WO2020136839A1 - Control system - Google Patents

Control system Download PDF

Info

Publication number
WO2020136839A1
WO2020136839A1 PCT/JP2018/048289 JP2018048289W WO2020136839A1 WO 2020136839 A1 WO2020136839 A1 WO 2020136839A1 JP 2018048289 W JP2018048289 W JP 2018048289W WO 2020136839 A1 WO2020136839 A1 WO 2020136839A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
amplifier
control
servo amplifier
control unit
Prior art date
Application number
PCT/JP2018/048289
Other languages
French (fr)
Japanese (ja)
Inventor
泰士 安藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019535394A priority Critical patent/JPWO2020136839A1/en
Priority to PCT/JP2018/048289 priority patent/WO2020136839A1/en
Publication of WO2020136839A1 publication Critical patent/WO2020136839A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C19/00Electric signal transmission systems

Definitions

  • the present invention relates to a control system having a function of collecting data necessary for alarm factor analysis.
  • position data which is time-series data indicating a state of operation of a table
  • a servo amplifier as various states held in the servo amplifier.
  • the timing signal requesting the position data is transmitted from the servo amplifier, which is the master control device, to the scale that is the slave station at a fixed cycle, and then the scale that is the slave station is in accordance with the timing of the timing signal.
  • the cyclic transmission in which the position data is periodically transmitted from the servo amplifier to the servo amplifier is used.
  • the master control device in order to analyze the cause of the alarm when an alarm occurs, in addition to the above time-series data, the number of alarm occurrences detected by the servo amplifier after starting the control system, the alarm occurrence history, and device replacement It is necessary for the master control device to collect the latest data of the control system data, such as the history, which is held in the servo amplifier in various states and which changes irregularly.
  • the same data may be sent even if it is the latest data. By eliminating such repeated transmission of the same data, it is possible to suppress traffic in the control system.
  • the present invention has been made in view of the above, and an object thereof is to obtain a control system capable of collecting the latest control system data when an alarm occurs while suppressing traffic in the control system.
  • a control system can communicate with a controlled device, a first control device that controls the operation of the controlled device, and the first control device. And a second control device for controlling the first control device.
  • the second control device obtains the first data obtained in the control of the controlled device and is held in the first control device by periodically collecting the first data from the first control device at a predetermined cycle.
  • Second data collection that collects irregularly changing second data, which is obtained in the collection processing and control of the controlled device and is held in the first control device, from the first control device at irregular intervals
  • a data collection control unit for controlling the processing is provided.
  • the control system according to the present invention has an effect that the latest control system data can be collected when an alarm occurs while suppressing traffic in the control system.
  • Block diagram showing a configuration of a control system according to a first embodiment of the present invention 1 is a block diagram showing a functional configuration of a motion controller, a servo amplifier, and a sensor in a control system according to a first embodiment of the present invention.
  • 1 is a diagram showing an example of a hardware configuration of a processing circuit according to a first embodiment of the present invention.
  • the figure explaining the collection method of the time series data by cyclic transmission in the motion controller of the control system concerning Embodiment 1 of this invention.
  • FIG. 1 is a block diagram showing a configuration of a control system 100 according to the first exemplary embodiment of the present invention.
  • FIG. 2 is a block diagram showing a functional configuration of the motion controller 2, the servo amplifier 3, and the sensor 5 in the control system 100 according to the first embodiment of the present invention.
  • the control system 100 is a factory automation (FA) system.
  • FA factory automation
  • "abnormal” is generally called “alarm”, and therefore “abnormal” is also expressed as “alarm” in this specification. Therefore, the analysis of the cause of the alarm in this specification means to analyze the cause of the abnormality.
  • the control system 100 includes a programmable controller 1, a motion controller 2, a servo amplifier 3, and a servo motor 4 including a sensor 5.
  • the programmable controller 1 is connected to the motion controller 2 via a communication line 6 and can perform wired communication with the motion controller 2.
  • the communication between the programmable controller 1 and the motion controller 2 may be wireless communication.
  • the motion controller 2 is connected to the servo amplifier 3 via the communication line 7, and can perform wired communication with the servo amplifier 3.
  • the communication between the motion controller 2 and the servo amplifier 3 may be wireless communication.
  • the servo amplifier 3 is connected to the servo motor 4 by a communication line 8 and can communicate with the servo motor 4 by wire.
  • the communication between the servo amplifier 3 and the servo motor 4 may be wireless communication.
  • the programmable controller 1 controls the motion controller 2 to control the operation of the servo motor 4.
  • the programmable controller 1 operates based on a programmable controller program.
  • the programmable controller program is a program executed by the programmable controller 1 to control the motion controller 2, and a specific example is a ladder program.
  • the programmable controller 1 sends a command to the motion controller 2 to control the positioning of the operation of the servo motor 4 based on the programmable controller program.
  • the motion controller 2 is a controller that controls the servo amplifier 3 by generating a drive command for controlling the servo amplifier 3 based on the command transmitted from the programmable controller 1 and transmitting the drive command to the servo amplifier 3.
  • the motion controller 2 operates based on the motion controller program.
  • the motion controller program is a program for controlling the servo amplifier 3 and the motion controller 2 as a whole.
  • the motion controller 2 has a motion communication unit 21, a motion storage unit 22, and a motion control unit 23.
  • the motion communication unit 21 communicates with the programmable controller 1 via the communication line 6 to send and receive information.
  • the motion communication unit 21 also communicates with the servo amplifier 3 via the communication line 7 to transmit and receive information.
  • the motion storage unit 22 stores a motion controller program, information related to control of the motion controller 2, and data of various states held inside the servo amplifier 3.
  • Examples of data of various states held inside the servo amplifier 3 include analog data which is time-series data of the operating state of the servo motor 4, such as the position, speed and torque at which the servo motor 4 operates. ..
  • the data of various states held inside the servo amplifier 3 include control in the servo amplifier 3 such as an emergency stop signal (emergency: EMG), an abnormal signal (alarm: ALM), and a servo-on which is a signal for operation preparation.
  • EMG emergency stop signal
  • ALM abnormal signal
  • a servo-on which is a signal for operation preparation.
  • the semi-steady data of the state and the semi-steady data such as the state at the time of alarm occurrence such as an alarm cumulative counter value are illustrated.
  • the time-series data is data of various states obtained in the control of the servo motor 4 and held inside the servo amplifier 3, and is data observing a phenomenon that changes with the passage of time.
  • Examples of the time-series data include data indicating the operating state of the servo motor 4, such as the position, speed, and torque at which the servo motor 4 has operated.
  • the semi-stationary data is data of various states obtained in the control of the servo motor 4 and held inside the servo amplifier 3, and is data that changes irregularly.
  • the semi-stationary data is data that the motion controller 2 does not need to read from the servo amplifier 3 in a fixed cycle in the control system 100.
  • Examples of the semi-steady data include data on the control state of the servo amplifier 3 such as EMG, ALM, and servo-on which is a signal for operation preparation after system startup.
  • the semi-steady data is exemplified by data such as an alarm occurrence history, a state at the time of alarm occurrence such as an alarm cumulative counter value indicating the number of alarm occurrences, and a replacement history of a unit of the servo amplifier 3.
  • the steady data is data of various states held inside the servo amplifier 3 and is data that does not change over time.
  • the motion storage unit 22 a non-volatile storage device is used so that the stored information is not erased even when the power supply to the motion controller 2 is cut off.
  • the motion storage unit 22 is realized by, for example, a memory.
  • the motion control unit 23 controls the servo amplifier 3 and the motion controller 2 as a whole. Further, the motion control unit 23 includes a data collection control unit 24 having a drive recorder function that collects data of various states held inside the servo amplifier 3 from the servo amplifier 3 and stores the data in the motion storage unit 22. Prepare
  • the data sampling control unit 24 performs a first data sampling process of periodically sampling the time-series data stored in the servo amplifier 3 from the servo amplifier 3 at a predetermined cycle, and a semi-steady-state data stored in the servo amplifier 3.
  • the second data collection process for collecting data from the servo amplifier 3 irregularly is controlled.
  • the time-series data stored in the servo amplifier 3 is the first data collected from the servo amplifier 3 in the first data collection process.
  • the semi-stationary data held in the servo amplifier 3 is different from the first data and is the second data collected from the servo amplifier 3 in the second data collecting process.
  • the first data collection process is performed by cyclic transmission.
  • the second data collection process is performed by transient transmission.
  • the second data collection process is not performed in a fixed cycle, but is temporarily performed only when an alarm occurs. That is, the data collection control unit 24 performs the second data collection process when the alarm generation notification is received from the servo amplifier 3.
  • the data collection control unit 24 can freely set and change the type of semi-steady data collected from the servo amplifier 3 in the second data collection process.
  • the data sampling control unit 24 sets the type of semi-stationary data to be collected by writing information of the type of semi-stationary data to be collected from the servo amplifier 3 in the second data sampling process from outside the motion controller 2. change.
  • the motion control unit 23 is realized, for example, as a processing circuit having the hardware configuration shown in FIG.
  • FIG. 3 is a diagram showing an example of a hardware configuration of the processing circuit according to the first exemplary embodiment of the present invention.
  • the motion control unit 23 is realized by the processor 101 executing the program stored in the memory 102 shown in FIG. 3, for example.
  • a plurality of processors and a plurality of memories may cooperate to realize the above function.
  • some of the functions of the motion control unit 23 may be implemented as an electronic circuit, and the other parts may be implemented using the processor 101 and the memory 102.
  • the motion communication unit 21 may be configured to be realized by the processor 101 executing a program similarly stored in the memory 102. Further, the processor and memory for realizing the motion communication unit 21 may be the same as the processor and memory for realizing the motion control unit 23, or may be another processor and memory.
  • the servo amplifier 3 controls the operation of the servo motor 4, which is a controlled device that drives a load device (not shown), based on the drive command transmitted from the motion controller 2.
  • the servo amplifier 3 operates based on the servo amplifier program.
  • the servo amplifier program is a program for the servo amplifier 3 to control the operation of the servo motor 4 and the servo amplifier 3 as a whole.
  • the servo amplifier 3 is configured by combining a plurality of units.
  • the servo amplifier 3 is a first control device that controls the operation of the servo motor 4.
  • the motion controller 2 is a second control device that controls the servo amplifier 3 to control the operation of the servo motor 4.
  • the control system 100 includes, as the servo amplifier 3, a first servo amplifier 3A, a second servo amplifier 3B, and a third servo amplifier 3C.
  • the first servo amplifier 3A controls the operation of the first servomotor 4A based on the drive command transmitted from the motion controller 2.
  • the second servo amplifier 3B controls the operation of the second servo motor 4B based on the drive command transmitted from the motion controller 2.
  • the third servo amplifier 3C controls the operation of the third servomotor 4C based on the drive command transmitted from the motion controller 2.
  • the first servo amplifier 3A, the second servo amplifier 3B, and the third servo amplifier 3C will be referred to as the servo amplifier 3 if they are not distinguished from each other.
  • the servo amplifier 3 controls the operation of the servo motor 4 based on the drive command transmitted from the motion controller 2.
  • the servo amplifier 3 includes an amplifier communication unit 31, an amplifier storage unit 32, and an amplifier control unit 33.
  • the amplifier communication unit 31 communicates with the motion controller 2 via the communication line 7 to exchange information. Further, the amplifier communication unit 31 communicates with the servo motor 4 via the communication line 8 to send and receive information.
  • the amplifier storage unit 32 stores a servo amplifier program, data indicating the operation state of the servo motor 4, data on various states related to control of the servo amplifier 3, and the like.
  • the data of various states held inside the servo amplifier 3 includes analog data which is time-series data indicating the operating state of the servo motor 4, such as the position, speed and torque at which the servo motor 4 operates. ..
  • the data of various states held in the servo amplifier 3 include, for example, digital data of the control state of the servo amplifier 3 and semi-steady data.
  • the amplifier storage unit 32 a non-volatile storage device is used so that the stored information is not erased even when the power supply to the servo amplifier 3 is cut off.
  • the amplifier storage unit 32 is realized by, for example, a memory.
  • the amplifier control unit 33 controls the operation of the servo motor 4 and the servo amplifier 3 as a whole.
  • the amplifier control unit 33 causes the amplifier storage unit 32 to store the detection result, which is time-series data, transmitted from the sensor 5 of the servo motor 4.
  • the amplifier control unit 33 also has an alarm monitoring function.
