WO2020135662A1 - 光收发组件,信号光的管理方法及装置,pon系统,电子装置及存储介质 - Google Patents

光收发组件,信号光的管理方法及装置,pon系统,电子装置及存储介质 Download PDF

Info

Publication number
WO2020135662A1
WO2020135662A1 PCT/CN2019/128979 CN2019128979W WO2020135662A1 WO 2020135662 A1 WO2020135662 A1 WO 2020135662A1 CN 2019128979 W CN2019128979 W CN 2019128979W WO 2020135662 A1 WO2020135662 A1 WO 2020135662A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam splitter
etalon
signal light
optical
optical transceiver
Prior art date
Application number
PCT/CN2019/128979
Other languages
English (en)
French (fr)
Inventor
杨巍
杨波
黄新刚
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020135662A1 publication Critical patent/WO2020135662A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring

Definitions

  • the present disclosure relates to the communication field, for example, to an optical transceiver component, a signal light management method and device, a PON system, an electronic device, and a storage medium.
  • Wavelength division multiplexing passive optical network (Wavelength, Multiplexing, Passive, Optical, WDM, PON) is a good choice for large capacity and low latency.
  • WDM, PON Wavelength division multiplexing passive optical network
  • Each user in WDMPON can enjoy a wavelength channel independently, thus avoiding the delay caused by time division multiplexing.
  • modulation rate of a single wavelength continues to increase, each user's bandwidth can also continue to increase.
  • Figure 1 is a system block diagram of WDM PON used in the related art.
  • each optical network unit Optical Network Unit, ONU
  • optical line terminal optical line terminal
  • WDM Wavelength Division Multiplexer
  • WDM can be implemented using Arrayed Waveguide Grating (AWG).
  • AWG Arrayed Waveguide Grating
  • the upstream and downstream wavelengths are located at the center of the transmission windows of multiple ports in the AWG.
  • FIG. 2 is a schematic diagram of the upstream and downstream wavelengths in the transmission windows of multiple ports of the AWG in the related art. As shown in FIG.
  • Embodiments of the present invention provide an optical transceiver component, a signal light management method and device, a PON system, an electronic device, and a storage medium, so as to at least solve the problem in the related art that it is difficult to separate up and down light with very close wavelength intervals.
  • an optical transceiver assembly including: a transmitting device Tx, a receiving device Rx, a first beam splitter, and a first optical etalon Etalon, the first beam splitter is configured to respectively Connected to the optical network device, the Tx and the Rx, and configured to split the signal light from the Tx and the signal light from the optical network device; the first Etalon is located at Between the first beam splitter and the Rx, a signal beam from the optical network device is completely transmitted through the first beam splitter after being split by the first beam splitter, and is output to all Said Rx; the first beam splitter is a 50/50 power beamformer.
  • the optical transceiver component further includes: an isolator, located between the Tx and the first beam splitter, and configured to pass signal light from the optical network device through the first beam splitter The second split beam after splitting is isolated.
  • the optical transceiver component further includes: a second Etalon, located between the isolator and the first beam splitter; the second Etalon is configured to satisfy the pre-processing of the signal light from the Tx
  • the signal light with the wavelength energy threshold is fully transmitted and transmitted to the first beam splitter; and, the signal light from the Tx that does not satisfy the preset wavelength energy threshold is totally reflected, and Transfer to the isolator for isolation.
  • the optical transceiver assembly further includes: a second beam splitter connected to the first beam splitter, configured to split the signal light from the Tx through the first beam splitter
  • the third beam splitter performs beam splitting
  • the first photodetector PD1 is connected to the second beam splitter, and is configured to detect the fourth beam split after being split by the second beam splitter, and Generate the first detection result.
  • the optical transceiver component further includes: a third Etalon, connected to the second beam splitter, and configured to filter the fifth beam splitted by the second beam splitter.
  • the filtering method includes: performing at least one of transmission processing and reflection processing on the fifth beam splitter; a second photodetector PD2, connected to the third Etalon, and configured to obtain the filtered fifth beam Beam of light and generate a second detection result.
  • the optical transceiver component further includes: a processor configured to be connected to the Tx, the PD1, and the PD2, respectively, and configured to check the location based on the first detection result and the second detection result Adjust the temperature of Tx.
  • a processor configured to be connected to the Tx, the PD1, and the PD2, respectively, and configured to check the location based on the first detection result and the second detection result Adjust the temperature of Tx.
  • any one of the first Etalon, the second Etalon, and the third Etalon is two parallel disposed flat plates that have at least one of the ability to reflect and transmit the input optical signal.
  • a signal light management method is provided, which is applied to the above optical transceiver component.
  • the method includes: receiving the first detection result sent by the PD1, and determining the first The power P1 corresponding to the quarter beam; receiving the second detection result sent by the PD2, and determining the power P2 corresponding to the filtered fifth beam; comparing the power ratio P1/P2 with the third The reference ratio corresponding to the standard transmission wavelength of Etalon, and a comparison result is obtained; according to the comparison result, indication information for adjusting the temperature of the laser corresponding to the Tx is sent to the Tx.
  • a signal light management device which is applied to the above optical transceiver component, and the device includes: a memory and a processor, wherein the memory stores a computer program, the When the processor is configured to run the computer program, it includes: a first receiving module configured to receive the first detection result sent by the PD1 and determine the power P1 corresponding to the fourth beam splitter; the second receiving A module configured to receive the second detection result sent by the PD2 and determine the power P2 corresponding to the filtered fifth beam splitter; a comparison module configured to compare the power ratio P1/P2 with the third The reference ratio corresponding to the standard transmission wavelength of Etalon, and a comparison result is obtained; the indication module is configured to send indication information for adjusting the temperature of the laser corresponding to the Tx to the Tx according to the comparison result.
  • a PON system including: an optical line terminal OLT, an optical network unit ONU, and a wavelength division multiplexer WDM, wherein the OLT communicates with the WDM connection.
  • a PON system including: an optical line terminal OLT, an optical network unit ONU, and a wavelength division multiplexer WDM, wherein the ONU communicates with the WDM connection.
  • a storage medium in which a computer program is stored, and the computer program is configured to execute the steps in any of the above method embodiments when it is run.
  • an electronic device including a memory and a processor, the memory stores a computer program, the processor is configured to run the computer program to perform any of the above methods The steps in the examples.
  • FIG. 1 is a system block diagram of WDM PON used in the related art
  • FIG. 2 is a schematic diagram of the upstream and downstream wavelengths in the transmission windows of multiple ports of AWG in the related art
  • FIG. 3 is a structural diagram of an optical transceiver component according to an embodiment of the present invention.
  • 5 is a schematic diagram of a wavelength change of Etalon according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of wavelength change of an optical transceiver component according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram 1 of another optical transceiver component according to an embodiment of the present invention.
  • FIG. 8 is a structural diagram 2 of another optical transceiver component according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram 3 of another optical transceiver component according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram 4 of another optical transceiver component according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram 5 of another optical transceiver component according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram 6 of another optical transceiver component according to an embodiment of the present invention.
  • FIG. 13 is a waveform diagram of chirp management of a signal according to an embodiment of the present invention.
  • FIG. 14 is a waveform diagram of another type of chirp management according to an embodiment of the present invention.
  • optical transceiver component 15 is a structural diagram 7 of another optical transceiver component according to an embodiment of the present invention.
  • 16 is a structural diagram 8 of another optical transceiver component according to an embodiment of the present invention.
  • FIG. 17 is a flowchart of a signal light management method according to an embodiment of the present invention.
  • 19 is a schematic diagram of a negative slope locked wavelength according to an embodiment of the present invention.
  • 20 is a schematic diagram of an extreme value locked wavelength according to an embodiment of the present invention.
  • 21 is a structural block diagram of a signal light management device according to an embodiment of the present invention.
  • FIG. 22 is a structural diagram of a PON system according to an embodiment of the present invention.
  • FIG. 23 is a schematic diagram of upstream and downstream wavelengths located in transmission windows of multiple ports of an AWG according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of an optical transceiver component according to an embodiment of the present invention.
