of 16 and comparing it with a previously determined determination value (initial capacitor charging time of the power supply capacitor 16).
 これにより、比較的短時間にて、真空遮断器156aに電力を供給する電源コンデンサ16の静電容量を計測することができ、電源コンデンサ16の劣化状態(異常状態)を診断(判定)することができる。 Accordingly, the electrostatic capacity of the power supply capacitor 16 that supplies power to the vacuum circuit breaker 156a can be measured in a relatively short time, and the deterioration state (abnormal state) of the power supply capacitor 16 can be diagnosed (determined). You can
 更には、本実施例によれば、計測信号にノイズが重畳した場合でも、コンデンサ充電電圧への影響は小さいため、コンデンサ充電時間から正確に電源コンデンサ16の静電容量を計測することができ、電源コンデンサ16の劣化状態を判定することができる。 Furthermore, according to the present embodiment, even when noise is superimposed on the measurement signal, the influence on the capacitor charging voltage is small, so that the capacitance of the power supply capacitor 16 can be accurately measured from the capacitor charging time. The deterioration state of the power supply capacitor 16 can be determined.
 なお、計測信号にノイズが重畳した場合とは、真空遮断器156aの近傍に設置される回路に過大な短絡電流が発生(流通)した場合に、真空遮断器156aの近傍にノイズが発生し、コンデンサ電流をコンデンサ電圧に変換する過程において、計測信号にノイズが重畳される場合である。 In addition, when noise is superimposed on the measurement signal, when an excessive short-circuit current occurs (flows) in a circuit installed near the vacuum circuit breaker 156a, noise occurs near the vacuum circuit breaker 156a, This is a case where noise is superimposed on the measurement signal in the process of converting the capacitor current into the capacitor voltage.
 本実施例によれば、こうした計測信号にノイズが重畳した場合であっても、正確に電源コンデンサ16の静電容量を計測することができ、電源コンデンサ16の劣化状態を早期に判定することができる。 According to the present embodiment, even if noise is superimposed on such a measurement signal, the electrostatic capacitance of the power supply capacitor 16 can be accurately measured, and the deterioration state of the power supply capacitor 16 can be determined early. it can.
 更には、電源コンデンサ16の静電容量を計測する際に、主回路を停電させ、電源コンデンサ16を引き出して、計測する必要もない。 Furthermore, when measuring the electrostatic capacity of the power supply capacitor 16, it is not necessary to bring the main circuit to a power failure and pull out the power supply capacitor 16 for measurement.
 図5は、実施例2に係る真空遮断器を説明する説明図(正面図)である。 FIG. 5 is an explanatory diagram (front view) illustrating the vacuum circuit breaker according to the second embodiment.
 本実施例に記載する真空遮断器156bは、実施例1に記載する真空遮断器156aに加えて、電源コンデンサ16のコンデンサ温度を計測する温度計測部(温度センサ)223を有する。 The vacuum circuit breaker 156b described in the present embodiment has a temperature measuring unit (temperature sensor) 223 that measures the capacitor temperature of the power supply capacitor 16 in addition to the vacuum circuit breaker 156a described in the first embodiment.
 図6は、実施例2に係る真空遮断器の状態監視装置を説明する説明図(ブロック図)であり、真空遮断器室154bと計測器室152bとの接続を示すものである。 FIG. 6 is an explanatory diagram (block diagram) illustrating a vacuum circuit breaker state monitoring device according to the second embodiment, showing a connection between the vacuum circuit breaker chamber 154b and the measuring instrument chamber 152b.
 本実施例に記載する計測器室152bに設置される状態監視装置は、実施例1に記載する状態監視装置に設置される動作時間(コンデンサ充電時間)計測部220、比較部221、異常状態表示部222に加えて、電源コンデンサ16の静電容量を補正する静電容量補正部310を有する。 The condition monitoring device installed in the measuring instrument room 152b described in the present embodiment is the operation time (capacitor charging time) measuring unit 220, the comparison unit 221, and the abnormal condition display installed in the condition monitoring device described in the first embodiment. In addition to the unit 222, it has a capacitance correction unit 310 that corrects the capacitance of the power supply capacitor 16.