  • the alarm monitoring function is a function of monitoring the detection result transmitted from the sensor 5 of the servo motor 4 and the change of the control state of the servo motor 4 in the servo amplifier 3, and detecting the establishment of a predetermined condition as an alarm.
  • the amplifier control unit 33 transmits an alarm occurrence notification, which is information indicating the occurrence of the alarm, to the motion control unit 23 of the motion controller 2.
  • the amplifier control unit 33 transfers the data stored in the amplifier storage unit 32 via the amplifier communication unit 31 as a response to the request from the data collection control unit 24. Control to transmit to the collection control unit 24 is performed.
  • the amplifier control unit 33 transmits the time series data stored in the amplifier storage unit 32 to the motion controller 2 by cyclic transmission, and transmits the semi-stationary data to the motion controller 2 by transient transmission when an alarm occurs.
  • the amplifier control unit 33 when the amplifier control unit 33 receives the time-series data request that requests transmission of the time-series data transmitted from the motion controller 2, the amplifier control unit 33 stores the time-series data stored in the amplifier storage unit 32 as a response to the time-series data request.
  • the sequence data is transmitted to the motion controller 2 by cyclic transmission.
  • the amplifier control unit 33 receives the semi-steady data request requesting the transmission of the semi-steady data transmitted from the motion controller 2 when the alarm occurs, the amplifier storage unit 32 responds to the semi-steady data request.
  • the semi-stationary data stored in is transmitted to the motion controller 2 by transient transmission.
  • the amplifier control unit 33 is realized, for example, as a processing circuit having the hardware configuration shown in FIG.
  • the amplifier control unit 33 is realized, for example, by the processor 101 executing the program stored in the memory 102 shown in FIG.
  • a plurality of processors and a plurality of memories may cooperate to realize the above function.
  • some of the functions of the amplifier control unit 33 may be implemented as an electronic circuit, and the other parts may be implemented using the processor 101 and the memory 102.
  • the amplifier communication unit 31 may be configured to be realized by the processor 101 executing a program similarly stored in the memory 102.
  • the processor and the memory for realizing the amplifier communication unit 31 may be the same as the processor and the memory for realizing the amplifier control unit 33, or may be different processors and memories.
  • the servo motor 4 is a device that supplies power to the shaft in the production system, and is a controlled device whose operation is controlled by the servo amplifier 3.
  • the axis is the axis of the equipment in the production system.
  • the control system 100 includes, as the servo motor 4, a first servo motor 4A, a second servo motor 4B, and a third servo motor 4C.
  • the first servo motor 4A, the second servo motor 4B, and the third servo motor 4C will be referred to as the servo motors 4 when they are not distinguished from each other.
  • the servo motor 4 is equipped with a sensor 5.
  • the sensor 5 detects the operating state of the servo motor 4.
  • the operation state detected by the sensor 5 corresponds to items such as position, speed, torque, and temperature.
  • the sensor 5 detects the operation state of the servo motor 4 at a predetermined cycle during the operation of the control system 100, and transmits the detection result to the servo amplifier 3.
  • the sensor 5 operates based on the sensor program.
  • the sensor program is a program for executing control of the entire sensor 5.
  • the control system 100 includes, as the sensor 5, a first sensor 5A, a second sensor 5B, and a third sensor 5C.
  • the first sensor 5A detects the operating state of the first servomotor 4A, and transmits the detection result to the first servo amplifier 3A via the communication line 9.
  • the second sensor 5B detects the operation state of the second servo motor 4B and transmits the detection result to the second servo amplifier 3B via the communication line 9.
  • the third sensor 5C detects the operating state of the third servomotor 4C and transmits the detection result to the third servo amplifier 3C via the communication line 9.
  • the first sensor 5A, the second sensor 5B, and the third sensor 5C will be referred to as the sensor 5 if they are not distinguished from each other.
  • the sensor 5 detects the operation state of the servo motor 4 and sends the detection result to the servo amplifier 3.
  • the sensor 5 includes a sensor communication unit 51, a detection unit 52, a sensor storage unit 53, and a sensor control unit 54.
  • the sensor communication unit 51 communicates with the servo amplifier 3 via the communication line 9 to send and receive information.
  • the detection unit 52 detects the operation state of the servo motor 4 at a predetermined cycle.
  • the sensor storage unit 53 stores information related to control of the sensor program and the sensor 5.
  • a non-volatile storage device is used so that the stored information is not erased even when the power supply to the sensor 5 is cut off.
  • the sensor storage unit 53 is realized by, for example, a memory.
  • the sensor control unit 54 controls the entire sensor 5. In addition, the sensor control unit 54 controls the transmission of the detection result detected by the detection unit 52 to the servo amplifier 3 at a predetermined cycle.
  • the sensor control unit 54 is realized, for example, as a processing circuit having the hardware configuration shown in FIG.
  • the sensor control unit 54 is realized by the processor 101 executing the program stored in the memory 102 shown in FIG. 3, for example.
  • a plurality of processors and a plurality of memories may cooperate to realize the above function.
  • some of the functions of the sensor control unit 54 may be implemented as an electronic circuit, and the other parts may be implemented using the processor 101 and the memory 102.
  • the sensor communication unit 51 may be configured to be realized by the processor 101 executing a program similarly stored in the memory 102. Further, the processor and memory for realizing the sensor communication unit 51 may be the same as the processor and memory for realizing the sensor control unit 54, or may be a different processor and memory.
  • the motion controller 2 serves as a master station
  • the servo amplifier 3 serves as a slave station for communication.
  • the master station can communicate with all slave stations by cyclic transmission and transient transmission.
  • FIG. 4 is a diagram illustrating a method of collecting time-series data by cyclic transmission in the motion controller 2 of the control system 100 according to the first exemplary embodiment of the present invention.
  • FIG. 5 is a diagram showing time-series data acquired by cyclic transmission from the servo amplifier 3 and stored in the motion storage unit 22 in the control system 100 according to the first embodiment of the present invention.
  • the motion control unit 23 of the motion controller 2 controls the first data collection process. That is, after the control system 100 is activated, in step S10, the data collection control unit 24 of the motion control unit 23 of the motion controller 2 that is the master station issues a time-series data request that requests transmission of time-series data to the motion communication. It transmits to the servo amplifier 3 which is a slave station via the unit 21. Upon receiving the time series data request transmitted from the motion communication unit 21, the amplifier communication unit 31 of the servo amplifier 3 transmits the received time series data request to the amplifier control unit 33 of the servo amplifier 3. Then, the amplifier control unit 33 receives the time-series data request transmitted from the amplifier communication unit 31.
  • step S ⁇ b>20 the amplifier control unit 33 transmits the time series data D ⁇ b>10, which is the time series data stored in the amplifier storage unit 32 of the servo amplifier 3, as a response to the time series data request via the amplifier communication unit 31.
  • the motion communication unit 21 of the motion controller 2 Upon receiving the time-series data D10 transmitted from the amplifier control unit 33, the motion communication unit 21 of the motion controller 2 transmits the time-series data D10 to the data collection control unit 24 of the motion control unit 23 of the motion controller 2. Then, the data collection control unit 24 of the motion control unit 23 receives the time-series data D10 transmitted from the amplifier control unit 33 and causes the motion storage unit 22 to store the time-series data D10. Thereby, the data collection control unit 24 can collect the time-series data D10 held by the servo amplifier 3.
  • the amplifier control unit 33 outputs the time-series data D20 in step S30, the time-series data D30 in step S40, the time-series data D40 in step S50, and the time-series data in step S60.
  • the series data D50 and the time series data D60 are transmitted to the motion controller 2 at a predetermined cycle.
  • the servo amplifier 3 sequentially transmits the time series data stored in the amplifier storage unit 32 and not transmitted to the motion controller 2 to the motion controller 2 in a predetermined cycle as a response to the time series data request. Send.
  • the collection of time-series data by the motion controller 2 using the cyclic transmission described above is continuously performed after the control system 100 is activated.
  • FIG. 6 is a diagram illustrating a method of collecting semi-stationary data by transient transmission in the motion controller 2 of the control system 100 according to the first exemplary embodiment of the present invention.
  • FIG. 7 is a diagram showing semi-stationary data acquired by the transient transmission from the servo amplifier 3 and stored in the motion storage unit 22 in the control system 100 according to the first embodiment of the present invention.
  • the units constituting the motion controller 2 are exchanged at some point after the operation of the control system 100.
  • the amplifier control unit 33 of the servo amplifier 3 detects the alarm occurrence in step S110.
  • step S120 the amplifier control unit 33 transmits an alarm occurrence notification to the motion controller 2 that is the master station via the amplifier communication unit 31.
  • the motion communication unit 21 of the motion controller 2 receives the alarm occurrence notification sent from the amplifier control unit 33, and sends it to the motion control unit 23 of the motion controller 2.
  • step S130 the motion control unit 23 detects the alarm occurrence by receiving the alarm occurrence notification transmitted from the amplifier communication unit 31.
  • step S140 the data collection control unit 24 of the motion control unit 23 controls the second data collection process. That is, the data collection control unit 24 transmits a semi-steady data request that requests transmission of semi-steady data to the servo amplifier 3 that is a slave station via the motion communication unit 21.
  • the amplifier communication unit 31 of the servo amplifier 3 Upon receiving the semi-stationary data request transmitted from the motion communication unit 21, the amplifier communication unit 31 of the servo amplifier 3 transmits the received semi-steady data request to the amplifier control unit 33 of the servo amplifier 3. Then, the amplifier control unit 33 receives the semi-steady data request transmitted from the amplifier communication unit 31.
  • step S150 the amplifier control unit 33 outputs the latest semi-stationary data D110, which is the latest semi-stationary data stored in the amplifier storage unit 32 of the servo amplifier 3, as a response to the semi-stationary data request. It is transmitted to the motion controller 2 via the communication unit 31.
  • the motion communication unit 21 of the motion controller 2 transmits the latest semi-steady data D110 to the data collection control unit 24 of the motion control unit 23 of the motion controller 2.
  • the data collection control unit 24 of the motion control unit 23 receives the latest semi-stationary data D110 transmitted from the amplifier control unit 33 and causes the motion storage unit 22 to store the data. Thereby, the data collection control unit 24 can collect the latest semi-stationary data D110 which is the latest semi-stationary data held by the servo amplifier 3.
  • time-series data is collected separately by the above-mentioned cyclic transmission in parallel.
  • the steady data may be collected together with the semi-steady data in the second data collection process described above, or may be acquired at any timing after the control system 100 is started.
  • the motion controller 2 collects the time-series data stored in the amplifier storage unit 32 of the servo amplifier 3 and the latest semi-stationary data after the alarm is generated by performing the above-described second data collection processing. You can This makes it possible to identify the cause of the alarm after the alarm is generated, using the time-series data acquired from the servo amplifier 3 and the latest semi-stationary data after the alarm has been generated.
  • the motion controller 2 can collect the latest semi-stationary data efficiently by collecting the semi-stationary data from the servo amplifier 3 by transient transmission when an alarm occurs after the unit is replaced. it can. Further, even when the semi-stationary data is updated between the activation of the control system 100 and the alarm occurrence, the latest semi-stationary data can be collected.
  • the motion controller 2 and the servo amplifier 3 Since it is not necessary to periodically collect the semi-stationary data, compared with the case where all the data of the time series data and the semi-stationary data are collected by cyclic transmission, the motion controller 2 and the servo amplifier 3 The network traffic between them can be significantly reduced. Further, since it is possible to avoid the repeated collection of the same semi-steady data in the motion controller 2, it is possible to reduce the data capacity for analysis of the cause of the alarm and to effectively utilize the storage capacity of the motion storage unit 22. be able to.
  • the motion controller 2 can collect the latest semi-steady data, even when the unit configuring the motion controller 2 or the motion controller 2 itself is replaced, the number of alarm occurrences and the alarm occurrence after the control system 100 is activated. It is possible to reliably collect semi-steady data after the activation of the control system 100, including data such as history and replacement history of the unit of the servo amplifier 3.
  • after system startup does not mean startup by turning on/off the power of the control system 100, but means after the system is installed and first started, or after the data of the entire control system 100 is reset.
  • the same semi-stationary data in the motion controller 2 is collected. It is possible to avoid repetitive sampling and unnecessary occupation of the data capacity of the motion storage unit 22.
  • the semi-steady data used to analyze the cause of the alarm is the data when the system was started up when the system was installed, so the system start-up when the system was installed, such as the unit replacement history data before the alarm occurred. Since the updated data cannot be used after that, it becomes difficult to accurately analyze the cause of the alarm.
  • control system 100 can collect the semi-steady data that is the latest data of the control system when an alarm occurs while suppressing the traffic in the control system 100.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