  • the optical transceiver component includes: a transmitting device (Transmitter, Tx) 32, a receiving device (Receiver, Rx) 34, a first beam splitter, and a first optical etalon Etalon.
  • the first beam splitter 36 is configured to be connected to the optical network device, the Tx and the Rx respectively, and is configured to split the signal light from the Tx 32 and the signal from the optical network device The light is split; the first beam splitter 36 is a 50/50 power beamformer.
  • the first Etalon 38 is located between the first beam splitter 36 and the Rx 34, and is configured to split the signal light from the optical network device through the first beam splitter 36 A partial beam of light is totally transmitted and output to the Rx 34.
  • the first beam splitter 36 is a 50/50 power beamer.
  • FIG. 4 is a working principle diagram of Etalon according to an embodiment of the present invention.
  • Etalon is a flat plate with excellent parallelism on both sides. It adopts the principle of Fabry-Perot interference. The incident light is reflected multiple times inside Etalon, and is finally divided into two parts: transmitted light and reflected light. Proper selection of thickness, refractive index and incident angle can adjust the transmission and reflection wavelength distribution of Etalon.
  • the transmittance T function can be derived: (optical path difference 2nl/cos ⁇ satisfies an integer multiple of wavelength, transmission The rate T is the largest, an integer multiple of half the wavelength, and the reflectivity R is the largest)
  • FIG. 5 is a schematic diagram of the wavelength change of Etalon according to an embodiment of the present invention. As shown in Figure 5:
  • the horizontal axis is the wavelength
  • the vertical axis is the transmittance or reflectance
  • the solid line is the transmittance T
  • the dotted line is the reflectance R.
  • Both the transmittance and the reflectivity change periodically with the wavelength, and when T reaches the maximum value , R reaches the minimum value, when R reaches the maximum value, T reaches the minimum value, and the corresponding wavelength when R reaches the maximum value is in the middle of the wavelengths corresponding to the two T maximum values, and the sum of T and R is always 1.
  • the T and R intervals can be used as required, for example, the peak-to-peak interval of T is 100 GHz, the peak-to-peak interval of R is 100 GHz, and the peak-to-peak interval of T and R is 50 GHz.
  • the emitted light and the received light with a frequency interval of 50 GHz can be well separated.
  • FIG. 6 is a schematic diagram of a wavelength change of an optical transceiver module according to an embodiment of the present invention. As shown in FIG. 6, the solid line is reflectance, the dotted line is transmittance, and the wavelength changes with the change of Etalon. In this embodiment, in order to ensure that crosstalk at other wavelengths can be eliminated, it is only necessary to select the Etalon with the largest T as the first Etalon according to the parameters in the formula listed above.
  • FIG. 7 is a structural diagram 1 of another optical transceiver component according to an embodiment of the present invention.
  • the first beam splitting light ⁇ d1 input by the first Etalon in FIG. 7 is the reflected light after the signal light from the optical network device is split by the first beam splitter.
  • FIG. 8 is a second structural diagram of another optical transceiver component according to an embodiment of the present invention. As shown in FIG. 8, the first beam splitting light ⁇ d1 input by the first Etalon in FIG. 8 is transmitted light after the signal light from the optical network device is split by the first beam splitter.
  • an optical transceiver component provided with an isolator is also provided.
  • FIG. 9 is a structural diagram 3 of another optical transceiver component according to an embodiment of the present invention. As shown in FIG. 9, on the basis of the optical transceiver component in FIG. 7, between the Tx 32 and the first beam splitter 36, an isolator 92 is further provided.
  • FIG. 10 is a structural diagram 4 of another optical transceiver component according to an embodiment of the present invention. As shown in FIG. 10, on the basis of the optical transceiver component in FIG. 8, between the Tx 32 and the first beam splitter 36, an isolator 1002 is also provided.
  • the isolator 92 is configured to isolate the transmitted light after the signal light from the optical network device is split by the first beam splitter 36.
  • the isolator 1002 is configured to isolate the reflected light after the signal light from the optical network device is split by the first beam splitter 36.
  • FIG. 11 is a structural diagram 5 of another optical transceiver component according to an embodiment of the present invention. As shown in FIG. 11, on the basis of the optical transceiver component in FIG. 9, a second Etalon 1102 is further provided between the first beam splitter 36 and the isolator 92.
  • the second Etalon 1102 is configured to fully transmit the signal light satisfying the preset wavelength energy threshold from the signal light from the Tx 32 and transmit it to the first beam splitter 36; and, to the signal from the Tx 32 The signal light that does not satisfy the preset wavelength energy threshold is totally reflected and transmitted to the isolator 92 for isolation.
  • FIG. 12 is a structural diagram 6 of another optical transceiver component according to an embodiment of the present invention. As shown in FIG. 12, on the basis of the optical transceiver component in FIG. 10, a second Etalon 1202 is also provided between the first beam splitter 36 and the isolator 1002.
  • the second Etalon 1202 is configured to fully transmit the signal light satisfying the preset wavelength energy threshold from the signal light from the Tx 32 and transmit it to the first beam splitter 36; and, to the Tx 32
  • the signal light of the signal light that does not meet the preset wavelength energy threshold is totally reflected and transmitted to the isolator 1002 for isolation.
  • the structures shown in FIG. 11 and FIG. 12 are mainly applicable to the chirp management of signal light.
  • 13 is a waveform diagram of a signal chirp management according to an embodiment of the present invention. As shown in Figure 13, the spectrum before modulation of the optical signal is a narrow single peak.
  • the second Etalon 1102 and the second Etalon 1202 play a role in filtering the emitted light from the TX 32.
  • 14 is a waveform diagram of another type of chirp management according to an embodiment of the present invention. As shown in FIG. 14, after the emitted light from Tx 32 passes through the isolator and passes through the second Etalon 1102 or the second Etalon 1202, the wavelength energy corresponding to the signal "1" after the optical signal modulation is transmitted through the second Etalon 1102 or the second Etalon 1202, The wavelength energy corresponding to "0" is reflected by the second Etalon 1102 or the second Etalon 1202.
  • the reflected light will enter the isolator 92 or the isolator 1002 for isolation.
  • the transmitted light signal spectrum becomes narrower, the long-distance transmission dispersion is reduced, and the extinction ratio is increased, which is beneficial to reception.
  • FIG. 15 is a structural diagram 7 of another optical transceiver component according to an embodiment of the present invention.
  • the optical transceiver assembly includes: a second beam splitter 1502, a first photodetector (photodetector 1, PD1) 1504, a third Etalon 1506, the first Two light detectors PD2 1508 and processor 1510.
  • the second beam splitter 1502 is connected to the first beam splitter 36, and is configured to split the reflected light after the signal light from Tx 32 is split by the first beam splitter 36.
  • PD1 1504 is connected to the second beam splitter 1502, and is configured to detect the reflected light beam split by the second beam splitter 1502 and generate a first detection result.
  • the third Etalon 1506 is connected to the second beam splitter 1502, and is configured to filter the transmitted light after being split by the second beam splitter 1502.
  • the filtering method includes: performing at least one of transmission processing and reflection processing on the transmitted light Species processing.
  • PD2 1508, connected to the third Etalon 1506, is set to obtain filtered transmitted light and generate a second detection result.
  • the processor 1510 is configured to be connected to Tx 32, PD1 1504, and PD2 1508 respectively, and is set to adjust the temperature of Tx32 according to the first detection result and the second detection result.
  • FIG. 16 is a structural diagram 8 of another optical transceiver component according to an embodiment of the present invention.
  • the optical transceiver component includes: a second beam splitter 1602, PD1 1604, a third Etalon 1606, PD2 1608, and a processor 1610.
  • the second beam splitter 1602 is connected to the first beam splitter 36, and is configured to split the transmitted light after the signal light from Tx 32 is split by the first beam splitter 36.
  • PD1 1604 is connected to the second beam splitter 1602, and is configured to detect the reflected light beam split by the second beam splitter 1602 to generate a first detection result.
  • the third Etalon 1606 is connected to the second beam splitter 1602, and is configured to filter the transmitted light split by the second beam splitter 1602.
  • the filtering method includes: performing at least one of transmission processing and reflection processing on the transmitted light Species processing.
  • PD2 1608, connected to the third Etalon 1606, is set to obtain filtered transmitted light and generate a second detection result.
  • the processor 1610 is respectively connected to Tx 32, PD1 1604, and PD2 1608, and is configured to adjust the temperature of Tx32 according to the first detection result and the second detection result.
  • a signal light management method is provided. 17 is a flowchart of a signal light management method according to an embodiment of the present invention. As shown in FIG. 17, the application to the optical transceiver module described in Embodiment 1 includes the following steps.
  • Step S1702 Receive the first detection result sent by the PD1, and determine the power P1 corresponding to the fourth beam splitter.