 静電容量補正部310は、温度計測部223にて計測される電源コンデンサ16のコンデンサ温度502を入力する。また、静電容量補正部310は、電源コンデンサ16の静電容量の温度特性204を入力する。 The capacitance correction unit 310 inputs the capacitor temperature 502 of the power supply capacitor 16 measured by the temperature measurement unit 223. Further, the capacitance correction unit 310 inputs the temperature characteristic 204 of the capacitance of the power supply capacitor 16.
 本実施例においても、実施例1と同様に、電源コンデンサ16のコンデンサ充電時間201b(コンデンサ放電時間201a)と電源コンデンサ16の初期コンデンサ充電時間202b(初期コンデンサ放電時間202a)とを比較する。本実施例においては、更に、コンデンサ温度502と電源コンデンサ16の静電容量の温度特性204とに基づいて、電源コンデンサ16の静電容量を補正する。 Also in this embodiment, similarly to the first embodiment, the capacitor charging time 201b of the power supply capacitor 16 (capacitor discharging time 201a) and the initial capacitor charging time 202b of the power supply capacitor 16 (initial capacitor discharging time 202a) are compared. In the present embodiment, the capacitance of the power supply capacitor 16 is further corrected based on the capacitor temperature 502 and the temperature characteristic 204 of the capacitance of the power supply capacitor 16.
 例えば、電源コンデンサ16がフィルムコンデンサの場合、フィルム材料の種類により、静電容量に正の温度特性、または、負の温度特性を有するものがある。 For example, when the power supply capacitor 16 is a film capacitor, there is a capacitor having a positive temperature characteristic or a negative temperature characteristic depending on the type of film material.
 図7は、電源コンデンサの静電容量の温度特性を説明する説明図である。 FIG. 7 is an explanatory diagram illustrating the temperature characteristic of the capacitance of the power supply capacitor.
 図7に示すように、電源コンデンサ16の静電容量の温度特性204は、例えば、フィルムコンデンサのフィルム材料が、ポリエステルの場合は、電源コンデンサ16の静電容量の温度特性204aは、初期コンデンサ静電容量203から温度上昇(所定の温度からの上昇)に応じて、静電容量が増加する。一方、例えば、フィルムコンデンサのフィルム材料が、ポリプロピレンの場合は、電源コンデンサ16の静電容量の温度特性204bは、初期コンデンサ静電容量203から温度上昇(所定の温度からの上昇)に応じて、静電容量が減少する。 As shown in FIG. 7, for example, when the film material of the film capacitor is polyester, the temperature characteristic 204a of the capacitance of the power supply capacitor 16 is the temperature characteristic 204a of the capacitance of the power supply capacitor 16 is the initial capacitor static. The capacitance increases as the temperature of the capacitance 203 rises (rises from a predetermined temperature). On the other hand, for example, when the film material of the film capacitor is polypropylene, the temperature characteristic 204b of the capacitance of the power supply capacitor 16 is determined by the temperature rise from the initial capacitor capacitance 203 (rise from a predetermined temperature). The capacitance decreases.
 つまり、コンデンサ温度502が、予め計測した温度よりも低い場合、電源コンデンサ16に劣化が発生していない場合であっても、フィルム材料ポリエステルの場合には、電源コンデンサ16の静電容量が減少し、フィルム材料ポリプロピレンの場合には、電源コンデンサ16の静電容量が増加する。一方、コンデンサ温度502が、予め計測した温度よりも高い場合、電源コンデンサ16に劣化が発生していない場合であっても、フィルム材料ポリエステルの場合には、電源コンデンサ16の静電容量が増加し、フィルム材料ポリプロピレンの場合には、電源コンデンサ16の静電容量が減少する。 That is, when the capacitor temperature 502 is lower than the temperature measured in advance, even when the power supply capacitor 16 is not deteriorated, in the case of the film material polyester, the capacitance of the power supply capacitor 16 decreases. In the case of the polypropylene film material, the capacitance of the power supply capacitor 16 increases. On the other hand, when the capacitor temperature 502 is higher than the temperature measured in advance, even if the power supply capacitor 16 is not deteriorated, in the case of the polyester film material, the capacitance of the power supply capacitor 16 increases. In the case of the film material polypropylene, the capacitance of the power supply capacitor 16 decreases.