This control system comprises: a device to be controlled; a first control device which controls an operation of the device to be controlled; and a second control device which can communicate with the first control device and which controls the first control device. The second control device comprises a data collection control unit (24) which controls: a first data collection process of collecting, periodically at predetermined periods from the first control device, first data which is obtained in relation to the control of the device to be controlled and which is retained by the first control device; and a second data collection process of collecting, aperiodically from the first control device, second data which is obtained in relation to the control of the device to be controlled, is retained by the first control device, and which changes aperiodically.

Description

制御システムControl system
 本発明は、アラーム要因解析に必要なデータを採取する機能を有する制御システムに関する。 The present invention relates to a control system having a function of collecting data necessary for alarm factor analysis.
 特許文献1には、数値制御装置を用いた制御システムにおいて、サーボアンプに保持される各種状態として、テーブルの動作の状態を示す時系列データである位置データがスケールからサーボアンプに送信されることが開示されている。上記の位置データの送信では、位置データを要求するタイミング信号がマスタ制御装置であるサーボアンプからスレーブ局であるスケールに対して一定周期で送信され、その後、タイミング信号のタイミングに従ってスレーブ局であるスケールからサーボアンプに定期的に位置データが送信されるサイクリック伝送が用いられている。 In Patent Document 1, in a control system using a numerical control device, position data, which is time-series data indicating a state of operation of a table, is transmitted from a scale to a servo amplifier as various states held in the servo amplifier. Is disclosed. In the above position data transmission, the timing signal requesting the position data is transmitted from the servo amplifier, which is the master control device, to the scale that is the slave station at a fixed cycle, and then the scale that is the slave station is in accordance with the timing of the timing signal. The cyclic transmission in which the position data is periodically transmitted from the servo amplifier to the servo amplifier is used.
 また、アラーム発生時におけるアラームの原因解析のためには、上記のような時系列データの他に、制御システムの起動後における、サーボアンプで検知されるアラーム発生回数、アラーム発生履歴、機器の交換履歴などの、サーボアンプに保持される各種の状態のデータであって不定期的に変化する制御システムのデータの最新データをマスタ制御装置で採取する必要がある。 In addition, in order to analyze the cause of the alarm when an alarm occurs, in addition to the above time-series data, the number of alarm occurrences detected by the servo amplifier after starting the control system, the alarm occurrence history, and device replacement It is necessary for the master control device to collect the latest data of the control system data, such as the history, which is held in the servo amplifier in various states and which changes irregularly.
特許第4376998号公報Japanese Patent No. 4376998
 上述した不定期的に変化するデータがサイクリック伝送で送信される場合には、最新データであっても同一のデータが送信される場合がある。このような同一のデータの繰り返しの送信をなくすことにより、制御システムにおけるトラフィックを抑制することが可能である。 If the above-mentioned data that changes irregularly is sent by cyclic transmission, the same data may be sent even if it is the latest data. By eliminating such repeated transmission of the same data, it is possible to suppress traffic in the control system.
 本発明は、上記に鑑みてなされたものであって、制御システムにおけるトラフィックを抑制しつつアラーム発生時に最新の制御システムのデータを採取可能な制御システムを得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a control system capable of collecting the latest control system data when an alarm occurs while suppressing traffic in the control system.
 上述した課題を解決し、目的を達成するために、本発明にかかる制御システムは、被制御装置と、被制御装置の動作を制御する第1の制御装置と、第1の制御装置と通信可能であり第1の制御装置を制御する第2の制御装置と、を備える。第2の制御装置は、被制御装置の制御において得られて第1の制御装置に保持される第1のデータを予め定められた周期で定期的に第1の制御装置から採取する第1データ採取処理と、被制御装置の制御において得られて第1の制御装置に保持される、不定期的に変化する第2のデータを不定期的に第1の制御装置から採取する第2データ採取処理と、を制御するデータ採取制御部を備える。 In order to solve the above-mentioned problems and achieve an object, a control system according to the present invention can communicate with a controlled device, a first control device that controls the operation of the controlled device, and the first control device. And a second control device for controlling the first control device. The second control device obtains the first data obtained in the control of the controlled device and is held in the first control device by periodically collecting the first data from the first control device at a predetermined cycle. Second data collection that collects irregularly changing second data, which is obtained in the collection processing and control of the controlled device and is held in the first control device, from the first control device at irregular intervals A data collection control unit for controlling the processing is provided.
 本発明にかかる制御システムは、制御システムにおけるトラフィックを抑制しつつアラーム発生時に最新の制御システムのデータを採取可能である、という効果を奏する。 The control system according to the present invention has an effect that the latest control system data can be collected when an alarm occurs while suppressing traffic in the control system.
本発明の実施の形態1にかかる制御システムの構成を示すブロック図Block diagram showing a configuration of a control system according to a first embodiment of the present invention 本発明の実施の形態1にかかる制御システムにおけるモーションコントローラとサーボアンプとセンサとの機能構成を示すブロック図1 is a block diagram showing a functional configuration of a motion controller, a servo amplifier, and a sensor in a control system according to a first embodiment of the present invention. 本発明の実施の形態1にかかる処理回路のハードウェア構成の一例を示す図1 is a diagram showing an example of a hardware configuration of a processing circuit according to a first embodiment of the present invention. 本発明の実施の形態1にかかる制御システムのモーションコントローラにおけるサイクリック伝送による時系列データの採取方法を説明する図The figure explaining the collection method of the time series data by cyclic transmission in the motion controller of the control system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる制御システムにおいてサーボアンプからサイクリック伝送により取得されてモーション記憶部に記憶された時系列データを示す図The figure which shows the time series data which were acquired by cyclic transmission from the servo amplifier in the control system concerning Embodiment 1 of this invention, and were memorize|stored in the motion memory|storage part. 本発明の実施の形態1にかかる制御システムのモーションコントローラにおけるトランジェント伝送による半定常的データの採取方法を説明する図The figure explaining the semi-steady-state data sampling method by transient transmission in the motion controller of the control system concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる制御システムにおいてサーボアンプからトランジェント伝送により取得されてモーション記憶部に記憶された半定常的データを示す図The figure which shows the semi-stationary data acquired by the transient transmission from the servo amplifier and stored in the motion storage unit in the control system according to the first embodiment of the present invention.
 以下に、本発明の実施の形態にかかる制御システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 The control system according to the embodiment of the present invention will be described below in detail with reference to the drawings. The present invention is not limited to this embodiment.
実施の形態1.
 図1は、本発明の実施の形態1にかかる制御システム100の構成を示すブロック図である。図2は、本発明の実施の形態1にかかる制御システム100におけるモーションコントローラ2とサーボアンプ3とセンサ5との機能構成を示すブロック図である。制御システム100は、ファクトリーオートメーション(Factory Automation:FA)システムである。FAシステムにおいては、「異常」のことを「アラーム」と称することが一般的であるため、本明細書においても「異常」を「アラーム」と表現する。したがって、本明細書中でのアラームの発生要因の解析とは、異常の発生原因を解析することを意味する。
Embodiment 1.
FIG. 1 is a block diagram showing a configuration of a control system 100 according to the first exemplary embodiment of the present invention. FIG. 2 is a block diagram showing a functional configuration of the motion controller 2, the servo amplifier 3, and the sensor 5 in the control system 100 according to the first embodiment of the present invention. The control system 100 is a factory automation (FA) system. In the FA system, "abnormal" is generally called "alarm", and therefore "abnormal" is also expressed as "alarm" in this specification. Therefore, the analysis of the cause of the alarm in this specification means to analyze the cause of the abnormality.
 制御システム100は、プログラマブルコントローラ1と、モーションコントローラ2と、サーボアンプ3と、センサ5を備えるサーボモータ4と、を備える。 The control system 100 includes a programmable controller 1, a motion controller 2, a servo amplifier 3, and a servo motor 4 including a sensor 5.
 プログラマブルコントローラ1は、モーションコントローラ2と通信線6により接続されており、モーションコントローラ2と有線通信可能である。なお、プログラマブルコントローラ1とモーションコントローラ2との通信は、無線通信であってもよい。 The programmable controller 1 is connected to the motion controller 2 via a communication line 6 and can perform wired communication with the motion controller 2. The communication between the programmable controller 1 and the motion controller 2 may be wireless communication.
 モーションコントローラ2は、サーボアンプ3と通信線7により接続されており、サーボアンプ3と有線通信可能である。なお、モーションコントローラ2とサーボアンプ3との通信は、無線通信であってもよい。 The motion controller 2 is connected to the servo amplifier 3 via the communication line 7, and can perform wired communication with the servo amplifier 3. The communication between the motion controller 2 and the servo amplifier 3 may be wireless communication.
 サーボアンプ3は、サーボモータ4と通信線8により接続されており、サーボモータ4と有線通信可能である。なお、サーボアンプ3とサーボモータ4との通信は、無線通信であってもよい。 The servo amplifier 3 is connected to the servo motor 4 by a communication line 8 and can communicate with the servo motor 4 by wire. The communication between the servo amplifier 3 and the servo motor 4 may be wireless communication.
 プログラマブルコントローラ1は、サーボモータ4の動作を制御するためにモーションコントローラ2を制御する。プログラマブルコントローラ1は、プログラマブルコントローラプログラムに基づいて動作する。プログラマブルコントローラプログラムは、プログラマブルコントローラ1がモーションコントローラ2を制御するために実行するプログラムであり、具体例は、ラダープログラムである。 The programmable controller 1 controls the motion controller 2 to control the operation of the servo motor 4. The programmable controller 1 operates based on a programmable controller program. The programmable controller program is a program executed by the programmable controller 1 to control the motion controller 2, and a specific example is a ladder program.
 プログラマブルコントローラ1は、プログラマブルコントローラプログラムに基づいてモーションコントローラ2にサーボモータ4の動作の位置決めの制御を指示する指令を送信する。 The programmable controller 1 sends a command to the motion controller 2 to control the positioning of the operation of the servo motor 4 based on the programmable controller program.
 モーションコントローラ2は、プログラマブルコントローラ1から送信される指令に基づいて、サーボアンプ3を制御するための駆動指令を生成してサーボアンプ3に送信し、サーボアンプ3を制御するコントローラである。モーションコントローラ2は、モーションコントローラプログラムに基づいて動作する。モーションコントローラプログラムは、サーボアンプ3の制御およびモーションコントローラ2全体の制御を実行するためのプログラムである。 The motion controller 2 is a controller that controls the servo amplifier 3 by generating a drive command for controlling the servo amplifier 3 based on the command transmitted from the programmable controller 1 and transmitting the drive command to the servo amplifier 3. The motion controller 2 operates based on the motion controller program. The motion controller program is a program for controlling the servo amplifier 3 and the motion controller 2 as a whole.
 モーションコントローラ2は、モーション通信部21と、モーション記憶部22と、モーション制御部23と、を有する。 The motion controller 2 has a motion communication unit 21, a motion storage unit 22, and a motion control unit 23.
 モーション通信部21は、通信線6を介してプログラマブルコントローラ1との間で通信を行って情報の送受信を行う。また、モーション通信部21は、通信線7を介してサーボアンプ3との間で通信を行って情報の送受信を行う。 The motion communication unit 21 communicates with the programmable controller 1 via the communication line 6 to send and receive information. The motion communication unit 21 also communicates with the servo amplifier 3 via the communication line 7 to transmit and receive information.
 モーション記憶部22は、モーションコントローラプログラム、モーションコントローラ2の制御に関わる情報、サーボアンプ3の内部に保持される各種の状態のデータを記憶する。サーボアンプ3の内部に保持される各種の状態のデータには、サーボモータ4が動作した位置、速度、トルク等の、サーボモータ4の動作の状態の時系列データであるアナログデータが例示される。また、サーボアンプ3の内部に保持される各種の状態のデータには、非常停止信号(emergency:EMG)、異常信号(alarm:ALM)、運転準備の信号であるサーボオンなどのサーボアンプ3における制御状態の半定常的データ、およびアラームの累積カウンタ値などのアラーム発生時の状態といった半定常的データが例示される。 The motion storage unit 22 stores a motion controller program, information related to control of the motion controller 2, and data of various states held inside the servo amplifier 3. Examples of data of various states held inside the servo amplifier 3 include analog data which is time-series data of the operating state of the servo motor 4, such as the position, speed and torque at which the servo motor 4 operates. .. In addition, the data of various states held inside the servo amplifier 3 include control in the servo amplifier 3 such as an emergency stop signal (emergency: EMG), an abnormal signal (alarm: ALM), and a servo-on which is a signal for operation preparation. The semi-steady data of the state and the semi-steady data such as the state at the time of alarm occurrence such as an alarm cumulative counter value are illustrated.