  • Step S1704 Receive the second detection result sent by the PD2, and determine the power P2 corresponding to the filtered fifth beam splitter.
  • step S1706 the power ratio P1/P2 is compared with the reference ratio corresponding to the standard transmission wavelength of the third Etalon, and a comparison result is obtained.
  • Step S1708 According to the comparison result, send instruction information for adjusting the temperature of the laser corresponding to the Tx to the Tx.
  • the method before comparing the power ratio P1/P2 with the reference ratio, the method further includes: acquiring a transmittance curve of the third Etalon and a standard transmission wavelength of the third Etalon; calculating the The corresponding slope of the standard transmission wavelength on the transmission curve.
  • the sending of indication information for adjusting the temperature of the laser to the Tx according to the comparison result includes: in response to determining the power ratio P1/ P2 is less than the reference ratio, sending first indication information for lowering the temperature of the laser to Tx; in response to determining that the power ratio P1/P2 is greater than the reference ratio, sending to Tx for raising The second indication information of the laser temperature.
  • the method further includes: acquiring temperature information corresponding to a plurality of specified temperatures sent by Tx; and calculating Temperature information corresponding to a specified temperature in one-to-one correspondence with multiple power ratios; compare the multiple power ratios and determine the target temperature corresponding to the smallest power ratio among the multiple power ratios; send to the Tx for adjustment Third indication information from the laser temperature to the target temperature.
  • FIG. 18 is a schematic diagram of a positive slope locked wavelength according to an embodiment of the present invention.
  • the solid line is the transmittance curve of the third Etalon
  • the broken line is the reflectance curve of the third Etalon.
  • the standard transmission wavelength ⁇ T is aligned with the position where the third Etalon transmittance curve rises, and the slope of the transmittance curve is a positive value.
  • the transmitted light passes through a 50/50 power beam splitter, 50% of the transmitted light is emitted, and 50% of the reflected light passes through a 50/50 power beam splitter. 50% of the light is directly received by PD2, and the power is P2, 50% The light is received by PD1 after being filtered by the third Etalon, and the power is P1.
  • PD1 and PD2 pass the optical power electrical signal to the calculation and control module, which controls the laser to adjust the wavelength of the emitted light.
  • the third Etalon reduces the transmission of the emitted light at the third Etalon, the reflection increases, the corresponding two powers P1 decrease, P2 remains unchanged, control and calculation
  • the power ratio calculated by the module decreases, and the control and calculation module controls the TEC to increase the laser temperature so that the ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T.
  • FIG. 19 is a schematic diagram of a wavelength locked by a negative slope according to an embodiment of the present invention.
  • the solid line is the transmittance curve of the third Etalon
  • the broken line is the reflectance curve of the third Etalon.
  • the standard transmission wavelength ⁇ T is aligned with the position where the third Etalon transmittance curve drops, and the slope of the transmittance curve at this time is a negative value.
  • the emitted light passes through a 50/50 power beam splitter, 50% of the transmitted light is emitted, and 50% of the reflected light passes through a 50/50 power beam splitter.
  • PD1 and PD2 pass the optical power electrical signal to the calculation and control module, which controls the laser to adjust the wavelength of the emitted light.
  • the third Etalon reduces the transmission of the emitted light at the third Etalon, the reflection increases, the corresponding two powers P1 decrease, P2 remains unchanged, control and calculation
  • the power ratio calculated by the module decreases, and the control and calculation module controls the TEC to raise the laser temperature so that the ratio returns to Ratio_Ref and the wavelength of the emitted light returns to ⁇ T.
  • FIG. 20 is a schematic diagram of an extreme value locked wavelength according to an embodiment of the present invention.
  • the solid line is the transmittance curve of the third Etalon
  • the broken line is the reflectance curve of the third Etalon.
  • the standard transmission wavelength ⁇ T is aligned with the position where the third Etalon transmittance curve drops, and the slope of the transmittance curve at this time is a negative value.
  • the transmitted light passes through a 50/50 power beam splitter, 50% of the reflected light is emitted, and 50% of the transmitted light passes through a 50/50 power beam splitter. 50% of the light is directly received by PD2, and the power is P2, 50% The light is received by PD1 after being filtered by the third Etalon, and the power is P1.
  • PD1 and PD2 pass the optical power electrical signal to the calculation and control module, which controls the laser to adjust the wavelength of the emitted light.
  • the control and calculation module needs to control the TEC, adjust the laser temperature, try different temperature adjustment directions, measure the power ratio in real time, and find the minimum value of the power ratio, that is, It is the standard emission wavelength.
  • the method according to the above embodiments can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware, but in many cases the former is Optional implementation.
  • the technical solution of the present disclosure can be embodied in the form of a software product in essence or part that contributes to related technologies, and the computer software product is stored in a storage medium (such as read-only memory (Read-Only Memory) , ROM)/Random Access Memory (RAM), magnetic disks, and optical disks, including several instructions to enable a terminal device (which may be a mobile phone, computer, server, or network device, etc.) to execute the present disclosure The method described in each embodiment.
  • a storage medium such as read-only memory (Read-Only Memory) , ROM)/Random Access Memory (RAM), magnetic disks, and optical disks, including several instructions to enable a terminal device (which may be a mobile phone, computer, server, or network device, etc.) to execute the present disclosure
  • terminal device which may be a
  • a signal light management device is also provided.
  • the device is used to implement the above-mentioned embodiments and optional implementation manners, and those that have already been described will not be repeated.
  • the term "module" may realize a combination of at least one of software and hardware of a predetermined function.
  • FIG. 21 is a structural block diagram of a signal light management device according to an embodiment of the present invention. As shown in FIG. 21, the device includes a first receiving module 2102, a second receiving module 2104, a comparing module 2106, and an indicating module 2108.
  • the first receiving module 2102 is configured to receive the first detection result sent by the PD1, and determine the power P1 corresponding to the fourth beam splitter.
  • the second receiving module 2104 is configured to receive the second detection result sent by the PD2, and determine the power P2 corresponding to the filtered fifth beam splitter.
  • the comparison module 2106 is configured to compare the power ratio of P1/P2 with the reference ratio corresponding to the standard transmission wavelength of the third Etalon, and obtain a comparison result.
  • the instruction module 2108 is configured to send instruction information for adjusting the laser temperature corresponding to the Tx to the Tx according to the comparison result.
  • FIG. 22 is a structural diagram of a PON system according to an embodiment of the present invention.
  • the optical network device described in this embodiment includes an OLT and/or an ONU. If the optical network equipment includes an OLT, multiple optical transceiver components are located in the same OLT, and the input signal is provided by the OLT. If the optical network device includes an ONU, each optical transceiver component is connected to a corresponding ONU, and a signal is input from the ONU. The two are connected via optical fiber through WDM.
  • FIG. 23 is a schematic diagram of the upstream and downstream wavelengths located in the transmission windows of multiple ports of the AWG according to an embodiment of the present invention.
  • the upstream and downstream wavelengths of each port of the AWG are within the same transmission window of the same FSR period of the AWG. It is assumed here
  • the interval between upstream and downstream wavelengths is ⁇ f/2, which is very close. It is difficult to separate them with a common combiner/demultiplexer.
  • Using the optical transceiver module of Embodiment 3 can separate them well.
  • the interval between the upstream channel and the downstream channel corresponding to each port of the AWG is ⁇ f, that is, the channel interval is ⁇ f. In this way, the total occupied frequency band resource is n ⁇ f, which is half less than that in FIG. 2.
  • An embodiment of the present disclosure also provides a storage medium in which a computer program is stored, and the computer program is set to execute the steps in any of the above method embodiments when it is run.
  • the above storage medium may be set to store a computer program for performing the following steps.
  • the foregoing storage medium may include, but is not limited to, a variety of media that can store computer programs, such as a USB flash drive, ROM, RAM, mobile hard disk, magnetic disk, or optical disk.
  • An embodiment of the present disclosure also provides an electronic device, including a memory and a processor, where the computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any of the foregoing method embodiments.
  • the processor may be the processor described in FIG. 11 or 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本文提供了一种光收发组件,信号光的管理方法及装置,PON系统,电子装置及存储介质。该光收发组件包括:发射装置Tx、接收装置Rx、第一分束器以及第一光学标准具Etalon,其中,所述第一分束器,配置为分别与光网络设备、所述Tx和所述Rx连接,设置为对来自所述Tx的信号光进行分束和所述光网络设备的信号光进行分束;所述第一Etalon,位于所述第一分束器和所述Rx之间,设置为对来自所述光网络设备的信号光经过所述第一分束器分束后的第一分束光进行全透射,并输出至所述Rx。