 このように、静電容量補正部310は、コンデンサ温度502と電源コンデンサ16の静電容量の温度特性204とに基づいて、電源コンデンサ16の静電容量の補正量を算出する。そして、静電容量補正部310は、算出された電源コンデンサ16の静電容量の補正量を比較部221に出力する。 In this way, the capacitance correction unit 310 calculates the correction amount of the capacitance of the power supply capacitor 16 based on the capacitor temperature 502 and the temperature characteristic 204 of the capacitance of the power supply capacitor 16. Then, the capacitance correction unit 310 outputs the calculated correction amount of the capacitance of the power supply capacitor 16 to the comparison unit 221.
 比較部221では、電源コンデンサ16の静電容量が減少したと判定された場合、減少した静電容量(静電容量の減少量)を、コンデンサ温度502と電源コンデンサ16の静電容量の温度特性204とに基づいて算出された電源コンデンサ16の静電容量の補正量を使用して補正する。つまり、静電容量の減少量に対して、静電容量の補正量を使用して、電源コンデンサ16の静電容量を、増加(減少量+補正量)または減少(減少量-補正量)する。 When it is determined that the electrostatic capacitance of the power supply capacitor 16 has decreased in the comparison unit 221, the decreased electrostatic capacity (amount of decrease in electrostatic capacity) is used as the temperature characteristic of the capacitor temperature 502 and the electrostatic capacity of the power supply capacitor 16. The correction amount of the electrostatic capacity of the power supply capacitor 16 calculated based on 204 is used for correction. That is, the capacitance of the power supply capacitor 16 is increased (decrease amount+correction amount) or decreased (decrease amount-correction amount) using the capacitance correction amount with respect to the capacitance decrease amount. ..
 なお、図7に記載する電源コンデンサの静電容量の温度特性(コンデンサ温度と静電容量との関係)については、予め計測されたコンデンサ温度と静電容量との関係を使用することができる。必ずしも、温度上昇に応じて、静電容量が単調増加または単調減少するものである必要はない。また、こうした電源コンデンサの静電容量の温度特性を関数にて保存し、計測されたコンデンサ温度502に基づいて静電容量を算出してもよい。 Note that for the temperature characteristic of the capacitance of the power supply capacitor shown in FIG. 7 (relationship between the capacitor temperature and the capacitance), the relationship between the capacitor temperature and the capacitance measured in advance can be used. The capacitance does not necessarily have to monotonically increase or monotonically decrease with increasing temperature. Further, such a temperature characteristic of the capacitance of the power supply capacitor may be stored as a function, and the capacitance may be calculated based on the measured capacitor temperature 502.
 このように、本実施例では、コンデンサ充電時間201b(コンデンサ放電時間201a)と初期コンデンサ充電時間202b(初期コンデンサ放電時間202a)とに基づいて算出された電源コンデンサ16の静電容量を、コンデンサ温度502と静電容量の温度特性204とに基づいて算出された電源コンデンサ16の静電容量を使用して補正するため、正確に電源コンデンサ16の静電容量を計測することができ、電源コンデンサ16の劣化状態を精度よく判定することができる。 As described above, in this embodiment, the capacitance of the power supply capacitor 16 calculated based on the capacitor charging time 201b (capacitor discharging time 201a) and the initial capacitor charging time 202b (initial capacitor discharging time 202a) is used as the capacitor temperature. Since the capacitance of the power supply capacitor 16 calculated based on 502 and the temperature characteristic 204 of the capacitance is used for correction, the capacitance of the power supply capacitor 16 can be accurately measured. The deterioration state of can be accurately determined.
 図8は、実施例3に係る真空遮断器の状態監視装置を説明する説明図(ブロック図)であり、真空遮断器室154cと計測器室152cとの接続を示すものである。 FIG. 8 is an explanatory diagram (block diagram) illustrating a vacuum circuit breaker state monitoring device according to the third embodiment, showing a connection between the vacuum circuit breaker chamber 154c and the measuring instrument chamber 152c.
 本実施例に記載する計測器室152cに設置される状態監視装置は、実施例2に記載する状態監視装置に設置される動作時間(コンデンサ充電時間)計測部220、比較部221、異常状態表示部222、静電容量補正部310に加えて、電源コンデンサ16のコンデンサ充電時間201bを補正するコンデンサ充電時間補正部311を有する。 The condition monitoring device installed in the measuring instrument room 152c described in this embodiment is the operating time (capacitor charging time) measuring unit 220, the comparing unit 221, and the abnormal condition display installed in the condition monitoring device described in the second embodiment. In addition to the unit 222 and the capacitance correction unit 310, a capacitor charging time correction unit 311 that corrects the capacitor charging time 201b of the power supply capacitor 16 is provided.