 時系列データは、サーボモータ4の制御において得られてサーボアンプ3の内部に保持される各種の状態のデータであり、時間の経過とともに変化していく現象を観測したデータである。時系列データは、サーボモータ4が動作した位置、速度、トルク等の、サーボモータ4の動作の状態を示すデータが例示される。 The time-series data is data of various states obtained in the control of the servo motor 4 and held inside the servo amplifier 3, and is data observing a phenomenon that changes with the passage of time. Examples of the time-series data include data indicating the operating state of the servo motor 4, such as the position, speed, and torque at which the servo motor 4 has operated.
 半定常的データは、サーボモータ4の制御において得られてサーボアンプ3の内部に保持される各種の状態のデータであり、不定期的に変化するデータである。半定常的データは、制御システム100においてモーションコントローラ2がサーボアンプ3から固定周期で読み出す必要のないデータである。半定常的データは、システム起動後における、EMG、ALM、運転準備の信号であるサーボオンなどの、サーボアンプ3における制御状態のデータが例示される。また、半定常的データは、アラーム発生履歴、アラーム発生回数を表すアラームの累積カウンタ値などのアラーム発生時の状態、サーボアンプ3のユニットの交換履歴といったデータが例示される。 The semi-stationary data is data of various states obtained in the control of the servo motor 4 and held inside the servo amplifier 3, and is data that changes irregularly. The semi-stationary data is data that the motion controller 2 does not need to read from the servo amplifier 3 in a fixed cycle in the control system 100. Examples of the semi-steady data include data on the control state of the servo amplifier 3 such as EMG, ALM, and servo-on which is a signal for operation preparation after system startup. The semi-steady data is exemplified by data such as an alarm occurrence history, a state at the time of alarm occurrence such as an alarm cumulative counter value indicating the number of alarm occurrences, and a replacement history of a unit of the servo amplifier 3.
 定常データは、サーボアンプ3の内部に保持される各種の状態のデータであり、時間の経過とともに変化しないデータである。 The steady data is data of various states held inside the servo amplifier 3 and is data that does not change over time.
 モーション記憶部22としては、モーションコントローラ2への通電が断電された場合でも、記憶された情報が消去されないように、不揮発性の記憶装置が使用される。モーション記憶部22は、例えばメモリによって実現される。 As the motion storage unit 22, a non-volatile storage device is used so that the stored information is not erased even when the power supply to the motion controller 2 is cut off. The motion storage unit 22 is realized by, for example, a memory.
 モーション制御部23は、サーボアンプ3の制御およびモーションコントローラ2全体の制御を行う。また、モーション制御部23は、上述したサーボアンプ3の内部に保持される各種の状態のデータをサーボアンプ3から採取してモーション記憶部22に記憶させるドライブレコーダ機能を有するデータ採取制御部24を備える。 The motion control unit 23 controls the servo amplifier 3 and the motion controller 2 as a whole. Further, the motion control unit 23 includes a data collection control unit 24 having a drive recorder function that collects data of various states held inside the servo amplifier 3 from the servo amplifier 3 and stores the data in the motion storage unit 22. Prepare
 データ採取制御部24は、サーボアンプ3に保持される時系列データを予め定められた周期で定期的にサーボアンプ3から採取する第1データ採取処理と、サーボアンプ3に保持される半定常的データを不定期的にサーボアンプ3から採取する第2データ採取処理と、を制御する。サーボアンプ3に保持される時系列データは、第1データ採取処理においてサーボアンプ3から採取される第1のデータである。サーボアンプ3に保持される半定常的データは、第1のデータと異なるデータであって、第2データ採取処理においてサーボアンプ3から採取される第2のデータである。第1データ採取処理は、サイクリック伝送により行われる。第2データ採取処理は、トランジェント伝送により行われる。第2データ採取処理は、固定の周期では行われず、アラーム発生時にのみ一時的に行われる。すなわち、データ採取制御部24は、サーボアンプ3からアラーム発生の通知を受信した場合に第2データ採取処理を行う。 The data sampling control unit 24 performs a first data sampling process of periodically sampling the time-series data stored in the servo amplifier 3 from the servo amplifier 3 at a predetermined cycle, and a semi-steady-state data stored in the servo amplifier 3. The second data collection process for collecting data from the servo amplifier 3 irregularly is controlled. The time-series data stored in the servo amplifier 3 is the first data collected from the servo amplifier 3 in the first data collection process. The semi-stationary data held in the servo amplifier 3 is different from the first data and is the second data collected from the servo amplifier 3 in the second data collecting process. The first data collection process is performed by cyclic transmission. The second data collection process is performed by transient transmission. The second data collection process is not performed in a fixed cycle, but is temporarily performed only when an alarm occurs. That is, the data collection control unit 24 performs the second data collection process when the alarm generation notification is received from the servo amplifier 3.
 また、データ採取制御部24は、第2データ採取処理においてサーボアンプ3から採取する半定常的データの種類を自由に設定および変更可能である。データ採取制御部24は、第2データ採取処理においてサーボアンプ3から採取する半定常的データの種類の情報がモーションコントローラ2の外部から書き込まれることにより、採取する半定常的データの種類を設定および変更する。 Further, the data collection control unit 24 can freely set and change the type of semi-steady data collected from the servo amplifier 3 in the second data collection process. The data sampling control unit 24 sets the type of semi-stationary data to be collected by writing information of the type of semi-stationary data to be collected from the servo amplifier 3 in the second data sampling process from outside the motion controller 2. change.
 また、モーション制御部23は、例えば、図3に示したハードウェア構成の処理回路として実現される。図3は、本発明の実施の形態1にかかる処理回路のハードウェア構成の一例を示す図である。モーション制御部23が図3に示す処理回路により実現される場合、モーション制御部23は、例えば、図3に示すメモリ102に記憶されたプログラムをプロセッサ101が実行することにより、実現される。また、複数のプロセッサおよび複数のメモリが連携して上記機能を実現してもよい。また、モーション制御部23の機能のうちの一部を電子回路として実装し、他の部分をプロセッサ101およびメモリ102を用いて実現するようにしてもよい。 Also, the motion control unit 23 is realized, for example, as a processing circuit having the hardware configuration shown in FIG. FIG. 3 is a diagram showing an example of a hardware configuration of the processing circuit according to the first exemplary embodiment of the present invention. When the motion control unit 23 is realized by the processing circuit shown in FIG. 3, the motion control unit 23 is realized by the processor 101 executing the program stored in the memory 102 shown in FIG. 3, for example. Further, a plurality of processors and a plurality of memories may cooperate to realize the above function. Further, some of the functions of the motion control unit 23 may be implemented as an electronic circuit, and the other parts may be implemented using the processor 101 and the memory 102.
 また、モーション通信部21を、同様にメモリ102に記憶されたプログラムをプロセッサ101が実行することにより、実現されるように構成してもよい。また、モーション通信部21を実現するためのプロセッサおよびメモリは、モーション制御部23を実現するプロセッサおよびメモリと同一であってもよいし、別のプロセッサおよびメモリであってもよい。 Also, the motion communication unit 21 may be configured to be realized by the processor 101 executing a program similarly stored in the memory 102. Further, the processor and memory for realizing the motion communication unit 21 may be the same as the processor and memory for realizing the motion control unit 23, or may be another processor and memory.
 サーボアンプ3は、モーションコントローラ2から送信される駆動指令に基づいて、不図示の負荷装置を駆動する被制御装置であるサーボモータ4の動作を制御する。サーボアンプ3は、サーボアンププログラムに基づいて動作する。サーボアンププログラムは、サーボアンプ3がサーボモータ4の動作の制御およびサーボアンプ3全体の制御を実行するためのプログラムである。サーボアンプ3は、複数のユニットが組み合わされて構成されている。サーボアンプ3は、サーボモータ4の動作を制御する第1の制御装置である。モーションコントローラ2は、サーボモータ4の動作を制御するためにサーボアンプ3を制御する第2の制御装置である。 The servo amplifier 3 controls the operation of the servo motor 4, which is a controlled device that drives a load device (not shown), based on the drive command transmitted from the motion controller 2. The servo amplifier 3 operates based on the servo amplifier program. The servo amplifier program is a program for the servo amplifier 3 to control the operation of the servo motor 4 and the servo amplifier 3 as a whole. The servo amplifier 3 is configured by combining a plurality of units. The servo amplifier 3 is a first control device that controls the operation of the servo motor 4. The motion controller 2 is a second control device that controls the servo amplifier 3 to control the operation of the servo motor 4.
 制御システム100は、サーボアンプ3として、第1サーボアンプ3Aと第2サーボアンプ3Bと第3サーボアンプ3Cとを備える。第1サーボアンプ3Aは、モーションコントローラ2から送信される駆動指令に基づいて、第1サーボモータ4Aの動作を制御する。第2サーボアンプ3Bは、モーションコントローラ2から送信される駆動指令に基づいて、第2サーボモータ4Bの動作を制御する。第3サーボアンプ3Cは、モーションコントローラ2から送信される駆動指令に基づいて、第3サーボモータ4Cの動作を制御する。なお、以下においては、第1サーボアンプ3Aと第2サーボアンプ3Bと第3サーボアンプ3Cとを区別しない場合には、サーボアンプ3と呼ぶ。 The control system 100 includes, as the servo amplifier 3, a first servo amplifier 3A, a second servo amplifier 3B, and a third servo amplifier 3C. The first servo amplifier 3A controls the operation of the first servomotor 4A based on the drive command transmitted from the motion controller 2. The second servo amplifier 3B controls the operation of the second servo motor 4B based on the drive command transmitted from the motion controller 2. The third servo amplifier 3C controls the operation of the third servomotor 4C based on the drive command transmitted from the motion controller 2. In the following description, the first servo amplifier 3A, the second servo amplifier 3B, and the third servo amplifier 3C will be referred to as the servo amplifier 3 if they are not distinguished from each other.
 サーボアンプ3は、モーションコントローラ2から送信される駆動指令に基づいて、サーボモータ4の動作を制御する。サーボアンプ3は、アンプ通信部31と、アンプ記憶部32と、アンプ制御部33と、を有する。 The servo amplifier 3 controls the operation of the servo motor 4 based on the drive command transmitted from the motion controller 2. The servo amplifier 3 includes an amplifier communication unit 31, an amplifier storage unit 32, and an amplifier control unit 33.
 アンプ通信部31は、通信線7を介してモーションコントローラ2との間で通信を行って情報の送受信を行う。また、アンプ通信部31は、通信線8を介してサーボモータ4との間で通信を行って情報の送受信を行う。 The amplifier communication unit 31 communicates with the motion controller 2 via the communication line 7 to exchange information. Further, the amplifier communication unit 31 communicates with the servo motor 4 via the communication line 8 to send and receive information.
 アンプ記憶部32は、サーボアンププログラム、サーボモータ4の動作の状態を示すデータ、サーボアンプ3の制御に関わる各種の状態のデータなどを記憶する。サーボアンプ3の内部に保持される各種の状態のデータには、たとえばサーボモータ4が動作した位置、速度、トルク等の、サーボモータ4の動作の状態を示す時系列データであるアナログデータがある。また、サーボアンプ3の内部に保持される各種の状態のデータには、たとえばサーボアンプ3における制御状態のデジタルデータ、および半定常的データがある。 The amplifier storage unit 32 stores a servo amplifier program, data indicating the operation state of the servo motor 4, data on various states related to control of the servo amplifier 3, and the like. The data of various states held inside the servo amplifier 3 includes analog data which is time-series data indicating the operating state of the servo motor 4, such as the position, speed and torque at which the servo motor 4 operates. .. The data of various states held in the servo amplifier 3 include, for example, digital data of the control state of the servo amplifier 3 and semi-steady data.
 アンプ記憶部32としては、サーボアンプ3への通電が断電された場合でも、記憶された情報が消去されないように、不揮発性の記憶装置が使用される。アンプ記憶部32は、例えばメモリによって実現される。 As the amplifier storage unit 32, a non-volatile storage device is used so that the stored information is not erased even when the power supply to the servo amplifier 3 is cut off. The amplifier storage unit 32 is realized by, for example, a memory.
 アンプ制御部33は、サーボモータ4の動作の制御およびサーボアンプ3全体の制御を行う。アンプ制御部33は、サーボモータ4のセンサ5から送信される、時系列データである検出結果をアンプ記憶部32に記憶させる。また、アンプ制御部33は、アラーム監視機能を備える。アラーム監視機能は、サーボモータ4のセンサ5から送信される検出結果およびサーボアンプ3におけるサーボモータ4の制御状態の変化を監視し、予め定めた条件の成立をアラームとして検知する機能である。アンプ制御部33は、アラームとして検知するとアラームの発生を示す情報であるアラーム発生通知をモーションコントローラ2のモーション制御部23に送信する。 The amplifier control unit 33 controls the operation of the servo motor 4 and the servo amplifier 3 as a whole. The amplifier control unit 33 causes the amplifier storage unit 32 to store the detection result, which is time-series data, transmitted from the sensor 5 of the servo motor 4. The amplifier control unit 33 also has an alarm monitoring function. The alarm monitoring function is a function of monitoring the detection result transmitted from the sensor 5 of the servo motor 4 and the change of the control state of the servo motor 4 in the servo amplifier 3, and detecting the establishment of a predetermined condition as an alarm. When detected as an alarm, the amplifier control unit 33 transmits an alarm occurrence notification, which is information indicating the occurrence of the alarm, to the motion control unit 23 of the motion controller 2.
 また、アンプ制御部33は、上述したドライブレコーダ機能の一部として、データ採取制御部24からの要求に対する応答として、アンプ記憶部32に記憶されているデータを、アンプ通信部31を介してデータ採取制御部24に送信する制御を行う。アンプ制御部33は、アンプ記憶部32に記憶されている時系列データをサイクリック伝送でモーションコントローラ2に送信し、半定常的データをアラーム発生時にトランジェント伝送でモーションコントローラ2に送信する。 Further, as a part of the drive recorder function described above, the amplifier control unit 33 transfers the data stored in the amplifier storage unit 32 via the amplifier communication unit 31 as a response to the request from the data collection control unit 24. Control to transmit to the collection control unit 24 is performed. The amplifier control unit 33 transmits the time series data stored in the amplifier storage unit 32 to the motion controller 2 by cyclic transmission, and transmits the semi-stationary data to the motion controller 2 by transient transmission when an alarm occurs.