Description

光收发组件,信号光的管理方法及装置,PON系统,电子装置及存储介质
本申请要求在2018年12月29日提交中国专利局、申请号为201811643603.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,例如涉及一种光收发组件,信号光的管理方法及装置,PON系统,电子装置及存储介质。
背景技术
随着用户对带宽需求及时延要求的不断提高,以及5G承载所带来的对低时延的要求,接入领域需要提升容量和降低时延。波分复用无源光网络(Wavelength Division MultiplexingPassive Optical Network,WDM PON)是大容量低时延的一个好的选择。WDM PON中的每个用户可以独享一个波长信道,因此避免了时分复用带来的延时。并且随着单个波长调制速率的不断提升,每个用户带宽也可以不断增大。图1是相关技术中采用的WDM PON的一种系统框图。如图1所示,每个光网络单元(Optical Network Unit,ONU)与光线路终端(optical line terminal,OLT)上下行使用一对波长(λd,λu),不同的上下行波长经过波分复用器(Wavelength DivisionMultiplexer,WDM)合波,进入一根主干光纤内。WDM可以使用阵列波导光栅(Arrayed Waveguide Grating,AWG)实现。通常情况下,上下行波长都位于AWG多个端口透射窗口的中心位置。图2是相关技术中的位于AWG多个端口透射窗口的上下行波长的示意图。如图2所示,这里假设上下行分别有n个波长通道,每个波长通道间隔记为Δf。对于同一对上下行波长,它们通过同一个AWG端口,一个AWG端口能够通过的波长是周期性的,周期成为自由光谱范围(Free Spectral Range,FSR),因此上下行波长间隔为FSR。采用这种方式,总共占用的频带资源为2nΔf。WDM PON的波长对数n一般为32或更高,在波长资源如此紧缺的光通信领域,占用的波长资源太多,需要改进。因此,相关技术中存在波长间隔很近的上下行光难以进行分离的问题。
发明内容
本发明实施例提供了一种光收发组件,信号光的管理方法及装置,PON系统,电子装置及存储介质,以至少解决相关技术中难以将波长间隔很近的上下 行光进行分离的问题。
根据本公开的一个实施例,提供了一种光收发组件,包括:发射装置Tx、接收装置Rx、第一分束器以及第一光学标准具Etalon,所述第一分束器,配置为分别与光网络设备、所述Tx和所述Rx连接,设置为对来自所述Tx的信号光进行分束和对来自所述光网络设备的信号光进行分束;所述第一Etalon,位于所述第一分束器和所述Rx之间,设置为对来自所述光网络设备的信号光经过所述第一分束器分束后的第一分束光进行全透射,并输出至所述Rx;所述第一分束器为50/50功率波束器。
可选地,所述光收发组件还包括:隔离器,位于所述Tx和所述第一分束器之间,设置为对来自所述光网络设备的信号光经过所述第一分束器分束后的第二分束光进行隔离。
可选地,所述光收发组件还包括:第二Etalon,位于所述隔离器和所述第一分束器之间;所述第二Etalon设置为对来自所述Tx的信号光中满足预设波长能量阈值的信号光进行全透射,并传输至所述第一分束器;以及,对来自所述Tx的信号光中不满足所述预设波长能量阈值的信号光进行全反射,并传输至所述隔离器进行隔离。
可选地,所述光收发组件还包括:第二分束器,与所述第一分束器连接,设置为对来自所述Tx的信号光经过所述第一分束器分束后的第三分束光进行分束;第一光探测器PD1,与所述第二分束器连接,设置为对经过所述第二分束器分束后的第四分束光进行探测,并生成第一探测结果。
可选地,所述光收发组件还包括:第三Etalon,与所述第二分束器连接,设置为对经过所述第二分束器分束后的第五分束光进行滤波,所述滤波的方式包括:对所述第五分束光进行透射处理和反射处理中至少一种处理;第二光探测器PD2,与所述第三Etalon连接,设置为获取滤波后的第五分束光,并生成第二探测结果。
可选地,所述光收发组件还包括:处理器,配置为分别与所述Tx、所述PD1以及所述PD2连接,设置为根据所述第一探测结果和所述第二探测结果对所述Tx的温度进行调节。
可选地,所述第一Etalon、所述第二Etalon和所述第三Etalon中任一Etalon为具备对输入的光信号进行反射和透射能力中至少一种能力的两个平行设置的平板。
根据本公开的一个实施例,提供了一种信号光的管理方法,应用于上述的的光收发组件,所述方法包括:接收所述PD1发送的所述第一探测结果,并确定所述第四分束光对应的功率P1;接收所述PD2发送的所述第二探测结果,并确定所述滤波后的第五分束光对应的功率P2;比较功率比值P1/P2与所述第三Etalon的标准透射波长对应的参考比值,并得到比较结果;根据所述比较结果,向所述Tx发送用于调节所述Tx对应的激光器温度的指示信息。
根据本公开的一个实施例,提供了一种信号光的管理装置,应用于上述的光收发组件中,所述装置包括:存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序时包括:第一接收模块,设置为接收所述PD1发送的所述第一探测结果,并确定所述第四分束光对应的功率P1;第二接收模块,设置为接收所述PD2发送的所述第二探测结果,并确定所述滤波后的第五分束光对应的功率P2;比较模块,设置为比较功率比值P1/P2与所述第三Etalon的标准透射波长对应的参考比值,并得到比较结果;指示模块,设置为根据所述比较结果,向所述Tx发送用于调节所述Tx对应的激光器温度的指示信息。
根据本公开的又一个实施例,还提供了一种PON系统,包括:光线路终端OLT,光网络单元ONU以及波分复用器WDM,其中,所述OLT通过上述的光收发组件与所述WDM连接。
根据本公开的又一个实施例,还提供了一种PON系统,包括:光线路终端OLT,光网络单元ONU以及波分复用器WDM,其中,所述ONU通过上述的光收发组件与所述WDM连接。
根据本公开的又一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,所述计算机程序被设置为运行时执行上述任一方法实施例中的步骤。
根据本公开的又一个实施例,还提供了一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行上述任一方法实施例中的步骤。
附图说明
图1是相关技术中采用的WDM PON的一种系统框图;
图2是相关技术中的位于AWG多个端口透射窗口的上下行波长的示意图;
图3是根据本发明实施例的一种光收发组件的结构图;
图4是根据本发明实施例的一种Etalon的工作原理图;
图5是根据本发明实施例的一种Etalon的波长变化示意图;
图6是根据本发明实施例的光收发组件的波长变化示意图;
图7是根据本发明实施例的另一种光收发组件的结构图一;
图8是根据本发明实施例的另一种光收发组件的结构图二;
图9是根据本发明实施例的另一种光收发组件的结构图三;
图10是根据本发明实施例的另一种光收发组件的结构图四;
图11是根据本发明实施例的另一种光收发组件的结构图五;
图12是根据本发明实施例的另一种光收发组件的结构图六;
图13是根据本发明实施例的一种信号的啁啾管理的波形图;
图14是根据本发明实施例的另一种信号的啁啾管理的波形图;
图15是根据本发明实施例的另一种光收发组件的结构图七;
图16是根据本发明实施例的另一种光收发组件的结构图八;
图17是根据本发明实施例的一种信号光的管理方法的流程图;
图18是根据本发明实施例的一种正斜率锁定的波长示意图;
图19是根据本发明实施例的一种负斜率锁定的波长示意图;
图20是根据本发明实施例的一种极值锁定的波长示意图;
图21是根据本发明实施例的一种信号光的管理装置的结构框图;
图22是根据本发明实施例的一种PON系统的结构图;
图23是根据本发明实施例的位于AWG多个端口透射窗口的上下行波长的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种光收发组件。图3是根据本发明实施例的一种光收发组件的结构图。如图3所示,该光收发组件包括:发射装置(Transmitter, Tx)32、接收装置(Receiver,Rx)34、第一分束器以及第一光学标准具Etalon。
所述第一分束器36,配置为分别与光网络设备、所述Tx和所述Rx连接,设置为对来自所述Tx 32的信号光进行分束和对来自所述光网络设备的信号光进行分束;所述第一分束器36为50/50功率波束器。
所述第一Etalon 38,位于所述第一分束器36和所述Rx 34之间,设置为对来自所述光网络设备的信号光经过所述第一分束器36分束后的第一分束光进行全透射,并输出至所述Rx 34。
所述第一分束器36为50/50功率波束器。