 なお、本実施例に記載する真空遮断器156cは、電磁石14に設置される永久磁石(図示せず)と電源コンデンサ16とが、導線(図示せず)にて接続され、そして、この導線の温度(導線温度)を計測する導線温度計測部(図示なし)を有する。 In the vacuum circuit breaker 156c described in this embodiment, a permanent magnet (not shown) installed in the electromagnet 14 and a power supply capacitor 16 are connected by a lead wire (not shown), and the lead wire It has a conductor temperature measuring unit (not shown) for measuring temperature (conductor temperature).
 コンデンサ充電時間補正部311は、導線温度計測部にて計測される導線温度503を入力する。また、コンデンサ充電時間補正部311は、導線抵抗の温度特性205を入力する。 The capacitor charging time correction unit 311 inputs the conductor temperature 503 measured by the conductor temperature measuring unit. Further, the capacitor charging time correction unit 311 inputs the temperature characteristic 205 of the lead wire resistance.
 本実施例においても、実施例1や実施例2と同様に、電源コンデンサ16のコンデンサ充電時間201b(コンデンサ放電時間201a)と電源コンデンサ16の初期コンデンサ充電時間202b(初期コンデンサ放電時間202a)とを比較する。 Also in this embodiment, similarly to Embodiments 1 and 2, the capacitor charging time 201b (capacitor discharging time 201a) of the power supply capacitor 16 and the initial capacitor charging time 202b (initial capacitor discharging time 202a) of the power supply capacitor 16 are set. Compare.
 そして、本実施例においても、実施例2と同様に、静電容量補正部310にて、コンデンサ温度502と電源コンデンサ16の静電容量の温度特性204とに基づいて、電源コンデンサ16の静電容量を補正する。本実施例においては、更に、コンデンサ充電時間補正部311にて、導線温度503と導線抵抗の温度特性205とに基づいて、電源コンデンサ16のコンデンサ充電時間201bを補正する。 Then, also in the present embodiment, as in the second embodiment, the electrostatic capacitance correction unit 310 causes the electrostatic capacitance of the power supply capacitor 16 to be calculated based on the capacitor temperature 502 and the temperature characteristic 204 of the electrostatic capacitance of the power supply capacitor 16. Correct the capacity. In the present embodiment, the capacitor charging time correction unit 311 further corrects the capacitor charging time 201b of the power supply capacitor 16 based on the conductor temperature 503 and the temperature characteristic 205 of the conductor resistance.
 電源コンデンサ16と永久磁石とを接続する導線は、式(1)に示すように、導線温度503と導線抵抗との関係(導線抵抗の温度特性205)を有する。 The conductor connecting the power supply capacitor 16 and the permanent magnet has a relationship between the conductor temperature 503 and the conductor resistance (temperature characteristic 205 of the conductor resistance), as shown in equation (1).
 ρ(T)=1.5475+0.0068725×T・・・・・・式(1)
 ここで、ρ(T)は温度Tにおける抵抗率(10-8)(導線抵抗)、Tは温度(導線温度)である。なお、抵抗Rは、ρ(T)×(導線の長さ÷導線の断面積)であり、(導線の長さ÷導線の断面積)は、一定であるため、抵抗Rの変化はρ(T)の変化と同様の傾向を示すことになる。
ρ(T)=1.5475+0.0068725×T...Equation (1)
Here, ρ(T) is the resistivity (10 −8 ) at the temperature T (conductor resistance), and T is the temperature (conductor temperature). The resistance R is ρ(T)×(conductor wire length÷conductor wire cross-sectional area), and (conductor wire length÷conductor wire cross-sectional area) is constant, so the change in resistance R is ρ( The same tendency as the change of T) will be shown.
 つまり、導線抵抗は導線温度に応じて変化する。導線温度が増加(減少)すると、導線抵抗も増加(減少)することになる。 In other words, conductor resistance changes according to conductor temperature. When the wire temperature increases (decreases), the wire resistance also increases (decreases).