 すなわち、アンプ制御部33は、モーションコントローラ2から送信された時系列データの送信を要求する時系列データ要求を受信すると、時系列データ要求への応答として、アンプ記憶部32に記憶されている時系列データをサイクリック伝送でモーションコントローラ2に送信する。また、アンプ制御部33は、アラーム発生時にモーションコントローラ2から送信された半定常的データの送信を要求する半定常的データ要求を受信すると、半定常的データ要求への応答として、アンプ記憶部32に記憶されている半定常的データをトランジェント伝送でモーションコントローラ2に送信する。 That is, when the amplifier control unit 33 receives the time-series data request that requests transmission of the time-series data transmitted from the motion controller 2, the amplifier control unit 33 stores the time-series data stored in the amplifier storage unit 32 as a response to the time-series data request. The sequence data is transmitted to the motion controller 2 by cyclic transmission. Further, when the amplifier control unit 33 receives the semi-steady data request requesting the transmission of the semi-steady data transmitted from the motion controller 2 when the alarm occurs, the amplifier storage unit 32 responds to the semi-steady data request. The semi-stationary data stored in is transmitted to the motion controller 2 by transient transmission.
 また、アンプ制御部33は、例えば、図3に示したハードウェア構成の処理回路として実現される。アンプ制御部33が図3に示す処理回路により実現される場合、アンプ制御部33は、例えば、図3に示すメモリ102に記憶されたプログラムをプロセッサ101が実行することにより、実現される。また、複数のプロセッサおよび複数のメモリが連携して上記機能を実現してもよい。また、アンプ制御部33の機能のうちの一部を電子回路として実装し、他の部分をプロセッサ101およびメモリ102を用いて実現するようにしてもよい。 Further, the amplifier control unit 33 is realized, for example, as a processing circuit having the hardware configuration shown in FIG. When the amplifier control unit 33 is realized by the processing circuit shown in FIG. 3, the amplifier control unit 33 is realized, for example, by the processor 101 executing the program stored in the memory 102 shown in FIG. Further, a plurality of processors and a plurality of memories may cooperate to realize the above function. Further, some of the functions of the amplifier control unit 33 may be implemented as an electronic circuit, and the other parts may be implemented using the processor 101 and the memory 102.
 また、アンプ通信部31を、同様にメモリ102に記憶されたプログラムをプロセッサ101が実行することにより、実現されるように構成してもよい。また、アンプ通信部31を実現するためのプロセッサおよびメモリは、アンプ制御部33を実現するプロセッサおよびメモリと同一であってもよいし、別のプロセッサおよびメモリであってもよい。 Also, the amplifier communication unit 31 may be configured to be realized by the processor 101 executing a program similarly stored in the memory 102. The processor and the memory for realizing the amplifier communication unit 31 may be the same as the processor and the memory for realizing the amplifier control unit 33, or may be different processors and memories.
 サーボモータ4は、生産システムにおける軸に動力を供給する装置であり、サーボアンプ3により動作が制御される被制御装置である。軸は、生産システムにおける機器の軸である。制御システム100は、サーボモータ4として、第1サーボモータ4Aと第2サーボモータ4Bと第3サーボモータ4Cとを備える。なお、以下においては、第1サーボモータ4Aと第2サーボモータ4Bと第3サーボモータ4Cとを区別しない場合には、サーボモータ4と呼ぶ。 The servo motor 4 is a device that supplies power to the shaft in the production system, and is a controlled device whose operation is controlled by the servo amplifier 3. The axis is the axis of the equipment in the production system. The control system 100 includes, as the servo motor 4, a first servo motor 4A, a second servo motor 4B, and a third servo motor 4C. In the following, the first servo motor 4A, the second servo motor 4B, and the third servo motor 4C will be referred to as the servo motors 4 when they are not distinguished from each other.
 サーボモータ4は、センサ5を備えている。センサ5は、サーボモータ4の動作の状態を検出する。センサ5が検出する動作の状態とは、位置、速度、トルク、温度といった項目が該当する。センサ5は、制御システム100の動作中、予め決められた周期でサーボモータ4の動作の状態を検出して、検出結果をサーボアンプ3に送信する。センサ5は、センサプログラムに基づいて動作する。センサプログラムは、センサ5全体の制御を実行するためのプログラムである。 The servo motor 4 is equipped with a sensor 5. The sensor 5 detects the operating state of the servo motor 4. The operation state detected by the sensor 5 corresponds to items such as position, speed, torque, and temperature. The sensor 5 detects the operation state of the servo motor 4 at a predetermined cycle during the operation of the control system 100, and transmits the detection result to the servo amplifier 3. The sensor 5 operates based on the sensor program. The sensor program is a program for executing control of the entire sensor 5.
 制御システム100は、センサ5として、第1センサ5Aと第2センサ5Bと第3センサ5Cとを備える。第1センサ5Aは、第1サーボモータ4Aの動作の状態を検出して、通信線9を介して検出結果を第1サーボアンプ3Aに送信する。第2センサ5Bは、第2サーボモータ4Bの動作の状態を検出して、通信線9を介して検出結果を第2サーボアンプ3Bに送信する。第3センサ5Cは、第3サーボモータ4Cの動作の状態を検出して、通信線9を介して検出結果を第3サーボアンプ3Cに送信する。なお、以下においては、第1センサ5Aと第2センサ5Bと第3センサ5Cとを区別しない場合には、センサ5と呼ぶ。 The control system 100 includes, as the sensor 5, a first sensor 5A, a second sensor 5B, and a third sensor 5C. The first sensor 5A detects the operating state of the first servomotor 4A, and transmits the detection result to the first servo amplifier 3A via the communication line 9. The second sensor 5B detects the operation state of the second servo motor 4B and transmits the detection result to the second servo amplifier 3B via the communication line 9. The third sensor 5C detects the operating state of the third servomotor 4C and transmits the detection result to the third servo amplifier 3C via the communication line 9. In the following, the first sensor 5A, the second sensor 5B, and the third sensor 5C will be referred to as the sensor 5 if they are not distinguished from each other.
 センサ5は、サーボモータ4の動作の状態を検出して、検出結果をサーボアンプ3に送信する。センサ5は、センサ通信部51と、検出部52と、センサ記憶部53と、センサ制御部54と、を有する。 The sensor 5 detects the operation state of the servo motor 4 and sends the detection result to the servo amplifier 3. The sensor 5 includes a sensor communication unit 51, a detection unit 52, a sensor storage unit 53, and a sensor control unit 54.
 センサ通信部51は、通信線9を介してサーボアンプ3との間で通信を行って情報の送受信を行う。 The sensor communication unit 51 communicates with the servo amplifier 3 via the communication line 9 to send and receive information.
 検出部52は、サーボモータ4の動作の状態を予め決められた周期で検出する。 The detection unit 52 detects the operation state of the servo motor 4 at a predetermined cycle.
 センサ記憶部53は、センサプログラムおよびセンサ5の制御に関わる情報を記憶する。センサ記憶部53としては、センサ5への通電が断電された場合でも、記憶された情報が消去されないように、不揮発性の記憶装置が使用される。センサ記憶部53は、例えばメモリによって実現される。 The sensor storage unit 53 stores information related to control of the sensor program and the sensor 5. As the sensor storage unit 53, a non-volatile storage device is used so that the stored information is not erased even when the power supply to the sensor 5 is cut off. The sensor storage unit 53 is realized by, for example, a memory.
 センサ制御部54は、センサ5全体の制御を行う。また、センサ制御部54は、検出部52で検出された検出結果を予め決められた周期でサーボアンプ3に送信する制御を行う。 The sensor control unit 54 controls the entire sensor 5. In addition, the sensor control unit 54 controls the transmission of the detection result detected by the detection unit 52 to the servo amplifier 3 at a predetermined cycle.
 また、センサ制御部54は、例えば、図3に示したハードウェア構成の処理回路として実現される。センサ制御部54が図3に示す処理回路により実現される場合、センサ制御部54は、例えば、図3に示すメモリ102に記憶されたプログラムをプロセッサ101が実行することにより、実現される。また、複数のプロセッサおよび複数のメモリが連携して上記機能を実現してもよい。また、センサ制御部54の機能のうちの一部を電子回路として実装し、他の部分をプロセッサ101およびメモリ102を用いて実現するようにしてもよい。 Further, the sensor control unit 54 is realized, for example, as a processing circuit having the hardware configuration shown in FIG. When the sensor control unit 54 is realized by the processing circuit shown in FIG. 3, the sensor control unit 54 is realized by the processor 101 executing the program stored in the memory 102 shown in FIG. 3, for example. Further, a plurality of processors and a plurality of memories may cooperate to realize the above function. Further, some of the functions of the sensor control unit 54 may be implemented as an electronic circuit, and the other parts may be implemented using the processor 101 and the memory 102.
 また、センサ通信部51を、同様にメモリ102に記憶されたプログラムをプロセッサ101が実行することにより、実現されるように構成してもよい。また、センサ通信部51を実現するためのプロセッサおよびメモリは、センサ制御部54を実現するプロセッサおよびメモリと同一であってもよいし、別のプロセッサおよびメモリであってもよい。 Further, the sensor communication unit 51 may be configured to be realized by the processor 101 executing a program similarly stored in the memory 102. Further, the processor and memory for realizing the sensor communication unit 51 may be the same as the processor and memory for realizing the sensor control unit 54, or may be a different processor and memory.
 上記の構成を有する制御システム100においては、モーションコントローラ2がマスタ局とされ、サーボアンプ3がスレーブ局とされて、通信を行うことができる。マスタ局は、全てのスレーブ局とサイクリック伝送による通信およびトランジェント伝送による通信を行うことができる。 In the control system 100 having the above configuration, the motion controller 2 serves as a master station, and the servo amplifier 3 serves as a slave station for communication. The master station can communicate with all slave stations by cyclic transmission and transient transmission.
 図4は、本発明の実施の形態1にかかる制御システム100のモーションコントローラ2におけるサイクリック伝送による時系列データの採取方法を説明する図である。図5は、本発明の実施の形態1にかかる制御システム100においてサーボアンプ3からサイクリック伝送により取得されてモーション記憶部22に記憶された時系列データを示す図である。 FIG. 4 is a diagram illustrating a method of collecting time-series data by cyclic transmission in the motion controller 2 of the control system 100 according to the first exemplary embodiment of the present invention. FIG. 5 is a diagram showing time-series data acquired by cyclic transmission from the servo amplifier 3 and stored in the motion storage unit 22 in the control system 100 according to the first embodiment of the present invention.
 時系列データの採取においては、モーションコントローラ2のモーション制御部23が、第1データ採取処理の制御を行う。すなわち、制御システム100の起動後において、ステップS10において、マスタ局であるモーションコントローラ2のモーション制御部23のデータ採取制御部24が、時系列データの送信を要求する時系列データ要求を、モーション通信部21を介してスレーブ局であるサーボアンプ3に送信する。サーボアンプ3のアンプ通信部31は、モーション通信部21から送信された時系列データ要求を受信すると、受信した時系列データ要求をサーボアンプ3のアンプ制御部33に送信する。そして、アンプ制御部33は、アンプ通信部31から送信された時系列データ要求を受信する。 When collecting time series data, the motion control unit 23 of the motion controller 2 controls the first data collection process. That is, after the control system 100 is activated, in step S10, the data collection control unit 24 of the motion control unit 23 of the motion controller 2 that is the master station issues a time-series data request that requests transmission of time-series data to the motion communication. It transmits to the servo amplifier 3 which is a slave station via the unit 21. Upon receiving the time series data request transmitted from the motion communication unit 21, the amplifier communication unit 31 of the servo amplifier 3 transmits the received time series data request to the amplifier control unit 33 of the servo amplifier 3. Then, the amplifier control unit 33 receives the time-series data request transmitted from the amplifier communication unit 31.
 ステップS20において、アンプ制御部33は、時系列データ要求の応答として、サーボアンプ3のアンプ記憶部32に記憶されている時系列データである時系列データD10を、アンプ通信部31を介してモーションコントローラ2に送信する。モーションコントローラ2のモーション通信部21は、アンプ制御部33から送信された時系列データD10を受信すると、モーションコントローラ2のモーション制御部23のデータ採取制御部24に送信する。そして、モーション制御部23のデータ採取制御部24は、アンプ制御部33から送信された時系列データD10を受信して、モーション記憶部22に記憶させる。これにより、データ採取制御部24は、サーボアンプ3が保持する時系列データD10を採取することができる。 In step S<b>20, the amplifier control unit 33 transmits the time series data D<b>10, which is the time series data stored in the amplifier storage unit 32 of the servo amplifier 3, as a response to the time series data request via the amplifier communication unit 31. Send to controller 2. Upon receiving the time-series data D10 transmitted from the amplifier control unit 33, the motion communication unit 21 of the motion controller 2 transmits the time-series data D10 to the data collection control unit 24 of the motion control unit 23 of the motion controller 2. Then, the data collection control unit 24 of the motion control unit 23 receives the time-series data D10 transmitted from the amplifier control unit 33 and causes the motion storage unit 22 to store the time-series data D10. Thereby, the data collection control unit 24 can collect the time-series data D10 held by the servo amplifier 3.
 その後、アンプ制御部33は、時系列データ要求の応答として、ステップS30において、時系列データD20を、ステップS40において時系列データD30を、ステップS50において、時系列データD40を、ステップS60において、時系列データD50を、ステップS70において、時系列データD60を、予め決められた周期でモーションコントローラ2に送信する。これ以降も、サーボアンプ3は、時系列データ要求の応答として、アンプ記憶部32に記憶されておりモーションコントローラ2に送信されてない時系列データを順次、予め決められた周期でモーションコントローラ2に送信する。 Thereafter, as a response to the time-series data request, the amplifier control unit 33 outputs the time-series data D20 in step S30, the time-series data D30 in step S40, the time-series data D40 in step S50, and the time-series data in step S60. In step S70, the series data D50 and the time series data D60 are transmitted to the motion controller 2 at a predetermined cycle. After that, the servo amplifier 3 sequentially transmits the time series data stored in the amplifier storage unit 32 and not transmitted to the motion controller 2 to the motion controller 2 in a predetermined cycle as a response to the time series data request. Send.