一实施例中,图4是根据本发明实施例的一种Etalon的工作原理图。如图4所示,Etalon是一个两面平行度极好的平板,采用法布里-珀罗干涉原理,入射光在Etalon内部多次反射,最终被分为透射光和反射光两个部分。适当地选择厚度和折射率以及入射角,可以调节Etalon的透射及反射波长分布。
设Etalon厚度为l,折射率为n,两个平行平面反射率为R,光入射夹角为θ,可以推导出透过率T函数:(光程差2nl/cosθ满足波长的整数倍,透射率T最大,波长一半的整数倍,反射率R最大)
Figure PCTCN2019128979-appb-000001
其中:
Figure PCTCN2019128979-appb-000002
λ为入射波长,可以看出,Etalon的透射率随着波长呈周期性变化,因此Etalon可以看作是一个周期滤波器,图5是根据本发明实施例的一种Etalon的波长变化示意图。如图5所示:
图中横轴为波长,纵轴为透射率或反射率,实线为透射率T,虚线为反射率R,透射率和反射率均随着波长呈周期性变化,且当T达到最大值时,R达到最小值,R达到最大值时,T达到最小值,且R达到最大值时对应的波长在两个T最大值对应的波长的中间,T和R之和始终为1。通过合理选择Etalon参数和入射角度,可以使得T和R间隔达到使用所需,比如T的峰-峰间隔100GHz,R的峰-峰间隔100GHz,T和R的峰-峰间隔为50GHz,这样就可以很好地分开频率间隔为50GHz的发射光和接收光了。
因此,为了能够保证专用于透射第一反射光,通过合理的选择Etalon的参数l,n,R,同时保证入射的光线是正入射,即θ=0,以确保Etalon透射率最大值对准接收波长,从而消除其它波长的串扰。
图6是根据本发明实施例的光收发组件的波长变化示意图,如图6所示,实线为反射率,虚线为透射率,波长随着Etalon的变化而变化。在本实施例中,为了保证能够实现消除其它波长的串扰,只需要根据上述列出的公式中的参数选取T最大的Etalon作为第一Etalon。
图7是根据本发明实施例的另一种光收发组件的结构图一。如图7所示,图7中第一Etalon输入的第一分束光λd1是来自所述光网络设备的信号光经过所述第一分束器分束后的的反射光。
图8是根据本发明实施例的另一种光收发组件的结构图二。如图8所示,图8中第一Etalon输入的第一分束光λd1则是来自所述光网络设备的信号光经过所述第一分束器分束后的的透射光。
需要说明的是,图7和图8中光收发组件中多个器件中相同的器件的作用在原理上是相同的,只是根据不同的接收光进行相应地调整。同样适用于下面的附图和实施例当中。
通过本申请,可以解决波长间隔很近的上下行光难以进行分离的问题,达到了将波长间隔很近的上下行光进行分离,同时还能够实现消除干扰波长的串扰的效果。
可选地,为了防止来自光网络设备的接收光对Tx的干扰,在本实施例中,还提供了一种设置有隔离器的光收发组件。
图9是根据本发明实施例的另一种光收发组件的结构图三。如图9所示,在图7中的光收发组件的基础之上,在Tx 32与第一分束器36之间,还设置有隔离器92。
图10是根据本发明实施例的另一种光收发组件的结构图四。如图10所示,在图8中的光收发组件的基础之上,在Tx 32与第一分束器36之间,还设置有隔离器1002。
隔离器92,设置为将对来自所述光网络设备的信号光经过所述第一分束器36分束后的透射光进行隔离。
隔离器1002,设置为将对来自所述光网络设备的信号光经过所述第一分束器36分束后的反射光进行隔离。
通过上述图9和图10中的隔离器能够有效地防止下行光对Tx的干扰。图11是根据本发明实施例的另一种光收发组件的结构图五。如图11所示,在图9中的光收发组件的基础之上,在第一分束器36和隔离器92之间,还设置有隔第二Etalon 1102。
第二Etalon 1102,设置为对来自所述Tx 32的信号光中满足预设波长能量阈值的信号光进行全透射,并传输至所述第一分束器36;以及,对来自所述Tx32的信号光中不满足该预设波长能量阈值的信号光进行全反射,并传输至所述隔离器92进行隔离。
图12是根据本发明实施例的另一种光收发组件的结构图六。如图12所示,在图10中的光收发组件的基础之上,在第一分束器36和隔离器1002之间,还设置有第二Etalon 1202。
第二Etalon 1202,设置为对来自所述Tx 32的信号光中满足预设波长能量阈值的信号光进行全透射,并传输至所述第一分束器36;以及,对来自所述Tx 32的信号光中不满足该预设波长能量阈值的信号光进行全反射,并传输至所述隔离器1002进行隔离。一实施例中,图11和图12中所示的结构主要适用于信号光的啁啾管理当中。图13是根据本发明实施例的一种信号的啁啾管理的波形图。如图13所示,光信号调制前光谱为一个较窄的单峰,经过调制后由于啁啾光谱展宽,出现两个峰,其中“1”对应蓝移的峰(第一信号光),“0”对应红移的峰(第二信号光),由光谱中可以看出,“1”对应的功率比“0”大,二者的比值为消光比。将信号经过光谱整形后,“0”对应的峰被抑制,整个光谱变窄,这样有利于长距离传输,且信号“0”功率被降低,使信号的消光比增大,有利于信号接收。
一实施例中,与上述附图中的第一Etalon 38类似,第二Etalon 1102和第二Etalon 1202所起到的作用是针对来自TX 32的发射光进行滤波。图14是根据本发明实施例的另一种信号的啁啾管理的波形图。如图14所示,来自Tx 32发射光经过隔离器后,经过第二Etalon 1102或第二Etalon1202,对于光信号调制后信号“1”对应的波长能量经由第二Etalon 1102或第二Etalon1202透射,而“0”对应的波长能量则经由第二Etalon 1102或第二Etalon1202反射。同时反射光会进入到隔离器92或隔离器1002中进行隔离。透射光信号光谱变窄,长距离传输色散减小,消光比增加,有利于接收。
可选地,图15是根据本发明实施例的另一种光收发组件的结构图七。如图 15所示,该光收发组件除包括图7所示的所有结构外,还包括:第二分束器1502,第一光探测器(photodetector 1,PD1)1504,第三Etalon 1506,第二光探测器PD2 1508以及处理器1510。第二分束器1502,与第一分束器36连接,设置为对来自Tx 32的信号光经过第一分束器36分束后的反射光进行分束。
PD1 1504,与第二分束器1502连接,设置为对经过第二分束器1502分束后的反射光进行探测,并生成第一探测结果。
第三Etalon 1506,与第二分束器1502连接,设置为对经过第二分束器1502分束后的透射光进行滤波,滤波的方式包括:对透射光进行透射处理和反射处理中至少一种处理。
PD2 1508,与第三Etalon 1506连接,设置为获取滤波后的透射光,并生成第二探测结果。
处理器1510,配置为分别与Tx 32、PD1 1504以及PD2 1508连接,设置为根据所述第一探测结果和所述第二探测结果对Tx32的温度进行调节。
可选地,图16是根据本发明实施例的另一种光收发组件的结构图八。如图16所示,该光收发组件除包括图8所示的所有结构外,还包括:第二分束器1602,PD1 1604,第三Etalon 1606,PD2 1608以及处理器1610。第二分束器1602,与第一分束器36连接,设置为对来自Tx 32的信号光经过第一分束器36分束后的透射光进行分束。
PD1 1604,与第二分束器1602连接,设置为对经过第二分束器1602分束后的反射光进行探测,生成第一探测结果。
第三Etalon 1606,与第二分束器1602连接,设置为对经过第二分束器1602分束后的透射光进行滤波,滤波的方式包括:对透射光进行透射处理和反射处理中至少一种处理。
PD2 1608,与第三Etalon 1606连接,设置为获取滤波后的透射光,并生成第二探测结果。
处理器1610,分别与Tx 32、PD1 1604以及PD2 1608连接,设置为根据所述第一探测结果和所述第二探测结果对Tx32的温度进行调节。
实施例2
在本实施例中提供了一种信号光的管理方法。图17是根据本发明实施例的一种信号光的管理方法的流程图。如图17所示,应用于实施例1中记载的光收 发组件中,包括如下步骤。
步骤S1702,接收所述PD1发送的所述第一探测结果,并确定所述第四分束光对应的功率P1。
步骤S1704,接收所述PD2发送的所述第二探测结果,并确定所述滤波后的第五分束光对应的功率P2。
步骤S1706,比较功率比值P1/P2与所述第三Etalon的标准透射波长对应的参考比值,并得到比较结果。
步骤S1708,根据所述比较结果,向所述Tx发送用于调节所述Tx对应的激光器温度的指示信息。
可选地,在比较所述功率比值P1/P2与所述参考比值之前,所述方法还包括:获取所述第三Etalon的透射率曲线以及所述第三Etalon的标准透射波长;计算所述标准透射波长在所述透射率曲线上对应的斜率。