 このため、静電容量Cと抵抗Rとの積RC(=t)により決定される電源コンデンサ16の充電時間tは、抵抗Rが変化することにより、変化することになる。つまり、静電容量Cが一定の場合であっても、抵抗Rが増加(減少)することにより、充電時間tも増加(減少)することになる。そして、充電時間tが一定の場合であっても、抵抗Rが増加することにより、静電容量Cは減少することになる。 Therefore, the charging time t of the power supply capacitor 16, which is determined by the product RC (=t) of the electrostatic capacity C and the resistance R, changes as the resistance R changes. That is, even when the electrostatic capacitance C is constant, the charging time t also increases (decreases) as the resistance R increases (decreases). Then, even when the charging time t is constant, the resistance R increases and the electrostatic capacitance C decreases.
 このように、本実施例では、静電容量Cが一定の場合であっても、充電時間tが変化するため、導線抵抗の温度特性205を考慮して、充電時間tを算出することにより、より精度よく電源コンデンサ16の静電容量を計測することができ、電源コンデンサ16の劣化状態をより精度よく判定することができる。 As described above, in the present embodiment, the charging time t changes even when the capacitance C is constant. Therefore, the charging time t is calculated in consideration of the temperature characteristic 205 of the wire resistance. The capacitance of the power supply capacitor 16 can be measured more accurately, and the deterioration state of the power supply capacitor 16 can be determined more accurately.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
It should be noted that the present invention is not limited to the above-described embodiments, but includes various modifications.
For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
10…機構ケース、14…電磁石、16…電源コンデンサ、17…電圧センサ、150a…真空遮断器システム、152a、152b、152c…計測器室、153…母線室、154a、154b、154c…真空遮断器室、156a、156b、156c…真空遮断器、162…母線、101…開極投入指令、201a…コンデンサ放電時間、201b…コンデンサ充電時間、202b…初期コンデンサ充電時間、203…初期コンデンサ静電容量、204、204a、204b…静電容量の温度特性、205…導線抵抗の温度特性、220…動作時間計測部、221…比較部、222…異常状態表示部、223…温度計測部、250…制御部、300…コンデンサ電圧、301…初期コンデンサ電圧、302…コンデンサ放電電圧、303…コンデンサ充電電圧、310…静電容量補正部、311…コンデンサ充電時間補正部、502…コンデンサ温度、503…導線温度 10... Mechanism case, 14... Electromagnet, 16... Power supply capacitor, 17... Voltage sensor, 150a... Vacuum breaker system, 152a, 152b, 152c... Instrument room, 153... Bus room, 154a, 154b, 154c... Vacuum breaker Chambers, 156a, 156b, 156c... Vacuum circuit breaker, 162... Bus bar, 101... Opening command, 201a... Capacitor discharge time, 201b... Capacitor charging time, 202b... Initial capacitor charging time, 203... Initial capacitor capacitance, 204, 204a, 204b... Capacitance temperature characteristic, 205... Conductor resistance temperature characteristic, 220... Operating time measuring section, 221... Comparison section, 222... Abnormal state display section, 223... Temperature measuring section, 250... Control section , 300... Capacitor voltage, 301... Initial capacitor voltage, 302... Capacitor discharge voltage, 303... Capacitor charging voltage, 310... Capacitance correction unit, 311... Capacitor charging time correction unit, 502... Capacitor temperature, 503... Conductor temperature

Claims (8)

  1.  電源コンデンサと、前記電源コンデンサで駆動する電磁石と、前記電源コンデンサの電圧を計測する電圧センサと、有する真空遮断器と、
     前記電圧センサにて計測された前記電源コンデンサの電圧に基づいて、前記電源コンデンサのコンデンサ充電時間を計測する動作時間計測部と、前記動作時間計測部にて計測された前記電源コンデンサのコンデンサ充電時間と予め計測された前記電源コンデンサの初期コンデンサ充電時間とを比較し、前記電源コンデンサの異常の有無を判定する比較部と、を有する状態監視装置と、
     を有することを特徴とする真空遮断器システム。
    A vacuum capacitor having a power supply capacitor, an electromagnet driven by the power supply capacitor, and a voltage sensor for measuring the voltage of the power supply capacitor;
    Based on the voltage of the power supply capacitor measured by the voltage sensor, the operation time measuring unit for measuring the capacitor charging time of the power supply capacitor, and the capacitor charging time of the power supply capacitor measured by the operation time measuring unit And a state monitoring device having a comparison unit that compares the initial capacitor charging time of the power supply capacitor measured in advance and determines whether there is an abnormality in the power supply capacitor,
    A vacuum circuit breaker system comprising:
  2.  前記状態監視装置は、前記比較部にて比較された結果、前記コンデンサ充電時間が前記初期コンデンサ充電時間より短い場合に、異常状態として表示する異常状態表示部を有することを特徴とする請求項1に記載する真空遮断器システム。 The state monitoring device includes an abnormal state display unit that displays an abnormal state when the capacitor charging time is shorter than the initial capacitor charging time as a result of comparison by the comparing unit. The vacuum circuit breaker system described in.