 上述したサイクリック伝送を用いたモーションコントローラ2による時系列データの採取は、制御システム100の起動後において継続的に行われる。 The collection of time-series data by the motion controller 2 using the cyclic transmission described above is continuously performed after the control system 100 is activated.
 図6は、本発明の実施の形態1にかかる制御システム100のモーションコントローラ2におけるトランジェント伝送による半定常的データの採取方法を説明する図である。図7は、本発明の実施の形態1にかかる制御システム100においてサーボアンプ3からトランジェント伝送により取得されてモーション記憶部22に記憶された半定常的データを示す図である。ここでは、制御システム100の稼働後におけるある時点で、モーションコントローラ2を構成するユニットの交換が行われているものとする。 FIG. 6 is a diagram illustrating a method of collecting semi-stationary data by transient transmission in the motion controller 2 of the control system 100 according to the first exemplary embodiment of the present invention. FIG. 7 is a diagram showing semi-stationary data acquired by the transient transmission from the servo amplifier 3 and stored in the motion storage unit 22 in the control system 100 according to the first embodiment of the present invention. Here, it is assumed that the units constituting the motion controller 2 are exchanged at some point after the operation of the control system 100.
 モーションコントローラ2を構成するユニットの交換後、ステップS110において、サーボアンプ3のアンプ制御部33がアラーム発生を検知する。 After the replacement of the units constituting the motion controller 2, the amplifier control unit 33 of the servo amplifier 3 detects the alarm occurrence in step S110.
 つぎに、ステップS120において、アンプ制御部33は、アラーム発生通知をマスタ局であるモーションコントローラ2にアンプ通信部31を介して送信する。モーションコントローラ2のモーション通信部21は、アンプ制御部33から送信されたアラーム発生通知を受信し、モーションコントローラ2のモーション制御部23に送信する。 Next, in step S120, the amplifier control unit 33 transmits an alarm occurrence notification to the motion controller 2 that is the master station via the amplifier communication unit 31. The motion communication unit 21 of the motion controller 2 receives the alarm occurrence notification sent from the amplifier control unit 33, and sends it to the motion control unit 23 of the motion controller 2.
 ステップS130において、モーション制御部23は、アンプ通信部31から送信されたアラーム発生通知を受信することで、アラームの発生を検知する。 In step S130, the motion control unit 23 detects the alarm occurrence by receiving the alarm occurrence notification transmitted from the amplifier communication unit 31.
 ステップS140において、モーション制御部23のデータ採取制御部24は、第2データ採取処理の制御を行う。すなわち、データ採取制御部24は、半定常的データの送信を要求する半定常的データ要求を、モーション通信部21を介してスレーブ局であるサーボアンプ3に送信する。サーボアンプ3のアンプ通信部31は、モーション通信部21から送信された半定常的データ要求を受信すると、受信した半定常的データ要求をサーボアンプ3のアンプ制御部33に送信する。そして、アンプ制御部33は、アンプ通信部31から送信された半定常的データ要求を受信する。 In step S140, the data collection control unit 24 of the motion control unit 23 controls the second data collection process. That is, the data collection control unit 24 transmits a semi-steady data request that requests transmission of semi-steady data to the servo amplifier 3 that is a slave station via the motion communication unit 21. Upon receiving the semi-stationary data request transmitted from the motion communication unit 21, the amplifier communication unit 31 of the servo amplifier 3 transmits the received semi-steady data request to the amplifier control unit 33 of the servo amplifier 3. Then, the amplifier control unit 33 receives the semi-steady data request transmitted from the amplifier communication unit 31.
 ステップS150において、アンプ制御部33は、半定常的データ要求の応答として、サーボアンプ3のアンプ記憶部32に記憶されている最新の半定常的データである最新の半定常的データD110を、アンプ通信部31を介してモーションコントローラ2に送信する。モーションコントローラ2のモーション通信部21は、アンプ制御部33から送信された最新の半定常的データD110を受信すると、モーションコントローラ2のモーション制御部23のデータ採取制御部24に送信する。そして、モーション制御部23のデータ採取制御部24は、アンプ制御部33から送信された最新の半定常的データD110を受信して、モーション記憶部22に記憶させる。これにより、データ採取制御部24は、サーボアンプ3が保持する最新の半定常的データである最新の半定常的データD110を採取することができる。 In step S150, the amplifier control unit 33 outputs the latest semi-stationary data D110, which is the latest semi-stationary data stored in the amplifier storage unit 32 of the servo amplifier 3, as a response to the semi-stationary data request. It is transmitted to the motion controller 2 via the communication unit 31. Upon receiving the latest semi-stationary data D110 transmitted from the amplifier control unit 33, the motion communication unit 21 of the motion controller 2 transmits the latest semi-steady data D110 to the data collection control unit 24 of the motion control unit 23 of the motion controller 2. Then, the data collection control unit 24 of the motion control unit 23 receives the latest semi-stationary data D110 transmitted from the amplifier control unit 33 and causes the motion storage unit 22 to store the data. Thereby, the data collection control unit 24 can collect the latest semi-stationary data D110 which is the latest semi-stationary data held by the servo amplifier 3.
 また、トランジェント伝送による半定常的データの採取が行われる場合も、上述したサイクリック伝送による時系列データの採取が別途、並行して行われる。 Also, when semi-stationary data is collected by transient transmission, time-series data is collected separately by the above-mentioned cyclic transmission in parallel.
 また、定常データは、上記の第2データ採取処理において半定常的データと共に採取されてもよく、また制御システム100の起動後において任意のタイミングで取得されてもよい。 The steady data may be collected together with the semi-steady data in the second data collection process described above, or may be acquired at any timing after the control system 100 is started.
 上述した第2データ採取処理が行われることにより、モーションコントローラ2は、サーボアンプ3のアンプ記憶部32に記憶されている時系列データと、アラーム発生後の最新の半定常的データを採取することができる。これにより、サーボアンプ3から取得された時系列データとアラーム発生後の最新の半定常的データとを用いてアラームの発生要因をアラーム発生後に特定することが可能である。 The motion controller 2 collects the time-series data stored in the amplifier storage unit 32 of the servo amplifier 3 and the latest semi-stationary data after the alarm is generated by performing the above-described second data collection processing. You can This makes it possible to identify the cause of the alarm after the alarm is generated, using the time-series data acquired from the servo amplifier 3 and the latest semi-stationary data after the alarm has been generated.
 半定常的データを記憶しているモーションコントローラ2を構成する複数のユニットのうち1つもしくは複数のユニットが交換された場合には、交換前のユニットに記憶されていた半定常的データが残せない場合がある。 When one or a plurality of units that constitute the motion controller 2 storing semi-stationary data is replaced, the semi-stationary data stored in the unit before replacement cannot be left. There are cases.
 一方、モーションコントローラ2は、ユニットの交換が行われた後のアラームの発生時にトランジェント伝送によりサーボアンプ3から半定常的データを採取することで、最新の半定常的データを効率良く採取することができる。また、制御システム100の起動からアラーム発生までの間に半定常的データが更新された場合であっても、最新の半定常的データを採取できる。 On the other hand, the motion controller 2 can collect the latest semi-stationary data efficiently by collecting the semi-stationary data from the servo amplifier 3 by transient transmission when an alarm occurs after the unit is replaced. it can. Further, even when the semi-stationary data is updated between the activation of the control system 100 and the alarm occurrence, the latest semi-stationary data can be collected.
 また、半定常的データを定期的に採取する必要がないため、時系列データおよび半定常的データの全てのデータをサイクリック伝送で採取した場合と比べて、モーションコントローラ2とサーボアンプ3との間のネットワークのトラフィックを大幅に抑えることができる。また、モーションコントローラ2における同一の半定常的データの繰り返しの採取を避けられるため、アラームの発生要因の解析用のデータ容量を削減することができ、モーション記憶部22の記憶容量を有効に活用することができる。 Moreover, since it is not necessary to periodically collect the semi-stationary data, compared with the case where all the data of the time series data and the semi-stationary data are collected by cyclic transmission, the motion controller 2 and the servo amplifier 3 The network traffic between them can be significantly reduced. Further, since it is possible to avoid the repeated collection of the same semi-steady data in the motion controller 2, it is possible to reduce the data capacity for analysis of the cause of the alarm and to effectively utilize the storage capacity of the motion storage unit 22. be able to.
 また、モーションコントローラ2は、最新の半定常的データを採取できるため、モーションコントローラ2を構成するユニットまたはモーションコントローラ2自体が交換された場合でも、制御システム100の起動後のアラーム発生回数、アラーム発生履歴、サーボアンプ3のユニットの交換履歴といったデータを含む、制御システム100の起動以降の半定常的データを確実に採取することができる。 In addition, since the motion controller 2 can collect the latest semi-steady data, even when the unit configuring the motion controller 2 or the motion controller 2 itself is replaced, the number of alarm occurrences and the alarm occurrence after the control system 100 is activated. It is possible to reliably collect semi-steady data after the activation of the control system 100, including data such as history and replacement history of the unit of the servo amplifier 3.
 なお、上記におけるシステム起動後とは、制御システム100の電源のオンオフによる起動ではなく、システムが設置されて最初に始動した後、または制御システム100全体のデータがリセットされた後を意味する。 It should be noted that the above-mentioned "after system startup" does not mean startup by turning on/off the power of the control system 100, but means after the system is installed and first started, or after the data of the entire control system 100 is reset.
 また、上記においては、モーションコントローラ2に対して、サーボアンプ3とサーボモータ4とセンサ5との機器セットが3セット接続されている場合について示したが、モーションコントローラ2に対して接続される機器セットの数は限定されない。 Further, in the above, the case where three sets of device sets of the servo amplifier 3, the servo motor 4, and the sensor 5 are connected to the motion controller 2 has been described. The number of sets is not limited.
 一方、時系列データおよび半定常的データの全てのデータをサイクリック伝送で採取する場合には、同一の半定常的データを複数回において繰り返し採取することになり、モーションコントローラ2とサーボアンプ3との間のネットワークのトラフィックが多くなり、半定常的データが記憶されるモーション記憶部22のデータ容量が不必要に大きくなる。 On the other hand, when all the time-series data and the semi-stationary data are sampled by cyclic transmission, the same semi-stationary data is repeatedly sampled multiple times, and the motion controller 2 and the servo amplifier 3 are During this period, the network traffic increases and the data capacity of the motion storage unit 22 in which semi-stationary data is stored unnecessarily increases.
 また、システムが設置された際のシステム起動時に半定常的データのみをトランジェント伝送を用いて採取し、時系列データをサイクリック伝送で採取する場合には、モーションコントローラ2における同一の半定常的データの繰り返しの採取およびモーション記憶部22のデータ容量の不必要な占有を回避できる。しかしながら、アラームの発生要因の解析に用いる半定常的データはシステムが設置された際のシステム起動時のものとなるため、アラーム発生前のユニット交換履歴データ等、システムが設置された際のシステム起動以降に更新されたデータを利用できず、正確なアラームの発生要因の解析が難しくなる。 Also, when only semi-stationary data is collected using transient transmission at system startup when the system is installed and time-series data is collected by cyclic transmission, the same semi-stationary data in the motion controller 2 is collected. It is possible to avoid repetitive sampling and unnecessary occupation of the data capacity of the motion storage unit 22. However, the semi-steady data used to analyze the cause of the alarm is the data when the system was started up when the system was installed, so the system start-up when the system was installed, such as the unit replacement history data before the alarm occurred. Since the updated data cannot be used after that, it becomes difficult to accurately analyze the cause of the alarm.
 上述したように、本実施の形態1にかかる制御システム100は、制御システム100におけるトラフィックを抑制しつつアラーム発生時に最新の制御システムのデータである半定常的データを採取可能である。 As described above, the control system 100 according to the first embodiment can collect the semi-steady data that is the latest data of the control system when an alarm occurs while suppressing the traffic in the control system 100.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above embodiments show an example of the content of the present invention, and can be combined with other known techniques, and the configurations of the configurations are possible without departing from the gist of the present invention. It is also possible to omit or change parts.
 1 プログラマブルコントローラ、2 モーションコントローラ、3 サーボアンプ、3A 第1サーボアンプ、3B 第2サーボアンプ、3C 第3サーボアンプ、4 サーボモータ、4A 第1サーボモータ、4B 第2サーボモータ、4C 第3サーボモータ、5 センサ、5A 第1センサ、5B 第2センサ、5C 第3センサ、6,7,8,9 通信線、21 モーション通信部、22 モーション記憶部、23 モーション制御部、24 データ採取制御部、31 アンプ通信部、32 アンプ記憶部、33 アンプ制御部、51 センサ通信部、52 検出部、53 センサ記憶部、54 センサ制御部、100 制御システム、101 プロセッサ、102 メモリ。 1 programmable controller, 2 motion controller, 3 servo amplifier, 3A 1st servo amplifier, 3B 2nd servo amplifier, 3C 3rd servo amplifier, 4 servo motor, 4A 1st servo motor, 4B 2nd servo motor, 4C 3rd servo Motor, 5 sensor, 5A 1st sensor, 5B 2nd sensor, 5C 3rd sensor, 6,7,8,9 communication line, 21 motion communication section, 22 motion storage section, 23 motion control section, 24 data collection control section , 31 amplifier communication unit, 32 amplifier storage unit, 33 amplifier control unit, 51 sensor communication unit, 52 detection unit, 53 sensor storage unit, 54 sensor control unit, 100 control system, 101 processor, 102 memory.