可选地,在所述斜率不为0的情况下,所述根据所述比较结果,向所述Tx发送用于调节所述激光器温度的指示信息,包括:响应于确定所述功率比值P1/P2小于所述参考比值,向所述Tx发送用于降低所述激光器温度的第一指示信息;响应于确定所述功率比值P1/P2大于所述参考比值,向所述Tx发送用于升高所述激光器温度的第二指示信息。
可选地,在所述斜率等于0的情况下,所述方法还包括:获取Tx发送的多个指定温度对应的温度信息;根据所述多个指定温度对应的温度信息,计算与所述多个指定温度对应的温度信息一一对应的多个功率比值;比较所述多个功率比值,并确定所述多个功率比值中最小的功率比值对应的目标温度;向所述Tx发送用于调节所述激光器温度至所述目标温度的第三指示信息。
为了更好的理解本实施的技术方案,本实施例中还提供了如下的场景,以便理解本实施例的技术方案。
场景1
图18是根据本发明实施例的一种正斜率锁定的波长示意图。如图18所示,实线为第三Etalon的透射率曲线,虚线为第三Etalon的反射率曲线。标准透射波长λT对准第三Etalon透射率曲线上升的位置,此时透射率曲线斜率为正值。发射光经过50/50功率分束器,50%的透射光发射出去,50%的反射光再经过一个50/50功率分束器,50%的光由PD2直接接收,功率为P2,50%的光经过第三Etalon滤波后由PD1接收,功率为P1。PD1和PD2将光功率电信号传递给 计算与控制模块,该模块控制激光器调节发射光波长。
当发射光为标称波长时,计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。若发射光波长向短波长处漂移,如漂移为λ’T,则第三Etalon使发射光在第三Etalon处透射增加,反射降低,对应的两个功率,P1增加,而P2不变,因此控制与计算模块计算得到的功率比值增加,此时控制与计算模块控制TEC降低激光器温度,使功率比值回到Ratio_Ref,发射光波长回到λT。
若发射光波长向长波长处漂移,如漂移为λ”T,则第三Etalon使发射光在第三Etalon处透射减小,反射增加,对应两个功率P1减小,P2不变,控制与计算模块计算得到的功率比值减小,控制与计算模块控制TEC提高激光器温度,使比值回到Ratio_Ref,发射光波长回到λT。
场景2
图19是根据本发明实施例的一种负斜率锁定的波长示意图。如图19所示,实线为第三Etalon的透射率曲线,虚线为第三Etalon的反射率曲线。标准透射波长λT对准第三Etalon透射率曲线下降的位置,此时透射率曲线斜率为负值。发射光经过50/50功率分束器,50%的透射光发射出去,50%的反射光再经过一个50/50功率分束器,50%的光由PD2直接接收,功率为P2,50%的光经过第三Etalon滤波后由PD1接收,功率为P1。PD1和PD2将光功率电信号传递给计算与控制模块,该模块控制激光器调节发射光波长。
当发射光为标称波长时,计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。若发射光波长向短波长处漂移,如漂移为λ’T,则第三Etalon使发射光在第三Etalon处透射增加,反射降低,对应的两个功率P1增加,而P2不变,因此控制与计算模块计算得到的功率比值增加,此时控制与计算模块控制TEC降低激光器温度,使功率比值回到Ratio_Ref,发射光波长回到λT。
若发射光波长向长波长处漂移,如漂移为λ”T,则第三Etalon使发射光在第三Etalon处透射减小,反射增加,对应两个功率P1减小,P2不变,控制与计算模块计算得到的功率比值减小,控制与计算模块控制TEC升高激光器温度,使比值回到Ratio_Ref,发射光波长回到λT。
场景3
图20是根据本发明实施例的一种极值锁定的波长示意图。如图20所示, 实线为第三Etalon的透射率曲线,虚线为第三Etalon的反射率曲线。标准透射波长λT对准第三Etalon透射率曲线下降的位置,此时透射率曲线斜率为负值。发射光经过50/50功率分束器,50%的反射光发射出去,50%的透射光再经过一个50/50功率分束器,50%的光由PD2直接接收,功率为P2,50%的光经过第三Etalon滤波后由PD1接收,功率为P1。PD1和PD2将光功率电信号传递给计算与控制模块,该模块控制激光器调节发射光波长。
当发射光为标称波长时,计算和控制模块计算两个功率的比值Ratio_Ref=P1/P2,此为参考值。若发射光波长向短波长处漂移,如漂移为λ’T,则第三Etalon使发射光在第三Etalon处透射降低,反射增加,对应的两个功率P1减小,P2不变,因此控制与计算模块计算得到的功率比值减小。
若发射光波长向长波长处漂移,如漂移为λ”T,则第三Etalon使发射光透射还是减小,反射还是增加,对应两个功率P1减小,P2不变,控制与计算模块计算得到的功率比值减小,两种波长漂移均对应功率比值减小,因此控制与计算模块需要控制TEC,调整激光器温度,尝试不同的温度调整方向,实时测量功率比值,找到功率比值的最小值,即为标准发射波长。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是可选的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(Read-Only Memory,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开每个实施例所述的方法。
实施例3
在本实施例中还提供了一种信号光的管理装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和硬件中至少一种的组合。尽管以下实施例所描述的装置可选地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图21是根据本发明实施例的一种信号光的管理装置的结构框图,如图21 所示,该装置包括第一接收模块2102、第二接收模块2104、比较模块2106和指示模块2108。
第一接收模块2102,设置为接收所述PD1发送的所述第一探测结果,并确定所述第四分束光对应的功率P1。
第二接收模块2104,设置为接收所述PD2发送的所述第二探测结果,并确定所述滤波后的第五分束光对应的功率P2。
比较模块2106,设置为比较P1/P2的功率比值与所述第三Etalon的标准透射波长对应的参考比值,并得到比较结果。
指示模块2108,设置为根据所述比较结果,向所述Tx发送用于调节所述Tx对应的激光器温度的指示信息。
实施例4
图22是根据本发明实施例的一种PON系统的结构图,如图22所示,本实施例所描述的光网络设备包括OLT和/或ONU。如果光网络设备包括OLT的话,则多个光收发组件位于相同的OLT中,输入的信号则是由OLT提供的。而如果光网络设备包括ONU的话,每一个光收发组件均连接一个对应的ONU,从该ONU中输入信号。二者之间通过WDM经由光纤进行连接。
图23是根据本发明实施例的位于AWG多个端口透射窗口的上下行波长的示意图,如图23所示AWG每个端口上下行波长在AWG同一个FSR周期的同一个透射窗口以内,这里假定上下行波长间隔为Δf/2,这个间隔很近,一般的合分波器很难将其分开,使用实施例3的光收发组件可以很好地将其分开。AWG每个端口对应的上行通道和下行通道间的间隔为Δf,即通道间隔为Δf。如此,总共占用的频带资源为nΔf,比图2少了一半。
实施例5
本公开的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,该计算机程序被设置为运行时执行上述任一方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的计算机程序。
S1,接收所述PD1发送的所述第一探测结果,并确定所述第四分束光对应的功率P1。
S2,接收所述PD2发送的所述第二探测结果,并确定所述滤波后的第五分束光对应的功率P2。
S3,比较功率比值P1/P2与所述第三Etalon的标准透射波长对应的参考比值,并得到比较结果。
S4,根据所述比较结果,向所述Tx发送用于调节所述Tx对应的激光器温度的指示信息。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、ROM、RAM、移动硬盘、磁碟或者光盘等多种可以存储计算机程序的介质。
本公开的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一方法实施例中的步骤。
一些实施例中,该处理器可以是图11或者20中记载的处理器。
显然,本领域的技术人员应该明白,上述的本公开的多个模块或多个步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成多个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。