  3.  前記状態監視装置は、電源コンデンサのコンデンサ温度と、前記電源コンデンサの静電容量の温度特性と、に基づいて、前記電源コンデンサの静電容量を補正する静電容量補正部を有することを特徴とする請求項1に記載する真空遮断器システム。 The state monitoring device includes a capacitance correction unit that corrects the capacitance of the power supply capacitor based on the temperature of the capacitance of the power supply capacitor and the temperature characteristic of the capacitance of the power supply capacitor. The vacuum circuit breaker system according to claim 1.
  4.  前記状態監視装置は、前記電源コンデンサと前記電磁石とを接続する導線の導線温度と、前記導線の導線抵抗の温度特性と、に基づいて、前記電源コンデンサのコンデンサ充電時間を補正することを特徴とする請求項1に記載する真空遮断器システム。 The state monitoring device corrects a capacitor charging time of the power supply capacitor based on a conductor temperature of a conductor connecting the power supply capacitor and the electromagnet and a temperature characteristic of a conductor resistance of the conductor wire. The vacuum circuit breaker system according to claim 1.
  5.  電源コンデンサの電圧を計測する電圧センサにて計測された前記電源コンデンサの電圧に基づいて、前記電源コンデンサのコンデンサ充電時間を計測し、
     計測された前記電源コンデンサのコンデンサ充電時間と予め計測された前記電源コンデンサの初期コンデンサ充電時間とを比較し、前記電源コンデンサの異常の有無を判定する、
     ことを特徴とする真空遮断器の異常診断方法。
    Based on the voltage of the power supply capacitor measured by a voltage sensor that measures the voltage of the power supply capacitor, measuring the capacitor charging time of the power supply capacitor,
    The measured capacitor charging time of the power supply capacitor is compared with the pre-measured initial capacitor charging time of the power supply capacitor to determine whether or not there is an abnormality in the power supply capacitor.
    A method for diagnosing an abnormality in a vacuum circuit breaker, which is characterized in that:
  6.  比較された結果、前記コンデンサ充電時間が前記初期コンデンサ充電時間より短い場合に、異常状態として表示することを特徴とする請求項5に記載する真空遮断器の異常診断方法。 The method for diagnosing an abnormality in a vacuum circuit breaker according to claim 5, wherein when the result of the comparison shows that the capacitor charging time is shorter than the initial capacitor charging time, it is displayed as an abnormal state.
  7.  電源コンデンサのコンデンサ温度と、前記電源コンデンサの静電容量の温度特性と、に基づいて、前記電源コンデンサの静電容量を補正することを特徴とする請求項5に記載する真空遮断器の異常診断方法。 The abnormality diagnosis of the vacuum circuit breaker according to claim 5, wherein the capacitance of the power supply capacitor is corrected based on the temperature of the capacitance of the power supply capacitor and the temperature characteristic of the capacitance of the power supply capacitor. Method.
  8.  前記電源コンデンサと電磁石とを接続する導線の導線温度と、前記導線の導線抵抗の温度特性と、に基づいて、前記電源コンデンサのコンデンサ充電時間を補正することを特徴とする請求項5に記載する真空遮断器の異常診断方法。 The capacitor charging time of the power supply capacitor is corrected based on a conductor temperature of a conductor connecting the power supply capacitor and the electromagnet and a temperature characteristic of a conductor resistance of the conductor. Vacuum circuit breaker abnormality diagnosis method.