Claims (4)

  1.  被制御装置と、
     前記被制御装置の動作を制御する第1の制御装置と、
     前記第1の制御装置と通信可能であり前記第1の制御装置を制御する第2の制御装置と、
     を備え、
     前記第2の制御装置は、
     前記被制御装置の制御において得られて前記第1の制御装置に保持される第1のデータを予め定められた周期で定期的に前記第1の制御装置から採取する第1データ採取処理と、前記被制御装置の制御において得られて前記第1の制御装置に保持される、不定期的に変化する第2のデータを不定期的に前記第1の制御装置から採取する第2データ採取処理と、を制御するデータ採取制御部を備えること、
     を特徴とする制御システム。
    Controlled device,
    A first control device for controlling the operation of the controlled device;
    A second control device capable of communicating with the first control device and controlling the first control device;
    Equipped with
    The second control device is
    A first data collection process for periodically collecting from the first control device the first data obtained in the control of the controlled device and held in the first control device at a predetermined cycle; A second data collection process that collects irregularly changing second data, which is obtained in the control of the controlled device and is held in the first control device, from the first control device at irregular intervals. And a data collection control unit for controlling
    Control system characterized by.
  2.  前記データ採取制御部は、前記第1の制御装置からアラーム発生の通知を受信した場合に前記第2データ採取処理の制御を行うこと、
     を特徴とする請求項1に記載の制御システム。
    The data collection control unit controls the second data collection processing when an alarm occurrence notification is received from the first control device;
    The control system according to claim 1, wherein:
  3.  前記データ採取制御部は、前記第2データ採取処理において採取する前記第2のデータの種類を設定可能であること、
     を特徴とする請求項1または2に記載の制御システム。
    The data collection control unit can set the type of the second data collected in the second data collection process,
    The control system according to claim 1, wherein:
  4.  前記第1データ採取処理において、前記第1のデータが、前記第1の制御装置からサイクリック伝送により前記第2の制御装置に送信され、
     前記第2データ採取処理において、前記第2のデータが、前記第1の制御装置からトランジェント伝送により前記第2の制御装置に送信されること、
     を特徴とする請求項1から3のいずれか1つに記載の制御システム。
    In the first data collection process, the first data is transmitted from the first control device to the second control device by cyclic transmission,
    In the second data collection process, the second data is transmitted from the first control device to the second control device by transient transmission.
    The control system according to any one of claims 1 to 3, wherein:
PCT/JP2018/048289 2018-12-27 2018-12-27 Control system WO2020136839A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019535394A JPWO2020136839A1 (en) 2018-12-27 2018-12-27 Control system
PCT/JP2018/048289 WO2020136839A1 (en) 2018-12-27 2018-12-27 Control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048289 WO2020136839A1 (en) 2018-12-27 2018-12-27 Control system