Claims (16)

  1. 一种光收发组件,包括:发射装置Tx、接收装置Rx、第一分束器以及第一光学标准具Etalon,其中
    所述第一分束器,配置为分别与光网络设备、所述Tx和所述Rx连接,设置为对来自所述Tx的信号光进行分束和对来自所述光网络设备的信号光进行分束;
    所述第一Etalon,位于所述第一分束器和所述Rx之间,设置为对来自所述光网络设备的信号光经过所述第一分束器分束后的第一分束光进行全透射,并输出至所述Rx;
    其中,所述第一分束器为50/50功率波束器。
  2. 根据权利要求1所述的光收发组件,还包括:隔离器,位于所述Tx和所述第一分束器之间,设置为对来自所述光网络设备的信号光经过所述第一分束器分束后的第二分束光进行隔离。
  3. 根据权利要求2所述的光收发组件,还包括:第二Etalon,位于所述隔离器和所述第一分束器之间;
    所述第二Etalon设置为对来自所述Tx的信号光中满足预设波长能量阈值的信号光进行全透射,并传输至所述第一分束器;以及,对来自所述Tx的信号光中不满足所述预设波长能量阈值的信号光进行全反射,并传输至所述隔离器进行隔离。
  4. 根据权利要求1、2或3所述的光收发组件,还包括:
    第二分束器,与所述第一分束器连接,设置为对来自所述Tx的信号光经过所述第一分束器分束后的第三分束光进行分束;
    第一光探测器PD1,与所述第二分束器连接,设置为对经过所述第二分束器分束后的第四分束光进行探测,并生成第一探测结果。
  5. 根据权利要求4所述的光收发组件,还包括:
    第三Etalon,与所述第二分束器连接,设置为对经过所述第二分束器分束后的第五分束光进行滤波,其中,所述滤波的方式包括:对所述第五分束光进行透射处理和反射处理中至少一种处理;
    第二光探测器PD2,与所述第三Etalon连接,设置为获取滤波后的第五分束光,并生成第二探测结果。
  6. 根据权利要求5所述的光收发组件,还包括:
    处理器,配置为分别与所述Tx、所述PD1以及所述PD2连接,设置为根据所 述第一探测结果和所述第二探测结果对所述Tx的温度进行调节。
  7. 根据权利要求1-6任一项所述的光收发组件,其中,所述第一Etalon、所述第二Etalon和所述第三Etalon中任一Etalon为具备对输入的光信号进行反射和透射能力中至少一种能力的两个平行设置的平板。
  8. 一种信号光的管理方法,应用于权利要求6所述的光收发组件,所述方法包括:
    接收所述PD1发送的所述第一探测结果,并确定所述第四分束光对应的功率P1;
    接收所述PD2发送的所述第二探测结果,并确定所述滤波后的第五分束光对应的功率P2;
    比较功率比值P1/P2与所述第三Etalon的标准透射波长对应的参考比值,并得到比较结果;
    根据所述比较结果,向所述Tx发送用于调节所述Tx对应的激光器温度的指示信息。
  9. 根据权利要求8所述的方法,其中,在比较所述功率比值P1/P2与所述参考比值之前,所述方法还包括:
    获取所述第三Etalon的透射率曲线以及所述第三Etalon的标准透射波长;
    计算所述标准透射波长在所述透射率曲线上对应的斜率。
  10. 根据权利要求9所述的方法,其中,在所述斜率不为0的情况下,所述根据所述比较结果,向所述Tx发送用于调节所述激光器温度的指示信息,包括:
    响应于确定所述功率比值P1/P2小于所述参考比值,向所述Tx发送用于升高所述激光器温度的第一指示信息;
    响应于确定所述功率比值P1/P2大于所述参考比值,向所述Tx发送用于降低所述激光器温度的第二指示信息。
  11. 根据权利要求9所述的方法,其中,在所述斜率等于0的情况下,所述方法还包括:
    获取Tx发送的多个指定温度对应的温度信息;
    根据所述多个指定温度对应的温度信息,计算与所述多个指定温度对应的温度信息一一对应的多个功率比值;
    比较所述多个功率比值,并确定所述多个功率比值中最小的功率比值对应的目标温度;
    向所述Tx发送用于调节所述激光器温度至所述目标温度的第三指示信息。
  12. 一种信号光的管理装置,应用于权利要求6所述的光收发组件,所述装置包括:存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序时包括:
    第一接收模块,设置为接收所述PD1发送的所述第一探测结果,并确定所述第四分束光对应的功率P1;
    第二接收模块,设置为接收所述PD2发送的所述第二探测结果,并确定所述滤波后的第五分束光对应的功率P2;
    比较模块,设置为比较功率比值P1/P2与所述第三Etalon的标准透射波长对应的参考比值,并得到比较结果;
    指示模块,设置为根据所述比较结果,向所述Tx发送用于调节所述Tx对应的激光器温度的指示信息。
  13. 一种无源光网络PON系统,包括:光线路终端OLT,光网络单元ONU以及波分复用器WDM,其中,所述OLT通过权利要求1-7任一项所述的光收发组件与所述WDM连接。
  14. 一种无源光网络PON系统,包括:光线路终端OLT,光网络单元ONU,以及波分复用器WDM,其中,所述ONU通过权利要求1-7任一项所述的光收发组件与所述WDM连接。
  15. 一种存储介质,其中,所述存储介质中存储有计算机程序,所述计算机程序被设置为运行时执行所述权利要求8-11任一项所述的方法。
  16. 一种电子装置,包括存储器和处理器,其中,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求8-11任一项所述的方法。
PCT/CN2019/128979 2018-12-29 2019-12-27 光收发组件,信号光的管理方法及装置,pon系统,电子装置及存储介质 WO2020135662A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811643603.8A CN111385027B (zh) 2018-12-29 2018-12-29 光收发组件,信号光的管理方法及装置,pon系统
CN201811643603.8 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135662A1 true WO2020135662A1 (zh) 2020-07-02