PCT/JP2019/017239 2018-12-25 2019-04-23 Vacuum circuit breaker system and abnormality diagnosis method for vacuum circuit breaker WO2020136931A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-240915 2018-12-25
JP2018240915A JP7248421B2 (en) 2018-12-25 2018-12-25 Vacuum circuit breaker system and vacuum circuit breaker abnormality diagnosis method

Publications (1)

Publication Number Publication Date
WO2020136931A1 true WO2020136931A1 (en) 2020-07-02

Family

ID=71128580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017239 WO2020136931A1 (en) 2018-12-25 2019-04-23 Vacuum circuit breaker system and abnormality diagnosis method for vacuum circuit breaker

Country Status (2)

Country Link
JP (1) JP7248421B2 (en)
WO (1) WO2020136931A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4166584A4 (en) 2020-06-12 2023-11-29 Mitsubishi Chemical Corporation Polyorganosiloxane-containing polymer particle group, composition, resin composition, and molded body
JP7457665B2 (en) * 2021-03-12 2024-03-28 株式会社日立産機システム Capacitor capacitance monitoring method and capacitor capacitance monitoring device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829465A (en) * 1994-07-20 1996-02-02 Omron Corp Capacitor capacity variation detecting circuit and power source life detecting circuit
JP2002098725A (en) * 2000-09-27 2002-04-05 Fuji Electric Co Ltd Acceptance determination device of capacitor
JP2007202298A (en) * 2006-01-26 2007-08-09 Mitsubishi Electric Corp Switchgear
JP2010272296A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp State recognition unit for switching device or electromagnetic operation device
WO2010150599A1 (en) * 2009-06-22 2010-12-29 三菱電機株式会社 Capacitor capacity diagnosis device and power equipment provided with a capacitor capacity diagnosis device
JP2018147642A (en) * 2017-03-03 2018-09-20 株式会社日立産機システム Electromagnetic operating device and electromagnetically operated switching device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829465A (en) * 1994-07-20 1996-02-02 Omron Corp Capacitor capacity variation detecting circuit and power source life detecting circuit
JP2002098725A (en) * 2000-09-27 2002-04-05 Fuji Electric Co Ltd Acceptance determination device of capacitor
JP2007202298A (en) * 2006-01-26 2007-08-09 Mitsubishi Electric Corp Switchgear
JP2010272296A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp State recognition unit for switching device or electromagnetic operation device
WO2010150599A1 (en) * 2009-06-22 2010-12-29 三菱電機株式会社 Capacitor capacity diagnosis device and power equipment provided with a capacitor capacity diagnosis device
JP2018147642A (en) * 2017-03-03 2018-09-20 株式会社日立産機システム Electromagnetic operating device and electromagnetically operated switching device

Also Published As

Publication number Publication date
JP2020102397A (en) 2020-07-02
JP7248421B2 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
JP6345312B2 (en) Insulation detector and electrical equipment
US9255957B2 (en) Earth fault detection circuit and power source device
US7557583B2 (en) System and method for monitoring an electrical power relay in a hybrid electric vehicle
CN106353692B (en) Monitoring system for detecting the presence of electrical leakage and/or short circuit condition of relay in electrical system
US11146098B2 (en) Precharge control apparatus
WO2020136931A1 (en) Vacuum circuit breaker system and abnormality diagnosis method for vacuum circuit breaker
JP6415566B2 (en) Voltage detector
EP3822109B1 (en) Ground fault detection device
US9694686B2 (en) Multifunctional monitoring of electrical systems
US20180246169A1 (en) Battery Monitor
JP6324333B2 (en) Cell balance circuit and fault diagnosis device thereof
KR20100023364A (en) Apparatus and method for diagnosis of cell balancing circuit using flying capacitor
KR20180042755A (en) Device for fault detection of pra
JP2019174165A (en) Battery monitoring device and method of diagnosing state of relay
JP7416488B2 (en) Relay diagnostic equipment, relay diagnostic method, battery system and electric vehicle
KR20160110700A (en) Fault diagnosis apparatus for battery system
JP5988729B2 (en) Charger with abnormality diagnosis function for power capacitors
JPH05215800A (en) Method for diagnosing deterioration of capacitor
JP7347896B2 (en) Abnormal cell diagnosis method and battery system applying the same
WO2022190463A1 (en) Capacitor capacitance monitoring method and capacitor capacitance monitoring device
JP6536812B2 (en) Power converter
WO2022137705A1 (en) Voltage detection circuit
JP2020112526A (en) Voltage detection device
JPH09190870A (en) High voltage generating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902579

Country of ref document: EP

Kind code of ref document: A1