Publications (1)

Publication Number Publication Date
WO2020136839A1 true WO2020136839A1 (en) 2020-07-02

Family

ID=71126329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048289 WO2020136839A1 (en) 2018-12-27 2018-12-27 Control system

Country Status (2)

Country Link
JP (1) JPWO2020136839A1 (en)
WO (1) WO2020136839A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04195408A (en) * 1990-11-28 1992-07-15 Yaskawa Electric Corp Servo motor control method
JP2001075637A (en) * 1999-08-31 2001-03-23 Fuji Electric Co Ltd Maintenance system for servo amplifier
US20030009242A1 (en) * 2001-06-29 2003-01-09 Curt Bocchi Multiple axis modular controller and method of operating same
JP2008011672A (en) * 2006-06-30 2008-01-17 Mitsubishi Electric Corp Drive controller system and its operation method
WO2010131361A1 (en) * 2009-05-15 2010-11-18 三菱電機株式会社 Motor drive control device
JP2012113473A (en) * 2010-11-24 2012-06-14 Hitachi Industrial Equipment Systems Co Ltd Control system controller
WO2018087927A1 (en) * 2016-11-14 2018-05-17 三菱電機株式会社 Network system, communication device and communication method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008077221A (en) * 2006-09-19 2008-04-03 Denso Corp Vehicular control device
JP2008090670A (en) * 2006-10-03 2008-04-17 Yaskawa Electric Corp Motor control system and data acquisition method therefor
JP4946459B2 (en) * 2007-01-26 2012-06-06 三菱電機株式会社 Satellite-mounted control device
JP2008254484A (en) * 2007-04-02 2008-10-23 Auto Network Gijutsu Kenkyusho:Kk On-vehicle communication system
JP2009009246A (en) * 2007-06-26 2009-01-15 Panasonic Electric Works Co Ltd Apparatus management system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04195408A (en) * 1990-11-28 1992-07-15 Yaskawa Electric Corp Servo motor control method
JP2001075637A (en) * 1999-08-31 2001-03-23 Fuji Electric Co Ltd Maintenance system for servo amplifier
US20030009242A1 (en) * 2001-06-29 2003-01-09 Curt Bocchi Multiple axis modular controller and method of operating same
JP2008011672A (en) * 2006-06-30 2008-01-17 Mitsubishi Electric Corp Drive controller system and its operation method
WO2010131361A1 (en) * 2009-05-15 2010-11-18 三菱電機株式会社 Motor drive control device
JP2012113473A (en) * 2010-11-24 2012-06-14 Hitachi Industrial Equipment Systems Co Ltd Control system controller
WO2018087927A1 (en) * 2016-11-14 2018-05-17 三菱電機株式会社 Network system, communication device and communication method

Also Published As

Publication number Publication date
JPWO2020136839A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
US10474115B2 (en) Execution windows for an input module of an industrial controller
EP2287692B1 (en) Apparatus for diagnosis of abnormalities in a factory automation network
US20180343385A1 (en) Image capturing apparatus, system, and method
JP2016100026A (en) System for diagnosis of robot state
EP3324579B1 (en) Gateway device, method for communication, and communication system
EP2942680B1 (en) Process control system and process control method
JP5915627B2 (en) Process control system
US11782431B2 (en) Control device and non-transitory computer-readable recording medium recording program
US20130318260A1 (en) Data transfer device
JP6477555B2 (en) RELAY DEVICE, RELAY DEVICE CONTROL METHOD, CONTROL PROGRAM, AND RECORDING MEDIUM
JP2018084894A (en) Control system and control apparatus
JP6408277B2 (en) Data collection device and industrial network system
US20220050448A1 (en) Control apparatus and non-transitory computer readable medium
WO2020136839A1 (en) Control system
JP2023181157A (en) Apparatuses and methods for non-disruptive replacement of simplex i/o components
JP6322122B2 (en) Central monitoring and control system, server device, detection information creation method, and detection information creation program
EP3869745B1 (en) Production system, communication method, and program
US20210255598A1 (en) Production system, communication method, and information storage medium
JP6768496B2 (en) Wireless terminal device and wireless terminal system
JP2012185528A (en) State monitoring device for field apparatus
JP5844013B1 (en) Functional unit, analog input unit, programmable controller system
JP2005259077A (en) Slave and monitoring system
JP2017142719A (en) Numerical value controller having processing data one-time output function
JP2006146631A (en) Field apparatus management device and field apparatus management method
Schoeberlein et al. Data Management System for Drive-based Smart Data Services

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019535394

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944305

Country of ref document: EP

Kind code of ref document: A1