Family

ID=71125909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128979 WO2020135662A1 (zh) 2018-12-29 2019-12-27 光收发组件,信号光的管理方法及装置,pon系统,电子装置及存储介质

Country Status (2)

Country Link
CN (1) CN111385027B (zh)
WO (1) WO2020135662A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115586608A (zh) * 2021-07-05 2023-01-10 苏州旭创科技有限公司 单纤双向光组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125517A (zh) * 2013-04-26 2014-10-29 中兴通讯股份有限公司 一种光传输系统、模式耦合器和光传输方法
CN105470808A (zh) * 2016-01-11 2016-04-06 深圳新飞通光电子技术有限公司 一种多光路输出的可调谐激光器系统
CN108333691A (zh) * 2017-01-20 2018-07-27 山东华云光电技术有限公司 一种波长可调单纤双向光发射接收组件
US20180375587A1 (en) * 2017-06-26 2018-12-27 Inphi Corporation Rx delay line inteferometer tracking in closed-loop module control for communication

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7587141B2 (en) * 2005-08-02 2009-09-08 Itt Manufacturing Enterprises, Inc. Communication transceiver architecture
CN101997614B (zh) * 2009-08-18 2014-07-09 百维通(苏州)科技有限公司 集成光收发器、光网络系统、光通信系统及方法
EP2698933A4 (en) * 2011-05-10 2014-08-20 Huawei Tech Co Ltd AUTO-INJECTION LASER, WAVELENGTH DIVISION MULTIPLEXING PASSIVE OPTICAL NETWORK SYSTEM AND OPTICAL LINE TERMINAL
EP2573966B1 (en) * 2011-07-20 2013-11-13 ADVA Optical Networking SE A wavelength locking method for an optical transceiver device and optical transceiver device
WO2013091190A1 (zh) * 2011-12-21 2013-06-27 华为技术有限公司 可调光收发器、无源光网络系统及设备
US20140044436A1 (en) * 2012-08-09 2014-02-13 Electronics And Telecommunications Research Institute Optical transmitter and optical transceiver comprising optical transmitter
JP6244672B2 (ja) * 2013-06-04 2017-12-13 富士通オプティカルコンポーネンツ株式会社 光源モジュール、および光送受信装置
CN105634614B (zh) * 2014-10-30 2018-06-05 华为技术有限公司 光发射机、波长对准方法及无源光网络系统
CN106550290B (zh) * 2015-09-21 2020-10-02 南京中兴软件有限责任公司 无源光网络功率均衡的方法、装置、终端、单元及系统
CN106443908A (zh) * 2016-11-08 2017-02-22 佑胜光电股份有限公司 光学收发模块及光纤缆线模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125517A (zh) * 2013-04-26 2014-10-29 中兴通讯股份有限公司 一种光传输系统、模式耦合器和光传输方法
CN105470808A (zh) * 2016-01-11 2016-04-06 深圳新飞通光电子技术有限公司 一种多光路输出的可调谐激光器系统
CN108333691A (zh) * 2017-01-20 2018-07-27 山东华云光电技术有限公司 一种波长可调单纤双向光发射接收组件
US20180375587A1 (en) * 2017-06-26 2018-12-27 Inphi Corporation Rx delay line inteferometer tracking in closed-loop module control for communication

Also Published As

Publication number Publication date
CN111385027B (zh) 2022-11-08
CN111385027A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
US11888525B2 (en) Systems and methods for full duplex coherent optics
EP3160061B1 (en) Optical transmitter, wavelength alignment method and passive optical network system
WO2008022579A1 (fr) Dispositif et procédé d'alignement du mode d'une source lumineuse, ainsi que système de réseau optique passif
CN110708117B (zh) 确定光信号的波长信息的方法、装置及存储介质
CN107024744A (zh) 一种光模块及波长监控方法
WO2018099300A1 (en) Systems and methods for reducing adjacent channel leakage ratio
CN103634066A (zh) 光线路终端及光网络单元
EP4351041A1 (en) Optical signal receiving apparatus, system and method, optical line terminal, and computer-readable storage medium
WO2020135662A1 (zh) 光收发组件,信号光的管理方法及装置,pon系统,电子装置及存储介质
US9166691B2 (en) Method for coupling an emitting device to a frequency splitter in an optical passive network
EP4207634A1 (en) Optical transceiver device and optical network system
US11716164B1 (en) Systems and methods for full duplex coherent optics
Murano et al. Low cost tunable receivers for wavelength agile PONs
CN113572520B (zh) 光网络终端和确定光网络终端连接的端口的方法
CN103856262B (zh) 基于一码元延时干涉和平衡探测的带内光信噪比测量系统
US20230275672A1 (en) Electronic device and method for tuning wavelenth in optical network
US10476625B2 (en) Optical network system using wavelength channels included in O-band
WO2019200845A1 (zh) 光收发组件、光线波长调整方法及装置
WO2020253540A1 (zh) 无源光网络的波长切换、配置方法及装置
US20240283545A1 (en) Optical signal receiving apparatus, method and system, optical line terminal, computer-readable storage medium
WO2024027255A1 (zh) 光网络节点及光网络系统
WO2014194507A1 (zh) 光频率监控装置
CN107346989A (zh) 一种多通道激光波长相关性监测器及监测方法
Talli et al. Filter impact in spectrally-broadened Rayleigh noise reduction schemes for DWDM-PONs
CN116865848A (zh) 光链路检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19906341

Country of ref document: EP

Kind code of ref document: A1